JP2008195766A - 樹脂複合材料 - Google Patents

樹脂複合材料 Download PDF

Info

Publication number
JP2008195766A
JP2008195766A JP2007030204A JP2007030204A JP2008195766A JP 2008195766 A JP2008195766 A JP 2008195766A JP 2007030204 A JP2007030204 A JP 2007030204A JP 2007030204 A JP2007030204 A JP 2007030204A JP 2008195766 A JP2008195766 A JP 2008195766A
Authority
JP
Japan
Prior art keywords
composite material
resin composite
filler
whisker
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007030204A
Other languages
English (en)
Other versions
JP5076531B2 (ja
Inventor
Junji Shirai
純二 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007030204A priority Critical patent/JP5076531B2/ja
Publication of JP2008195766A publication Critical patent/JP2008195766A/ja
Application granted granted Critical
Publication of JP5076531B2 publication Critical patent/JP5076531B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】熱伝導性に優れた樹脂複合材料を提供すること。
【解決手段】樹脂材料にフィラーが分散されてなる樹脂複合材料である。フィラーとしては、平均アスペクト比20以上の無機フィラーからなる基材31と、その表面を被覆するセラミックスからなる皮膜32と有する被覆フィラー3を用いる。好ましくは、無機フィラーは、天然鉱物、ガラス繊維、ガラスウール、ウィスカ、金属繊維、カーボンナノチューブ、炭素繊維がよい。また、好ましくは、セラミックスは、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、窒化アルミニウム、窒化珪素から選ばれる1種以上の無機化合物又はケイ酸塩ガラスからなることがよい。
【選択図】図2

