WO2019189652A1 - 光造形用硬化性組成物、消失模型及び立体造形物の製造方法 - Google Patents

光造形用硬化性組成物、消失模型及び立体造形物の製造方法 Download PDF

Info

Publication number
WO2019189652A1
WO2019189652A1 PCT/JP2019/013778 JP2019013778W WO2019189652A1 WO 2019189652 A1 WO2019189652 A1 WO 2019189652A1 JP 2019013778 W JP2019013778 W JP 2019013778W WO 2019189652 A1 WO2019189652 A1 WO 2019189652A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
meth
optical modeling
cured product
acrylic monomer
Prior art date
Application number
PCT/JP2019/013778
Other languages
English (en)
French (fr)
Inventor
孝曉 林
俊一 酒巻
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201980021618.7A priority Critical patent/CN111936525B/zh
Priority to US16/970,523 priority patent/US20200377637A1/en
Priority to JP2019551485A priority patent/JP6688941B2/ja
Priority to EP19778340.0A priority patent/EP3753957B1/en
Priority to KR1020207026551A priority patent/KR102667943B1/ko
Publication of WO2019189652A1 publication Critical patent/WO2019189652A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate

Definitions

  • the present disclosure relates to a method for manufacturing a curable composition for optical modeling, a disappearance model, and a three-dimensional model.
  • a photocurable resin has been used as a raw material for obtaining a three-dimensional stereolithography using a 3D printer or the like.
  • Stereolithography obtained using a photocurable resin is used in various applications.
  • the obtained stereolithography is used as a disappearing model, and the surroundings are heated with gypsum or the like, and the stereolithography is performed.
  • Application to a technique (so-called disappearance model casting or disappearance casting) for producing a denture mold made of gypsum by eliminating an object has been studied (see, for example, Patent Document 1).
  • one embodiment of the present invention is to provide a curable composition for optical modeling that provides a cured product in which cracking of surrounding materials is suppressed even when heated under rapid temperature rise conditions.
  • Another embodiment of the present invention aims to provide a disappearance model that is a cured product of the curable composition.
  • Another embodiment of this invention aims at providing the manufacturing method of the three-dimensional molded item using this curable composition.
  • a curable composition for optical modeling containing a photopolymerizable component and a photopolymerization initiator, wherein the storage elasticity of the cured product of the curable composition for optical modeling in a range of 25 ° C. to 300 ° C.
  • molding whose minimum value of a rate is 1.20 * 10 ⁇ 7 > Pa or less.
  • the minimum value of the storage elastic modulus in the range of 75 ° C. to 200 ° C. of the cured product of the curable composition for optical modeling is 1.20 ⁇ 10 7 Pa or less. Curable composition.
  • ⁇ 3> The curable composition for optical modeling according to ⁇ 1> or ⁇ 2>, wherein a storage elastic modulus at 25 ° C. of the cured product of the curable composition for optical modeling is greater than 1.0 ⁇ 10 9 Pa. . ⁇ 4>
  • the content of the (meth) acryloyl group is 1.0 ⁇ 10 ⁇ 3 mol / g or more and 6.5 ⁇ 10 ⁇ 3 mol / g or less, wherein any one of ⁇ 1> to ⁇ 3>
  • ⁇ 5> The curable composition for optical modeling according to any one of ⁇ 1> to ⁇ 4>, wherein the photopolymerizable component includes a (meth) acrylic monomer having an alicyclic structure.
  • ⁇ 6> The optical modeling according to any one of ⁇ 1> to ⁇ 5>, wherein the photopolymerizable component includes a (meth) acrylic monomer having a glass transition temperature (Tg) of a cured product of 60 ° C. or less.
  • Tg glass transition temperature
  • Curable composition. ⁇ 7> The curable composition for optical modeling according to any one of ⁇ 1> to ⁇ 6>, wherein the photopolymerizable component includes a monofunctional (meth) acrylic monomer.
  • the photopolymerization component includes a monofunctional (meth) acrylic monomer having a glass transition temperature (Tg) of a cured product of more than 60 ° C. and having an alicyclic structure.
  • Tg glass transition temperature
  • ⁇ 11> The optical molding according to ⁇ 10>, wherein a mass ratio of the monofunctional (meth) acrylic monomer to the bifunctional (meth) acrylic monomer is in the range of 1: 0.1 to 1: 0.8.
  • the photopolymerizable component includes a bifunctional (meth) acrylate and a monofunctional (meth) acrylic monomer having an alicyclic structure
  • ⁇ 13> The curable composition for optical modeling according to any one of ⁇ 1> to ⁇ 11>, comprising an alcohol or an alcohol derivative.
  • R 6 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • X is a divalent carbon atom having 1 to 6 carbon atoms.
  • Y is an m-valent hydrocarbon group having 1 to 20 carbon atoms
  • n is an integer of 0 to 300
  • m is an integer of 1 to 8.
  • the curable composition for optical modeling according to ⁇ 13> or ⁇ 14> wherein the content of the alcohol or the alcohol derivative with respect to 100 parts by mass of the curable composition is 5 parts by mass or more and less than 60 parts by mass.
  • a curable composition for optical modeling comprising a photopolymerizable component, an alcohol or an alcohol derivative, and a photopolymerization initiator, and satisfying at least one of the following (1) and (2).
  • the content of (meth) acryloyl groups is 6.5 ⁇ 10 ⁇ 3 mol / g or less.
  • the curable composition for optical modeling, wherein the photopolymerizable component contains a monofunctional (meth) acrylic monomer. object.
  • ⁇ 17> The curable composition for optical modeling according to any one of ⁇ 1> to ⁇ 16>, comprising a thermoplastic component.
  • ⁇ 18> The curable composition for optical modeling according to ⁇ 17>, wherein the thermoplastic component includes a hydrocarbon polymer.
  • ⁇ 19> For stereolithography according to ⁇ 17> or ⁇ 18>, wherein the content of (meth) acryloyl group is 1.0 ⁇ 10 ⁇ 3 mol / g or more and 5.1 ⁇ 10 ⁇ 3 mol / g or less.
  • Curable composition. ⁇ 20> The curable composition for stereolithography according to any one of ⁇ 1> to ⁇ 19>, for use as a disappearance model in a disappearance model casting method.
  • a disappearance model which is a cured product of the curable composition for optical modeling according to any one of ⁇ 1> to ⁇ 20>.
  • ⁇ 22> a step of arranging a material of a three-dimensional structure around a cured product obtained using the curable composition for optical modeling according to any one of ⁇ 1> to ⁇ 20>;
  • the manufacturing method of the three-dimensional molded item including the process of making the said hardened
  • a curable composition for optical modeling that provides a cured product in which cracking of surrounding materials is suppressed even when heated under a rapid temperature rise condition.
  • cured material of this curable composition, and the manufacturing method of the three-dimensional molded item using this curable composition are provided.
  • the minimum value of the storage elastic modulus in the range of 25 ° C. to 300 ° C. of the cured product of the curable composition for optical modeling is 1.20 ⁇ 10 7 Pa. It is the following curable composition for optical modeling.
  • the curable composition for optical shaping according to the second aspect of the present disclosure contains a photopolymerizable component, an alcohol or an alcohol derivative, and a photopolymerization initiator, and the content of a (meth) acryloyl group is 6.5. It is a curable composition for stereolithography that is ⁇ 10 ⁇ 3 mol / g or less.
  • the curable composition for optical modeling according to the third aspect of the present disclosure includes a photopolymerizable component, an alcohol or an alcohol derivative, and a photopolymerization initiator, and the photopolymerizable component is a monofunctional (meth) acrylic monomer.
  • the curable composition for optical modeling according to the fourth aspect of the present disclosure includes a photopolymerizable component, a thermoplastic component, and a photopolymerization initiator, and the photopolymerizable component is a monofunctional (meth) acrylic monomer.
  • the curable composition for optical modeling according to the fifth aspect of the present disclosure includes a photopolymerizable component, a thermoplastic component, and a photopolymerization initiator, and the content of the (meth) acryloyl group is 5.1 ⁇ . It is a curable composition for optical modeling that is 10 ⁇ 3 mol / g or less.
  • the curable composition for optical modeling according to the sixth aspect of the present disclosure contains a photopolymerizable component and a photopolymerization initiator, and the photopolymerizable component has a glass transition temperature (Tg) of a cured product of 60. It is the curable composition for optical modeling containing the (meth) acryl monomer which is below ° C.
  • the curable composition of each aspect of the present disclosure may satisfy the requirements specified in another aspect.
  • the curable composition of the first aspect may satisfy the requirements of the curable compositions of the second to sixth aspects.
  • (meth) acryl means acryl or methacryl
  • (meth) acryloyl means acryloyl or methacryloyl
  • the present inventors have found that the cured product obtained by using the curable composition for optical modeling according to the first to sixth aspects can remain around the cured product even when heated under rapid temperature rise conditions. It discovered that the crack of the arrange
  • the modeling curable composition of the present disclosure may be simply referred to as a “curable composition”.
  • the minimum value of the storage elastic modulus in the range of 25 ° C. to 300 ° C. of the cured product is 1.20 ⁇ 10 7 Pa or less. It is considered that the cracking of the surrounding material is suppressed.
  • the alcohol or alcohol derivative contained in the curable composition is softened by heating, and the stress caused by the volume expansion of the cured product is alleviated, and the (meth) acryloyl group is contained If the amount is 6.5 ⁇ 10 ⁇ 3 mol / g or less, it is considered that the crosslink density in the cured product does not become too high, and the stress caused by the volume expansion of the cured product is further relaxed.
  • the alcohol or alcohol derivative contained in the curable composition is softened by heating to relieve the stress caused by the volume expansion of the cured product, and a simple photopolymerizable component.
  • a functional (meth) acrylic monomer it is considered that the crosslink density in the cured product does not become too high, and the stress caused by the volume expansion of the cured product is further relaxed.
  • thermoplastic component contained in the curable composition is softened by heating to relieve the stress caused by the volume expansion of the cured product, and monofunctional as the photopolymerizable component. It is conceivable that by containing the (meth) acrylic monomer, the crosslinking density in the cured product does not become too high, and the stress caused by the volume expansion of the cured product is further relaxed.
  • the thermoplastic component contained in the curable composition is softened by heating to relieve stress caused by volume expansion of the cured product, and the inclusion of a (meth) acryloyl group It is considered that when the amount is 5.1 ⁇ 10 ⁇ 3 mol / g or less, the crosslink density in the cured product does not become too high, and the stress caused by the volume expansion of the cured product is further relaxed.
  • the (meth) acrylic monomer having a glass transition temperature (Tg) of the cured product contained in the curable composition of 60 ° C. or lower is softened by heating, resulting in volume expansion of the cured product. It is conceivable that the stress generated is relaxed.
  • the curable composition preferably has a minimum storage elastic modulus of 1.20 ⁇ 10 7 Pa or less in a range of 25 ° C. to 300 ° C. of a cured product obtained using the curable composition, and is 1.08 ⁇ 10 7. It is more preferably Pa or less, further preferably 1.00 ⁇ 10 7 Pa or less, and particularly preferably 9.0 ⁇ 10 6 Pa or less.
  • the cured product that satisfies the above conditions is more effectively relieved of stress caused by volume expansion when heated, and therefore can more effectively suppress mold cracking when used as a vanishing model in the vanishing casting method. it can.
  • the minimum value of the cured product in the range of 25 ° C. to 300 ° C. is low from the viewpoint of improving the accuracy of the cast product.
  • the minimum value of the cured product in the range of 25 ° C. to 300 ° C. is preferably 5.45 ⁇ 10 6 Pa or less.
  • the curable composition contains alcohol or an alcohol derivative or a (meth) acrylic monomer having a glass transition temperature (Tg) of 60 ° C. or lower, the minimum value of the cured product in the range of 25 ° C. to 300 ° C. is 8. It is preferable that it is 00 * 10 ⁇ 6 > Pa or less.
  • the lower limit of the storage elastic modulus in the range of 25 ° C. to 300 ° C. of the cured product is not particularly limited.
  • the minimum value in the range of 25 ° C. to 300 ° C. of the cured product may be 1.0 ⁇ 10 4 Pa or more, 1.0 ⁇ 10 5 Pa or more, 1.0 ⁇ 10 6 Pa or more.
  • the minimum value of the storage elastic modulus in the range of 75 ° C. to 200 ° C. of the cured product obtained by using the curable composition is within the above numerical range.
  • the storage elastic modulus near normal temperature is high.
  • the storage elastic modulus at 25 ° C. of the cured product of the curable composition is preferably more than 1.0 ⁇ 10 9 Pa, more preferably more than 1.2 ⁇ 10 9 Pa, 1.4 More preferably, it is more than ⁇ 10 9 Pa.
  • cured material of a curable composition may be 5.0 * 10 ⁇ 9 > Pa or less.
  • the minimum value of the storage elastic modulus of the cured product of the curable composition is, for example, that the cured product has a glass transition temperature (Tg) of 60 ° C. as an alcohol or an alcohol derivative, a thermoplastic component, or a photopolymerizable component. It can adjust by including components, such as the following (meth) acrylic monomers.
  • Tg glass transition temperature
  • the minimum value of the storage modulus of the cured product can be lowered by increasing the content of these components, and the minimum value of the storage modulus of the cured product can be increased by decreasing the content of these components. can do.
  • the minimum value of the storage elastic modulus of the cured product obtained using the curable composition is a value measured by the method described in Examples described later.
  • the content of the (meth) acryloyl group in the curable composition in the present disclosure is an amount (mol / g) per unit mass of the curable composition. From the viewpoint of alleviating stress caused by volume expansion of the cured product, the content of the (meth) acryloyl group in the curable composition may be, for example, 6.7 ⁇ 10 ⁇ 3 mol / g or less. It may be 5 ⁇ 10 ⁇ 3 mol / g or less.
  • the content of the (meth) acryloyl group may be 6.6 ⁇ 10 ⁇ 3 mol / g or less, and 6.5 ⁇ 10 ⁇ 3 mol / g.
  • the content of the (meth) acryloyl group is preferably 5.1 ⁇ 10 ⁇ 3 mol / g or less.
  • the content of the (meth) acryloyl group is 6.0 ⁇ 10 ⁇ . It is preferably 3 mol / g or less.
  • the content of the (meth) acryloyl group of the curable composition may be, for example, 0.5 ⁇ 10 ⁇ 3 mol / g or more, and 1.0 ⁇ 10 ⁇ It is preferably 3 mol / g or more, and more preferably 2.0 ⁇ 10 ⁇ 3 mol / g or more.
  • photopolymerizable component examples include (meth) acrylic monomers.
  • the type of the meth (acrylic) monomer is not particularly limited, and even if it is a monofunctional (meth) acrylic monomer (a monomer having one (meth) acryloyl group in the molecule), a bifunctional (meth) acrylic monomer (in the molecule) It may be a monomer having two (meth) acryloyl groups) or a polyfunctional (meth) acrylic monomer (a monomer having three or more (meth) acryloyl groups in the molecule).
  • a monofunctional (meth) acrylic monomer From the viewpoint of alleviating stress caused by volume expansion of the cured product, it is preferable to include a monofunctional (meth) acrylic monomer.
  • a bifunctional (meth) acrylic monomer is included from the viewpoint of improving the smoothness of the surface of the cured product and improving the accuracy of the molded article.
  • an acrylic monomer is included rather than a methacryl monomer from a viewpoint which can make the surface of hardened
  • the photopolymerizable component contains a (meth) acrylic monomer having an alicyclic structure. Is preferable, and it is more preferable to include a monofunctional (meth) acrylic monomer having an alicyclic structure.
  • alicyclic structure contained in the (meth) acrylic monomer examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cubanyl group, norbornyl group, isobornyl group, tetrahydrodiene.
  • a structure having a monovalent alicyclic group such as a cyclopentadienyl group, an adamantyl group, a diadamantyl group, a bicyclo [2.2.2] octyl group, a decahydronaphthyl group, or a morpholyl-4-yl group, Examples thereof include a structure having a divalent alicyclic group corresponding to the alicyclic group.
  • the “alicyclic structure” includes a structure having a hetero atom (oxygen atom, nitrogen atom, etc.) in a part thereof.
  • monofunctional (meth) acrylic monomer examples include a compound represented by the following general formula (1) or a compound represented by the following general formula (4).
  • R 1 may have a monovalent hydrocarbon group having 1 to 40 carbon atoms or a part of the carbon atoms of the hydrocarbon group may be substituted with an oxygen atom or a nitrogen atom.
  • R 2 represents a hydrogen atom or a methyl group.
  • the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 may or may not contain an unsaturated double bond.
  • Examples of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 or a group in which part of the carbon atoms of the hydrocarbon group is substituted with an oxygen atom or a nitrogen atom include an alkyl group having 1 to 40 carbon atoms. , An aryl group, a group derived from a cyclic ether compound, a group having a urethane bond, a combination thereof, and the like.
