WO2019189794A1 - 熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュール - Google Patents

熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュール Download PDF

Info

Publication number
WO2019189794A1
WO2019189794A1 PCT/JP2019/014078 JP2019014078W WO2019189794A1 WO 2019189794 A1 WO2019189794 A1 WO 2019189794A1 JP 2019014078 W JP2019014078 W JP 2019014078W WO 2019189794 A1 WO2019189794 A1 WO 2019189794A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
conductive composite
thermally conductive
particle
composite particles
Prior art date
Application number
PCT/JP2019/014078
Other languages
English (en)
French (fr)
Inventor
恒平 鈴木
俊明 丸市
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to EP19775884.0A priority Critical patent/EP3780086A1/en
Priority to CN201980024291.9A priority patent/CN111937140A/zh
Priority to JP2019536323A priority patent/JP6616555B1/ja
Publication of WO2019189794A1 publication Critical patent/WO2019189794A1/ja
Priority to US17/033,704 priority patent/US20210017084A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62889Coating the powders or the macroscopic reinforcing agents with a discontinuous coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0227Insulating particles having an insulating coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09118Moulded substrate

Definitions

  • the present invention relates to a thermally conductive composite particle and a manufacturing method thereof, an insulating resin composition, an insulating resin molded body, a laminated board for a circuit board, a metal base circuit board, and a power module.
  • the metal base circuit board has a structure in which an insulating layer and a circuit pattern are laminated in this order on a metal board.
  • the insulating material which is a material having a high thermal conductivity such as alumina powder, magnesia powder, boron nitride powder, silicon nitride powder, is used as a filler for the base material of the insulating layer. As commonly used.
  • boron nitride and silicon nitride have particularly high thermal conductivity.
  • boron nitride has a hexagonal scaly crystal structure and silicon nitride is a rod-like crystal, it has anisotropic thermal conductivity, press molding, injection molding, extrusion molding, calendaring.
  • the inorganic filler-containing resin composition is formed into a sheet shape by a known forming method such as a forming method, a roll forming method, a doctor blade forming method or the like, it is easily oriented. For this reason, there was a problem that anisotropy also occurred in the thermal conductivity of the obtained resin molding.
  • Patent Document 1 As an inorganic filler using scaly boron nitride, inorganic particles such as aluminum oxide or silicon dioxide are used as a core part, and a scaly boron nitride and a binder resin ( Core-shell particles containing a binder are disclosed (claims). This document describes that the core-shell particles are formed into spherical particles by aggregating a plurality of boron nitrides (paragraph 0021).
  • Patent Document 2 discloses aggregate particles in which small-sized fillers are aggregated around relatively large-sized fillers (claims).
  • the structure in which small-sized fillers protrude randomly from the outer periphery of a large-sized filler makes the heat transfer direction various (isotropic) without having any one direction (anisotropic). (Paragraph 0016).
  • the inorganic filler formed by agglomerating inorganic particles having thermal conductivity anisotropy around the core inorganic particles as disclosed in Patent Documents 1 and 2 It was found that it is difficult to obtain a resin molded body having a desired high thermal conductivity.
  • a thermally conductive composite particle that is a sintered body having a core portion containing inorganic particles and a shell portion containing nitride particles and covering the core portion.
  • the thermally conductive composite particles include at least boron nitride or silicon nitride as the nitride particles.
  • At least a part of the shell part is layered and covers at least a part of the core part along the shape of the core part. ing.
  • the shell portion is a sintered member of a mixture containing the nitride particles and a sintering aid, and the shell portion is the sintered member. Contains atoms from auxiliary agents.
  • the shell portion includes Y 2 O 3 , CeO 2 , La 2 O 3 , Yb 2 O 3 , TiO 2 , ZrO 2 , Fe. It further contains atoms derived from at least one sintering aid selected from 2 O 3 , MoO, MgO, Al 2 O 3 , CaO, B 4 C, and B.
  • some of the atoms derived from the sintering aid are unevenly distributed on the surface of the core part.
  • the shell portion contains at least yttrium as an atom derived from the sintering aid.
  • the nitride particles and the sintering aid with respect to a total volume of the inorganic particles, the nitride particles, and the sintering aid.
  • the total volume of is 30% by volume or more.
  • the ratio of the sintering aid to the nitride particles in the thermally conductive composite particles is 5 to 10% by volume.
  • the inorganic particles are aluminum oxide or magnesium oxide.
  • a method for producing thermally conductive composite particles which is a sintered body comprising a core portion containing inorganic particles and a shell portion containing nitride particles and covering the core portion.
  • Core shell particles comprising a core part containing the inorganic particles and a shell part containing the nitride particles and covering the core part by mechanochemical treatment of the raw material containing the inorganic particles and the nitride particles.
  • a method for producing thermally conductive composite particles is provided that includes forming and sintering the core-shell particles.
  • the shell portion of the thermally conductive composite particle includes at least boron nitride or silicon nitride as the nitride particle.
  • a manufacturing method of the heat conductive composite particles as the nitride particles is the raw material, at least, the content of B 2 O 3 ratio of the impurity concentration than 1 wt%
  • boron nitride having an oxygen content of 1% by mass or more is used.
  • the raw material in the method for producing a thermally conductive composite particle, is Y 2 O 3 , CeO 2 , La 2 O 3 , Yb 2 O 3 , TiO 2 , ZrO 2 , It further includes at least one sintering aid selected from Fe 2 O 3 , MoO, MgO, Al 2 O 3 , CaO, B 4 C, and B, and the shell part of the thermally conductive composite particles is the above Contains atoms from sintering aids.
  • a part of the atoms derived from the sintering aid is unevenly distributed on the surface of the core portion of the thermally conductive composite particle. ing.
  • the raw material contains at least Y 2 O 3 as the sintering aid, and the atom derived from the sintering aid is yttrium. is there.
  • the nitride in the method for producing the thermally conductive composite particles, the nitride with respect to a total volume of the inorganic particles, the nitride particles, and the sintering aid contained in the raw material.
  • the total volume of the particles and the sintering aid is 30% by volume or more.
  • the ratio of the sintering aid to the nitride particles contained in the raw material is 5 to 10% by volume.
  • the inorganic particle is aluminum oxide or magnesium oxide.
  • an insulating resin composition containing any one of the above-described thermally conductive composite particles.
  • an insulating resin molded body formed by molding the above insulating resin composition.
  • a circuit board laminate comprising a metal substrate, an insulating layer provided on at least one side of the metal substrate, and a metal foil provided on the insulating layer.
  • the insulating layer includes any one of the heat conductive composite particles described above.
  • a metal base circuit board comprising a metal substrate, an insulating layer provided on at least one surface of the metal substrate, and a metal pattern provided on the insulating layer.
  • the insulating layer includes any of the heat conductive composite particles described above.
  • a power module including the metal base circuit board is provided.
  • an inorganic filler having excellent thermal conductivity it has become possible to provide an inorganic filler having excellent thermal conductivity and a method for producing the same. Further, according to the present invention, it is possible to provide an insulating resin composition containing an inorganic filler excellent in thermal conductivity, an insulating resin molded body, a laminated board for a circuit board, a metal base circuit board, and a power module. .
  • the SEM photograph which shows an example of the heat conductive composite particle which concerns on embodiment The SEM photograph which shows an example of the heat conductive composite particle which concerns on embodiment.
  • the thermally conductive composite particle according to the present embodiment is a sintered body including a core part including inorganic particles and a shell part covering the core part, and the shell part includes at least nitride particles.
  • the nitride particles are preferably an inorganic compound having high thermal conductivity that can be used as an inorganic filler. If the thermal conductivity is high, an inorganic compound having anisotropy in thermal conductivity is preferably used as the nitride particles according to the present embodiment. Details will be described later.
  • the thermally conductive composite particles according to the present embodiment are a sintered body, and inorganic particles and nitride particles are composited. Further, when the shell part contains atoms derived from the sintering aid, the atoms derived from the sintering aid are combined with the inorganic particles and / or nitride particles. Such complexation can be confirmed by, for example, analysis by X-ray diffraction (XRD), SEM observation, or particle size distribution.
  • XRD X-ray diffraction
  • FIG. 1 shows an SEM photograph of the thermally conductive composite particle 100 according to the present embodiment
  • FIG. 2 shows an enlarged view of the SEM photograph. It can be seen that the heat conductive composite particle 100 shown in FIGS. 1 and 2 has a rounded shape as a whole although the surface has irregularities.
  • FIG. 3 shows an SEM photograph of a cross section of the thermally conductive composite particle 100
  • FIG. 4 shows an enlarged view of the SEM photograph.
  • the thermally conductive composite particle 100 shown in FIGS. 3 and 4 includes a core portion 101 made of inorganic particles and a shell portion 102 that covers the core portion.
  • the shell portion 102 includes nitride particles (boron nitride) 103 and atoms 104 derived from the sintering aid.
  • the thermally conductive composite particles 100 that are sintered bodies, inorganic particles, nitride particles, and atoms derived from the sintering aid are composited. That is, the core-shell particles before sintering formed by mechanochemical treatment are composed of nitride particles and aggregates of child particles such as a sintering aid added as necessary around the inorganic particles as mother particles. Since it has a covered structure, there is a gap between the mother particle and the child particle.
  • the child particles of the nitride particles grow by sintering to form plate-like (planar) nitride particles (boron nitride) 103, and the core portion (
  • the inorganic particles 101 form a plane along the shape of the plate-like (planar) nitride particles (boron nitride) 103, the gap between the mother particles and the child particles in the core-shell particles before sintering disappears.
  • a layered shell portion 102 containing nitride particles (boron nitride) 103 and atoms 104 derived from the sintering aid grows on the surface of the core portion (inorganic particles) 101, and the core It is observed that the part is covered without a gap and has a rounded shape as a whole. From these, it can be seen that inorganic particles, nitride particles, and atoms derived from the sintering aid are complexed.
  • the nitride particles and the atoms derived from the sintering aid used as necessary exist in a form covering the inorganic particles, and are combined by sintering. Due to this, it is firmly bonded to the inorganic particles and has a rounded shape as a whole. For this reason, even if the nitride particles are a compound having high thermal conductivity but anisotropy, the composite particles according to the present embodiment function as a highly thermally conductive inorganic filler having a small anisotropy.
  • the shell portion 102 on the layer containing the nitride particles (boron nitride) 103 by sintering has a structure in which the core portion 101 (inorganic particles) is covered without forming a gap, so that heat conduction in the shell is achieved. The effect that a pass can be secured and the shell part is difficult to peel off is also brought about.
  • the thickness of the layered shell portion covering the core portion is not particularly limited. Since the shell portion is a high thermal conductivity portion, the lower limit of the thickness of the shell portion can be set as appropriate depending on the desired thermal conductivity. Moreover, the upper limit of the thickness of a shell part may be a limit which can be produced by the mechanochemical process mentioned later. Moreover, the shell part does not need to coat
  • the shell portion 102 shown in FIG. 3 and FIG. 4 includes atoms 104 derived from a sintering aid, which is an optional component, in addition to the nitride particles (boron nitride) 103.
  • the originating atoms 104 are unevenly distributed on the surface of the core portion 101. Since the sintering aid has the effect of further enhancing the adhesion between the core part and the shell part by sintering and promoting the crystal growth of the shell part, it is suitable for producing the thermally conductive composite particles according to the present embodiment. The compound used.
  • the thermal conductivity of the shell portion may be reduced.
  • atoms derived from the sintering aid are unevenly distributed on the surface of the core part, it is preferable because a decrease in the thermal conductivity of the shell part can be suppressed.
  • the fact that the atoms derived from the sintering aid are unevenly distributed on the surface of the core portion constituting the thermally conductive composite particles means that in the production process of the thermally conductive composite particles, the sintering aid and the core portion surface.
  • the reaction occurred first, and that part became a reaction field and the starting point of sintering. For this reason, since the atoms derived from the sintering aid are unevenly distributed on the surface of the core portion, the sintering aid improves adhesion between the core portion and the shell portion and promotes crystal growth of the shell portion. It can be seen that this contributed more effectively.
  • the manufacturing method of the heat conductive composite particle which concerns on this embodiment is a core-shell particle (however, the inorganic particle and nitride particle
  • a simple raw material mixing step includes three steps described below, that is, a simple raw material mixing step, a mechanochemical treatment step, and a sintering step.
  • the raw material simple mixing step is optional, and the raw material containing inorganic particles and nitride particles may be subjected to mechanochemical treatment without passing through the simple mixing step.
  • -Raw material simple mixing step This is a step of mixing raw materials. Specifically, inorganic particles as mother particles and nitride particles as child particles (and optional sintering aids described later if necessary) Ingredients).
  • mixing means simple mixing, and can be performed, for example, by putting raw materials into a container and stirring.
  • Sintering step By sintering the core-shell particles obtained by the mechanochemical treatment, composite particles (core-shell composite particles) having a core-shell structure in which the mother particles and the child particles are combined are obtained.
  • the conditions for sintering are not particularly limited, and can be performed, for example, in an N 2 atmosphere at atmospheric pressure.
  • the sintering temperature can be set, for example, in the range of 1400 to 1800 ° C., but is preferably set as appropriate depending on the material of the inorganic particles and the presence or absence of a sintering aid.
  • the core-shell particles are used as an inorganic filler without being sintered only by drying (for example, patent documents) Paragraph 0043 in FIG. 1) Since the child particles and the mother particles are merely in contact with each other or are attached via the binder resin, the desired heat conduction is possible due to the presence of grain boundaries and the binder resin. It is difficult to get a rate. Moreover, in the core-shell particles after drying, binder resin, binder resin solvent, and the like remain as impurities, and the formation of heat paths is likely to be hindered. Further, the smaller the size of the child particles, the easier it is to agglomerate to the mother particles. However, the larger the filler, the better the thermal conductivity, so it is difficult to achieve a high level of cohesion and thermal conductivity.
  • the mother particle serving as the core part is an inorganic particle.
  • the child particles contained in the shell portion are optional components such as nitride particles and a sintering aid used as necessary.
  • the mother particle serving as the core part is an inorganic particle.
  • the inorganic particles may be any inorganic compound that can be used as a thermally conductive inorganic filler. Specific examples of the inorganic particles include aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), aluminum nitride (AlN), silicon oxide (SiO 2 ), and the like. Magnesium oxide is preferred.
  • the shape of the inorganic particles is not particularly limited. From the viewpoint of becoming the core part of the composite particles and the filling property into the insulating resin material, it is preferably close to a spherical shape.
  • the particle size of the inorganic particles as the mother particles is preferably 10 to 80 ⁇ m, and more preferably 20 to 60 ⁇ m.
  • the particle size of inorganic particles (for example, highly dispersible particles having a particle size of about several tens of ⁇ m) as a mother particle is measured by a laser diffraction / scattering particle size distribution measuring device (particle size distribution) La-960 HORIBA. Is the particle size to be produced.
  • the nitride particles contained in the shell part are preferably inorganic compounds with high thermal conductivity that can be used as inorganic fillers. If the thermal conductivity is high, even an inorganic compound having anisotropy in thermal conductivity can be suitably used as the nitride particles according to the present embodiment.
  • Specific examples of the nitride particles include boron nitride, silicon nitride, and aluminum oxide (Al 2 O 3 ). In one form, boron nitride (BN) or silicon nitride (Si 3 N 4 ) is used. Preferably there is.
  • the boron nitride used as the nitride particles is preferably low-crystal boron nitride containing a large amount of B 2 O 3 or oxygen as an impurity from the viewpoint of sinterability.
  • the boron nitride used as the nitride particles is preferably boron nitride having a B 2 O 3 content of 1% by mass or more as an impurity concentration, or an oxygen content of 1% by mass or more, B 2 O 3 content is preferably 5% by mass or more, or more preferably boron nitride having an oxygen content of 5% by mass or more.
  • ⁇ Sintering aid (child particles)
  • the sintering aid has an effect of further enhancing the adhesion between the core portion and the shell portion by sintering and promoting the crystal growth of the shell portion.
  • sintering aids include Y 2 O 3 , CeO 2 , La 2 O 3 , Yb 2 O 3 , TiO 2 , ZrO 2 , Fe 2 O 3 , MoO, MgO, Al 2 O 3 , and CaO. , B 4 C, B (metal) and the like, and one or more of them can be used.
  • Y 2 O 3 is preferred as a sintering aid.
  • the sintering aid is contained in the shell of the core-shell particles formed by mechanochemical treatment.
  • the sintering aid reacts by sintering, and is mainly contained as atoms derived from the sintering aid in the shell portion of the thermally conductive composite particles according to the present embodiment.
  • Y 2 O 3 when used as a sintering aid, it is contained as yttrium (Y) in the shell portion of the thermally conductive composite particles.
