WO2019210535A1 - 水处理多孔膜及其制备方法 - Google Patents

水处理多孔膜及其制备方法 Download PDF

Info

Publication number
WO2019210535A1
WO2019210535A1 PCT/CN2018/087669 CN2018087669W WO2019210535A1 WO 2019210535 A1 WO2019210535 A1 WO 2019210535A1 CN 2018087669 W CN2018087669 W CN 2018087669W WO 2019210535 A1 WO2019210535 A1 WO 2019210535A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
molecular weight
mixture
treated porous
antioxidant
Prior art date
Application number
PCT/CN2018/087669
Other languages
English (en)
French (fr)
Inventor
程跃
熊磊
Original Assignee
上海恩捷新材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恩捷新材料科技股份有限公司 filed Critical 上海恩捷新材料科技股份有限公司
Priority to KR1020197019030A priority Critical patent/KR102364196B1/ko
Priority to US16/477,642 priority patent/US11325074B2/en
Priority to EP18893321.2A priority patent/EP3789105A4/en
Priority to JP2019536930A priority patent/JP7046956B2/ja
Publication of WO2019210535A1 publication Critical patent/WO2019210535A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/403Polymers based on the polymerisation of maleic acid or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/74Natural macromolecular material or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/028Microfluidic pore structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a polymer porous membrane technology, in particular to a water treatment porous membrane and a preparation method thereof.
  • the porous membrane is used as a special film containing fine pore distribution, and is usually used for air filtration and purification, water treatment and purification, or as a special compartment for batteries and the like.
  • the preparation of the porous film generally employs a method such as uniaxial stretching, biaxial stretching or phase inversion, and the film body usually has pores penetrating the film body to form a porous film.
  • the mechanism of the adsorption process of the porous membrane can be explained by the sieving theory.
  • Aggregate particles or molecules with a particle size smaller than the pores of the membrane can penetrate the pores of the membrane, and aggregate particles or molecules having a particle diameter equal to the pores of the membrane can block the membrane pores, and the particle diameter is larger than Aggregate particles or molecules of the pores of the membrane are trapped by the membrane body.
  • the charged ions are adsorbed and trapped in the membrane surface and the pores of the membrane, and the particles smaller than the pore size are trapped at the pores, and also have a certain retention effect. Therefore, the pore size and porosity of the porous membrane directly determine the final effect of filtration adsorption.
  • the thinner the film the better the permeability and the higher the efficiency of filtration and adsorption.
  • the surface has good hydrophilicity, which facilitates the wetting of water and the surface of the film and the inside of the pore, and enhances the permeability of water.
  • Conventional water treatment porous membranes in order to enhance their hydrophilicity, are usually coated with a hydrophilic coating on the surface of the membrane, which is generally thin in thickness, poor in durability, and complicated in process, requiring frequent replacement. Therefore, the durability is poor, and the porous film coated with the hydrophilic coating is thicker, the pore size distribution is uniform, the pore diameter is larger, and the hydrophilic effect is poor, which lowers the performance of the porous membrane.
  • the object of the present invention is to provide a water treatment porous membrane and a preparation method thereof for solving the problem that the water treatment porous membrane in the prior art has poor durability, complicated preparation process, and membrane
  • the problem is that the thickness is thick, the aperture is large, and the hydrophilicity is poor.
  • the present invention provides a water-treated porous membrane comprising at least: a high molecular weight polyethylene, a water-soluble polymer, and an antioxidant, and an average molecular weight of the high molecular weight polyethylene between 1.0 ⁇ 10 5 ⁇ 10.0 ⁇ 10 6 between a density between 0.940g / cm between 3 3 ⁇ 0.976g / cm;
  • the weight of the water-soluble polymer is between 5 and 50 parts by weight of the high molecular weight polyethylene; and the weight of the antioxidant is between 0.1 and 10 parts.
  • the water-treated porous membrane has a thickness of between 5 ⁇ m and 30 ⁇ m, a pore diameter of between 10 nm and 100 nm, a porosity of between 20% and 60%, and a surface contact angle of between 30° and ⁇ . Between 95°.
  • the water soluble polymer is selected from the group consisting of carboxymethyl starch, starch acetate, hydroxymethyl cellulose, carboxymethyl cellulose, polyacrylamide, hydrolyzed polyacrylamide, ethyl cellulose, polymaleic anhydride.
  • the antioxidant is selected from the group consisting of 4,4-thiobis(6-tert-butylm-cresol), dibutylhydroxytoluene, phosphite, tert-butyl hydroquinone, ⁇ -(3) , 5-di-tert-butyl-4-hydroxyphenyl)propionic acid n-octadecyl carbonate, 1,1,3-tris(2-methyl-4hydroxy-5-tert-butylphenyl)butane, 2- Tert-butyl-6-methylphenol, N,N'-di- ⁇ -naphthyl p-phenylenediamine, dilauryl thiodipropionate, tris(nonylphenyl) phosphite and triphenyl phosphite One or more of the groups of esters.
  • the present invention also provides a method for preparing a water-treated porous membrane, which can be used to prepare the water-treated porous membrane provided by the present invention, the preparation method comprising at least:
  • the high molecular weight polyethylene has an average molecular weight of from 1.0 ⁇ 10 5 to 10.0 ⁇ 10 6 between a density between 0.940g / cm 3 ⁇ 0.976g / between 3 cm; and wherein the high molecular weight polyethylene by weight of 100 parts of the weight of the water-soluble polymer is 5 to 50 parts of The weight of the pore former is between 100 and 500 parts, and the weight of the antioxidant is between 0.1 and 10 parts;
  • the high molecular weight polyethylene, the water-soluble polymer, the pore former and the antioxidant are added to the continuous compounding charging tank for mixing, and are at 45 rpm to 55 rpm. Stir at a constant rate to form a mixture.
  • the high molecular weight polyethylene, the antioxidant and the water-soluble polymer are dissolved in the pore former at a temperature of 170 ° C to 230 ° C to form a mixture, and then 150 The mixture was continuously extruded at a rate of from rpm to 250 rpm.
  • the step of casting the mixture into a ribbon comprises: first, continuously feeding the mixture extruded in the step 2) into a slit die, and then passing The slit die extrudes the extruded mixture to a casting chill roll and casts it into a ribbon at a temperature of 70 ° C to 90 ° C.
  • the porogen in the ribbon is extracted by using dichloromethane as an extract, and the ribbon is further heated at a temperature of 115 ° C to 125 ° C.