  • the alkyl group may be linear, branched or cyclic.
  • the hydrocarbon group preferably has a cyclic structure.
  • the carbon number of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 is preferably 1 to 22, more preferably 4 to 12.
  • the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 may be unsubstituted or may have a substituent.
  • substituents include a halogen atom, an amino group, a hydroxyl group, a carboxy group, and an epoxy group. When a substituent contains a carbon atom, this shall not be included in the number of carbon atoms of the hydrocarbon group.
  • R 7 and R 8 are each independently a monovalent hydrocarbon group having 1 to 40 carbon atoms which may have a ring structure, and a part of carbon atoms of the hydrocarbon group.
  • the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 7 and R 8 may or may not contain an unsaturated double bond.
  • Examples of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 7 and R 8 or a group in which part of the carbon atoms of the hydrocarbon group are substituted with oxygen atoms or nitrogen atoms include those having 1 to 40 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the number of carbon atoms of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 7 and R 8 is preferably 1 to 22, and more preferably 4 to 12.
  • the hydrocarbon group is preferably an alkyl group having 2 to 6 carbon atoms or has a cyclic structure, and it is particularly preferable that R 7 and R 8 are bonded to each other to form a ring.
  • R 7 and R 8 are bonded to each other to form a ring, it is preferable to form a nitrogen-containing heterocycle having 4 to 12 carbon atoms, and to form a nitrogen-containing and oxygen-containing heterocycle having 4 to 12 carbon atoms. Is preferred.
  • one of R 7 and R 8 is an alkyl group having 2 to 6 carbon atoms, the other is preferably a hydrogen atom.
  • R 7 and R 8 are alkyl groups having 2 to 6 carbon atoms, it is preferable that some of the carbon atoms of the alkyl group are replaced with oxygen atoms.
  • the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 7 and R 8 may be independently unsubstituted or substituted.
  • the substituent include a halogen atom, an amino group, a hydroxyl group, a carboxy group, and an epoxy group.
  • a substituent contains a carbon atom, this shall not be included in the number of carbon atoms of the hydrocarbon group.
  • R 7 and R 8 are alkyl groups, it preferably has a hydroxyl group as a substituent.
  • monofunctional (meth) acrylic monomers include cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) ) Acrylate, tetrahydrofurfuryl (meth) acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, cyclic trimethylolpropane formal (meth) acrylate, 4- ( (Meth) acryloylmorpholine, lauryl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, phenoxyethylene glycol (meth) acrylate, 2-dodecyl-1-hex Decanyl (meth) acrylate, 2- (meth)
  • bifunctional (meth) acrylic monomer examples include compounds represented by the following general formula (2).
  • R 3 may have a monovalent hydrocarbon group having 1 to 40 carbon atoms, or a part of the carbon atoms of the hydrocarbon group may be substituted with an oxygen atom or a nitrogen atom.
  • R 4 and R 5 each independently represents a hydrogen atom or a methyl group.
  • the hydrocarbon group having 1 to 40 carbon atoms represented by R 3 may or may not contain an unsaturated double bond.
  • the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 3 or the group in which a part of the carbon atoms of the hydrocarbon group is substituted with an oxygen atom or a nitrogen atom is an alkylene group having 1 to 40 carbon atoms.
  • Examples of the alkylene group include linear, branched or cyclic alkyl groups.
  • the carbon number of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 3 is preferably 1 to 22, more preferably 1 to 16, and further preferably 4 to 12.
  • the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 3 may be unsubstituted or may have a substituent.
  • substituents include a halogen atom, an amino group, a hydroxyl group, a carboxy group, and an epoxy group. When a substituent contains a carbon atom, this shall not be included in the number of carbon atoms of the hydrocarbon group.
  • bifunctional (meth) acrylic monomer examples include ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, glycerin di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, ethoxy Bisphenol A di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dioxane glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, dipropylene glycol Di (meth) acrylate, ethoxylated hydrogenated bisphenol A di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, biscarbamic acid bis (2-methacryloxy) Le) N, N'-1,9-nonylene ((meth) diurethane acrylate), poly
  • the glass transition temperature (Tg) of the cured product as a photopolymerizable component is more than 60 ° C.
  • Tg glass transition temperature
  • the photopolymerization component it is preferable to include a (meth) acrylic monomer having a Tg of 60 ° C. or less as the photopolymerization component, and the Tg of the cured product is 30 ° C. or less. It is more preferable that a (meth) acrylic monomer is included, and it is further preferable that a (meth) acrylic monomer having a Tg of 0 ° C. or less is included.
  • a (meth) acrylic monomer having a Tg of 60 ° C. or less in combination with a (meth) acrylic monomer having a Tg of more than 60 ° C., and the Tg of the cured product is 60 ° C. or less
  • a (meth) acrylic monomer and a monofunctional (meth) acrylic monomer having a cured product having a Tg of more than 60 ° C. are used in combination.
  • the Tg of a cured product of a (meth) acrylic monomer means a Tg of a cured product obtained using only the corresponding (meth) acrylic monomer as a photopolymerization component.
  • Monofunctional (meth) acrylic monomers having a cured product Tg of 60 ° C. or lower include lauryl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, phenoxyethylene glycol (meth) acrylate, and 2-dodecyl-1-hexadecanyl.
  • (Meth) acrylate 2-hydroxyethyl (meth) acrylate, 2- (meth) acryloyloxyethyl-succinic acid, 2-[[(butylamino) carbonyl] oxy] ethyl (meth) acrylate, 2- (2- And ethoxyethoxy) ethyl (meth) acrylate and tetrahydrofurfuryl (meth) acrylate.
  • the bifunctional (meth) acrylic monomer having a cured product having a Tg of 60 ° C. or lower include polyethylene glycol diacrylate, polypropylene glycol diacrylate, ethoxylated bisphenol A di (meth) acrylate, and the like.
  • Examples of monofunctional (meth) acrylic monomers having a Tg of over 60 ° C. include cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 4- tert-butylcyclohexyl (meth) acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, cyclic trimethylolpropane formal (meth) acrylate, 4-acryloylmorpholine, etc. Is mentioned.
  • Examples of the bifunctional (meth) acrylic monomer having a Tg of more than 60 ° C. include ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, glycerin di (meth) acrylate, and 1,6-hexanediol diene.
  • the curable composition is a monofunctional (meta-functional) as a photopolymerizable component. It is preferable that an acrylic monomer and a bifunctional (meth) acrylic monomer are included.
  • the ratio of both in this case is not particularly limited, but the mass ratio of the monofunctional (meth) acrylic monomer to the bifunctional (meth) acrylic monomer (monofunctional (meth) acrylic monomer: bifunctional (meth) acrylic monomer) is 1: It is preferably within a range of 0.1 to 1: 2, more preferably within a range of 1: 0.2 to 1: 1.5, and a range of 1: 0.3 to 1: 0.8. More preferably, it is within.
  • the monofunctional (meth) acrylic monomer a monofunctional (meth) acrylic monomer having a glass transition temperature (Tg) of the cured product exceeding 60 ° C. is used, and as the bifunctional (meth) acrylic monomer, the glass transition of the cured product is used.
  • Tg glass transition temperature
  • the mass ratio of both is within the above range.
  • the curable composition may contain a photopolymerizable component other than the (meth) acrylic monomer as necessary.
  • a photopolymerizable component include styrene and its derivatives, (meth) acrylonitrile, and the like.
  • the total proportion of the (meth) acrylic monomer in the entire photopolymerizable component is preferably 80% by mass or more, and 90% by mass More preferably, it is more preferably 95% by mass or more.
  • the amount of the photopolymerizable component contained in the curable composition is not particularly limited, but from the viewpoint of improving the smoothness of the surface of the cured product, the content of the photopolymerizable component relative to 100 parts by mass of the curable composition is not limited. It is preferably 18 parts by mass or more, more preferably 28 parts by mass or more, still more preferably 38 parts by mass or more, still more preferably 40 parts by mass or more, and 50 parts by mass or more. It is even more preferable that the amount is 60 parts by mass or more.
  • the curable composition contains an alcohol or an alcohol derivative, a thermoplastic component, or a (meth) acrylic monomer having a Tg of 60 ° C. or less from the viewpoint of sufficiently obtaining a stress relaxation effect by these components.
  • the content of the photopolymerizable component (excluding the (meth) acrylic monomer having a Tg of 60 ° C. or less) with respect to 100 parts by mass of the curable composition is preferably less than 97 parts by mass, and 92 parts by mass More preferably, less than 90 parts by mass, still more preferably less than 87 parts by mass, still more preferably less than 80 parts by mass, and less than 75 parts by mass. Is particularly preferred.
  • Alcohol or alcohol derivative The alcohol or alcohol derivative that can be contained in the curable composition is not particularly limited, and may be one type or two or more types. From the viewpoint of suppressing cracking of surrounding materials when heated under rapid temperature rise conditions, alcohol or alcohol derivatives are polyol (alcohol having 2 or more hydroxyl groups), monoalcohol (number of hydroxyl groups is A single alcohol) or derivatives thereof.
  • the “alcohol derivative” means one having a structure in which a hydrogen atom in one or more hydroxyl groups of an alcohol is substituted with an organic group.
  • the alcohol derivative may or may not have a hydroxyl group that is not substituted with an organic group.
  • a polyol having no ether bond, a polyol having one ether bond, and a polyol having two or more ether bonds (polyether polyol) are collectively referred to as “polyol”, and a derivative thereof is referred to as a “polyol derivative”. There is.
  • a compound corresponding to an alcohol or an alcohol derivative when a compound corresponding to an alcohol or an alcohol derivative also corresponds to a photopolymerizable component (for example, when the alcohol or the alcohol derivative has a (meth) acryloyl group), the compound does not correspond to an alcohol or an alcohol derivative.
  • polyol having no ether bond examples include glycerin, ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, and the like.
  • Examples of the polyol having one ether bond include diglycerin.
  • Polyether polyols include polyalkylene glycols such as polyethylene glycol and polypropylene glycol, poly (oxyalkylene) glycerol triethers such as poly (oxypropylene) glycerol triether (polyol type of polypropylene glycol), polyethylene glycol monomethyl ether, polyethylene glycol Examples thereof include poly (oxyalkylene) monoalkyl ethers such as monobutyl ether and polyethylene glycol monododecyl ether, and polytetramethylene glycol.
  • Monoalcohol includes monoalcohol having 6 to 20 carbon atoms. Of these, monoalcohols having 8 to 18 carbon atoms are preferred. More specifically, capryl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, oleyl alcohol, and linoleyl alcohol are preferred.
  • the hydrogen atom of one or more hydroxyl groups of the alcohol is alkyl.
  • a hydrocarbon group such as a group (especially an alkyl group having 1 to 15 carbon atoms), or one or more of the hydroxyl groups of an alcohol having condensed with a carboxylic acid, phosphoric acid or the like Examples include those forming acid esters, phosphate esters, and the like.
  • polyol derivative those having a structure in which the hydrogen atom of one or more hydroxyl groups at the end of the polyol is substituted with a hydrocarbon group such as an alkyl group (particularly an alkyl group having 1 to 15 carbon atoms) are preferred.
  • polyol derivatives include polyalkylene glycol alkyl ethers such as ethylene glycol dibutyl ether (dibutyl glycol), diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, tetraethylene glycol dimethyl ether, and polyethylene glycol alkyl ether.
  • polyoxyalkylene alkyl ether examples include polyethylene glycol monomethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol monoethyl ether, polyethylene glycol diethyl ether, and the like.
  • the weight average molecular weight of the alcohol or alcohol derivative may be 100 or more and less than 20000, or 200 or more and less than 10,000. From the viewpoint of improving the smoothness of the surface of the cured product, the weight average molecular weight of the alcohol or alcohol derivative is preferably 200 or more, and more preferably 500 or more.
  • sorbitan fatty acid esters such as sorbitan oleate and sorbitan trioleate are also preferable.
  • R 6 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and X is a divalent carbon atom having 1 to 6 carbon atoms.
  • a hydrogen group Y is an m-valent hydrocarbon group having 1 to 20 carbon atoms, n is an integer of 0 to 300, and m is an integer of 1 to 8.
  • X When the number of X is 2 or more, X may be the same or different, and when the number of R 6 is 2 or more, R 6 may be the same or different.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 6 may be linear, branched or cyclic, and may be unsaturated or saturated. Examples thereof include an alkyl group having 1 to 20 carbon atoms and an aryl group, and an alkyl group is preferable.
  • the hydrocarbon group represented by R 6 preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • Examples of the substituent that the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 6 may have include an oxygen atom-containing group (oxo group, alkoxy group, hydroxyl group, etc.), a nitrogen atom-containing group (amino Groups), sulfur atom-containing groups (thiol groups, etc.), phosphorus atom-containing groups (phosphate groups, etc.), halogen atoms, and the like.
  • the substituent which the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 6 may have is preferably a hydrogen atom, a methyl group or a (meth) acryloyl group, and a hydrogen atom or a methyl group It is more preferable that
  • the divalent hydrocarbon group having 1 to 6 carbon atoms represented by X may be linear, branched or cyclic, and may be unsaturated or saturated.
  • X is preferably an alkylene group having 1 to 6 carbon atoms, more preferably an ethylene group, a propylene group or a tetramethylene group.
  • Y is an m-valent hydrocarbon group having 1 to 20 carbon atoms, which may be linear, branched or cyclic, and may be unsaturated or saturated.
  • M is not limited as long as it is an integer in the range of 1 to 8, preferably 1 to 6, more preferably 1 to 4, and still more preferably 1 to 3.
  • Y is preferably a residue obtained by removing all hydroxyl groups from 1,2,3-propanetriol (glycerol).
  • Y is preferably an alkylene group having 1 to 6 carbon atoms, and more preferably an ethylene group, a propylene group or a tetramethylene group.
  • Y is preferably a linear hydrocarbon group having 8 to 18 carbon atoms.
  • n is not particularly limited as long as it is in the range of 0 to 300, but is preferably an integer of 0 to 200, more preferably 0 or an integer of 3 to 150, and an integer of 0 or 5 to 100. More preferably.
  • the molecular weight of the alcohol or alcohol derivative is not particularly limited, but the weight average molecular weight (Mw) is preferably 50 or more and less than 10,000, more preferably 150 to 9500, still more preferably 200 to 8000, It is even more preferable that it is ⁇ 4000. From the viewpoint of improving the smoothness of the surface of the shaped article, it is preferable that the molecular weight of the alcohol or alcohol derivative is large.
  • the weight average molecular weight of an alcohol or an alcohol derivative is a value measured by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the amount of alcohol or alcohol derivative contained in the curable composition is not particularly limited, but from the viewpoint of sufficiently obtaining a relaxation effect of stress caused by volume expansion of the cured product, the alcohol or alcohol derivative with respect to 100 parts by mass of the curable composition.
  • the content of is preferably 5 parts by mass or more, more preferably 9 parts by mass or more, and still more preferably 14 parts by mass or more.
  • the content of the alcohol or alcohol derivative with respect to 100 parts by mass of the curable composition is preferably less than 60 parts by mass, and less than 40 parts by mass. Is more preferable, and it is still more preferable that it is less than 30 mass parts.
  • thermoplastic component The thermoplastic component that can be contained in the curable composition is not particularly limited, and may be one type or two or more types.
  • the thermoplastic component means a substance having a property of softening when heated.
  • the thermoplastic component preferably has a softening point of 70 ° C. to 130 ° C., and preferably 80 ° C. to 120 ° C. from the viewpoint of sufficiently obtaining a relaxation effect of stress caused by volume expansion of the cured product of the curable composition. Is more preferable, and 85 to 110 ° C is even more preferable.
  • the softening point of the thermoplastic component is a value measured by the ring and ball method in accordance with JIS K2207: 2006.
  • An example of the measuring apparatus is “ASP-MG” manufactured by Meitec.
  • thermoplastic component in the present disclosure examples include a thermoplastic resin.