Description

本発明は、熱伝導性に優れた樹脂複合材料に関する。
従来より、熱交換器のチューブ、回転機やエレクトロニック・コントロール・ユニット(ECU)等のカバーには、放熱性に優れた放熱部材が用いられていた。このような放熱部材としては、例えば熱伝導性に優れたアルミなどの金属材料からなる金属部材が用いられていた。しかし、金属材料は、比較的成形加工が困難であり、コストが高いという問題を有していた。また、金属部材は、比較的比重が大きいため、その使用量が増加するにつれて製品の重量が増大してしまうという問題を有していた。
そこで、樹脂材料中にフィラーが分散されてなる熱伝導性に優れた樹脂複合材料が開発されている。樹脂複合材料は、金属材料に比べて成形が容易であり、低コスト化を図ることができる。また、金属材料に比べて重量を小さくすることができる。
上記樹脂複合材料としては、具体的には、例えばアルミナ等のセラミックスからなる球状のフィラーを樹脂材料中に添加した材料が開発されている(特許文献1〜3参照)。また、ガラス繊維等からなる鱗片状又は針状のフィラーを樹脂材料中に添加した材料も開発されている(特許文献3及び4参照)。
しかしながら、セラミックスからなる球状フィラーを添加した樹脂複合材料においては、充分な熱伝導性を得るために、球状フィラーを例えば40体積%以上という高充填率で添加する必要があった。そのため、樹脂複合材料が脆くなり、特に厚みの小さな成形体を作製した場合に、強度が低下して外部からの応力により破断し易くなるという問題があった。また、溶融状態にしたときの流動性が低下するため、成形性が悪くなるをいう問題があった。さらに、比較的高価なフィラーを大量に使用するため、樹脂複合材料の製造コストが増大するという問題があった。
また、ガラス繊維等からなる針状フィラーを添加した樹脂複合材料においても、少量の針状フィラーでは十分に熱伝導性を向上させることができなかった。
特開昭62−240313号公報 特開平8−283448号公報 特開平4−33958号公報 特開昭61−19662号公報
本発明は、かかる従来の問題点に鑑みてなされたものであって、熱伝導性に優れた樹脂複合材料を提供しようとするものである。
本発明は、樹脂材料にフィラーが分散されてなる樹脂複合材料であって、
上記フィラーとして、平均アスペクト比20以上の無機フィラーからなる基材と、該基材の表面を被覆するセラミックスからなる皮膜とを有する被覆フィラーを用いることを特徴とする樹脂複合材料にある(請求項1)。
本発明の樹脂複合材料においては、上記樹脂材料中に上記被覆フィラーが分散されている。そして、上記被覆フィラーは、平均アスペクト比20以上の無機フィラーからなる基材と、これを被覆するセラミックスからなる皮膜とを有する。
そのため、上記被覆フィラーがその大きなアスペクト比を生かして上記樹脂材料中で熱伝導のパスを効率的に形成することができる。そのため、上記樹脂複合材料は、上記被覆フィラーの添加量を少なくしても、優れた熱伝導性を発揮することができる。
さらに、上記被覆フィラーは、セラミックスからなる皮膜で被覆されている。そのため、およそ数十〜数百W/m・Kという高い熱伝導率を有するセラミックスの特性を生かして、上記樹脂複合材料は、優れた熱伝導性を発揮することができる。
また、上記樹脂複合材料においては、上記のごとく、フィラー添加量を比較的少なくしても上記のごとく優れた熱伝導性を示すことができる。そのため、例えば厚みの小さな成形品に用いたとしても樹脂材料本来の強度をほとんど損ねることなく、優れた強度を発揮することができる。さらに、樹脂材料本来の成形性をほとんど損ねることなく、優れた成形性を発揮することができる。
また、上記樹脂複合材料は、熱伝導性だけでなく絶縁性を示すことができる。そのため、絶縁性を必要とする放熱部材等に好適に用いることができる。
以上のように、本発明によれば、熱伝導性に優れた樹脂複合材料を提供することができる。
次に、本発明の好ましい実施の形態について説明する。
本発明の樹脂複合材料は、樹脂材料にフィラーが分散されてなる。