  • the film was formed by stretching in a biaxial stretching machine, and the film was subjected to secondary extraction with dichloromethane, followed by washing with deionized water.
  • the film is heat-set at a temperature of 115 ° C to 125 ° C for 15 minutes to 20 minutes, and then the film is collected at a speed of 20 m / min to 50 m / min. Roll, obtaining the water treated porous membrane.
  • the water soluble polymer is selected from the group consisting of carboxymethyl starch, starch acetate, hydroxymethyl cellulose, carboxymethyl cellulose, polyacrylamide, hydrolyzed polyacrylamide, ethyl cellulose, polymaleic anhydride.
  • the pore former is selected from the group consisting of natural mineral oil, C 6-15 alkane, C 8-15 aliphatic carboxylic acid, C 8-15 aliphatic carboxylic acid C 1-4 alkyl ester, C 2-6 halogenated alkane Hydrocarbons, phthalates, trimellitates, adipates, sebacates, maleates, benzoates, epoxidized vegetable oils, benzenesulfonamides, phosphotriesters, glycols One or more of the group consisting of ether, acetyl monoglyceride, citrate, and diisononyl cyclohexane-1,2-dicarboxylate.
  • the antioxidant is selected from the group consisting of 4,4-thiobis(6-tert-butylm-cresol), dibutylhydroxytoluene, phosphite, tert-butyl hydroquinone, ⁇ -(3) , 5-di-tert-butyl-4-hydroxyphenyl)propionic acid n-octadecyl carbonate, 1,1,3-tris(2-methyl-4hydroxy-5-tert-butylphenyl)butane, 2- Tert-butyl-6-methylphenol, N,N'-di- ⁇ -naphthyl p-phenylenediamine, dilauryl thiodipropionate, tris(nonylphenyl) phosphite and triphenyl phosphite One or more of the groups of esters.
  • the pore former has a 40 ° C kinematic viscosity of between 10 mm 2 /s and 100 mm 2 /s, and the pore former has an initial boiling point of 110 ° C or higher.
  • the present invention provides a water treatment porous membrane by the above method.
  • the water-treated porous membrane has a thickness of between 5 ⁇ m and 30 ⁇ m, a pore diameter of between 10 nm and 100 nm, a porosity of between 20% and 60%, and a surface contact angle of between 30° and 95°. between.
  • the water-treated porous film of the present invention and the method for producing the same have the following
  • the invention prepares a porous membrane by adding a water-soluble polymer, which can significantly reduce the process complexity of preparing the porous membrane and reduce the manufacturing cost.
  • the water-treated porous membrane provided by the present invention does not need to be coated with a hydrophilic coating on the porous membrane by directly mixing the water-soluble polymer into the porous membrane, thereby significantly improving the durability of the porous membrane and reducing the durability.
  • FIG. 1 is a schematic flow chart showing a method of preparing a water-treated porous film of the present invention.
  • the present invention provides a water-treated porous membrane comprising at least: a high molecular weight polyethylene, a water-soluble polymer, and an antioxidant, the high molecular weight polyethylene having an average molecular weight of from 1.0 ⁇ 10 5 to 10.0 ⁇ between 106, a density between 0.940g / cm between 3 3 ⁇ 0.976g / cm;
  • the weight of the water-soluble polymer is between 5 and 50 parts by weight of the high molecular weight polyethylene; and the weight of the antioxidant is between 0.1 and 10 parts.
  • the high molecular weight polyethylene may be a single high molecular weight polyethylene or a mixture of two or more high molecular weight polyethylene, so the molecular weight of the high molecular weight polyethylene is calculated by the average molecular weight. .
  • the high molecular weight polyethylene has an average molecular weight of between 1.0 ⁇ 10 5 ⁇ 5.0 ⁇ 10 6, more preferably, a is between 1.0 ⁇ 10 5 ⁇ 2.0 ⁇ 10 6.
  • the high molecular weight polyethylene has a density between 0.940g / cm 3 ⁇ 0.966g / cm 3 between, more preferably, a is between 0.950g / cm 3 ⁇ 0.976g / cm 3.
  • the weight of the water-soluble polymer is between 10 and 40 parts, and the weight of the pore-forming agent is between 200 and 500 parts, based on 100 parts by weight of the high molecular weight polyethylene.
  • the antioxidant has a weight of between 0.5 and 8 parts.
  • the weight of the water-soluble polymer is between 20 and 30 parts, and the weight of the pore-forming agent is between 200 and 400 parts, based on 100 parts by weight of the high molecular weight polyethylene.
  • the antioxidant has a weight of between 1 and 6 parts.
  • the water-treated porous film obtained by the invention has a thickness of between 5 ⁇ m and 30 ⁇ m, a pore diameter of between 10 nm and 100 nm, a porosity of between 20% and 60%, and a surface contact angle of 30 Between ° and 95 °.
  • the water soluble polymer comprises carboxymethyl starch, starch acetate, hydroxymethyl cellulose, carboxymethyl cellulose, polyacrylamide, hydrolyzed polyacrylamide, ethyl cellulose, polymaleic anhydride, A composition of one or more of the group consisting of polyacrylic acid, polyvinylpyrrolidone, polyvinyl alcohol, and polyethylene oxide.
  • the antioxidant is selected from the group consisting of 4,4-thiobis(6-tert-butylm-cresol), dibutylhydroxytoluene, phosphite, tert-butyl hydroquinone, ⁇ -(3) , 5-di-tert-butyl-4-hydroxyphenyl)propionic acid n-octadecyl carbonate, 1,1,3-tris(2-methyl-4hydroxy-5-tert-butylphenyl)butane, 2- Tert-butyl-6-methylphenol, N,N'-di- ⁇ -naphthyl p-phenylenediamine, dilauryl thiodipropionate, tris(nonylphenyl) phosphite and triphenyl phosphite One or more of the groups of esters.
  • the present invention also provides a method for preparing a water-treated porous membrane, wherein the water-treated porous membrane can be prepared by the preparation method, and the preparation method comprises at least:
  • the film is subjected to heat setting and winding step to obtain the water-treated porous film.
  • the step S1 at least one of the high molecular weight polyethylene, the water-soluble polymer, the pore former and the antioxidant are added to the continuous compounding charging tank for mixing, and are at 45 rpm to 55 rpm.
  • the mixture was stirred at a rate to form a mixture.
  • the weight of the water-soluble polymer is between 10 and 40 parts by weight of the high molecular weight polyethylene, and the weight of the pore former is between 200 and 500 parts.
  • the antioxidant has a weight of between 0.5 and 8 parts. More preferably, the weight of the water-soluble polymer is between 20 and 30 parts, and the weight of the pore-forming agent is between 200 and 400 parts, based on 100 parts by weight of the high molecular weight polyethylene.
  • the antioxidant has a weight of between 1 and 6 parts.
  • the high molecular weight polyethylene, the antioxidant, and the water-soluble polymer are dissolved in the pore former at a temperature of 170 ° C to 230 ° C to form a mixture, and then 150 rpm.
  • the mixture was continuously extruded at a rate of from -250 rpm.