  • a hydrocarbon-based polymer (a polymer composed of only carbon atoms and hydrogen atoms) is preferable.
  • the hydrocarbon-based polymer is more preferably a hydrocarbon-based polymer including a cyclic hydrocarbon group (preferably included in a side chain).
  • the cyclic hydrocarbon group may be unsaturated or saturated, but is preferably a saturated cyclic hydrocarbon group.
  • hydrocarbon polymer examples include alicyclic hydrocarbon resins such as xylene resins and petroleum resins and their hydrides, terpene resins and their hydrides, polyisopropyltoluene and their hydrides, and the like.
  • the molecular weight of the thermoplastic component is not particularly limited, but the weight average molecular weight (Mw) is preferably 200 or more and less than 10,000, more preferably 300 to 9000, and still more preferably 400 to 8000.
  • the weight average molecular weight of the thermoplastic component is a value measured by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the amount of the thermoplastic component contained in the curable composition is not particularly limited, but from the viewpoint of sufficiently obtaining a relaxation effect of the stress caused by the volume expansion of the cured product, the thermoplastic component content relative to 100 parts by mass of the curable composition
  • the amount is preferably 9 parts by mass or more, more preferably 19 parts by mass or more, and further preferably 24 parts by mass or more.
  • the content of the thermoplastic component with respect to 100 parts by mass of the curable composition is preferably less than 70 parts by mass, and less than 50 parts by mass. More preferably, it is more preferably less than 40 parts by mass.
  • the photopolymerization initiator contained in the curable composition is not particularly limited, and may be one type or two or more types. Specifically, alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin compounds, acetophenone compounds, benzophenone compounds, thioxanthone compounds, ⁇ -acyloxime ester compounds, phenylglyoxylate compounds, benzyl compounds, azo compounds Compounds, diphenyl sulfide compounds, iron-phthalocyanine compounds, benzoin ether compounds, anthraquinone compounds and the like.
  • the photopolymerization initiator preferably contains at least one selected from the group consisting of alkylphenone compounds and acylphosphine oxide compounds.
  • an acylphosphine oxide compound is preferable, and among the acylphosphine oxide compounds, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide is more preferable.
  • the amount of the photopolymerization initiator contained in the curable composition is preferably 0.1 to 20 parts by mass, and 0.5 to 10 parts by mass with respect to 100 parts by mass of the photopolymerizable component. More preferred is 1 to 5 parts by mass.
  • the curable composition of the present disclosure is preferably excellent in durability to rapid temperature rise (stress relaxation during thermal expansion). Specifically, when the cured product obtained by using the curable composition was subjected to a heating test shown in the examples described later, gypsum (Cristobalite investing agent (Kurarenoritake Dental Co., Ltd., Cristobalite FF-Ex) was used. It is preferable that no cracks or cracks occur in ()).
  • the curable composition may contain components other than the photopolymerizable component, alcohol or alcohol derivative, thermoplastic component, and photopolymerization initiator as necessary.
  • Such components include fillers, modifiers, stabilizers, antioxidants, solvents and the like.
  • the curable composition of the present disclosure can be suitably used as a disappearance model in which a cured product obtained using the composition is used in the disappearance casting method.
  • cured material of a curable composition is not restrict
  • a three-dimensional cured product using the curable composition there is an optical modeling method.
  • a three-dimensional cured product can be obtained by repeating the process of irradiating the layered curable composition with ultraviolet rays in a pattern and forming a cured product layer in the irradiated region.
  • the apparatus for carrying out the optical shaping method is not particularly limited, and a 3D printer or the like can be used.
  • the cured product obtained using the curable composition can suppress cracking of surrounding materials even when the temperature is rapidly increased. For this reason, it is particularly preferably used in the case of manufacturing a three-dimensional structure made of a material that is easily broken such as gypsum.
  • the three-dimensional model obtained can also be used as a mold for producing an article having a shape corresponding to the recess formed by disappearance of the disappeared model. Specifically, for example, it is suitably used as a template for producing a denture, a medical instrument used in the oral cavity, a tooth jaw model, and the like.
  • the disappearance model of the present disclosure is a cured product of the curable composition described above.
  • cured material of a curable composition is not restrict
  • the vanishing model has a three-dimensional shape, it may be produced by the optical modeling method described above.
  • the material of the three-dimensional structure used in the above method is not particularly limited.
  • it may be an inorganic material such as gypsum, clay, porcelain stone, or metal, an organic material such as resin, or a combination thereof.
  • the environment for heating the cured product is not particularly limited as long as the cured product can disappear, and may be performed in the air or in an inert atmosphere such as nitrogen or argon.
  • the temperature at which the cured product is heated is not particularly limited as long as the cured product can disappear.
  • the maximum temperature may be set within a range of 650 to 2000 ° C. according to the type of material such as gypsum.
  • the heating rate when heating the cured product may be constant or may be changed.
  • the rate of temperature increase may be set to a maximum rate of 30 ° C./min to 50 ° C./min, and preferably set to 40 ° C./min.
  • the use of the three-dimensional structure manufactured by the above method is not particularly limited.
  • it may be used as a mold for producing an article having a shape corresponding to a recess formed by disappearance of the disappearance model.
  • it may be used as a template for producing a denture, a medical instrument used in the oral cavity, a tooth jaw model, and the like.
  • Curable compositions were prepared using the materials shown in Tables 1-6. Details of the materials shown in Tables 1 to 6 are as follows. The numerical values in the right column of each component shown in Tables 1 to 6 indicate the parts by mass of each component with respect to 100 parts by mass in total of the thermoplastic component, alcohol or alcohol derivative, and photopolymerizable component. In Tables 1 to 6, “Mw” represents the weight average molecular weight of the corresponding compound, and “AEw” represents the (meth) acryloyl equivalent.
  • the (meth) acryloyl group content shown in Tables 1 to 6 is a value obtained by multiplying the (meth) acryloyl group content (mol / g) by 1,000.
  • the minimum storage elastic modulus shown in Tables 1 to 6 is the minimum storage elastic modulus in the range of 25 ° C to 300 ° C.
  • Photopolymerizable component 1 Isobornyl acrylate (IBXA, Kyoeisha Chemical Co., Ltd.)
  • Photopolymerizable component 2 Isobornyl methacrylate (IBX, Kyoeisha Chemical Co., Ltd.)
  • Photopolymerizable component 3 4-acryloylmorpholine (ACMO, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Photopolymerizable component 4 dicyclopentanyl acrylate (FA-513AS, Hitachi Chemical Co., Ltd.)
  • Photopolymerizable component 5 Dicyclopentanyl methyl acrylate (SR789, Sartomer Co., Ltd.)
  • Photopolymerizable component 6 4-tert-butylcyclohexyl acrylate (tBCH, Sartomer Co.)
  • Photopolymerizable component 7 Lauryl acrylate (LA, Kyoeisha Chemical Co., Ltd., Tg: -3 ° C)
  • Photopolymerizable component 8 4-hydroxybutyl acrylate (4HBA, Osaka Organic Chemical Co., Tg: -40 ° C)
  • Photopolymerizable component 9 Phenoxyethylene glycol acrylate (PO-A, Shin-Nakamura Chemical Co., Ltd., Tg: -22 ° C)
  • Photopolymerizable component 10 2-dodecyl-1-hexadecanyl acrylate (DHD-A, Kyoeisha Chemical Co., Ltd., Tg: ⁇ 23 ° C.)
  • Photopolymerizable component 11 2-hydroxyethyl acrylate (HOA (N), Kyoeisha Chemical Co., Tg: -15 ° C)
  • Photopolymerizable component 12 2-acryloyloxyethyl-succinic acid (HOA-MS (N), Kyoeisha Chemical Co., Ltd., Tg: ⁇ 40 ° C.)
  • Photopolymerizable component 13 2-[[(Butylamino) carbonyl] oxy] ethyl acrylate (BAA, Sigma-Aldrich, Tg: ⁇ 20 ° C.)
  • Photopolymerizable component 14 2- (2-ethoxyethoxy) ethyl acrylate (EEEA, Tokyo Chemical Industry Co., Ltd., Tg: -54 ° C.)
  • Photopolymerizable component 15 Tetrahydrofurfuryl methacrylate (THF (1000), Kyoeisha Chemical Co., Ltd., Tg: 60 ° C.)
  • Photopolymerizable component 16 dimethylol-tricyclodecane diacrylate (DCPA, Kyoeisha Chemical Co., Ltd.)
  • Photopolymerizable component 17 dimethylol-tricyclodecane dimethacrylate (DCP, Shin-Nakamura Chemical Co., Ltd.)
  • Photopolymerizable component 18 1,6-hexanediol dimethacrylate (1,6HX, Kyoeisha Chemical Co., Ltd.)
  • Photopolymerizable component 19 1,9-nonanediol dimethacrylate (A-NOD-N, Shin-Nakamura Chemical Co., Ltd.)
  • Photopolymerizable component 20 Ethylene glycol dimethacrylate (EG, Kyoeisha Chemical Co., Ltd.)
  • Photopolymerizable component 21 Triethylene glycol dimethacrylate (3EG, Kyoeisha Chemical Co., Ltd.)
  • Photopolymerizable component 23 Glycerin dimethacrylate (G101P, Kyoeisha Chemical Co., Ltd.)
  • Photopolymerizable component 24 Dioxane glycol diacrylate (A-DOG, Shin-Nakamura Chemical Co., Ltd.)
  • Photopolymerizable component 25 Diethylene glycol diacrylate (FA-222, Hitachi Chemical Co., Ltd.)
  • Photopolymerizable component 26 Dipropylene glycol diacrylate (APG-100, Shin-Nakamura Chemical Co., Ltd.)
  • Photopolymerizable component 27 Triethylene glycol dimethacrylate (3EG-A, Kyoeisha Chemical Co., Ltd.)
  • Photopolymerizable component 29 2-hydroxy-3-acryloyloxypropyl methacrylate (G201P, Kyoeisha Chemical Co., Ltd.)
  • Photopolymerizable component 30 Urethane methacrylate (UDMA, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Photopolymerizable component 31 Polyethylene glycol (400) diacrylate (FA-240A, Hitachi Chemical Co., Ltd., Tg: ⁇ 25 ° C.)
  • Photopolymerizable component 32 Polypropylene glycol (400) diacrylate (FA-P240A, Hitachi Chemical Co., Ltd., Tg: ⁇ 8 ° C.)
  • Photopolymerizable component 33 Polypropylene glycol (700) diacrylate (APG-700, Shin-Nakamura Chemical Co., Ltd., Tg: -32 ° C.)
  • Thermoplastic component 1 hydrocarbon polymer having a structural unit represented by the following formula (nonpolar, softening point: 90 ° C., P90, Arakawa Chemical Industries, Ltd.)
  • Thermoplastic component 2 Hydrocarbon polymer having a structural unit represented by the following formula (nonpolar, softening point: 140 ° C., P140, Arakawa Chemical Industries, Ltd.)
  • Thermoplastic component 3 Hydrocarbon polymer having a structural unit represented by the following formula (aromatic polarity, softening point: 90 ° C., M90, Arakawa Chemical Industries, Ltd.)
  • Thermoplastic component 4 Hydrocarbon polymer having a structural unit represented by the following formula (softening point: 100 ° C., k100, Yasuhara Chemical Co., Ltd.)
  • Alcohol or alcohol derivative 1 polyethylene glycol (PEG 1000, weight average molecular weight: 1000, Fuji Film Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 2 polyethylene glycol (PEG200, weight average molecular weight: 200, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 3 polyethylene glycol (PEG 6000, weight average molecular weight: 6000, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 4 Polypropylene glycol (PPG D1000, weight average molecular weight: 1000, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 5 polypropylene glycol (PPG T700, weight average molecular weight: 700, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 6 polytetramethylene glycol (PTMG 650, weight average molecular weight: 650, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 7 polytetramethylene glycol (PTMG 1000, weight average molecular weight: 1000, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 8 polytetramethylene glycol (PTMG 2000, weight average molecular weight: 2000, Fuji Film Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 9 polyethylene glycol dimethyl ether (PEGDM 250, weight average molecular weight: 250, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 10 polyethylene glycol dimethyl ether (PEGDM 1000, weight average molecular weight: 1000, FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 11 Glycerin (Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 12 Diglycerin (Fuji Film Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 13 Dibutyl diglycol (DBDG, Nippon Emulsifier Co., Ltd.)
  • Alcohol or alcohol derivative 14 Lauryl alcohol (Fuji Film Wako Pure Chemical Industries, Ltd.)
  • Alcohol or alcohol derivative 15 sorbitan trioleate (Newcol 3-80, Nippon Emulsifier Co., Ltd.) Alcohol or alcohol derivative 16: sorbitan oleate (New Coal 80, Nippon Emulsifier Co., Ltd.) Alcohol or alcohol derivative 17: polyoxyalkylene alkyl ether (Newcol 2300-FE, Nippon Emulsifier Co., Ltd.) Alcohol or alcohol derivative 18: polyoxyalkylene alkyl ether (Newcol 2309-FZ, Nippon Emulsifier Co., Ltd.)
  • Photopolymerization initiator 1 Acylphosphine oxide compound (Irgacure TPO, BASF (shown as TPO in Tables 1 to 6))
  • Photopolymerization initiator 2 aminoalkylphenone compound (BASF, Irgacure 379 (shown as 379 in Tables 1 to 6))
  • Photopolymerization initiator 3 Acylphosphine oxide compound (BASF, Irgacure 819 (shown as 819 in Tables 1 to 6))
  • the evaluation was evaluated as ⁇ when the surface state of the modeled test piece was smooth, ⁇ when the stickiness was seen, and ⁇ when there was no stickiness but was not smooth.
  • the evaluation of modeling accuracy if the dimension of the modeled object is 20 mm ⁇ 0.2 mm ⁇ 40 mm ⁇ 0.2 mm ⁇ 1 mm ⁇ 0.05 mm in width, one of the width, height, and thickness is ⁇ . When the above conditions were not satisfied, ⁇ was evaluated as x when two or more of ⁇ , width, height, and thickness did not satisfy the above conditions. The results are shown in Tables 1-6.
  • gypsum thickness thinnest part 1 mm (peripheral part of neck part), thickest part 1 cm (peripheral part of spherical part)
  • FO100 electric furnace heated to 700 ° C.
  • the disappearance model is put in and heated for 60 minutes After the heating, the state of the gypsum is visually confirmed, and if the crack or the crack cannot be confirmed, it is determined that the curable composition has durability against rapid temperature rise.
  • the term “cracking” means that the gypsum that has been integrated after heating is divided into a plurality of parts, and includes that all or part of the gypsum is broken into pieces. The results are shown in Tables 1 to 6, assuming that no cracks or cracks occurred in the gypsum, and “impossible” when cracks or cracks occurred in the gypsum.
  • the cured product of the test piece is obtained by irradiating the obtained test piece with ultraviolet rays having a wavelength of 365 nm under the condition of 3 J / cm 2 to fully cure the curable composition.
  • the cured product of the obtained test piece was measured with a dynamic viscoelasticity measuring device (DVA-225, manufactured by IT Measurement Control Co., Ltd.) while raising the temperature from 25 ° C. to 300 ° C. at a rate of 3 ° C./min.
  • the storage modulus is measured at 1 Hz and the change is confirmed.
  • the lowest value of the changing storage elastic modulus is defined as the minimum value of the storage elastic modulus.
  • the minimum value of the storage elastic modulus in the range of 25 ° C. to 300 ° C. of the cured product obtained using the curable composition prepared in the comparative example is 1.20 ⁇ 10 7 Pa.
  • the minimum value of the storage elastic modulus in the range of 25 ° C. to 300 ° C. of the cured product obtained using the curable composition prepared in the example was 1.20 ⁇ 10 7 Pa or less. It was. For this reason, by setting the minimum value of the storage elastic modulus in the range of 25 ° C. to 300 ° C. of the cured product to 1.20 ⁇ 10 7 Pa or less, the surrounding gypsum becomes difficult to break even if a thermal test is performed. all right.
  • the curable composition having a storage elastic modulus at 25 ° C. of 1.40 ⁇ 10 9 Pa or more had a storage elastic modulus of 1.40 ⁇ 10 at 25 ° C.
  • the evaluation of modeling accuracy was better than the curable composition of less than 10 9 Pa. From this, it was found that the higher the storage elastic modulus at 25 ° C., the better the modeling accuracy.
  • Example 2 which does not contain a bifunctional monomer has a storage elastic modulus at 25 ° C. of 1.40 ⁇ 10 9 Pa or more, the modeling accuracy is higher than that of Examples containing other bifunctional monomers. The evaluation of was not good.
  • the minimum value in the range of 25 ° C. to 300 ° C. of the cured product was 5.45 ⁇ 10 6 Pa or less.
  • the minimum value of the cured product in the range of 25 ° C. to 300 ° C. is 8.00 ⁇ 10 6.
  • the evaluation of castings tended to be higher when the pressure was 6 Pa or less. From this, it was found that the casting accuracy was higher when the minimum value in the range of 25 ° C. to 300 ° C. of the cured product was lower.
  • Example 6 is a thermoplastic component (specifically In particular, Example 50 contains alcohol (specifically, polyalkylene glycol), and Example 78 has a Tg of a cured product of 60 ° C. or less as a photopolymerizable component. -It differs in that it contains hydroxyethyl acrylate (Tg: -15 ° C). As shown in Table 7, Example 50 had the smallest standard deviation value. From this, it is understood that the curable composition containing alcohol or an alcohol derivative is superior in casting accuracy compared to the curable composition containing a monofunctional monomer having a low Tg of the thermoplastic component or cured product. all right.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