上記樹脂材料は、上記樹脂複合材料の用途に応じて適宜選択することができる。具体的には、例えばポリフェニレンサルファイド(PPS)樹脂、ポリエステル系樹脂、ポリアミド、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、フッ素樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリウレタン、ポリアセタール、ポリフェニレンエーテル、ポリエーテルイミド、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)樹脂、エポキシ、フェノール、液晶樹脂(LCP)等を用いることができる。
また、上記フィラーとしては、平均アスペクト比20以上の無機フィラーからなる基材と、該基材の表面を被覆するセラミックスからなる皮膜とを有する被覆フィラーを用いる。
上記無機フィラーの平均アスペクト比が20未満の場合には、上記被覆フィラーが上記樹脂複合材料中で熱伝導のパスを十分に形成し難くなり、上記樹脂複合材料の熱伝導性が不十分になるおそれがある。上記基材としては、例えば板状、鱗片状、針状、又は繊維状等の無機フィラーを用いることができる。
また、上記無機フィラーを上記皮膜で被覆してなる上記被覆フィラーについても、その平均アスペクト比は20以上であることが好ましい。また、被覆フィラーの平均アスペクト比が100を越えると、上記被覆フィラーを樹脂材料に分散させて上記樹脂複合材料を作製する際に、上記被覆フィラーが破損し易くなる。そのため、被覆フィラーの平均アスペクト比の上限は、100以下がよい。
上記無機フィラーは、マイカ、タルク、及びセピオライトから選ばれる1種以上の天然鉱物であることが好ましい(請求項2)。
また、上記無機フィラーは、ガラス繊維及び/又はガラスウールであることが好ましい(請求項3)。
また、上記無機フィラーは、SiCウィスカ、アルミナウィスカ、酸化マグネシウムウィスカ、ケイ酸カルシウムウィスカ、水酸化アルミニウムウィスカ、炭酸カルシウムウィスカ、窒化珪素ウィスカ、チタン酸カリウムウィスカ、ホウ酸アルミニウムウィスカ、硫酸カルシウムウィスカ、及び二ホウ化チタンウィスカから選ばれる1種以上のウィスカであることが好ましい(請求項4)。
これらの場合には、平均アスペクト比20以上のフィラーを比較的容易に入手することができる。また、これらの無機フィラーは融点が高いため、上記無機フィラーの表面にセラミックスからなる皮膜を形成して上記被覆フィラーを作製する際に、高温度条件下で皮膜を形成することができる。そのため、例えばセラミックス成分を含む気相中で上記無機フィラーの表面にセラミックスを成長させる気相成長法や、セラミックス成分を含む溶液中に上記無機フィラーを浸漬し、焼成する溶液浸漬法等により、上記被覆フィラーを簡単に作製することができる。
上記無機フィラーが、上述の天然鉱物、ガラス(ガラス繊維及び/又はガラスウール)、又はウィスカである場合には、上記皮膜の材料となる上記セラミックスは、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、窒化アルミニウム、窒化珪素から選ばれる1種以上の無機化合物からなることが好ましい(請求項5)。
この場合には、上記セラミックスの高い熱伝導率を生かして、上記被覆フィラーの熱伝導性を上記無機フィラーに比べてより一層向上させることができる。その結果、上記樹脂複合材料の熱伝導性をより一層向上させることができる。
また、上記無機フィラーは、SUS繊維、アルミ繊維、及び銅繊維から選ばれる1種以上の金属繊維であることが好ましい(請求項6)。
また、上記無機フィラーは、カーボンナノチューブ及び/又は炭素繊維であることが好ましい(請求項7)。
これらの場合にも、平均アスペクト比20以上のフィラーを比較的容易に入手することができる。また、これらの無機フィラーは比較的融点が高いため、上記無機フィラーの表面にセラミックスからなる皮膜を形成して上記被覆フィラーを作製する際に、高温度条件下で皮膜を形成することができる。そのため、例えばセラミックス成分を含む気相中で上記無機フィラーの表面にセラミックスを成長させる気相成長法や、セラミックス成分を含む溶液中に上記無機フィラーを浸漬し、焼成する溶液浸漬法等により、上記被覆フィラーを簡単に作製することができる。
上記炭素繊維としては、例えば気相法炭素繊維(Vapor Grown Carbon Fiber;VGCF「登録商標」)等を用いることができる。