  • the step of casting the mixture into a ribbon comprises: first, continuously feeding the mixture extruded in the step 2) into a slit die, and then passing through the The slit die extrudes the extruded mixture to a casting chill roll and casts it into a ribbon at a temperature of 70 ° C to 90 ° C.
  • the pore former in the ribbon is extracted by using dichloromethane as an extract, and the ribbon is passed through a temperature of 115 ° C to 125 ° C.
  • the biaxial stretching machine was stretched to form a film, and the film was subjected to secondary extraction with dichloromethane, followed by washing with deionized water.
  • the film is heat-set at a temperature of 115 ° C to 125 ° C for 15 minutes to 20 minutes, and then the film is wound at a speed of 20 m / min to 50 m / min.
  • the water treated porous membrane was obtained.
  • the water soluble polymer is selected from the group consisting of carboxymethyl starch, starch acetate, hydroxymethyl cellulose, carboxymethyl cellulose, polyacrylamide, hydrolyzed polyacrylamide, ethyl cellulose, polymaleic anhydride.
  • the pore former is selected from the group consisting of natural mineral oils, C 6-15 alkanes, C 8-15 aliphatic carboxylic acids, C 8-15 aliphatic carboxylic acid C 1-4 alkyl esters, C 2-6 haloalkanes. Hydrocarbons, phthalates, trimellitates, adipates, sebacates, maleates, benzoates, epoxidized vegetable oils, benzenesulfonamides, phosphotriesters, glycols One or more of the group consisting of ether, acetyl monoglyceride, citrate, and diisononyl cyclohexane-1,2-dicarboxylate.
  • the antioxidant is selected from the group consisting of 4,4-thiobis(6-tert-butylm-cresol), dibutylhydroxytoluene, phosphite, tert-butyl hydroquinone, ⁇ -(3) , 5-di-tert-butyl-4-hydroxyphenyl)propionic acid n-octadecyl carbonate, 1,1,3-tris(2-methyl-4hydroxy-5-tert-butylphenyl)butane, 2- Tert-butyl-6-methylphenol, N,N'-di- ⁇ -naphthyl p-phenylenediamine, dilauryl thiodipropionate, tris(nonylphenyl) phosphite and triphenyl phosphite One or more of the groups of esters.
  • the pore former has a 40 ° C kinematic viscosity of between 10 mm 2 /s and 100 mm 2 /s, and the pore former has an initial boiling point of 110 ° C or higher.
  • the water treatment porous membrane provided by the present invention can also be used in lithium ion batteries, especially power lithium ion batteries.
  • German German film thickness gauge 1216 according to GB/T6672-2001 plastic film and sheet thickness measurement method
  • contact angle refers to the contact angle of water or aqueous solution on a film layer and is measured using deionized water at room temperature using a Kruss DSA25 contact angle meter.
  • the mixture is continuously fed to a twin-screw extruder, and the high molecular weight polyethylene, antioxidant and polyethylene oxide are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw extruder
  • the mixture was continuously extruded at a rate of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to directly obtain a water-treated porous film. Its specific performance parameters have been tested as shown in Table 1:
  • the mixture is continuously fed to a twin-screw extruder, and the high molecular weight polyethylene, antioxidant and polyethylene oxide are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw extruder
  • the mixture was continuously extruded at a rate of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to directly obtain a water-treated porous film. Its specific performance parameters have been tested as shown in Table 2:
  • the mixture is continuously fed to a twin-screw extruder, and the high molecular weight polyethylene, antioxidant and polyethylene oxide are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw extruder
  • the mixture was continuously extruded at a rate of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to directly obtain a water-treated porous film. Its specific performance parameters have been tested as shown in Table 3:
  • the mixture is continuously fed to a twin-screw extruder, and the high molecular weight polyethylene, antioxidant and polyethylene oxide are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw extruder
  • the mixture was continuously extruded at a rate of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to directly obtain a water-treated porous film. Its specific performance parameters have been tested as shown in Table 4:
  • the mixture is continuously fed to a twin-screw extruder, and the high molecular weight polyethylene, antioxidant and polyethylene oxide are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw extruder
  • the mixture was continuously extruded at a rate of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to directly obtain a water-treated porous film. Its specific performance parameters have been tested as shown in Table 5:
  • the mixture is continuously fed to a twin-screw extruder, and the high molecular weight polyethylene, antioxidant and polyethylene oxide are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw extruder
  • the mixture was continuously extruded at a rate of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to directly obtain a water-treated porous film. Its specific performance parameters have been tested as shown in Table 6:
  • the mixture is continuously fed to a twin-screw extruder, and the high molecular weight polyethylene, antioxidant and polyethylene oxide are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw extruder
  • the mixture was continuously extruded at a rate of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to directly obtain a water-treated porous film. Its specific performance parameters have been tested as shown in Table 7:
  • the mixture is continuously fed to a twin-screw extruder, and the high molecular weight polyethylene, antioxidant and polyethylene oxide are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw extruder
  • the mixture was continuously extruded at a rate of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to directly obtain a water-treated porous film. Its specific performance parameters have been tested as shown in Table 8:
  • the mixture is continuously fed to a twin-screw extruder, and the high molecular weight polyethylene, antioxidant and polyethylene oxide are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw extruder
  • the mixture was continuously extruded at a rate of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to directly obtain a water-treated porous film. Its specific performance parameters have been tested as shown in Table 9:
  • Example 4 is a single-component water-soluble polymer
  • Example 5 is a mixture of two components of a water-soluble polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种水处理多孔膜,包括:高分子量聚乙烯、水溶性聚合物以及抗氧化剂,高分子量聚乙烯的平均分子量介于1.0×10 5~10.0×10 6之间、密度介于0.940g/cm 3~0.976g/cm 3之间;其中,按高分子量聚乙烯的重量为100份计,水溶性聚合物的重量介于5~50份之间;以及抗氧化剂的重量介于0.1~10份之间。制得的水处理多孔膜的厚度介于5μm~30μm之间,微孔孔径介于10nm~100nm之间,孔隙率介于20%~60%之间,表面接触角介于30°~95°之间。还公开了该水处理多孔膜的制备方法。