光重合性成分と、光重合開始剤とを含有する光造形用硬化性組成物であって、前記光造形用硬化性組成物の硬化物の25℃~300℃の範囲における貯蔵弾性率の最低値が1.20×107Pa以下である、光造形用硬化性組成物。

Description

光造形用硬化性組成物、消失模型及び立体造形物の製造方法
 本開示は、光造形用硬化性組成物、消失模型及び立体造形物の製造方法に関する。
 近年、光硬化性樹脂は、3Dプリンター等を用いて立体的な光造形物を得るための原料として使用されている。光硬化性樹脂を用いて得られる光造形物は様々な用途で利用されており、例えば、得られた光造形物を消失模型とし、この周囲を石膏等で覆った状態で加熱し、光造形物を消失させることで、石膏からなる義歯用の鋳型を製造する技術(いわゆる、消失模型鋳造又は消失鋳造)への適用が検討されている(例えば、特許文献1参照)。
特許第6271772号
 消失模型鋳造において、消失模型として用いる光造形物を消失させるためには、高温で加熱する必要がある。ここで、特許文献1に記載されたような硬化性組成物の硬化物に対して急速な昇温条件下で加熱を行うと、硬化物の体積膨張が生じて周囲の材料(石膏等)の種類によっては割れてしまう場合があるため、そのような場合には昇温速度を緩やかに設定する必要がある。
 一方、硬化物の体積膨張を抑制するために昇温速度を緩やかに設定すると、鋳造工程に時間を要するため、生産効率が低下する。そのため、急速な昇温条件下で鋳造を実施しても周囲に配置した材料が割れにくい消失模型の作製に適した材料の開発が求められている。
 上記事情に鑑み、本発明の一実施態様は、急速な昇温条件下で加熱しても周囲の材料の割れが抑制される硬化物が得られる光造形用硬化性組成物を提供することを目的とする。本発明の別の実施態様は、この硬化性組成物の硬化物である消失模型を提供することを目的とする。本発明の別の実施態様は、この硬化性組成物を用いる立体造形物の製造方法を提供することを目的とする。
 前記課題を解決するための具体的手段には、以下の実施態様が含まれる。
<1>光重合性成分と、光重合開始剤とを含有する光造形用硬化性組成物であって、前記光造形用硬化性組成物の硬化物の25℃~300℃の範囲における貯蔵弾性率の最低値が1.20×10Pa以下である、光造形用硬化性組成物。
<2>前記光造形用硬化性組成物の硬化物の75℃~200℃の範囲における貯蔵弾性率の最低値が1.20×10Pa以下である、<1>に記載の光造形用硬化性組成物。
<3>前記光造形用硬化性組成物の硬化物の25℃における貯蔵弾性率が1.0×10Pa超である、<1>または<2>に記載の光造形用硬化性組成物。
<4>(メタ)アクリロイル基の含有量が1.0×10-3mol/g以上6.5×10-3mol/g以下である、<1>~<3>のいずれか1項に記載の光造形用硬化性組成物。
<5>前記光重合性成分が、脂環式構造を有する(メタ)アクリルモノマーを含む、<1>~<4>のいずれか1項に記載の光造形用硬化性組成物。
<6>前記光重合性成分が、硬化物のガラス転移温度(Tg)が60℃以下である(メタ)アクリルモノマーを含む、<1>~<5>のいずれか1項に記載の光造形用硬化性組成物。
<7>前記光重合性成分が単官能(メタ)アクリルモノマーを含む、<1>~<6>のいずれか1項に記載の光造形用硬化性組成物。
<8>前記単官能(メタ)アクリルモノマーが脂環式構造を有する単官能(メタ)アクリルモノマーを含む、<7>に記載の光造形用硬化性組成物。
<9>前記光重合成分が、硬化物のガラス転移温度(Tg)が60℃超であり、かつ脂環式構造を有する単官能(メタ)アクリルモノマーを含む、<1>~<8>のいずれか1項に記載の光造形用硬化性組成物。
<10>前記光重合性成分が二官能(メタ)アクリルモノマーを含む、<7>又は<8>に記載の光造形用硬化性組成物。
<11>前記単官能(メタ)アクリルモノマーと前記二官能(メタ)アクリルモノマーとの質量比が1:0.1~1:0.8の範囲内である、<10>に記載の光造形用硬化性組成物。
<12>前記光重合性成分が二官能(メタ)アクリレートと脂環式構造を有する単官能(メタ)アクリルモノマーとを含み、
 前記光造形用硬化性組成物がポリアルキレングリコールを含む、<1>~<3>のいずれか1項に記載の光造形用硬化性組成物。
<13>アルコール又はアルコール誘導体を含む、<1>~<11>のいずれか1項に記載の光造形用硬化性組成物。
<14>前記アルコール又はアルコール誘導体が以下の一般式(3)で表される化合物を含む、<13>に記載の光造形用硬化性組成物。
Figure JPOXMLDOC01-appb-C000002
   (3)
 上記一般式(3)中、Rは、水素原子又は置換基を有してもよい炭素数1~20の1価の炭化水素基であり、Xは炭素数1~6の2価の炭化水素基であり、Yは炭素数1~20のm価の炭化水素基であり、nは0~300の整数であり、mは1~8の整数である。Xの数が2以上である場合、Xは同一であっても異なっていてもよく、Rの数が2以上である場合、Rは同一であっても異なっていてもよい。
<15>硬化性組成物100質量部に対する前記アルコール又はアルコール誘導体の含有量は5質量部以上60質量部未満である、<13>または<14>に記載の光造形用硬化性組成物。
<16>光重合性成分と、アルコール又はアルコール誘導体と、光重合開始剤とを含有し、下記(1)及び(2)の少なくとも一方を満たす、光造形用硬化性組成物。
 (1)(メタ)アクリロイル基の含有量が6.5×10-3mol/g以下である
 (2)前記光重合性成分が単官能(メタ)アクリルモノマーを含む、光造形用硬化性組成物。
<17>熱可塑性成分を含む、<1>~<16>のいずれか1項に記載の光造形用硬化性組成物。
<18>前記熱可塑性成分が炭化水素系ポリマーを含む、<17>に記載の光造形用硬化性組成物。
<19>(メタ)アクリロイル基の含有量が1.0×10-3mol/g以上5.1×10-3mol/g以下である、<17>または<18>に記載の光造形用硬化性組成物。
<20>消失模型鋳造法の消失模型として使用するための、<1>~<19>のいずれか1項に記載の光造形用硬化性組成物。
<21><1>~<20>のいずれか1項に記載の光造形用硬化性組成物の硬化物である消失模型。
<22><1>~<20>のいずれか1項に記載の光造形用硬化性組成物を用いて得られる硬化物の周囲に立体造形物の材料を配置する工程と、
 前記硬化物を加熱して消失させる工程と、を含む、立体造形物の製造方法。
 本発明によれば、急速な昇温条件下で加熱しても周囲の材料の割れが抑制される硬化物が得られる光造形用硬化性組成物が提供される。また本発明によれば、この硬化性組成物の硬化物である消失模型及びこの硬化性組成物を用いる立体造形物の製造方法が提供される。
加熱試験に使用する消失模型の形状を示す斜視図である。
<光造形用硬化性組成物>
 本開示の第1の態様の光造形用硬化性組成物は、光造形用硬化性組成物の硬化物の25℃~300℃の範囲における貯蔵弾性率の最低値が1.20×10Pa以下である、光造形用硬化性組成物である。
 本開示の第2の態様の光造形用硬化性組成物は、光重合性成分と、アルコール又はアルコール誘導体と、光重合開始剤とを含有し、(メタ)アクリロイル基の含有量が6.5×10-3mol/g以下である、光造形用硬化性組成物である。
 本開示の第3の態様の光造形用硬化性組成物は、光重合性成分と、アルコール又はアルコール誘導体と、光重合開始剤とを含有し、光重合性成分が単官能(メタ)アクリルモノマーを含む、光造形用硬化性組成物である。
 本開示の第4の態様の光造形用硬化性組成物は、光重合性成分と、熱可塑性成分と、光重合開始剤とを含有し、前記光重合性成分が単官能(メタ)アクリルモノマーを含む、光造形用硬化性組成物である。
 本開示の第5の態様の光造形用硬化性組成物は、光重合性成分と、熱可塑性成分と、光重合開始剤とを含有し、(メタ)アクリロイル基の含有量が5.1×10-3mol/g以下である、光造形用硬化性組成物である。
 本開示の第6の態様の光造形用硬化性組成物は、光重合性成分と、光重合開始剤とを含有し、前記光重合性成分が、硬化物のガラス転移温度(Tg)が60℃以下である(メタ)アクリルモノマーを含む光造形用硬化性組成物である。
 本開示の各態様の硬化性組成物は、別の態様で規定する要件を満たすものであってもよい。例えば、第1の態様の硬化性組成物は、第2~第6の態様の硬化性組成物の要件を満たすものであってもよい。
 本開示において「(メタ)アクリル」はアクリル又はメタクリルを意味し、「(メタ)アクリロイル」はアクリロイル又はメタクリロイルを意味する。
 本発明者等は鋭意検討した結果、第1~第6の態様の光造形用硬化性組成物を用いて得られる硬化物は、急速な昇温条件下で加熱しても硬化物の周囲に配置した材料の割れが抑制されることを見出し、本発明を完成させた。以下、本開示の造形用硬化性組成物を単に「硬化性組成物」とも称する場合がある。
 本開示の第1~第6の態様の硬化性組成物を用いて得られる硬化物を急速な昇温条件下で加熱しても周囲の材料の割れが抑制される理由は必ずしも明らかではないが、例えば下記のように考えることができる。
 第1の態様の硬化性組成物では、硬化物の25℃~300℃の範囲における貯蔵弾性率の最低値が1.20×10Pa以下であることで、硬化物の体積膨張により生じる応力が緩和され、周囲の材料の割れが抑制されると考えられる。
 第2の態様の硬化性組成物では、硬化性組成物に含まれるアルコール又はアルコール誘導体が加熱により軟化して硬化物の体積膨張により生じる応力が緩和されること、及び(メタ)アクリロイル基の含有量が6.5×10-3mol/g以下であることで硬化物中の架橋密度が高くなりすぎず、硬化物の体積膨張により生じる応力がさらに緩和されることが考えられる。
 第3の態様の硬化性組成物では、硬化性組成物に含まれるアルコール又はアルコール誘導体が加熱により軟化して硬化物の体積膨張により生じる応力が緩和されること、及び、光重合性成分として単官能(メタ)アクリルモノマーを含有することで硬化物中の架橋密度が高くなりすぎず、硬化物の体積膨張により生じる応力がさらに緩和されることが考えられる。
 第4の態様の硬化性組成物では、硬化性組成物に含まれる熱可塑性成分が加熱により軟化して硬化物の体積膨張により生じる応力が緩和されること、及び、光重合性成分として単官能(メタ)アクリルモノマーを含有することで硬化物中の架橋密度が高くなりすぎず、硬化物の体積膨張により生じる応力がさらに緩和されることが考えられる。
 第5の態様の硬化性組成物では、硬化性組成物に含まれる熱可塑性成分が加熱により軟化して硬化物の体積膨張により生じる応力が緩和されること、及び、(メタ)アクリロイル基の含有量が5.1×10-3mol/g以下であることで硬化物中の架橋密度が高くなりすぎず、硬化物の体積膨張により生じる応力がさらに緩和されることが考えられる。
 第6の態様の硬化性組成物では、硬化性組成物に含まれる硬化物のガラス転移温度(Tg)が60℃以下である(メタ)アクリルモノマーが加熱により軟化して硬化物の体積膨張により生じる応力が緩和されることが考えられる。
(硬化物の貯蔵弾性率)
 硬化性組成物は、これを用いて得られる硬化物の25℃~300℃の範囲における貯蔵弾性率の最低値が1.20×10Pa以下であることが好ましく、1.08×10Pa以下であることがより好ましく、1.00×10Pa以下であることがさらに好ましく、9.0×10Pa以下であることが特に好ましい。上記条件を満たす硬化物は、加熱した際の体積膨張により生じる応力がより効果的に緩和されるため、消失鋳造法における消失模型として用いたときに鋳型の割れをより効果的に抑制することができる。
 また、硬化性組成物を硬化させて消失鋳造を行う場合、鋳造物の精度が向上する観点では、硬化物の25℃~300℃の範囲における最低値が低い方が好ましい。
 硬化性組成物が熱可塑性成分を含む場合、硬化物の25℃~300℃の範囲における最低値が5.45×10Pa以下であることが好ましい。
 硬化性組成物がアルコールもしくはアルコール誘導体又は硬化物のガラス転移温度(Tg)が60℃以下である(メタ)アクリルモノマーを含む場合、硬化物の25℃~300℃の範囲における最低値が8.00×10Pa以下であることが好ましい。
 硬化物の25℃~300℃の範囲における貯蔵弾性率の下限は特に制限されない。例えば、硬化物の25℃~300℃の範囲における最低値が1.0×104Pa以上、1.0×10Pa以上、1.0×10Pa以上等であってもよい。
 硬化性組成物は、これを用いて得られる硬化物の75℃~200℃の範囲における貯蔵弾性率の最低値が上記の数値の範囲内であることがより好ましい。
 硬化性組成物の取り扱い性の観点及び造形物の精度の向上の観点からは、常温(25℃)付近における貯蔵弾性率が高いことが好ましい。例えば、硬化性組成物の硬化物の25℃における貯蔵弾性率は、1.0×10Pa超であることが好ましく、1.2×10Pa超であることがより好ましく、1.4×10Pa超であることがさらに好ましい。また、硬化性組成物の硬化物の25℃における貯蔵弾性率は、5.0×10Pa以下であってよい。
 硬化性組成物の硬化物の貯蔵弾性率の最低値は、例えば、硬化性組成物にアルコールもしくはアルコール誘導体、熱可塑性成分、または光重合性成分として硬化物のガラス転移温度(Tg)が60℃以下である(メタ)アクリルモノマー等の成分を含有させることで調整できる。例えば、これらの成分の含有量を増やすことで硬化物の貯蔵弾性率の最低値を低くすることができ、これらの成分の含有量を減らすことで、硬化物の貯蔵弾性率の最低値を高くすることができる。
 硬化性組成物を用いて得られる硬化物の貯蔵弾性率の最低値は、後述する実施例に記載した方法により測定される値である。
((メタ)アクリロイル基の含有量)
 本開示における硬化組成物の(メタ)アクリロイル基の含有量は、硬化性組成物の単位質量あたりの量(mol/g)である。硬化物の体積膨張により生じる応力を緩和する観点からは、硬化性組成物の(メタ)アクリロイル基の含有量は、例えば、6.7×10-3mol/g以下であってもよく、6.5×10-3mol/g以下であってもよい。
 硬化性組成物がアルコール又はアルコール誘導体を含有する場合、(メタ)アクリロイル基の含有量は6.6×10-3mol/g以下であってもよく、6.5×10-3mol/g以下であることが好ましい。
 硬化性組成物が熱可塑性成分を含有する場合、(メタ)アクリロイル基の含有量は5.1×10-3mol/g以下であることが好ましい。
 硬化性組成物が光重合性成分として硬化物のガラス転移温度(Tg)が60℃以下である(メタ)アクリルモノマーを含有する場合、(メタ)アクリロイル基の含有量は6.0×10-3mol/g以下であることが好ましい。
 充分な硬化性を得る観点からは、硬化性組成物の(メタ)アクリロイル基の含有量は、例えば、0.5×10-3mol/g以上であってもよく、1.0×10-3mol/g以上であることが好ましく、2.0×10-3mol/g以上であることがより好ましい。
(光重合性成分)
 硬化性組成物に含まれうる光重合性成分としては、(メタ)アクリルモノマーが挙げられる。メタ(アクリル)モノマーの種類は特に制限されず、単官能(メタ)アクリルモノマー(分子中に1つの(メタ)アクリロイル基を有するモノマー)であっても二官能(メタ)アクリルモノマー(分子中に2つの(メタ)アクリロイル基を有するモノマー)であっても多官能(メタ)アクリルモノマー(分子中に3つ以上の(メタ)アクリロイル基を有するモノマー)であってもよい。
 硬化物の体積膨張により生じる応力を緩和する観点からは単官能(メタ)アクリルモノマーを含むことが好ましい。
 一方、硬化物の表面の滑沢性を向上させる観点及び造形物の精度を向上させる観点からは二官能(メタ)アクリルモノマーを含むことが好ましい。
 また、硬化物の表面を滑沢にできる観点からは、メタクリルモノマーよりアクリルモノマーを含むことが好ましい。
 硬化物の表面の滑沢性向上、硬化物の寸法精度向上、及び消失鋳造模型の精度向上の観点からは、光重合性成分としては、脂環式構造を有する(メタ)アクリルモノマーを含むことが好ましく、脂環式構造を有する単官能(メタ)アクリルモノマーを含むことがより好ましい。
 (メタ)アクリルモノマーに含まれる脂環式構造として具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、キュバニル基、ノルボルニル基、イソボルニル基、テトラヒドロジシクロペンタジエニル基、アダマンチル基、ジアダマンチル基、ビシクロ[2.2.2]オクチル基、デカヒドロナフチル基、モルホリル-4-イル基等の1価の脂環式基を有する構造、これらの脂環式基に対応する2価の脂環式基を有する構造等が挙げられる。
 なお、本明細書において、「脂環式構造」には、その一部にヘテロ原子(酸素原子、窒素原子等)を有する構造も含まれる。
 単官能(メタ)アクリルモノマーとして具体的には、下記一般式(1)で表される化合物又は下記一般式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)中、Rは置換基を有してもよい炭素数1~40の1価の炭化水素基又は前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基を表し、Rは水素原子又はメチル基を表す。Rで表される炭素数1~40の1価の炭化水素基は、不飽和二重結合を含んでいても、含んでいなくてもよい。
 Rで表される炭素数1~40の1価の炭化水素基又は前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基としては、炭素数1~40のアルキル基、アリール基、環状エーテル化合物に由来する基、ウレタン結合を有する基、これらの組み合わせ等が挙げられる。アルキル基は直鎖状、分岐状又は環状のいずれであってもよい。炭化水素基は、環状構造を有することが好ましい。Rで表される炭素数1~40の1価の炭化水素基の炭素数は、1~22が好ましく、4~12がより好ましい。
 Rで表される炭素数1~40の1価の炭化水素基は、無置換であっても置換基を有していてもよい。置換基としてはハロゲン原子、アミノ基、水酸基、カルボキシ基、エポキシ基等が挙げられる。置換基が炭素原子を含む場合、炭化水素基の炭素数にはこれを含まないものとする。
 上記一般式(4)中、R及びRはそれぞれ独立に、環構造を有してもよい炭素数1~40の1価の炭化水素基、前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基又は水素原子であり、R及びRは互いに結合して環を形成してもよく、Rは水素原子又はメチル基を表す。R及びRで表される炭素数1~40の1価の炭化水素基は、不飽和二重結合を含んでいても、含んでいなくてもよい。
 R及びRで表される炭素数1~40の1価の炭化水素基又は前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基としては、炭素数1~40のアルキル基、アリール基、環状エーテル化合物に由来する基、ヘテロアリール基、これらの組み合わせ等が挙げられる。アルキル基は直鎖状、分岐状又は環状のいずれであってもよい。R及びRで表される炭素数1~40の1価の炭化水素基の炭素数は、1~22が好ましく、4~12がより好ましい。炭化水素基は、炭素数2~6のアルキル基であるか、環状構造を有することが好ましく、R及びRが互いに結合して環を形成することが特に好ましい。R及びRが互いに結合して環を形成する場合、炭素数4~12の含窒素複素環を形成することが好ましく、炭素数4~12の含窒素かつ含酸素複素環を形成することが好ましい。R及びRのいずれか一方が炭素数2~6のアルキル基である場合、他方が水素原子であることが好ましい。また、R及びRが炭素数2~6のアルキル基である場合、アルキル基の炭素原子の一部が酸素原子に置き換えられていることが好ましい。
 R及びRで表される炭素数1~40の1価の炭化水素基は、それぞれ独立に無置換であっても置換基を有していてもよい。置換基としてはハロゲン原子、アミノ基、水酸基、カルボキシ基、エポキシ基等が挙げられる。置換基が炭素原子を含む場合、炭化水素基の炭素数にはこれを含まないものとする。これらのうち、R及びRがアルキル基である場合、置換基として水酸基を有することが好ましい。
 単官能(メタ)アクリルモノマーの具体例としては、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、4-(メタ)アクリロイルモルホリン、ラウリル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、2-ドデシル-1-ヘキサデカニル(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-コハク酸、2-[[(ブチルアミノ)カルボニル]オキシ]エチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート等が挙げられる。
 二官能(メタ)アクリルモノマーとして具体的には、下記一般式(2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)中、Rは置換基を有してもよい炭素数1~40の1価の炭化水素基又は前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基を表し、R及びRはそれぞれ独立に、水素原子又はメチル基を表す。Rで表される炭素数1~40の炭化水素基は、不飽和二重結合を含んでいても、含んでいなくてもよい。
 Rで表される炭素数1~40の1価の炭化水素基又は前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基としては、炭素数1~40のアルキレン基、アリーレン基、アルキレンオキシド基、ウレタン結合を有する基、これらの組み合わせ等が挙げられる。アルキレン基としては直鎖状、分岐状又は環状のアルキル基が挙げられる。Rで表される炭素数1~40の1価の炭化水素基の炭素数は、1~22が好ましく、1~16がより好ましく、4~12がさらに好ましい。
 Rで表される炭素数1~40の1価の炭化水素基は、無置換であっても置換基を有していてもよい。置換基としてはハロゲン原子、アミノ基、水酸基、カルボキシ基、エポキシ基等が挙げられる。置換基が炭素原子を含む場合、炭化水素基の炭素数にはこれを含まないものとする。
 二官能(メタ)アクリルモノマーの具体例としては、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、エトキシ化水添ビスフェノールAジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、ビスカルバミン酸ビス(2-メタクリロキシエチル)N,N’-1,9-ノニレン((メタ)アクリル酸ジウレタン)、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコージ(メタ)アクリレート等が挙げられる。
 硬化物の表面の滑沢性向上、硬化物の寸法精度向上、及び消失鋳造模型の精度向上の観点からは、光重合性成分として硬化物のガラス転移温度(Tg)が60℃超である(メタ)アクリルモノマーを含むことが好ましく、硬化物のTgが60℃超である単官能(メタ)アクリルモノマーを含むことがより好ましい。
 硬化物の体積膨張により生じる応力を緩和する観点からは、光重合成分として硬化物のTgが60℃以下である(メタ)アクリルモノマーを含むことが好ましく、硬化物のTgが30℃以下である(メタ)アクリルモノマーを含むことがより好ましく、硬化物のTgが0℃以下である(メタ)アクリルモノマーを含むことがさらに好ましい。
 硬化物の表面の滑沢性向上、硬化物の寸法精度向上、及び消失鋳造模型の精度向上と、硬化物の体積膨張により生じる応力緩和とを両立する観点からは、光重合性成分として、硬化物のTgが60℃以下である(メタ)アクリルモノマーと、硬化物のTgが60℃超である(メタ)アクリルモノマーとを併用することが好ましく、硬化物のTgが60℃以下である(メタ)アクリルモノマーと、硬化物のTgが60℃超である単官能(メタ)アクリルモノマーとを併用することがより好ましい。
 本開示において(メタ)アクリルモノマーの硬化物のTgとは、該当する(メタ)アクリルモノマーのみを光重合成分として用いて得られる硬化物のTgを意味する。
 硬化物のTgが60℃以下である単官能(メタ)アクリルモノマーとしては、ラウリル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、2-ドデシル-1-ヘキサデカニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-コハク酸、2-[[(ブチルアミノ)カルボニル]オキシ]エチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート等が挙げられる。
 硬化物のTgが60℃以下である二官能(メタ)アクリルモノマーとしては、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート等が挙げられる。
 硬化物のTgが60℃超の単官能(メタ)アクリルモノマーとしては、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、4-アクリロイルモルホリン等が挙げられる。
 硬化物のTgが60℃超の二官能(メタ)アクリルモノマーとしては、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、エトキシ化水添ビスフェノールAジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、ビスカルバミン酸ビス(2-メタクリロキシエチル)N,N’-1,9-ノニレン((メタ)アクリル酸ジウレタン)等が挙げられる。
 急速昇温時における硬化物の周囲に配置された材料の割れを抑制しつつ硬化物の表面の滑沢性を向上する観点からは、硬化性組成物は、光重合性成分として単官能(メタ)アクリルモノマーと、二官能(メタ)アクリルモノマーとを含むことが好ましい。この場合の両者の割合は特に制限されないが、単官能(メタ)アクリルモノマーと二官能(メタ)アクリルモノマーの質量比(単官能(メタ)アクリルモノマー:二官能(メタ)アクリルモノマー)が1:0.1~1:2の範囲内であることが好ましく、1:0.2~1:1.5の範囲内であることがより好ましく、1:0.3~1:0.8の範囲内であることがさらに好ましい。特に、単官能(メタ)アクリルモノマーとして、硬化物のガラス転移温度(Tg)が60℃超の単官能(メタ)アクリルモノマーを使用し、二官能(メタ)アクリルモノマーとして、硬化物のガラス転移温度(Tg)が60℃超の二官能(メタ)アクリルモノマーを使用した場合、両者の質量比が上記範囲内であることが好ましい。
 硬化性組成物は、必要に応じて(メタ)アクリルモノマー以外の光重合性成分を含んでもよい。このような光重合性成分としては、スチレン及びその誘導体、(メタ)アクリロニトリル等が挙げられる。