上記無機フィラーが、上述の金属繊維、又は炭素材料(カーボンナノチューブ及び/又は炭素繊維)である場合には、上記皮膜の材料となる上記セラミックスは、上記セラミックスは、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、窒化アルミニウム、窒化珪素から選ばれる1種以上の無機化合物又はケイ酸塩ガラスからなることが好ましい(請求項8)。
この場合には、上記セラミックスの高い熱伝導率を生かして、上記被覆フィラーの熱伝導性を上記無機フィラーに比べて一層向上させることができる。その結果、上記樹脂複合材料の熱伝導性をより一層向上させることができる。
上記樹脂複合材料は、上記被覆フィラーを5体積%以上かつ40体積%未満含有することが好ましい(請求項9)。
この場合には、少量のフィラー添加量で優れた熱伝導性を発揮できるという上記樹脂複合材料の特徴をより顕著に得ることができる。そのため、上記樹脂複合材料は、樹脂本来の強度等の物性をほとんどそこねることがなく、優れた熱伝導性を示すことができる。また、この場合には、樹脂材料本来の成形性をほとんど損ねることなく、上記樹脂複合材料を成形することができる。
上記被覆フィラーが5体積%未満の場合には、上記樹脂複合材料の熱伝導性が低下するおそれがある。一方、40体積%以上の場合には、成形性や物性等の樹脂本来の優れた特性が損なわれるおそれがある。より好ましくは、上記被覆フィラーの含有量は、10体積%〜35体積%がよく、さらに好ましくは15体積%〜30体積%がよい。
上記樹脂複合材料は、放熱部材に用いられることが好ましい(請求項10)。
この場合には、上記樹脂複合材料の優れた放熱性を充分に活用することができる。
上記放熱部材としては、具体的には例えばラジエータ、ヒータコア、及びインバータ等の熱交換器のチューブ、モータ及びオルタネータ等の回転機のカバー、エレクトロニック・コントロール・ユニット(ECU)のカバー、ペルチェ素子の絶縁樹脂皮膜等がある。
また、上記樹脂複合材料は、厚み5mm以下の上記放熱部材に用いられることが好ましい(請求項11)。
この場合には、上記樹脂複合材料の優れた特性をより顕著に発揮することができる。
即ち、上記樹脂複合材料においては、上記のごとくフィラーの添加量を少なくしても充分に優れた熱伝導性を示すことができる。そのため、樹脂材料本来の強度等の物性をほとんど損ねることなく、優れた熱伝導性を発揮することができる。それ故、上述のごとく5mm以下という肉厚の小さな放熱部材に適用しても充分な強度を保ちつつ優れた熱伝導性を示すことができる。
次に、本発明の樹脂複合材料の実施例について図1〜図3を用いて説明する。
本例は、樹脂複合材料を作製し、その特性を評価する例である。
図1に示すごとく、本例の樹脂複合材料1は、樹脂材料2にフィラー3が分散されてなる。フィラーとしては、図2に示すごとく、アスペクト比20以上の無機フィラーからなる基材31と、その表面を被覆するセラミックスからなる皮膜32と有する被覆フィラー3を用いる。
本例において、樹脂材料2は、ポリフェニレンサルファイド(PPS)樹脂からなる。また、基材31は、直径6.5μm、平均アスペクト比30の針状(繊維状)のガラス繊維からなる。皮膜32は、アルミナからなる。
本例の樹脂複合材料の製造方法につき、説明する。
まず、以下のようにして被覆フィラーを作製した。
即ち、まず、直径6.5μm、長さ3mmの繊維状のガラス繊維を準備し、このガラス繊維を(株)高純度化学研究所製のコート材(アルミナ膜用Al−O3−P Al23)に浸漬した。その後、温度120℃で10分間乾燥し、さらに温度550℃で1時間焼成した。これにより、図2に示すごとく、ガラス繊維からなる基材31の表面にアルミナからなる皮膜32を形成し、被覆フィラー3を得た。
次に、PPS樹脂に上記被覆フィラーを添加し、(株)テクノベル製の二軸押出機(KZW15TW)を用いて、温度300℃で溶融混練を行った。これにより、被覆フィラーをPPS樹脂中に均一に分散させて、樹脂複合材料を得た。
次いで、得られた樹脂複合材料をストランド状に押出した後、水で急冷し、ストランドカッターでカットして顆粒状の樹脂複合材料を得た。これを試料Eとする。
本例においては、樹脂材料(PPS樹脂)に被覆フィラーが分散されてなる上記樹脂複合材料(試料E)として、被覆フィラーの添加量20vol%、及び30vol%という2種類のサンプルを作製した。これらのサンプルを炉内で燃やし、残渣として得られた被覆フィラーのアスペクト比を測定したところ平均アスペクト比は30であった。そして、これらのサンプルについて、熱伝導率を測定することにより、添加率(vol%)と熱伝導率(W/m・K)との関係を調べた。