Description

水处理多孔膜及其制备方法 技术领域
本发明涉及高分子多孔膜技术,特别是涉及一种水处理多孔膜及其制备方法。
背景技术
多孔膜作为一种含有细小微孔分布的特殊薄膜,通常用在空气过滤及净化,水处理及净化,或作为特殊隔层用于电池等等。制备多孔膜通常采用单向拉伸、双向拉伸或相转化等方法,膜体上通常具有穿透膜体的孔隙,从而形成多孔膜。多孔膜过滤吸附过程的作用机理可用筛分理论解释,粒径小于膜孔的聚集体颗粒或分子可透过膜孔,粒径等于膜孔的聚集体颗粒或分子可堵塞膜孔,粒径大于膜孔的聚集体颗粒或分子被膜体截留。此外,带电离子在膜表面及膜孔中吸附截留,小于孔径的颗粒在孔口处的架桥截留,也具有一定的截留作用。所以,多孔膜的孔径大小和孔隙率直接决定了过滤吸附作用的最终效果。除此之外,越薄的膜,透过性越好,过滤吸附的效率也越高。
对于用于水处理的多孔薄膜,特别需要其表面拥有良好的亲水性,便于水与膜表面及孔内部的润湿,增强水的通透性。常规的水处理多孔膜,为了增强其亲水性,通常是在膜表面涂覆一些亲水涂层,该亲水涂层一般厚度较薄,耐久性较差,且工艺复杂,需要经常更换,所以使用持久性较差,另外通过涂覆亲水涂层的多孔膜较厚,孔径分布均匀度低,孔径较大,亲水效果较差,降低了多孔膜的性能。
因此,有必要提出一种水处理多孔膜及其制备方法,以克服 现有技术中的水处理多孔膜耐久性较差、且制备工艺复杂,同时具有很薄的厚度,良好的孔径分布及孔隙大小,且有良好的亲水性。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种水处理多孔膜及其制备方法,用于解决现有技术中的水处理多孔膜使用持久性较差、制备工艺复杂、膜的厚度较厚、孔径较大、亲水性较差的问题。
为实现上述目的及其他相关目的,本发明提供一种水处理多孔膜,所述水处理多孔膜至少包括:高分子量聚乙烯、水溶性聚合物以及抗氧化剂,所述高分子量聚乙烯的平均分子量介于1.0×10 5~10.0×10 6之间、密度介于0.940g/cm 3~0.976g/cm 3之间;
其中,按所述高分子量聚乙烯的重量为100份计,所述水溶性聚合物的重量介于5~50份之间;所述抗氧化剂的重量介于0.1~10份之间。
优选地,所述水处理多孔膜的厚度介于5μm~30μm之间,微孔孔径介于10nm~100nm之间,孔隙率介于20%~60%之间,表面接触角介于30°~95°之间。
优选地,所述水溶性聚合物是选自由羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素、聚丙烯酰胺、水解聚丙烯酰胺、乙基纤维素、聚马来酸酐、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇及聚氧化乙烯构成的群组中的一种或多种。
优选地,所述抗氧化剂是选自由4,4-硫代双(6-叔丁基间甲酚)、二丁基羟基甲苯、亚磷酸酯、特丁基对苯二酚、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯、1,1,3-三(2-甲基-4 羟基-5-叔丁苯基)丁烷、2-特丁基-6-甲基苯酚、N,N’-二-β-萘基对苯二胺、硫代二丙酸双月桂酯、亚磷酸三(壬基苯基)酯及亚磷酸三苯酯构成的群组中的一种或多种。
本发明还提供一种水处理多孔膜的制备方法,使用该方法可制备本发明提供的所述水处理多孔膜,所述制备方法至少包括:
1)将高分子量聚乙烯、水溶性聚合物、成孔剂以及抗氧化剂混合,并搅拌均匀形成混合物,其中,所述高分子量聚乙烯的平均分子量介于1.0×10 5~10.0×10 6之间、密度介于0.940g/cm 3~0.976g/cm 3之间;并且其中按所述高分子量聚乙烯的重量为100份计,所述水溶性聚合物的重量介于5~50份之间,所述成孔剂的重量介于100~500份之间,所述抗氧化剂的重量介于0.1~10份之间;
2)使所述高分子量聚乙烯、抗氧化剂以及水溶性聚合物溶解于所述成孔剂中,形成混合物,然后采用双螺杆挤出工艺挤出所述混合物;
3)将所述混合物流延成带状物;
4)萃取除去所述带状物中的所述成孔剂,再将所述带状物拉伸形成薄膜,并对所述薄膜进行二次萃取,然后进行清洗;
5)对所述薄膜进行热定型以及收卷步骤,获得所述水处理多孔膜。
优选地,所述步骤1)中,将所述高分子量聚乙烯、水溶性聚合物、成孔剂以及抗氧化剂加入连续配料加料釜中进行混合,并以45转/分~55转/分的速度搅拌均匀形成混合物。
优选地,所述步骤2)中,在170℃~230℃的温度下,使所述高分子量聚乙烯、抗氧化剂以及水溶性聚合物溶解于所述成孔剂中,形成混合物,然后以150转/分~250转/分的速度连续挤 出所述混合物。
优选地,所述步骤3)中,将所述混合物流延成带状物的步骤包括:首先,将所述步骤2)挤出的所述混合物连续进入到一狭缝模头内,然后通过所述狭缝模头将挤出的所述混合物挤出到流延冷却辊,在70℃~90℃的温度条件下流延成带状物。
优选地,所述步骤4)中,采用二氯甲烷作为萃取液萃取除去所述带状物中的所述成孔剂,再在115℃~125℃的温度条件下,将所述带状物通过双向拉伸机拉伸形成薄膜,并采用二氯甲烷对所述薄膜进行二次萃取,然后采用去离子水进行清洗。
优选地,所述步骤5)中,在115℃~125℃的温度条件下对所述薄膜热定型15分钟~20分钟,然后将所述薄膜以20米/分~50米/分的速度收卷,获得所述水处理多孔膜。
优选地,所述水溶性聚合物是选自由羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素、聚丙烯酰胺、水解聚丙烯酰胺、乙基纤维素、聚马来酸酐、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇及聚氧化乙烯构成的群组中的一种或多种。
优选地,所述成孔剂是选自由天然矿物油、C 6-15烷烃、C 8-15脂族羧酸、C 8-15脂族羧酸C 1-4烷酯、C 2-6卤代烷烃、邻苯二甲酸酯、偏苯三酸酯、己二酸酯、癸二酸酯、马来酸酯、苯甲酸酯、环氧植物油、苯磺酰胺、磷酸三酯、二元醇醚、乙酰单酸甘油乙酯、柠檬酸酯及环己烷-1,2-二羧酸二异壬酯构成的群组中的一种或多种。
优选地,所述抗氧化剂是选自由4,4-硫代双(6-叔丁基间甲酚)、二丁基羟基甲苯、亚磷酸酯、特丁基对苯二酚、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯、1,1,3-三(2-甲基-4羟基-5-叔丁苯基)丁烷、2-特丁基-6-甲基苯酚、N,N’-二-β- 萘基对苯二胺、硫代二丙酸双月桂酯、亚磷酸三(壬基苯基)酯及亚磷酸三苯酯构成的群组中的一种或多种。
优选地,所述成孔剂的40℃运动粘度介于10mm 2/s~100mm 2/s之间,所述成孔剂的初馏点在110℃以上。
因此,本发明通过上述方法提供了一种水处理多孔膜。该水处理多孔膜的厚度介于5μm~30μm之间,微孔孔径介于10nm~100nm之间,孔隙率介于20%~60%之间,以及表面接触角介于30°~95°之间。
如上所述,本发明的水处理多孔膜及其制备方法,具有以下
有益效果:
1、本发明通过加入水溶性聚合物制备多孔膜,可明显降低制备多孔膜的工艺复杂度,降低制造成本。
2、本发明提供的水处理多孔膜,通过将水溶性聚合物直接混入多孔膜中,不需要在多孔膜上再涂覆亲水涂层,明显提高了多孔膜的使用持久性,减小了多孔膜的厚度;另外,多孔膜表面接触角较小,明显提高了多孔膜的亲水性能,多孔膜的孔径较小,孔径分布良好,可明显提高多孔膜的过滤吸附效果;最后,该多孔膜可应用于电池中,尤其是锂离子电池中,明显提高锂离子电池的性能。
