WO2021193527A1 - 光硬化性組成物、硬化物、及び歯科用製品 - Google Patents

光硬化性組成物、硬化物、及び歯科用製品 Download PDF

Info

Publication number
WO2021193527A1
WO2021193527A1 PCT/JP2021/011703 JP2021011703W WO2021193527A1 WO 2021193527 A1 WO2021193527 A1 WO 2021193527A1 JP 2021011703 W JP2021011703 W JP 2021011703W WO 2021193527 A1 WO2021193527 A1 WO 2021193527A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable composition
group
acrylic monomer
meth
test piece
Prior art date
Application number
PCT/JP2021/011703
Other languages
English (en)
French (fr)
Inventor
俊一 酒巻
万依 木村
博紀 村井
孝曉 林
卓 遠藤
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202180023759.XA priority Critical patent/CN115348981A/zh
Priority to EP21777176.5A priority patent/EP4112665A4/en
Priority to JP2022510478A priority patent/JP7412535B2/ja
Priority to US17/912,098 priority patent/US11866527B2/en
Publication of WO2021193527A1 publication Critical patent/WO2021193527A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0019Production methods using three dimensional printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/62Photochemical radical initiators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5397Phosphine oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate

Definitions

  • the present disclosure relates to photocurable compositions, cured products, and dental products.
  • Patent Document 1 discloses a composition that can be used for stereolithography of a denture base and an artificial tooth, and Examples of Patent Document 1 include a composition containing urethane dimethacrylate, diethylene glycol dimethacrylate, and the like. The thing is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-525150
  • a cured product of a photocurable composition for example, a stereolithographic product
  • a dental product for example, a medical instrument used in the oral cavity (for example, a partial denture)
  • the cured product may crack when it is fitted into the oral cavity. Therefore, crack resistance (that is, resistance to cracking) may be required for the cured product of the photocurable composition used as a dental product. In addition, crack resistance may be required for a cured product of a photocurable composition used for applications other than dental products.
  • An object of one aspect of the present disclosure is to provide a photocurable composition capable of producing a cured product having excellent crack resistance (that is, resistance to cracking), and a cured product having excellent crack resistance and a dental product. ..
  • the means for solving the above problems include the following aspects. ⁇ 1> A photocurable composition containing a photopolymerizable component and a photopolymerization initiator. By irradiating the photocurable composition with visible light having a wavelength of 405 nm at an irradiation amount of 12 mJ / cm 2, a cured layer P1 having a thickness of 100 ⁇ m is formed, and the cured layer P1 is laminated in the thickness direction.
  • a rectangular shaped object P1 having a length of 39 mm, a width of 8 mm, and a thickness of 4 mm is formed, and the formed object P1 is subjected to optical modeling under the condition of irradiating the modeled object P1 with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 10 J / cm 2.
  • the total destruction work of the test piece P1 measured in accordance with ISO20795-1: 2008 is 1100 J / m 2 or more. be, Photocurable composition.
  • the photocurable composition is irradiated with visible light having a wavelength of 405 nm at an irradiation amount of 12 mJ / cm 2, to form a cured layer P2 having a thickness of 100 ⁇ m, and the cured layer P2 is laminated in the thickness direction.
  • a rectangular shaped object P2 having a length of 64 mm, a width of 10 mm, and a thickness of 3.3 mm is formed, and the molded object P2 is irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 10 J / cm 2 .
  • the photocurable composition is irradiated with visible light having a wavelength of 405 nm at an irradiation amount of 12 mJ / cm 2, to form a cured layer P2 having a thickness of 100 ⁇ m, and the cured layer P2 is laminated in the thickness direction.
  • a rectangular shaped object P2 having a length of 64 mm, a width of 10 mm, and a thickness of 3.3 mm is formed, and the molded object P2 is irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 10 J / cm 2 .
  • the bending strength of the test piece P2 measured in accordance with ISO20795-1: 2008 is determined. 70 MPa or less, The photocurable composition according to ⁇ 1> or ⁇ 2>.
  • the photopolymerizable component is A di (meth) acrylic monomer (A) having two (meth) acryloyloxy groups and two urethane bonds, and An acrylic monomer (B) having one acryloyl group and including,
  • ⁇ 5> The ratio of the number of acryloyl groups to the total number of acryloyl groups and methacryloyl groups in the photocurable composition is 40% or more.
  • ⁇ 6> The photocurable composition according to ⁇ 4> or ⁇ 5>, wherein the di (meth) acrylic monomer (A) contains a compound represented by the following formula (1).
  • R 1 is a divalent chain hydrocarbon group, a divalent hydrocarbon group having an aromatic structure, or a divalent hydrocarbon group having an alicyclic structure.
  • R 2 and R 3 are divalent chain hydrocarbon groups that may independently have substituents, respectively.
  • R 4 and R 5 are each independently a methyl group or a hydrogen atom.
  • R 1 is a divalent hydrocarbon group having 6 to 12 carbon atoms having an aromatic structure or a divalent hydrocarbon group having 6 to 12 carbon atoms having an alicyclic structure.
  • the R 2 and the R 3 are independently divalent chain hydrocarbon groups having 2 to 6 carbon atoms and having no substituents.
  • the acrylic monomer (B) contains at least one of a compound represented by the following formula (2) and a compound represented by the following formula (3).
  • R 6 is a monovalent organic group which may have a ring structure.
  • R 7 and R 8 are monovalent organic groups or hydrogen atoms that may independently have a ring structure, and R 7 and R 8 are bonded to each other to form a ring. You may.
  • the acrylic monomer (B) contains a compound represented by the formula (2).
  • the R 6 is a monovalent organic group having a ring structure and having 6 to 20 carbon atoms.
  • ⁇ 10> The photocurable composition according to any one of ⁇ 4> to ⁇ 9>, wherein the di (meth) acrylic monomer (A) has a weight average molecular weight of 380 to 4000.
  • ⁇ 11> The photocurable composition according to any one of ⁇ 4> to ⁇ 10>, wherein the acrylic monomer (B) has a weight average molecular weight of 130 to 320.
  • the content of the di (meth) acrylic monomer (A) is 200 parts by mass or more and 850 parts by mass with respect to the total content of the (meth) acrylic monomer component contained in the photocurable composition of 1000 parts by mass.
  • the total content of the di (meth) acrylic monomer (A) and the acrylic monomer (B) is reduced to 1000 parts by mass of the total content of the (meth) acrylic monomer component contained in the photocurable composition. On the other hand, it is 800 parts by mass or more.
  • ⁇ 14> The viscosity measured by an E-type viscometer under the conditions of 25 ° C. and 50 rpm is 20 mPa ⁇ s to 5000 mPa ⁇ s.
  • ⁇ 15> A photocurable composition for stereolithography.
  • ⁇ 16> The cured product of the photocurable composition according to any one of ⁇ 1> to ⁇ 15>.
  • ⁇ 17> A dental product containing the cured product according to ⁇ 16>.
  • ⁇ 18> The dental product according to ⁇ 17>, which is a medical device used in the oral cavity.
  • a photocurable composition capable of producing a cured product having excellent crack resistance (that is, resistance to cracking), and a cured product having excellent crack resistance and a dental product are provided.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the amount of each component contained in the composition is the sum of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means quantity.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • "light” is a concept including active energy rays such as ultraviolet rays and visible rays.
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acryloyl means acryloyl or methacryloyl
  • (meth) acrylic means acrylic or methacrylic.
  • the photocurable composition of the present disclosure is a photocurable composition containing a photopolymerizable component and a photopolymerization initiator.
  • the photocurable composition is irradiated with visible light having a wavelength of 405 nm at an irradiation amount of 12 mJ / cm 2, to form a cured layer P1 having a thickness of 100 ⁇ m, and the cured layer P1 is laminated in the thickness direction to form a length.
  • a rectangular shaped object P1 having a length of 39 mm, a width of 8 mm, and a thickness of 4 mm is formed, and the modeled object P1 is irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 10 J / cm 2.
  • the total destruction work of the test piece P1 measured in accordance with ISO20795-1: 2008 is 1100 J / m 2 or more. It is a photocurable composition.
  • the production conditions for producing a cured product using the photocurable composition of the present disclosure are not particularly limited, and are not necessarily the same as the production conditions for the test piece P1. Even when the production conditions of the cured product and the production conditions of the test piece P1 are different, there is a correlation between the total fracture work of the test piece P1 and the crack resistance of the cured product. That is, the total destruction work of the test piece P1 is an index of crack resistance of the cured product produced by using the photocurable composition of the present disclosure.
  • the photocurable composition of the present disclosure is preferably a photocurable composition for stereolithography, in other words, a cured product produced by using the photocurable composition of the present disclosure is preferably. It is a stereolithographic object (that is, a cured product by stereolithography).
  • Stereolithography is a method of obtaining a cured product (that is, a stereolithographic product) by laminating the cured layers by repeating the operation of irradiating the photocurable composition with light to form a cured layer.
  • the stereolithography may be an inkjet type stereolithography or a liquid tank type stereolithography (that is, a liquid tank stereolithography). From the viewpoint that the effect of the photocurable composition of the present disclosure is more effectively exhibited, the stereolithography is preferably a liquid tank type stereolithography.
  • droplets of a photocurable composition are ejected from an inkjet nozzle onto a base material, and the droplets adhering to the base material are irradiated with light to obtain a cured product.
  • the photocurable composition is ejected from the inkjet nozzle to the substrate while scanning the head provided with the inkjet nozzle and the light source in a plane, and the ejected photocurable composition.
  • An object is irradiated with light to form a cured layer, and these operations are repeated to sequentially stack the cured layers to obtain a cured product (that is, a photo-shaped product).
  • the liquid tank type stereolithography a part of the photocurable composition contained in the liquid tank (that is, the uncured photocurable composition in a liquid state; the same applies hereinafter) is cured by light irradiation and cured. A layer is formed, and by repeating this operation, the cured layers are laminated to obtain a cured product (that is, a stereolithographic product).
  • the liquid tank stereolithography differs from the inkjet stereolithography in that a liquid tank is used.
  • Examples of the liquid tank stereolithography include DLP (Digital Light Processing) stereolithography and SLA (Stereolithography) stereolithography.
  • DLP Digital Light Processing
  • SLA Stereolithography
  • the photocurable composition in the liquid tank is irradiated with planar light.
  • the SLA method the laser light is scanned against the photocurable composition in the liquid tank. From the viewpoint that the effect of the photocurable composition of the present disclosure is more effectively exhibited, the liquid tank type stereolithography is preferably the DLP
  • a build table that can be moved vertically, A tray (ie, a liquid tank) that is located below the build table (on the gravitational side; the same applies hereinafter), contains a light-transmitting portion, and contains a photocurable composition.
  • a light source for example, an LED light source
  • a one-layer gap is provided between the build table and the tray, and this gap is filled with the photocurable composition.
  • the photocurable composition filled in the gap is irradiated with planar light from below through the light transmitting portion of the tray, and the light-irradiated region is cured to cure the first layer. Form a hardened layer.
  • the gap between the build table and the tray is widened by the next layer, and the resulting space is filled with the photocurable composition.
  • the photocurable composition filled in the space is irradiated with light in the same manner as in the case of curing the first layer to form a second cured layer.
  • the cured layers are laminated to produce a three-dimensional model.
  • the three-dimensional model may be further cured by further irradiating the manufactured three-dimensional object with light.
  • the description of Japanese Patent No. 511188 and Japanese Patent No. 5235506 may be referred to.
  • the use of the photocurable composition of the present disclosure is not particularly limited.
  • the photocurable composition of the present disclosure is preferably a photocurable composition used in the production of dental products from the viewpoint of more effectively exerting the effect of crack resistance of the cured film.
  • dental products include dental prostheses, medical instruments used in the oral cavity, dental models, vanishing casting models, and the like.
  • dental prostheses include inlays, crowns, bridges, temporary crowns, temporary bridges and the like.
  • Medical instruments used in the oral cavity include dentures (for example, complete dentures (all dentures), partial dentures (partial dentures), etc.), mouthpieces, mouthguards, orthodontic appliances, occlusal sprints, and impressions. Examples include profit trays and surgical guides.
  • the dental model include a tooth jaw model and the like.
  • a medical device for example, a partial denture
  • the effect of improving the crack resistance of the cured product is particularly effectively exhibited. Will be done. In this case, cracking of the cured product when the medical device is fitted into the oral cavity is effectively suppressed.
  • the total destruction work of the test piece P1 produced by using the photocurable composition of the present disclosure is 1100 J / m 2 or more.
  • the total destruction work of the test piece P1 is preferably 1200 J / m 2 or more, more preferably 3000 J / m 2 from the viewpoint of being superior in crack resistance (difficulty of cracking) of the cured product of the photocurable composition of the present disclosure. That is all.
  • Test piece P1 is a rectangular parallelepiped-shaped test piece having a length of 39 mm, a width of 8 mm, and a thickness of 4 mm.
  • the test piece P1 irradiates the photocurable composition of the present disclosure with visible light having a wavelength of 405 nm at an irradiation amount of 12 mJ / cm 2 to form a cured layer P1 having a thickness of 100 ⁇ m, and the cured layer P1 is formed in the thickness direction.
  • a rectangular shaped object P1 having a length of 39 mm, a width of 8 mm, and a thickness of 4 mm is formed by laminating the shaped object P1, and the formed object P1 is irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 10 J / cm 2 .
  • the test piece P1 can be produced, for example, according to the above-mentioned example of DLP stereolithography. In the examples described later, a test piece P1 was prepared using "Cara Print 4.0" manufactured by Kulzer, which is a DLP type 3D printer.
  • Total destruction work The total destruction work of the test piece P1 is measured according to ISO20795-1: 2008. Specifically, the test piece P1 is notched in accordance with ISO20795-1: 2008, and stored in a constant temperature water tank at 37 ⁇ 1 ° C. for 7 days ⁇ 2 hours. Then, the test piece P1 is taken out from the constant temperature water tank, and the taken-out test piece P1 is subjected to a fracture toughness test by a bending test in accordance with ISO20795-1: 2008, and the total fracture work (J / m 2 ) is measured.
  • the fracture toughness test by bending test (that is, measurement of total fracture work) is performed using a universal testing machine under the condition of indentation speed of 1.0 ⁇ 0.2 mm / min.
  • a universal testing machine manufactured by Intesco was used as the universal testing machine.
  • ⁇ Bending elastic modulus of test piece P2> By irradiating the photocurable composition of the present disclosure with visible light having a wavelength of 405 nm at an irradiation amount of 12 mJ / cm 2, a cured layer P2 having a thickness of 100 ⁇ m is formed, and the cured layer P2 is laminated in the thickness direction.
  • a rectangular body-shaped model P2 having a length of 64 mm, a width of 10 mm, and a thickness of 3.3 mm is formed, and the model P2 is irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 10 J / cm 2 .
  • the bending elasticity of the test piece P2 measured in accordance with ISO20795-1: 2008 is 2500 MPa or less. Is preferable.
  • the flexural modulus of the test piece P2 is 2500 MPa or less, the flexural modulus of the cured product produced by using the photocurable composition of the present disclosure is reduced, whereby the feeling of use of the cured product is improved. improves.
  • the flexural modulus of the test piece P2 is more preferably 2400 MPa or less, still more preferably 2000 MPa or less.
  • the lower limit of the flexural modulus of the test piece P2 is not particularly limited, but the lower limit is preferably 30 MPa and 200 MPa from the viewpoint of the strength of the cured product.
  • the production conditions for producing a cured product using the photocurable composition of the present disclosure do not necessarily have to be the same as the production conditions for the test piece P2. Even when the production conditions of the cured product and the production conditions of the test piece P2 are different, there is a correlation between the flexural modulus of the test piece P2 and the flexural modulus of the cured product. That is, the flexural modulus of the test piece P2 is an index of the flexural modulus of the cured product produced by using the photocurable composition of the present disclosure.
  • Test piece P2 can be produced, for example, according to the above-mentioned example of DLP stereolithography.
  • a test piece P2 was prepared using "Cara Print 4.0" manufactured by Kulzer, which is a DLP type 3D printer.