熱伝導率の測定は、次のようにして行った。
まず、顆粒状の樹脂複合材料を成形し、厚み1mmの平板サンプルを得た。次いで、切削加工を行い、縦5mm×横5mm×厚み1mmの板状サンプルを作製した。
次に、京都電子工業(株)製の熱物性測定装置(LFA−502)を用いて、レーザーフラッシュ法により板状サンプルの熱伝導率を測定した。測定は、温度25℃、大気雰囲気条件下で行った。その結果を図3に示す。
また、本例においては、上記試料Eの優れた特徴を明らかにするために、2種類の比較用の樹脂複合材料(試料C1及び試料C2)を作製した。
試料C1は、PPS樹脂中にフィラーとして球状のアルミナ粒子を含有する樹脂複合材料である。
試料C1の作製にあたっては、まず、PPS樹脂に、平均粒径約30μmの球状のアルミナ粒子を添加し、上記試料Eと同様に二軸押出機を用いて、温度300℃で溶融混練を行い、アルミナ粒子をPPS樹脂中に均一に分散させた。その後、上記試料Eと同様にしてストランド状に押出した後、水で急冷し、ストランドカッターでカットして顆粒状の樹脂複合材料(試料C1)を得た。
また、試料C2は、PPS樹脂中にフィラーとして針状のガラス繊維を含有する樹脂複合材料である。
試料C2は、大日本インキ化学工業(株)製のガラス繊維強化リニアー型PPS(FZ−2140)をPPS樹脂で所望の濃度に希釈することにより作製した。その後、上記試料Eと同様にしてストランド状に押出した後、水で急冷し、ストランドカッターでカットして顆粒状の樹脂複合材料(試料C2)を得た。
上記試料C1及び上記試料C2についても、上記試料Eと同様に、それぞれフィラーの添加量が異なる2種類のサンプルを作製し、これらのサンプルについて熱伝導率を測定した。具体的には、試料C1については、フィラー(アルミナ粒子)の添加量23.6vol%、36.1vol%のサンプルを用いて熱伝導率を測定した。また、試料C2については、添加量12.0vol%、26.8vol%のサンプルを用いて熱伝導率を測定した。これらの結果を図3に示す。
図3より知られるごとく、フィラーとして上記被覆フィラーを含有する試料Eは、試料C1及び試料C2に比べて、少量のフィラー添加量でも優れた熱伝導率を発揮できることがわかる。したがって、樹脂材料中に被覆フィラーが分散された樹脂複合材料(試料E)は、樹脂材料本来の物性をほとんど変えることなく、優れた熱伝導性を発揮できる。
即ち、図1及び図2に示すごとく、樹脂複合材料1(試料E)においては、樹脂材料2中に被覆フィラー3が分散されている。そして、被覆フィラー3は、平均アスペクト比20以上の無機フィラーからなる基材31と、これを被覆するセラミックスからなる皮膜32とを有する。
そのため、被覆フィラー3がその大きなアスペクト比を生かして樹脂材料2中で熱伝導のパスを効率的に形成することができる。そのため、樹脂複合材料(試料E)1は、被覆フィラー3の添加量を少なくしても、上述のごとく優れた熱伝導性を発揮することができる。
さらに、図2に示すごとく、被覆フィラー3は、セラミックス(アルミナ)からなる皮膜32で被覆されている。そのため、およそ数十〜数百W/m・Kという高い熱伝導率を有するセラミックスの特性を生かして、樹脂複合材料1は、優れた熱伝導性を発揮することができる。
また、樹脂複合材料1においては、上記のごとく、フィラー添加量を比較的少なくしても上記のごとく優れた熱伝導性を示すことができるため、例えば厚みの小さな成形品に用いたとしても樹脂材料本来の強度をほとんど損ねることなく、優れた強度を発揮することができる。さらに、樹脂材料本来の成形性をほとんど損ねることなく、優れた成形性を発揮することができる。
また、樹脂複合材料1は、熱伝導性だけでなく絶縁性を示すことができる。そのため、樹脂複合材料1は、絶縁性を必要とする放熱部材等に好適に用いることができる。
実施例にかかる、樹脂材料中に被覆フィラーが分散された樹脂複合材料の構成を示す説明図。 実施例にかかる、被覆フィラーの断面の構成を示す説明図。 実施例にかかる、樹脂複合材料(試料E1、試料C1、及び試料C2)についてのフィラー添加率と熱伝導率との関係を示す説明図。
符号の説明
1 樹脂複合材料
2 樹脂材料
3 被覆フィラー
31 基材
32 皮膜