  • Y yttrium
  • the atom derived from a sintering aid is contained in the shell part of the core-shell composite particle, a part of the atom is unevenly distributed on the surface of the inorganic particle that is the core part.
  • the particle size of the child particles such as the nitride particles and the sintering aid is not particularly limited, and can be appropriately set according to the particle size of the mother particles constituting the core portion.
  • the upper limit of the particle size of the child particles can be set in the range of 100 to 800 nm.
  • the sintering aid is used in the range of 1 to 50% by volume with respect to the nitride particles as the raw material (child particles) from the viewpoint of thermal conductivity. Is preferably used in the range of 3 to 30% by volume, more preferably in the range of 3 to 20% by volume, and particularly preferably in the range of 5 to 10% by volume. .
  • the blending ratio of the child particles in the total raw material particles composed of the mother particles and the child particles is preferably in the following form. That is, when the sintering aid is not used, the ratio of the volume of the nitride particles to the total volume of the inorganic particles as the mother particles and the nitride particles as the child particles is preferably 5 to 35% by volume. More preferably, it is 5 to 25% by volume or less.
  • the total volume of the nitride particles and the sintering aid relative to the total volume of the inorganic particles as the mother particles and the nitride particles as the child particles and the sintering aid.
  • the ratio is preferably 20 to 60% by volume, more preferably 30 to 50% by volume.
  • the insulating resin composition according to this embodiment contains a resin as a matrix and the above-described thermally conductive composite particles.
  • the resin as the matrix is preferably a thermosetting resin.
  • the proportion of the thermally conductive composite particles contained in the insulating resin composition according to the present embodiment is preferably 10 to 90% by volume, and preferably 50 to 80% by volume based on the total volume of the resin components. More preferred.
  • the insulating resin composition according to the present embodiment may further contain various additives such as a solvent, a curing agent, and a curing catalyst in addition to the above-described resin and thermally conductive composite particles. Moreover, you may further contain inorganic fillers other than the heat conductive composite particle mentioned above in the range which does not impair the effect of this invention.
  • the method for producing the insulating resin composition according to this embodiment is not particularly limited, and a known and commonly used method can be used.
  • a known and commonly used method can be used.
  • the heat conductive composite particles and the thermosetting resin, and if necessary, the curing agent and other components are mixed by a known and commonly used method.
  • the insulating resin molded body according to this embodiment is a molded body obtained by molding the above-described insulating resin composition by various molding methods.
  • a known and usual method for molding a thermosetting resin can be used, and specific examples include a press molding method, a thermoforming method, a laminating method and the like.
  • the shape, dimensions, etc. of the insulating resin molded body can be appropriately set according to the application.
  • the circuit board laminate according to this embodiment includes a metal substrate, an insulating layer provided on at least one side of the metal substrate, and a metal foil provided on the insulating layer. It contains heat conductive composite particles.
  • the laminated board for circuit boards which concerns on this embodiment is demonstrated in detail, referring drawings.
  • the metal plate 2 may have a five-layer structure in which the insulating layers 3 are formed on both surfaces and the metal foil 4 is further formed on each insulating layer 3.
  • the X and Y directions are parallel to the main surface of the metal substrate 2 and perpendicular to each other, and the Z direction is a thickness direction perpendicular to the X and Y directions.
  • FIG. 5 shows a rectangular circuit board laminate 1 as an example, but the circuit board laminate 1 may have other shapes.
  • the insulating layer 3 includes the above-described thermally conductive composite particles, and the thermally conductive composite particles are dispersed as an inorganic filler in the resin.
  • Insulating layer 3 is formed using the insulating resin composition mentioned above in one form. Therefore, the description of the insulating resin composition described above can be applied to components other than the thermally conductive composite particles contained in the insulating layer 3 and the blending ratio of the thermally conductive composite particles and the resin.
  • the metal substrate 2 is made of, for example, a single metal or an alloy. As a material of the metal substrate 2, for example, aluminum, iron, copper, an aluminum alloy, or stainless steel can be used.
  • the metal substrate 2 may further contain a nonmetal such as carbon.
  • the metal substrate 2 may contain aluminum combined with carbon.
  • the metal substrate 2 may have a single layer structure or a multilayer structure.
  • the metal substrate 2 has a high thermal conductivity. Typically, the metal substrate 2 has a thermal conductivity of 60 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more.
  • the metal substrate 2 may have flexibility or may not have flexibility.
  • the thickness of the metal substrate 2 is in the range of 0.2 to 5 mm, for example.
  • the metal foil 4 is provided on the insulating layer 3.
  • the metal foil 4 faces the metal substrate 2 with the insulating layer 3 interposed therebetween.
  • the metal foil 4 is made of, for example, a single metal or an alloy.
  • the thickness of the metal foil 4 is, for example, in the range of 10 to 500 ⁇ m.
  • This circuit board laminate 1 is excellent in thermal conductivity because the insulating layer 3 contains the above-described thermally conductive composite particles.
  • the circuit board laminate 1 is manufactured, for example, by the following method.
  • a roll coating method, a bar coating method, or a screen printing method can be used. You may carry out by a continuous type and may carry out by a single plate type.
  • the metal substrate 2 and the metal foil 4 are superposed so as to face each other with the coating film interposed therebetween. Furthermore, they are hot pressed. As described above, the circuit board laminate 1 is obtained.
  • the insulating resin composition is applied to at least one of the metal plate 2 and the metal foil 4 to form a coating film.
  • the insulating resin composition is applied to a substrate such as a PET film.
  • a coating film may be formed in advance by drying and thermally transferred to one of the metal substrate 2 and the metal foil 4.
  • the metal base circuit board according to the present embodiment includes a metal substrate, an insulating layer provided on at least one surface of the metal substrate, and a metal pattern provided on the insulating layer. It is characterized by containing conductive composite particles.
  • the metal base circuit board according to the present embodiment will be described in detail with reference to the drawings.
  • a metal base circuit board 1 ′ shown in FIG. 7 is obtained from the circuit board laminate shown in FIGS. 5 and 6, and includes a metal board 2, an insulating layer 3, and a circuit pattern 4 ′. .
  • the circuit pattern 4 ′ is obtained by patterning the metal foil 4 of the circuit board laminate described with reference to FIGS. 5 and 6. This patterning can be obtained, for example, by forming a mask pattern on the metal foil 4 and removing the exposed portion of the metal foil 4 by etching.
  • the metal base circuit board 1 ′ can be obtained, for example, by performing the above-described patterning on the metal foil 4 of the circuit board laminate 1 and performing processing such as cutting and drilling as necessary. it can.
  • This metal base circuit board 1 ' is excellent in thermal conductivity because the insulating layer 3 contains the above-described thermally conductive composite particles.
  • the power module according to the present embodiment includes the metal base circuit board described above.
  • FIG. 8 shows an example of a power module according to this embodiment.
  • a heat sink 15 a heat dissipation sheet 14
  • a metal base circuit board 13 a solder layer 12, and a power device 11 are laminated in this order.
  • the metal base circuit board 13 provided in the power module 10 is formed by laminating a metal board 13c, an insulating layer 13b, and a circuit pattern 13a in this order. Since the insulating layer 13b includes the above-described thermally conductive composite particles, the power module 10 is excellent in thermal conductivity.
  • Nobirta Mini manufactured by Hosokawa Micron Corporation was subjected to mechanochemical treatment at a rotational speed of 6000 to 8000 rpm for 3 minutes to obtain unsintered core-shell particles 1a.
  • the unsintered core-shell particles 1a were sintered at 1800 ° C. for 3 hours in an N 2 atmosphere under atmospheric pressure to obtain thermally conductive composite particles 1.
  • amine curing agent 4: 1 (mass ratio) of bisphenol A (DIC Corporation, EPICLON EXA-850CRP) and amine curing agent (Mitsubishi Chemical Co., Ltd., jER Cure W)
  • the thermally conductive composite particles 1 were mixed so that the content rate was 70% by volume. This was degassed and stirred, and then dried at 90 ° C. for 2 hours.
  • the insulating resin molded body 1 was obtained by heating at 100 ° C. for 2 hours while pressing at 12 MPa in vacuum, and further heating at 175 ° C. for 5 hours.
  • the child particles except that 5% by volume of the child particle b is added to the child particle a (100% by volume) and the volume of the mother particle X is adjusted so that the child particle ratio is 0.1. Obtained unsintered core-shell particles 2a under the same conditions as the unsintered core-shell particles 1a in Example 1. Next, the unsintered core-shell particles 2a were sintered under the same sintering conditions as in Example 1 to obtain thermally conductive composite particles 2.
  • Example 3 [Production of thermally conductive composite particles 3] As a child particle, except that 10% by volume of the child particle b is added to the child particle a (100% by volume) and the volume of the mother particle X is adjusted so that the child particle ratio is 0.1. Obtained the heat conductive composite particle 3 on the same manufacturing conditions as the heat conductive composite particle 2 in Example 2.
  • FIG. 3 [Production of thermally conductive composite particles 3] As a child particle, except that 10% by volume of the child particle b is added to the child particle a (100% by volume) and the volume of the mother particle X is adjusted so that the child particle ratio is 0.1. Obtained the heat conductive composite particle 3 on the same manufacturing conditions as the heat conductive composite particle 2 in Example 2.
  • Example 4 [Production of thermally conductive composite particles 4] As a child particle, 20 volume% of the child particle b was added to the child particle a (100 volume%), and the volume of the mother particle X was adjusted so that the child particle ratio was 0.1. Obtained the heat conductive composite particle 4 on the same manufacturing conditions as the heat conductive composite particle 2 in Example 2.
  • FIG. 4 [Production of thermally conductive composite particles 4] As a child particle, 20 volume% of the child particle b was added to the child particle a (100 volume%), and the volume of the mother particle X was adjusted so that the child particle ratio was 0.1. Obtained the heat conductive composite particle 4 on the same manufacturing conditions as the heat conductive composite particle 2 in Example 2. FIG.
  • Example 5 [Production of thermally conductive composite particles 5]
  • the mixing ratio (volume ratio) of the mother particles (Al 2 O 3 ) and the child particles (BN) is set as child particles / total particles (child particles + parent particles).
  • unsintered core-shell particles 5a were obtained under the same conditions as the unsintered core-shell particles 1a in Example 1.
  • the unsintered core-shell particles 5a were sintered under the same sintering conditions as in Example 1 to obtain thermally conductive composite particles 5.
  • An insulating resin molded body 5 was obtained under the same production conditions as the insulating resin molded body 1 in Example 1, except that the heat conductive composite particles 5 were used instead of the heat conductive composite particles 1.
  • Example 6 [Production of thermally conductive composite particles 6] As a child particle, except that 5% by volume of the child particle b is added to the child particle a (100% by volume) and the volume of the mother particle X is adjusted so that the child particle ratio is 0.2. Obtained the unsintered core-shell particle 6a on the same conditions as the unsintered core-shell particle 5a in Example 5. Next, the unsintered core-shell particles 6a were sintered under the same sintering conditions as in Example 5 to obtain thermally conductive composite particles 6.
  • Example 7 [Production of thermally conductive composite particles 7] As a child particle, 10 volume% of the child particle b is added to the child particle a (100 volume%), and the volume of the mother particle X is adjusted so that the child particle ratio is 0.2. Obtained the heat conductive composite particle 7 on the same manufacturing conditions as the heat conductive composite particle 6 in Example 6. FIG.
  • An insulating resin molded body 7 was obtained under the same production conditions as those of the insulating resin molded body 6 in Example 6 except that the thermally conductive composite particles 7 were used instead of the thermally conductive composite particles 6.
  • Example 8 [Production of thermally conductive composite particles 8] As the child particle, 20% by volume of the child particle b was added to the child particle a (100% by volume) and the volume of the mother particle X was adjusted so that the child particle ratio was 0.2. Obtained the heat conductive composite particle 8 on the same manufacturing conditions as the heat conductive composite particle 6 in Example 6. FIG.
  • Example 9 [Production of thermally conductive composite particles 9]
  • the mixing ratio (volume ratio) of the mother particles (Al 2 O 3 ) and the child particles (BN) is set as child particles / total particles (child particles + parent particles).
  • a non-sintered core-shell particle 9a was obtained under the same conditions as the unsintered core-shell particle 1a in Example 1 except that the ratio was changed to 0.30.
  • the unsintered core-shell particles 9a were sintered under the same sintering conditions as in Example 1 to obtain thermally conductive composite particles 9.
  • Example 10 [Production of thermally conductive composite particles 10] As a child particle, except that 5% by volume of the child particle b is added to the child particle a (100% by volume) and the volume of the mother particle X is adjusted so that the child particle ratio is 0.3. Obtained unsintered core-shell particles 10a under the same conditions as the unsintered core-shell particles 9a in Example 9. Next, the unsintered core-shell particles 10a were sintered under the same sintering conditions as in Example 9 to obtain thermally conductive composite particles 10.
  • An insulating resin molded body 10 was obtained under the same production conditions as the insulating resin molded body 9 in Example 9, except that the heat conductive composite particles 10 were used instead of the heat conductive composite particles 9.
  • Example 11 [Production of thermally conductive composite particles 11] As a child particle, 10 volume% of the child particle b is added to the child particle a (100 volume%), and the volume of the mother particle X is adjusted so that the child particle ratio is 0.3. Obtained the heat conductive composite particle 11 on the same manufacturing conditions as the heat conductive composite particle 10 in Example 10.
  • An insulating resin molded body 11 was obtained under the same production conditions as the insulating resin molded body 10 in Example 10 except that the heat conductive composite particles 11 were used instead of the heat conductive composite particles 10.
  • Example 12 [Production of thermally conductive composite particles 12]
  • the mixing ratio (volume ratio) between the mother particles (Al 2 O 3 ) and the child particles a (BN) is set to child particles a / total particles (child particles).
  • the child particle ratio Thermally conductive composite particles 12 were obtained under the same production conditions as those of the thermally conductive composite particles 1 in Example 1, except that the volume of the mother particle X was adjusted so that the value of the base particles X was 0.5.
  • Example 13 [Production of thermally conductive composite particles 13] As a child particle, except that 10% by volume of the child particle b is added to the child particle a (100% by volume) and the volume of the mother particle X is adjusted so that the child particle ratio is 0.5. Obtained the heat conductive composite particle 13 on the same manufacturing conditions as the heat conductive composite particle 12 in Example 12.
  • the insulating resin molded body 1R is manufactured under the same manufacturing conditions as those of the insulating resin molded body 1 in Example 1, except that the heat conductive filler 1R made of Al 2 O 3 is used instead of the heat conductive composite particle 1. Obtained.
  • FIG. 9 shows an SEM photograph of the heat conductive filler 3R. It can be seen that the BN particles 112 as the child particles do not adhere to the Al 2 O 3 particles 111 as the mother particles, and the Al 2 O 3 particles 111 and the BN particles 112 are separated.
  • FIG. 10A is a graph showing the particle size distribution of unsintered core-shell particles 2a obtained by mechanochemical treatment in Example 2.
  • the unsintered core-shell particles 2a have a peak A in the vicinity of a particle diameter of 80 ⁇ m.
  • FIG. 10B is a graph showing the particle size distribution of the unsintered core-shell particles 2a after being irradiated with ultrasonic waves for 60 seconds.
  • the unsintered core-shell particle 2a after ultrasonic irradiation has a peak A near a particle diameter of 80 ⁇ m and a peak B near a particle diameter of 10 ⁇ m.
  • FIG. 10C is a graph showing the particle size distribution of the thermally conductive composite particles 2 after irradiating the thermally conductive composite particles 2 which are sintered bodies of the unsintered core-shell particles 2a with ultrasonic waves for 60 seconds.
  • the thermally conductive composite particle 2 after ultrasonic irradiation has a peak A in the vicinity of a particle diameter of 80 ⁇ m.
  • the thermal conductivity was evaluated according to the following procedure. A sample obtained by processing each obtained insulating resin molded body into a size of 10 mm ⁇ 10 mm was used. The thermal conductivity was calculated by multiplying all the thermal diffusivity, specific gravity, and specific heat of the sample. A xenon flash analyzer (LFA467 HyperFlash (registered trademark) manufactured by NETZSCH) was used as a measuring apparatus. The thermal diffusivity was determined by a laser flash method. Specific gravity was determined using the Archimedes method. The specific heat was determined by using a differential scanning calorimeter (Q Instruments, “Q2000”) and raising the temperature from room temperature to 700 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere. The results are shown in Table 1.
  • this invention is not limited to the said embodiment, In the implementation stage, it can change variously in the range which does not deviate from the summary. Further, the embodiments may be implemented in combination as appropriate, and in that case, the combined effect can be obtained. Furthermore, the present invention includes various inventions, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if several constituent requirements are deleted from all the constituent requirements shown in the embodiment, if the problem can be solved and an effect can be obtained, the configuration from which the constituent requirements are deleted can be extracted as an invention.