  • the flexural modulus of the test piece P2 is measured as follows. The test piece P2 is stored in a constant temperature water tank at 37 ⁇ 1 ° C. for 50 ⁇ 2 hours. Then, the test piece P2 is taken out from the constant temperature water tank, and the flexural modulus of the taken out test piece P2 is measured under the condition of a test speed of 5 ⁇ 1 mm / min in accordance with ISO20795-1: 2008. In the examples described later, a universal testing machine (manufactured by Intesco Co., Ltd.) was used as a measuring device for the flexural modulus.
  • the bending strength of the test piece P2 measured in accordance with ISO20795-1: 2008 is preferably 70 MPa or less.
  • the flexural modulus of the cured product produced by using the photocurable composition of the present disclosure is reduced, thereby further improving the usability of the cured product. do.
  • a medical device for example, a partial denture
  • the bending strength of the test piece P2 is more preferably 60 MPa or less.
  • the lower limit of the flexural modulus of the test piece P2 is not particularly limited, but the lower limit is preferably 2 MPa, more preferably 10 MPa from the viewpoint of the strength of the cured product.
  • the production conditions for producing a cured product using the photocurable composition of the present disclosure do not necessarily have to be the same as the production conditions for the test piece P2. Even when the production conditions of the cured product and the production conditions of the test piece P2 are different, there is a correlation between the bending strength of the test piece P2 and the bending strength of the cured product. That is, the bending strength of the test piece P2 is an index of the bending strength of the cured product produced by using the photocurable composition of the present disclosure.
  • the bending strength of the test piece P2 is measured as follows. The test piece P2 is stored in a constant temperature water tank at 37 ⁇ 1 ° C. for 50 ⁇ 2 hours. Then, the test piece P2 is taken out from the constant temperature water tank, and the bending strength of the taken out test piece P2 is measured under the condition of a test speed of 5 ⁇ 1 mm / min in accordance with ISO20795-1: 2008. In the examples described later, a universal testing machine (manufactured by Intesco Co., Ltd.) was used as a bending strength measuring device.
  • the photocurable composition of the present disclosure contains at least one photopolymerizable component.
  • the photopolymerizable component include compounds containing an ethylenic double bond.
  • the compound containing an ethylenic double bond include (meth) acrylic monomer, styrene, styrene derivative, (meth) acrylonitrile, and the like.
  • the photopolymerizable component As the photopolymerizable component, the photopolymerizable component described in paragraphs 0030 to 0059 of International Publication No. 2019/189652 may be used.
  • the content of the photopolymerizable component with respect to the total amount of the photocurable composition of the present disclosure is preferably 60% by mass or more, and preferably 80% by mass or more. More preferably, it is 90% by mass or more.
  • the photopolymerizable component preferably contains at least one (meth) acrylic monomer.
  • the (meth) acrylic monomer means a monomer having one or more (meth) acryloyl groups in the molecule.
  • all (meth) acrylic monomers contained in the photocurable composition may be referred to as "(meth) acrylic monomer components", and all the (meth) acrylic monomers contained in the photocurable composition of the present disclosure.
  • the total content of the (meth) acrylic monomer may be referred to as "the total content of the (meth) acrylic monomer component".
  • the total content of the (meth) acrylic monomer component with respect to the total amount of the photopolymerizable component in the photocurable composition of the present disclosure is preferably 80% by mass or more. , 90% by mass or more, more preferably 95% by mass or more.
  • the total content of the (meth) acrylic monomer component with respect to the total amount of the photocurable composition of the present disclosure is preferably 60% by mass or more, preferably 80% by mass or more. It is more preferable that the content is 90% by mass or more.
  • the (meth) acrylic monomer constituting the (meth) acrylic monomer component may be a monomer having one or more (meth) acryloyl groups in the molecule, and is not particularly limited.
  • the (meth) acrylic monomer may be a monofunctional (meth) acrylic monomer (ie, a monomer having one (meth) acryloyl group in the molecule) or a bifunctional (meth) acrylic monomer (ie, 2 in the molecule). Even with one (meth) acryloyl group), a polyfunctional (meth) acrylic monomer (ie, a trifunctional or higher (meth) acrylic monomer; that is, three or more (meth) acryloyl groups in the molecule). It may be a monomer having).
  • the (meth) acrylic monomer preferably contains at least one of an aromatic structure (for example, a bisphenol A structure, etc.), an alicyclic structure, and a urethane bond in the molecule.
  • the (meth) acrylic monomer of such a preferred embodiment may further contain at least one of an ethyleneoxy group and a propyleneoxy group.
  • the weight average molecular weight (Mw) of the (meth) acrylic monomer is preferably 5000 or less, more preferably 3000 or less, further preferably 2000 or less, further preferably 1500 or less, and 1000 or less. It is more preferably less than or equal to, and even more preferably 800 or less.
  • the lower limit of Mw of the (meth) acrylic monomer is not particularly limited as long as it is a monomer containing one or more (meth) acryloyl groups in the molecule.
  • the lower limit of Mw of the (meth) acrylic monomer is, for example, 86, preferably 100.
  • the (meth) acrylic monomer component that can be contained in the photocurable composition of the present disclosure is at least one of a monofunctional (meth) acrylic monomer and a bifunctional (meth) acrylic monomer. Is preferably included.
  • the monofunctional (meth) acrylic monomer and the bifunctional (meth) with respect to the total amount of the (meth) acrylic monomer component that can be contained in the photocurable composition of the present disclosure is preferably 60% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the ratio of the number of acryloyl groups to the total number of acryloyl groups and methacryloyl groups in the photocurable composition is 10. % Or more is preferable.
  • the ratio of the number of acryloyl groups is 10% or more, the crack resistance of the cured product can be further improved.
  • the ratio of the number of acryloyl groups is more preferably 20% or more, further preferably 30% or more, still more preferably 40% or more, from the viewpoint of further improving the crack resistance of the cured product. It is more preferably 50% or more, 60% or more, or 70% or more, and particularly preferably 100%.
  • the photopolymerizable component in the photocurable composition of the present disclosure is A di (meth) acrylic monomer (A) having two (meth) acryloyloxy groups and two urethane bonds, and Acrylomonomer having one acryloyl group (B) It is preferable to include at least one of It is more preferable to contain both the di (meth) acrylic monomer (A) and the acrylic monomer (B).
  • the photopolymerizable component contains at least one (preferably both) of the di (meth) acrylic monomer (A) and the acrylic monomer (B)
  • the total destruction work of the test piece P1 is 1100 J / m 2 or more. Is easy to achieve.
  • the flexural modulus of the test piece P2 is 2500 MPa or less and that the bending strength of the test piece P2 is 70 MPa or less. Further, it is easy to achieve a reduction in the viscosity of the photocurable composition. Improving the total fracture work and adjusting the flexural modulus and bending strength to a low level is particularly easy to achieve by increasing the content of the acrylic monomer (B).
  • the di (meth) acrylic monomer (A) in the present disclosure is a compound having two (meth) acryloyloxy groups and two urethane bonds (that is, a bifunctional urethane (meth) acrylate).
  • the di (meth) acrylic monomer (A) has no (meth) acryloyloxy group other than the two (meth) acryloyloxy groups.
  • the di (meth) acrylic monomer (A) has no urethane bond other than two urethane bonds.
  • the photopolymerizable component in the photocurable composition of the present disclosure may contain only one type of di (meth) acrylic monomer (A), or may contain two or more types.
  • the di (meth) acrylic monomer (A) preferably contains a compound represented by the following formula (1).
  • the content of the compound represented by the following formula (1) with respect to the total amount of the di (meth) acrylic monomer (A) is preferably 60% by mass or more, more preferably 80% by mass or more.
  • the content of the compound represented by the following formula (1) with respect to the total amount of the di (meth) acrylic monomer (A) may be 100% by mass.
  • R 1 is a divalent chain hydrocarbon group, a divalent hydrocarbon group having an aromatic structure, or a divalent hydrocarbon group having an alicyclic structure.
  • R 2 and R 3 are divalent chain hydrocarbon groups that may independently have substituents, respectively.
  • R 4 and R 5 are each independently a methyl group or a hydrogen atom.
  • R 1 is preferably a divalent hydrocarbon group having an aromatic structure or a divalent hydrocarbon group having an alicyclic structure. By including these ring structures in R 1 , the viscosity of the photocurable composition is further suppressed. Further, it is further achieved that the total fracture work of the test piece P1 is 1100 J / m 2 or more, the flexural modulus of the test piece P2 is 2500 MPa or less, and the bending strength of the test piece P2 is 70 MPa or less. Easy to be done.
  • the number of carbon atoms of the divalent chain hydrocarbon group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 2 to 6.
  • the divalent chain hydrocarbon group in R 1 may be linear or branched, saturated or unsaturated, and may have a substituent.
  • the divalent chain hydrocarbon group for R 1 preferably a linear or branched alkylene group having 1 to 20 carbon atoms, more preferably a straight-chain or branched-chain alkylene group having 1 to 12 carbon atoms , Particularly preferably a linear or branched alkylene group having 1 to 10 carbon atoms.
  • linear or branched alkylene group having 1 to 20 carbon atoms include a methylene group, an ethylene group, a propanediyl group, a butanjiyl group, a pentandiyl group, a hexanediyl group, a heptandiyl group, and an octanediyl group.
  • Examples include 2,4,4-trimethylhexylene groups. Of these, 2,4,4-trimethylhexylene groups are particularly preferred.
  • the divalent hydrocarbon group having an aromatic structure may have a substituent and has 6 to 20 carbon atoms (more preferably 6 to 12 carbon atoms, more preferably 6 to 12 carbon atoms). Is preferably a divalent hydrocarbon group having an aromatic structure having 6 to 10 carbon atoms).
  • the divalent hydrocarbon group having an aromatic structure include an arylene group, an alkylene arylene group, an alkylene arylene alkylene group, and an arylene alkylene arylene group.
  • the divalent hydrocarbon group having an aromatic structure is preferably an alkylene arylene group or an alkylene arylene alkylene group.
  • the total fracture work of the test piece P1 is 1100 J / m 2 or more
  • the flexural modulus of the test piece P2 is 2500 MPa or less
  • the bending strength of the test piece P2 is 70 MPa or less. Easy to be done.
  • arylene group examples include 1,3- or 1,4-phenylene group, 1,3- or 1,4-phenylenedimethylene.
  • Groups and 1,3- or 1,4-phenylenediethylene groups can be mentioned.
  • the divalent hydrocarbon group having an alicyclic structure preferably has 3 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and 6 to 8 carbon atoms. Is particularly preferred.
  • the alicyclic structure include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclohexenylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, and a cycloundecylene group.
  • Cyclododecylene group, cyclotridecylene group, cyclotetradecylene group, cyclopentadecylene group, cyclooctadecylene group, cycloicosilene group, bicyclohexylene group, norbornene group, isobornylene group, adamantylene group can be mentioned. .. Of these, a norbornene group and an isobornylene group are preferable.
  • R 1 is a divalent hydrocarbon group having an alicyclic structure
  • particularly suitable examples are as follows. * Represents the bond position.
  • the divalent hydrocarbon group having an alicyclic structure in R 1 in the formula (1) may have a substituent.
  • substituents include a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the divalent hydrocarbon group having an alicyclic structure is selected as a divalent hydrocarbon group.
  • a divalent hydrocarbon group ie, a divalent hydrocarbon group
  • a divalent hydrocarbon group having a structure in which an alicyclic structure is arranged between two methylene groups, or A divalent hydrocarbon group having a structure in which one methylene group and an alicyclic structure are bonded is more preferable.
  • R 2 and R 3 are divalent chain hydrocarbon groups which may independently have a substituent.
  • the divalent chain hydrocarbon groups suitable for R 2 and R 3 are the same as the divalent chain hydrocarbon groups suitable for R 1.
  • the number of carbon atoms of the divalent chain hydrocarbon group which may have a substituent in R 2 and R 3 is preferably 2 to 6, and more preferably 2 to 3.
  • R 2 and R 3 are divalent chain hydrocarbon groups having a substituent
  • the above-mentioned substituents include, for example; Alkyl groups having 1 to 6 carbon atoms such as methyl groups and ethyl groups; Aryl group; Cycloalkyl group having 3 to 6 carbon atoms such as cyclopentyl group and cyclohexyl group; Tolyl group; Xylyl group; Kumil group; Styril group; Alkoxyphenyl groups such as methoxyphenyl group, ethoxyphenyl group, propoxyphenyl group; And so on.
  • R 2 and R 3 are independently divalent chains having 2 to 6 carbon atoms (more preferably 2 to 3 carbon atoms) having no substituent. It is preferably a state hydrocarbon group.
  • Suitable compounds for the di (meth) acrylic monomer (A) include, for example, one isocyanate selected from the group consisting of m-xylylene diisocyanate, tetramethylxylylene diisocyanate, norbornene diisocyanate and isophorone diisocyanate, and hydroxy.
  • examples thereof include urethane diacrylate, which is a reaction product with one hydroxyacrylate selected from the group consisting of ethyl acrylate, hydroxypropyl acrylate, and 4-hydrokibutyl acrylate.
  • Examples of the di (meth) acrylic monomer (A) include compounds used in Examples described later.
  • the weight average molecular weight (Mw) of the di (meth) acrylic monomer (A) is preferably 380 to 5000, more preferably 380 to 4000, preferably 380 to 700, and 400 to 650. It is more preferable to have.
  • the di (meth) acrylic monomer (A) may be synthesized from a commercially available monomer.
  • the di (meth) acrylic monomer (A) may be synthesized from two molecules of hydroxy (meth) acrylate and one molecule of diisocyanate.
  • suitable hydroxy (meth) acrylates are as follows. Of the structures below, "Et" represents an ethyl group.
  • Suitable diisocyanates are as follows. Of the structures below, "Me” represents a methyl group.
  • the acrylic monomer (B) in the present disclosure is a monomer having one acryloyl group (that is, a monofunctional acrylate).
  • the acrylic monomer (B) has no acryloyl group other than one acryloyl group.
  • the acrylic monomer (B) preferably does not have a methacryloyl group.
  • the photopolymerizable component in the photocurable composition of the present disclosure may contain only one type of acrylic monomer (B), or may contain two or more types.
  • the acrylic monomer (B) preferably contains at least one of a compound represented by the following formula (2) and a compound represented by the following formula (3).
  • the total content of the compound represented by the following formula (2) and the compound represented by the following formula (3) with respect to the total amount of the acrylic monomer (B) is preferably 60% by mass or more, more preferably. It is 80% by mass or more.
  • the total content of the compound represented by the following formula (2) and the compound represented by the following formula (3) with respect to the total amount of the acrylic monomer (B) may be 100% by mass.
  • R 6 is a monovalent organic group which may have a ring structure.
  • R 7 and R 8 are monovalent organic groups or hydrogen atoms that may independently have a ring structure, and R 7 and R 8 are bonded to each other to form a ring. You may.
  • the acrylic monomer (B) preferably contains a compound represented by the formula (2).
  • R 6 in the formula (2) is preferably a monovalent organic group having a ring structure and having 3 to 30 carbon atoms, and preferably a monovalent organic group having a ring structure and having 6 to 20 carbon atoms. More preferred.
  • the acrylic monomer (B) contains a compound represented by the formula (2), it is advantageous from the viewpoint of improving the hydrophobicity of the cured product (that is, reducing water absorption).
  • the content of the compound represented by the following formula (2) with respect to the total amount of the acrylic monomer (B) is preferably 60% by mass or more. , More preferably 80% by mass or more.
  • the content of the compound represented by the following formula (2) with respect to the total amount of the acrylic monomer (B) may be 100% by mass.
  • R 6 may be an organic group represented by the following formula (4).
  • L 1 is a divalent chain hydrocarbon group which may have a single bond or a hetero atom which is O or N having 1 to 30 carbon atoms
  • A is a hydrogen atom. It is a monovalent alicyclic group which may have a heteroatom having O or N having 3 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms. * Represents the bond position.
  • a chain hydrocarbon group may divalent to have a hetero atom is O or N of 1 to 30 carbon atoms represented by L 1, the branch may be straight It may be chain-shaped.
  • the number of carbon atoms of the divalent chain hydrocarbon group which may have a heteroatom having O or N having 1 to 30 carbon atoms represented by L 1 is more preferably 1 to 20. It is more preferably to 10 and particularly preferably 1 to 8.
  • the divalent chain hydrocarbon group represented by L 1 contains a hetero atom
  • the number of hetero atoms in L 1 is preferably 1 to 3, and more preferably 1 or 2.
  • the divalent chain hydrocarbon group represented by L 1 may have a substituent.
  • the substituent include an alkyl group having 1 to 3 carbon atoms, a hydroxy group, and an alkyl group having 1 to 3 carbon atoms in which 1 or 2 of hydrogen atoms are substituted with a hydroxy group.
  • the divalent chain hydrocarbon group represented by L 1 may contain a urethane bond. When the divalent chain hydrocarbon group represented by L 1 contains urethane bonds, the number of urethane bonds in L 1 may be 1 or 2.
  • divalent chain hydrocarbon group represented by L 1 in the formula (4) include the following groups.
  • * represents the bond position.