Claims (11)

  1. 樹脂材料にフィラーが分散されてなる樹脂複合材料であって、
    上記フィラーとして、平均アスペクト比20以上の無機フィラーからなる基材と、該基材の表面を被覆するセラミックスからなる皮膜とを有する被覆フィラーを用いることを特徴とする樹脂複合材料。
  2. 請求項1において、上記無機フィラーは、マイカ、タルク、及びセピオライトから選ばれる1種以上の天然鉱物であることを特徴とする樹脂複合材料。
  3. 請求項1において、上記無機フィラーは、ガラス繊維及び/又はガラスウールであることを特徴とする樹脂複合材料。
  4. 請求項1において、上記無機フィラーは、SiCウィスカ、アルミナウィスカ、酸化マグネシウムウィスカ、ケイ酸カルシウムウィスカ、水酸化アルミニウムウィスカ、炭酸カルシウムウィスカ、窒化珪素ウィスカ、チタン酸カリウムウィスカ、ホウ酸アルミニウムウィスカ、硫酸カルシウムウィスカ、及び二ホウ化チタンウィスカから選ばれる1種以上のウィスカであることを特徴とする樹脂複合材料。
  5. 請求項2〜4のいずれか一項において、上記セラミックスは、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、窒化アルミニウム、窒化珪素から選ばれる1種以上の無機化合物からなることを特徴とする樹脂複合材料。
  6. 請求項1において、上記無機フィラーは、SUS繊維、アルミ繊維、及び銅繊維から選ばれる1種以上の金属繊維であることを特徴とする樹脂複合材料。
  7. 請求項1において、上記無機フィラーは、カーボンナノチューブ及び/又は炭素繊維であることを特徴とする複合材料。
  8. 請求項6又は7において、上記セラミックスは、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、窒化アルミニウム、窒化珪素から選ばれる1種以上の無機化合物又はケイ酸塩ガラスからなることを特徴とする樹脂複合材料。
  9. 請求項1〜8のいずれか一項において、上記樹脂複合材料は、上記被覆フィラーを5体積%以上かつ40体積%未満含有することを特徴とする樹脂複合材料。
  10. 請求項1〜9のいずれか一項において、上記樹脂複合材料は、放熱部材に用いられることを特徴とする樹脂複合材料。
  11. 請求項10において、上記樹脂複合材料は、厚み10mm以下の上記放熱部材に用いられることを特徴とする樹脂複合材料。
JP2007030204A 2007-02-09 2007-02-09 樹脂複合材料 Expired - Fee Related JP5076531B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030204A JP5076531B2 (ja) 2007-02-09 2007-02-09 樹脂複合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030204A JP5076531B2 (ja) 2007-02-09 2007-02-09 樹脂複合材料