 硬化性組成物が(メタ)アクリルモノマー以外の光重合性成分を含む場合、光重合性成分全体に占める(メタ)アクリルモノマーの合計の割合が80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。
 硬化性組成物に含まれる光重合性成分の量は特に制限されないが、硬化物の表面の滑沢性を向上する観点からは、硬化性組成物100質量部に対する光重合性成分の含有量が18質量部以上であることが好ましく、28質量部以上であることがより好ましく、38質量部以上であることがさらに好ましく、40質量部以上であることがより一層好ましく、50質量部以上であることがさらに一層好ましく、60質量部以上であることが特に好ましい。
 一方、硬化性組成物がアルコールもしくはアルコール誘導体、熱可塑性成分又は硬化物のTgが60℃以下である(メタ)アクリルモノマーを含有する場合、これらの成分による応力の緩和効果を充分に得る観点からは、硬化性組成物100質量部に対する光重合性成分(硬化物のTgが60℃以下である(メタ)アクリルモノマーを除く)の含有量は97質量部未満であることが好ましく、92質量部未満であることがより好ましく、90質量部未満であることがより一層好ましく、87質量部未満であることがさらに好ましく、80質量部未満であることがさらに一層好ましく、75質量部未満であることが特に好ましい。
(アルコール又はアルコール誘導体)
 硬化性組成物に含まれうるアルコール又はアルコール誘導体は特に制限されず、1種のみでも2種以上であってもよい。
 急速な昇温条件下で加熱した際の周囲の材料の割れを抑制する観点からは、アルコール又はアルコール誘導体は、ポリオール(水酸基の数が2個以上であるアルコール)、モノアルコール(水酸基の数が1個であるアルコール)又はこれらの誘導体が好ましい。
 本開示において「アルコール誘導体」とは、アルコールが有する1つ以上の水酸基における水素原子が有機基に置換された構造を有するものを意味する。アルコール誘導体は、有機基に置換されていない水酸基を有していても、有していなくてもよい。
 また、エーテル結合を有さないポリオール、エーテル結合を1個有するポリオール、及びエーテル結合を2個以上有するポリオール(ポリエーテルポリオール)を「ポリオール」と総称し、その誘導体を「ポリオール誘導体」と称する場合がある。
 本開示において、アルコール又はアルコール誘導体に該当する化合物が光重合性成分にも該当する(例えば、アルコール又はアルコール誘導体が(メタ)アクリロイル基を有する)場合、当該化合物はアルコール又はアルコール誘導体に該当しないものとする。
 エーテル結合を有さないポリオールとしては、グリセリン、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール等が挙げられる。
 エーテル結合を1個有するポリオールとしては、ジグリセリン等が挙げられる。
 ポリエーテルポリオールとしては、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール、ポリ(オキシプロピレン)グリセロールトリエーテル(ポリプロピレングリコールのトリオール型)等のポリ(オキシアルキレン)グリセロールトリエーテル、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノブチルエーテル、ポリエチレングリコールモノドデシルエーテル等のポリ(オキシアルキレン)モノアルキルエーテル、ポリテトラメチレングリコール等が挙げられる。
 モノアルコールとしては、炭素数6~20のモノアルコールが挙げられる。中でも炭素数8~18のモノアルコールが好ましい。より具体的には、カプリルアルコール、ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、オレイルアルコール、及びリノリルアルコールが好ましい。
 アルコール誘導体(ポリオール誘導体又はモノアルコール誘導体)としては、アルコール(ポリオール又はモノアルコール、例えば、オキシアルキレン構造の数が7以上300以下であるポリエーテルアルコール)が有する1つ以上の水酸基の水素原子がアルキル基(特に、炭素数1~15のアルキル基)等の炭化水素基で置換された構造を有するもの、アルコールが有する1つ以上の水酸基の水素原子がカルボン酸、リン酸等と縮合してカルボン酸エステル、リン酸エステル等を形成しているもの等が挙げられる。
 ポリオール誘導体としては、ポリオールが末端に有する1つ以上の水酸基の水素原子がアルキル基(特に、炭素数1~15のアルキル基)基等の炭化水素基で置換された構造を有するものが好ましい。このようなポリオール誘導体としては、例えば、エチレングリコールジブチルエーテル(ジブチルグリコール)、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールジメチルエーテル、ポリエチレングリコールアルキルエーテル等のポリアルキレングリコールアルキルエーテル、ポリオキシアルキレンアルキルエーテル等が挙げられる。
 ポリエチレングリコールアルキルエーテルとしては、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールモノエチルエーテル、ポリエチレングリコールジエチルエーテル等が挙げられる。
 アルコール又はアルコール誘導体の重量平均分子量は、100以上20000未満、200以上10000未満であってもよい。硬化物の表面の滑沢性を向上できる観点で、アルコール又はアルコール誘導体の重量平均分子量は、200以上であることが好ましく、500以上であることがより好ましい。
 アルコール又はアルコール誘導体としては、ソルビタンオレエート、ソルビタントリオレエート等のソルビタン脂肪酸エステルもまた好ましい。
 アルコール又はアルコール誘導体としては、以下の一般式(3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(3)中、Rは、水素原子又は置換基を有してもよい炭素数1~20の1価の炭化水素基であり、Xは炭素数1~6の2価の炭化水素基であり、Yは炭素数1~20のm価の炭化水素基であり、nは0~300の整数であり、mは1~8の整数である。Xの数が2以上である場合、Xは同一であっても異なっていてもよく、Rの数が2以上である場合、Rは同一であっても異なっていてもよい。
 Rで表される炭素数1~20の1価の炭化水素基は、直鎖状、分岐状又は環状のいずれであってもよく、不飽和であっても飽和であってもよい。例えば、炭素数1~20のアルキル基、アリール基等が挙げられ、アルキル基が好ましい。Rで表される炭化水素基の炭素数は、1~12が好ましく、1~8がより好ましく、1~4がさらに好ましい。
 Rで表される炭素数1~20の1価の炭化水素基が有してもよい置換基としては、酸素原子含有基(オキソ基、アルコキシ基、水酸基等)、窒素原子含有基(アミノ基等)、硫黄原子含有基(チオール基等)、リン原子含有基(リン酸基等)、ハロゲン原子等が挙げられる。
 Rで表される炭素数1~20の1価の炭化水素基が有してもよい置換基は、水素原子、メチル基又は(メタ)アクリロイル基であることが好ましく、水素原子又はメチル基であることがより好ましい。
 Xで表される炭素数1~6の2価の炭化水素基は、直鎖状、分岐状又は環状のいずれであってもよく、不飽和であっても飽和であってもよい。Xとしては、炭素数1~6のアルキレン基が好ましく、エチレン基、プロピレン基又はテトラメチレン基がより好ましい。
 Yは炭素数1~20のm価の炭化水素基であり、直鎖状、分岐状又は環状のいずれであってもよく、不飽和であっても飽和であってもよい。
 mは1~8の範囲の整数であれば限定されないが、1~6が好ましく、1~4がより好ましく、1~3がさらに好ましい。
 mが3の場合、Yは1,2,3-プロパントリオール(グリセロール)から全ての水酸基を除いた残基であることが好ましい。mが2である場合、Yは炭素数1~6のアルキレン基であることが好ましく、エチレン基、プロピレン基又はテトラメチレン基であることがより好ましい。mが1である場合、Yは炭素数8~18の直鎖の炭化水素基であることが好ましい。
 nは、0~300の範囲であれば特に限定されないが、0~200の整数であることが好ましく、0又は3~150の整数であることがより好ましく、0又は5~100の整数であることがさらに好ましい。
 アルコール又はアルコール誘導体の分子量は特に制限されないが、重量平均分子量(Mw)が50以上10000未満であることが好ましく、150~9500であることがより好ましく、200~8000であることがさらに好ましく、400~4000であることがより一層好ましい。造形物の表面の滑沢性を向上する観点から、アルコール又はアルコール誘導体の分子量は大きい方が好ましい。
 本開示においてアルコール又はアルコール誘導体の重量平均分子量は、ポリスチレンを標準としてゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
 硬化性組成物に含まれるアルコール又はアルコール誘導体の量は特に制限されないが、硬化物の体積膨張により生じる応力の緩和効果を充分に得る観点からは、硬化性組成物100質量部に対するアルコール又はアルコール誘導体の含有量は5質量部以上であることが好ましく、9質量部以上であることがより好ましく、14質量部以上であることがさらに好ましい。一方、硬化物の表面の滑沢性を向上する観点からは、硬化性組成物100質量部に対するアルコール又はアルコール誘導体の含有量は60質量部未満であることが好ましく、40質量部未満であることがより好ましく、30質量部未満であることがさらに好ましい。
(熱可塑性成分)
 硬化性組成物に含まれうる熱可塑性成分は特に制限されず、1種のみでも2種以上であってもよい。本開示において熱可塑性成分とは、加熱すると軟化する性質を有する物質を意味する。
 硬化性組成物の硬化物の体積膨張により生じる応力の緩和効果を充分に得る観点からは、熱可塑性成分は軟化点が70℃~130℃であることが好ましく、80℃~120℃であることがより好ましく、85℃~110℃であることがさらに好ましい。
 本開示において熱可塑性成分の軟化点は、JIS K2207:2006に準拠して環球法で測定される値である。測定装置の例としては、メイテック社製の「ASP-MG」等が挙げられる。
 本開示における熱可塑性成分としては、例えば、熱可塑性樹脂が挙げられる。熱可塑性樹脂のうち、熱安定性の観点からは、炭化水素系ポリマー(炭素原子と水素原子のみからなるポリマー)であることが好ましい。炭化水素系ポリマーは、環式炭化水素基を含む(好ましくは、側鎖に含む)炭化水素系ポリマーであることがより好ましい。環式炭化水素基は不飽和であっても飽和であってもよいが、飽和環式炭化水素基であることが好ましい。
 炭化水素系ポリマーとして具体的には、キシレン樹脂、石油樹脂等の脂環族炭化水素樹脂及びその水素化物、テルペン系樹脂及びその水素化物、ポリイソプロピルトルエン及びその水素化物等が挙げられる。
 熱可塑性成分の分子量は特に制限されないが、重量平均分子量(Mw)が200以上10000未満であることが好ましく、300~9000であることがより好ましく、400~8000であることがさらに好ましい。
 本開示において熱可塑性成分の重量平均分子量は、ポリスチレンを標準としてゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
 硬化性組成物に含まれる熱可塑性成分の量は特に制限されないが、硬化物の体積膨張により生じる応力の緩和効果を充分に得る観点からは、硬化性組成物100質量部に対する熱可塑性成分の含有量は9質量部以上であることが好ましく、19質量部以上であることがより好ましく、24質量部以上であることがさらに好ましい。一方、硬化物の表面の滑沢性を向上する観点からは、硬化性組成物100質量部に対する熱可塑性成分の含有量は70質量部未満であることが好ましく、50質量部未満であることがより好ましく、40質量部未満であることがさらに好ましい。
(光重合開始剤)
 硬化性組成物に含まれる光重合開始剤は特に制限されず、1種のみでも2種以上であってもよい。具体的には、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、チタノセン化合物、オキシムエステル化合物、ベンゾイン化合物、アセトフェノン化合物、ベンゾフェノン化合物、チオキサントン化合物、α-アシロキシムエステル化合物、フェニルグリオキシレート化合物、ベンジル化合物、アゾ化合物、ジフェニルスルフィド化合物、鉄-フタロシアニン化合物、ベンソインエーテル化合物、アントラキノン化合物等が挙げられる。
 反応性の観点からは、光重合開始剤はアルキルフェノン系化合物及びアシルホスフィンオキサイド系化合物からなる群より選択される少なくとも1種を含むことが好ましい。特に、造形物の精度を向上させる観点から、アシルホスフィンオキサイド系化合物が好ましく、アシルホスフィンオキサイド系化合物のうち、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシドがより好ましい。
 硬化性組成物に含まれる光重合開始剤の量は、光重合性成分100質量部に対して0.1質量部~20質量部であることが好ましく、0.5質量部~10質量部であることがより好ましく、1質量部~5質量部であることがさらに好ましい。
 本開示の硬化性組成物は、急速昇温への耐久性(熱膨張時の応力緩和性)に優れるものであることが好ましい。具体的には、硬化性組成物を用いて得られる硬化物に対して後述する実施例に示す加熱試験を行ったときに、石膏(クリストバライト埋没剤(クラレノリタケデンタル株式会社製、クリストバライト FF-Ex))に割れ又は亀裂が生じないものであることが好ましい。
(その他の成分)
 硬化性組成物は、必要に応じて光重合性成分、アルコール又はアルコール誘導体、熱可塑性成分及び光重合開始剤以外の成分を含んでいてもよい。このような成分としては、充填剤、改質剤、安定剤、酸化防止剤、溶剤等が挙げられる。
(硬化性組成物の用途)
 本開示の硬化性組成物は、上述したように、これを用いて得られる硬化物を消失鋳造法で用いる消失模型として好適に使用することができる。
 硬化性組成物の硬化物の形状は特に制限されないが、消失鋳造法で用いる消失模型として使用する観点からは立体的な形状であることが好ましい。
 硬化性組成物を用いて立体的な形状の硬化物を得る方法としては、光造形法が挙げられる。具体的には、例えば、層状にした硬化性組成物にパターン状に紫外線を照射し、照射領域に硬化物層を形成する工程を繰り返すことで立体的な形状の硬化物を得ることができる。光造形法を実施するための装置は特に制限されず、3Dプリンター等を用いることができる。
 硬化性組成物を用いて得られる硬化物は、急速昇温しても周囲の材料の割れが抑制される。このため、石膏等の割れ易い材料からなる立体造形物を製造する場合に特に好適に使用される。得られる立体造形物は、消失模型が消失して形成された凹部に対応する形状の物品を作製するための鋳型としても用いることができる。具体的には、例えば、義歯、口腔内で使用される医療器具、歯顎モデル等を作製するための鋳型として好適に使用される。
<消失模型>
 本開示の消失模型は、上述した硬化性組成物の硬化物である。
 硬化性組成物の硬化物を得る方法は特に制限されず、硬化性組成物に含まれる各成分に応じて選択できる。消失模型が立体的な形状である場合、上述した光造形法によりこれを作製してもよい。
<立体造形物の製造方法>
 本開示の立体造形物の製造方法は、上述した硬化性組成物を用いて得られる硬化物の周囲に立体造形物の材料を配置する工程と、前記硬化物を加熱して消失させる工程と、を含む。
 上記方法によれば、立体造形物の製造工程における割れが抑制される。このため、石膏等の割れやすい材料を用いる立体造形物を製造する場合にも適している。また、硬化物を消失させるための加熱を急速な昇温条件で行っても割れが生じにくいため、立体造形物の製造効率に優れている。
 上記方法において使用する立体造形物の材料は特に制限されない。例えば、石膏、粘土、陶土、金属等の無機材料であっても、樹脂等の有機材料であっても、これらの組合せであってもよい。
 硬化物を加熱する際の環境は、硬化物が消失しうる条件であれば特に制限されず、大気中で行っても窒素、アルゴン等の不活性雰囲気中で行ってもよい。
 硬化物を加熱する際の温度は、硬化物が消失しうる温度であれば特に制限されない。例えば、石膏等の材料の種類に応じて、最高温度を650~2000℃の範囲内で設定して実施してもよい。
 硬化物を加熱する際の昇温速度は一定にしても、変化させてもよい。昇温速度は、例えば、最高速度を30℃/分以上50℃/分以下に設定してもよく、40℃/分以下に設定することが好ましい。
 上記方法で製造される立体造形物の用途は、特に制限されない。例えば、消失模型が消失して形成された凹部に対応する形状の物品を作製するための鋳型としても用いるものであってもよい。具体的には、例えば、義歯、口腔内で使用される医療器具、歯顎モデル等を作製するための鋳型として用いるものであってもよい。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものでない。
<硬化性組成物の調製>
 表1~6に示す材料を用いて硬化性組成物を調製した。表1~6に示す材料の詳細は、下記の通りである。
 表1~6に示される各成分の右側の欄の数値は、熱可塑性成分、アルコール又はアルコール誘導体、及び光重合性成分の合計100質量部に対する、各成分の質量部を示す。
 表1~6において「Mw」は該当する化合物の重量平均分子量を示し、「AEw」は(メタ)アクリロイル当量を示す。
 表1~6に示す(メタ)アクリロイル基含有量は、(メタ)アクリロイル基含有量(mol/g)に1,000を乗じた値である。
 表1~6に示す貯蔵弾性率の最低値は、25℃~300℃の範囲における貯蔵弾性率の最低値である。
 光重合性成分1:イソボルニルアクリレート(IBXA、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000006
 光重合性成分2:イソボルニルメタクリレート(IBX、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000007
 光重合性成分3:4-アクリロイルモルホリン(ACMO、富士フイルム和光純薬株式会社)
Figure JPOXMLDOC01-appb-C000008
 光重合性成分4:ジシクロペンタニルアクリレート(FA-513AS、日立化成株式会社)
Figure JPOXMLDOC01-appb-C000009
 光重合性成分5:ジシクロペンタニルメチルアクリレート(SR789、サートマー株式会社)
Figure JPOXMLDOC01-appb-C000010
 光重合性成分6:4-tert-ブチルシクロヘキシルアクリレート(tBCH、サートマー株式会社))
Figure JPOXMLDOC01-appb-C000011
 光重合性成分7:ラウリルアクリレート (LA、共栄社化学株式会社、Tg:-3℃)
Figure JPOXMLDOC01-appb-C000012
 光重合性成分8:4-ヒドロキシブチルアクリレート (4HBA、大阪有機化学株式会社、Tg:-40℃)
Figure JPOXMLDOC01-appb-C000013
 光重合性成分9:フェノキシエチレングリコールアクリレート (PO-A、新中村化学工業株式会社、Tg:-22℃)
Figure JPOXMLDOC01-appb-C000014
 光重合性成分10: 2-ドデシル-1-ヘキサデカニルアクリレート(DHD-A、共栄社化学株式会社、Tg:-23℃)
Figure JPOXMLDOC01-appb-C000015
 光重合性成分11:2-ヒドロキシエチルアクリレート(HOA(N)、共栄社化学株式会社、Tg:-15℃)
Figure JPOXMLDOC01-appb-C000016
 光重合性成分12:2-アクリロイロキシエチル-コハク酸(HOA-MS(N)、共栄社化学株式会社、Tg:-40℃)
Figure JPOXMLDOC01-appb-C000017
 光重合性成分13:2-[[(ブチルアミノ)カルボニル]オキシ]エチルアクリレート(BAA、シグマアルドリッチ、Tg:-20℃)
Figure JPOXMLDOC01-appb-C000018
 光重合性成分14:2-(2-エトキシエトキシ)エチルアクリレート(EEEA、東京化成工業株式会社、Tg:-54℃)
Figure JPOXMLDOC01-appb-C000019
 光重合性成分15:テトラヒドロフルフリルメタクリレート(THF(1000)、共栄社化学株式会社、Tg:60℃)
Figure JPOXMLDOC01-appb-C000020
 光重合性成分16:ジメチロール-トリシクロデカンジアクリレート(DCPA、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000021
 光重合性成分17:ジメチロール-トリシクロデカンジメタクリレート(DCP、新中村化学工業株式会社)
Figure JPOXMLDOC01-appb-C000022
 光重合性成分18:1,6-ヘキサンジオールジメタクリレート(1,6HX、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000023
 光重合性成分19:1,9-ノナンジオールジメタクリレート(A-NOD-N、新中村化学工業株式会社)
Figure JPOXMLDOC01-appb-C000024
 光重合性成分20:エチレングリコールジメタクリレート(EG、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000025
 光重合性成分21:トリエチレングリコールジメタクリレート(3EG、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000026
 光重合性成分22:エトキシ化ビスフェノールAジメタクリレート(EO=2.6mol)(BP2EM、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000027
 光重合性成分23:グリセリンジメタクリレート(G101P、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000028
 光重合性成分24:ジオキサングリコールジアクリレート(A-DOG、新中村化学工業株式会社)
Figure JPOXMLDOC01-appb-C000029
 光重合性成分25:ジエチレングリコールジアクリレート(FA-222、日立化成株式会社)
Figure JPOXMLDOC01-appb-C000030
 光重合性成分26:ジプロピレングリコールジアクリレート(APG-100、新中村化学工業株式会社)
Figure JPOXMLDOC01-appb-C000031
 光重合性成分27:トリエチレングリコールジメタクリレート(3EG-A、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000032
 光重合性成分28:エトキシ化水添ビスフェノールAジアクリレート(HBPE-4、EO=4mol、第一工業製薬株式会社)
Figure JPOXMLDOC01-appb-C000033
 光重合性成分29:2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(G201P、共栄社化学株式会社)
Figure JPOXMLDOC01-appb-C000034
 光重合性成分30:ウレタンメタクリレート(UDMA、富士フイルム和光純薬株式会社)
Figure JPOXMLDOC01-appb-C000035
 光重合性成分31:ポリエチレングリコール(400)ジアクリレート(FA-240A、日立化成株式会社、Tg:-25℃)
Figure JPOXMLDOC01-appb-C000036
 光重合性成分32:ポリプロピレングリコール(400)ジアクリレート(FA-P240A、日立化成株式会社、Tg:-8℃)
Figure JPOXMLDOC01-appb-C000037
 光重合性成分33:ポリプロピレングリコール(700)ジアクリレート(APG―700、新中村化学工業株式会社、Tg:-32℃)
Figure JPOXMLDOC01-appb-C000038
 光重合性成分34:エトキシ化ビスフェノールAジアクリレート(EO=10mol)(ABPE10、新中村化学工業株式会社、Tg:-12℃)
Figure JPOXMLDOC01-appb-C000039
 熱可塑性成分1:下記式で表される構造単位を有する炭化水素系ポリマー(無極性、軟化点:90℃、P90、荒川化学工業株式会社)
 熱可塑性成分2:下記式で表される構造単位を有する炭化水素系ポリマー(無極性、軟化点:140℃、P140、荒川化学工業株式会社)
 熱可塑性成分3:下記式で表される構造単位を有する炭化水素系ポリマー(芳香族極性、軟化点:90℃、M90、荒川化学工業株式会社)
Figure JPOXMLDOC01-appb-C000040
 熱可塑性成分4:下記式で表される構造単位を有する炭化水素系ポリマー(軟化点:100℃、k100、ヤスハラケミカル株式会社)
Figure JPOXMLDOC01-appb-C000041
 アルコール又はアルコール誘導体1:ポリエチレングリコール(PEG1000、重量平均分子量:1000、富士フイルム和光純薬株式会社)
 アルコール又はアルコール誘導体2:ポリエチレングリコール(PEG200、重量平均分子量:200、富士フイルム和光純薬株式会社)
 アルコール又はアルコール誘導体3:ポリエチレングリコール(PEG6000、重量平均分子量:6000、富士フイルム和光純薬株式会社)
Figure JPOXMLDOC01-appb-C000042
 アルコール又はアルコール誘導体4:ポリプロピレングリコール(PPG D1000、重量平均分子量:1000、富士フイルム和光純薬株式会社)
 アルコール又はアルコール誘導体5:ポリプロピレングリコール(PPG T700、重量平均分子量:700、富士フイルム和光純薬株式会社)
Figure JPOXMLDOC01-appb-C000043
 アルコール又はアルコール誘導体6:ポリテトラメチレングリコール(PTMG 650、重量平均分子量:650、富士フイルム和光純薬株式会社)
 アルコール又はアルコール誘導体7:ポリテトラメチレングリコール(PTMG 1000、重量平均分子量:1000、富士フイルム和光純薬株式会社)
 アルコール又はアルコール誘導体8:ポリテトラメチレングリコール(PTMG 2000、重量平均分子量:2000、富士フイルム和光純薬株式会社)
Figure JPOXMLDOC01-appb-C000044

 アルコール又はアルコール誘導体9:ポリエチレングリコールジメチルエーテル(PEGDM 250、重量平均分子量:250、富士フイルム和光純薬株式会社)
 アルコール又はアルコール誘導体10:ポリエチレングリコールジメチルエーテル(PEGDM 1000、重量平均分子量:1000、富士フイルム和光純薬株式会社)
Figure JPOXMLDOC01-appb-C000045
 アルコール又はアルコール誘導体11:グリセリン(富士フイルム和光純薬株式会社)
Figure JPOXMLDOC01-appb-C000046
 アルコール又はアルコール誘導体12:ジグリセリン(富士フイルム和光純薬株式会社)
Figure JPOXMLDOC01-appb-C000047
 アルコール又はアルコール誘導体13:ジブチルジグリコール(DBDG、日本乳化剤株式会社)
Figure JPOXMLDOC01-appb-C000048
 アルコール又はアルコール誘導体14:ラウリルアルコール(富士フイルム和光純薬株式会社)
Figure JPOXMLDOC01-appb-C000049
 アルコール又はアルコール誘導体15:ソルビタントリオレエート(ニューコール3-80、日本乳化剤株式会社)
 アルコール又はアルコール誘導体16:ソルビタンオレエート(ニューコール80、日本乳化剤株式会社)
 アルコール又はアルコール誘導体17:ポリオキシアルキレンアルキルエーテル(ニューコール2300-FE、日本乳化剤株式会社)
 アルコール又はアルコール誘導体18:ポリオキシアルキレンアルキルエーテル(ニューコール2309-FZ、日本乳化剤株式会社)
 光重合開始剤1:アシルホスフィンオキサイド系化合物(IrgacureTPO、BASF社(表1~6中ではTPOと表示))
Figure JPOXMLDOC01-appb-C000050
 光重合開始剤2:アミノアルキルフェノン系化合物(BASF社、Irgacure379(表1~6中では379と表示))
Figure JPOXMLDOC01-appb-C000051
 光重合開始剤3:アシルホスフィンオキサイド系化合物(BASF社、Irgacure819(表1~6中では819と表示))
Figure JPOXMLDOC01-appb-C000052
<造形物表面及び造形精度の評価>
 調製した硬化性組成物について、下記の造形性評価を行った。
 3Dプリンター(Kulzer社、Cara Print4.0)を用いて、幅20mm×高さ40mm×厚さ1mmのシートを、積層幅50μmとし、各層に波長405nmの可視光を11mJ/cm照射する条件で造形する。得られた造形物に対し、波長365nmの紫外線を3J/cmの条件で照射して造形物を本硬化させることにより、試験片の硬化物を得た。
 造形物表面の評価に関して、造形した試験片の表面状態が滑沢である場合は○、べとつきが見られる場合は×、べとつきはないが滑沢でない場合は△と評価した。
 造形精度の評価に関して、造形物の寸法が幅20mm±0.2mm×高さ40mm±0.2mm×厚さ1mm±0.05mmである場合は○、幅、高さ及び厚さのうち1つが上記条件を満たさない場合は△、幅、高さ及び厚さのうち2つ以上が上記条件を満たさない場合は×と評価した。結果を表1~6に示す。
<加熱試験>
 調製した硬化性組成物について、下記の加熱試験を実施した。
 3Dプリンター(Kulzer社、Cara Print4.0)を用いて、図1に示すような形状(球状部の直径:10mm、総高さ:48mm、ネック部((中央より下側に位置する直径が最も短い棒状の部分)の直径:3mm)の消失模型を、積層幅50μmとし、各層に波長405nmの可視光を11mJ/cm照射する条件で硬化性組成物から造形する。得られた造形物に対し、波長365nmの紫外線を3J/cmの条件で照射して造形物を本硬化させることにより、消失模型を得る。
 次いで、石膏(クリストバライト埋没剤(クラレノリタケデンタル株式会社、クリストバライト FF-Ex)と水とを重量比で石膏:水=100:35で混合して得た混合物に消失模型を埋没させ、30分間静置する(石膏の厚み:最薄部1mm(ネック部の外周部)、最厚部1cm(球状部の外周部))。その後、あらかじめ700℃に加熱した電気炉(ヤマト科学社、FO100)に消失模型を入れて、60分間加熱する。加熱終了後、石膏の状態を目視で確認し、割れ又は亀裂が確認できない場合、その硬化性組成物は急速昇温に対する耐久性を有すると判定する。なお、「割れ」とは、加熱終了後に一体であった石膏が複数部分に分かれることを意味し、その全部または一部が粉々に砕けることも含む。
 石膏に割れ又は亀裂が生じていない場合を「可」、石膏に割れ又は亀裂が生じた場合を「不可」として、結果を表1~6に示す。
<鋳造物評価(1)>
 上記加熱試験にて得られた加熱後の石膏に、鋳造機(Kulzer社、ヘラキャストIQ)を用いて、金銀パラジウム合金(ジーシー社、キャストウェルM.C.)を鋳造した。鋳造物の表面を目視で確認し、バリが生じていないものは○、バリがあるものの、鋳造物本体から測って0.5mm以下の大きさ場合は△、0.5mmを超える大きさのバリがあるものを×と評価した。結果を表1~6に示す。
<貯蔵弾性率の測定>
 比較例と実施例で調製した硬化性組成物を用いて得られた硬化物の貯蔵弾性率を下記の方法により測定し、25℃~300℃の範囲における最低値および25℃での値を調べた。結果を表1~6に示す。
 3Dプリンター(Kulzer社、Cara Print4.0)を用い、測定対象の硬化性組成物を用いて30mm×1.5mm×1mmの試験片を、積層幅50μmとし、各層に波長405nmの可視光を11mJ/cm照射する条件で造形する。得られた試験片に対し、波長365nmの紫外線を3J/cmの条件で照射して硬化性組成物を本硬化させることにより、試験片の硬化物を得る。得られた試験片の硬化物を、動的粘弾性測定装置(アイティー計測制御製、DVA-225)にて、25℃~300℃まで3℃/minの速度で昇温しながら、測定周波数1Hzで貯蔵弾性率を測定し、その変化を確認する。この変化する貯蔵弾性率における最も低い値を、貯蔵弾性率の最低値とする。
Figure JPOXMLDOC01-appb-T000053