Abstract

無機粒子を含むコア部と、窒化物粒子を含み、上記コア部を被覆するシェル部とを備えた熱伝導性複合粒子が提供される。この熱伝導性複合粒子は焼結体である。

Description

熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュール
 本発明は、熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュールに関する。
 近年のエレクトロニクス技術の発達は目覚ましく、電気電子機器の高性能化及び小型化は急速に進行している。これに伴い、電気素子及び/又は電子素子を実装した部品の発熱量は益々大きくなっている。このような背景のもと、典型的にはMOSFET(metal-oxide-semiconductor field-effect transistor)及びIGBT(insulated-gate bipolar transistor)などの所謂パワーデバイスを搭載する金属ベース回路基板には、優れた放熱性が求められている。
 金属ベース回路基板は、金属基板上に絶縁層と回路パターンとがこの順に積層された構造を有している。金属ベース回路基板の放熱性を高めるために、この絶縁層の母材となる樹脂に、アルミナ粉末、マグネシア粉末、窒化ホウ素粉末、窒化ケイ素粉末などの高熱伝導率で電気絶縁性の無機粉末がフィラーとして一般に使用されている。
 無機粉末の中でも特に高い熱伝導性を有するのが窒化ホウ素や窒化ケイ素である。しかしながら、窒化ホウ素は六方晶の鱗片状結晶構造であり、窒化ケイ素は棒状の結晶であることから、熱伝導性に異方性がある上、プレス成形法、射出成形法、押出成形法、カレンダー成形法、ロール成形法、ドクターブレード成形法等の公知の成形方法によってシート状に無機フィラー含有樹脂組成物を成形すると、配向されやすい。このため得られる樹脂成形体の熱伝導性も異方性が生じてしまうという問題があった。
 このように無機フィラーの熱伝導性に異方性があり、当該無機フィラーが分散してなる樹脂成形体の熱伝導性にも異方性が生じてしまうという問題を解決するために、種々の技術が開発されている。例えば、特許文献1には、鱗片状窒化ホウ素を使用した無機フィラーとして、酸化アルミニウム又は二酸化ケイ素などの無機粒子をコア部とし、その周囲を被覆するシェル部に鱗片状窒化ホウ素と結着樹脂(バインダー)を含むコアシェル粒子が開示されている(特許請求の範囲)。同文献には、複数の窒化ホウ素が凝集することにより、コアシェル粒子は球状の粒子となっていることが記載されている(段落0021)。また、特許文献2には、相対的に大寸法のフィラーのまわりに小寸法のフィラーが凝集してなる凝集体粒子が開示されている(特許請求の範囲)。同文献には、大寸法のフィラー外周から小寸法のフィラーがランダムに突出した構造により、伝熱方向が任意の一方向(異方性)を有することなく多様な方向(等方性)となることが記載されている(段落0016)。
日本国特開2016-192474号公報 日本国特許第5115029号公報
 本発明者等が鋭意研究した結果、特許文献1及び2に開示されているような、コアとなる無機粒子のまわりに熱伝導性に異方性のある無機粒子が凝集してなる無機フィラーによっては、所望とする高い熱伝導性を有する樹脂成形体を得ることは困難であることがわかった。
 本発明は、熱伝導性に優れた無機フィラー及びその製造方法を提供することを目的とする。本発明はまた、熱伝導性に優れた無機フィラーを含む絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、及び、パワーモジュールを提供することを目的とする。
 本発明の一側面によると、無機粒子を含むコア部と、窒化物粒子を含み、上記コア部を被覆するシェル部とを備えた焼結体である熱伝導性複合粒子が提供される。
 本発明の他の側面によれば、上記熱伝導性複合粒子は、上記窒化物粒子として少なくとも窒化ホウ素又は窒化ケイ素を含む。
 更に、本発明の他の側面によれば、上記熱伝導性複合粒子において、上記シェル部の少なくとも一部は層状であり、上記コア部の形状に沿って上記コア部の少なくとも一部を被覆している。
 更に、本発明の他の側面によれば、上記熱伝導性複合粒子において、上記シェル部は上記窒化物粒子と焼結助剤を含む混合物の焼結部材であり、上記シェル部は上記焼結助剤由来の原子を含む。
 更に、本発明の他の側面によれば、上記熱伝導性複合粒子において、上記シェル部は、Y、CeO、La、Yb、TiO、ZrO、Fe、MoO、MgO、Al、CaO、BC、およびBから選択される少なくとも1種の焼結助剤由来の原子を更に含む。
 更に、本発明の他の側面によれば、上記熱伝導性複合粒子において、上記焼結助剤由来の原子の一部は、上記コア部の表面上に偏在している。
 更に、本発明の他の側面によれば、上記熱伝導性複合粒子において、上記シェル部は、上記焼結助剤由来の原子として少なくともイットリウムを含む。
 更に、本発明の他の側面によれば、上記熱伝導性複合粒子において、上記無機粒子、上記窒化物粒子及び上記焼結助剤の体積の合計に対する、上記窒化物粒子及び上記焼結助剤の体積の合計は30体積%以上である。
 更に、本発明の他の側面によれば、上記熱伝導性複合粒子において、上記窒化物粒子に対する上記焼結助剤の割合は5~10体積%である。
 更に、本発明の他の側面によれば、上記無機粒子は酸化アルミニウム又は酸化マグネシウムである。
 また、本発明の他の側面によると、無機粒子を含むコア部と、窒化物粒子を含み、上記コア部を被覆するシェル部とを備えた焼結体である熱伝導性複合粒子の製造方法であり、無機粒子と窒化物粒子を含む原料をメカノケミカル処理することにより、上記無機粒子を含むコア部と、上記窒化物粒子を含み、上記コア部を被覆するシェル部とを備えるコアシェル粒子を形成すること、及び上記コアシェル粒子を焼結すること、を含む熱伝導性複合粒子の製造方法が提供される。
 更に、本発明の他の側面によれば、上記熱伝導性複合粒子の製造方法において、上記熱伝導性複合粒子の上記シェル部は、上記窒化物粒子として、少なくとも窒化ホウ素又は窒化ケイ素を含む。
 更に、本発明の他の側面によれば、上記熱伝導性複合粒子の製造方法は、上記原料である上記窒化物粒子として、少なくとも、不純物濃度としてのB含有率が1質量%以上、又は、酸素含有率が1質量%以上の窒化ホウ素を使用する。
 更に本発明の他の側面によれば、上記熱伝導性複合粒子の製造方法において、上記原料は、Y、CeO、La、Yb、TiO、ZrO、Fe、MoO、MgO、Al、CaO、BC、およびBから選択される少なくとも1種の焼結助剤を更に含み、上記熱伝導性複合粒子の上記シェル部が上記焼結助剤由来の原子を含む。
 更に本発明の他の側面によれば、上記熱伝導性複合粒子の製造方法において、上記焼結助剤由来の原子の一部が上記熱伝導性複合粒子の上記コア部の表面上に偏在している。
 更に本発明の他の側面によれば、上記熱伝導性複合粒子の製造方法において、上記原料は上記焼結助剤として少なくともYを含み、上記焼結助剤由来の原子がイットリウムである。
 更に本発明の他の側面によれば、上記熱伝導性複合粒子の製造方法において、上記原料に含まれる上記無機粒子、上記窒化物粒子及び上記焼結助剤の体積の合計に対する、上記窒化物粒子及び上記焼結助剤の体積の合計は、30体積%以上である。
 更に本発明の他の側面によれば、上記熱伝導性複合粒子の製造方法において、上記原料に含まれる上記窒化物粒子に対する上記焼結助剤の割合は5~10体積%である。
 更に本発明の他の側面によれば、上記熱伝導性複合粒子の製造方法において、上記無機粒子は酸化アルミニウム又は酸化マグネシウムである。
 また、本発明の他の側面によると、上述したいずれかの熱伝導性複合粒子を含有する絶縁樹脂組成物が提供される。
 また、本発明の他の側面によると、上記絶縁樹脂組成物を成形してなる絶縁樹脂成形体が提供される。
 また、本発明の他の側面によると、金属基板と、該金属基板の少なくとも片面に設けられた絶縁層と、該絶縁層上に設けられた金属箔とを具備する回路基板用積層板であって、上記絶縁層が上述したいずれかの熱伝導性複合粒子を含む回路基板用積層板が提供される。
 また、本発明の他の側面によると、金属基板と、該金属基板の少なくとも片面に設けられた絶縁層と、該絶縁層上に設けられた金属パターンとを具備する金属ベース回路基板であって、上記絶縁層が上述したいずれかの熱伝導性複合粒子を含む金属ベース回路基板が提供される。
 また、本発明の他の側面によると、上記金属ベース回路基板を備えるパワーモジュールが提供される。
 本発明により、熱伝導性に優れた無機フィラー及びその製造方法を提供することが可能となった。また、本発明により、熱伝導性に優れた無機フィラーを含む絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、及び、パワーモジュールを提供することが可能となった。
実施形態に係る熱伝導性複合粒子の一例を示すSEM写真。 実施形態に係る熱伝導性複合粒子の一例を示すSEM写真。 実施形態に係る熱伝導性複合粒子の断面の一例を示すSEM写真。 実施形態に係る熱伝導性複合粒子の断面の一例を示すSEM写真。 実施形態に係る回路基板用積層板を概略的に示す斜視図。 図5に示す回路基板用積層板のII-II線に沿った断面図。 図5及び図6に示す回路基板用積層板から得られる回路基板の一例を概略的に示す断面図。 実施形態に係るパワーモジュールを概略的に示す断面図。 単純混合により製造された比較用無機フィラーのSEM写真であり、子粒子(BN)が母粒子(Al)に付着しない様子を示すSEM写真。 未焼結コアシェル粒子の粒度分布を示すグラフ。 超音波照射後の未焼結コアシェル粒子の粒度分布を示すグラフ。 超音波照射後の実施形態に係る熱伝導性複合粒子の粒度分布を示すグラフ。
 以下、本実施形態について説明する。 
 <熱伝導性複合粒子>
 本実施形態に係る熱伝導性複合粒子は、無機粒子を含むコア部と、このコア部を被覆するシェル部とを含む焼結体であり、シェル部に少なくとも窒化物粒子を含む。ここで窒化物粒子は、無機フィラーとして使用可能な熱伝導性の高い無機化合物であることが好ましい。熱伝導性が高ければ、熱伝導性に異方性がある無機化合物であっても本実施形態に係る窒化物粒子として好適に使用される。詳細は後述する。
 本実施形態に係る熱伝導性複合粒子は焼結体であり、無機粒子と窒化物粒子とは複合化している。また、シェル部に焼結助剤由来の原子が含まれている場合、焼結助剤由来の原子は無機粒子及び/又は窒化物粒子と複合化している。このような複合化は、例えば、X線回折法(X-ray diffraction:XRD)による解析、SEM観察、又は粒度分布などにより確認することができる。
 図1には、本実施形態に係る熱伝導性複合粒子100のSEM写真が示されており、図2にはそのSEM写真を拡大したものが示されている。図1及び図2に示される熱伝導性複合粒子100は、表面に凹凸を有するが全体的に丸みを帯びた形状となっていることがわかる。