Publications (2)

Publication Number Publication Date
JP2008195766A true JP2008195766A (ja) 2008-08-28
JP5076531B2 JP5076531B2 (ja) 2012-11-21

Family

ID=39755015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030204A Expired - Fee Related JP5076531B2 (ja) 2007-02-09 2007-02-09 樹脂複合材料

Country Status (1)

Country Link
JP (1) JP5076531B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826494A (zh) * 2010-04-13 2010-09-08 北京大学 基于碳纳米管阵列和低温共烧陶瓷的散热装置及制备方法
WO2012101988A1 (ja) * 2011-01-28 2012-08-02 日東電工株式会社 熱伝導性フィルム及びその製造方法
US8557905B2 (en) 2010-04-07 2013-10-15 Denki Kagaku Kogyo Kabushiki Kaisha Heat-dissipating resin composition used for LED light housing and heat-dissipating housing for LED lighting
CN103641383A (zh) * 2013-12-10 2014-03-19 重庆再升科技股份有限公司 一种航空专用保温绝热玻璃纤维复合材料及其制备方法
CN103909260A (zh) * 2014-04-16 2014-07-09 华东理工大学 金属银包覆石膏晶须的制备方法
JP2015511656A (ja) * 2012-03-23 2015-04-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 酸化アルミニウムで被覆された熱伝導性板状顔料
JP2015203111A (ja) * 2014-04-14 2015-11-16 エムアンドエス研究開発株式会社 ガラスウール複合熱可塑性樹脂組成物及びその製造法、成形物。
US10109554B2 (en) 2014-08-05 2018-10-23 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Mechanically stable, thermally conductive and electrically insulating stack forming a mounting device for electronic components
CN109575456A (zh) * 2018-10-26 2019-04-05 福建师范大学 一种多元杂化各向异性热扩散膜的制备方法
WO2019189794A1 (ja) * 2018-03-30 2019-10-03 日本発條株式会社 熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュール
CN112195016A (zh) * 2020-09-21 2021-01-08 深圳市鸿富诚屏蔽材料有限公司 一种导热绝缘碳纤维硅胶垫片及制备方法
EP4056635A1 (en) 2021-03-12 2022-09-14 Premo, Sa A thermal conductive composition, a thermal conductive potting for sealing a magnetic power assembly, a power transformer assembly and an electrical vehicle
KR20220152417A (ko) * 2021-05-06 2022-11-16 주식회사 한국폴리머 전기 저항 특성이 제어된 탄소나노튜브 복합재, 그 제조 방법 및 이를 포함하는 방열 조성물
JP7356634B2 (ja) 2019-10-09 2023-10-05 日本電気硝子株式会社 樹脂組成物、立体造形物及び立体造形物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532354B (zh) * 2015-02-03 2017-06-06 贵州省冶金化工研究所 一种浅色导电晶须的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285643A (ja) * 1991-03-14 1992-10-09 Toshiba Ceramics Co Ltd 半導体封止樹脂用フィラー材
JPH06116502A (ja) * 1992-10-02 1994-04-26 Mitsubishi Materials Corp 導電性プラスチック組成物
JPH07335020A (ja) * 1994-06-14 1995-12-22 Idemitsu Kosan Co Ltd 導電性フィラーおよびこれを含む導電性樹脂組成物
JP2002235279A (ja) * 2001-02-08 2002-08-23 Showa Denko Kk 電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途
JP2006328352A (ja) * 2005-04-28 2006-12-07 Idemitsu Kosan Co Ltd 絶縁性熱伝導性樹脂組成物及び成形品並びにその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285643A (ja) * 1991-03-14 1992-10-09 Toshiba Ceramics Co Ltd 半導体封止樹脂用フィラー材
JPH06116502A (ja) * 1992-10-02 1994-04-26 Mitsubishi Materials Corp 導電性プラスチック組成物
JPH07335020A (ja) * 1994-06-14 1995-12-22 Idemitsu Kosan Co Ltd 導電性フィラーおよびこれを含む導電性樹脂組成物
JP2002235279A (ja) * 2001-02-08 2002-08-23 Showa Denko Kk 電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途
JP2006328352A (ja) * 2005-04-28 2006-12-07 Idemitsu Kosan Co Ltd 絶縁性熱伝導性樹脂組成物及び成形品並びにその製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557905B2 (en) 2010-04-07 2013-10-15 Denki Kagaku Kogyo Kabushiki Kaisha Heat-dissipating resin composition used for LED light housing and heat-dissipating housing for LED lighting
CN101826494A (zh) * 2010-04-13 2010-09-08 北京大学 基于碳纳米管阵列和低温共烧陶瓷的散热装置及制备方法
WO2012101988A1 (ja) * 2011-01-28 2012-08-02 日東電工株式会社 熱伝導性フィルム及びその製造方法
US10214673B2 (en) 2012-03-23 2019-02-26 Merck Patent Gmbh Thermally conductive, plate-shaped pigment coated with aluminium oxide
JP2015511656A (ja) * 2012-03-23 2015-04-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 酸化アルミニウムで被覆された熱伝導性板状顔料
CN103641383A (zh) * 2013-12-10 2014-03-19 重庆再升科技股份有限公司 一种航空专用保温绝热玻璃纤维复合材料及其制备方法
JP2015203111A (ja) * 2014-04-14 2015-11-16 エムアンドエス研究開発株式会社 ガラスウール複合熱可塑性樹脂組成物及びその製造法、成形物。
CN103909260A (zh) * 2014-04-16 2014-07-09 华东理工大学 金属银包覆石膏晶须的制备方法
US10109554B2 (en) 2014-08-05 2018-10-23 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Mechanically stable, thermally conductive and electrically insulating stack forming a mounting device for electronic components
WO2019189794A1 (ja) * 2018-03-30 2019-10-03 日本発條株式会社 熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュール
JP6616555B1 (ja) * 2018-03-30 2019-12-04 日本発條株式会社 熱伝導性複合粒子及びその製造方法、絶縁樹脂組成物、絶縁樹脂成形体、回路基板用積層板、金属ベース回路基板、並びに、パワーモジュール
CN109575456A (zh) * 2018-10-26 2019-04-05 福建师范大学 一种多元杂化各向异性热扩散膜的制备方法
JP7356634B2 (ja) 2019-10-09 2023-10-05 日本電気硝子株式会社 樹脂組成物、立体造形物及び立体造形物の製造方法
CN112195016A (zh) * 2020-09-21 2021-01-08 深圳市鸿富诚屏蔽材料有限公司 一种导热绝缘碳纤维硅胶垫片及制备方法
CN112195016B (zh) * 2020-09-21 2021-12-24 深圳市鸿富诚屏蔽材料有限公司 一种导热绝缘碳纤维硅胶垫片及制备方法
EP4056635A1 (en) 2021-03-12 2022-09-14 Premo, Sa A thermal conductive composition, a thermal conductive potting for sealing a magnetic power assembly, a power transformer assembly and an electrical vehicle
WO2022189177A1 (en) 2021-03-12 2022-09-15 Premo, Sa A thermal conductive composition, a thermal conductive potting for sealing a magnetic power assembly, a power transformer assembly and an electrical vehicle
KR20220152417A (ko) * 2021-05-06 2022-11-16 주식회사 한국폴리머 전기 저항 특성이 제어된 탄소나노튜브 복합재, 그 제조 방법 및 이를 포함하는 방열 조성물
KR102491885B1 (ko) * 2021-05-06 2023-01-26 주식회사 한국폴리머 전기 저항 특성이 제어된 탄소나노튜브 복합재, 그 제조 방법 및 이를 포함하는 방열 조성물