 
Figure JPOXMLDOC01-appb-T000054

 
 
Figure JPOXMLDOC01-appb-T000055

 
Figure JPOXMLDOC01-appb-T000056

 
Figure JPOXMLDOC01-appb-T000057

 
Figure JPOXMLDOC01-appb-T000058

 
 表1~6に示すように、比較例の硬化性組成物の硬化物は加熱試験を行うと周囲の石膏が割れたのに対し、実施例の硬化性組成物を用いて得られた硬化物は加熱試験を行っても周囲の石膏が割れなかった。
 表1~6に示すように、比較例で調製した硬化性組成物を用いて得られた硬化物の25℃~300℃の範囲における貯蔵弾性率の最低値は1.20×10Paを超えていたのに対し、実施例で調製した硬化性組成物を用いて得られた硬化物の25℃~300℃の範囲における貯蔵弾性率の最低値は1.20×10Pa以下であった。このことから、硬化物の25℃~300℃の範囲における貯蔵弾性率の最低値を1.20×10Pa以下とすることで、熱試験を行っても周囲の石膏が割れにくくなることがわかった。
 実施例5と6、実施例46と47の硬化組成物をそれぞれ比較すると、熱可塑性成分やアルコールの含有量が相対的に少ない実施例6や実施例46の硬化組成物の方が、造形物表面状態の評価結果が良かった。このことから、熱可塑性成分、アルコール等の成分の含有量が少なく、(メタ)アクリルモノマーの含有量が多い方が造形物表面の滑沢性を向上できることがわかった。
 また、単官能モノマーとしてイソボルニルアクリレートを含む実施例12の硬化性組成物と、単官能モノマーとしてイソボルニルメタクリレートを含む実施例20の硬化性組成物とを比較すると、実施例12の硬化性組成物の方が造形物表面状態の評価結果が良かった。このことから、単官能モノマーとしてアクリルモノマーを含む方が、造形物の表面状態を滑沢にできることがわかった。
 また、表1~6の各実施例を比較したところ、25℃における貯蔵弾性率が1.40×10Pa以上の硬化性組成物の方が、25℃における貯蔵弾性率が1.40×10Pa未満の硬化性組成物より、造形精度の評価が良い傾向にあった。このことから、25℃における貯蔵弾性率が高い方が、造形精度が向上することがわかった。
 また、二官能モノマーを含まない実施例2は25℃における貯蔵弾性率が1.40×10Pa以上であるにもかかわらず、他の二官能モノマーを含む実施例と比較して、造形精度の評価が良くなかった。このことから、二官能モノマーを含むことで、造形精度が向上することがわかった。
 また、光重合開始剤としてTPOを含む実施例6の硬化性組成物と光重合開始剤として379を含む実施例8の硬化性組成物を比較したところ、実施例6の硬化性組成物の方が造形精度の評価が高かった。このことから、光重合開始剤としてTPOを用いた方が、造形精度が向上することがわかった。
 また、表1~6の各実施例を比較したところ、硬化性組成物が熱可塑性成分を含む場合、硬化物の25℃~300℃の範囲における最低値が5.45×10Pa以下である方が、鋳造物の評価が高い傾向にあった。
 また、硬化性組成物がアルコールもしくはアルコール誘導体又は硬化物のTgが60℃以下である(メタ)アクリルモノマーを含む場合、硬化物の25℃~300℃の範囲における最低値が8.00×10Pa以下である方が、鋳造物の評価が高い傾向にあった。
 このことから、硬化物の25℃~300℃の範囲における最低値が低い方が、鋳造物精度が高くなることがわかった。
<鋳造物評価(2)>
 上述した鋳造試験で得られた実施例6、50、78の鋳造物に3Dスキャナー用スプレー(HELLING社、 3-D Anti Glare Spray)を噴霧し、乾燥させた後、3Dスキャナー(Kulzer社、Cara DS Scan 3.2)を用いて3Dスキャンし、鋳造物の形状を3Dデータ化した。3Dデータ編集ソフト(3D Systems社、Geomagic Design X)のスキャンデータの位置合わせ機能を用い、得られた鋳造物の3Dデータと、図1に示す形状の3Dデータとの間の形状差を標準偏差(μm)として算出した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000059
 実施例6、50、78の硬化性組成物は、いずれも光重合性成分としてイソボルニルアクリレートとジメチロール-トリシクロデカンジアクリレートを含む点で共通するが、実施例6は熱可塑性成分(具体的には、炭化水素系ポリマー)を含み、実施例50はアルコール(具体的には、ポリアルキレングリコール)を含み、実施例78は光重合性成分として硬化物のTgが60℃以下である2-ヒドロキシエチルアクリレート(Tg:-15℃)を含んでいる点が異なる。
 表7に示すように、実施例50が最も標準偏差の値が小さかった。このことから、アルコール又はアルコール誘導体を含有する硬化性組成物は、熱可塑性成分又は硬化物のTgが低い単官能モノマーを含有する硬化性組成物に比べて鋳造物の精度に優れていることがわかった。

