JP4529102B2 - 高熱伝導窒化ケイ素質焼結体およびその製造方法 - Google Patents

高熱伝導窒化ケイ素質焼結体およびその製造方法 Download PDF

Info

Publication number
JP4529102B2
JP4529102B2 JP16322099A JP16322099A JP4529102B2 JP 4529102 B2 JP4529102 B2 JP 4529102B2 JP 16322099 A JP16322099 A JP 16322099A JP 16322099 A JP16322099 A JP 16322099A JP 4529102 B2 JP4529102 B2 JP 4529102B2
Authority
JP
Japan
Prior art keywords
silicon nitride
volume
sintered body
thermal conductivity
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16322099A
Other languages
English (en)
Other versions
JP2000351673A (ja
Inventor
寿之 今村
昌久 祖父江
宏 福沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP16322099A priority Critical patent/JP4529102B2/ja
Publication of JP2000351673A publication Critical patent/JP2000351673A/ja
Application granted granted Critical
Publication of JP4529102B2 publication Critical patent/JP4529102B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い強度と熱伝導率を有する窒化ケイ素質焼結体およびその製造方法に関するものであり、半導体用基板、発熱素子用ヒ−トシンク等の電子部品用部材や、一般機械器具用部材、溶融金属用部材、熱機関用部材等の構造用部材として好適な窒化ケイ素質焼結体である。
【0002】
【従来の技術】
窒化ケイ素質焼結体は、高強度特性、耐摩耗性等の機械的特性に加え、耐熱性、低熱膨張性、耐熱衝撃性、金属に対する耐食性に優れているので、従来からガスタ−ビン用部材、エンジン用部材、製鋼用機械部材、溶融金属の耐溶部材等の各種構造用部材に用いられている。また、高い絶縁性を利用して電気絶縁材料として使用されている。
【0003】
近年、高周波トランジスタ、パワーIC等の発熱量の大きい半導体素子の発展に伴い、電気絶縁性に加えて放熱特性を得ることができるように高い熱伝導率を有するセラミックス基板の需要が増加している。このようなセラミックス基板として、窒化アルミニウム基板が用いられているが、機械的強度や破壊靭性値等が低く、基板ユニットの組立て工程での締め付けによって割れを生じたり、また、シリコン(Si)半導体素子を実装した回路基板では、Si金属と基板との熱膨張差が大きいため、熱サイクルにより窒化アルミニウム基板にクラックや割れを招いて実装信頼性が低下するという問題がある。
【0004】
そこで、窒化アルミニウム基板より熱伝導率は劣るものの、熱膨張率がSiに近似すると共に、機械的強度、破壊靭性値、耐熱疲労特性に優れる高熱伝導窒化ケイ素質焼結体からなる基板が注目され、種々の提案が行われている。
【0005】
例えば、特開平9−30866号には、85〜99重量%のβ型窒化ケイ素粒と残部が酸化物または酸窒化物の粒界相とから構成され、粒界相中にMg、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ho、Er、Ybのうちから選ばれる1種または2種以上の金属元素を0.5〜10重量%含有すると共に、粒界相中のAl原子含有量が1重量%以下であり、気孔率が5%以下でかつβ型窒化ケイ素粒のうち短軸径5μm以上を持つものの割合が10〜60体積%である窒化ケイ素質焼結体が記載されている。
【0006】
また、日本セラミックス協会1996年年会講演予稿集1G11、同1G12、特開平10−194842号には、原料粉末に柱状の窒化ケイ素粒子またはウイスカーを予め添加し、ドクターブレード法あるいは押出成形法を用いて、この粒子を2次元的に配向させた成形体を得た後、焼成することにより熱伝導に異方性を付与して特定方向の熱伝導率を高めた窒化ケイ素質焼結体が記載されている。
【0007】
【発明が解決しようとする課題】
上述した従来の窒化ケイ素質焼結体においては、窒化ケイ素質焼結体中に巨大な柱状粒子を得るために、2000℃以上、100気圧以上の窒素雰囲気下の高温・高圧での焼成が不可欠である。このため、ホットプレスあるいはHIP等の特殊な高温・高圧設備が必要となり経済的な負担がかかる問題がある。また、窒化ケイ素粒子を配向させた成形体を得るための成形プロセスが複雑であるため、生産性ならびに量産性が著しく低下するという問題がある。
【0008】
本発明は、このような課題に対処してなされたものであり、2000℃以上、100気圧以上の窒素雰囲気下の高温・高圧での焼成を必要とせず、高い熱伝導率と強度を有する高熱伝導窒化ケイ素質焼結体およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は上記の目的を達成するため、窒化ケイ素粉末、焼結助剤、添加物の種類および添加量、焼結条件等の検討を重ねた結果、特に焼結助剤として、MgO基とし周期律表第3a族元素(RE)の酸化物を特定範囲で含有させることにより、高温、高圧下での焼成を必要とはせず、熱伝導率と強度を高めることができることを見出し、本発明に至った。
【0010】
すなわち、本発明の高熱伝導窒化ケイ素質焼結体は、窒化ケイ素を主成分とし、マグネシウム(Mg)を酸化マグネシウム(MgO)換算して、周期律表第3a族元素(RE)を酸化物(RExOy)換算して、その合計量が0.5〜5.0体積%、MgO/RExOyで表される体積比が1〜50の割合で含有し、アルミニウム(Al)を酸化アルミニウム(Al23)に換算して、0.1体積%以下含有し、β型窒化ケイ素粒子のうち短軸径5μm以上を持つものの割合が、10体積%未満であり、β型窒化ケイ素粒子のアスペクト比が15以下であり、常温における熱伝導率が70W/(m・K)以上、常温における4点曲げ強度が600MPa以上、相対密度98.3%以上であることを特徴とする。ここで、周期律表第3a族元素としては、Y、La、Ce、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu等が挙げられる。熱伝導率は90W/(m・K)以上が好ましく、さらには110W/(m・K)以上が好ましい。また、4点曲げ強度は700MPa以上が好ましい。
【0011】
本発明の高熱伝導窒化ケイ素質焼結体において、周期律表第3a族元素を酸化物換算して、0.1体積%以上含有することが望ましい。
【0012】
また、本発明の高熱伝導窒化ケイ素質焼結体の製造方法は、窒化ケイ素粉末に、焼結助剤として酸化マグネシウム(MgO)と、周期律表第3a族元素(RE)の酸化物(RExOy)を、その合計量が0.5〜5.0体積%、MgO/RExOyで表される体積比が1〜50の割合で添加し、アルミニウム(Al)を酸化アルミニウム(Al23)に換算して、0.1体積%以下になるようにして成形した後、1〜10気圧の窒素ガス圧下で、1650〜1950℃の温度で焼成することを特徴とする。熱伝導率をさらに高めるため、前記焼成した後、1〜10気圧の窒素ガス圧下で1850〜1900℃の温度で熱処理をしてβ型窒化ケイ素粒子のうち短軸径5μm以上を持つものの割合が10体積%未満、β型窒化ケイ素粒子のアスペクト比が15以下で、常温における熱伝導率が70W/(m・K)以上、常温における4点曲げ強度が600MPa以上で、熱伝導率を熱処理前より高めることが望ましい。又は前記焼成した後、1〜10気圧の窒素ガス圧下で1850〜1950℃の温度で熱処理をしてβ型窒化ケイ素粒子のうち短軸径5μm以上を持つものの割合が10体積%未満、β型窒化ケイ素粒子のアスペクト比が15以下で、常温における熱伝導率が70W/(m・K)以上、常温における4点曲げ強度が600MPa以上で、熱伝導率を熱処理前より高めることが望ましい。成形は金型プレス、鋳込み成形、ドクターブレード法など公知の成形手段により所望のシート状あるいはブロック状に成形する。窒化ケイ素粉末原料として、β−Si34含有率が10重量%以下の窒化ケイ素粉末を用いることが好ましい。
【0013】
【作用】
マグネシウムは、焼結助剤として用いられ、窒化ケイ素原料粉末の緻密化に有効である。この元素は、窒化ケイ素質焼結体を構成する第1ミクロ組織成分である窒化ケイ素結晶に対する固溶度が小さいので、窒化ケイ素結晶、ひいては窒化ケイ素質焼結体の熱伝導率を高い水準に保つことができる。
【0014】
周期律表第3a族元素のイットリウム(Y)は、焼結助剤として用いられ、窒化ケイ素原料粉末の緻密化に有効である。この元素は、窒化ケイ素質焼結体を構成する第1ミクロ組織成分である窒化ケイ素結晶に対する固溶度が小さいので、窒化ケイ素結晶、ひいては窒化ケイ素質焼結体の熱伝導率を高い水準に保つことができる。イットリウム同様に窒化ケイ素結晶に対する固溶度が小さく、焼結助剤として作用する元素には、La、Ce、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu等の希土類元素が挙げられ、なかでも温度、圧力が高くなり過ぎずに焼成ができる点でLa、Ce、Gd、Dy、Ybが好ましい。
【0015】
マグネシウムを酸化マグネシウム換算して、周期律表第3a族元素を酸化物換算して、その合計量が0.5体積%未満では、焼結時の緻密化作用が不十分となり、相対密度が95%未満となり好ましくない。一方5.0体積%を超えると、窒化ケイ素質焼結体の第2のミクロ組織成分である熱伝導率の低い粒界相の量が過剰となり、焼結体の熱伝導率が70W/(m・K)未満となる。従って、これらの酸化物はその合計量で0.5〜5.0体積%含有する。好ましくは合計量で0.5〜3.5体積%含有する。
【0016】
また、周期律表第3a族元素を酸化物換算して、0.1体積%未満では焼成時におけるMgの拡散を抑制することができず焼結体表面に色むらを生じる。また、MgOの蒸気圧は焼結助剤として用いる他の希土類酸化物よりも高いため、1800℃以上の高温で焼成を行う場合には、Mg成分が焼結体内部より揮発し易くなり著しい密度低下が生じるため、0.1体積%を下まわらないことが好ましい。
【0017】
酸化マグネシウム(MgO)と、周期律表第3a族元素の酸化物(RExOy)の体積比MgO/RExOyが1未満では、粒界ガラス相中の希土類酸化物の割合が増大するため焼結過程で液相線温度が上昇し難焼結性となり緻密な焼結体が得られない。また、MgO/RExOyが50を超えると焼成時におけるMgの拡散を抑制することができず焼結体表面に色むらを生じる。
【0018】
アルミニウム(Al)は窒化ケイ素結晶に固溶しやく、熱伝導率を著しく低下させるので、酸化アルミニウム(Al23)に換算して、0.1体積%以下に抑えるのが望ましい。
【0019】
窒化ケイ素質焼結体中のβ型窒化ケイ素粒子のうち短軸径5μm以上を持つものの割合が、10体積%以上では、焼結体の熱伝導率は向上するものの、組織中に導入された粗大粒子が破壊の起点として作用するため破壊強度が著しく低下し、600MPa以上の曲げ強度が得られない。窒化ケイ素粒子の体積%は、焼結体をフッ化水素酸にて粒界ガラス相を溶出することにより、窒化ケイ素粒子を個々に取り出しSEM観察して求めた。本発明では、面積%の値を体積%として評価した。また、β型窒化ケイ素粒子のアスペクト比が15を超えると600MPa以上の曲げ強度を得られない。
【0020】
本発明の窒化ケイ素質焼結体からなる基板は、高強度・高靭性ならびに高熱伝導率の特性を生かして、パワ−半導体用基板、マルチチップモジュ−ル用基板などの各種基板、あるいはペルチェ素子用熱伝板、各種発熱素子用ヒ−トシンクなどの電子部品用部材に好適である。
【0021】
本発明材を半導体素子用基板に適用した場合、半導体素子の作動に伴う繰り返しの熱サイクルによって基板にクラックが発生することが少なく、耐熱衝撃性ならびに耐熱サイクル性が著しく向上し、耐久性ならびに信頼性に優れたものとなる。また、高出力化および高集積化を指向する半導体素子を搭載した場合でも、熱抵抗特性の劣化が少なく、優れた放熱特性を発揮する。さらに、優れた機械的特性により本来の基板材料としての機能だけでなく、それ自体が構造部材を兼ねることができるため、基板ユニット自体の構造を簡略化できる。
【0022】
また、本発明の窒化ケイ素質焼結体は、上述の電子部品用部材以外に熱衝撃および熱疲労の耐熱抵抗特性が要求される材料に幅広く利用できる。構造用部材として、各種の熱交換器部品や熱機関用部品、アルミニウムや亜鉛等の金属溶解の分野で用いられるヒーターチューブ、ストークス、ダイカストスリーブ、溶湯攪拌用プロペラ、ラドル、熱電対保護管等に適用できる。また、アルミニウム、亜鉛等の溶融金属めっきラインで用いられるシンクロール、サポートロール、軸受、軸等に適用することにより、急激な加熱や冷却に対して割れづらい部材となり得る。また、鉄鋼あるいは非鉄の加工分野では、圧延ロール、スキーズロール、ガイドローラ、線引きダイス等に用いれば、被加工物との接触時の放熱性が良好なため、耐熱疲労性および耐熱衝撃性を改善することができ、これにより摩耗が少なく、熱応力割れを生じにくくできる。
【0023】
さらに、スパッタターゲット部材にも適用でき、例えば磁気記録装置のMRヘッドやGMRヘッドなどの用いられる電気絶縁膜や、熱転写プリンターのサーマルヘッドなどに用いられる耐摩耗性皮膜の形成に好適である。スパッタして得られる被膜は、本質的に高熱伝導特性を持つとともに、スパッタレートも十分高くでき、被膜の電気的絶縁耐圧が高いものとなる。このため、このスパッタターゲットで形成したMRヘッドやGMRヘッド用の電気絶縁性被膜は、高熱伝導ならびに高耐電圧の特性を有するので、素子の高発熱密度化や絶縁性被膜の薄膜化が図れる。また、このスパッタターゲットで形成したサ−マルヘッド用の耐摩耗性被膜は、窒化ケイ素本来の特性により耐摩耗性が良好であることはもとより、高熱伝導性のため熱抵抗が小さくできるので印字速度を高めることができる。
【0024】
【発明の実施の形態】
第1の実施例
平均粒径0.5μmの窒化ケイ素(Si34)粉末に、焼結助剤として、平均粒径0.2μmの酸化マグネシウム(MgO)粉末、平均粒径0.5μmの酸化アルミニウム(Al23)粉末、平均粒径0.2〜2.0μmの希土類酸化物粉末の中から選ばれる1種ないし2種の焼結助剤用粉末の所定量を添加し、適量の分散剤を加えエタノール中で粉砕、混合した。ついで、真空乾燥後、篩を通して造粒し、プレス機により直径20mm×厚さ10mmおよび直径100mm×厚さ15mmのディスク状の成形体を作製し、これを1750〜1900℃、常圧および9気圧の窒素ガス雰囲気中で5時間焼成した。
【0025】
得られた窒化ケイ素質焼結体から、直径10mm×厚さ3mmの熱伝導率および密度測定用の試験片、縦3mm×横4mm×長さ40mmの4点曲げ試験片を採取した。密度はマイクロメ−タによる寸法測定と重量測定の結果から求めた。熱伝導率はレーザーフラッシュ法により常温での比熱および熱拡散率を測定し熱伝導率を算出した。4点曲げ強度は常温にてJIS R1606に準拠して測定を行った。
【0026】
第1の実施例に係わる結果を表1および表2に示す。なお、試料No.1〜14は本発明例であり、試料No.31〜37は比較例である。
【0027】
【表1】
Figure 0004529102
【0028】
【表2】
Figure 0004529102
【0029】
表1および表2から、本発明例(試料No.1〜14)において、マグネシウムを酸化マグネシウム(MgO)換算して、周期律表第3a族元素を酸化物(RExOy)換算して、その合計量が0.5〜5.0体積%、MgO/RExOyで表される体積比が1〜50の割合で含有するため、常温おける熱伝導率が70W/(m・K)以上、常温における4点曲げ強度が600MPa以上を得られた。
【0030】
また、比較例(試料No.31〜37)において、焼結助剤が0.5体積%以下では、焼結体の密度は低く、熱伝導率および曲げ強度が著しく低下した。また、焼結助剤が5.0体積%以上では、焼成過程で充分なガラス相が生成するため焼結体の緻密化は達成されたが、その反面、低熱伝導相の増加により熱伝導率は60W/(m・K)以下に低減した。 さらに、アルミニウム元素の含有量がアルミニウム酸化物に換算して、0.1体積%以上となると著しい熱伝導率の低下が認められた。
【0031】
第2の実施例
平均粒径0.5μmの窒化ケイ素(Si34)粉末に、焼結助剤として、平均粒径0.2μmの酸化マグネシウム(MgO)粉末、平均粒径0.5μmの酸化アルミニウム(Al23)粉末、平均粒径0.2〜2.0μmの希土類酸化物粉末の中から選ばれる1種ないし2種の焼結助剤用粉末の所定量を添加し、適量の分散剤を加えエタノール中で粉砕、混合した。ついで、真空乾燥後、篩を通して造粒し、プレス機により直径20mm×厚さ10mmおよび直径100mm×厚さ15mmのディスク状の成形体を作製し、これを1750〜1900℃、常圧および9気圧の窒素ガス雰囲気中で5時間予備焼成した。ついで、1900℃、9気圧窒素雰囲気下にて12〜24時間の熱処理を施した。前記第1の実施例と同様に、得られた窒化ケイ素質焼結体の密度、熱伝導率、4点曲げ強度を測定した。
【0032】
第2の実施例に係わる結果を表3および表4に示す。なお、試料No.41〜51は本発明例であり、試料No.61〜62は比較例である。
【0033】
【表3】
Figure 0004529102
【0034】
【表4】
Figure 0004529102
【0035】
表3および表4から、本発明例(試料No.41〜51)において、熱処理による高熱伝導化の寄与は大きく、100W/(m・K)以上の熱伝導率を有する高熱伝導率が得られ、4点曲げ強度が600MPa以上得られた。
【0036】
また、比較例(試料No.61〜62)において、1950℃×48時間の熱処理を行うと、100W/(m・K)以上の熱伝導率を有する高熱伝導材が得られる反面、窒化ケイ素質焼結体中のβ型窒化ケイ素粒子のうち短軸径5μm以上を持つものの割合が、10体積%以上となり、破壊強度は著しく低下し600MPa以下の材料強度となった。
【0037】
第3の実施例
本発明の窒化ケイ素粉末に所定量の焼結助剤を添加した混合粉末を、アミン系の分散剤を所定量添加したトルエン・ブタノール溶液中に挿入し、樹脂製ポットならびに窒化ケイ素製ボールを用いて48時間湿式混合した後、ポリビニル系の有機バインダーおよび可塑剤を加え、24時間混合しシート成形用スラリーを得た。この成形用スラリーを調整後、ドクターブレード法によりグリーンシートを得た。ついで、グリーンシートを空気中400〜600℃で1〜2時間加熱して、予め添加していた有機バインダー成分を十分に除去し脱脂を行った。この脱脂体を窒素雰囲気、1850℃、5時間、9気圧の焼成を行った後、1900℃、窒素雰囲気、24時間、9気圧の熱処理を加え、窒化ケイ素質焼結体シートを得た。これに機械加工を施し寸法50mm×50mm×厚さ0.8mmの半導体装置用の基板を製造した。
【0038】
この窒化ケイ素質焼結体製基板を用いて図1に示すような回路基板を作製した。図1において、本発明例の回路基板1は窒化ケイ素質焼結体製基板2の表面に銅回路板3を、裏面に銅板4をろう材5により接合して構成される。この回路基板に対し、4点曲げ強度の評価および耐熱サイクル試験を行った。
【0039】
本発明例の窒化ケイ素質焼結体製回路基板によれば、曲げ強度が600MPa以上と大きく、回路基板の実装工程における締め付け割れが発生する頻度が抑制され、回路基板を使用した半導体装置の製造歩留まりを大幅に改善することが実証された。
【0040】
耐熱サイクル試験は、−40℃での冷却を20分、室温での保持を10分および180℃における加熱を20分とする昇温・降温サイクルを1サイクルとし、これを繰り返し付与し、基板部にクラック等が発生するまでのサイクル数を測定した。結果、1000サイクル経過後においても、窒化ケイ素質基板の割れや金属回路板の剥離はなく、優れた耐久性と信頼性を兼備することが確認された。また、1000サイクル経過後においても耐電圧特性の低下は発生しなかった。
【0041】
【発明の効果】
本発明の窒化ケイ素質焼結体は、本来有する高強度・高靭性に加えて高い熱伝導率が付与されるので、半導体素子用基板として用いた場合、半導体素子の作動に伴う繰り返しの熱サイクルによって基板にクラックが発生することが少なく、耐熱衝撃性ならびに耐熱サイクル性が著しく向上し、耐久性ならびに信頼性に優れた基板材料となる。その製造方法において2000℃以上、100気圧以上の窒素雰囲気下の高温・高圧での焼成を必要とせず、高い熱伝導率と強度が得られるので、経済的な負担が少なく工業上有益である。
【図面の簡単な説明】
【図1】本発明例の窒化ケイ素質焼結体製回路基板の断面図を示す。
【符号の説明】
1 回路基板、 2 基板、 3 銅回路板、 4 銅板、 5 ろう材

Claims (6)

  1. 窒化ケイ素を主成分とし、マグネシウム(Mg)を酸化マグネシウム(MgO)換算して、周期律表第3a族元素(RE)を酸化物(RExOy)換算して、その合計量が0.5〜5.0体積%、MgO/RExOyで表される体積比が1〜50の割合で含有し、アルミニウム(Al)を酸化アルミニウム(Al23)に換算して、0.1体積%以下含有し、β型窒化ケイ素粒子のうち短軸径5μm以上を持つものの割合が、10体積%未満であり、β型窒化ケイ素粒子のアスペクト比が15以下であり、常温における熱伝導率が70W/(m・K)以上、常温における4点曲げ強度が600MPa以上、相対密度98.3%以上であることを特徴とする高熱伝導窒化ケイ素質焼結体。
  2. 周期律表第3a族元素(RE)を酸化物(RExOy)換算して、0.1体積%以上含有することを特徴とする請求項1に記載の高熱伝導窒化ケイ素質焼結体。
  3. 請求項1または2に記載の高熱伝導窒化ケイ素質焼結体からなることを特徴とする高熱伝導窒化ケイ素質焼結体製基板。
  4. 窒化ケイ素粉末に、焼結助剤として酸化マグネシウム(MgO)と、周期律表第3a族元素(RE)の酸化物(RExOy)を、その合計量が0.5〜5.0体積%、MgO/RExOyで表される体積比が1〜50の割合で添加し、アルミニウム(Al)を酸化アルミニウム(Al23)に換算して、0.1体積%以下になるようにして成形した後、1〜10気圧の窒素ガス圧下で、1650〜1950℃の温度で焼成し、さらに1〜10気圧の窒素ガス圧下で1850〜1900℃の温度で熱処理をしてβ型窒化ケイ素粒子のうち短軸径5μm以上を持つものの割合が10体積%未満、β型窒化ケイ素粒子のアスペクト比が15以下で、常温における熱伝導率が70W/(m・K)以上、常温における4点曲げ強度が600MPa以上で、熱伝導率を熱処理前より高めることを特徴とする高熱伝導窒化ケイ素質焼結体の製造方法。
  5. 窒化ケイ素粉末に、焼結助剤として酸化マグネシウム(MgO)と、周期律表第3a族元素(RE)の酸化物(RExOy)を、その合計量が0.5〜5.0体積%、MgO/RExOyで表される体積比が1〜50の割合で添加し、アルミニウム(Al)を酸化アルミニウム(Al 2 3 )に換算して、0.1体積%以下になるようにして成形した後、1〜10気圧の窒素ガス圧下で、1650〜1950℃の温度で焼成し、さらに1〜10気圧の窒素ガス圧下で1850〜1950℃の温度で熱処理をしてβ型窒化ケイ素粒子のうち短軸径5μm以上を持つものの割合が10体積%未満、β型窒化ケイ素粒子のアスペクト比が15以下で、常温における熱伝導率が70W/(m・K)以上、常温における4点曲げ強度が600MPa以上で、熱伝導率を熱処理前より高めることを特徴とする高熱伝導窒化ケイ素質焼結体の製造方法。
  6. β−Si34含有率が10重量%以下の窒化ケイ素粉末を用いることを特徴とする請求項4または5に記載の高熱伝導窒化ケイ素質焼結体の製造方法。
JP16322099A 1999-06-10 1999-06-10 高熱伝導窒化ケイ素質焼結体およびその製造方法 Expired - Lifetime JP4529102B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16322099A JP4529102B2 (ja) 1999-06-10 1999-06-10 高熱伝導窒化ケイ素質焼結体およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16322099A JP4529102B2 (ja) 1999-06-10 1999-06-10 高熱伝導窒化ケイ素質焼結体およびその製造方法

Publications (2)

Publication Number Publication Date
JP2000351673A JP2000351673A (ja) 2000-12-19
JP4529102B2 true JP4529102B2 (ja) 2010-08-25

Family

ID=15769606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16322099A Expired - Lifetime JP4529102B2 (ja) 1999-06-10 1999-06-10 高熱伝導窒化ケイ素質焼結体およびその製造方法

Country Status (1)

Country Link
JP (1) JP4529102B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571728B2 (ja) * 1999-06-23 2010-10-27 日本碍子株式会社 窒化珪素焼結体及びその製造方法
JP2008124416A (ja) * 2006-03-31 2008-05-29 Hitachi Metals Ltd セラミックス回路基板およびこれを用いた半導体モジュール
JP2009173508A (ja) * 2007-02-23 2009-08-06 Kyocera Corp 窒化珪素質焼結体および切削工具ならびに切削加工装置、切削方法
JP5031602B2 (ja) * 2007-02-23 2012-09-19 京セラ株式会社 窒化珪素質焼結体および切削工具ならびに切削加工装置、切削方法
CN111937140A (zh) * 2018-03-30 2020-11-13 日本发条株式会社 导热性复合粒子及其制造方法、绝缘树脂组合物、绝缘树脂成形体、电路基板用层叠板、金属基底电路基板以及功率模块
CN111302809B (zh) * 2019-11-20 2022-06-14 中国科学院上海硅酸盐研究所 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN111196728B (zh) * 2019-11-20 2022-07-08 江西中科上宇科技有限公司 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN111196730B (zh) * 2019-11-20 2022-06-14 中国科学院上海硅酸盐研究所 一种高热导率氮化硅陶瓷材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930866A (ja) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd 高熱伝導率窒化ケイ素質焼結体およびその製造方法ならびに窒化ケイ素質焼結体製絶縁基板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103085A (en) * 1978-01-30 1979-08-14 Denki Kagaku Kogyo Kk Thermocople protecting tube
JP3476504B2 (ja) * 1993-05-19 2003-12-10 東芝タンガロイ株式会社 窒化ケイ素基焼結体およびその被覆焼結体
JP3629783B2 (ja) * 1995-12-07 2005-03-16 電気化学工業株式会社 回路基板
JPH09268069A (ja) * 1996-03-29 1997-10-14 Kyocera Corp 高熱伝導性材料およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930866A (ja) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd 高熱伝導率窒化ケイ素質焼結体およびその製造方法ならびに窒化ケイ素質焼結体製絶縁基板

Also Published As

Publication number Publication date
JP2000351673A (ja) 2000-12-19

Similar Documents

Publication Publication Date Title
KR100836150B1 (ko) 질화규소 소결체, 질화규소 소결체의 제조 방법 및 질화규소 소결체 기판, 이러한 질화 규소 소결체 기판을 포함하는 회로 기판
JP5673106B2 (ja) 窒化珪素基板の製造方法、窒化珪素基板、窒化珪素回路基板および半導体モジュール
JP4812144B2 (ja) 窒化アルミニウム焼結体及びその製造方法
TWI445682B (zh) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
JP3565425B2 (ja) 窒化ケイ素質粉末の製造方法および窒化ケイ素質焼結体の製造方法
KR102139194B1 (ko) 질화물 세라믹스 활성금속 브레이징 기판의 제조방법
JPH0925166A (ja) 窒化アルミニウム焼結体およびその製造方法
JP2002293642A (ja) 高熱伝導窒化ケイ素質焼結体およびその製造方法と回路基板
JP4529102B2 (ja) 高熱伝導窒化ケイ素質焼結体およびその製造方法
JP2698780B2 (ja) 窒化けい素回路基板
JP3775335B2 (ja) 窒化ケイ素質焼結体および窒化ケイ素質焼結体の製造方法、並びにそれを用いた回路基板
WO2005049525A1 (ja) 高熱伝導性窒化アルミニウム焼結体
JP4089974B2 (ja) 窒化ケイ素質粉末、窒化ケイ素質焼結体及びこれを用いた電子部品用回路基板
JP4518020B2 (ja) 窒化ケイ素質焼結体およびそれを用いた回路基板。
JP2002265276A (ja) 窒化ケイ素粉末および窒化ケイ素焼結体
JP2004043241A (ja) 高純度炭化けい素焼結体およびその製造方法
JPH05238830A (ja) 窒化アルミニウム焼結体およびその製造方法
JP4348659B2 (ja) 高熱伝導窒化ケイ素質焼結体およびそれを用いた基板、半導体素子用回路基板
JP4332828B2 (ja) 高熱伝導窒化ケイ素質焼結体およびそれを用いた基板、半導体素子用回路基板
JP4332824B2 (ja) 高熱伝導窒化ケイ素質焼結体の製造方法およびその焼結体、基板、半導体素子用回路基板
JP4859267B2 (ja) 窒化アルミニウム焼結体とその製造方法
JP4591738B2 (ja) 窒化ケイ素質焼結体
JPH11100274A (ja) 窒化珪素質焼結体、その製造方法及びそれを用いた回路基板
JP3145519B2 (ja) 窒化アルミニウム質焼結体
JP3683067B2 (ja) 窒化アルミニウム焼結体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Ref document number: 4529102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

EXPY Cancellation because of completion of term