  • examples of the monovalent alicyclic group which may have a heteroatom having O or N having 3 to 20 carbon atoms represented by A include a cyclopropyl group and a cyclobutyl group.
  • examples of the aromatic structure in the aryl group having 6 to 30 carbon atoms represented by A include a phenyl structure, a biphenyl structure, a naphthyl structure, and an anthryl structure.
  • the group represented by A in the formula (4) may have a substituent.
  • a suitable example of the above substituent is Alkyl groups having 1 to 6 carbon atoms such as methyl groups and ethyl groups; Hydroxy group; Alkyl groups with 1 to 6 carbon atoms substituted with one or two hydroxy groups; Aryl group; Cycloalkyl group having 3 to 6 carbon atoms such as cyclopentyl group and cyclohexyl group; Tolyl group; Xylyl group; Kumil group; Styril group; Alkoxyphenyl groups such as methoxyphenyl group, ethoxyphenyl group, propoxyphenyl group; And so on.
  • Examples of the group represented by A in the formula (4) include the following examples. * Represents the bond position.
  • the carbon number of the organic group represented by the formula (4) is preferably 1 to 30, and more preferably 1 to 20.
  • R 7 and R 8 are monovalent organic groups or hydrogen atoms that may independently have a ring structure, and R 7 and R 8 are bonded to each other to form a ring. You may. It is preferable that R 7 and R 8 are monovalent chain hydrocarbon groups which may independently have a heteroatom having O or N having 1 to 30 carbon atoms.
  • the monovalent chain hydrocarbon group may be linear or branched chain, may be saturated or unsaturated, and may have a substituent.
  • the monovalent chain hydrocarbon group preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • Examples of the organic group in R 7 and R 8 include an alkyl group having 1 to 30 carbon atoms such as a methyl group, an ethyl group and a propyl group, which may have a hetero atom which is O or N.
  • R 7 and R 8 are a hydroxyethyl group or a butoxymethyl group, and the other is a hydrogen atom.
  • Examples of the monomer of such an embodiment include the following monomers.
  • Examples of the acrylic monomer (B) in the case where R 7 and R 8 are bonded to each other to form a ring include the following.
  • the weight average molecular weight (Mw) of the acrylic monomer (B) is preferably 80 to 500, more preferably 100 to 400, and particularly preferably 130 to 320.
  • Examples of the compound suitable as the acrylic monomer (B) include the compounds used in the examples described later.
  • the content of the di (meth) acrylic monomer (A) is 200 with respect to 1000 parts by mass of the total content of the (meth) acrylic monomer component contained in the photocurable composition. It is preferably parts by mass or more and 850 parts by mass or less, more preferably 250 parts by mass or more and 850 parts by mass or less, and further preferably 300 parts by mass or more and 800 parts by mass or less.
  • the total content of the di (meth) acrylic monomer (A) and the acrylic monomer (B) is the total content of the (meth) acrylic monomer component contained in the photocurable composition. It is preferably 800 parts by mass or more, more preferably 900 parts by mass or more, and further preferably 950 parts by mass or more with respect to 1000 parts by mass.
  • the photocurable composition of the present disclosure contains at least one photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited as long as it generates radicals by irradiating with light, but it is preferable that the photopolymerization initiator generates radicals at the wavelength of light used for stereolithography.
  • the wavelength of light used in stereolithography is generally 365 nm to 500 nm, but practically it is preferably 365 nm to 430 nm, and more preferably 365 nm to 420 nm.
  • Examples of the photopolymerization initiator that generates radicals at the wavelength of light used in photoforming include alkylphenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin compounds, and acetophenone compounds.
  • Examples thereof include ether compounds and anthraquinone compounds. Of these, alkylphenone-based compounds and acylphosphine oxide-based compounds are preferable from the viewpoint of reactivity and the like.
  • alkylphenone-based compound examples include 1-hydroxy-cyclohexyl-phenyl-ketone (Omnirad 184: manufactured by IGM Resins BV).
  • acylphosphine oxide-based compound examples include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (Omnirad 819: manufactured by IGM Resins VV), 2,4,6-trimethylbenzoyl-.
  • Diphenyl-phosphine oxide Omnirad TPO: manufactured by IGM Resins BV
  • the photocurable composition of the present disclosure may contain only one type of photopolymerization initiator, or may contain two or more types of photopolymerization initiators.
  • the content of the photopolymerization initiator in the photocurable composition of the present disclosure (total content in the case of two or more kinds) is 0.1% by mass to 10% by mass with respect to the total amount of the photocurable composition. %, More preferably 0.2% by mass to 5% by mass, and particularly preferably 0.3% by mass to 3% by mass.
  • the photocurable composition of the present disclosure may contain one or more kinds of other components other than the above-mentioned components, if necessary.
  • the total mass of the di (meth) acrylic monomer (A), the acrylic monomer (B) and the photopolymerization initiator is based on the total amount of the photocurable composition. It is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass or more. Is more preferable.
  • Examples of other components include monomers other than the di (meth) acrylic monomer (A) and the acrylic monomer (B).
  • the content of the monomer as the other component is the di (meth) acrylic monomer. It is preferably 50% by mass or less, more preferably 30% by mass or less, further preferably 20% by mass or less, and 10% by mass with respect to the total mass of (A) and the acrylic monomer (B). It is particularly preferable that it is% or less.
  • Other components include, for example, coloring materials, coupling agents such as silane coupling agents (for example, 3-acryloxypropyltrimethoxysilane), rubber agents, ion trapping agents, ion exchangers, leveling agents, plasticizers, and defoamers. Additives such as foaming agents, thermal polymerization initiators and the like can also be mentioned.
  • the photocurable composition of the present disclosure contains a thermosetting initiator, both photocuring and thermosetting can be used in combination.
  • the thermal polymerization initiator include thermal radical generators and amine compounds.
  • the photocurable composition of the present disclosure does not contain an inorganic filler (for example, silica, barium borosilicate glass, etc., the same shall apply hereinafter), or is inorganic.
  • an inorganic filler for example, silica, barium borosilicate glass, etc., the same shall apply hereinafter
  • the content of the inorganic filler with respect to the total amount of the photocurable composition is 60% by mass or less (more preferably 40% by mass or less, further preferably 20% by mass or less, still more preferably 10% by mass or less). ) Is preferable.
  • the method for preparing the photocurable composition of the present disclosure is not particularly limited.
  • a method for preparing the photocurable composition of the present disclosure for example, a method of mixing a di (meth) acrylic monomer (A) and an acrylic monomer (B), and a photopolymerization initiator (and other components if necessary).
  • the means for mixing each component is not particularly limited, and includes, for example, means for melting by ultrasonic waves, a dual-arm stirrer, a roll kneader, a twin-screw extruder, a ball mill kneader, a planetary stirrer, and the like.
  • the photocurable composition of the present embodiment may be prepared by mixing each component, filtering with a filter to remove impurities, and further performing a vacuum defoaming treatment.
  • the photocurable composition of the present disclosure preferably has a viscosity measured by an E-type viscometer at 25 ° C. and 50 rpm (hereinafter, also simply referred to as “viscosity”) of 5 mPa ⁇ s to 6000 mPa ⁇ s. ..
  • viscosity measured by an E-type viscometer at 25 ° C. and 50 rpm
  • rpm means revolutions per minute.
  • the viscosity is more preferably 10 mPa ⁇ s to 5000 mPa ⁇ s, further preferably 20 mPa ⁇ s to 5000 mPa ⁇ s, and even more preferably 100 mPa ⁇ s to 4500 mPa ⁇ s.
  • the cured product of the present disclosure is a cured product of the photocurable composition of the present disclosure described above. Therefore, the cured product of the present disclosure is excellent in crack resistance.
  • the cured product of the present disclosure is preferably a cured product by stereolithography (that is, a stereolithographic product).
  • the method for producing a cured product is as described above.
  • the dental products of the present disclosure include the cured products of the present disclosure described above. Therefore, the dental products of the present disclosure are excellent in crack resistance. Specific examples of dental products are as described above. As described above, as the dental product, a medical device used in the oral cavity is preferable, and a partial denture is particularly preferable.
  • Viscosity of photocurable composition The viscosity of the obtained photocurable composition was measured with an E-type viscometer under the conditions of 25 ° C. and 50 rpm.
  • test piece P2 (Bending elastic modulus of test piece P2) Using the obtained photocurable composition, a test piece P2 was prepared by the method described above, and the flexural modulus of the obtained test piece P2 was measured by the method described above.
  • the numbers in the "composition” column in each Example and each Comparative Example mean parts by mass, and the blanks mean that they do not contain the corresponding component.
  • the numbers in the column of "number of acryloyl groups (%)" in each Example and each comparative example are the numbers of acryloyl groups with respect to the total number of acryloyl groups and methacryloyl groups in the photocurable composition. The percentage of numbers is shown.
  • ⁇ Di (meth) acrylic monomer (A)> the di (meth) acrylic monomer (A) (that is, a compound having two (meth) acryloyloxy groups and two urethane bonds; that is, a bifunctional urethane (meth) acrylate) is specifically described. It is the following compound.
  • UDA A compound produced according to Production Example 1 below.
  • UDMA A compound produced according to Production Example 2 below.
  • AH-600 A compound manufactured by Kyoeisha Chemical Co., Ltd.
  • MMD-352 Compound produced according to Production Example 3 below
  • KRM-060 Compound produced according to Production Example 4
  • KRM-077 Compound produced according to Production Example 5
  • U-2PPA Bifunctional urethane acrylate UA- manufactured by Shin-Nakamura Chemical Industry Co., Ltd. 160TM: Bifunctional urethane acrylate manufactured by Shin-Nakamura Chemical Industry
  • UN-352 Bifunctional urethane acrylate manufactured by Negami Kogyo
  • HEA Hydroxyethyl acrylate
  • TMHDI 2,4,4-trimethylhexane diisocyanate
  • DBTDL Dibutyl tin dilaurate
  • MEHQ 4-methoxyphenol
  • HEMA Hydroxyethyl methacrylate
  • M-600A 2-Hydroxy-3-phenoxypropyl acrylate
  • TMXDI 1, 3-Tetramethylxylene diisocyanate
  • XDI m-xylene diisocyanate
  • NBDI Norbornene diisocyanate
  • the dropping amount was controlled so as to be 80 ° C. or lower. After dropping the whole amount, the reaction temperature was maintained at 80 ° C., and the reaction was carried out for 10 hours. At this time, the progress of the reaction was followed by HPLC analysis to confirm the end point of the reaction. By discharging the product from the reactor, 720 g of bifunctional urethane methacrylate (UDM) was obtained. The viscosity at 25 ° C. was 8200 mPa ⁇ s.
  • the dropping amount was controlled so as to be 80 ° C. or lower. After dropping the whole amount, the reaction temperature was maintained at 80 ° C., and the reaction was carried out for 10 hours. At this time, the progress of the reaction was followed by HPLC analysis to confirm the end point of the reaction. By discharging the product from the reactor, 600 g of bifunctional urethane acrylate (MMD-352) was obtained. The viscosity at 65 ° C. was 6210 mPa ⁇ s.
  • the dropping amount was controlled so as to be 80 ° C. or lower. After dropping the whole amount, the reaction temperature was maintained at 80 ° C., and the reaction was carried out for 10 hours. At this time, the progress of the reaction was followed by HPLC analysis to confirm the end point of the reaction. By discharging the product from the reactor, 455 g of bifunctional urethane acrylate (KRM-060) was obtained. The viscosity at 65 ° C. was 2200 mPa ⁇ s.
  • the dropping amount was controlled so as to be 80 ° C. or lower. After dropping the whole amount, the reaction temperature was maintained at 80 ° C., and the reaction was carried out for 10 hours. At this time, the progress of the reaction was followed by HPLC analysis to confirm the end point of the reaction. By discharging the product from the reactor, 670 g of bifunctional urethane acrylate (KRM-077) was obtained. The viscosity at 65 ° C. was 930 mPa ⁇ s.
  • polyfunctional (meth) acrylate is the following compound.
  • E4100 Trifunctional urethane acrylate "EBECRYL4100” manufactured by Daicel Ornex E4740: Trifunctional urethane acrylate "EBECRYL4740" manufactured by Daicel Ornex.
  • UA-306T 6-functional urethane acrylate manufactured by Kyoeisha Chemical
  • UA-306H 6-functional urethane acrylate manufactured by Kyoeisha Chemical Co., Ltd.
  • the acrylic monomer (B) (that is, a compound having one acryloyl group; that is, a monofunctional acrylic monomer) is specifically the following compound.
  • IB-XA A compound manufactured by Kyoeisha Chemical Co., Ltd.
  • POB-A A compound manufactured by Kyoeisha Chemical Co., Ltd.
  • A-LEN-10 A compound manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • ACMO A compound manufactured by KJ Chemicals.
  • PO-A A compound manufactured by Kyoeisha Chemical Co., Ltd.
  • V216 A compound manufactured by Osaka Organic Chemical Industry.
  • 4-HBA A compound manufactured by Osaka Organic Chemical Industry.
  • MEDOL10 A compound manufactured by Osaka Organic Chemical Industry.
  • 2-HPA A compound manufactured by Kyoeisha Chemical Co., Ltd.
  • P2HA A compound manufactured by Kyoeisha Chemical Co., Ltd.
  • FA513AS A compound manufactured by Hitachi Kasei Kogyo.
  • IB-X A compound manufactured by Kyoeisha Chemical Co., Ltd. 4EG-A: A compound manufactured by Kyoeisha Chemical Co., Ltd. HEMA: A compound manufactured by Kyoeisha Chemical Co., Ltd. PO: A compound manufactured by Kyoeisha Chemical Co., Ltd.
  • Omnirad 819 IGM Resins B. V. "Omnirad 819" manufactured by the company (acylphosphine oxide-based compound)
  • Omnirad 184 IGM Resins B.I. V. "Omnirad 184" manufactured by the company (alkylphenone-based compound)
  • Omnirad TPO IGM Resins B. V. "Omnirad TPO" (acylphosphine oxide compound)
  • the photocurable compositions of each example contain a photopolymerizable component and a photopolymerization initiator, and the total destruction work of the test piece P1 is 1100 J / m 2 or more. Met. Therefore, it is expected that the photocurable composition of each example can produce a cured product having excellent crack resistance (that is, resistance to cracking). On the other hand, in the photocurable composition of each comparative example, the total destruction work of the test piece P1 was less than 1100 J / m 2.
  • the following indentation test was carried out in order to confirm whether or not cracks or cracks were generated when the partial denture formed by the photocurable composition of the present disclosure was fitted.
  • the following indentation test is a test in which an indentation load in a direction perpendicular to the longitudinal direction and parallel to the thickness direction is applied to the central portion of the rectangular parallelepiped-shaped test piece in the longitudinal direction, that is, a partial. This is a test that imitates the load when the denture is fitted.
  • test piece P3 In the indentation test, test pieces P3 formed from the photocurable compositions of Examples 1 to 39 and Comparative Examples 1 to 11 were used.
  • the test piece P3 is a rectangular parallelepiped test piece having a length of 64 mm, a width of 10 mm, and a thickness of 4 mm, and was modeled by the following method.
  • the test piece P3 is a cured layer having a thickness of 100 ⁇ m by irradiating each of the photocurable compositions of Examples 1 to 39 and Comparative Examples 1 to 11 with visible light having a wavelength of 405 nm at an irradiation amount of 12 mJ / cm 2.
  • a rectangular shaped object P3 having a length of 64 mm, a width of 10 mm, and a thickness of 4 mm is formed, and ultraviolet rays having a wavelength of 365 nm are emitted to the shaped object P3. It was produced by photo-modeling under the condition of irradiating with an irradiation amount of 10 J / cm 2.
  • a stereolithography apparatus for producing the test piece P3 in this indentation test a DLP type 3D printer, "Cara Print 4.0" manufactured by Kulzer, was used.
  • the indentation test of the test piece P3 was performed according to the method for measuring bending strength and flexural modulus of ISO20795-1: 2008. Specifically, a universal testing machine (manufactured by Intesco Co., Ltd.) was used, and the procedure was carried out as follows. As a fulcrum for supporting the test piece, two support pins having a hemispherical tip having a diameter of 3.2 mm were prepared. These two support pins were arranged in parallel so that the distance between the fulcrums (that is, the distance between the tips) was 50 ⁇ 0.1 mm.
  • test piece P3 was placed on the two support pins so that the test piece P3 was supported by the fulcrum (that is, the tip portion) of each support pin. At this time, the center of the two fulcrums and the central portion of the rectangular parallelepiped test piece P3 in the longitudinal direction were placed so as to coincide with each other.
  • a load plunger having a hemispherical tip having a diameter of 3.2 mm was prepared.
  • the test piece P3 is perpendicular to the longitudinal direction of the test piece P3 with respect to the central portion in the longitudinal direction of the test piece P3 placed on the two support pins. A pushing load was applied in a direction parallel to the thickness direction.
  • the speed at which the indentation load was applied was 5 ⁇ 1 mm / min.
  • the atmospheric temperature when the indentation load was applied was set to 23 ° C.
  • the pushing amount that is, the moving distance of the tip of the load plunger
  • the pushing load was applied, and then the test piece P3 was visually observed to confirm the presence or absence of cracks.
  • the cured product of the photocurable composition of the present disclosure which has a total destruction work of 1100 J / m 2 or more when the test piece P1 is used, is used as a dental product such as a partial denture, it is fitted. It was found that the cracking of the cured product at the time can be suppressed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