Claims (22)

  1.  光重合性成分と、光重合開始剤とを含有する光造形用硬化性組成物であって、
     前記光造形用硬化性組成物の硬化物の25℃~300℃の範囲における貯蔵弾性率の最低値が1.20×10Pa以下である、光造形用硬化性組成物。
  2.  前記光造形用硬化性組成物の硬化物の75℃~200℃の範囲における貯蔵弾性率の最低値が1.20×10Pa以下である、請求項1に記載の光造形用硬化性組成物。
  3.  前記光造形用硬化性組成物の硬化物の25℃における貯蔵弾性率が1.0×10Pa超である、請求項1または請求項2に記載の光造形用硬化性組成物。
  4.  (メタ)アクリロイル基の含有量が1.0×10-3mol/g以上6.5×10-3mol/g以下である、請求項1~請求項3のいずれか1項に記載の光造形用硬化性組成物。
  5.  前記光重合性成分が、脂環式構造を有する(メタ)アクリルモノマーを含む、請求項1~請求項4のいずれか1項に記載の光造形用硬化性組成物。
  6.  前記光重合性成分が、硬化物のガラス転移温度(Tg)が60℃以下である(メタ)アクリルモノマーを含む、請求項1~請求項5のいずれか1項に記載の光造形用硬化性組成物。
  7.  前記光重合性成分が単官能(メタ)アクリルモノマーを含む、請求項1~請求項6のいずれか1項に記載の光造形用硬化性組成物。
  8.  前記単官能(メタ)アクリルモノマーが脂環式構造を有する単官能(メタ)アクリルモノマーを含む、請求項7に記載の光造形用硬化性組成物。
  9.  前記光重合成分が、硬化物のガラス転移温度(Tg)が60℃超であり、かつ脂環式構造を有する単官能(メタ)アクリルモノマーを含む、請求項1~請求項8のいずれか1項に記載の光造形用硬化性組成物。
  10.  前記光重合性成分が二官能(メタ)アクリルモノマーを含む、請求項7又は請求項8に記載の光造形用硬化性組成物。
  11.  前記単官能(メタ)アクリルモノマーと前記二官能(メタ)アクリルモノマーとの質量比が1:0.1~1:0.8の範囲内である、請求項10に記載の光造形用硬化性組成物。
  12.  前記光重合性成分が二官能(メタ)アクリレートと脂環式構造を有する単官能(メタ)アクリルモノマーとを含み、
     前記光造形用硬化性組成物がポリアルキレングリコールを含む、請求項1~請求項3のいずれか1項に記載の光造形用硬化性組成物。
  13.  アルコール又はアルコール誘導体を含む、請求項1~請求項11のいずれか1項に記載の光造形用硬化性組成物。
  14.  前記アルコール又はアルコール誘導体が以下の一般式(3)で表される化合物を含む、請求項13に記載の光造形用硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
       (3)
     上記一般式(3)中、Rは、水素原子又は置換基を有してもよい炭素数1~20の1価の炭化水素基であり、Xは炭素数1~6の2価の炭化水素基であり、Yは炭素数1~20のm価の炭化水素基であり、nは0~300の整数であり、mは1~8の整数である。Xの数が2以上である場合、Xは同一であっても異なっていてもよく、Rの数が2以上である場合、Rは同一であっても異なっていてもよい。
  15.  硬化性組成物100質量部に対する前記アルコール又はアルコール誘導体の含有量は5質量部以上60質量部未満である、請求項13または請求項14に記載の光造形用硬化性組成物。
  16.  光重合性成分と、アルコール又はアルコール誘導体と、光重合開始剤とを含有し、下記(1)及び(2)の少なくとも一方を満たす、光造形用硬化性組成物。
     (1)(メタ)アクリロイル基の含有量が6.5×10-3mol/g以下である
     (2)前記光重合性成分が単官能(メタ)アクリルモノマーを含む、光造形用硬化性組成物。
  17.  熱可塑性成分を含む、請求項1~請求項16のいずれか1項に記載の光造形用硬化性組成物。
  18.  前記熱可塑性成分が炭化水素系ポリマーを含む、請求項17に記載の光造形用硬化性組成物。
  19.  (メタ)アクリロイル基の含有量が1.0×10-3mol/g以上5.1×10-3mol/g以下である、請求項17または請求項18に記載の光造形用硬化性組成物。
  20.  消失模型鋳造法の消失模型として使用するための、請求項1~請求項19のいずれか1項に記載の光造形用硬化性組成物。
  21.  請求項1~請求項20のいずれか1項に記載の光造形用硬化性組成物の硬化物である消失模型。
  22.  請求項1~請求項20のいずれか1項に記載の光造形用硬化性組成物を用いて得られる硬化物の周囲に立体造形物の材料を配置する工程と、
     前記硬化物を加熱して消失させる工程と、を含む、立体造形物の製造方法。
PCT/JP2019/013778 2018-03-30 2019-03-28 光造形用硬化性組成物、消失模型及び立体造形物の製造方法 WO2019189652A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980021618.7A CN111936525B (zh) 2018-03-30 2019-03-28 光造型用固化性组合物、消失模型及立体造型物的制造方法
US16/970,523 US20200377637A1 (en) 2018-03-30 2019-03-28 Curable composition for stereolithography, evaporative pattern, and method for producing three-dimensional article
JP2019551485A JP6688941B2 (ja) 2018-03-30 2019-03-28 光造形用硬化性組成物、消失模型及び立体造形物の製造方法
EP19778340.0A EP3753957B1 (en) 2018-03-30 2019-03-28 Photolithographic curable composition, evaporative pattern, and method for producing three dimensional shaped article
KR1020207026551A KR102667943B1 (ko) 2018-03-30 2019-03-28 광조형용 경화성 조성물, 소실 모형 및 입체 조형물의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018069092 2018-03-30
JP2018069093 2018-03-30
JP2018-069092 2018-03-30
JP2018-069093 2018-03-30
JP2018223467 2018-11-29
JP2018-223467 2018-11-29

Publications (1)

Publication Number Publication Date
WO2019189652A1 true WO2019189652A1 (ja) 2019-10-03

Family

ID=68060166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013778 WO2019189652A1 (ja) 2018-03-30 2019-03-28 光造形用硬化性組成物、消失模型及び立体造形物の製造方法

Country Status (6)

Country Link
US (1) US20200377637A1 (ja)
EP (1) EP3753957B1 (ja)
JP (1) JP6688941B2 (ja)
CN (1) CN111936525B (ja)
TW (1) TW201942238A (ja)
WO (1) WO2019189652A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203981A1 (ja) 2019-03-29 2020-10-08 三井化学株式会社 光硬化性組成物、硬化物及び歯科用製品
WO2021149520A1 (ja) 2020-01-22 2021-07-29 三井化学株式会社 光硬化性組成物、立体造形物、及び歯科用製品
WO2021193527A1 (ja) 2020-03-27 2021-09-30 三井化学株式会社 光硬化性組成物、硬化物、及び歯科用製品
WO2021193962A1 (ja) 2020-03-26 2021-09-30 三井化学株式会社 光硬化性組成物、立体造形物、及び歯科用製品
WO2022009880A1 (ja) 2020-07-07 2022-01-13 三井化学株式会社 光硬化性組成物、立体造形物、及び歯科用製品
JP7011741B1 (ja) 2021-02-04 2022-02-10 第一工業製薬株式会社 光硬化性樹脂組成物および鋳型作製用の樹脂型
WO2022097667A1 (ja) * 2020-11-05 2022-05-12 Dic株式会社 光硬化性樹脂組成物、硬化物、樹脂造形物、及び鋳型の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778914B (zh) * 2021-01-21 2023-01-20 杭州华圩新材料科技有限公司 一种高性能触摸屏钢化膜用紫外光固化胶粘剂及其制备方法
CN117280002A (zh) * 2021-05-07 2023-12-22 巴斯夫欧洲公司 产生用于3d光聚合物喷射的支撑子结构的可辐射固化组合物
WO2024081115A1 (en) * 2022-10-11 2024-04-18 Henkel Ag & Co., Kgaa Photocurable compositions for three-dimensional investment pattern casting and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036825A (ja) * 2004-07-23 2006-02-09 Jsr Corp 光硬化性液状樹脂組成物
JP2015038166A (ja) * 2013-08-19 2015-02-26 電気化学工業株式会社 光造形用(メタ)アクリル系樹脂組成物及び支持体の製造方法
JP6271772B2 (ja) 2015-02-03 2018-01-31 三井化学株式会社 光硬化性組成物、義歯床及び有床義歯
JP2018039962A (ja) * 2016-09-09 2018-03-15 Kjケミカルズ株式会社 (メタ)アクリルアミド変性ポリロタキサン

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890990B2 (ja) * 2010-11-01 2016-03-22 株式会社キーエンス インクジェット光造形法における、光造形品形成用モデル材、光造形品の光造形時の形状支持用サポート材および光造形品の製造方法
WO2013089091A1 (ja) * 2011-12-16 2013-06-20 リンテック株式会社 硬化性樹脂組成物、硬化性樹脂成形体、硬化樹脂成形体及びそれらの製造方法、並びに積層体
US9680129B2 (en) * 2013-02-22 2017-06-13 Konica Minolta, Inc. Method for manufacturing organic light emitting element including light extracting layer formed by irradiating coating solution
JP6435675B2 (ja) * 2014-07-14 2018-12-12 東洋インキScホールディングス株式会社 光学的立体造形用樹脂組成物、及び立体造形物
EP3235630B1 (en) * 2014-12-16 2020-08-19 FUJIFILM Corporation Actinic-ray-curable inkjet ink composition for 3d printing, three-dimensional modeling method, and actinic-ray-curable inkjet ink set for 3d printing
WO2016143559A1 (ja) * 2015-03-10 2016-09-15 コニカミノルタ株式会社 立体造形用インク組成物、インクセットおよび立体造形物の製造方法
US9790381B2 (en) * 2015-05-08 2017-10-17 Ricoh Company, Ltd. Active energy ray curable composition, stereoscopic modeling material, active energy ray curable ink, inkjet ink, active energy ray curable composition container, two-dimensional or three-dimensional image forming apparatus, two-dimensional or three-dimensional image forming method, cured product, and processed product
JP2017025124A (ja) * 2015-07-15 2017-02-02 株式会社リコー 活性エネルギー線硬化型組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036825A (ja) * 2004-07-23 2006-02-09 Jsr Corp 光硬化性液状樹脂組成物
JP2015038166A (ja) * 2013-08-19 2015-02-26 電気化学工業株式会社 光造形用(メタ)アクリル系樹脂組成物及び支持体の製造方法
JP6271772B2 (ja) 2015-02-03 2018-01-31 三井化学株式会社 光硬化性組成物、義歯床及び有床義歯
JP2018039962A (ja) * 2016-09-09 2018-03-15 Kjケミカルズ株式会社 (メタ)アクリルアミド変性ポリロタキサン

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203981A1 (ja) 2019-03-29 2020-10-08 三井化学株式会社 光硬化性組成物、硬化物及び歯科用製品
WO2021149520A1 (ja) 2020-01-22 2021-07-29 三井化学株式会社 光硬化性組成物、立体造形物、及び歯科用製品
WO2021193962A1 (ja) 2020-03-26 2021-09-30 三井化学株式会社 光硬化性組成物、立体造形物、及び歯科用製品
WO2021193527A1 (ja) 2020-03-27 2021-09-30 三井化学株式会社 光硬化性組成物、硬化物、及び歯科用製品
JPWO2021193527A1 (ja) * 2020-03-27 2021-09-30
JP7412535B2 (ja) 2020-03-27 2024-01-12 三井化学株式会社 光硬化性組成物、硬化物、及び歯科用製品
CN115348981A (zh) * 2020-03-27 2022-11-15 三井化学株式会社 光固化性组合物、固化物和牙科用制品
WO2022009880A1 (ja) 2020-07-07 2022-01-13 三井化学株式会社 光硬化性組成物、立体造形物、及び歯科用製品
JP7327682B2 (ja) 2020-11-05 2023-08-16 Dic株式会社 光硬化性樹脂組成物、硬化物、樹脂造形物、及び鋳型の製造方法
WO2022097667A1 (ja) * 2020-11-05 2022-05-12 Dic株式会社 光硬化性樹脂組成物、硬化物、樹脂造形物、及び鋳型の製造方法
JPWO2022097667A1 (ja) * 2020-11-05 2022-05-12
JP7011741B1 (ja) 2021-02-04 2022-02-10 第一工業製薬株式会社 光硬化性樹脂組成物および鋳型作製用の樹脂型
JP2022119652A (ja) * 2021-02-04 2022-08-17 第一工業製薬株式会社 光硬化性樹脂組成物および鋳型作製用の樹脂型

Also Published As

Publication number Publication date
JP6688941B2 (ja) 2020-04-28
EP3753957A4 (en) 2021-03-31
US20200377637A1 (en) 2020-12-03
JPWO2019189652A1 (ja) 2020-04-30
TW201942238A (zh) 2019-11-01
CN111936525B (zh) 2023-09-01
EP3753957B1 (en) 2023-09-06
KR20200121341A (ko) 2020-10-23
EP3753957A1 (en) 2020-12-23
CN111936525A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2019189652A1 (ja) 光造形用硬化性組成物、消失模型及び立体造形物の製造方法
WO2018143305A1 (ja) 光造形用インクセット、光造形品、及び、光造形品の製造方法
WO2017061446A1 (ja) 光硬化性組成物、義歯床及び有床義歯
JP2010155889A (ja) 光硬化性液状樹脂組成物およびインクジェット光造形法による支持体の製造方法
JP6468355B2 (ja) 樹脂組成物及びそれを用いた立体造形物
US20130139963A1 (en) Photo-curable resin composition and method for preparing of replica mold using the same
JPWO2014136731A1 (ja) 組成物、樹脂モールド、光インプリント方法、光学素子の製造方法、及び電子素子の製造方法
JP2001302744A5 (ja)
JP2001302744A (ja) 活性エネルギー線硬化性組成物
TWI818111B (zh) 光硬化性樹脂組成物及樹脂硬化物
KR102667943B1 (ko) 광조형용 경화성 조성물, 소실 모형 및 입체 조형물의 제조 방법
JP7213660B2 (ja) 硬化性樹脂組成物および硬化物
WO2020235628A1 (ja) 光学的立体造形用樹脂組成物
JP4315507B2 (ja) 耐熱性に優れる光硬化性樹脂組成物
US20220282025A1 (en) Resin composition and resin cured product
JP4007704B2 (ja) 光学的立体造形用の光硬化性樹脂組成物
JP7199611B2 (ja) 光硬化性樹脂組成物および三次元光造形物
JP2023520231A (ja) 硬化性液体組成物から調製された弾性材料
WO2017033970A1 (ja) デバイスの製造方法及び組成物
US20220177624A1 (en) Polymer networks with unique properties
WO2022009880A1 (ja) 光硬化性組成物、立体造形物、及び歯科用製品
JP2023544259A (ja) デュアルキュアエポキシインクジェット組成物
JP2024060129A (ja) モデル材用樹脂組成物
WO2022210664A1 (ja) インプリント用硬化性組成物、パターン形成方法及び部品の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019551485

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207026551

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019778340

Country of ref document: EP

Effective date: 20200916