 また、図3には、熱伝導性複合粒子100の断面のSEM写真が示されており、図4にはそのSEM写真を拡大したものが示されている。図3及び図4に示される熱伝導性複合粒子100は、無機粒子からなるコア部101と、そのコア部を被覆するシェル部102を備えている。シェル部102は、窒化物粒子(窒化ホウ素)103と焼結助剤由来の原子104を含んでいる。
 図3及び図4に示される断面写真から、焼結体である熱伝導性複合粒子100において、無機粒子と窒化物粒子と焼結助剤由来の原子とが複合化していることがわかる。 
 すなわち、メカノケミカル処理により形成される焼結前のコアシェル粒子は、母粒子である無機粒子の周囲を、窒化物粒子及び必要に応じて添加される焼結助剤などの子粒子の凝集体が被覆した構造を有するため、母粒子と子粒子の間に隙間が存在する。一方、図3及び図4に示される断面写真から、焼結により、窒化物粒子の子粒子が成長して板状(平面状)の窒化物粒子(窒化ホウ素)103が形成され、コア部(無機粒子)101が板状(平面状)の窒化物粒子(窒化ホウ素)103の形状に沿って平面を形成することにより、焼結前のコアシェル粒子における母粒子と子粒子の間の隙間が消失しているのがわかる。その結果、全体的にみると、窒化物粒子(窒化ホウ素)103と焼結助剤由来の原子104を含む層状のシェル部102がコア部(無機粒子)101の表面上で成長して、コア部を隙間なく被覆し、全体的に丸みを帯びた形状になっていることが観察される。これらから無機粒子と窒化物粒子と焼結助剤由来の原子とが複合化していることがわかる。
 このように、本実施形態に係る熱伝導性粒子において、窒化物粒子及び必要に応じて使用される焼結助剤由来の原子は無機粒子を被覆する形で存在し、且つ焼結による複合化により無機粒子と強固に結合し、全体的に丸みを帯びた形状をしている。このため、窒化物粒子が、熱伝導性は高いが異方性を有する化合物であったとしても、本実施形態に係る複合粒子においては、異方性が小さい高熱伝導性無機フィラーとして機能する。また、焼結により窒化物粒子(窒化ホウ素)103を含む層上のシェル部102が隙間を形成することなくコア部101(無機粒子)を被覆した構造を有することにより、シェル内での熱伝導パスが確保できることや、シェル部がはがれにくくなるなどの効果ももたらされる。
 本実施形態において、コア部を被覆する層状のシェル部の厚さは特に限定されるものではない。シェル部は高熱伝導部であるため、シェル部の厚みの下限は、所望とする熱伝導率の大きさにより適宜設定することができる。また、シェル部の厚みの上限は、後述するメカノケミカル処理により作製することが可能な限界であってよい。また、シェル部はコア部の全表面を被覆している必要はなく、被覆していない部分があってもよい。
 また、図3及び図4に示されるシェル部102は、上記の通り、窒化物粒子(窒化ホウ素)103以外に任意成分である焼結助剤由来の原子104を含むが、この焼結助剤由来の原子104は、コア部101の表面上に偏在している。焼結助剤は、焼結によるコア部とシェル部との密着性を更に高め、シェル部の結晶成長を促進する効果があるため、本実施形態に係る熱伝導性複合粒子の製造において好適に使用される化合物である。しかしながら、焼結後において焼結助剤由来の原子が熱伝導性複合粒子のシェル部に存在する場合、シェル部の熱伝導性を低下させる可能性がある。これに対し、焼結助剤由来の原子がコア部の表面に偏在する場合、シェル部の熱伝導性の低下を抑制することができるため好ましい。また、焼結助剤由来の原子が熱伝導性複合粒子を構成するコア部の表面上に偏在するということは、この熱伝導性複合粒子の製造過程において、焼結助剤がコア部表面と先に反応し、その部分が反応場となり焼結の起点となったことが推測される。このため、焼結助剤由来の原子がコア部の表面に偏在しているということからは、焼結助剤が、コア部とシェル部との密着性の向上並びにシェル部の結晶成長の促進により効果的に寄与したことがわかる。
 <熱伝導性複合粒子の製造方法>
 本実施形態に係る熱伝導性複合粒子の製造方法は、無機粒子からなるコア部と、窒化物粒子を含むシェル部とを備えるコアシェル粒子(但し、無機粒子と窒化物粒子は複合化していない。以下において、「未焼結コアシェル粒子」ということがある。)を形成するためのメカノケミカル処理を含む工程と、コアシェル粒子を焼結して複合粒子(以下において、上記「未焼結コアシェル粒子」に対し「コアシェル複合粒子」ということがある。)を形成する工程とに大きくは分けることができる。より具体的には、以下に説明する3つの工程、すなわち、原料の単純混合工程、メカノケミカル処理工程、及び、焼結工程を含む。但し、原料の単純混合工程は任意であり、無機粒子及び窒化物粒子を含む原料を、単純混合工程を経ることなくメカノケミカル処理に付してもよい。
 ・原料の単純混合工程
 原料を混合する工程であり、具体的には、母粒子である無機粒子と、子粒子である窒化物粒子(及び、必要に応じて後述する焼結助剤等の任意成分)とを混合する。ここで混合は、単純混合を意味し、例えば、容器中に原料を投入して撹拌することにより行うことができる。
 ・メカノケミカル処理工程
 上記単純混合工程で得られた混合物を、高せん断の機械的衝撃を与えるメカノケミカル処理することにより、母粒子である無機粒子の周囲を、子粒子が被覆してなるコアシェル粒子を得る。但し、上述の通り、メカノケミカル処理により得られるコアシェル粒子において、母粒子と子粒子は複合化していない。
 メカノケミカル処理は、メカノケミカル装置を使用し、公知の手段で行うことができる。例えば、装置最大出力9000rpm、750W、及び3.7Aの各々を超過しないように処理することが好ましい。
 ・焼結工程
 メカノケミカル処理で得られたコアシェル粒子を焼結することにより、母粒子と子粒子とが複合化しているコアシェル構造を含む複合粒子(コアシェル複合粒子)が得られる。焼結のための条件は特に限定されるものではなく、例えば、N雰囲気下、大気圧において行うことができる。焼結温度は、例えば、1400~1800℃の範囲を目安とすることができるが、無機粒子の材質や焼結助剤の有無などに応じて適宜設定することが好ましい。
 母粒子と子粒子の単純混合のみでメカノケミカル処理を行わない場合(例えば、特許文献2の段落0012を参照)、複合化されること自体が稀であり、複合化されたとしても子粒子の凝集物が残存したり、子粒子が母粒子に不均一に付着するなどの問題が生じ、コアシェル粒子を得ることは困難である。
 また、単純混合により得られた混合物を焼結させることなくマトリクスとなる樹脂に分散させた場合(例えば、特許文献2の実施例1(段落0110~0114)、母粒子と子粒子が離れて樹脂中に分散してしまい、所望とする高熱伝導率が得られない。この問題点については、後掲の比較例2を参照することができる。
 また、コアシェル粒子を得るために、シェル部にバインダーとしての結着樹脂を使用した場合であっても、コアシェル粒子を乾燥するのみで焼結することなく無機フィラーとして使用する場合(例えば、特許文献1の段落0043)、子粒子と母粒子との間は単に接触しているのみか、またはバインダ樹脂を介して付着している状態のため、粒界やバインダ樹脂の存在により所望とする熱伝導率を得ることが困難である。また、乾燥後のコアシェル粒子内には、バインダ樹脂やバインダ樹脂の溶剤などが不純物として残存し熱パスの形成を阻害しやすい。また、子粒子のサイズが小さいほど母粒子に凝集しやすくなるが、フィラーが大きいほど熱伝導性はよくなるため、凝集性と熱伝導性を高い水準で両立させることは困難である。
 (母粒子と子粒子)
 コアシェル粒子において、コア部となる母粒子は無機粒子である。また、シェル部に含まれる子粒子は、窒化物粒子、及び、必要に応じて使用される焼結助剤等の任意成分である。
 ・無機粒子(母粒子)
 コア部となる母粒子は、無機粒子である。無機粒子は、熱伝導性無機フィラーとして使用可能な無機化合物であればよい。無機粒子として、具体的には、酸化アルミニウム(Al)、酸化マグネシウム(MgO)、窒化アルミニウム(AlN)、酸化ケイ素(SiO)等を挙げることができ、一形態において、酸化アルミニウム又は酸化マグネシウムであることが好ましい。
 無機粒子の形状は、特に限定されるものではない。複合粒子のコア部となることや、絶縁樹脂材への充填性の観点からは、球形に近いことが好ましい。 
 母粒子である無機粒子の粒径は、一形態において、10~80μmが好ましく、20~60μmがより好ましい。ここで、母粒子である無機粒子(例えば、粒径が数十μm程度の良分散性粒子)の粒径は、レーザー回折/散乱式粒子径分布測定装置(粒度分布) La-960 HORIBAにより測定される粒径である。
 ・窒化物粒子(子粒子)
 シェル部に含まれる窒化物粒子は、上述の通り、無機フィラーとして使用可能な、熱伝導性の高い無機化合物であることが好ましい。熱伝導性が高ければ、熱伝導性に異方性がある無機化合物であっても本実施形態に係る窒化物粒子として好適に使用することができる。窒化物粒子として、具体的には、窒化ホウ素、窒化ケイ素、酸化アルミニウム(Al)等を挙げることができ、一形態において、窒化ホウ素(BN)又は窒化ケイ素(Si)であることが好ましい。
 本実施形態において、窒化物粒子として使用される窒化ホウ素は、焼結性の観点から、不純物としてのB又は酸素が多い低結晶窒化ホウ素であることが好ましい。一形態において、窒化物粒子として使用される窒化ホウ素は、不純物濃度としてのB含有率が1質量%以上、又は、酸素含有率が1質量%以上の窒化ホウ素であることが好ましく、B含有率が5質量%以上、又は、酸素含有率が5質量%以上の窒化ホウ素であることがより好ましい。
 ・焼結助剤(子粒子)
 本実施形態に係る熱伝導性複合粒子の製造においては、焼結助剤を使用することが好ましい。上述したように、焼結助剤は、焼結によるコア部とシェル部との密着性を更に高め、シェル部の結晶成長を促進する効果がある。
 焼結助剤として、具体的には、Y、CeO、La、Yb、TiO、ZrO、Fe、MoO、MgO、Al、CaO、BC、およびB(金属)等が挙げられ、これらの中から1種又は2種以上を使用することができる。一形態において、焼結助剤としてYが好ましい。焼結助剤を使用した場合、焼結助剤は、メカノケミカル処理により形成されるコアシェル粒子のシェル中に含まれる。焼結助剤は焼結により反応し、主に本実施形態に係る熱伝導性複合粒子のシェル部に焼結助剤由来の原子として含まれる。例えば、焼結助剤としてYを使用した場合には、熱伝導性複合粒子のシェル部にイットリウム(Y)として含まれる。尚、上述した通り、コアシェル複合粒子のシェル部に焼結助剤由来の原子が含まれる場合、当該原子の一部はコア部である無機粒子の表面上に偏在する。
 上記窒化物粒子及び焼結助剤等の子粒子の粒径は、特に限定されるものではなく、コア部を構成する母粒子の粒径に応じて適宜設定することができる。一形態において、子粒子の粒径の上限は、100~800nmの範囲で設定することができる。