光重合性成分と、光重合開始剤と、を含有する光硬化性組成物であって、上記光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cm2にて照射して厚さ100μmの硬化層P1を形成し、硬化層P1を厚さ方向に積層させることにより、長さ39mm、幅8mm、厚さ4mmの直方体形状の造形物P1を形成し、造形物P1に対し、波長365nmの紫外線を照射量10J/cm2にて照射する条件の光造形により、長さ39mm、幅8mm、厚さ4mmの直方体形状の試験片P1を作製した場合に、ISO20795-1:2008に準拠して測定される試験片P1の全破壊仕事が、1100J/m2以上である、光硬化性組成物。

Description

光硬化性組成物、硬化物、及び歯科用製品
 本開示は、光硬化性組成物、硬化物、及び歯科用製品に関する。
 近年、光硬化性組成物は、3Dプリンター等を用いて立体的な光造形物(即ち、光造形によって得られる硬化物)を得るための原料として使用されている。
 光硬化性組成物を用いて得られる光造形物は、歯科用製品をはじめとする様々な用途に利用されている。
 例えば、特許文献1には、義歯床、人工歯の光造形に使用可能は組成物が開示されており、この特許文献1の実施例には、ウレタンジメタクリレート、ジエチレングリコールジメタクリレート等を含有する組成物が開示されている。
 特許文献1:特表2016-525150号公報
 ところで、歯科用製品(例えば、口腔内で使用される医療器具(例えばパーシャルデンチャー))の少なくとも一部分として、光硬化性組成物の硬化物(例えば、光造形物)を用いる場合、上記歯科用製品を口腔内に嵌める際に上記硬化物が割れ(Crack)が生じてしまう場合がある。
 従って、歯科用製品として用いる光硬化性組成物の硬化物に対し、割れ耐性(即ち、割れにくさ)が要求される場合がある。
 また、歯科用製品以外の用途に用いる光硬化性組成物の硬化物に対しても、割れ耐性が要求される場合がある。
 本開示の一態様の目的は、割れ耐性(即ち、割れにくさ)に優れる硬化物を製造できる光硬化性組成物、並びに、割れ耐性に優れた硬化物及び歯科用製品を提供することである。
 上記課題を解決する手段には、以下の態様が含まれる。
<1> 光重合性成分と、光重合開始剤と、を含有する光硬化性組成物であって、
 前記光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P1を形成し、前記硬化層P1を厚さ方向に積層させることにより、長さ39mm、幅8mm、厚さ4mmの直方体形状の造形物P1を形成し、前記造形物P1に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形により、長さ39mm、幅8mm、厚さ4mmの直方体形状の試験片P1を作製した場合に、ISO20795-1:2008に準拠して測定される前記試験片P1の全破壊仕事が、1100J/m以上である、
光硬化性組成物。
<2> 前記光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P2を形成し、前記硬化層P2を厚さ方向に積層させることにより、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の造形物P2を形成し、前記造形物P2に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形により、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の試験片P2を作製した場合に、ISO20795-1:2008に準拠して測定される前記試験片P2の曲げ弾性率が、2500MPa以下である、
<1>に記載の光硬化性組成物。
<3> 前記光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P2を形成し、前記硬化層P2を厚さ方向に積層させることにより、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の造形物P2を形成し、前記造形物P2に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形により、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の試験片P2を作製した場合に、ISO20795-1:2008に準拠して測定される前記試験片P2の曲げ強度が、70MPa以下である、
<1>又は<2>に記載の光硬化性組成物。
<4> 前記光重合性成分が、
 2つの(メタ)アクリロイルオキシ基と2つのウレタン結合とを有するジ(メタ)アクリルモノマー(A)と、
 1つのアクリロイル基を有するアクリルモノマー(B)と、
を含む、
<1>~<3>のいずれか1つに記載の光硬化性組成物。
<5> 光硬化性組成物中のアクリロイル基及びメタクリロイル基の合計数に対するアクリロイル基の数の割合が40%以上である、
<4>に記載の光硬化性組成物。
<6> 前記ジ(メタ)アクリルモノマー(A)が、下記式(1)で表される化合物を含む、<4>又は<5>に記載の光硬化性組成物。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rは、2価の鎖状炭化水素基、芳香族構造を有する2価の炭化水素基、又は脂環式構造を有する2価の炭化水素基であり、
 R及びRは、それぞれ独立に、置換基を有してもよい2価の鎖状炭化水素基であり、
 R及びRは、それぞれ独立に、メチル基又は水素原子である。
<7> 前記式(1)中、
前記Rが、芳香族構造を有する炭素数6~12の2価の炭化水素基又は脂環式構造を有する炭素数6~12の2価の炭化水素基であり、
前記R及び前記Rが、それぞれ独立に、置換基を有しない炭素数2~6の2価の鎖状炭化水素基である、
<6>に記載の光硬化性組成物。
<8> 前記アクリルモノマー(B)が、下記式(2)で表される化合物及び下記式(3)で表される化合物の少なくとも一方を含む、
<4>~<7>のいずれか1つに記載の光硬化性組成物。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、Rは、環構造を有してもよい1価の有機基である。
 式(3)中、R及びRは、それぞれ独立に、環構造を有してもよい1価の有機基、又は水素原子であり、R及びRは互いに結合して環を形成してもよい。
<9> 前記アクリルモノマー(B)が、前記式(2)で表される化合物を含み、
 前記式(2)中、前記Rが、環構造を有する炭素数6~20の1価の有機基である、
<8>に記載の光硬化性組成物。
<10> 前記ジ(メタ)アクリルモノマー(A)の重量平均分子量が、380~4000である、<4>~<9>のいずれか1つに記載の光硬化性組成物。
<11> 前記アクリルモノマー(B)の重量平均分子量が、130~320である、<4>~<10>のいずれか1つに記載の光硬化性組成物。
<12> 前記ジ(メタ)アクリルモノマー(A)の含有量が、前記光硬化性組成物に含有される(メタ)アクリルモノマー成分の合計含有量1000質量部に対し、200質量部以上850質量部以下である、
<4>~<11>のいずれか1つに記載の光硬化性組成物。
<13> 前記ジ(メタ)アクリルモノマー(A)及び前記アクリルモノマー(B)の合計含有量が、前記光硬化性組成物に含有される(メタ)アクリルモノマー成分の合計含有量1000質量部に対し、800質量部以上である、
<4>~<12>のいずれか1つに記載の光硬化性組成物。
<14> E型粘度計により25℃及び50rpmの条件で測定される粘度が、20mPa・s~5000mPa・sである、
<1>~<13>のいずれか1つに記載の光硬化性組成物。
<15> 光造形用の光硬化性組成物である、
<1>~<14>のいずれか1つに記載の光硬化性組成物。
<16> <1>~<15>のいずれか1つに記載の光硬化性組成物の硬化物。
<17> <16>に記載の硬化物を含む、歯科用製品。
<18> 口腔内で使用される医療器具である、<17>に記載の歯科用製品。
 本開示の一態様によれば、割れ耐性(即ち、割れにくさ)に優れる硬化物を製造できる光硬化性組成物、並びに、割れ耐性に優れた硬化物及び歯科用製品が提供される。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示において、組成物に含有される各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「光」は、紫外線、可視光線等の活性エネルギー線を包含する概念である。
 本開示において、「(メタ)アクリレート」はアクリレート又はメタクリレートを意味し、「(メタ)アクリロイル」はアクリロイル又はメタクリロイルを意味し、「(メタ)アクリル」はアクリル又はメタクリルを意味する。
〔光硬化性組成物〕
 本開示の光硬化性組成物は、光重合性成分と、光重合開始剤と、を含有する光硬化性組成物であって、
 上記光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P1を形成し、硬化層P1を厚さ方向に積層させることにより、長さ39mm、幅8mm、厚さ4mmの直方体形状の造形物P1を形成し、造形物P1に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形により、長さ39mm、幅8mm、厚さ4mmの直方体形状の試験片P1を作製した場合に、ISO20795-1:2008に準拠して測定される試験片P1の全破壊仕事が、1100J/m以上である、
光硬化性組成物である。
 本開示の光硬化性組成物によれば、試験片P1の全破壊仕事が1100J/m以上であるので、割れ耐性(即ち、割れにくさ)に優れる硬化物を製造できる。
 ここで、本開示の光硬化性組成物を用いて硬化物を製造する際の製造条件には特に制限はなく、必ずしも、試験片P1の作製条件と同じである必要はない。硬化物の製造条件と試験片P1の作製条件とが異なる場合であっても、試験片P1の全破壊仕事と、硬化物の割れ耐性と、の間には相関がある。即ち、試験片P1の全破壊仕事は、本開示の光硬化性組成物を用いて製造される硬化物の割れ耐性の指標である。
 本開示の光硬化性組成物を用いて硬化物を製造する際の製造方法として、好ましくは光造形である。この場合、試験片P1の全破壊仕事と硬化物の割れ耐性との相関がより強くなるので、本開示の光硬化性組成物による効果(即ち、硬化物の割れ耐性向上の効果)がより効果的に奏される。
 即ち、本開示の光硬化性組成物として、好ましくは、光造形用の光硬化性組成物であり、言い換えれば、本開示の光硬化性組成物を用いて製造される硬化物は、好ましくは光造形物(即ち、光造形による硬化物)である。
 光造形は、光硬化性組成物に光を照射して硬化層を形成する操作を繰り返すことにより、硬化層を積層させて硬化物(即ち、光造形物)を得る方法である。
 光造形としては、インクジェット方式の光造形であっても液槽方式の光造形(即ち、液槽を用いる光造形)であってもよい。
 本開示の光硬化性組成物による効果がより効果的に奏される観点から、光造形として、好ましくは液槽方式の光造形である。
 インクジェット方式の光造形では、インクジェットノズルから光硬化性組成物の液滴を基材に吐出し、基材に付着した液滴に光を照射することにより硬化物を得る。
 インクジェット方式の光造形の一例では、例えば、インクジェットノズル及び光源を備えるヘッドを平面内で走査させつつ、インクジェットノズルから光硬化性組成物を基材に吐出し、かつ、吐出された光硬化性組成物に光を照射して硬化層を形成し、これらの操作を繰り返して、硬化層を順次積層させて硬化物(即ち、光造形物)を得る。
 液槽方式の光造形では、液槽内に収容された光硬化性組成物(即ち、液体状態の未硬化の光硬化性組成物。以下同じ。)の一部を光照射によって硬化させて硬化層を形成し、この操作を繰り返すことで硬化層を積層させ、硬化物(即ち、光造形物)を得る。液槽方式の光造形は、液槽を用いる点で、インクジェット方式の光造形とは異なる。
 液槽方式の光造形としては、DLP(Digital Light Processing)方式の光造形及びSLA(Stereolithography)方式の光造形が挙げられる。
 DLP方式では、液槽内の光硬化性組成物に対し、面状の光を照射する。
 SLA方式では、液槽内の光硬化性組成物に対し、レーザー光を走査する。
 本開示の光硬化性組成物による効果がより効果的に奏される観点から、液槽方式の光造形として、好ましくはDLP方式の光造形である。
 DLP方式の光造形の一例では、例えば、
 鉛直方向に移動可能なビルドテーブルと、
 ビルドテーブルの下方(重力方向側。以下同じ。)に配置され、光透過性部を含み、光硬化性組成物が収容されるトレー(即ち、液槽)と、
 トレーの下方に配置され、トレー内の光硬化性組成物に対し、トレーの光透過性部を介して面状の光を照射するための光源(例えば、LED光源)と、
を備える3Dプリンター(例えば、Kulzer社製の「Cara Print4.0」、Asiga社製の「Max UV」、等)が用いられる。
 この一例では、まず、ビルドテーブルとトレーとの間に一層分のギャップを設け、このギャップを、光硬化性組成物で満たす。次に、ギャップに満たされた光硬化性組成物に対し、下方から、トレーの光透過性部を介して面状の光を照射し、光が照射された領域を硬化させることにより、一層目の硬化層を形成する。次に、ビルドテーブルとトレーとのギャップを次の一層分広げ、生じた空間を光硬化性組成物で満たす。次に、空間に満たされた光硬化性組成物に対し、一層目の硬化と同様にして光を照射し、二層目の硬化層を形成する。以上の操作を繰り返すことにより、硬化層を積層させ、立体造形物を製造する。この一例において、製造された立体造形物に対し、更に光を照射することにより、立体造形物を更に硬化させてもよい。
 DLP方式の光造形については、例えば、特許第5111880号公報及び特許第5235056号公報の記載を参照してもよい。
<用途>
 本開示の光硬化性組成物の用途には特に制限はない。
 本開示の光硬化性組成物は、硬化膜の割れ耐性の効果がより効果的に発揮される観点から、歯科用製品の製造に用いられる光硬化性組成物であることが好ましい。
 歯科用製品としては、歯科用補綴物、口腔内で使用する医療器具、歯科用模型、消失鋳造用模型、等が挙げられる。
 歯科用補綴物としては、インレー、クラウン、ブリッジ、テンポラリークラウン、テンポラリーブリッジ等が挙げられる。
 口腔内で使用する医療器具としては、デンチャー(例えば、コンプリートデンチャー(全部床義歯)、パーシャルデンチャー(部分床義歯)、等)、マウスピース、マウスガード、歯列矯正器具、咬合用スプリント、印象採得用トレイ、手術用ガイド等が挙げられる。
 歯科用模型としては、歯顎モデル等が挙げられる。
 本開示の光硬化性組成物の硬化物として、口腔内で使用する医療器具(例えば、パーシャルデンチャー)の少なくとも一部分を製造した場合には、硬化物の割れ耐性向上の効果が特に効果的に発揮される。この場合、上記医療器具を口腔内に嵌める際の、上記硬化物の割れが効果的に抑制される。
<試験片P1の全破壊仕事>
 上述した通り、本開示の光硬化性組成物を用いて作製された試験片P1の全破壊仕事は、1100J/m以上である。
 試験片P1の全破壊仕事は、本開示の光硬化性組成物の硬化物の割れ耐性(割れにくさ)により優れる観点から、好ましくは1200J/m以上であり、より好ましくは3000J/m以上である。
 試験片P1の全破壊仕事の上限には特に制限はないが、上限として、例えば、20000J/mが挙げられ、11000J/mが好ましい。
(試験片P1)
 試験片P1は、長さ39mm、幅8mm、厚さ4mmの直方体形状の試験片である。
 試験片P1は、本開示の光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P1を形成し、硬化層P1を厚さ方向に積層させることにより、長さ39mm、幅8mm、厚さ4mmの直方体形状の造形物P1を形成し、造形物P1に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形によって作製される。
 試験片P1は、例えば、前述したDLP方式の光造形の一例に従って作製できる。
 後述の実施例では、DLP方式の3Dプリンターである、Kulzer社製「Cara Print4.0」を用い、試験片P1を作製した。
(全破壊仕事)
 試験片P1の全破壊仕事は、ISO20795-1:2008に準拠して測定される。
 具体的には、試験片P1に対し、ISO20795-1:2008に準拠して、ノッチ加工を施し、37±1℃の恒温水槽にて7日間±2時間保管する。
 その後、試験片P1を恒温水槽から取り出し、取り出した試験片P1について、ISO20795-1:2008に準拠して、曲げ試験による破壊靱性試験を行い、全破壊仕事(J/m)を測定する。
 曲げ試験による破壊靱性試験(即ち、全破壊仕事の測定)は、万能試験機を用い、押込み速度1.0±0.2mm/分の条件で行う。
 後述の実施例では、万能試験機として、インテスコ社製の万能試験機を用いた。
<試験片P2の曲げ弾性率>
 本開示の光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P2を形成し、硬化層P2を厚さ方向に積層させることにより、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の造形物P2を形成し、造形物P2に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形により、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の試験片P2を作製した場合、ISO20795-1:2008に準拠して測定される試験片P2の曲げ弾性率は、2500MPa以下であることが好ましい。
 試験片P2の曲げ弾性率が2500MPa以下である場合には、本開示の光硬化性組成物を用いて製造される硬化物の曲げ弾性率が低減され、これにより、硬化物の使用感がより向上する。
 例えば、本開示の光硬化性組成物の硬化物として、口腔内で使用する医療器具(例えば、パーシャルデンチャー)の少なくとも一部分を製造した場合には、上記医療器具を口腔内に嵌める際の使用感により優れる(例えば、口腔内に痛みを生じにくい)。
 試験片P2の曲げ弾性率は、より好ましくは2400MPa以下であり、更に好ましくは2000MPa以下である。
 試験片P2の曲げ弾性率の下限には特に制限はないが、下限は、硬化物の強度の観点から、好ましくは30MPaであり、200MPaである。
 ここで、本開示の光硬化性組成物を用いて硬化物を製造する際の製造条件は、必ずしも、試験片P2の作製条件と同じである必要はない。硬化物の製造条件と試験片P2の作製条件とが異なる場合であっても、試験片P2の曲げ弾性率と、硬化物の曲げ弾性率と、の間には相関がある。
 即ち、試験片P2の曲げ弾性率は、本開示の光硬化性組成物を用いて製造される硬化物の曲げ弾性率の指標である。
(試験片P2)
 試験片P2は、例えば、前述したDLP方式の光造形の一例に従って作製できる。
 後述の実施例では、DLP方式の3Dプリンターである、Kulzer社製「Cara Print4.0」を用い、試験片P2を作製した。
(曲げ弾性率)
 試験片P2の曲げ弾性率は、以下のようにして測定する。
 試験片P2を、37±1℃の恒温水槽にて50±2時間保管する。
 その後、試験片P2を恒温水槽から取り出し、取り出した試験片P2の曲げ弾性率を、ISO20795-1:2008に準拠し、試験速度5±1mm/分の条件にて測定する。
 後述の実施例では、曲げ弾性率の測定装置として、万能試験機((株)インテスコ製)を用いた。
<試験片P2の曲げ強度>
 本開示の光硬化性組成物は、上記試験片P2を作製した場合に、ISO20795-1:2008に準拠して測定される試験片P2の曲げ強度が、70MPa以下であることが好ましい。
 試験片P2の曲げ強度が70MPa以下である場合には、本開示の光硬化性組成物を用いて製造される硬化物の曲げ弾性率が低減され、これにより、硬化物の使用感がより向上する。
 例えば、本開示の光硬化性組成物の硬化物として、口腔内で使用する医療器具(例えば、パーシャルデンチャー)の少なくとも一部分を製造した場合には、上記医療器具を口腔内に嵌める際の使用感により優れる(例えば、口腔内に痛みを生じにくい)。
 試験片P2の曲げ強度は、より好ましくは60MPa以下である。
 試験片P2の曲げ弾性率の下限には特に制限はないが、下限は、硬化物の強度の観点から、好ましくは2MPaであり、より好ましくは10MPaである。
 ここで、本開示の光硬化性組成物を用いて硬化物を製造する際の製造条件は、必ずしも、試験片P2の作製条件と同じである必要はない。硬化物の製造条件と試験片P2の作製条件とが異なる場合であっても、試験片P2の曲げ強度と、硬化物の曲げ強度と、の間には相関がある。
 即ち、試験片P2の曲げ強度は、本開示の光硬化性組成物を用いて製造される硬化物の曲げ強度の指標である。
(曲げ強度)
 試験片P2の曲げ強度は、以下のようにして測定する。
 試験片P2を、37±1℃の恒温水槽にて50±2時間保管する。
 その後、試験片P2を恒温水槽から取り出し、取り出した試験片P2の曲げ強度を、ISO20795-1:2008に準拠し、試験速度5±1mm/分の条件にて測定する。
 後述の実施例では、曲げ強度の測定装置として、万能試験機((株)インテスコ製)を用いた。
<光重合性成分>
 本開示の光硬化性組成物は、光重合性成分を少なくとも1種含有する。
 光重合性成分としては、エチレン性二重結合を含む化合物が挙げられる。
 エチレン性二重結合を含む化合物としては、(メタ)アクリルモノマー、スチレン、スチレン誘導体、(メタ)アクリロニトリル、等が挙げられる。
 光重合性成分としては、国際公開第2019/189652号の段落0030~段落0059に記載の光重合性成分を用いてもよい。
 硬化物の割れ耐性をより向上させる観点から、本開示の光硬化性組成物の全量に対する光重合性成分の含有量は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 光重合性成分は、(メタ)アクリルモノマーを少なくとも1種含むことが好ましい。
 ここで、(メタ)アクリルモノマーとは、分子中に1つ以上の(メタ)アクリロイル基を有するモノマーを意味する。
 本開示では、光硬化性組成物に含有される全ての(メタ)アクリルモノマーを、「(メタ)アクリルモノマー成分」と称することがあり、本開示の光硬化性組成物に含有される全ての(メタ)アクリルモノマーの合計含有量を、「(メタ)アクリルモノマー成分の合計含有量」と称することがある。
 硬化物の割れ耐性をより向上させる観点から、本開示の光硬化性組成物中の光重合性成分の全量に対する(メタ)アクリルモノマー成分の合計含有量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。
 硬化物の割れ耐性をより向上させる観点から、本開示の光硬化性組成物の全量に対する(メタ)アクリルモノマー成分の合計含有量は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 (メタ)アクリルモノマー成分を構成する(メタ)アクリルモノマーとしては、分子中に1つ以上の(メタ)アクリロイル基を有するモノマーであればよく、その他には特に制限はない。
 (メタ)アクリルモノマーは、単官能(メタ)アクリルモノマー(即ち、分子中に1つの(メタ)アクリロイル基を有するモノマー)であっても、2官能(メタ)アクリルモノマー(即ち、分子中に2つの(メタ)アクリロイル基を有するモノマー)であっても、多官能(メタ)アクリルモノマー(即ち、3官能以上の(メタ)アクリルモノマー;即ち、分子中に3つ以上の(メタ)アクリロイル基を有するモノマー)であってもよい。
 (メタ)アクリルモノマーは、分子中に、芳香族構造(例えば、ビスフェノールA構造等)、脂環式構造、及びウレタン結合のうちの少なくとも一つを含むことが好ましい。
 かかる好ましい態様の(メタ)アクリルモノマーは、更に、エチレンオキシ基及びプロピレンオキシ基の少なくとも一方を含んでいてもよい。
 (メタ)アクリルモノマーの重量平均分子量(Mw)は、5000以下であることが好ましく、3000以下であることがより好ましく、2000以下であることが更に好ましく、1500以下であることが更に好ましく、1000以下であることが更に好ましく、800以下であることが更に好ましい。
 (メタ)アクリルモノマーのMwの下限は、分子中に1つ以上の(メタ)アクリロイル基を含むモノマーである限り、特に制限はない。(メタ)アクリルモノマーのMwの下限は、例えば86であり、好ましくは100である。