附图说明
图1显示为本发明的水处理多孔膜的制备方法的流程示意图。
元件标号说明
S1~S5      步骤
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
本发明提供一种水处理多孔膜,所述水处理多孔膜至少包括:高分子量聚乙烯、水溶性聚合物以及抗氧化剂,所述高分子量聚乙烯的平均分子量介于1.0×10 5~10.0×10 6之间、密度介于0.940g/cm 3~0.976g/cm 3之间;
其中,按所述高分子量聚乙烯的重量为100份计,所述水溶性聚合物的重量介于5~50份之间;以及所述抗氧化剂的重量介于0.1~10份之间。
需要说明的是,所述高分子量聚乙烯可以是单独一种高分子量聚乙烯,也可以是两种或两种以上高分子量聚乙烯的混合物,所以所述高分子量聚乙烯的分子量以平均分子量计算。
优选地,所述高分子量聚乙烯的平均分子量介于1.0×10 5~5.0×10 6之间,更优地,介于1.0×10 5~2.0×10 6之间。
优选地,所述高分子量聚乙烯的密度介于0.940g/cm 3~0.966g/cm 3之间,更优地,介于0.950g/cm 3~0.976g/cm 3之间。
优选地,按所述高分子量聚乙烯的重量为100份计,所述水 溶性聚合物的重量介于10~40份之间,所述成孔剂的重量介于200~500份之间,所述抗氧化剂的重量介于0.5~8份之间。
更优地,按所述高分子量聚乙烯的重量为100份计,所述水溶性聚合物的重量介于20~30份之间,所述成孔剂的重量介于200~400份之间,所述抗氧化剂的重量介于1~6份之间。
本发明所获得的所述水处理多孔膜的厚度介于5μm~30μm之间,微孔孔径介于10nm~100nm之间,孔隙率介于20%~60%之间,表面接触角介于30°~95°之间。
作为示例,所述水溶性聚合物包含由羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素、聚丙烯酰胺、水解聚丙烯酰胺、乙基纤维素、聚马来酸酐、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇及聚氧化乙烯构成的群组中的一种或多种的组合物。
作为示例,所述抗氧化剂是选自由4,4-硫代双(6-叔丁基间甲酚)、二丁基羟基甲苯、亚磷酸酯、特丁基对苯二酚、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯、1,1,3-三(2-甲基-4羟基-5-叔丁苯基)丁烷、2-特丁基-6-甲基苯酚、N,N’-二-β-萘基对苯二胺、硫代二丙酸双月桂酯、亚磷酸三(壬基苯基)酯及亚磷酸三苯酯构成的群组中的一种或多种。
如图1所示,本发明还提供一种水处理多孔膜的制备方法,利用所述制备方法,可以制备上述水处理多孔膜,所述制备方法至少包括:
S1,将高分子量聚乙烯、水溶性聚合物、成孔剂以及抗氧化剂混合,并搅拌均匀形成混合物,其中,所述高分子量聚乙烯的平均分子量介于1.0×10 5~10.0×10 6之间、密度介于0.940g/cm 3~0.976g/cm 3之间;并且其中按所述高分子量聚乙烯的重量为100份计,所述水溶性聚合物的重量介于5~50份之间, 所述成孔剂的重量介于100~500份之间,所述抗氧化剂的重量介于0.1~10份之间;
S2,采用双螺杆挤出工艺,在一定温度下,使所述高分子量聚乙烯、抗氧化剂以及水溶性聚合物溶解于所述成孔剂中,形成混合物,然后挤出所述混合物;
S3,将所述混合物流延成带状物;
S4,萃取除去所述带状物中的所述成孔剂,再将所述带状物拉伸形成薄膜,并对所述薄膜进行二次萃取,然后进行清洗;
S5,对所述薄膜进行热定型以及收卷步骤,获得所述水处理多孔膜。
作为示例,所述步骤S1中,将至少一种所述高分子量聚乙烯、水溶性聚合物、成孔剂以及抗氧化剂加入连续配料加料釜中进行混合,并以45转/分~55转/分的速度搅拌均匀形成混合物。此外,优选地,按所述高分子量聚乙烯的重量为100份计,所述水溶性聚合物的重量介于10~40份之间,所述成孔剂的重量介于200~500份之间,所述抗氧化剂的重量介于0.5~8份之间。更优选地,按所述高分子量聚乙烯的重量为100份计,所述水溶性聚合物的重量介于20~30份之间,所述成孔剂的重量介于200~400份之间,所述抗氧化剂的重量介于1~6份之间。
作为示例,所述步骤S2中,在170℃~230℃的温度下,使所述高分子量聚乙烯、抗氧化剂以及水溶性聚合物溶解于所述成孔剂中,形成混合物,然后以150转/分~250转/分的速度连续挤出所述混合物。
作为示例,所述步骤S3中,将所述混合物流延成带状物的步骤包括:首先,将所述步骤2)挤出的所述混合物连续进入到一狭缝模头内,然后通过所述狭缝模头将挤出的所述混合物挤出到 流延冷却辊,在70℃~90℃的温度条件下流延成带状物。
作为示例,所述步骤S4中,采用二氯甲烷作为萃取液萃取除去所述带状物中的所述成孔剂,再在115℃~125℃的温度条件下,将所述带状物通过双向拉伸机拉伸形成薄膜,并采用二氯甲烷对所述薄膜进行二次萃取,然后采用去离子水进行清洗。
作为示例,所述步骤S5中,在115℃~125℃的温度条件下对所述薄膜热定型15分钟~20分钟,然后将所述薄膜以20米/分~50米/分的速度收卷,获得所述水处理多孔膜。
作为示例,所述水溶性聚合物是选自由羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素、聚丙烯酰胺、水解聚丙烯酰胺、乙基纤维素、聚马来酸酐、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇及聚氧化乙烯构成的群组中的一种或多种。
作为示例,所述成孔剂是选自由天然矿物油、C 6-15烷烃、C 8-15脂族羧酸、C 8-15脂族羧酸C 1-4烷酯、C 2-6卤代烷烃、邻苯二甲酸酯、偏苯三酸酯、己二酸酯、癸二酸酯、马来酸酯、苯甲酸酯、环氧植物油、苯磺酰胺、磷酸三酯、二元醇醚、乙酰单酸甘油乙酯、柠檬酸酯及环己烷-1,2-二羧酸二异壬酯构成的群组中的一种或多种。
作为示例,所述抗氧化剂是选自由4,4-硫代双(6-叔丁基间甲酚)、二丁基羟基甲苯、亚磷酸酯、特丁基对苯二酚、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯、1,1,3-三(2-甲基-4羟基-5-叔丁苯基)丁烷、2-特丁基-6-甲基苯酚、N,N’-二-β-萘基对苯二胺、硫代二丙酸双月桂酯、亚磷酸三(壬基苯基)酯及亚磷酸三苯酯构成的群组中的一种或多种。
作为示例,所述成孔剂的40℃运动粘度介于10mm 2/s~100mm 2/s之间,所述成孔剂的初馏点在110℃以上。
本发明提供的水处理多孔膜还可用于锂离子电池,尤其是动力锂离子电池。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。本发明中的重量体积百分比中的单位是本领域技术人员所熟知的,例如是指在100毫升的溶液中溶质的重量。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
下面实施例表格中的参数通过下列方法测得。
1、厚度
采用德国马尔薄膜测厚仪1216根据GB/T6672-2001塑料薄膜与薄片厚度的测定方法
测定。
2、孔隙率
采用PMI AAQ-3K-A-1全自动压水仪测定。
3、孔径
采用PMI AAQ-3K-A-1全自动压水仪测定。
4、接触角
本文中使用的“接触角”是指水或水溶液在膜层上的接触角,采用Kruss DSA25接触角测定仪在室温下利用去离子水进行测定。
实施例1
将100克密度为0.957g/cm 3并且平均分子量为5.0×10 5高分子量聚乙烯,0.5克二丁基羟基甲苯(抗氧化剂),5克聚氧化乙烯,250克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述高分子量聚乙烯,抗氧化剂和聚氧化乙烯在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,直接得到一种水处理多孔膜。其具体性能参数经过测试如表1所示:
表1
厚度 12μm
孔隙率 48%
孔径 0.046μm
接触角 95°
实施例2
将100克密度为0.957g/cm 3并且平均分子量为5.0×10 5高分子量聚乙烯,0.5克二丁基羟基甲苯(抗氧化剂),10克聚氧化乙烯,250克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述高分子量聚乙烯,抗氧化剂和聚氧化乙烯在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,直接得到一种水处理多孔膜。其具体性能参数经过测试如表2所示:
表2
厚度 12μm
孔隙率 45%
孔径 0.047μm
接触角 90°
实施例3
将100克密度为0.957g/cm 3并且平均分子量为5.0×10 5高分子量聚乙烯,0.5克二丁基羟基甲苯(抗氧化剂),15克聚氧化乙烯,250克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述高分子量聚乙烯,抗氧化剂和聚氧化乙烯在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延 冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,直接得到一种水处理多孔膜。其具体性能参数经过测试如表3所示:
表3
厚度 12μm
孔隙率 45%
孔径 0.045μm
接触角 82°
实施例4
将100克密度为0.957g/cm 3并且平均分子量为5.0×10 5高分子量聚乙烯,0.5克二丁基羟基甲苯(抗氧化剂),25克聚氧化乙烯,250克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述高分子量聚乙烯,抗氧化剂和聚氧化乙烯在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄 膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,直接得到一种水处理多孔膜。其具体性能参数经过测试如表4所示:
表4
厚度 12μm
孔隙率 49%
孔径 0.050μm
接触角 63°
实施例5
将100克密度为0.957g/cm 3并且平均分子量为5.0×10 5高分子量聚乙烯,0.5克二丁基羟基甲苯(抗氧化剂),20克聚氧化乙烯,5克聚乙烯吡咯烷酮,250克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述高分子量聚乙烯,抗氧化剂和聚氧化乙烯在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,直接得到一种水处理多孔膜。其具体性能参数经过测试如表5所示:
表5
厚度 12μm
孔隙率 50%
孔径 0.036μm
接触角 62°
比较例
将100克密度为0.957g/cm 3的,平均分子量为5.0×10 5高分子量聚乙烯,0.5克二丁基羟基甲苯(抗氧化剂),250克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述高分子量聚乙烯,抗氧化剂和聚氧化乙烯在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,直接得到一种水处理多孔膜。其具体性能参数经过测试如表6所示:
表6
厚度 12μm
孔隙率 49%
孔径 0.048μm
接触角 112°
实施例6
将100克密度为0.957g/cm 3并且平均分子量为5.0×10 5高分子量聚乙烯,0.5克二丁基羟基甲苯(抗氧化剂),30克聚氧化乙烯,250克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述高分子量聚乙烯,抗氧化剂和聚氧化乙烯在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,直接得到一种水处理多孔膜。其具体性能参数经过测试如表7所示:
表7
厚度 12μm
孔隙率 49%
孔径 0.046μm
接触角 75°
实施例7
将100克密度为0.957g/cm 3并且平均分子量为5.0×10 5高分子量聚乙烯,0.5克二丁基羟基甲苯(抗氧化剂),40克聚氧化乙 烯,250克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述高分子量聚乙烯,抗氧化剂和聚氧化乙烯在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,直接得到一种水处理多孔膜。其具体性能参数经过测试如表8所示:
表8
厚度 12μm
孔隙率 46%
孔径 0.048μm
接触角 85°
实施例8
将100克密度为0.957g/cm 3并且平均分子量为5.0×10 5高分子量聚乙烯,0.5克二丁基羟基甲苯(抗氧化剂),50克聚氧化乙烯,250克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述高分子量聚乙烯,抗氧化剂和聚氧化乙烯在双螺杆挤出机中连续溶 解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,直接得到一种水处理多孔膜。其具体性能参数经过测试如表9所示:
表9
厚度 12μm
孔隙率 47%
孔径 0.048μm
接触角 95°
由以上实验结果可以看出,实施例1-8中均加入了水溶性聚合物,得到的多孔膜的接触角均明显低于比较例所得到的多孔膜;而且在一定重量范围内,随着水溶性聚合物加入量的增加,多孔膜的接触角进一步降低(参见实施例1-5);并且当水溶性聚合物添加量为25重量份时,实现了最低的接触角(参见实施例4和5);这些结果表明添加水溶性聚合物可以很好地改善多孔膜的表面亲水性。
此外,由实施例6-8可以进一步看出,当水溶性聚合物的添加量超过30重量份进一步增加时,多孔膜的接触角开始明显增加,这表明水溶性聚合物的添加量超过一定范围之后将不能起到改善亲水性的作用。
另外,如实施例4和5所示,加入的水溶性聚合物的重量相同,不同在于实施例4是单一成分的水溶性聚合物,实施例5是两种成分的水溶性聚合物的混合物,结果显示两种不同水溶性聚合物的协同使用,可以在保证多孔膜表面有较低接触角的情况下尽可能的减小孔径的大小,这与多种水溶性聚合物与高分子量聚乙烯形成更多的物理缠结点有关。
本发明的技术内容和技术特点已揭示如上,本发明所涉及的水处理隔离膜的组分并不限定于本发明所提及的几种材料,也并不限定本发明所提及的几种配方,其他具有类似特性的材料和配方也为本发明所涵盖。然而所属领域的技术人员仍可能基于本发明的揭示而做出种种不背离本发明精神的替换和修改。因此,本发明的保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换和修改,并为所附的权利要求书所涵盖。

Claims (16)

  1. 一种水处理多孔膜,其特征在于,所述水处理多孔膜至少包括:高分子量聚乙烯、水溶性聚合物以及抗氧化剂,所述高分子量聚乙烯的平均分子量介于1.0×10 5~10.0×10 6之间、密度介于0.940g/cm 3~0.976g/cm 3之间;
    其中,按所述高分子量聚乙烯的重量为100份计,所述水溶性聚合物的重量介于5~50份之间;以及所述抗氧化剂的重量介于0.1~10份之间。
  2. 根据权利要求1所述的水处理多孔膜,其特征在于:所述水处理多孔膜的厚度介于5μm~30μm之间,微孔孔径介于10nm~100nm之间,孔隙率介于20%~60%之间,表面接触角介于30°~95°之间。
  3. 根据权利要求1所述的水处理多孔膜,其特征在于:所述水溶性聚合物是选自由羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素、聚丙烯酰胺、水解聚丙烯酰胺、乙基纤维素、聚马来酸酐、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇及聚氧化乙烯构成的群组中的一种或多种。
  4. 根据权利要求1所述的水处理多孔膜,其特征在于:所述抗氧化剂是选自由4,4-硫代双(6-叔丁基间甲酚)、二丁基羟基甲苯、亚磷酸酯、特丁基对苯二酚、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯、1,1,3-三(2-甲基-4羟基-5-叔丁苯基)丁烷、2-特丁基-6-甲基苯酚、N,N’-二-β-萘基对苯二胺、硫代 二丙酸双月桂酯、亚磷酸三(壬基苯基)酯及亚磷酸三苯酯构成的群组中的一种或多种。
  5. 一种水处理多孔膜的制备方法,其特征在于,所述制备方法至少包括:
    1)将高分子量聚乙烯、水溶性聚合物、成孔剂以及抗氧化剂混合,并搅拌均匀形成混合物,其中,所述高分子量聚乙烯的平均分子量介于1.0×10 5~10.0×10 6之间、密度介于0.940g/cm 3~0.976g/cm 3之间;并且其中按所述高分子量聚乙烯的重量为100份计,所述水溶性聚合物的重量介于5~50份之间,所述成孔剂的重量介于100~500份之间,所述抗氧化剂的重量介于0.1~10份之间;
    2)采用双螺杆挤出工艺,在一定温度下,使所述高分子量聚乙烯、抗氧化剂以及水溶性聚合物溶解于所述成孔剂中,形成混合物,然后挤出所述混合物;
    3)将所述混合物流延成带状物;
    4)萃取除去所述带状物中的所述成孔剂,再将所述带状物拉伸形成薄膜,并对所述薄膜进行二次萃取,然后进行清洗;
    5)对所述薄膜进行热定型以及收卷步骤,获得所述水处理多孔膜。
  6. 根据权利要求5所述的水处理多孔膜的制备方法,其特征在于:所述步骤1)中,将至少一种所述高分子量聚乙烯、水溶性聚合物、成孔剂以及抗氧化剂加入连续配料加料釜中进行混合,并以45转/分~55转/分的速度搅拌均匀形成混合物。
  7. 根据权利要求5所述的水处理多孔膜的制备方法,其特征在于: 所述步骤2)中,在170℃~230℃的温度下,使所述高分子量聚乙烯、抗氧化剂以及水溶性聚合物溶解于所述成孔剂中,形成混合物,然后以150转/分~250转/分的速度连续挤出所述混合物。
  8. 根据权利要求5所述的水处理多孔膜的制备方法,其特征在于:所述步骤3)中,将所述混合物流延成带状物的步骤包括:首先,将所述步骤2)挤出的所述混合物连续进入到一狭缝模头内,然后通过所述狭缝模头将挤出的所述混合物挤出到流延冷却辊,在70℃~90℃的温度条件下流延成带状物。
  9. 根据权利要求5所述的水处理多孔膜的制备方法,其特征在于:所述步骤4)中,采用二氯甲烷作为萃取液萃取除去所述带状物中的所述成孔剂,再在115℃~125℃的温度条件下,将所述带状物通过双向拉伸机拉伸形成薄膜,并采用二氯甲烷对所述薄膜进行二次萃取,然后采用去离子水进行清洗。
  10. 根据权利要求5所述的水处理多孔膜的制备方法,其特征在于:所述步骤5)中,在115℃~125℃的温度条件下对所述薄膜热定型15分钟~20分钟,然后将所述薄膜以20米/分~50米/分的速度收卷,获得所述水处理多孔膜。
  11. 根据权利要求5所述的水处理多孔膜的制备方法,其特征在于:所述水溶性聚合物是选自由羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素、聚丙烯酰胺、水解聚丙烯酰胺、乙基纤维素、聚马来酸酐、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇及聚氧化乙烯构成的群组中的一种或多种。
  12. 根据权利要求5所述的水处理多孔膜的制备方法,其特征在于:所述成孔剂是选自由天然矿物油、C 6-15烷烃、C 8-15脂族羧酸、C 8-15脂族羧酸C 1-4烷酯、C 2-6卤代烷烃、邻苯二甲酸酯、偏苯三酸酯、己二酸酯、癸二酸酯、马来酸酯、苯甲酸酯、环氧植物油、苯磺酰胺、磷酸三酯、二元醇醚、乙酰单酸甘油乙酯、柠檬酸酯及环己烷-1,2-二羧酸二异壬酯构成的群组中的一种或多种。
  13. 根据权利要求5所述的水处理多孔膜的制备方法,其特征在于:所述抗氧化剂是选自由4,4-硫代双(6-叔丁基间甲酚)、二丁基羟基甲苯、亚磷酸酯、特丁基对苯二酚、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯、1,1,3-三(2-甲基-4羟基-5-叔丁苯基)丁烷、2-特丁基-6-甲基苯酚、N,N’-二-β-萘基对苯二胺、硫代二丙酸双月桂酯、亚磷酸三(壬基苯基)酯及亚磷酸三苯酯构成的群组中的一种或多种。
  14. 根据权利要求5所述的水处理多孔膜的制备方法,其特征在于:所述成孔剂的40℃运动粘度介于10mm 2/s~100mm 2/s之间,所述成孔剂的初馏点在110℃以上。
  15. 一种水处理多孔膜,其特征在于该水处理多孔膜是通过权利要求7所述的方法制得。
  16. 根据权利要求15所述的水处理多孔膜,其特征在于:所述水处理多孔膜的厚度介于5μm~30μm之间,微孔孔径介于10nm~100nm之间,孔隙率介于20%~60%之间,以及表面接触角介于30°~95°之间。
PCT/CN2018/087669 2018-05-04 2018-05-21 水处理多孔膜及其制备方法 WO2019210535A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197019030A KR102364196B1 (ko) 2018-05-04 2018-05-21 수처리용 다공성 막 및 그 제조 방법
US16/477,642 US11325074B2 (en) 2018-05-04 2018-05-21 Porous membrane for water treatment and method for preparing the same
EP18893321.2A EP3789105A4 (en) 2018-05-04 2018-05-21 POROUS MEMBRANE FOR WATER TREATMENT AND MANUFACTURING PROCESS THEREOF
JP2019536930A JP7046956B2 (ja) 2018-05-04 2018-05-21 水処理用ポーラスメンブレンおよびそれを製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810418279.3 2018-05-04
CN201810418279.3A CN108619923A (zh) 2018-05-04 2018-05-04 水处理多孔膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2019210535A1 true WO2019210535A1 (zh) 2019-11-07

Family

ID=63695392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087669 WO2019210535A1 (zh) 2018-05-04 2018-05-21 水处理多孔膜及其制备方法

Country Status (6)

Country Link
US (1) US11325074B2 (zh)
EP (1) EP3789105A4 (zh)
JP (1) JP7046956B2 (zh)
KR (1) KR102364196B1 (zh)
CN (1) CN108619923A (zh)
WO (1) WO2019210535A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109499392A (zh) * 2018-10-16 2019-03-22 上海恩捷新材料科技有限公司 一种亲水性聚乙烯微孔膜及其制备方法
CN109200834A (zh) * 2018-10-16 2019-01-15 上海恩捷新材料科技有限公司 一种亲水性聚烯烃微孔膜及其制备方法
CN109244336B (zh) * 2018-11-01 2022-03-11 上海恩捷新材料科技有限公司 一种湿法共混锂离子电池隔膜及其制备方法
CN111804151B (zh) * 2020-07-27 2021-08-27 上海恩捷新材料科技有限公司 一种用于生活污水处理的mbr平板滤膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331496A (zh) * 2000-06-14 2002-01-16 住友化学工业株式会社 多孔膜和使用多孔膜的电池隔板
WO2009084719A1 (en) * 2007-12-31 2009-07-09 Tonen Chemical Corporation Microporous membrane, process for producing such a membrane and the use of such a membrane
CN101510596A (zh) * 2008-02-15 2009-08-19 索尼株式会社 隔膜、用于制造隔膜的方法以及非水电解质电池
CN101618295A (zh) * 2009-07-31 2010-01-06 任意 超高分子量聚乙烯多孔膜的冻胶连续生产方法
CN107207763A (zh) * 2014-12-26 2017-09-26 东丽株式会社 聚烯烃微多孔膜及其制造方法以及电池用隔膜

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB717373A (en) * 1952-03-04 1954-10-27 Tudor Ab Electric secondary cell and separator for same
JPH11302433A (ja) 1998-04-24 1999-11-02 Tonen Kagaku Kk ポリオレフィン微多孔膜の製造方法
US6602593B1 (en) * 1999-08-30 2003-08-05 Celgard Inc. Battery separators with reduced splitting propensity
JP2005193201A (ja) 2004-01-09 2005-07-21 Kuraray Co Ltd 親水性中空糸膜およびその製造方法
JP4902455B2 (ja) * 2006-08-01 2012-03-21 東レ東燃機能膜合同会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
KR20080044738A (ko) * 2006-11-16 2008-05-21 한국전자통신연구원 수계 전해질 조성물과 이로부터 얻어지는 전해질층을구비한 밀폐형 필름 일차전지
CN105964150B (zh) 2008-11-17 2019-05-28 东丽株式会社 微孔膜及该膜的制备方法及使用方法
WO2010072233A1 (en) * 2008-12-22 2010-07-01 Lydall Solutech B.V Hydrophilic porous polymer blend membrane
US20110223486A1 (en) * 2010-03-12 2011-09-15 Xiaomin Zhang Biaxially oriented porous membranes, composites, and methods of manufacture and use
KR101285718B1 (ko) * 2011-10-05 2013-07-18 충남대학교산학협력단 나노기공성 필름의 제조방법, 그로부터 제조되는 나노기공성 필름 및 그를 이용한 수처리용 나노여과막
JP6051750B2 (ja) 2011-10-06 2016-12-27 三菱レイヨン株式会社 ポリオレフィン多孔質中空糸膜及びその製造方法
KR102040192B1 (ko) * 2013-10-18 2019-11-04 삼성에스디아이 주식회사 코팅 분리막 및 이를 포함하는 전기화학소자
JP2015193697A (ja) 2014-03-31 2015-11-05 日本ポリプロ株式会社 プロピレン系樹脂組成物および成形体
EP3221035B1 (en) * 2014-11-20 2022-04-20 Entegris, Inc. Grafted ultra high molecular weight polyethylene microporous membranes
WO2016104791A1 (ja) 2014-12-26 2016-06-30 東レバッテリーセパレータフィルム株式会社 ポリオレフィン樹脂組成物およびポリオレフィン微多孔膜の製造方法
CN107452919B (zh) 2016-06-01 2020-08-28 上海恩捷新材料科技有限公司 一种高浸润性隔离膜及其制备方法和用途
JP6328355B1 (ja) * 2016-07-25 2018-05-23 国立大学法人東京工業大学 電解質膜およびその製造方法
CN107008166B (zh) * 2017-03-22 2020-07-07 同济大学 一种纳米复合透湿膜及其制备方法与应用
CN107200901A (zh) * 2017-05-15 2017-09-26 上海恩捷新材料科技股份有限公司 形成电池隔离膜的聚合物组合物、电池隔离膜及制备方法
WO2019089538A1 (en) * 2017-10-30 2019-05-09 Commscope Technologies Llc Universal cable anchoring for plug connectors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331496A (zh) * 2000-06-14 2002-01-16 住友化学工业株式会社 多孔膜和使用多孔膜的电池隔板
WO2009084719A1 (en) * 2007-12-31 2009-07-09 Tonen Chemical Corporation Microporous membrane, process for producing such a membrane and the use of such a membrane
CN101510596A (zh) * 2008-02-15 2009-08-19 索尼株式会社 隔膜、用于制造隔膜的方法以及非水电解质电池
CN101618295A (zh) * 2009-07-31 2010-01-06 任意 超高分子量聚乙烯多孔膜的冻胶连续生产方法
CN107207763A (zh) * 2014-12-26 2017-09-26 东丽株式会社 聚烯烃微多孔膜及其制造方法以及电池用隔膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3789105A4 *

Also Published As

Publication number Publication date
JP2021505358A (ja) 2021-02-18
EP3789105A4 (en) 2022-02-23
US11325074B2 (en) 2022-05-10
CN108619923A (zh) 2018-10-09
KR20200070153A (ko) 2020-06-17
EP3789105A1 (en) 2021-03-10
JP7046956B2 (ja) 2022-04-04
US20210331119A1 (en) 2021-10-28
KR102364196B1 (ko) 2022-02-16

Similar Documents

Publication Publication Date Title
WO2019210535A1 (zh) 水处理多孔膜及其制备方法
WO2018209794A1 (zh) 形成电池隔离膜的聚合物组合物、电池隔离膜及制备方法
EP3467904A1 (en) High-wettability separator and preparation method therefor
CN109517210A (zh) 超薄、高强度聚烯烃微多孔膜及其制备方法
JPH03215535A (ja) ポリフツ化ビニリデン多孔膜及びその製造方法
WO2014101670A1 (zh) 一种透气母粒及利用该母粒制造透气膜的方法
JP2019509591A (ja) リチウムイオン電池隔離板の調製方法
JP3965954B2 (ja) 多孔性フィルム
WO2018120879A1 (zh) 一种电池隔离膜
KR20230063283A (ko) 폴리올레핀 미세 다공막 및 그 제조 방법
CN110746688B (zh) 一种防水透气膜
JPS63210144A (ja) 微多孔性フイルムの製造方法
CN113328202B (zh) 一种蜂窝状高孔隙、大孔径锂电池隔膜及其制备方法
JPH06122782A (ja) 弾性セグメントポリウレタンの微孔性円板
CN102585263B (zh) 一种用有机蒙脱土改良的明胶/pva复合膜的制备方法
JPH09231957A (ja) 亜鉛臭素2次電池用セパレーター
CN102585264B (zh) 一种用无机蒙脱土改良的明胶/pva复合膜的制备方法
JP5716131B2 (ja) 一軸延伸の誘発により微細孔複合構造を有する安全セパレータを生産する方法
CN110201559A (zh) 一种大通量加强型中空纤维膜及其制备方法
CN103824989A (zh) 一种peg/pvc复合隔板及其制备方法和应用
CN109499392A (zh) 一种亲水性聚乙烯微孔膜及其制备方法
CN113845676B (zh) 一种聚丙烯医用微孔滤膜的制备方法
JPH1121361A (ja) ポリエチレン樹脂製多孔性フィルム
CN107308484A (zh) 一种超薄医用水凝胶敷料及其制备方法
JP6944861B2 (ja) セルロース含有多孔質樹脂成形体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018893321

Country of ref document: EP