 本実施形態において焼結助剤を使用する場合、焼結助剤は、熱伝導率の観点から、原料(子粒子)としての窒化物粒子に対し1~50体積%の範囲で使用されることが好ましく、3~30体積%の範囲で使用されることがより好ましく、3~20体積%の範囲で使用されることが更に好ましく、5~10体積%の範囲で使用されることが特に好ましい。
 また、母粒子と子粒子からなる全原料粒子に占める子粒子の配合比は、以下の形態が好ましい。
 すなわち、焼結助剤を使用しない場合において、母粒子である無機粒子と子粒子である窒化物粒子の体積の合計に対する窒化物粒子の体積の割合は、5~35体積%であることが好ましく、5~25体積%以下であることがより好ましい。
 一方、焼結助剤を使用する場合において、母粒子である無機粒子と子粒子である窒化物粒子並びに焼結助剤との体積の合計に対する、窒化物粒子と焼結助剤の体積の合計の割合は、20~60体積%であることが好ましく、30~50体積%であることがより好ましい。
 <絶縁樹脂組成物>
 本実施形態に係る絶縁樹脂組成物は、マトリクスとしての樹脂と上述した熱伝導性複合粒子とを含有する。 
 マトリクスとしての樹脂は、熱硬化性樹脂であることが好ましく、具体的には、エポキシ樹脂、シアネート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ビスマレイミド樹脂、アクリル樹脂等が挙げられる。これらの中の1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、熱硬化性樹脂以外の樹脂を更に含有していてもよい。
 本実施形態に係る絶縁樹脂組成物に含有される熱伝導性複合粒子の割合は、樹脂成分の合計体積を基準として10~90体積%であることが好ましく、50~80体積%であることがより好ましい。
 本実施形態に係る絶縁樹脂組成物は、上述した樹脂及び熱伝導性複合粒子以外に、溶剤、あるいは、硬化剤、硬化触媒等の各種添加剤を更に含有していてもよい。また、上述した熱伝導性複合粒子以外の無機フィラーを本発明の効果を損なわない範囲において更に含有していてもよい。
 本実施形態に係る絶縁樹脂組成物の製造方法は、特に制限されるものではなく、公知慣用の方法を用いることができる。例えば、熱伝導性複合粒子及び熱硬化性樹脂、必要に応じて硬化剤及びその他の成分を、公知慣用の方法で混合し、作製される。
 <絶縁樹脂成形体>
 本実施形態に係る絶縁樹脂成形体は、上述した絶縁樹脂組成物を各種の成形法により成形して得られる成形体である。成形法としては、熱硬化性樹脂を成形する公知慣用の方法等を用いることができ、具体的には、プレス成形法、熱成形法、ラミネート法等が挙げられる。絶縁樹脂成形体の形状、寸法などは、その用途に応じて適宜設定することができる。
 <回路基板用積層板>
 本実施形態に係る回路基板用積層板は、金属基板と、この金属基板の少なくとも片面に設けられた絶縁層と、この絶縁層上に設けられた金属箔とを具備し、絶縁層に上述した熱伝導性複合粒子を含むことを特徴とする。 
 以下、本実施形態に係る回路基板用積層板について、図面を参照しながら詳細に説明する。
 図5及び図6に示す回路基板用積層板1は、金属基板2の片面に絶縁層3が形成され、絶縁層3の上に金属箔4が形成された3層構造をしている。本発明の他の形態において、金属板2の両面に絶縁層3が形成され、更に各絶縁層3の上に金属箔4が形成された5層構造をしていてもよい。なお、図5及び図6において、X及びY方向は金属基板2の主面に平行であり且つ互いに直交する方向であり、Z方向はX及びY方向に対して垂直な厚さ方向である。図5には、一例として矩形上の回路基板用積層板1を示しているが、回路基板用積層板1は他の形状を有していてもよい。
 絶縁層3は、上述した熱伝導性複合粒子を含み、熱伝導性複合粒子は樹脂中に無機フィラーとして分散している。絶縁層3は、一形態において、上述した絶縁樹脂組成物を用いて形成される。したがって、絶縁層3に含まれる熱伝導性複合粒子以外の成分や、熱伝導性複合粒子と樹脂との配合比については、上述した絶縁樹脂組成物の説明を適用することができる。
 金属基板2は、例えば、単体金属又は合金からなる。金属基板2の材料としては、例えば、アルミニウム、鉄、銅、アルミニウム合金、又はステンレスを使用することができる。金属基板2は、炭素などの非金属を更に含んでいてもよい。例えば、金属基板2は、炭素と複合化したアルミニウムを含んでいてもよい。また、金属基板2は、単層構造を有していてもよく、多層構造を有していてもよい。
 金属基板2は、高い熱伝導率を有している。典型的には、金属基板2は、60W・m-1・K-1以上の熱伝導率を有している。 
 金属基板2は、可撓性を有していてもよく、可撓性を有していなくてもよい。金属基板2の厚さは、例えば、0.2~5mmの範囲内にある。
 金属箔4は、絶縁層3上に設けられている。金属箔4は、絶縁層3を間に挟んで金属基板2と向き合っている。 
 金属箔4は、例えば、単体金属又は合金からなる。金属箔4の材料としては、例えば、銅又はアルミニウムを使用することができる。金属箔4の厚さは、例えば、10~500μmの範囲である。
 この回路基板用積層板1は、絶縁層3に上述した熱伝導性複合粒子を含むため、熱伝導性に優れている。
 この回路基板用積層板1は、例えば、以下の方法により製造する。 
 まず、上述した絶縁樹脂組成物を、金属基板2及び金属箔4の少なくとも一方に塗布する。絶縁樹脂組成物の塗布には、例えば、ロールコート法、バーコート法又はスクリーン印刷法を利用することができる。連続式で行ってもよく、単板式で行ってもよい。
 必要に応じて塗膜を乾燥させた後、金属基板2と金属箔4とが塗膜を挟んで向き合うように重ね合わせる。さらに、それらを熱プレスする。以上のようにして、回路基板用積層板1を得る。
 この方法では、絶縁樹脂組成物を金属板2及び金属箔4の少なくとも一方に塗布することにより塗膜を形成するが、他の態様において、絶縁樹脂組成物をPETフィルム等の基材に塗布し乾燥することにより予め塗膜を形成し、これを金属基板2及び金属箔4の一方に熱転写してもよい。
 <金属ベース回路基板>
 本実施形態に係る金属ベース回路基板は、金属基板と、この金属基板の少なくとも片面に設けられた絶縁層と、この絶縁層上に設けられた金属パターンとを具備し、絶縁層に上述した熱伝導性複合粒子を含むことを特徴とする。 
 以下、本実施形態に係る金属ベース回路基板について、図面を参照しながら詳細に説明する。
 図7に示す金属ベース回路基板1´は、図5及び図6に示す回路基板用積層板から得られるものであり、金属基板2と、絶縁層3と、回路パターン4´とを含んでいる。回路パターン4´は、図5及び図6を参照しながら説明した回路基板用積層板の金属箔4をパターニングすることにより得られる。このパターニングは、例えば、金属箔4の上にマスクパターンを形成し、金属箔4の露出部をエッチングによって除去することにより得られる。金属ベース回路基板1´は、例えば、先の回路基板用積層板1の金属箔4に対して上記のパターニングを行い、必要に応じて、切断及び穴あけ加工などの加工を行うことにより得ることができる。
 この金属ベース回路基板1´は、絶縁層3に上述した熱伝導性複合粒子を含むため、熱伝導性に優れている。
 本実施形態に係るパワーモジュールは、上述した金属ベース回路基板を備える。 
 図8に本実施形態に係るパワーモジュールの一例を示す。図8に示されるパワーモジュール10は、ヒートシンク15と、放熱シート14と、金属ベース回路基板13と、はんだ層12と、パワーデバイス11とがこの順で積層されている。パワーモジュール10が備える金属ベース回路基板13は、金属基板13cと、絶縁層13bと、回路パターン13aとがこの順で積層されてなる。絶縁層13bは、上述した熱伝導性複合粒子を含むため、パワーモジュール10は熱伝導性に優れる。
 以下、本実施形態について実施例を用いて具体的に説明する。 
 <実施例1>
 [熱伝導性複合粒子1の製造]
 母粒子X:Al(デンカ株式会社製、デンカ球状アルミナDAW-45、D50=45μm);
 子粒子a:BN(株式会社MARUKA製、AP-170S、粒径20nm、O含有率7.2質量%).
 上記母粒子X(Al)と上記子粒子a(BN)を、体積比で子粒子a/全粒子(子粒子a+母粒子X)=1/(1+9)=0.10の割合で、ノビルタ・ミニ(ホソカワミクロン株式会社製)に投入し、回転数6000~8000rpm、3分間のメカノケミカル処理を行い、未焼結コアシェル粒子1aを得た。未焼結コアシェル粒子1aを、大気圧下、N雰囲気中において1800℃で3時間焼結することにより、熱伝導性複合粒子1を得た。
 [絶縁樹脂成形体1の製造]
 ビスフェノールA(DIC会社製、EPICLON EXA-850CRP)とアミン系硬化剤(三菱ケミカル社製、jER キュア W)の、ビスフェノールA:アミン系硬化剤=4:1(質量比)樹脂組成物中に、含有率が70体積%となるように熱伝導性複合粒子1を混合した。これを脱泡撹拌した後、90℃で2時間乾燥させた。次いで、真空中において12MPaで加圧しながら100℃で2時間加熱し、更に175℃で5時間加熱することにより、絶縁樹脂成形体1を得た。
 <実施例2>
 [熱伝導性複合粒子2の製造]
 母粒子X:Al(デンカ株式会社製、デンカ球状アルミナDAW-45、D50=45μm);
 子粒子a:BN(株式会社MARUKA製、AP-170S、粒径20nm、O含有率7.2質量%);
 子粒子b:Y(日本イットリウム株式会社製、微粒品(高BET品)).
 子粒子として、上記子粒子a(100体積%)に対し上記子粒子bを5体積%添加し、子粒子比率が0.1となるように母粒子Xの体積を調整したものを使用した以外は、実施例1における未焼結コアシェル粒子1aと同様の条件で未焼結コアシェル粒子2aを得た。次いで、未焼結コアシェル粒子2aを実施例1と同様の焼結条件で焼結し、熱伝導性複合粒子2を得た。
 [絶縁樹脂成形体2の製造]
 熱伝導性複合粒子1に替えて熱伝導性複合粒子2を使用した以外は、実施例1における絶縁樹脂成形体1と同様の製造条件で、絶縁樹脂成形体2を得た。
 <実施例3>
 [熱伝導性複合粒子3の製造]
 子粒子として、上記子粒子a(100体積%)に対し上記子粒子bを10体積%添加し、子粒子比率が0.1となるように母粒子Xの体積を調整したものを使用した以外は、実施例2における熱伝導性複合粒子2と同様の製造条件で、熱伝導性複合粒子3を得た。
 [絶縁樹脂成形体3の製造]
 熱伝導性複合粒子2に替えて熱伝導性複合粒子3を使用した以外は、実施例2における絶縁樹脂成形体2と同様の製造条件で、絶縁樹脂成形体3を得た。
 <実施例4>
 [熱伝導性複合粒子4の製造]
 子粒子として、上記子粒子a(100体積%)に対し上記子粒子bを20体積%添加し、子粒子比率が0.1となるように母粒子Xの体積を調整したものを使用した以外は、実施例2における熱伝導性複合粒子2と同様の製造条件で、熱伝導性複合粒子4を得た。
 [絶縁樹脂成形体4の製造]
 熱伝導性複合粒子2に替えて熱伝導性複合粒子4を使用した以外は、実施例2における絶縁樹脂成形体2と同様の製造条件で、絶縁樹脂成形体4を得た。
 <実施例5>
 [熱伝導性複合粒子5の製造]
 実施例1における熱伝導性複合粒子1の製造において、上記母粒子(Al)と上記子粒子(BN)の配合比(体積比)を、子粒子/全粒子(子粒子+母粒子)=2/(2+8)=0.20の割合に変更した以外は、実施例1における未焼結コアシェル粒子1aと同様の条件で未焼結コアシェル粒子5aを得た。次いで、未焼結コアシェル粒子5aを実施例1と同様の焼結条件で焼結し、熱伝導性複合粒子5を得た。 
[絶縁樹脂成形体5の製造]
 熱伝導性複合粒子1に替えて熱伝導性複合粒子5を使用した以外は、実施例1における絶縁樹脂成形体1と同様の製造条件で、絶縁樹脂成形体5を得た。
 <実施例6>
 [熱伝導性複合粒子6の製造]
 子粒子として、上記子粒子a(100体積%)に対し上記子粒子bを5体積%添加し、子粒子比率が0.2となるように母粒子Xの体積を調整したものを使用した以外は、実施例5における未焼結コアシェル粒子5aと同様の条件で未焼結コアシェル粒子6aを得た。次いで、未焼結コアシェル粒子6aを実施例5と同様の焼結条件で焼結し、熱伝導性複合粒子6を得た。
 [絶縁樹脂成形体6の製造]
 熱伝導性複合粒子5に替えて熱伝導性複合粒子6を使用した以外は、実施例5における絶縁樹脂成形体5と同様の製造条件で、絶縁樹脂成形体6を得た。
 <実施例7>
 [熱伝導性複合粒子7の製造]
 子粒子として、上記子粒子a(100体積%)に対し上記子粒子bを10体積%添加し、子粒子比率が0.2となるように母粒子Xの体積を調整したものを使用した以外は、実施例6における熱伝導性複合粒子6と同様の製造条件で、熱伝導性複合粒子7を得た。
 [絶縁樹脂成形体7の製造]
 熱伝導性複合粒子6に替えて熱伝導性複合粒子7を使用した以外は、実施例6における絶縁樹脂成形体6と同様の製造条件で、絶縁樹脂成形体7を得た。
 <実施例8>
 [熱伝導性複合粒子8の製造]
 子粒子として、上記子粒子a(100体積%)に対し上記子粒子bを20体積%添加し、子粒子比率が0.2となるように母粒子Xの体積を調整したものを使用した以外は、実施例6における熱伝導性複合粒子6と同様の製造条件で、熱伝導性複合粒子8を得た。
 [絶縁樹脂成形体8の製造]
 熱伝導性複合粒子6に替えて熱伝導性複合粒子8を使用した以外は、実施例6における絶縁樹脂成形体6と同様の製造条件で、絶縁樹脂成形体8を得た。
 <実施例9>
 [熱伝導性複合粒子9の製造]
 実施例1における熱伝導性複合粒子1の製造において、上記母粒子(Al)と上記子粒子(BN)の配合比(体積比)を、子粒子/全粒子(子粒子+母粒子)=3/(3+7)=0.30の割合に変更した以外は、実施例1における未焼結コアシェル粒子1aと同様の条件で未焼結コアシェル粒子9aを得た。次いで、未焼結コアシェル粒子9aを実施例1と同様の焼結条件で焼結し、熱伝導性複合粒子9を得た。
 [絶縁樹脂成形体9の製造]
 熱伝導性複合粒子1に替えて熱伝導性複合粒子9を使用した以外は、実施例1における絶縁樹脂成形体1と同様の製造条件で、絶縁樹脂成形体9を得た。
 <実施例10>
 [熱伝導性複合粒子10の製造]
 子粒子として、上記子粒子a(100体積%)に対し上記子粒子bを5体積%添加し、子粒子比率が0.3となるように母粒子Xの体積を調整したものを使用した以外は、実施例9における未焼結コアシェル粒子9aと同様の条件で未焼結コアシェル粒子10aを得た。次いで、未焼結コアシェル粒子10aを実施例9と同様の焼結条件で焼結し、熱伝導性複合粒子10を得た。
 [絶縁樹脂成形体10の製造]
 熱伝導性複合粒子9に替えて熱伝導性複合粒子10を使用した以外は、実施例9における絶縁樹脂成形体9と同様の製造条件で、絶縁樹脂成形体10を得た。
 <実施例11>
 [熱伝導性複合粒子11の製造]
 子粒子として、上記子粒子a(100体積%)に対し上記子粒子bを10体積%添加し、子粒子比率が0.3となるように母粒子Xの体積を調整したものを使用した以外は、実施例10における熱伝導性複合粒子10と同様の製造条件で、熱伝導性複合粒子11を得た。
 [絶縁樹脂成形体11の製造]
 熱伝導性複合粒子10に替えて熱伝導性複合粒子11を使用した以外は、実施例10における絶縁樹脂成形体10と同様の製造条件で、絶縁樹脂成形体11を得た。
 <実施例12>
 [熱伝導性複合粒子12の製造]
 実施例1における熱伝導性複合粒子1の製造において、上記母粒子(Al)と上記子粒子a(BN)との配合比(体積比)を、子粒子a/全粒子(子粒子a+母粒子X)=5/(5+5)=0.5に対し、更に子粒子a(100体積%)に対し上記子粒子b(Y)を5体積%添加して、子粒子比率が0.5となるように母粒子Xの体積を調整した以外は、実施例1における熱伝導性複合粒子1と同様の製造条件で、熱伝導性複合粒子12を得た。
 [絶縁樹脂成形体12の製造]
 熱伝導性複合粒子1に替えて熱伝導性複合粒子12を使用した以外は、実施例1における絶縁樹脂成形体10と同様の製造条件で、絶縁樹脂成形体12を得た。
 <実施例13>
 [熱伝導性複合粒子13の製造]
 子粒子として、上記子粒子a(100体積%)に対し上記子粒子bを10体積%添加し、子粒子比率が0.5となるように母粒子Xの体積を調整したものを使用した以外は、実施例12における熱伝導性複合粒子12と同様の製造条件で、熱伝導性複合粒子13を得た。
 [絶縁樹脂成形体13の製造]
 熱伝導性複合粒子12に替えて熱伝導性複合粒子13を使用した以外は、実施例12における絶縁樹脂成形体12と同様の製造条件で、絶縁樹脂成形体13を得た。
 <比較例1>
 [熱伝導性フィラー1R]
 熱伝導性フィラーとして、Al(デンカ株式会社製、デンカ球状アルミナDAW-45、D50=45μm)からなる熱伝導性フィラー1Rを使用した。
 [絶縁樹脂成形体1Rの製造]
 熱伝導性複合粒子1に替えて、上記Alからなる熱伝導性フィラー1Rを使用した以外は、実施例1における絶縁樹脂成形体1と同様の製造条件で、絶縁樹脂成形体1Rを得た。
 <比較例2>
 [熱伝導性フィラー2R]
 母粒子X:Al(デンカ株式会社製、デンカ球状アルミナDAW-45、D50=45μm);
 子粒子a:BN(モメンティブ社製、PT-120、D50=12μm).
 上記母粒子X(Al)と上記子粒子a(BN)を、体積比で子粒子a/全粒子(子粒子a+母粒子X)=1/(1+9)=0.10の割合で容器中に投入して撹拌(単純混合)し、熱伝導性フィラー2Rを得た。 
 [絶縁樹脂成形体2Rの製造]
 熱伝導性複合粒子1に替えて、上記熱伝導性フィラー2Rを使用した以外は、実施例1における絶縁樹脂成形体1と同様の製造条件で、絶縁樹脂成形体2Rを得た。
 <比較例3>
 [熱伝導性フィラー3R]
 母粒子X:Al(デンカ株式会社製、デンカ球状アルミナDAW-45、D50=45μm);
 子粒子a:BN(株式会社MARUKA製、AP-170S、粒径20nm、O含有率7.2質量%).
 上記母粒子X(Al)と上記子粒子a(BN)を、体積比で子粒子a/全粒子(子粒子a+母粒子X)=1/(1+9)=0.10の割合で容器中に投入して撹拌(単純混合)し、熱伝導性フィラー3Rを得た。 
 図9に熱伝導性フィラー3RのSEM写真を示す。子粒子のBN粒子112は、母粒子のAl粒子111に付着せず、Al粒子111とBN粒子112とが分離していることがわかる。
 <熱伝導性複合粒子における複合化の検証>
 焼結体である熱伝導性複合粒子が複合化していることを、実施例2で得られた未焼結コアシェル粒子2aとその焼結体である熱伝導性複合粒子2を用い、超音波照射及び粒度分布測定により検証した。超音波照射及び粒度分布の測定には、「レーザー回析/散乱式粒子径分布測定装置(粒度分布) La-960 HORIBA」を使用した。
 図10Aは、実施例2においてメカノケミカル処理により得られた未焼結コアシェル粒子2aの粒度分布を示すグラフである。同グラフにおいて、未焼結コアシェル粒子2aは、粒子径80μm付近にピークAを有している。図10Bは、60秒間超音波を照射した後の未焼結コアシェル粒子2aの粒度分布を示すグラフである。同グラフにおいて、超音波照射後の未焼結コアシェル粒子2aは、粒子径80μm付近のピークAと、粒子径10μm付近にピークBを有している。
 図10Cは、未焼結コアシェル粒子2aの焼結体である熱伝導性複合粒子2に、60秒間超音波を照射した後の熱伝導性複合粒子2の粒度分布を示すグラフである。同グラフにおいて、超音波照射後の熱伝導性複合粒子2は、粒子径80μm付近にピークAを有している。
 図10Aと図10Bを対比すると、60秒間超音波照射後の図10Bに示す粒度分布においては、図10Aに示す超音波照射前の粒度分布に対し、ピークAが減少し、ピークBが増えていることがわかる。このことから、未焼結コアシェル粒子2aに60秒間超音波を照射した結果、コアシェル構造が一部破壊されていることが確認できた。
 一方、図10Aと図10Cを対比すると、双方の粒度分布は、同じピークAを有していることがわかる。このことから、熱伝導性複合粒子2は、超音波を60秒間照射した後であってもコアシェル構造は破壊されず、複合化していることが確認できた。
 <熱伝導性の評価方法>
 熱伝導性の評価は以下の手順で行った。 
 得られた各絶縁樹脂成形体を、大きさ10mm×10mmに加工したものを試料とした。熱伝導率は、試料の熱拡散率、比重、比熱を全て乗じて算出した。
 測定装置はキセノンフラッシュアナライザ(NETZSCH社製LFA467 HyperFlash(登録商標))を用いた。熱拡散率はレーザーフラッシュ法により求めた。比重はアルキメデス法を用いて求めた。比熱は、示差走査熱量計(ティー・エイ・インスツルメント社製、「Q2000」)を用い、窒素雰囲気下、昇温速度10℃/分で室温~700℃まで昇温させて求めた。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
   1・・・・回路基板用積層板、
   1’・・・金属ベース回路基板、
   2・・・・金属基板、
   3・・・・絶縁層、
   4・・・・金属箔、
   4’・・・・回路パターン
  10・・・・パワーモジュール
  11・・・・パワーデバイス
  12・・・・はんだ層
  13・・・・金属ベース回路基板
  13a・・・回路パターン
  13b・・・絶縁層
  13c・・・金属基板
  14・・・・放熱シート
  15・・・・ヒートシンク
 100・・・・熱伝導性複合粒子
 101・・・・コア部(無機粒子)
 102・・・・シェル部
 103・・・・窒化物粒子(窒化ホウ素)
 104・・・・焼結助剤由来の原子
 111・・・・Al粒子
 112・・・・BN粒子

Claims (24)

  1.  無機粒子を含むコア部と、窒化物粒子を含み、前記コア部を被覆するシェル部とを備えた焼結体である熱伝導性複合粒子。
  2.  前記窒化物粒子として少なくとも窒化ホウ素又は窒化ケイ素を含む、請求項1に記載の熱伝導性複合粒子。
  3.  前記シェル部の少なくとも一部は層状であり、前記コア部の形状に沿って前記コア部の少なくとも一部を被覆している、請求項1又は2に記載の熱伝導性複合粒子。
  4.  前記シェル部は前記窒化物粒子と焼結助剤を含む混合物の焼結部材であり、前記シェル部は前記焼結助剤由来の原子を含む、請求項1~3のいずれか1項に記載の熱伝導性複合粒子。
  5.  前記焼結助剤が、Y、CeO、La、Yb、TiO、ZrO、Fe、MoO、MgO、Al、CaO、BC、およびBから選択される少なくとも1種である、請求項4に記載の熱伝導性複合粒子。
  6.  前記焼結助剤由来の原子の一部が前記コア部の表面上に偏在している、請求項4又は5に記載の熱伝導性複合粒子。
  7.  前記シェル部が、前記焼結助剤由来の原子として少なくともイットリウムを含む、請求項4~6のいずれか1項に記載の熱伝導性複合粒子。
  8.  前記無機粒子、前記窒化物粒子及び前記焼結助剤の体積の合計に対する、前記窒化物粒子及び前記焼結助剤の体積の合計が、30体積%以上である、請求項4~7のいずれか1項に記載の熱伝導性複合粒子。
  9.  前記窒化物粒子に対する前記焼結助剤の配合比率は5体積%~10体積%である、請求項4~8のいずれか1項に記載の熱伝導性複合粒子。
  10.  前記無機粒子が酸化アルミニウム又は酸化マグネシウムである、請求項1~9のいずれか1項に記載の熱伝導性複合粒子。
  11.  無機粒子を含むコア部と、窒化物粒子を含み、前記コア部を被覆するシェル部とを備えた焼結体である熱伝導性複合粒子の製造方法であり、
     無機粒子と窒化物粒子を含む原料をメカノケミカル処理することにより、前記無機粒子を含むコア部と、前記窒化物粒子を含み、前記コア部を被覆するシェル部とを備えるコアシェル粒子を形成すること、及び
     前記コアシェル粒子を焼結すること、
    を含む熱伝導性複合粒子の製造方法。
  12.  前記熱伝導性複合粒子の前記シェル部に含まれる前記窒化物粒子として、少なくとも窒化ホウ素又は窒化ケイ素を含む、請求項11に記載の熱伝導性複合粒子の製造方法。
  13.  前記原料である前記窒化物粒子として、少なくとも、不純物濃度としてのB含有率が1質量%以上、又は、酸素含有率が1質量%以上の窒化ホウ素を使用する、請求項11又は12に記載の熱伝導性複合粒子の製造方法。
  14.  前記原料が、Y、CeO、La、Yb、TiO、ZrO、Fe、MoO、MgO、Al、CaO、BC、およびBから選択される少なくとも1種の焼結助剤を更に含み、前記熱伝導性複合粒子の前記シェル部が前記焼結助剤由来の原子を含む、請求項11~13のいずれか1項に記載の熱伝導性複合粒子の製造方法。
  15.  前記焼結助剤由来の原子の一部が前記熱伝導性複合粒子の前記コア部の表面上に偏在している、請求項14に記載の熱伝導性複合粒子の製造方法。
  16.  前記原料が、前記焼結助剤として少なくともYを含み、前記焼結助剤由来の原子がイットリウムである、請求項14又は15に記載の熱伝導性複合粒子の製造方法。
  17.  前記原料に含まれる前記無機粒子、前記窒化物粒子及び前記焼結助剤の体積の合計に対する、前記窒化物粒子及び前記焼結助剤の体積の合計が、30体積%以上である、請求項14~16のいずれか1項に記載の熱伝導性複合粒子の製造方法。
  18.  前記原料に含まれる前記窒化物粒子に対する前記焼結助剤の割合は5~10体積%である、請求項14~17のいずれか1項に記載の熱伝導性複合粒子の製造方法。
  19.  前記無機粒子が酸化アルミニウム又は酸化マグネシウムである、請求項11~18のいずれか1項に記載の熱伝導性複合粒子の製造方法。
  20.  請求項1~10のいずれか1項に記載の熱伝導性複合粒子を含有する絶縁樹脂組成物。
  21.  請求項20に記載の絶縁樹脂組成物を成形してなる絶縁樹脂成形体。
  22.  金属基板と、該金属基板の少なくとも片面に設けられた絶縁層と、該絶縁層上に設けられた金属箔とを具備する回路基板用積層板であって、前記絶縁層が請求項1~10のいずれか1項に記載の熱伝導性複合粒子を含む回路基板用積層板。
  23.  金属基板と、該金属基板の少なくとも片面に設けられた絶縁層と、該絶縁層上に設けられた金属パターンとを具備する金属ベース回路基板であって、前記絶縁層が請求項1~10のいずれか1項に記載の熱伝導性複合粒子を含む金属ベース回路基板。
  24.  請求項23に記載の金属ベース回路基板を備えるパワーモジュール。
PCT/JP2019/014078 2018-03-30 2019-03-29 熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュール WO2019189794A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19775884.0A EP3780086A1 (en) 2018-03-30 2019-03-29 Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module
CN201980024291.9A CN111937140A (zh) 2018-03-30 2019-03-29 导热性复合粒子及其制造方法、绝缘树脂组合物、绝缘树脂成形体、电路基板用层叠板、金属基底电路基板以及功率模块
JP2019536323A JP6616555B1 (ja) 2018-03-30 2019-03-29 熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュール
US17/033,704 US20210017084A1 (en) 2018-03-30 2020-09-26 Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018068772 2018-03-30
JP2018-068772 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/033,704 Continuation US20210017084A1 (en) 2018-03-30 2020-09-26 Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module

Publications (1)

Publication Number Publication Date
WO2019189794A1 true WO2019189794A1 (ja) 2019-10-03

Family

ID=68061935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014078 WO2019189794A1 (ja) 2018-03-30 2019-03-29 熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュール

Country Status (5)

Country Link
US (1) US20210017084A1 (ja)
EP (1) EP3780086A1 (ja)
JP (2) JP6616555B1 (ja)
CN (1) CN111937140A (ja)
WO (1) WO2019189794A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209784A1 (ja) * 2021-03-31 2022-10-06 富士フイルム株式会社 無機粒子、無機粒子の製造方法、組成物、および、電子デバイスの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149161A1 (ja) * 2020-01-21 2021-07-29 三菱電機株式会社 放熱部材およびヒートシンク
EP4283662A1 (en) * 2022-05-23 2023-11-29 Hitachi Energy Switzerland AG Method of attaching a terminal to a metal substrate structure for a semiconductor power module and semiconductor power module

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115029B2 (ja) 1972-03-14 1976-05-13
JPH07267614A (ja) * 1994-03-29 1995-10-17 Ngk Insulators Ltd 窒化珪素粉末の製造方法、窒化珪素焼結体及びその製造方法
JP2001031887A (ja) * 1999-07-21 2001-02-06 Toyota Motor Corp 高熱伝導性粉末およびその製造方法
JP2005344171A (ja) * 2004-06-03 2005-12-15 Fuji Photo Film Co Ltd 成膜用原料粉、及び、それを用いた成膜方法
JP2008195766A (ja) * 2007-02-09 2008-08-28 Denso Corp 樹脂複合材料
JP2009164402A (ja) * 2008-01-08 2009-07-23 Fuji Electric Device Technology Co Ltd 圧粉磁心の製造方法
JP2011035221A (ja) * 2009-08-04 2011-02-17 Jsr Corp 伝熱シートおよびその製造方法
JP2011219309A (ja) * 2010-04-09 2011-11-04 Nippon Steel Corp AlN改質層を備えたアルミナ粒子の製造方法、及び改質アルミナ粉末
JP2015214639A (ja) * 2014-05-09 2015-12-03 Dic株式会社 複合粒子、その製造方法及び樹脂組成物
JP2016017014A (ja) * 2014-07-09 2016-02-01 株式会社ジーエル・マテリアルズホールディングス 高熱伝導性・電気絶縁性・低熱膨張性粉末及びそれを用いた放熱構造体、並びにその粉末の製造方法
JP2016192474A (ja) 2015-03-31 2016-11-10 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、放熱部材、および半導体装置
JP2017095555A (ja) * 2015-11-19 2017-06-01 積水化学工業株式会社 フィラー複合体及び熱硬化性材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529102B2 (ja) * 1999-06-10 2010-08-25 日立金属株式会社 高熱伝導窒化ケイ素質焼結体およびその製造方法
JP4392088B2 (ja) * 1999-10-27 2009-12-24 電気化学工業株式会社 窒化ホウ素被覆球状ホウ酸塩粒子とそれを含む混合粉末、及びそれらの製造方法
JP4809152B2 (ja) * 2005-09-28 2011-11-09 京セラ株式会社 積層セラミックコンデンサ
US20140231700A1 (en) * 2011-12-27 2014-08-21 Panasonic Corporation Thermoconductive resin composition
JP6587831B2 (ja) * 2015-05-25 2019-10-09 Dic株式会社 凝集β型窒化ケイ素の製造方法、樹脂組成物の製造方法及び熱伝導性材料の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115029B2 (ja) 1972-03-14 1976-05-13
JPH07267614A (ja) * 1994-03-29 1995-10-17 Ngk Insulators Ltd 窒化珪素粉末の製造方法、窒化珪素焼結体及びその製造方法
JP2001031887A (ja) * 1999-07-21 2001-02-06 Toyota Motor Corp 高熱伝導性粉末およびその製造方法
JP2005344171A (ja) * 2004-06-03 2005-12-15 Fuji Photo Film Co Ltd 成膜用原料粉、及び、それを用いた成膜方法
JP2008195766A (ja) * 2007-02-09 2008-08-28 Denso Corp 樹脂複合材料
JP2009164402A (ja) * 2008-01-08 2009-07-23 Fuji Electric Device Technology Co Ltd 圧粉磁心の製造方法
JP2011035221A (ja) * 2009-08-04 2011-02-17 Jsr Corp 伝熱シートおよびその製造方法
JP2011219309A (ja) * 2010-04-09 2011-11-04 Nippon Steel Corp AlN改質層を備えたアルミナ粒子の製造方法、及び改質アルミナ粉末
JP2015214639A (ja) * 2014-05-09 2015-12-03 Dic株式会社 複合粒子、その製造方法及び樹脂組成物
JP2016017014A (ja) * 2014-07-09 2016-02-01 株式会社ジーエル・マテリアルズホールディングス 高熱伝導性・電気絶縁性・低熱膨張性粉末及びそれを用いた放熱構造体、並びにその粉末の製造方法
JP2016192474A (ja) 2015-03-31 2016-11-10 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、放熱部材、および半導体装置
JP2017095555A (ja) * 2015-11-19 2017-06-01 積水化学工業株式会社 フィラー複合体及び熱硬化性材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209784A1 (ja) * 2021-03-31 2022-10-06 富士フイルム株式会社 無機粒子、無機粒子の製造方法、組成物、および、電子デバイスの製造方法

Also Published As

Publication number Publication date
JP6876773B2 (ja) 2021-05-26
JP2020047928A (ja) 2020-03-26
US20210017084A1 (en) 2021-01-21
EP3780086A1 (en) 2021-02-17
JPWO2019189794A1 (ja) 2020-04-30
JP6616555B1 (ja) 2019-12-04
CN111937140A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
US20210017084A1 (en) Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module
JP7069314B2 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
TWI700243B (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材
JP7053579B2 (ja) 伝熱部材及びこれを含む放熱構造体
JP6351585B2 (ja) 樹脂含浸窒化ホウ素焼結体およびその用途
WO2014136959A1 (ja) 窒化ホウ素粉末及びこれを含有する樹脂組成物
JP6023474B2 (ja) 熱伝導性絶縁シート、金属ベース基板及び回路基板、及びその製造方法
JP7273587B2 (ja) 窒化ホウ素粉末及び樹脂組成物
WO2018235920A1 (ja) 樹脂材料、樹脂材料の製造方法及び積層体
WO2022209325A1 (ja) 複合体及びその製造方法、樹脂充填板、並びに、積層体及びその製造方法
JP5919314B2 (ja) 絶縁性樹脂組成物の製造方法、放熱材の製造方法、プリント基板用積層板の製造方法及びプリント基板の製造方法
JP7257104B2 (ja) 積層体
JP6473597B2 (ja) 高熱伝導有機無機コンポジット材料の製造方法
JP7291118B2 (ja) 積層体
JP2001158609A (ja) 樹脂充填用窒化アルミニウム粉末及びその用途
WO2021200725A1 (ja) 窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
WO2022071247A1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
WO2024048206A1 (ja) 積層体、及び積層体の製造方法、並びに、積層基板、及び積層基板の製造方法
JP7203290B2 (ja) シート状の六方晶窒化ホウ素焼結体、及びその製造方法
TWI838500B (zh) 塊狀氮化硼粒子、熱傳導樹脂組成物、以及散熱構件
JP4249371B2 (ja) 金属ベース回路基板
JP7069967B2 (ja) 放熱基板
CN114829467A (zh) 树脂片材及其制造方法
KR20180112980A (ko) 휘스커 타입 Cu―CuO 복합 필러를 포함하는 방열시트

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536323

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019775884

Country of ref document: EP