 光硬化性組成物の粘度低減の観点から、本開示の光硬化性組成物に含有され得る(メタ)アクリルモノマー成分は、単官能(メタ)アクリルモノマー及び2官能(メタ)アクリルモノマーの少なくとも一方を含むことが好ましい。
 この場合、光硬化性組成物の粘度低減の観点から、本開示の光硬化性組成物に含有され得る(メタ)アクリルモノマー成分の全量に対する、単官能(メタ)アクリルモノマー及び2官能(メタ)アクリルモノマーの合計含有量は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 本開示の光硬化性組成物において、光硬化性組成物中のアクリロイル基及びメタクリロイル基の合計数に対するアクリロイル基の数の割合(以下、単に「アクリロイル基の数の割合」ともいう)は、10%以上であることが好ましい。
 アクリロイル基の数の割合が10%以上である場合、硬化物の割れ耐性をより向上させることができる。
 アクリロイル基の数の割合は、硬化物の割れ耐性をより向上させる観点から、20%以上であることがより好ましく、30%以上であることがさらに好ましく、40%以上であることがさらに好ましく、50%以上、60%以上、又は70%以上であることがさらに好ましく、100%であることが特に好ましい。
 本開示の光硬化性組成物における光重合性成分は、
2つの(メタ)アクリロイルオキシ基と2つのウレタン結合とを有するジ(メタ)アクリルモノマー(A)、及び、
1つのアクリロイル基を有するアクリルモノマー(B)
の少なくとも一方を含むことが好ましく、
ジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)の両方を含むことがより好ましい。
 光重合性成分がジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)の少なくとも一方(好ましくは両方)を含む場合には、試験片P1の全破壊仕事が1100J/m以上であることが達成されやすい。更に、試験片P2の曲げ弾性率が2500MPa以下であること、及び、試験片P2の曲げ強度が70MPa以下であることも達成されやすい。更に、光硬化性組成物の粘度低減も達成されやすい。
 全破壊仕事を向上させ、曲げ弾性率及び曲げ強度を低く調整することは、アクリルモノマー(B)の含有量を多くすることで、特に達成されやすい。
(ジ(メタ)アクリルモノマー(A))
 本開示におけるジ(メタ)アクリルモノマー(A)は、2つの(メタ)アクリロイルオキシ基と2つのウレタン結合とを有する化合物(即ち、2官能ウレタン(メタ)アクリレート)である。
 ジ(メタ)アクリルモノマー(A)は、2つの(メタ)アクリロイルオキシ基以外の(メタ)アクリロイルオキシ基を有しない。ジ(メタ)アクリルモノマー(A)は、2つのウレタン結合以外のウレタン結合を有しない。
 本開示の光硬化性組成物における光重合性成分は、ジ(メタ)アクリルモノマー(A)を1種のみ含んでもよいし、2種以上を含んでもよい。
 ジ(メタ)アクリルモノマー(A)は、好ましくは、下記式(1)で表される化合物を含む。
 この場合、ジ(メタ)アクリルモノマー(A)の全量に対する下記式(1)で表される化合物の含有量は、好ましくは60質量%以上であり、より好ましくは80質量%以上である。
 ジ(メタ)アクリルモノマー(A)の全量に対する下記式(1)で表される化合物の含有量は、100質量%であってもよい。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Rは、2価の鎖状炭化水素基、芳香族構造を有する2価の炭化水素基、又は脂環式構造を有する2価の炭化水素基であり、
 R及びRは、それぞれ独立に、置換基を有してもよい2価の鎖状炭化水素基であり、
 R及びRは、それぞれ独立に、メチル基又は水素原子である。
 式(1)中、Rとしては、芳香族構造を有する2価の炭化水素基、又は脂環式構造を有する2価の炭化水素基であることが好ましい。
 Rにこれらの環構造を含むことにより、光硬化性組成物の粘度がより抑制される。更に、試験片P1の全破壊仕事が1100J/m以上であること、試験片P2の曲げ弾性率が2500MPa以下であること、及び、試験片P2の曲げ強度が70MPa以下であることがより達成されやすい。
 式(1)中のRにおいて、2価の鎖状炭化水素基の炭素数としては、1~20が好ましく、1~10がより好ましく、2~6が更に好ましい。
 Rにおける2価の鎖状炭化水素基は、直鎖状であっても分岐鎖状であってもよく、飽和でも不飽和でもよく、置換基を有していてもよい。
 Rにおける2価の鎖状炭化水素基として、好ましくは、炭素数1~20の直鎖又は分岐鎖アルキレン基であり、より好ましくは炭素数1~12の直鎖又は分岐鎖アルキレン基であり、特に好ましくは炭素数1~10の直鎖又は分岐鎖アルキレン基である。
 上記炭素数1~20の直鎖状又は分岐鎖状アルキレン基の具体例として、例えば、メチレン基、エチレン基、プロパンジイル基、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基、ヘプタンジイル基、オクタンジイル基、ノナンジイル基、デカンジイル基、ウンデカンジイル基、ドデカンジイル基、トリデカンジイル基、テトラデカンジイル基、ペンタデカンジイル基、オクタデカンジイル基、エイコシレン基、ビニレン基、プロペンジイル基、ブテンジイル基、ペンテンジイル基、エチニレン基、プロピニレン、2,4,4-トリメチルヘキシレン基が挙げられる。これらのうち、2,4,4-トリメチルヘキシレン基が特に好ましい。
 式(1)中のRにおいて、芳香族構造を有する2価の炭化水素基としては、置換基を有していてもよい炭素数6~20(より好ましくは炭素数6~12、更に好ましくは炭素数6~10)の芳香族構造を有する2価の炭化水素基であることが好ましい。
 芳香族構造を有する2価の炭化水素基の例としては、アリーレン基、アルキレンアリーレン基、アルキレンアリーレンアルキレン基、及びアリーレンアルキレンアリーレン基を挙げることができる。
 芳香族構造を有する2価の炭化水素基としては、アルキレンアリーレン基又はアルキレンアリーレンアルキレン基であることが好ましい。これにより、光硬化性組成物の粘度がより抑制される。また、試験片P1の全破壊仕事が1100J/m以上であること、試験片P2の曲げ弾性率が2500MPa以下であること、及び、試験片P2の曲げ強度が70MPa以下であることがより達成されやすい。
 アリーレン基、アルキレンアリーレン基、アルキレンアリーレンアルキレン基、アルキルアリーレン基及びアリーレンアルキレンアリーレン基の具体例としては、1,3-又は1,4-フェニレン基、1,3-又は1,4-フェニレンジメチレン基、及び1,3-又は1,4-フェニレンジエチレン基が挙げられる。
 式(1)のRにおいて、脂環式構造を有する2価の炭化水素基としては、炭素数3~20であることが好ましく、6~12であることがさらに好ましく、6~8であることが特に好ましい。
 脂環式構造としては、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロヘキセニレン基、シクロヘプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロウンデシレン基、シクロドデシレン基、シクロトリデシレン基、シクロテトラデシレン基、シクロペンタデシレン基、シクロオクタデシレン基、シクロイコシレン基、ビシクロへキシレン基、ノルボルニレン基、イソボルニレン基、アダマンチレン基を挙げることができる。これらのうち、ノルボルニレン基、イソボルニレン基が好ましい。
 Rが脂環式構造を有する2価の炭化水素基である場合、特に好適な例は以下の通りである。*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000006
 式(1)中のRにおける脂環式構造を有する2価の炭化水素基は、置換基を有していてもよい。置換基としては、炭素数1~6の直鎖又は分岐鎖アルキル基が挙げられる。
 式(1)中のRにおいて、脂環式構造を有する2価の炭化水素基としては、
同じでも異なっていてもよい2つのアルキレン基(例えば、炭素数1~3のアルキレン基)それぞれの一方の結合手を介して脂環式構造と結合した構造を有する2価の炭化水素基(つまり、2つの2価のアルキレン基の間に脂環式構造が結合した構造を有する)、又は、
1つのアルキレン基(例えば、炭素数1~3のアルキレン基)の一方の結合手を介して脂環式構造と結合した構造を有する2価の炭化水素基
が好ましく、
2つのメチレン基の間に脂環式構造が配置された構造を有する2価の炭化水素基、又は、
1つのメチレン基と脂環式構造とが結合した構造を有する2価の炭化水素基がさらに好ましい。
 式(1)において、R及びRは、それぞれ独立に、置換基を有してもよい2価の鎖状炭化水素基である。
 R及びRとして好適な2価の鎖状炭化水素基は、Rとして好適な2価の鎖状炭化水素基と同様である。
 ただし、R及びRにおける、置換基を有してもよい2価の鎖状炭化水素基の炭素数は、2~6であることが好ましく、2~3であることがより好ましい。
 R及びRが、置換基を有する2価の鎖状炭化水素基である場合の上記置換基としては、例えば;
メチル基、エチル基などの炭素数1~6のアルキル基;
アリール基;
シクロペンチル基、シクロヘキシル基などの炭素数3~6のシクロアルキル基;
トリル基;
キシリル基;
クミル基;
スチリル基;
メトキシフェニル基、エトキシフェニル基、プロポキシフェニル基などのアルコキシフェニル基;
等が挙げられる。
 光硬化性組成物の粘度をより抑制する観点から、R及びRは、それぞれ独立に、置換基を有しない炭素数2~6(より好ましくは炭素数2~3)の2価の鎖状炭化水素基であることが好ましい。
 ジ(メタ)アクリルモノマー(A)として好適な化合物として、例えば、m-キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ノルボルネンジイソシナネート及びイソホロンジイソシアネートからなる群から選択される1つのイソシアネートと、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、及び4-ヒドロキブチルアクリレートからなる群から選択される1つのヒドロキシアクリレートとの反応物であるウレタンジアクリレートが挙げられる。
 ジ(メタ)アクリルモノマー(A)としては、後述する実施例で使用される化合物も挙げられる。
 ジ(メタ)アクリルモノマー(A)の重量平均分子量(Mw)は、380~5000であることが好ましく、380~4000であることがより好ましく、380~700であることが好ましく、400~650であることがさらに好ましい。
 ジ(メタ)アクリルモノマー(A)は、市販のモノマーから合成してもよい。例えば、ヒドロキシ(メタ)アクリレート2分子と、ジイソシアネート1分子とからジ(メタ)アクリルモノマー(A)を合成してもよい。
 好適なヒドロキシ(メタ)アクリレートの例は以下の通りである。下記構造のうち、「Et」はエチル基を示す。
Figure JPOXMLDOC01-appb-C000007
 好適なジイソシアネート例は以下の通りである。下記構造のうち、「Me」はメチル基を示す。
Figure JPOXMLDOC01-appb-C000008
(1つのアクリロイル基を有するアクリルモノマー(B))
 本開示におけるアクリルモノマー(B)は、1つのアクリロイル基を有するモノマー(即ち、単官能アクリレート)である。
 アクリルモノマー(B)は、1つのアクリロイル基以外にアクリロイル基を有しない。アクリルモノマー(B)は、メタクリロイル基を有しないことが好ましい。
 本開示の光硬化性組成物における光重合性成分は、アクリルモノマー(B)を1種のみ含んでもよいし、2種以上を含んでもよい。
 アクリルモノマー(B)は、好ましくは、下記式(2)で表される化合物及び下記式(3)で表される化合物の少なくとも一方を含む。
 この場合、アクリルモノマー(B)の全量に対する下記式(2)で表される化合物及び下記式(3)で表される化合物の合計含有量は、好ましくは60質量%以上であり、より好ましくは80質量%以上である。
 アクリルモノマー(B)の全量に対する下記式(2)で表される化合物及び下記式(3)で表される化合物の合計含有量は、100質量%であってもよい。
Figure JPOXMLDOC01-appb-C000009
 式(2)中、Rは、環構造を有してもよい1価の有機基である。
 式(3)中、R及びRは、それぞれ独立に、環構造を有してもよい1価の有機基、又は水素原子であり、R及びRは互いに結合して環を形成してもよい。
 アクリルモノマー(B)は、式(2)で表される化合物を含むことが好ましい。
 式(2)中のRは、環構造を有する炭素数3~30の1価の有機基であることが好ましく、環構造を有する炭素数6~20の1価の有機基であることがより好ましい。
 アクリルモノマー(B)が式(2)で表される化合物を含む場合には、硬化物の疎水性向上(即ち、吸水性低減)の観点からみて有利である。
 アクリルモノマー(B)が式(2)で表される化合物を含む場合、アクリルモノマー(B)の全量に対する下記式(2)で表される化合物の含有量は、好ましくは60質量%以上であり、より好ましくは80質量%以上である。
 アクリルモノマー(B)の全量に対する下記式(2)で表される化合物の含有量は、100質量%であってもよい。
 式(2)中、Rは、下記式(4)で表される有機基であってもよい。
Figure JPOXMLDOC01-appb-C000010
 式(4)中、Lは、単結合又は炭素数1~30のO又はNであるヘテロ原子を有していてもよい2価の鎖状炭化水素基であり、Aは、水素原子、炭素数3~30のO又はNであるヘテロ原子を有していてもよい1価の脂環式基、又は、炭素数6~30のアリール基である。*は結合位置を表す。
 式(4)中、Lで表される炭素数1~30のO又はNであるヘテロ原子を有していてもよい2価の鎖状炭化水素基は、直鎖状であっても分岐鎖状であってもよい。
 Lで表される炭素数1~30のO又はNであるヘテロ原子を有していてもよい2価の鎖状炭化水素基の炭素数は、1~20であることがより好ましく、1~10であることが更に好ましく、1~8であることが特に好ましい。
 Lで表される2価の鎖状炭化水素基がヘテロ原子を含む場合、L中のヘテロ原子の数は1~3であることが好ましく、1又は2であることがさらに好ましい。
 Lで表される上記2価の鎖状炭化水素基は、置換基を有していてもよい。
 置換基の好適な例としては、炭素数1~3のアルキル基、ヒドロキシ基、水素原子のうち1又は2がヒドロキシ基で置換された炭素数1~3のアルキル基が挙げられる。
 Lで表される上記2価の鎖状炭化水素基は、ウレタン結合を含んでいてもよい。Lで表される上記2価の鎖状炭化水素基がウレタン結合を含む場合、L中のウレタン結合の数は、1又は2であってよい。
 式(4)中のLで表される上記2価の鎖状炭化水素基の具体例としては、例えば、以下の基が挙げられる。以下の基において、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000011
 式(4)中、Aで表される炭素数3~20のO又はNであるヘテロ原子を有していてもよい1価の脂環式基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘキセニル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリデシル基、シクロテトラデシル基、シクロペンタデシル基、シクロオクタデシル基、シクロイコシル基、ビシクロへキシル基、ノルボルニル基、イソボルニル基、アダマンチル基、モルホリル基、ピペリジノ基、ピペラジノ基、ジオキサン基を挙げることができる。 Aで表される上記1価の脂環式基の炭素数は、5~12であることが好ましく、6~10であることがさらに好ましい。
 式(4)中、Aで表される炭素数6~30のアリール基における芳香族構造としては、例えば、フェニル構造、ビフェニル構造、ナフチル構造、アントリル構造が挙げられる。
 式(4)中のAで表される基は、置換基を有していてもよい。
 上記置換基の好適な例としては、
メチル基、エチル基などの炭素数1~6のアルキル基;
ヒドロキシ基;
1つ又は2つのヒドロキシ基で置換された炭素数1~6のアルキル基;
アリール基;
シクロペンチル基、シクロヘキシル基などの炭素数3~6のシクロアルキル基;
トリル基;
キシリル基;
クミル基;
スチリル基;
メトキシフェニル基、エトキシフェニル基、プロポキシフェニル基などのアルコキシフェニル基;
等が挙げられる。
 式(4)中のAで表される基としては、例えば、以下の例を挙げることができる。*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000012
 式(4)で表される有機基の炭素数は、1~30であることが好ましく、1~20であることがさらに好ましい。
 式(3)中、R及びRは、それぞれ独立に、環構造を有してもよい1価の有機基、又は水素原子であり、R及びRは互いに結合して環を形成してもよい。
 R及びRは、それぞれ独立に、炭素数1~30のO又はNであるヘテロ原子を有していてもよい1価の鎖状炭化水素基であることが好ましい。
 上記1価の鎖状炭化水素基は、直鎖状であっても分岐鎖状であってもよく、飽和でも不飽和でもよく、置換基を有していてもよい。
 上記1価の鎖状炭化水素基の炭素数は、1~20であることがより好ましく、1~10であることがさらに好ましい。
 R及びRにおける有機基の例としては、OまたはNであるヘテロ原子を有していてもよい、メチル基、エチル基、プロピル基などの炭素数1~30のアルキル基が挙げられる。
 式(2)において、R及びRのいずれか一方がヒドロキシエチル基又はブトキシメチル基であり、他方が水素原子であることが好ましい。
 かかる態様のモノマーとして、例えば、以下に示すモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000013
 R及びRが互いに結合して環を形成している場合のアクリルモノマー(B)の例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000014
 アクリルモノマー(B)の重量平均分子量(Mw)は、80~500であることが好ましく、100~400であることがさらに好ましく、130~320であることが特に好ましい。
 アクリルモノマー(B)として好適な化合物としては、例えば、後述する実施例に使用した化合物を挙げることができる。
 本開示の光硬化性組成物は、ジ(メタ)アクリルモノマー(A)の含有量が、光硬化性組成物に含有される(メタ)アクリルモノマー成分の合計含有量1000質量部に対し、200質量部以上850質量部以下であることが好ましく、250質量部以上850質量部以下であることがより好ましく、300質量部以上800質量部以下であることがさらに好ましい。
 本開示の光硬化性組成物は、ジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)の合計含有量が、光硬化性組成物に含有される(メタ)アクリルモノマー成分の合計含有量1000質量部に対し、800質量部以上であることが好ましく、900質量部以上であることがより好ましく、950質量部以上であることが更に好ましい。
<光重合開始剤>
 本開示の光硬化性組成物は、光重合開始剤を少なくとも1種含有する。
 光重合開始剤は、光を照射することでラジカルを発生するものであれば特に限定されないが、光造形の際に用いる光の波長でラジカルを発生するものであることが好ましい。
 光造形の際に用いる光の波長としては、一般的には365nm~500nmが挙げられるが、実用上好ましくは365nm~430nmであり、より好ましくは365nm~420nmである。
 光造形の際に用いる光の波長でラジカルを発生する光重合開始剤としては、例えば、アルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾイン系化合物、アセトフェノン系化合物、ベンゾフェノン系化合物、チオキサントン系化合物、α-アシロキシムエステル系化合物、フェニルグリオキシレート系化合物、ベンジル系化合物、アゾ系化合物、ジフェニルスルフィド系化合物、有機色素系化合物、鉄-フタロシアニン系化合物、ベンゾインエーテル系化合物、アントラキノン系化合物等が挙げられる。
 これらのうち、反応性等の観点から、アルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物が好ましい。
 アルキルフェノン系化合物としては、例えば、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(Omnirad 184:IGM Resins B.V.社製)が挙げられる。
 アシルフォスフィンオキサイド系化合物としては、例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(Omnirad 819:IGM Resins B.V.社製)、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(Omnirad TPO:IGM Resins B.V.社製)が挙げられる。
 本開示の光硬化性組成物は、光重合開始剤を1種のみ含有していてもよいし、2種以上含有していてもよい。
 本開示の光硬化性組成物中における光重合開始剤の含有量(2種以上である場合には合計含有量)は、光硬化性組成物の全量に対し、0.1質量%~10質量%であることが好ましく、0.2質量%~5質量%であることがさらに好ましく、0.3質量%~3質量%であることが特に好ましい。
<その他の成分>
 本開示の光硬化性組成物は、必要に応じて、上述した成分以外のその他の成分を1種類以上含有していてもよい。
 光硬化性組成物が、その他の成分を含有する場合、ジ(メタ)アクリルモノマー(A)、アクリルモノマー(B)及び光重合開始剤の合計質量は、光硬化性組成物の全量に対し、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが更に好ましい。
 その他の成分としては、例えば、ジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)以外のモノマーが挙げられる。
 光硬化性組成物が、その他の成分としてジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)以外のモノマーを含む場合、その他の成分としてのモノマーの含有量は、ジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)の質量の合計に対して50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましく、10質量%以下であることが特に好ましい。
 その他の成分としては、例えば、色材、シランカップリング剤(例えば3-アクリロキシプロピルトリメトキシシラン)等のカップリング剤、ゴム剤、イオントラップ剤、イオン交換剤、レベリング剤、可塑剤、消泡剤等の添加剤、熱重合開始剤等も挙げられる。
 本開示の光硬化性組成物が熱重合開始剤を含有する場合には、光硬化と熱硬化との併用が可能となる。熱重合開始剤としては、例えば、熱ラジカル発生剤、アミン化合物などが挙げられる。
 その他の成分としては、無機フィラーも挙げられる。
 しかし、硬化物の造形精度をより向上させる観点から、本開示の光硬化性組成物は、無機フィラー(例えば、シリカ、バリウムボロシリケートガラス、等。以下同じ。)を含有しないか、又は、無機フィラーを含有する場合には、光硬化性組成物の全量に対する無機フィラーの含有量が60質量%以下(より好ましくは40質量%以下、更に好ましくは20質量%以下、更に好ましくは10質量%以下)であることが好ましい。
 本開示の光硬化性組成物の調製方法は特に制限されない。
 本開示の光硬化性組成物の調製方法としては、例えば、ジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)、及び光重合開始剤(及び必要に応じその他の成分)を混合する方法が挙げられる。
 各成分を混合する手段は特に限定されず、例えば、超音波による溶解、双腕式攪拌機、ロール混練機、2軸押出機、ボールミル混練機、及び遊星式撹拌機等の手段が含まれる。
 本実施形態の光硬化性組成物は、各成分を混合した後、フィルタでろ過して不純物を取り除き、さらに真空脱泡処理を施すことによって調製してもよい。
 
<光硬化性組成物の好ましい粘度>
 本開示の光硬化性組成物は、E型粘度計により25℃及び50rpmの条件で測定される粘度(以下、単に「粘度」ともいう)が、5mPa・s~6000mPa・sであることが好ましい。
 ここで、rpmは、revolutions per minute(回転毎分)を意味する。
 粘度が5mPa・s~6000mPa・sである場合には、硬化物(特に、光造形物)を製造する際の光硬化性組成物の取り扱い性に優れる。
 粘度は、10mPa・s~5000mPa・sであることがより好ましく、20mPa・s~5000mPa・sであることが更に好ましく、100mPa・s~4500mPa・sであることが更に好ましい。
〔硬化物〕
 本開示の硬化物は、上述した本開示の光硬化性組成物の硬化物である。
 このため、本開示の硬化物は、割れ耐性に優れる。
 本開示の硬化物は、光造形による硬化物(即ち、光造形物)であることが好ましい、
 硬化物(例えば光造形物)を製造する方法については、前述したとおりである。
〔歯科用製品〕
 本開示の歯科用製品は、上述した本開示の硬化物を含む。
 このため、本開示の歯科用製品は、割れ耐性に優れる。
 歯科用製品の具体例は前述したとおりである。
 前述したとおり、歯科用製品としては、口腔内で使用する医療器具が好ましく、パーシャルデンチャーであることが特に好ましい。
 以下、本開示の実施例を示すが、本開示は以下の実施例には限定されない。
〔実施例1~39、比較例1~11〕
<光硬化性組成物の調製>
 表1~表5に示す各成分を混合し、光硬化性組成物を得た。
<測定及び評価>
 得られた光硬化性組成物を用い、以下の測定及び評価を行った。
 結果を表1~表5に示す。
(光硬化性組成物の粘度)
 得られた光硬化性組成物の粘度を、E型粘度計により、25℃、50rpmの条件で測定した。
(試験片P1の全破壊仕事)
 得られた光硬化性組成物を用い、前述した方法によって試験片P1を作製し、得られた試験片P1の全破壊仕事を、前述した方法によって測定した。
(試験片P2の曲げ弾性率)
 得られた光硬化性組成物を用い、前述した方法によって試験片P2を作製し、得られた試験片P2の曲げ弾性率を、前述した方法によって測定した。
(試験片P2の曲げ強度)
 得られた光硬化性組成物を用い、前述した方法によって試験片P2を作製し、得られた試験片P2の曲げ強度を、前述した方法によって測定した。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表1~表5中、各実施例及び各比較例における「組成」欄の数字は、質量部を意味し、空欄は、該当する成分を含有しないことを意味する。
 表1~表5中、各実施例及び各比較例における「アクリロイル基の数(%)」の欄の数字は、光硬化性組成物中のアクリロイル基及びメタクリロイル基の合計数に対する、アクリロイル基の数の割合(%)を示している。
<ジ(メタ)アクリルモノマー(A)>
 表1~表5中、ジ(メタ)アクリルモノマー(A)(即ち、2つの(メタ)アクリロイルオキシ基と2つのウレタン結合とを有する化合物;即ち、2官能ウレタン(メタ)アクリレート)は、具体的には下記化合物である。
Figure JPOXMLDOC01-appb-C000020
 UDA:下記製造例1に従って製造した化合物。
 UDMA:下記製造例2に従って製造した化合物。
 AH-600:共栄社化学製の化合物。
 MMD-352:下記製造例3に従って製造した化合物
 KRM-060:製造例4に従って製造した化合物
 KRM-077:製造例5に従って製造した化合物
 U-2PPA:新中村化学工業製の2官能ウレタンアクリレート
 UA-160TM:新中村化学工業製の2官能ウレタンアクリレート
 UN-352:根上工業製の2官能ウレタンアクリレート
 以下、製造例1~5について説明する。
 なお、各製造例における略号は以下のとおりである。
 HEA:ヒドロキシエチルアクリレート
 TMHDI:2,4,4-トリメチルヘキサンジイソシアネート
 DBTDL:ジラウリン酸ジブチルすず
 MEHQ:4-メトキシフェノール
 HEMA:ヒドロキシエチルメタクリレート
 M-600A:2-ヒドロキシ-3-フェノキシプロピルアクリレート
 TMXDI:1,3-テトラメチルキシリレンジイソシアネート
 XDI:m-キシリレンジイソシアネート
 NBDI:ノルボルネンジイソシアネート
(製造例1:UDAの製造)
 十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、HEA372g(3.20モル)、DBTDL0.71g(HEAとTMHDIの合計質量に対して0.1質量%)、及びMEHQ0.35g(HEAとTMHDIの合計質量に対して0.05質量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、TMHDI337g(1.60モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、2官能ウレタンアクリレート(UDA)680gを得た。25℃における粘度は7100mPa・sであった。
(製造例2:UDMAの製造)
 十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、HEMA416g(3.20モル)、DBTDL0.75g(HEMAとTMHDIの合計質量に対して0.1質量%)、及びMEHQ0.38g(HEMAとTMHDIの合計質量に対して0.05質量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、TMHDI337g(1.60モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、2官能ウレタンメタクリレート(UDMA)720gを得た。25℃における粘度は8200mPa・sであった。
(製造例3:MMD-352の製造)
 十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、M-600Aを444g(2.00モル)、DBTDL0.63g(M-600AとXDIの合計質量に対して0.1質量%)、及びMEHQ0.32g(M-600AとXDIの合計質量に対して0.05質量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、XDI188g(1.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、2官能ウレタンアクリレート(MMD-352)600gを得た。65℃における粘度は6210mPa・sであった。
(製造例4:KRM-060の製造)
 十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、HEA232g(2.00モル)、DBTDL0.48g(HEAとTMXDIの合計質量に対して0.1質量%)、及びMEHQ0.24g(HEAとTMXDIの合計質量に対して0.05質量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、TMXDI244g(1.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、2官能ウレタンアクリレート(KRM-060)455gを得た。65℃における粘度は2200mPa・sであった。
(製造例5:KRM-077の製造)
 十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、HEA372g(3.20モル)、DBTDL0.70g(HEAとNBDIの合計質量に対して0.1質量%)、及びMEHQ0.35g(HEAとNBDIの合計質量に対して0.05質量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、NBDI330g(1.60モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、2官能ウレタンアクリレート(KRM-077)670gを得た。65℃における粘度は930mPa・sであった。
<多官能(メタ)アクリレート>
 表1~表5中、多官能(メタ)アクリレートは、下記化合物である。
 E4100:ダイセル・オルネックス社製の3官能ウレタンアクリレート「EBECRYL4100」
 E4740:ダイセル・オルネックス社製の3官能ウレタンアクリレート「EBECRYL4740」
 UA-306T:共栄社化学製の6官能ウレタンアクリレート
 UA-306H:共栄社化学製の6官能ウレタンアクリレート
<アクリルモノマー(B)>
 表1~表5中、アクリルモノマー(B)(即ち、1つのアクリロイル基を有する化合物;即ち、単官能アクリルモノマー)は、具体的には下記化合物である。
Figure JPOXMLDOC01-appb-C000021
 IB-XA:共栄社化学製の化合物。
 POB-A:共栄社化学製の化合物。
 A-LEN-10:新中村化学工業製の化合物。
 ACMO:KJケミカルズ製の化合物。
 PO-A:共栄社化学製の化合物。
 V216:大阪有機化学工業製の化合物。
 4-HBA:大阪有機化学工業製の化合物。
 MEDOL10:大阪有機化学工業製の化合物。
 2-HPA:共栄社化学製の化合物。
 P2H-A:共栄社化学製の化合物。
 FA513AS:日立化成工業製の化合物。
<その他の(メタ)アクリルモノマー>
 表1~表5中、「その他の(メタ)アクリルモノマー」は、ジ(メタ)アクリルモノマー(A)以外の2官能(メタ)アクリルモノマー及びアクリルモノマー(B)以外の単官能(メタ)アクリルモノマーを意味し、詳細には、下記化合物である。
Figure JPOXMLDOC01-appb-C000022
 IB-X:共栄社化学製の化合物。
 4EG-A:共栄社化学製の化合物。
 HEMA:共栄社化学製の化合物。
 PO:共栄社化学製の化合物。
<光重合開始剤>
 表1~表5中の光重合開始剤は以下のとおりである。
Figure JPOXMLDOC01-appb-C000023
 Omnirad 819:IGM Resins B.V.社製「Omnirad 819」(アシルフォスフィンオキサイド系化合物)
 Omnirad 184:IGM Resins B.V.社製「Omnirad 184」(アルキルフェノン系化合物)
 Omnirad TPO:IGM Resins B.V.社製「Omnirad TPO」(アシルフォスフィンオキサイド系化合物)
 表1~表5に示すように、各実施例の光硬化性組成物は、光重合性成分と光重合開始剤とを含有し、かつ、試験片P1の全破壊仕事が1100J/m以上であった。従って、各実施例の光硬化性組成物について、割れ耐性(即ち、割れにくさ)に優れる硬化物を製造できることが期待される。
 これに対し、各比較例の光硬化性組成物は、試験片P1の全破壊仕事が1100J/m未満であった。
<押込み試験>
 本開示の光硬化性組成物により造形されたパーシャルデンチャーの嵌合時に割れや亀裂等が発生するかどうかを確認するために、以下の押込み試験を行なった。
 以下の押込み試験は、直方体形状の試験片の長手方向中央部に対し、長手方向に対して垂直でありかつ厚さ方向に対して平行な方向の押込み荷重を印加する試験であり、すなわち、パーシャルデンチャーの嵌合時における負荷を模した試験である。
(試験片P3の作製)
 押込み試験においては、実施例1~39及び比較例1~11の各々の光硬化性組成物により造形された試験片P3を用いた。
 試験片P3は、長さ64mm、幅10mm、厚さ4mmの直方体形状の試験片であり、以下の方法で造形した。
 試験片P3は、実施例1~39及び比較例1~11の各々の光硬化性組成物に対し、波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P1を形成し、硬化層P1を厚さ方向に積層させることにより、長さ64mm、幅10mm、厚さ4mmの直方体形状の造形物P3を形成し、造形物P3に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形によって作製した。
 本押込み試験における試験片P3の作製の光造形装置としては、DLP方式の3Dプリンターである、Kulzer社製「Cara Print4.0」を用いた。
(押込み試験)
 試験片P3の押込み試験は、ISO20795-1:2008の曲げ強度・曲げ弾性率の測定方法に準じて行った。具体的には、万能試験機((株)インテスコ製)を用い、以下のようにして行った。
 試験片を支持するための支点として、直径3.2mmの半球状の先端部を持つ支持ピンを2本準備した。これら2本の支持ピンを、支点間距離(即ち、先端間の距離)が50±0.1mmとなるように平行に配置した。
 次に、2本の支持ピン上に試験片P3を、各支持ピンにおける支点(即ち、先端部)によって試験片P3が支持されるように載置した。この際、2つの支点間の中心と、直方体形状の試験片P3の長手方向中央部と、が一致するように載置した。
 次に、直径3.2mmの半球状の先端部をもつ荷重プランジャを準備した。
 次に、この荷重プランジャの先端部により、2本の支持ピン上に載置された試験片P3の長手方向中央部に対し、試験片P3の長手方向に対して垂直でありかつ試験片P3の厚さ方向に対して平行な方向の押込み荷重を印加した。押込み荷重を印加する速度は、5±1mm/分とした。押込み荷重を印加する際の雰囲気温度は、23℃とした。
 押込み量(即ち、荷重プランジャの先端部の移動距離)が10mmとなった時点で押込み荷重の印加を終了し、次いで試験片P3を目視で観察し、割れの有無を確認した。
(結果)
 試験片P1の全破壊仕事が1100J/m以上である実施例1~39においては、上記押込み試験において試験片P3に割れは発生しなかった。
 試験片P1の全破壊仕事が1100J/m未満である比較例1~11においては、上記押込み試験において試験片P3に割れが発生した。
 以上により、試験片P1とした場合の全破壊仕事が1100J/m以上である本開示の光硬化性組成物の硬化物を、パーシャルデンチャー等の歯科用製品として使用した場合には、嵌合時の硬化物の割れを抑制できることがわかった。
 2021年3月27日に出願された日本国特許出願2020-058696号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (18)

  1.  光重合性成分と、光重合開始剤と、を含有する光硬化性組成物であって、
     前記光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P1を形成し、前記硬化層P1を厚さ方向に積層させることにより、長さ39mm、幅8mm、厚さ4mmの直方体形状の造形物P1を形成し、前記造形物P1に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形により、長さ39mm、幅8mm、厚さ4mmの直方体形状の試験片P1を作製した場合に、ISO20795-1:2008に準拠して測定される前記試験片P1の全破壊仕事が、1100J/m以上である、
    光硬化性組成物。
  2.  前記光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P2を形成し、前記硬化層P2を厚さ方向に積層させることにより、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の造形物P2を形成し、前記造形物P2に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形により、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の試験片P2を作製した場合に、ISO20795-1:2008に準拠して測定される前記試験片P2の曲げ弾性率が、2500MPa以下である、
    請求項1に記載の光硬化性組成物。
  3.  前記光硬化性組成物に対し波長405nmの可視光を照射量12mJ/cmにて照射して厚さ100μmの硬化層P2を形成し、前記硬化層P2を厚さ方向に積層させることにより、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の造形物P2を形成し、前記造形物P2に対し、波長365nmの紫外線を照射量10J/cmにて照射する条件の光造形により、長さ64mm、幅10mm、厚さ3.3mmの直方体形状の試験片P2を作製した場合に、ISO20795-1:2008に準拠して測定される前記試験片P2の曲げ強度が、70MPa以下である、
    請求項1又は請求項2に記載の光硬化性組成物。
  4.  前記光重合性成分が、
     2つの(メタ)アクリロイルオキシ基と2つのウレタン結合とを有するジ(メタ)アクリルモノマー(A)と、
     1つのアクリロイル基を有するアクリルモノマー(B)と、
    を含む、
    請求項1~請求項3のいずれか1項に記載の光硬化性組成物。
  5.  光硬化性組成物中のアクリロイル基及びメタクリロイル基の合計数に対するアクリロイル基の数の割合が40%以上である、
    請求項4に記載の光硬化性組成物。
  6.  前記ジ(メタ)アクリルモノマー(A)が、下記式(1)で表される化合物を含む、請求項4又は請求項5に記載の光硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、Rは、2価の鎖状炭化水素基、芳香族構造を有する2価の炭化水素基、又は脂環式構造を有する2価の炭化水素基であり、
     R及びRは、それぞれ独立に、置換基を有してもよい2価の鎖状炭化水素基であり、
     R及びRは、それぞれ独立に、メチル基又は水素原子である。)
  7.  前記式(1)中、
    前記Rが、芳香族構造を有する炭素数6~12の2価の炭化水素基又は脂環式構造を有する炭素数6~12の2価の炭化水素基であり、
    前記R及び前記Rが、それぞれ独立に、置換基を有しない炭素数2~6の2価の鎖状炭化水素基である、
    請求項6に記載の光硬化性組成物。
  8.  前記アクリルモノマー(B)が、下記式(2)で表される化合物及び下記式(3)で表される化合物の少なくとも一方を含む、
    請求項4~請求項7のいずれか1項に記載の光硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002

    (式(2)中、Rは、環構造を有してもよい1価の有機基である。
     式(3)中、R及びRは、それぞれ独立に、環構造を有してもよい1価の有機基、又は水素原子であり、R及びRは互いに結合して環を形成してもよい。)
  9.  前記アクリルモノマー(B)が、前記式(2)で表される化合物を含み、
     前記式(2)中、前記Rが、環構造を有する炭素数6~20の1価の有機基である、
    請求項8に記載の光硬化性組成物。
  10.  前記ジ(メタ)アクリルモノマー(A)の重量平均分子量が、380~4000である、請求項4~請求項9のいずれか1項に記載の光硬化性組成物。
  11.  前記アクリルモノマー(B)の重量平均分子量が、130~320である、請求項4~請求項10のいずれか1項に記載の光硬化性組成物。
  12.  前記ジ(メタ)アクリルモノマー(A)の含有量が、前記光硬化性組成物に含有される(メタ)アクリルモノマー成分の合計含有量1000質量部に対し、200質量部以上850質量部以下である、
    請求項4~請求項11のいずれか1項に記載の光硬化性組成物。
  13.  前記ジ(メタ)アクリルモノマー(A)及び前記アクリルモノマー(B)の合計含有量が、前記光硬化性組成物に含有される(メタ)アクリルモノマー成分の合計含有量1000質量部に対し、800質量部以上である、
    請求項4~請求項12のいずれか1項に記載の光硬化性組成物。
  14.  E型粘度計により25℃及び50rpmの条件で測定される粘度が、20mPa・s~5000mPa・sである、
    請求項1~請求項13のいずれか1項に記載の光硬化性組成物。
  15.  光造形用の光硬化性組成物である、
    請求項1~請求項14のいずれか1項に記載の光硬化性組成物。
  16.  請求項1~請求項15のいずれか1項に記載の光硬化性組成物の硬化物。
  17.  請求項16に記載の硬化物を含む、歯科用製品。
  18.  口腔内で使用される医療器具である、請求項17に記載の歯科用製品。
PCT/JP2021/011703 2020-03-27 2021-03-22 光硬化性組成物、硬化物、及び歯科用製品 WO2021193527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180023759.XA CN115348981A (zh) 2020-03-27 2021-03-22 光固化性组合物、固化物和牙科用制品
EP21777176.5A EP4112665A4 (en) 2020-03-27 2021-03-22 LIGHT-CURING COMPOSITION, CURED PRODUCT AND DENTAL PRODUCT
JP2022510478A JP7412535B2 (ja) 2020-03-27 2021-03-22 光硬化性組成物、硬化物、及び歯科用製品
US17/912,098 US11866527B2 (en) 2020-03-27 2021-03-22 Photocurable composition, cured product, and dental product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058696 2020-03-27
JP2020-058696 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193527A1 true WO2021193527A1 (ja) 2021-09-30

Family

ID=77891890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011703 WO2021193527A1 (ja) 2020-03-27 2021-03-22 光硬化性組成物、硬化物、及び歯科用製品

Country Status (6)

Country Link
US (1) US11866527B2 (ja)
EP (1) EP4112665A4 (ja)
JP (1) JP7412535B2 (ja)
CN (1) CN115348981A (ja)
TW (1) TW202145971A (ja)
WO (1) WO2021193527A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315122B1 (ja) * 2021-10-20 2023-07-26 東洋インキScホールディングス株式会社 ハードコートフィルムおよびその製造方法
WO2023126943A3 (en) * 2021-12-31 2023-08-10 Stratasys Ltd. Additive manufacturing of dental prostheses

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111880B2 (ja) 2007-02-02 2013-01-09 シーメット株式会社 面露光による光学的立体造形用樹脂組成物
JP5235056B2 (ja) 2007-02-02 2013-07-10 シーメット株式会社 面露光による光学的立体造形用樹脂組成物
JP2016525150A (ja) 2014-01-13 2016-08-22 デンカ インク 光硬化性樹脂組成物ならびに人工歯および義歯床を製造するための3次元印刷におけるその使用方法
WO2018105463A1 (ja) * 2016-12-05 2018-06-14 Dic株式会社 光学的立体造形用光硬化性樹脂組成物
WO2019189652A1 (ja) 2018-03-30 2019-10-03 三井化学株式会社 光造形用硬化性組成物、消失模型及び立体造形物の製造方法
JP2019199448A (ja) * 2018-05-17 2019-11-21 クラレノリタケデンタル株式会社 光硬化性樹脂組成物
JP2020058696A (ja) 2018-10-12 2020-04-16 株式会社リブドゥコーポレーション 使い捨ておむつ
WO2020203981A1 (ja) * 2019-03-29 2020-10-08 三井化学株式会社 光硬化性組成物、硬化物及び歯科用製品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819415B2 (ja) * 2011-05-16 2015-11-24 三井化学株式会社 新規な化合物、該化合物を含む組成物および硬化物
US10277330B2 (en) * 2013-09-19 2019-04-30 Radius Universal Llc Fiber optic communications and power network
WO2016159219A1 (ja) * 2015-03-31 2016-10-06 三井化学株式会社 歯科材料用重合性モノマー、組成物、接着性歯科材料、及びキット
US10492888B2 (en) * 2015-07-07 2019-12-03 Align Technology, Inc. Dental materials using thermoset polymers
US10562995B2 (en) * 2015-10-08 2020-02-18 Mitsui Chemicals, Inc. Photocurable composition, denture base, and plate denture
JP6934475B2 (ja) * 2016-08-26 2021-09-15 クラレノリタケデンタル株式会社 光硬化性樹脂組成物
EP3604353A4 (en) * 2017-03-29 2020-11-04 Mitsui Chemicals, Inc. PHOTO-CURING COMPOSITION, DENTURE BASE AND PLATE DENTURE DENTURE
AU2019215191A1 (en) * 2018-02-02 2020-09-17 University Of Washington Compositions and methods for inducing tripartite motif-containing protein 16 (trim16) signaling
KR101957204B1 (ko) * 2018-04-18 2019-03-12 주식회사 디오 디지털보철 제조방법
CN109517105B (zh) * 2018-11-27 2021-05-28 吉林省登泰克牙科材料有限公司 一种超高弹性光固化临时树脂组合物、其制备方法和应用
EP4286083A4 (en) * 2021-01-27 2024-04-03 Sumitomo Electric Hardmetal Corp. DRILL

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111880B2 (ja) 2007-02-02 2013-01-09 シーメット株式会社 面露光による光学的立体造形用樹脂組成物
JP5235056B2 (ja) 2007-02-02 2013-07-10 シーメット株式会社 面露光による光学的立体造形用樹脂組成物
JP2016525150A (ja) 2014-01-13 2016-08-22 デンカ インク 光硬化性樹脂組成物ならびに人工歯および義歯床を製造するための3次元印刷におけるその使用方法
WO2018105463A1 (ja) * 2016-12-05 2018-06-14 Dic株式会社 光学的立体造形用光硬化性樹脂組成物
WO2019189652A1 (ja) 2018-03-30 2019-10-03 三井化学株式会社 光造形用硬化性組成物、消失模型及び立体造形物の製造方法
JP2019199448A (ja) * 2018-05-17 2019-11-21 クラレノリタケデンタル株式会社 光硬化性樹脂組成物
JP2020058696A (ja) 2018-10-12 2020-04-16 株式会社リブドゥコーポレーション 使い捨ておむつ
WO2020203981A1 (ja) * 2019-03-29 2020-10-08 三井化学株式会社 光硬化性組成物、硬化物及び歯科用製品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112665A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315122B1 (ja) * 2021-10-20 2023-07-26 東洋インキScホールディングス株式会社 ハードコートフィルムおよびその製造方法
WO2023126943A3 (en) * 2021-12-31 2023-08-10 Stratasys Ltd. Additive manufacturing of dental prostheses

Also Published As

Publication number Publication date
JP7412535B2 (ja) 2024-01-12
CN115348981A (zh) 2022-11-15
EP4112665A1 (en) 2023-01-04
EP4112665A4 (en) 2024-04-10
US20230137212A1 (en) 2023-05-04
TW202145971A (zh) 2021-12-16
JPWO2021193527A1 (ja) 2021-09-30
US11866527B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
JP7092284B2 (ja) 光硬化性組成物、義歯床及び有床義歯
EP3360907B1 (en) Photocurable composition, denture base, and plate denture
WO2020203981A1 (ja) 光硬化性組成物、硬化物及び歯科用製品
EP3254667A1 (en) Light-curable composition, denture, and plate denture
JP6943950B2 (ja) 光硬化性組成物、義歯床及び有床義歯
JP7412535B2 (ja) 光硬化性組成物、硬化物、及び歯科用製品
WO2023190071A1 (ja) 光硬化性組成物、立体造形物、鋳型、硬化物を製造する方法及び有床義歯の製造方法
JP2023143923A (ja) 光硬化性組成物及び歯科用製品
JP7429783B2 (ja) 光硬化性組成物、立体造形物、及び歯科用製品
WO2022202343A1 (ja) 組成物、光造形物及び歯科用製品
WO2023190254A1 (ja) 光硬化性組成物、立体造形物、口腔内に装着される器具及び耳内に装着される器具
WO2023189684A1 (ja) 光硬化性組成物、立体造形物、歯科用製品及びスプリント
WO2023189780A1 (ja) 光硬化性組成物、立体造形物、及び口腔内に装着される器具
JP2023146821A (ja) 光造形用硬化性組成物、歯科用製品及び義歯床
JP2023146822A (ja) 光造形物の加工方法及び光造形物の加工物
JP2022135159A (ja) 光造形用硬化性組成物、及び歯科用製品
WO2024117203A1 (ja) 光硬化性組成物、立体造形物、歯科用製品及びスプリント
WO2023210328A1 (ja) 三次元光造形用光硬化性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510478

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021777176

Country of ref document: EP

Effective date: 20220926

NENP Non-entry into the national phase

Ref country code: DE