Also Published As

Publication number Publication date
JP5076531B2 (ja) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5076531B2 (ja) 樹脂複合材料
Spoerk et al. Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing
Kim et al. Thermal management in polymer composites: a review of physical and structural parameters
JP6034876B2 (ja) フィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品
Yoo et al. Effect of graphite and carbon fiber contents on the morphology and properties of thermally conductive composites based on polyamide 6
KR101457016B1 (ko) 내습성 및 열전도성이 우수한 열가소성 수지 조성물 및 성형품
KR101139412B1 (ko) 열전도성 절연 수지 조성물 및 플라스틱 성형품
Shimamura et al. Improving the thermal conductivity of epoxy composites using a combustion-synthesized aggregated β-Si3N4 filler with randomly oriented grains
Yu et al. Synergistic thermal conductivity enhancement of PC/ABS composites containing alumina/magnesia/graphene nanoplatelets
JP2006328352A (ja) 絶縁性熱伝導性樹脂組成物及び成形品並びにその製造方法
KR20140009107A (ko) 수지 조성물 및 상기 수지 조성물로 이루어지는 성형체와 기판재 및 상기 기판재를 포함하여 이루어지는 회로기판
JP2006328155A (ja) 絶縁性熱伝導性樹脂組成物及び成形品並びにその製造方法
JP2008260830A (ja) 伝熱性樹脂組成物
Bragaglia et al. A comparison of thermally conductive polyamide 6‐boron nitride composites produced via additive layer manufacturing and compression molding
Hao et al. Enhanced thermal conductivity of epoxy composites by introducing 1D AlN whiskers and constructing directionally aligned 3D AlN filler skeletons
Vu et al. 3D printing of copper particles and poly (methyl methacrylate) beads containing poly (lactic acid) composites for enhancing thermomechanical properties
Takizawa et al. Through-thickness thermal conduction in glass fiber polymer–matrix composites and its enhancement by composite modification
Huang et al. A novel silver nanoparticle-deposited aluminum oxide hybrids for epoxy composites with enhanced thermal conductivity and energy density
Zou et al. Enhancement of thermal conductivity and tensile strength of liquid silicone rubber by three-dimensional alumina network
Czel et al. Effect of different fillers on thermal conductivity, tribological properties of Polyamide 6
Gong et al. A Spiral Graphene Framework Containing Highly Ordered Graphene Microtubes for Polymer Composites with Superior Through‐Plane Thermal Conductivity
Lin et al. Enhanced thermal conductivity of epoxy acrylate/h‐BN and AlN composites by photo‐curing 3D printing technology
Tran et al. In situ sintered silver decorated 3D structure of cellulose scaffold for highly thermoconductive electromagnetic interference shielding epoxy nanocomposites
Yu et al. Thermal conductivity behavior of SiC–Nylon 6, 6 and hBN–Nylon 6, 6 composites
JP2003049081A (ja) 熱放散性に優れた熱可塑性樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees