WO2019137512A1 - 锻压生产系统及其管理方法 - Google Patents

锻压生产系统及其管理方法 Download PDF

Info

Publication number
WO2019137512A1
WO2019137512A1 PCT/CN2019/071500 CN2019071500W WO2019137512A1 WO 2019137512 A1 WO2019137512 A1 WO 2019137512A1 CN 2019071500 W CN2019071500 W CN 2019071500W WO 2019137512 A1 WO2019137512 A1 WO 2019137512A1
Authority
WO
WIPO (PCT)
Prior art keywords
forging
production system
blank
sliding
hot melt
Prior art date
Application number
PCT/CN2019/071500
Other languages
English (en)
French (fr)
Inventor
冯振华
叶键
Original Assignee
宁波会德丰铜业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波会德丰铜业有限公司 filed Critical 宁波会德丰铜业有限公司
Priority to US16/961,923 priority Critical patent/US11571734B2/en
Publication of WO2019137512A1 publication Critical patent/WO2019137512A1/zh
Priority to US18/156,312 priority patent/US20230150013A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/08Accessories for handling work or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/08Accessories for handling work or tools
    • B21J13/10Manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • B21J5/025Closed die forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/10Drives for forging presses
    • B21J9/20Control devices specially adapted to forging presses not restricted to one of the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K27/00Handling devices, e.g. for feeding, aligning, discharging, Cutting-off means; Arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K27/00Handling devices, e.g. for feeding, aligning, discharging, Cutting-off means; Arrangement thereof
    • B21K27/02Feeding devices for rods, wire, or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K29/00Arrangements for heating or cooling during processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to the field of automated production, particularly to production systems for hot forging production to achieve high efficiency manufacturing, and production management methods.
  • Hot forging which is used to shape and process metal parts by hot melt and pressure, is mainly used to manufacture metal materials such as sheets, strips, tubes, profiles and wires. Because of its high precision and stability, it is more difficult for equipment and operation.
  • the metal or alloy material is initially processed into a green body. It is necessary to artificially place a plurality of blanks in a heating furnace in which the green bodies are heated.
  • a heating furnace in which the green bodies are heated.
  • hot forging temperature is: carbon steel 800 ⁇ 1250 ° C; alloy structural steel 850 ⁇ 1150 ° C; high speed steel 900 ⁇ 1100 ° C; commonly used aluminum alloy 380 ⁇ 500 ° C; titanium alloy 850 ⁇ 1000 ° C; brass 650 ⁇ 750 ° C. That is to say, the temperatures to which different alloys need to be heated are different. Once the temperature is not up to standard, subsequent operations will be invalid. At present, in large-scale operations, an experienced worker is required to observe the state in which the green body is burnt red. After confirming that the temperature of the blank is appropriate, it is artificially necessary to select a suitable one, and use a clip to move the red body.
  • the entire operation of the production equipment is difficult to achieve unmanned.
  • the current image recognition technology has not developed to the industrial production level, the program algorithm is too complicated, and the cost is very expensive.
  • cameras that can be identified in high-temperature production environments are not only costly but also costly to maintain.
  • the working hours of workers cannot keep up with the all-weather running time of equipment, and it is difficult to achieve a balance of interests.
  • An object of the present invention is to provide a forging production system and a management method thereof, which utilize a control platform to monitor and control various links in forging production, so that the hot-melting and forging processes are closely connected, thereby forming an forging automatic production line. Greatly improve production efficiency.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which can form at least one material by hot melt and forging without manual operation, thereby completing the production of a large amount of the material.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which take into consideration the operating factors such as pressure, temperature, and mold required for molding, and reduce the need for identification of the materials, thereby realizing large-scale production.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which fully utilizes the combination of experience and production practice to ensure that the parameters of the various materials in the production are validated.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which strictly control operating factors such as pressure, temperature, and mold from the production process to ensure the yield in mass production.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which automatically perform corresponding processing according to the characteristics of the material, so that simultaneous processing of a large number of multi-type products becomes possible.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the material avoids the high temperature state of the material at the stage of entering the production system and leaving the production system, and is completed in the production system. Forging operation in a high temperature state, thereby maintaining safety in production.
  • Another object of the present invention is to provide a forging production system and a management method thereof, the control platform further detecting and controlling an acquisition process, a hot melt device, a forging device and a carrier device for processing The material is processed through a forging line.
  • Another object of the present invention is to provide a forging production system and a management method thereof, by which the material is put into the hot melt apparatus, and the forging equipment is molded, thereby completing the manufacturing process of the material.
  • Another object of the present invention is to provide a forging production system and a management method thereof, according to the characteristics of the material, such as temperature characteristics, correspondingly performing the hot-melting device or the forging device, so that the material is reasonable Processed under temperature and pressure to increase production efficiency.
  • Another object of the present invention is to provide a forging production system and a method of managing the same, the carrier device carrying material between the hot melt device and the forging device, such that the material is in the hot melt device and the Smooth flow between forging equipment.
  • Another object of the present invention is to provide a forging production system and a management method thereof, the carrying device transporting the forged material from the forging device such that the material in a high temperature state is all from the carrying device The operation does not require manual manipulation of the material.
  • Another object of the present invention is to provide a forging production system and a management method thereof, the control platform further comprising an operator, a feedback device, an actuator, and a monitor, wherein the feedback device obtains the hot melt Monitoring data of the apparatus, the forging apparatus, and the carrying apparatus for calculation by the operator, and wherein the actuator performs control on the hot melt apparatus, the forging apparatus, and the carrying apparatus according to calculations, The stability and robustness of the production system are guaranteed.
  • Another object of the present invention is to provide a forging production system and a management method thereof, and control the production system for feedback obtained by the feedback device, and can add control conditions and restrictions as needed for the manufacture of the material. Designed as required.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which can be automatically flowed after being put into the hot melt apparatus, and the high temperature state of the material is in the production system, thereby completing The manufacture of forging.
  • Another object of the present invention is to provide a forging production system and a management method thereof, the carrying device carrying and transporting the material in a manufacturing process, and the material is in the hot melt device by the carrying device The flow with the forging equipment and the forging equipment is maintained to maintain the manufacturing process of the material.
  • Another object of the present invention is to provide a forging production system and a management method thereof, the carrying device further comprising a feeding tool and a feeding tool, the feeding tool carrying the material in the hot melt device and The forging equipment flows between the hot melt stage and the forging stage of the material.
  • Another object of the present invention is to provide a forging production system and a method of managing the same that transport the material away from the forging equipment to complete the manufacturing of the material and exit the production system.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the material further includes a detecting device at the time of leaving the production system, and the material is judged by the manufacturing process.
  • Another object of the present invention is to provide a forging production system and a management method thereof, the carrying device further comprising a feeding tool and a discharging tool, the feeding tool conveying the material to the hot melting device Initiating a forging process, the discharge tool carries the material away from the forging process, preferably the material that has passed the inspection device leaves the forging line.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which can be used by conventional processing, and the said control platform and the carrying link are further formed to form the said Production systems, which eliminate the need for human intervention and increase productivity while reducing costs.
  • Another object of the present invention is to provide a forging production system and a management method thereof, further providing a maintenance device that maintains various processes of the production system, preferably maintenance of the forging device, The production system is maintained in an efficient working condition, prolonging the service life and maintaining the production and surroundings of the production system.
  • Another object of the present invention is to provide a forging production system and a management method thereof, the maintenance apparatus further comprising an oiling tool, the oiling tool being controlled by the control platform to apply oil to the forging equipment Maintenance, targeted maintenance according to the state of the forging equipment.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which take into account the experience of the program and the worker, take into account the actuality of the production efficiency and the reality of the manpower management, and improve the overall production management efficiency.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which are different by first collecting the characteristics of the material, and then performing the corresponding hot melt equipment, the forging equipment and the detecting equipment. The blanks of the materials can be manufactured simultaneously and obtain different types of products.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the forging production system selects a suitable processed material into a forging die by collecting characteristics of the material before forging the material. To avoid bad materials and scraps from entering the forging die, thereby improving the product qualification rate.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the bad material removing mechanism of the forging production system excludes bad materials occurring in a manufacturing process, avoids processing the bad materials, thereby improving Production efficiency, and product qualification rate.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the bad material removing mechanism of the forging production system excludes scraps and bad materials that occur during the manufacturing process, and avoids processing the bad materials. It is avoided to destroy the mold in the forging production system.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the forging production system determines whether the material is capable of being processed by collecting characteristics of the material after being heated. In other words, the forging production system determines whether the material belongs to waste by collecting characteristics of the material, such as temperature characteristics, shape features, size features, position features, weight characteristics, etc., if it is determined that the materials are waste or bad The material is then excluded by the bad material removal mechanism.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the bad material removing mechanism and the conveying mechanism of the forging production system are the same device, wherein the conveying mechanism is based on the judgment result of the material
  • the material is conveyed, the processed material is conveyed to the mold for processing, and the waste that does not conform to the processing is discharged.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the bad material removing mechanism discharges the bad material at the front end during the normal processing of the forging production system, and avoids waiting at the rear. The material is cooled during the waiting process to avoid a vicious cycle of cooling of the billet due to waiting during processing.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the bad material removing mechanism reversely transports a bad material that does not conform to the forging processing, in particular, a blank having insufficient temperature processing to the vicinity of the hot melt device, In order to further heat the billet having insufficient temperature, it can be processed again.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the bad material removing mechanism excludes the bad material during transportation, and reduces the queuing time of the subsequent blank waiting for processing.
  • the processing efficiency is improved, and the temperature reduction of the blank during the waiting process is also reduced, and the blank is processed.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the bad material removing mechanism further includes a gripping device and an operating arm supporting the gripping device to perform a gripping action, wherein the clip Take the device to pick up the bad materials during transportation.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the gripping device is operatively adjustable in a gripping direction and a gripping angle to grasp the scrap material at different angles and parking positions .
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the bad material removing mechanism is disposed at a front end of a conveying mechanism of the forging production system, before the conveying mechanism carries the material, The waste material elimination mechanism discharges the waste material that does not meet the processing conditions, thereby improving the production processing efficiency.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the forging production system includes a control platform, a feeding device, and a forging device, wherein the control platform controls the feeding device and the device The forging apparatus, wherein the feeding apparatus heats the material and conveys it to the forging apparatus, wherein the forging apparatus forges the material to be formed.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the forging production system includes a maintenance carrying device, wherein the maintenance carrying device receives the forged material and injects the forging device Maintenance, shorten the time of receiving and maintenance, and improve production efficiency.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the maintenance carrying device includes a conveying mechanism and a maintenance mechanism, wherein the maintenance mechanism is disposed at the conveying mechanism, wherein the conveying mechanism The material being forged is reciprocally received, and the maintenance mechanism sprays oil up and down to the forging equipment when the conveying mechanism is located in the forging apparatus.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the maintenance mechanism sprays an oil mist up and down to the pressing mechanism and the mold to maintain the forging equipment.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the conveying mechanism is disposed at one side of the mold and moved to a forging space defined by the forging apparatus to receive the detachment The mold of the pressing mechanism.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the conveying mechanism is disposed on one side of the mold to protect the driving portion of the conveying mechanism from being affected by the high temperature of the forging equipment .
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the conveying mechanism is disposed at one side of the mold, wherein one end of the conveying mechanism is lifted so that the conveying mechanism is The forging space of the forging apparatus is held obliquely to receive the material falling from the pressing mechanism without being hindered by the mold.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the maintenance carrying device realizes automatic fuel injection maintenance to avoid personal danger caused by manual oiling work.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the maintenance carrying device receives the forged material and transports it to a storage area, bans manual labor, so that the maintenance carries The equipment is more efficient and safe.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the forging production system includes a detecting device, wherein the detecting device detects an operating state of the maintenance carrying device and a position of the material in real time. Is it abnormal?
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein the forging apparatus includes a pressing mechanism and a mold, wherein the pressing mechanism is lowered after the material is conveyed to the mold Pressing the material to shape the material, wherein the detecting device detects whether the pressing mechanism and the mold adhere to the material, and when the detecting device detects the pressing mechanism or the mold The material is adhered, and the detecting device sends material position abnormality information to the control platform, wherein the control platform controls the maintenance carrying device to stop without injecting oil.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein when the detecting device detects that the pressing mechanism and the mold have no material, the detecting device sends no material information to the A control platform, wherein the control platform controls the maintenance carrier to continue to reciprocate and simultaneously spray fuel up and down while the maintenance carrier is in the forging device.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein when the detecting device detects that the forging device has an open flame, the detecting device transmits emergency information to the control platform, wherein the control The platform controls the forging device, the feeding device, and the maintenance carrier to emergency stop and alert.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, wherein when the detecting device detects that the forging device has an open flame, the control platform sends an emergency to other forging production systems and other systems to prevent danger. The occurrence of the situation.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, which automatically process at least one material without manual operation, thereby achieving high-efficiency automated production.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, the forging production system detecting and collecting the material by at least one detecting device, and producing the material according to the collected data.
  • the automatic selection is performed such that the forging production system automatically produces according to the characteristics of the material, adapts to different characteristics of the material, and produces different products.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, the forging production system comprising a feeding device, the feeding device selecting a position at which the material is put according to characteristics of the material, when the material Subsequent to its characteristics can be processed, the feeding tool feeding the material into the forging device.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, the feeding device gripping the material and adjusting the posture to effect the transfer of the material.
  • Another advantage of the present invention is to provide a forging production system and method of managing the same that is discharged as produced in accordance with its characteristics, and the feeding device transfers the material out of the forging production system.
  • Another advantage of the present invention is to provide a forging production system including a transfer arm and a gripping tool, the gripping tool being mounted to the transfer arm, the transfer arm adjusting the direction The position is such that the gripping tool is adjusted in orientation and position, and the feeding device can flexibly adjust the posture.
  • Another advantage of the present invention is to provide a forging production system and a management method thereof, the transfer arm comprising at least two adjustment arms, each of the adjustment arms being connected end to end, and each of the adjustment arms is relatively rotated to adjust the transfer arm
  • the overall attitude which in turn adjusts the position of the gripping device, enables the transfer of the material.
  • An object of the present invention is to provide a forging production system and a management method thereof, wherein the rail device carries the material to flow between a hot melt device and a forging device, so that the hot melt stage and the forging stage of the material are connected .
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the guide rail device slides the material from top to bottom through a sliding surface, and at least one material is conveyed on a sliding track without manual operation. Avoid the adverse effects of the high temperature of the material on labor, saving labor costs.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which can realize a configuration in which a hot melt device and the forging device can be compactly placed together, saving Use space.
  • Another object of the present invention is to provide a forging production system and a management method thereof, wherein the rail device is kept within a predetermined distance from the forging device by a given end, and a gripping end is shortened from the said The outlet grips the path of the material to the forging equipment.
  • Another object of the present invention is to provide a forging production system and a management method thereof, the rail device blocking the material through an intercepting member, the material being intercepted by the intercepting member, facilitating the material to be in a fixed position Clipping.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which ensure that the material is finally conveyed accurately by a gradually narrowing sliding passage, and is easily caught at a fixed position. .
  • Another object of the present invention is to provide a forging production system and a management method thereof, which can exhibit a curved shape, facilitate assembly of the rail device with other equipment, and save space for use.
  • Another object of the present invention is to provide a forging production system and a management method thereof, which can be formed by self-heating and forging without the need of human operation, and is convenient for mass production of the materials.
  • the invention further provides a forging production system comprising:
  • thermoforming a hot melt apparatus wherein the hot melt apparatus heats at least one material such that the material is heated to a certain temperature
  • a forging apparatus wherein the forging apparatus is controlled by the control platform to apply pressure to the material that has been heated, thereby causing the material to be forged;
  • a carrier device wherein the carrier device is carried by the control platform to carry the material between the hot melt device and the forging device.
  • control platform collects at least one feature for the material, wherein the detecting device is connected to the control platform, and the control platform determines whether the material meets the requirements for performing a subsequent forging device.
  • control platform determines that if the material meets the requirements, the equipment is continued, and if the material does not meet the requirements, the material is discharged.
  • control platform selects parameters of the corresponding forging device based on the characteristics of the material.
  • the forging production system further includes: a detecting device, wherein the detecting device collects the feature of the material.
  • the detecting device determines whether the material is qualified to be formed, wherein if the material is judged to be qualified, the material is further produced, wherein if the material is unqualified , the material is discharged from production.
  • the material further comprises: a shape feature and a temperature feature, wherein the profile feature is a shape value of the material, and the temperature characteristic is a temperature value of the material reflect.
  • the carrier transports the material to the control platform for a result of the selection.
  • the carrying device further comprises a feeding tool and a discharging tool, wherein the feeding tool puts the material into the forging production system, wherein the discharging tool will The material exits the forging production system as a product such that the material performs the steps on its own and the equipment is obtained.
  • the feeding tool feeds the material as a blank into the forging production system, wherein the discharging tool leaves the material as an already formed blank leaving the forging production system.
  • the hot melt apparatus heats the material such that the material is heated to a temperature to correspond to the forging apparatus.
  • the hot melt apparatus further includes a heating chamber and a heater, wherein the heater is controlled by the control platform, wherein a time during which the material is retained in the heating chamber is Control platform control.
  • the hot melt apparatus provides a heating space, wherein the material is carried by the feeding tool of the carrying device to the heating space to be further heated.
  • control platform determines whether the heating space is vacant before being transported to the heating space, wherein if the heating space is vacant, the material is continuously transported to The heating tool.
  • the forging apparatus applies pressure to the material to form.
  • the forging apparatus further provides a mold and a pressing mechanism, wherein the carrying device places the material into the mold, wherein the pressing mechanism is opposite to the mold The material is shaped by applying pressure.
  • the pressing mechanism is controllably adjusts the pressing mode according to the forging requirement of the material.
  • the adjusting the pressing mode comprises adjusting the pressing pressure of the pressing mechanism.
  • adjusting the pressing mode comprises adjusting a pressing angle of the pressing mechanism.
  • the forging apparatus further provides a forging space, wherein the forging space is formed between the mold and the pressing mechanism.
  • the control platform determines whether the forging space is free, wherein the forging space In the case of vacancies, the material is then transported to the pressure applying mechanism.
  • the carrying device further comprises a feeding tool and a feeding tool, wherein when the material is automatically flowed between the hot melt device and the forging device, The feed tool delivers the material from the hot melt apparatus to the forging apparatus, the feed tool sending the material from the forging equipment to the discharge tool.
  • the profile feature is obtained by one or more selected from the group consisting of: a distance sensor, a weight sensor, a pressure sensor.
  • the temperature characteristic is obtained by one or more selected from the group consisting of: a temperature sensor, an infrared sensor.
  • the present invention further provides a forging production management method comprising the steps of:
  • the material introduced in step A corresponds in advance to the forging operation factor of the finished product.
  • the material in step A corresponds to at least two finished products.
  • step A prior to step A, there is further included the step of matching the finished product to the forging operation factor.
  • step D further comprises the step of detecting whether the material that has been processed is a finished product.
  • the step D further comprises the step of: determining whether the material is qualified to be formed into a finished product, wherein if the material is judged to be qualified, the material is further produced, wherein If the material is unqualified, the material is discharged and returned.
  • the step B further comprises the step of controlling the parameters of the respective forging process in accordance with the characteristics of the material.
  • the material further comprises: a shape feature and a temperature feature, wherein the profile feature is a shape value of the material, and the temperature characteristic is a temperature value of the material reflect.
  • the profile feature is obtained by one or more selected from the group consisting of: a distance sensor, a weight sensor, a pressure sensor.
  • the temperature characteristic is obtained by one or more selected from the group consisting of: a temperature sensor, an infrared sensor.
  • step D further includes a hot melt process wherein the hot melt process heats the material to heat the material to a temperature corresponding to the forging process.
  • the step D further comprises a forging process, wherein after the hot melt process heats the material, the forging process applies pressure to the material to form.
  • the step C further comprises a carrying process, wherein the carrying process carries the material to flow between the hot melt processing and the forging process to cause the material to self The ground is processed.
  • the present invention further provides a bad material removing method for a forging production system, wherein the bad material removing method comprises the following steps:
  • step (c) If it is judged that the blank is a bad material or waste, the bad material or waste is excluded by at least one bad material removing device; if it is judged that the blank is suitable for processing, returning to step (a).
  • the present invention further provides a maintenance carrying apparatus suitable for use in a forging apparatus, comprising:
  • a conveying mechanism wherein the conveying mechanism reciprocates from a starting position to a receiving position to receive the forged material after the receiving position, and to carry the material away from the forging device, wherein the material is Forging equipment forging, wherein the starting position is located on one side of the forging apparatus, wherein the receiving position is located in the forging apparatus, wherein after the conveying mechanism receives the falling material at the receiving position,
  • the transport mechanism carries the material back to the starting position.
  • the invention further provides a forging production method comprising the steps of:
  • step (b) after receiving the forged material from the forging space, conveying the material away from the forging space, so that the forging space is emptied to perform the step (a) again after the forging space is injected .
  • the invention further provides a forging production method comprising the steps of:
  • the material is placed to a corresponding position, if the material can be forged, the material is placed into a forging device, and if the material cannot be forged, the material is discarded .
  • the present invention further provides a rail device adapted to transport at least one material, comprising:
  • the collecting end is located at a leading end of the rail device for being retracted by the collecting end when the material is transported by the rail device;
  • the given end is located at a tail end of the rail device for being restricted to enter a state of being gripped when the material is stopped at the given end;
  • a sliding channel wherein the first and second ends of the sliding channel respectively extend to the collecting end and the given end, the sliding channel is obliquely disposed, and the collecting end is correspondingly set with the given end Upstream and downstream of the taxiway.
  • the present invention further provides a rail device adapted to transport at least one material, including:
  • the collecting end is located at a leading end of the rail device for being retracted by the collecting end when the material is transported by the rail device;
  • the given end is located at a tail end of the rail device for being restricted to enter a state of being gripped when the material is stopped at the given end;
  • a conveyor belt wherein the conveyor belt is disposed at a bottom of the sliding passage, and two ends of the conveyor belt extend to the collecting end and the giving end, respectively, for being used when the material enters the conveying passage The conveyor is transported.
  • FIG. 1 is an overall schematic view of a forging production system in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • FIG. 3 is a flow diagram of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • FIG. 4 is a flow chart showing a possible mode of the forging production management method according to the above preferred embodiment of the present invention.
  • Figure 5 is a flow chart showing the temperature control of the forging production management method according to the above preferred embodiment of the present invention.
  • Figure 6 is a flow chart showing a possible mode of the forging production management method according to the above preferred embodiment of the present invention.
  • Figure 7 is a partial flow diagram of the above mode of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 8 is a schematic illustration of mold control of the forging production system and its management method in accordance with another preferred embodiment of the present invention.
  • Figure 9 is an overall schematic view of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 10 is a schematic view showing the production of the forging production system in accordance with the above preferred embodiment of the present invention.
  • Figure 11 is a schematic plan view of a forging production system in accordance with a third preferred embodiment of the present invention.
  • Figure 12 is a schematic view showing the production flow of the forging production system according to the above preferred embodiment of the present invention.
  • Figure 13A is a schematic illustration of a hot melt apparatus of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 13B is a schematic illustration of the detection of a detecting device of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 13C is a schematic illustration of the forging production system transporting the material in accordance with the above-described preferred embodiment of the present invention.
  • Figure 14 is a schematic view showing the waste material removing device of the forging production system excluding waste according to the above preferred embodiment of the present invention.
  • Figure 15 is a schematic illustration of the forging apparatus of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 16 is a schematic illustration of another alternative embodiment of the reject removal mechanism of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 17 is a schematic block diagram showing the control of the forging production system in accordance with the above preferred embodiment of the present invention.
  • Figure 18 is a schematic view showing the steps of a method for removing a bad material in the forging production system according to the above preferred embodiment of the present invention.
  • Figure 19 is a schematic illustration of a forging production system in accordance with a fourth preferred embodiment of the present invention.
  • Figure 20 is a schematic illustration of a forging production process in accordance with the above-described preferred embodiment of the present invention.
  • Figure 21 is a perspective view of the maintenance carrying device of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • 22A to 22B are schematic views showing the operation of the maintenance carrying device in the forging production system according to the above preferred embodiment of the present invention.
  • Figure 23 is a perspective view of a maintenance carrying apparatus of a forging production system in accordance with a fifth preferred embodiment of the present invention.
  • Figure 24A is a perspective view of a maintenance carrying apparatus of a forging production system in accordance with a sixth preferred embodiment of the present invention.
  • Figure 24B is a schematic illustration of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 25 is a schematic illustration of a forging production process in accordance with the above-described preferred embodiment of the present invention.
  • Figure 26 is a schematic illustration of a process for detecting forging in the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 27 is a schematic illustration of the forging production system in accordance with a seventh preferred embodiment of the present invention.
  • Figure 28 is a schematic illustration of a forging production method in accordance with the above-described preferred embodiment of the present invention.
  • Figure 29 is a schematic illustration of the forging production method in accordance with the above-described preferred embodiment of the present invention.
  • Figure 30 is a schematic illustration of the forging production method in accordance with the above-described preferred embodiment of the present invention.
  • Figure 31 is a schematic illustration of the hot melt apparatus of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 32 is a schematic view showing the feeding of the feeding device of the forging production system according to the above preferred embodiment of the present invention.
  • Figure 33 is a schematic illustration of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 34 is a schematic illustration of the forging production system in accordance with a variant embodiment of the above described preferred embodiment of the present invention.
  • Figure 35 is a schematic illustration of the forging apparatus of the forging production system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 36 is a general schematic view of a forging production system and a management method thereof according to an eighth preferred embodiment of the present invention.
  • Figure 37 is a schematic overall view of the rail device in accordance with the above-described preferred embodiment of the present invention.
  • Figure 38 is a schematic overall view of a rail assembly in accordance with yet another preferred embodiment of the present invention.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, and in other embodiments, the element The number can be multiple, and the term “a” cannot be construed as limiting the quantity.
  • the present invention provides a forging production system.
  • the forging production system further includes a hot melt apparatus 20 and a forging apparatus 30.
  • the hot melt apparatus 20 heats at least one of the materials 100 such that the material 100 is heated to a suitable temperature for subsequent forging operations.
  • the hot melt apparatus 20 further includes a heating chamber 21 and a heater 22.
  • the forging production system further includes a carrier device 40.
  • the carrier device 40 carries the material 100 for circulation so that the material 100 performs various treatments on its own.
  • the carrier device 40 further includes a feed tool 44 and a discharge tool 43.
  • the feed tool 44 feeds the material 100 into the forging production system.
  • the discharge tool 43 leaves the material 100 as a product leaving the forging production system.
  • the feeding tool 44 and the discharging tool 43 automatically add the material to the forging process.
  • the material 100 begins to be processed in the forging production system.
  • the discharge tool 43 carries the material 100 away from the forging production system such that the material 100 ends the flow in the forging production system.
  • the material does not require manual operation in the forging production system, which not only reduces the labor cost but also ensures the safety of production.
  • the materials 100 are of various types depending on the requirements of the different finished products.
  • the initial blank shape of the material 100 is directly related to the finished product requirements.
  • the selection of the material 100 is based on the needs of the finished product.
  • the forging system is added to the forging production system by selecting a suitable material 100 from the feedstock as needed for the different finished product. That is, in the preferred embodiment, the material of the material 100 determines the production process that is experienced, and the hot melt apparatus 20 and the forging apparatus 30 respectively perform operations corresponding to the raw materials.
  • the material 100 is transported by the carrier device 40 to the hot melt device 20, primarily in the heating chamber 21 and heated.
  • the heating temperature of the heating chamber 21 can be set in a controlled manner.
  • the heating chamber 21 is correspondingly heated by the heater 22 and causes the material 100 to reach a predetermined temperature.
  • the hot melt apparatus 20 provides a heating space 200 that is carried by the feeding tool 44 of the carrying device 40 to the heating space 200 to be further heated.
  • Map 3 shows a possible production management method for the forging production system provided by the preferred embodiment of the present invention, which comprises the following steps:
  • 601 input at least one material 100
  • 602 Collect at least one feature of the material 100;
  • the material 100 is a metal or alloy-based material that requires forging and molding. It will be understood by those skilled in the art that the material 100 needs to comprehensively consider the state of the material 100 in the forging manufacturing process, so that the material 100 is deformed under a certain temperature and pressure to form a product. Typically, the material 100 is a blank when it is placed, and after passing through the production system, the material is a product. It is worth mentioning that during the production phase of the material 100, all operational factors such as pressure, temperature or mold that need to be controlled are matched and associated such that the finished material 100 has a higher automated production process. Moreover, for large-volume production, the stable correspondence of the operating factors corresponding to the material 100 ensures the consistency of the finished product and the high efficiency of production.
  • the material 100 has at least one feature that can be collected and utilized to determine the subsequent processing of the material 100. That is to say, the material 100 has an essence that can be detected, and the processing to be performed is different according to the different materials 100. Further, the specific parameters are different in the forging process, and the material 100 can be processed into different types of products, and can also be processed according to the state of the material 100, so that the materials are made. 100 accordingly, a suitable forging treatment is obtained. Especially for metals or alloys, the proper temperature and pressure in the forging process will have a large effect on the properties of the metal. The collection and processing of the material 100 is then carried out in a similarly customized manner, the production system being adapted to process different materials 100 as corresponding products.
  • the production system does not require manual operation, and the forging treatment is automatically performed according to the material 100.
  • the material 100 is conveyed in step 604 as a mechanized operation to prevent the material 100 from being in contact with the human during high temperature, thereby ensuring safe and reliable production.
  • FIG. 3 a flow of the forging production system.
  • the material 100 is put into the production system. That is, the feed of the production system as shown. After the material 100 enters the production system, the processing of each of the materials 100 needs to be collected. The next operational factor is determined for the finished product of the material 100.
  • the material 100 is subjected to feature collection by sensing to ensure that the characteristics of each of the materials 100 are known by the production system.
  • the material 100 is shipped to the selection result such that the material 100 is subjected to a corresponding treatment. It should be noted that since the material 100 in the forging process needs to be in a high temperature state, manual operation and contact are not required in the step of transporting the material 100 to ensure production safety. Further, the material 100 is processed according to the processing method of the selection result such that the manner of processing and processing the material 100 is determined according to the state of the material 100. Finally, the material 100 is produced, thereby completing the discharge and ending the forging process of the material 100.
  • the forging production system can further implement the steps between step 605 and step 606:
  • 6051 The material 100 is tested.
  • the material 100 After the material 100 is processed, it is further judged whether the material 100 is qualifiedly manufactured and molded by detecting that the material 100 is forged. Further, for the qualified material 100, it is further produced. For the unqualified material 100, it will be discharged and returned to step 602. That is, the material 100 is further returned to the beginning of the forging production system to restart the manufacturing process of the material 100.
  • the material 100 is desirably molded to complete the forging process. It is worth mentioning that the detection criteria performed are different for different types of said materials 100. In general, different billets of the material 100 enter the forging production system, are collected and processed, are manufactured and formed into products of different types of the materials 100, and perform different testing standards to ensure the output. The material 100 meets the corresponding production standards.
  • the feature of the material 100 is a defined manner for the material 100 at different angles.
  • the feature of the material 100 further includes an outline feature 101, a temperature feature 102, and a position feature 103.
  • the profile feature 101 is a numerical representation of the shape of the material 100 by which the shape of the material 100 can be identified.
  • the shape information of the material 100 is obtained by a corresponding fit between the distance sensor, the weight sensor or the plurality of sensors.
  • the temperature characteristic 102 is a temperature value representation of the material 100 by which the surface temperature of the material 100 can be identified.
  • information on the surface temperature of the material 100 is obtained by a corresponding combination of a temperature sensor, an infrared sensor or a plurality of sensors.
  • the position feature 103 is a relative position value of the material 100, and the location feature 103 can identify the location of the material 100.
  • information on the relative position of the material 100 is obtained by a corresponding fit between the distance sensor, the pressure sensor or the plurality of sensors.
  • a forging processing method corresponding to or required for the material 100 is obtained.
  • the shape feature 101 is The copper alloy can be pre-set to a processing that needs to be heated to 700 ° C, and is stamped and formed using a type A mold, then the material 100 will be selected for heating, pressing, and processing of the mold, thereby The ground is executed to process the result and obtain a predetermined product.
  • the material 100 is introduced to begin the manufacture of the material 100 in the forging production system. That is, step 601. Then, the material 100 is subjected to feature collection by the sensor, and the processing demand of the material 100 is correspondingly obtained, and the matched operating factors are grasped. In the preferred embodiment, the shape feature 101 of the material 100 is collected to obtain shape data information of the material 100. That is, step 602.
  • the shape of the blank of the material 100 is then determined based on the data information of the shape feature 101.
  • the blank type of the material 100 is obtained from the shape of the material 100. That is to say, when different materials 100 are put into the forging production system, the judgment is made according to the difference of the materials 100 obtained by sensing.
  • the material 100 is in a preset shape type and will proceed to the next step, and the one that does not satisfy the preset condition will be discharged.
  • the profile that can be manufactured has at least two requirements, that is to say that two of the materials 100 can be further shaped. According to different needs, step 603 classifies the material 100.
  • the mold that is suitable for the material 100 will be determined depending on the profile feature 101 of the material 100.
  • the item 100 is then shipped to the selection result, step 604.
  • the material 100 is stamped and formed in the mold accordingly. That is, step 605.
  • the outline feature 101 of the material 100 is changed.
  • the shape feature 101 of the material 100 is then tested to determine if the material 100 is a qualified product, step 6051. For a qualified product, the forging process will be terminated, yielding the material 100, which is the discharge of step 606.
  • the unqualified material 100 will return to the beginning and will be further processed or discharged depending on the condition of the material 100.
  • the processing of the heating chamber 21 for different materials 100 may be different. That is to say, depending on the sensing acquisition of the material 100, the determined heating mode also corresponds.
  • the heating space 200 may be at least two to provide heating means for at least two of the materials 100. Further, in addition to controlling the heating space 200, the time when the material 100 is in the heating chamber 21 and the position in the heating space 200 can also be controlled, thereby achieving processing to achieve different heating modes. .
  • the forging apparatus 30 performs a pressure forming operation on the material 100 that has been heated so that the material 100 is molded.
  • the forging apparatus 30 further provides a mold 31 and a pressing mechanism 32.
  • the carrying device 40 places the material 100 into the mold, and the pressing mechanism 32 applies pressure to the material 100 in the mold 31 to shape the material 100.
  • the forging apparatus 30 further provides a forging space 300 in which the forging space 300 is formed between the mold 31 and the pressing mechanism 32.
  • the material 100 is subjected to pressure impact by the pressing mechanism 32 in the forging space 300, so that the material 100 is molded at a high temperature.
  • the material 100 is transported by the carrier device 40 to the forging space 300 corresponding to the corresponding mold 31, that is, step 604, according to the sensing result of the step 602 and the result of the selection in step 603.
  • the pressing mechanism 32 can be controlled to adjust the pressing mode according to the manufacturing requirements of the material 100. For example, according to the sensing acquisition result in step 602, the pressing pressure or the pressing angle of the pressing mechanism 32 is adjusted.
  • the forging device 30 includes at least two of the pressing mechanisms 32, and the pressing mechanism 32 has different pressing modes, and the different devices are required by the carrying device 40.
  • the material 100 is transported to different pressure applying mechanisms 32, thereby allowing different materials 100 to be subjected to different pressure or angle treatments.
  • the forging apparatus 30 is customized to correspond to the characteristics of the material 100.
  • the mold 31 corresponds to the profile feature 101 of the material 100
  • the pressure applying mechanism 32 corresponds to the temperature feature 102 such that different alloy blanks are subjected to a suitable forging process.
  • the heating space 200 and the forging space 300 are saturated.
  • the heating space 200 and the forging space 300 are saturated, that is, the hot melt apparatus 20 and the forging apparatus 30 cannot be provided for the subsequent material 100, the carrying equipment 40 will be given waiting or adjusted shipping. Up to the heating space 200 and the forging space 300 that are not saturated.
  • the carrier device 40 will adjust the manner in which the material 100 is transported to ensure that the material 100 is in the hot melt apparatus 20 and Forging equipment 30 and the efficiency of forward and backward flow.
  • the material 100 is a blank when it is being fed, and after passing through the heating chamber 21 of the forging production system, the material is a high temperature blank. After passing through the pressing mechanism 32 of the forging production system, the material is a molding blank.
  • the preferred embodiment in this figure is described with respect to the progression of one of the materials 100. It can be understood that for a plurality of the materials 100, the flow can be implemented by using a parallel execution or a cyclic interrupt.
  • the material 100 is introduced to begin the manufacture of the material 100 in the forging production system. That is, step 601.
  • Feature acquisition of the material 100 is then performed by a sensor.
  • the temperature characteristic 102 of the material 100 is collected to obtain surface temperature data information of the material 100. That is, step 602.
  • the material type of the material 100 is then determined based on the data information of the temperature feature 102.
  • the type of stock of the material 100 and the subsequent desired temperature are obtained from the temperature of the material 100. That is to say, when different materials 100 are put into the forging production system, the judgment is made according to the difference of the materials 100 obtained by sensing.
  • step 603 classifies the material 100.
  • the heating chamber 21 to which the material 100 is suitable will be determined.
  • the material 100 is then transported to the high temperature billet to a decision result, step 604.
  • the material 100 is heated in the heating chamber 21 to a predetermined temperature accordingly. That is, step 605.
  • the temperature characteristic 102 of the material 100 is altered.
  • the temperature characteristic 102 of the material 100 is then tested to determine if the material 100 is a qualified product, step 6051.
  • the forging process will be terminated, yielding the material 100, which is the discharge of step 606.
  • the start will be returned and further processed or finally discharged depending on the condition of the material 100.
  • the material 100 is introduced to start the manufacture of the material 100 in the forging production system. That is, step 601. Feature acquisition of the material 100 is then performed by a sensor. In the preferred embodiment, the shape feature 101 and the temperature feature 102 of the material 100 are collected to obtain shape and appearance temperature data information of the material 100. That is, step 602. Then, according to the shape information 101 and the data information of the temperature feature 102, the blank type of the material 100 is determined. In the preferred embodiment, the billet type of the material 100 and the subsequent desired temperature are obtained from the profile feature 101 of the material 100. That is to say, when different materials 100 are put into the forging production system, the judgment is made according to the type of the material 100 obtained by sensing.
  • step 603 classifies the material 100.
  • the pressure applying mechanism 32 to which the material 100 is suitable will be determined.
  • the material 100 is then transported to the forging space 300 of the forming blank, step 604.
  • the material 100 is press-formed in the pressing mechanism 32 accordingly. That is, step 605.
  • the profile 101 of the material 100 is altered, i.e., becomes the formed blank.
  • the shape feature 101 of the material 100 is then tested to determine if the material 100 is a qualified product, step 6051.
  • the forging process will be terminated, yielding the material 100, which is the discharge of step 606.
  • the start will be returned and further processed or finally discharged depending on the condition of the material 100.
  • the carrying device 40 of the forging production system of the preferred embodiment further includes a feed tool 41 and a feed tool 42.
  • the feeding tool 41 sends the material 100 from the hot melt apparatus 20 to the Forging apparatus 30, the feed tool 42 delivers the material 100 from the forging apparatus 300 to the discharge tool 43. That is, the feeding tool 42 is responsible for operating the high temperature blank stage of the material 100, and the feeding tool 42 is responsible for operating the forming blank stage of the material 100. It is worth mentioning that between multiple processes In the circulation, the material 100 does not require additional manual handling, so that the material 100 is kept away from labor in a high temperature state, and the safe production of the material 100 is maintained.
  • the feeding tool 41 of the carrying device 40 in another preferred embodiment further includes a rail mechanism 411 and a handling mechanism 412, wherein the sliding A rail mechanism 411 is coupled to the heating chamber 21 such that the material 100 falls from the heating chamber 21 and falls into the rail mechanism 411, wherein the handling mechanism 412 removes the material 100 from the rail mechanism
  • the 411 is transported to the forging apparatus 40.
  • the slide rail mechanism 411 has at least one collecting end 4111, a sliding path 4112, and a giving end 4113.
  • the collecting end 4111 obtains the material 100 that has been heated from the heating chamber 21, and the material 100 finally reaches the giving end 4113 via the sliding path 4112. That is, the transport mechanism 412 is transported from the position of the given end 4113.
  • the handling mechanism 412 includes a gripping end 4121 and a transfer arm 4122, wherein the gripping end 4121 operates the material 100 to perform positional translation by the transfer arm 4122.
  • the preferred embodiment describes the progression of one of the materials 100. It can be understood that for a plurality of the materials 100, the flow can be implemented by using a parallel execution or a cyclic interrupt.
  • the material 100 is introduced to begin the manufacture of the material 100 in the forging production system.
  • the feeding tool 44 is performed.
  • Feature acquisition of the material 100 is then performed by a sensor.
  • the shape feature 101 and the temperature feature 102 of the material 100 are collected to obtain a desired processing mode of the material 100. That is, step 602.
  • the blank type of the material 100 is judged.
  • the type of stock of the material 100 and the subsequent desired temperature are obtained from the temperature of the material 100.
  • step 603 classifies the material 100.
  • the heating chamber 21 and the pressure applying mechanism 32 to which the material 100 is suitable will be determined.
  • the item 100 is then shipped to the selection result, step 604. It is worth mentioning that before being transported to the heating space 200, it is necessary to determine in advance whether the heating space 200 is in a vacant state, that is, whether the material 100 to be reached can be heated. In the event that the heating space 200 is free, the material 100 is continuously transported to the heating chamber 21. Next, the material 100 is heated in the heating chamber 21 to a predetermined temperature accordingly.
  • step 605. After processing is complete, the temperature characteristic 102 of the material 100 is altered. The temperature characteristic 102 of the material 100 is then tested to determine if the material 100 is a qualified product, step 6051. For a qualified product, the forging manufacturing process will be terminated, and the material 100 will be produced, that is, the feeding process 41 will be performed. For the unqualified material 100, the start will be returned and further processed or finally discharged depending on the condition of the material 100. It should be noted here that the material 100 for the forging device 30 is the feed processing 41, that is, the step 601 of the forging device 30. Feature acquisition of the material 100 is then performed by a sensor.
  • the shape feature 101 and the temperature feature 102 of the material 100 are collected to obtain shape and appearance temperature data information of the material 100. That is, step 602 of the forging apparatus 30.
  • the type of the material 100 is then determined based on the shape information 101 and the data information of the temperature feature 102.
  • the blank type of the material 100 and the subsequent configuration of the mold 31 and the pressure applying mechanism 32 are obtained from the profile feature 101 of the material 100. That is to say, when different materials 100 are put into the forging production system, the judgment is made according to the type of the material 100 obtained by sensing.
  • the material 100 is then shipped to the forging space 300 of the selection result, step 604.
  • the feeding tool 41 of the carrying device 40 transfers the material 100 to the pressing mechanism 32, it is further determined whether the forging space 300 is free. For the case where the forging space 300 is vacant, the material 100 is continuously transported to the pressing mechanism 32. Next, the material 100 is press-formed in the pressing mechanism 32 accordingly. That is, step 605. After the processing is completed, the outline feature 101 of the material 100 is changed and sent by the feeding tool 42 to the pressing mechanism 32. The profile feature 101 and the temperature feature 102 of the material 100 are then tested to determine if the article 100 is a qualified product, step 6051. For a qualified product, the forging process will be terminated, producing the material 100, which is the discharge tool 43 corresponding to step 606. For the unqualified material 100, the start will be returned and further processed or finally discharged depending on the condition of the material 100.
  • discharge and discharge tools mentioned here are different.
  • the material 100 is discharged into the forging production system for further recovery.
  • the discharge tool 43 is manufactured for the material 100 to be processed normally, waiting for the next step of treatment or leaving the forging production system as a product.
  • the discharge tool 43 operates as a shaped blank of the material 100 and is discharged as waste material of the material 100.
  • the forging production system of the preferred embodiment provides a control platform 10, wherein the control platform 10 further includes an operator 11, a feedback device 12, an actuator 13, and a monitor 14. As shown in FIG. 2, the arithmetic unit 11, the feedback unit 12, the actuator 13, and the monitor 14 are communicably connected to each other.
  • the operator 11 performs a control calculation on the feedback data of the hot melt device 20 and the forging device 30 obtained by the feedback device 12, and the actuator 13 controls the heating chamber 21, the Pressure applying mechanism 32 and the carrying device 40.
  • the monitor 14 can preset the relevant control parameters of the operator 11 and display the feedback information of the feedback device 12 to implement interactive control.
  • the step 605 of the forging production system further includes a maintenance device 50.
  • the maintenance device 50 is controlled by the control platform 10, and further maintenance operations are performed according to the needs of the hot melt device 20 or the forging device 30 to maintain the hot melt device 20 or the forging device 30. Production capacity, providing the overall efficiency of the forging production system.
  • the maintenance device 50 further includes an oiling tool 51 and a smoke evacuation tool 52, as shown in FIG.
  • the oiling tool 51 is provided to the pressing mechanism 32, and the pressure applying mechanism 32 and the mold 31 are subjected to oily care.
  • the smoke extraction tool 52 is disposed on the oil application tool 52 to recover the high temperature oil smoke, thereby ensuring the cleaning of the working environment of the pressure applying mechanism 32.
  • a flow in the heating chamber 21 and the pressure applying mechanism 32 is schematically shown in Figs. 5 and 6.
  • the material 100 is heated to a predetermined temperature in the heating chamber 21 such that the material 100 is in a high temperature state.
  • the material 100 is sent to the feeding tool 41. Since the temperature characteristic 102 of the material 100 is altered after processing is completed, the temperature characteristic 102 of the material 100 needs to be tested to determine if the material 100 is suitable for the forging apparatus 30.
  • the feed process 41 will be prepared for a product of suitable temperature.
  • the unqualified material 100 will eventually be discharged.
  • the material 100 for the forging device 30 is the feed processing 41, that is, the step 601 of the forging device 30.
  • Feature acquisition of the material 100 is then performed by a sensor.
  • the shape feature 101 and the temperature feature 102 of the material 100 have been collected in advance, and the shape and appearance temperature data of the material 100 are obtained, and the type of the material 100 is determined. . That is to say, different materials 100 are put into the forging production system, and judged according to the type of the material 100 obtained by sensing, and are given for execution. Then, it is judged that the forging space 300 is free. For the case where the forging space 300 is vacant, the feeding tool 41 will continue to transport the material 100 to the pressing mechanism 32. For the case where the forging space 300 is not spare, it will wait. It should be noted that while waiting, the temperature of the material 100 is also being detected to ensure the high temperature state of the material 100.
  • the feed tool 41 of the carrier device 40 transfers the material 100 to the pressure applying mechanism 32 only if the temperature of the material 100 is suitable and the forging space 300 is free. .
  • the material 100 is compression molded in the corresponding pressure applying mechanism 32.
  • the forging device 30 is fed by the feeding tool 42.
  • the oiling tool 51 of the maintenance device 50 begins the forging device 30. That is to say, each of the pressing mechanisms 32 corresponds to the execution of the oiling tool 51.
  • the feed tool 41 and the feed tool 42 assist in carrying the material 100 in a high temperature state so that the high temperature of the material 100 can be self-processed and flowed while being maintained.
  • the preferred embodiment is described with respect to the progression of a plurality of different types of materials 100, as in Figure 1, and is exemplified by three materials 100 that need to be processed.
  • the setting of the specific manufacturing method is performed by the control platform 10.
  • the material 100 having a square shape is formed by a certain pressure by using the mold 31B; the material 100 having a circular shape is formed by using the mold 31A to perform a certain pressure; and the material 100 having a triangular shape is used.
  • the mold 31C is subjected to molding at a constant pressure.
  • the material 100 is introduced to begin the manufacture of the material 100 in the forging production system.
  • the feeding tool 44 is performed.
  • Feature acquisition of the material 100 is then performed by a sensor.
  • the shape feature 101 and the temperature feature 102 of the material 100 are collected to obtain a desired processing mode of the material 100. That is, step 602.
  • the material type of the material 100 is judged based on the data information collected by the sensor. In the preferred embodiment, the type of stock of the material 100 and the subsequent desired temperature are obtained from the temperature of the material 100. That is to say, when three kinds of the materials 100 are put into the forging production system, the materials 100 obtained by sensing are correspondingly judged.
  • the material 100 is sorted at step 603 according to different needs. Preferably, depending on the type of material 100, the heating chamber 21 and pressure applying mechanism 32 to which the material 100 is suitable will be determined and the manner of treatment accordingly.
  • the item 100 is then shipped to the selection result, step 604.
  • the heating space 200 Before being transported to the heating space 200, it is necessary to determine in advance whether the heating space 200 is in a vacant state, that is, whether the material 100 to be reached can be heated. In the event that the heating space 200 is free, the material 100 is continuously transported to the heating chamber 21. Next, the material 100 is heated in the heating chamber 21 to a predetermined temperature accordingly. In the present process, different heating effects are obtained by controlling the time during which the material 100 stays in the heating space 200. After processing is complete, the temperature characteristic 102 of the material 100 is altered. The temperature characteristic 102 of the material 100 is then tested to determine if the material 100 is a qualified product, step 6051. The material 100 will be produced for a qualified product, that is, the feed processing 41 will begin.
  • the feeding process 41 is accomplished by the cooperation of a slide rail and a robot.
  • the start will be returned and further processed or finally discharged depending on the condition of the material 100.
  • Feature acquisition of the material 100 is then performed by a sensor.
  • the shape feature 101 of the material 100 the shape data information of the material 100 is obtained, and the type of the material 100 is determined.
  • the blank type of the material 100 and the subsequent setting of the mold 31 and the pressing mechanism 32 are obtained from the shape feature 101 of the material 100, that is, the specific mold 31A. , 31B or 31C and the corresponding pressure magnitude and angle.
  • the profile feature 101 and the temperature feature 102 of the material 100 are then tested to determine if the article 100 is a qualified product. For a qualified product, the forging process will be terminated, producing the material 100, which is the discharge tool 43 corresponding to step 606. For the unqualified material 100, the start will be returned and further processed or finally discharged depending on the condition of the material 100.
  • the method comprises the steps of:
  • a specific material 100 is selected as a raw material, and an operation factor of the forging production system is set for production.
  • the forging production equipment adjusts the temperature, pressure, and mold to produce a finished product corresponding to the material 100.
  • the operating factors corresponding to the material 100 are determined by the matching relationship setting of the control platform 10. For example, the mold 31A previously used a triangle is forged production.
  • the material 100 is introduced to begin the manufacture of the material 100 in the forging production system. Enter the feeding tool 44. Feature acquisition of the material 100 is then performed by a sensor. The shape feature 101 and the temperature feature 102 of the material 100 are collected, thereby obtaining a processing mode of the material 100, and determining the use of the mold 31B according to the circular feature of the material 100. . That is, step 602.
  • the material type of the material 100 is judged based on the data information collected by the sensor.
  • the type of stock of the material 100 and the subsequent desired temperature are obtained from the temperature of the material 100. That is to say, when three kinds of the materials 100 are put into the forging production system, the materials 100 obtained by sensing are correspondingly judged.
  • the material 100 is sorted at step 603 according to different needs. Preferably, depending on the type of material 100, the heating chamber 21 and pressure applying mechanism 32 to which the material 100 is suitable will be determined and the manner of treatment accordingly. That is, the mold 31A in which the triangle is replaced is a circular mold 31B.
  • the item 100 is then shipped to the selection result, step 604.
  • the heating space 200 Before being transported to the heating space 200, it is necessary to determine in advance whether the heating space 200 is in a vacant state, that is, whether the material 100 to be reached can be heated. In the event that the heating space 200 is free, the material 100 is continuously transported to the heating chamber 21. Next, the material 100 is heated in the heating chamber 21 to a predetermined temperature accordingly. In the present process, different heating effects are obtained by controlling the time during which the material 100 stays in the heating space 200. After processing is complete, the temperature characteristic 102 of the material 100 is altered. The temperature characteristic 102 of the material 100 is then tested to determine if the material 100 is a qualified product, step 6051. The material 100 will be produced for a qualified product, that is, the feed processing 41 will begin.
  • the feeding process 41 is accomplished by the cooperation of a slide rail and a robot.
  • the start will be returned and further processed or finally discharged depending on the condition of the material 100.
  • Feature acquisition of the material 100 is then performed by a sensor.
  • the shape feature 101 of the material 100 the shape data information of the material 100 is obtained, and the type of the material 100 is determined.
  • the rounded material 100 is selected for production, and the shape feature 101 determines the subsequent setting of the mold 31 and the pressing mechanism 32, that is, the specific mold 31A. , 31B or 31C and the corresponding pressure magnitude and angle. This is inconsistent with the preferred embodiment described above.
  • the material 100 is transported to the forging space 300 corresponding to the mold 31B, that is, step 604. It is worth mentioning that before the feeding tool 41 of the carrying device 40 transfers the material 100 to the pressing mechanism 32, it is further determined whether the forging space 300 is free. For the case where the forging space 300 is vacant, the material 100 is continuously transported to the pressing mechanism 32. Next, the material 100 is press-formed in the pressing mechanism 32 accordingly. That is, step 605. After the processing is completed, the outline feature 101 of the material 100 is changed and sent by the feeding tool 42 to the pressing mechanism 32.
  • the profile feature 101 and the temperature feature 102 of the material 100 are then tested to determine if the article 100 is a qualified product. For a qualified product, the forging process will be terminated, producing the material 100, which is the discharge tool 43 corresponding to step 606. For the unqualified material 100, the start will be returned and further processed or finally discharged depending on the condition of the material 100.
  • the control platform 10 Based on the material 100 that is input, the control platform 10 performs specific settings for production operating factors. That is to say, there is no need to rely entirely on the identification detection of the material 100, and the operating pressure of the control platform 10 is small.
  • the moving direction of the carrying device 40 is also unidirectional, which is more convenient to increase the production speed.
  • the hot melt apparatus 20 is placed on one side of the forging apparatus 30 such that the heating chamber 21 of the hot melt apparatus 20 faces a uniform side. After a plurality of the forging production systems are set, the worker can conveniently view the working state of the heating chamber 21.
  • an experienced staff member can be involved in step 603 of the forging production management method. That is to say, to avoid a large amount of unemployment and loss of experience of workers, the forging production management method takes into consideration the actuality of production efficiency and the reality of manpower management, and improves the overall production management efficiency.
  • the forging production system includes a control system 910, a hot melt device 920, a forging device 930, a carrier device 940, and at least one reject removal device 950, wherein the control system 910 is communicatively coupled to the hot melt
  • the device 920, the forging device 930, the carrying device 940, and the bad material removing device 950 control the processed material to be processed and transported between the devices, thereby making the material unprocessed blank (or embryo)
  • the material is subjected to forging processing of the forging apparatus 930 to form a formed blank.
  • the hot melt apparatus 920 heats the blank of the material to be input, wherein the control system 910 sets the heating time, heating temperature, and heating temperature of the hot melt apparatus 920 according to the kind of the material and the demand for processing. Heating method, etc.
  • the carrying device 940 transports the billet heated by the hot melt device 920, and conveys the billet into the forging device 930, and the billet is forged by the forging device 930 to be processed into a product. Finished product.
  • the bad material removing device 950 excludes the unqualified blank after heating in the process of carrying the carrying device 940, such as a blank with unqualified temperature, a blank with an improper size, a blank that is not suitable for forging, and the weight is not Qualified blanks, blanks such as blanks with improper placement, or scrap. It will be appreciated that in the preferred embodiment of the invention, the scrap or the scrap is the blank that is not suitable for processing in the forging apparatus 930.
  • the bad material removing device 950 excludes the bad material that is not suitable for the processing of the forging device 930, and prevents the carrying device 940 from transporting the bad material to the forging device 930 for the next forging, thereby avoiding the bad Damage to the forging equipment 930. Since the process of scrap processing is eliminated during the processing, the working efficiency of the forging production system and the yield of the product are accelerated.
  • the forging production system further includes at least one detecting device 960, wherein the detecting device 960 detects at least one feature of the blank, wherein the features include shape features, dimensional features, temperature features, weight features, material features, location features Wait.
  • the control system 910 determines whether the blank is suitable for processing in the forging device 930 based on the characteristic information detected by the detecting device 960. If the control system 910 determines that the blank conforms to the forging processing condition based on the detection information of the detecting device 960, the blank is forged by the forging device 930.
  • the bad material removing device 950 excludes the bad material to prevent the bad material from being transported to The forging device 930 damages the forging device 930.
  • the carrier device 940 carries the blank to the hot melt device 920, wherein the hot melt device 920 heats the blank to a temperature suitable for forging processing based on a heating time set by the control system 910. Accordingly, the carrier device 940 includes at least one infeed tool 944, wherein the infeed tool 944 adds the blank to the hot melt device 920, and the hot melt device 920 heats the blank.
  • the hot melt apparatus 920 includes a heating chamber 921 and a heater 922, wherein the feeding tool 944 adds the blank to the In the heating chamber 921, the billet in the heating chamber 921 is heated by the heater 922 to a processing temperature set by the control system 910, or the billet is heated according to a set heating time.
  • the heater 922 is disposed adjacent to the heating chamber 921, or the heater 922 is disposed inside the heating chamber 921, thereby the heating chamber The blank inside 921 is heated.
  • the heating mode of the heater 922 of the hot melt device 922 may be heated by means of fuel combustion or by heating by heating. It is worthwhile to be integral, in the preferred embodiment of the invention, the manner in which the heater 922 is heated is merely exemplary and not limiting. Therefore, the heating mode of the heater 922 can also be implemented in other manners, such as the manner of microwave heating.
  • the heating chamber 921 of the hot melt apparatus 920 is provided with at least one feed opening 9211 and at least one discharge opening 9212, wherein the feeding tool 944 passes the unprocessed blank.
  • the feed port 9211 is added to the heating chamber 921 of the hot melt device 920.
  • the heated billet is taken out from the discharge port 9212 of the heating chamber 921 or is carried out.
  • the heater 922 is disposed adjacent to the discharge port 9212 of the heating chamber 921, wherein the heater 922 heats the heating chamber 921 inwardly from the outside of the discharge port 9212. . More preferably, the heater 922 heats the blank in the heating chamber 921 inwardly from the discharge port 9212 by means of fuel combustion heating.
  • the blank enters from the inlet 9211 of the heating chamber 921, wherein the temperature of the inlet 9211 is lower than the outlet 9212. temperature. Therefore, the blank can be gradually heated inside the heating chamber 921 from the inlet port 9211 having a low temperature to the discharge port 9212 having a high temperature. It will be appreciated that such a heating means enables the billet to be heated uniformly, has a good heating effect, and is capable of maintaining a relatively high temperature when transported outwardly from the spout 9212 as the billet is heated.
  • the carrier apparatus 940 further includes at least one discharge tool 943, wherein the discharge tool 943 carries the finished processed material or formed blank away from the forging production system.
  • the discharge tool 943 is a device that is disposed at the trailing end of the forging production system.
  • the carrier device 940 further includes at least one feed tool 941 and at least one feed tool 942, wherein the feed tool 941 transports the material from the hot melt device 920 to the forge device 930, the feed tool The material is sent from the forging apparatus 930 to the discharge tool 943.
  • the feeding tool 941 conveys the blank to the forging device 930, and the blank of the forged type is conveyed by the feeding tool 942 to the discharging tool 930, The blank formed by the discharge tool 943 is processed.
  • the feeding tool 941 of the carrying device 940 further includes a rail mechanism 9411 and a handling mechanism 9412, wherein the rail mechanism 9411 is coupled to the heating chamber 921 such that the blank is from the The heating chamber 921 exits and falls into the slide rail mechanism 9411, wherein the transport mechanism 9412 carries the blank from the rail mechanism 9411 to the forging apparatus 940.
  • the slide rail mechanism 9411 of the feeding tool 941 is a sliding track for receiving and transporting the blank.
  • the slide rail mechanism 9411 further includes at least one collecting end 94111, a sliding path 94112, and a given end 94113.
  • the collecting end 94111 obtains the material 9100 that has been heated from the heating chamber 921, and the material 9100 finally reaches the given end 94113 via the sliding passage 94112.
  • the blank passes from the collecting end 94111 along the sliding passage 94112 to the given end 94113.
  • the blanks are sequentially arranged along the sliding path 94112 to the given end 94113.
  • the collecting end 94111 of the slide rail mechanism 9411 is disposed to be connected to the discharge port 9212 of the heating chamber 921 of the hot melt device 920 to receive from the The blank after the discharge port 9212 is heated.
  • the slide rail mechanism 9411 is further provided with at least one bearing groove 94114, wherein the bearing groove 94114 is formed on an upper side of the slide rail mechanism 9411, wherein the billet is heated from the heating chamber 921,
  • the bearing groove 94114 of the slide rail mechanism 9411 slides from the collecting end 94111 to the given end 94113.
  • the bearing groove 94114 of the slide rail mechanism 9411 corrects the placement manner of the blank during carrying the conveyance of the blank.
  • the slide rail mechanism 9411 corrects the posture of the blank during transport to the given end 94113 from the collection end 94111 after receiving the blank to facilitate the transport of subsequent equipment. It can be understood that the bearing groove 94114 of the slide rail mechanism 9411 is suitable for the structure in which the size and shape of the blank exhibits a slope.
  • the detecting device 960 detects at least one feature of the blank, wherein the control system 910 determines whether the blank is a bad material or scrap based on a characteristic result of the blank detected by the detecting device 960. .
  • the control system 910 determines that the characteristic result of the blank is a bad material or waste, controlling the bad material removing device 950 to exclude the bad material or waste from the sliding rail mechanism 9411, avoiding the The bad material image production process also avoids the entry of waste into the forging production, damaging the forging equipment 930.
  • the detection device 960 is disposed to the feed tool 941 of the carrier device 940 to detect the feature of the blank carried in the feed tool 941.
  • the detecting means 960 detects the characteristic of the blank in the slide rail mechanism 9411 to determine whether the characteristics of the blank before entering the forging apparatus 930 meet the forging production requirements.
  • the detecting device 960 detects at least one characteristic factor of a shape feature, a weight feature, a position feature, a temperature feature, a material feature, and the like of the blank.
  • the control system 910 controls the operation of the bad material removing device 950 based on the characteristics, and controls the conveying operation of the transport mechanism 9412.
  • the bad material removing device 950 is disposed at the front end of the transport mechanism 9412, and when the slide rail mechanism 9411 transports the blank to the slide rail mechanism 9411, When the terminal 94113 is given, the bad material removing device 950 first excludes the bad material that is not suitable for processing.
  • the detecting device 960 is implemented as a sensing device disposed on the slide rail mechanism 9411, or two or more combined sensors, wherein the detecting device 960 passes photograph detection, infrared sensing detection, and graphics. Detection means such as detection, weight detection, etc., detect the feature of the blank in the slide rail mechanism 9411. It can be understood that the detecting device 960 is communicatively connected to the control system 910, wherein the control system 910 analyzes based on a kind of probe information detected by the detecting device 960 or a combination of multiple pieces of probe information. Whether the characteristics of the blank meet the forging requirements.
  • the bad material removing device 950 excludes the blank carried in the slide rail mechanism 9411.
  • the reject removal device 950 further includes at least one row of waste mechanisms 951 and a waste collection device 952, wherein the waste disposal mechanism 951 excludes the blanks in the slide rail mechanism 9411 from being rejected to the waste collection device 952, collecting the blank by the waste collection device 952. It will be appreciated that the blank collected by the waste collection device 952 can be re-added to the hot melt apparatus 920 for reheating to be forged.
  • the waste disposal mechanism 951 excludes the waste material in the slide rail mechanism 9411 to the waste collection device 952 by means of pinching or culling. More preferably, the waste disposal mechanism 951 is implemented as a robotic device, the waste disposal mechanism 951 selects the blank in the slide rail mechanism 9411 by gripping, and transfers to the waste collection device 952. .
  • the waste disposal mechanism 951 includes at least one gripping device 9511 and an operating arm 9512 supporting the operation of the gripping device 9511, wherein the gripping device 9511 is disposed on One end of the operating arm 9512 is supported by the operating arm 9512 to operate the gripping device 9511 to grip the identified bad material.
  • the gripping device 9511 can be operatively disposed at an end of the operating arm 9512, wherein the operating arm 9512 operates the gripping device 9511 to grip the bad material, and discharge the bad material into a forging production process Process.
  • the gripping device 9511 is rotatably disposed at an end of the operating arm 9512, wherein the operating arm 9512 rotatably operates the gripping device 9511 to grip the bad material at different positions.
  • the gripping device 9511 picks up the bad material under the operation and control of the operating arm 9512 and excludes the bad material to the waste collecting device 952.
  • the gripping device 9511 can be operatively opened and clamped by the operating arm 9512 to grip and place the scrap that occurs during processing.
  • the gripping device 9511 of the waste disposing mechanism 951 is a gripping device of a robot, wherein the gripping device 9511 is operable to adjust the gripping angle and the gripping force under the operation control of the operating arm 9512. , as well as the direction of the grab.
  • the operating arm 9512 operates the gripping device 9511 to grasp and place the bad material, wherein the operating arm 9512 further includes at least a first operating lever 95112 and at least a second operating lever 95122, wherein the second The operating lever 95122 rotatably connects the gripping device 9511 to the first operating lever 9521.
  • the second operating lever 95122 is drivingly and rotatably coupled to the first operating lever 95211, wherein the second operating lever 95122 is rotatably controlled by the first operating lever 95321 to grasp the gripping device 9511. Take and place the position.
  • the first operating lever 95211 can be rotated in the circumferential direction and the circumferential direction to drive the second operating lever 95122 and the gripping device 9511 to a suitable gripping position.
  • the first operating lever 95211 circumferentially rotates the second operating lever 95122 to the position of the bad material, and the second operating lever 95122 operates the gripping device 9511 to grasp the bad material.
  • the first operating lever 95121 reversely rotates the second operating lever 95122 to the waste collecting device 952 in the circumferential direction, so that the gripping device 9511 will be The bad material is placed in the waste collection device 952.
  • the first operating lever 95211 axially rotates the second operating lever 95122 based on the position of the bad material, and drives the movement of the second operating lever 95122 and the gripping device 9511 up and down to The bad clip removes the track and sets the distance to grab.
  • one end of the second operating lever 95122 is rotatably coupled to the first operating lever 95211, so that the first operating lever 95121 moves the second operating lever 95122 up and down and the clamping
  • the device 9511 removes the bad material grasped by the gripping device 9511.
  • the gripping device 9511 is extended outwardly under the support of the second operating lever 95122 for grasping The bad material in the distance.
  • the gripping device 9511 picks up the bad material at a close distance.
  • the second operating arm 9512 can perform any angle of rotation in the direction along the center point and the center of gravity axis to drive the clamping device 9511 to move left and right, back and forth, and up and down, thereby clamping the track far and near freely. The bad material in the location.
  • first operating lever 95112 and the second operating lever 95122 of the operating arm 9512 are rotatable in a circumferential direction and an axial direction to drive the clamping device 9511 up and down. Move in the direction and left and right directions to achieve the action of gripping and removing. It can be understood that the operating arm 9512 rotates in the right and left direction, the front-rear direction, and the up-and-down direction, and the gripping device 9511 is operated to grip the bad material on the rail.
  • the gripping device 9511 is rotatably disposed at a lower end of the second operating lever 95122, wherein the second operating lever 95122 rotatably operates the gripping device 9511 so as to grip an arbitrary positioning position Describe the bad materials. For example, the bad material stacked obliquely, the bad material that has been tripped, the damaged material that is broken by the damaged material, and the like.
  • the gripping device 9511 is rotatably operated in the circumferential direction by the second operating lever 95122 to be adapted to grip the scrap material at an arbitrary storage angle.
  • the bad material removing device 950 and the transport mechanism 9412 respectively perform different carrying operations, wherein the bad material removing device 950 is based on the control.
  • the control commands of system 910 exclude waste material in the slide rail mechanism 9411.
  • the transport mechanism 9412 transports the processed blank used in the slide rail mechanism 9411 to the forging apparatus 930 for processing by the forging apparatus 930 into a formed blank.
  • the transport mechanism 9412 includes a gripping end 94121 and a transfer arm 94122, wherein the gripping end 94121 acquires the material of the slide rail mechanism 9411 by gripping, and places the material into the Forging equipment 930.
  • the transfer arm 94222 operates the gripping action and the releasing action of the gripping end 94121, and controls the gripping position and the releasing position of the gripping end 94121 to accurately select the forging device 930.
  • the transfer arm 94122 is rotated in the axial and axial directions to control the position of the gripping end 94121, and the position of the blank is converted by the transfer arm 94122.
  • the forging apparatus 930 performs a press forming operation on the billet that has been heated so that the billet is molded.
  • the forging apparatus 930 further provides a mold 931 and a pressing mechanism 932.
  • the carrying device 940 places the blank into the mold, and the pressing mechanism 932 applies pressure to the blank of the mold 931 to shape the blank.
  • the forging apparatus 930 further provides a forging space 9300 formed between the mold 931 and the pressing mechanism 932. The blank is subjected to pressure impact by the pressing mechanism 932 in the forging space 9300, so that the blank is molded at a high temperature.
  • the mold 931 of the forging apparatus 930 is provided with a structure for processing the forming blank, wherein the mold 931 is correspondingly disposed on the pressure testing mechanism 932 by the pressure testing mechanism 932 forging the blank in the mold 931 into a forged product. That is, the forging apparatus 930 is customized to correspond to the characteristics of the blank.
  • the mold 931 corresponds to the outer shape feature of the blank
  • the pressing mechanism 932 corresponds to the temperature characteristic such that different alloy blanks are subjected to a suitable forging process.
  • discharge and discharge tools mentioned here are different.
  • the discharge tool 943 is manufactured for the blank to be processed normally, waiting for the next step of treatment or leaving the forging production system as a product.
  • the discharge tool 943 operates as a formed blank of the blank and is discharged as waste of the blank.
  • the control system 910 further includes an operator 911, a feedback device 912, an actuator 913, and a monitor 914.
  • the arithmetic unit 911, the feedback unit 912, the actuator 913, and the monitor 914 are communicably connected to each other.
  • the operator 911 performs a control calculation on the feedback data of the hot melt device 920 and the forging device 930 obtained by the feedback device 912, and the actuator 913 controls the heating chamber 921, the Pressure applying mechanism 932 and the carrying device 940.
  • the monitor 914 can preset the relevant control parameters of the operator 911 and display the feedback information of the feedback device 912 to implement interactive control.
  • the feedback device 912 acquires the feature data detected by the detecting device 960, wherein the operator 911 extracts at least one feature of the blank corresponding to the feature data acquired by the detecting device 960.
  • the operator 911 extracts at least one feature of the positional feature, the shape feature, the material feature, the temperature feature, the weight feature, and the like of the blank according to the data detected by the detecting device 960.
  • the operator 911 extracts characteristics of the material corresponding to the feature information of the blank based on the data information acquired by the feedback device 912, and further determines whether the blank can be used for forging processing.
  • the detecting device 960 acquires at least one image of the blank in the slide rail mechanism 9411 by photographing, wherein the feedback device 912 feeds back the data information detected by the detecting device 960 to the The arithmetic unit 911.
  • the operator 911 identifies the current position, shape, size, and the like of the blank by image recognition, and the operator 911 determines whether the blank is suitable for being described according to the identified data information.
  • the transport mechanism 9412 transports. If the placement position of the blank is not correct, such as side sill, inclination, improper size, shape irregularity, etc., the arithmetic unit 911 concludes that the blank portion is adapted to be carried by the transport mechanism 9412.
  • the actuator 913 controls the scrap rejecting device 950 to perform an excluding operation based on the result of the computing unit 911 to prevent the blank from occupying space and the progress of image forging production. Conversely, if the operator 911 calculates that the blank is suitable for forging production by the forging apparatus 930, the handling mechanism 9412 is controlled by the actuator 913 to perform a handling operation, and the blank is conveyed to the The mold 931 of the forging apparatus 930 is forged by the forging apparatus 930 to process the blank.
  • the forging production system further includes a maintenance device 970.
  • the maintenance device 970 is controlled by the control system 910, and further maintenance operations are performed according to the needs of the hot melt device 920 or the forging device 930 to maintain the hot melt device 920 or the forging device 930. Production capacity, providing the overall efficiency of the forging production system.
  • the maintenance device 970 further includes an oiling tool 971 and a smoke evacuation tool 972.
  • the oiling tool 971 is provided to the pressing mechanism 932, and the pressure applying mechanism 932 and the mold 931 are subjected to oily care.
  • the exhausting tool 972 is disposed on the oiling tool 952 to recover the high temperature soot, thereby ensuring the cleaning of the working environment of the pressing mechanism 932.
  • the smoke evacuation tool 972 is disposed adjacent to the forging device 930, wherein the smoke evacuation tool 972 absorbs the soot generated by the forging device 930 when forging the blank, and the oil coating The soot produced by the tool when it is oiled.
  • the oiling tool 971 is disposed on the feeding tool 942, wherein the oiling tool 971 performs an oiling operation on the forging device 930 during feeding of the feeding tool 942.
  • the oiling tool 971 further includes an upper oiling tool 9711 and a lower oiling tool 9712, wherein the upper oiling tool 9711 and the lower oiling tool 9712 are respectively disposed on the feeding tool 942.
  • the feeding tool 942 receives the forged blank of the forging tool 930 when performing a feeding operation, and transfers the forming blank to the discharging tool 943, and the forming tool is formed by the discharging tool.
  • the latter blank receives the forged blank of the forging tool 930 when performing a feeding operation, and transfers the forming blank to the discharging tool 943, and the forming tool is formed by the discharging tool.
  • the latter blank The upper oiling tool 9711 sprays oil to the pressing mechanism 932 of the forging apparatus 930 or the upper end of the mold 931 by spraying.
  • the lower oiling tool 9712 sprays oil to the lower end of the mold 931 or the pressing mechanism 932 by spraying oil.
  • the oiling tool 971 reduces the temperature of the surface of the forging device 930 by lubricating the forging device 930 while lubricating the pressure applying mechanism 932 and the surface of the mold 931 to avoid miscellaneous The object sticks to the inner surface of the mold 931.
  • the feeding tool 942 is movably stretchable to the forging space 9300 of the forging apparatus 930 to receive the forming blank produced by the forging apparatus 930 forging.
  • the pressing mechanism 932 of the forging device 930 forges the blank, and when the blank is released from the die 931 of the forging device 930, the blank is The pressing mechanism 932 is carried away from the mold 931.
  • the pressing mechanism 932 of the forging apparatus 930 takes the formed blank from the mold 931 after forging the blank, so that the blank is released from the mold 931. After the blank is taken out of the mold 931 by the pressing mechanism 932, the blank is detached from the pressing mechanism 932 to the feeding tool 942 under the action of its own gravity.
  • the feeding tool 942 further includes a telescopic mechanism 9421 and at least one receiving mechanism 9422, wherein the receiving mechanism 9422 is movably disposed on the telescopic mechanism 9421, and the telescopic mechanism 9421 drives the receiving mechanism 9422 to expand and contract.
  • the feeding tool 942 is communicatively coupled to the control system 910, wherein the control system 910 controls the telescopic action of the feeding tool 942 such that the receiving mechanism 9422 receives the detachment from the pressing mechanism 932 Blanks.
  • the oiling tool 971 is disposed on the receiving mechanism 9422 of the feeding tool 942, wherein the upper oiling tool 9711 is disposed on the upper side of the receiving mechanism 9422, the lower The oiling tool 9712 is correspondingly disposed on the lower side of the receiving mechanism 9422.
  • the telescopic mechanism 9421 drives the receiving mechanism 9422 to telescope to the receiving mechanism 9422 of the forging device 930, wherein the receiving mechanism 9422 receives the blank that is detached from the pressing mechanism 932. Thereafter, the oiling tool 971 applies oil to the forging apparatus 930 upwardly and downwardly.
  • the billet is heated to a predetermined temperature in the heating chamber 921 such that the billet is in a high temperature state.
  • the blank is sent to the feed tool 941. Since the temperature characteristic 9102 of the blank is altered after processing is completed, the temperature characteristic 9102 of the blank needs to be tested to determine if the blank is suitable for the forging apparatus 930.
  • the feed treatment 941 will be prepared for a product of suitable temperature.
  • the unqualified blank will be finally discharged.
  • the blank is then feature collected by a sensor. In the preferred embodiment, the shape feature 9101 and the temperature feature 9102 of the blank have been previously collected, and the shape and appearance temperature data of the blank are obtained, and the type of the blank is determined.
  • the forging device 930 is sent out by the feeding tool 942.
  • the oiling tool 971 of the maintenance device 970 begins with the forging device 930. That is to say, each of the pressing mechanisms 932 corresponds to the execution of the oiling tool 971.
  • the feed tool 941 and the feed tool 942 assist in carrying the billet in a high temperature state so that the high temperature of the billet can be self-processed and flowed while being held.
  • the forging production system includes a control system 910, a hot melt device 920, a forging device 930, a carrier device 940, at least one reject removal device 950, and at least one detection device 960, wherein the control system 910 is communicatively Connecting to the hot melt device 920, the forging device 930, the carrying device 940, and the bad material removing device 950, controlling the processed materials to be processed and transported between the devices, so that the materials are never
  • the processed blank (or billet) is subjected to forging processing by the forging apparatus 930 to form a formed billet.
  • the structure of the control system 910, the hot melt device 920, the forging device 930, the carrying device 940 of the forging production system and the second The same in the preferred embodiment.
  • the bad material removal device 950 is implemented as the handling mechanism 9412 of the feeding tool 941 of the carrier device 940.
  • the scrap rejecting device 950 is the same device as the transport mechanism 9412 of the carrier device 940, wherein the transport mechanism 9412 is capable of carrying the qualified blank in the slide rail mechanism 9411 to the forging Forging is performed in the apparatus 930, and the bad material in the slide rail mechanism 9411 can also be sent to the waste collection device 952.
  • the transport mechanism 9412 of the feeding tool 940 is controlled by the control system 910, and the control system 910 controls the transport mechanism 9412 to perform a transport operation or perform a reject operation based on the probe information of the probe device 960.
  • the present invention further provides a method for removing the bad material in the forging production system, wherein the bad material is removed. Including the following steps:
  • step (c) If it is judged that the blank is a bad or waste material, the bad material or waste material is excluded by at least one bad material removing device 950; if it is judged that the blank material is suitable for processing, returning to step (a).
  • the detecting means 960 detects the characteristic information of the blank in the slide rail mechanism 9411.
  • the detecting device 960 detects at least one characteristic information such as a position feature, a temperature feature, a shape feature, a weight feature, a material feature, a size feature, and a posture feature of the blank in a manner of sensing detection.
  • step (b) of the above-described bad material removal method the feature of the blank detected by the detecting device 960 is transmitted to the control system 910, wherein the control system 910 detects based on the detecting device 960
  • the characteristic information and the forging data of the forging apparatus 930 determine whether the blank is a bad material or a scrap.
  • the feedback device 912 of the control system 910 acquires the feature data information detected by the detecting device 960, and transmits the feature data information to the operator 911 of the control system 910. The operator calculates the feature data information to obtain a determination result of the blank.
  • the actuator 913 of the control system 910 performs the determination result obtained by the operation of the arithmetic unit 911, and controls the operation of the bad material removal device 950 to exclude the bad material or waste.
  • the bad material removing device 950 is controlled by the actuator 913 to perform the rejecting action of the bad material.
  • the reject removal device 950 removes the bad material in the slide rail mechanism 9411 to the waste collection device 952 by mechanical clamping, wherein the waste collection device 952 collects the excluded blank.
  • the method further includes the step (d) of recovering the discharged waste material to the hot melt device 920 for the hot melt device 920 to thermally melt the blank therein.
  • the forging production system further includes a control platform 10B, a supply device 50B, a forging device 60B, and a maintenance carrier device 70B.
  • the control platform 10B controls the feeding device 50B, the forging device 60B, and the maintenance carrying device 70B.
  • the feeding device 50B provides the heated material 100B to the forging device 60B.
  • the forging apparatus 60B forges the material 100B.
  • the maintenance carrying device 70B carries the material 100B forged by the forging device 60B and injects maintenance to the forging device 60B. That is, the maintenance carrying device 70B automatically receives the material 100B forged by the forging device 60B and then delivers it and automatically injects fuel to maintain the forging device 60B.
  • the material 100B is exemplified by one in the present invention.
  • the feeding device 50B includes a hot melt device 51B and a sorting mechanism 52B.
  • the hot melt device 51B heats the material 100B after receiving the material 100B, so that the material 100B is heated to a certain temperature.
  • the feeding mechanism 52B automatically conveys the heated material 100B, the material 100B is automatically sorted according to the state of the material 100B, and the adapted material 100B is delivered to the forging device 60B.
  • the sorting mechanism 52B automatically conveys the material 100B to the forging device 60B.
  • the sorting mechanism 52B may transport the material 100B to a different one of the forging devices 60B according to the different materials 100B being heated, and the invention is not limited in this regard.
  • the forging apparatus 60B Under the control of the control platform 10B, the forging apparatus 60B forges the material 100B, thereby causing the material to be forged.
  • the maintenance carrier device 70B is adaptively disposed to the forging device 60B.
  • the maintenance carrying device 70B automatically receives the material 100B that has been forged and transported out, and injects the forging device 60B during the reciprocating movement of the pick-up to maintain the forging device 60B.
  • the material 100B is moved upward.
  • the maintenance carrier 70B automatically moves below the material 100B to receive the material 100B.
  • the maintenance carrying device 70B is located in the forging device 60B when receiving the material 100B, and the maintenance carrying device 70B performs fuel injection maintenance on the forging device 60B.
  • the maintenance carrier 70B is then removed from the forging device 60B such that the maintenance carrier 70B can transport the material 100B to a storage area.
  • the material 100B that has been heated is subjected to a pressure forming operation by the forging apparatus 60B so that the material 100B is molded.
  • the forging apparatus 60B further provides a mold 61B and a pressing mechanism 62B.
  • the sorting mechanism 52B conveys the material 100B into the mold 61B.
  • the material 100B placed in the mold 61B is subjected to the pressure applied by the pressing mechanism 62B, so that the material 100B is molded.
  • the pressing mechanism 62B is located at a height of the mold 61B, wherein the pressing mechanism 62B forges the material 100B downward and lifts it upward.
  • the material 100B is carried by the pressing mechanism 62B.
  • the maintenance carrying device 70B moves over the mold 61B and catches the naturally falling formed material 100B and injects it to the pressing mechanism 62B and the mold 61B. Then, the material 100B carried by the maintenance carrying device 70B is moved to the side of the pressing mechanism 62B and then transported out.
  • the forging apparatus 60B further provides a forging space 600B formed between the mold 61B and the pressing mechanism 62B.
  • the material 100B is in the forging space 600B and subjected to pressure shock by the pressing mechanism 62B, so that the material 100B is molded at a high temperature.
  • the material 100B is transported by the maintenance carrying device 70B to the forging space 600B corresponding to the corresponding mold 61B.
  • the forging space 600B is defined by the pressing mechanism 62B and the mold 61B, and when the pressing mechanism 62B is pressed toward the mold 61B, the forging space 600B is gradually reduced and maintained.
  • a fixed form of space is sized to accommodate the desired pressurized material 100B.
  • the maintenance carrying device 70B is disposed on one side of the mold 61B and at the same height as the mold 61B, so that the maintenance carrying device 70B can move the components therein to the forging space 600B to be received
  • the material 100B is forged.
  • the material 100B is pressed by the pressing mechanism 62B and is adhered and brought up as the pressing mechanism 62B moves up. Further, when the inertia of the material 100B and the gravity of the material 100B are greater than the adhesion force of the material 100B and the pressing mechanism 62B and the friction between the material 100B and the pressing mechanism 62B, The material 100B falls.
  • the maintenance carrying device 70B includes a transport mechanism 71B and a maintenance mechanism 72B, wherein the maintenance mechanism 72B is disposed at an end of the transport mechanism 71B.
  • the conveying mechanism 71B is movable left and right, and when the conveying mechanism 71B is moved below the pressing mechanism 62B, the maintenance mechanism 72B injects oil to the pressing mechanism 62B and the mold 61B.
  • the conveying mechanism 71B reciprocates from a starting position to a receiving position to receive the material 100B falling from the pressing mechanism 62B and then convey it out. Further, the receiving position means that the conveying mechanism 71B moves to the forging space 600B and is directly below the center of the pressing mechanism 62B.
  • the start position refers to an initial position when the transport mechanism 71B is not moved. The starting position is located on one side of the forging device 60B.
  • the receiving position allows the conveying structure 71B to receive the material 100B falling from the pressing mechanism 62B.
  • the maintenance mechanism 72B includes at least two injectors 721B and an infusion body 722B.
  • the infusion body 722B delivers oil to the injector 721B.
  • the fuel injector 721B sprays oil to the forging space 600B.
  • Each of the injectors 721B is provided to the conveying mechanism 71B, and injects oil to the pressing mechanism 62B and the mold 61B. At least one of the fuel injectors 721B is disposed above a side of the conveying mechanism 71B.
  • At least one other of the fuel injectors 721B is disposed below the conveying mechanism 71B. That is, at least two of the fuel injection nozzles 721B are respectively disposed toward the pressing mechanism 62B and the mold 61B such that at least two of the fuel injection nozzles 721B are directed to the pressure applying mechanism 62B on both sides and The mold 61B is sprayed with oil to maintain the fuel injector 721B and the mold 61B.
  • the conveying mechanism 71B includes a driving portion 711B and a receiving portion 712B, wherein the driving portion 711B drives the receiving portion 712B to reciprocate such that the receiving portion 712B is driven from the starting position to the receiving position Reciprocating motion.
  • the receiving position refers to a position at which the receiving portion 712B moves to the lower portion of the pressing mechanism 62B to receive the forged material 100B.
  • the receiving portion 712B slides in the driving portion 711B such that the receiving portion 712B is reciprocally moved by the driving portion 711B.
  • the material 100B is fed to the forging space 600B.
  • the receiving portion 712B receives the forged material 100B from the forging space 600B, and then conveys the material 100B away from the forging space 600B, so that the forging The space 600B is emptied to forge the material 100B after the forging space 600B is injected and the supply to the forging space 600B is performed again.
  • the driving portion 711B includes a slide rail 7111B and a driving assembly 7112B.
  • the driving unit 7112B drives the receiving portion 712B to reciprocately move.
  • the receiving portion 712B is driven to reciprocate on the slide rail 7111B to carry the material 100B to the storage area a plurality of times.
  • the receiving portion 712B extends from the driving portion 711B in a predetermined direction such that the receiving portion 712B moves to the forging space 600B in a predetermined direction, and receives the dropped material 100B.
  • the receiving portion 712B has a feeding channel 7120B, a feeding port 7121B and a discharging port 7122B communicating with the feeding channel 7120B, wherein the feeding port 7121B and the discharging port 7122B communicate with the feeding channel 7120B. And the outside air.
  • the feed port 7121B is formed upward such that the material 100B detached from the pressing mechanism 62B falls from the inlet port 7121B to the receiving portion 712B and passes through the feeding passage 7120B.
  • the feed port 7121B falls from the storage area.
  • the discharge port 7122B is formed at the rear of the receiving portion 712B. After receiving the material 100B, the receiving portion 712B moves back to the initial position, and drives the material 100B along the feeding channel 7120B to leave the conveying mechanism 71B from the discharging port 7122B.
  • the receiving portion 712B moves back to the start position of the slide rail 7111B, the receiving portion 712B conveys the material 100B through the discharge port 7122B to the storage region.
  • the maintenance mechanism 72B is located on the side of the feed port 7121B of the transport mechanism 71B. When the transport mechanism 71B moves to the receiving position, the maintenance mechanism 72B injects oil outward.
  • the feed port 7121B is defined at the front end of the discharge port 7122B.
  • the protection portion 7124B is disposed at a middle portion of the receiving body 7123B and above the receiving body 7123B.
  • the maintenance carrying device 70B is disposed on one side of the forging device 60B, wherein the receiving portion 712B of the maintenance carrying device 70B is driven to reciprocate toward the forging device 60B.
  • the drive assembly 7112B is disposed behind the forging device 60B.
  • the receiving portion 712B is drivingly coupled to the driving assembly 7112B such that the driving assembly 7112B moves and drives the receiving portion 712B disposed on one side to reciprocately move to the sliding rail 7111B to allow the
  • the receiving portion 712B moves to the forging space 600B
  • the receiving portion 712B is obliquely placed between the pressing mechanism 62B and the mold 61B and is capable of receiving the detachment from the pressing mechanism 62B Material 100B.
  • the receiving portion 712B is dragged back to the starting position and allows the material 100B to fall from the discharge opening 7122B to the storage area.
  • the receiving portion 712B is disposed on one side of the forging device 60B.
  • the receiving portion 712B is horizontally moved to the receiving position.
  • the receiving portion 712B is obliquely held to reciprocate.
  • the feed port 7121B of the receiving portion 712B is raised.
  • the feed port 7121B is higher than the discharge port 7122B.
  • the material 100B dropped by the discharge port 7122B from the feed port 7121B can slide down the feed channel 7120B and be separated from the discharge port 7122B from the receiving portion 712B.
  • the receiving portion 712B carries the material 100B and moves back to the starting position, and allows the physical 100B to follow along
  • the feed channel 7120B slides out of the discharge port 7122B and is separated from the receiving portion 712B.
  • the receiving portion 712B is provided on one side of the mold 61B, and the receiving portion 712B is relatively inclined so that one end of the feeding port 7121B of the receiving portion 712B is lifted.
  • the receiving portion 712B moves toward the mold 61B and moves over the mold 61B to receive the falling material 100B.
  • the driving component 7112B is disposed at one side of the receiving portion 712B and drives the receiving portion 712B
  • the drive assembly 7112B is disposed on one side of the slide rail 7111B.
  • the receiving portion 712B includes a receiving body 7123B and a protecting portion 7124B, wherein the protecting portion 7124B is matchedly disposed above the receiving body 7123B.
  • the receiving body 7123B and the protecting portion 7124B define the feed port 7121B, the feed channel 7120B, and the discharge port 7122B.
  • the receiving body 7123B is implemented as an elongated slot, and the receiving body 7123B is disposed obliquely upward to the track, the receiving body 7123B is disposed obliquely.
  • the receiving body 7123B extends from the protecting portion 7124B in the moving direction such that when the driving portion 711B is driven to move in the moving direction, the receiving body 7123B is driven to move under the pressing mechanism 62B.
  • the dropped material 100B is then received such that the material 100B is sequentially moved to the storage area by the receiving body 7123B and the protection portion 7124B.
  • the receiving body 7123B is disposed obliquely. Referring to the ground, the feed port 7121B is higher relative to the discharge port 7122B. That is, the receiving body 7123B is held obliquely upward such that the receiving body 7123B receives the falling material 100B and allows the material 100B to slide down the feeding channel 7120B, and from the The discharge port 7122B is detached.
  • the receiving body 7123B is disposed obliquely such that the falling material 100B can move along the receiving body 7123B and fall from the discharging port 7122B to the inside even when the receiving body 7123B is moved backward.
  • the storage area is disposed obliquely such that the falling material 100B can move along the receiving body 7123B and fall from the discharging port 7122B to the inside even when the receiving body 7123B is moved backward.
  • the inclination angle of the receiving body 7123B is preset, and the receiving body 7123B can allow the material 100B to freely fall and prevent the material 100B from coming off the passage of the receiving body 7123B.
  • the receiving body 7123B is implemented as a track having a "U" shape in cross section such that the receiving body 7123B can receive the falling material 100B from above.
  • the protection portion 7124B is disposed above the receiving body 7123B and forms an opening with the receiving body 7123B. That is, the protection portion 7124B and the receiving body 7123B define the feed port 7121B and the discharge port 7122B.
  • the protection portion 7124B includes an extension plate 71241B and a cover 71242B.
  • the extension plate 71241B extends obliquely upward from the cover body 71242B to prevent the falling material 100B from falling outward, while reducing oil spray to the rear, causing contamination of the maintenance carrying device 70B and the external environment.
  • the cover body 71242B is disposed above the receiving body 7123B, and the cover body 71242B is covered in the middle of the receiving body 7123B, thereby preventing the material 100B from being out of orbit.
  • the receiving portion 712B is disposed at a platform edge of the forging device 60B, wherein the material 100B can fall from the discharge port 7122B to the storage region.
  • the transport mechanism 71B includes a sorting platform, wherein the sorting platform receives the material 100B that has fallen from the discharge port 7122B and sorts it and transports it to a different area. It is worth mentioning that the sorting platform separates the waste products and the qualified products and transports them to different storage areas.
  • the number of the fuel injectors 721B is implemented as three, wherein two of the fuel injectors 721B are respectively disposed on both sides of the receiving body 7123B, and are located near the inlet port 7121B, wherein One of the fuel injectors 721B is disposed at a bottom end of the receiving body 7123B and is located near the inlet port 7121B.
  • the timing at which the receiving portion 712B moves forward and backward is preset.
  • the receiving portion 712B moves to the receiving position to receive the falling material 100B.
  • the maintenance mechanism 72B injects fuel under the control of the control platform 10B.
  • the receiving portion 712B moves back from the receiving position to the starting position, and allows the material 100B to fall to the storage area at the discharge port 7122B.
  • the maintenance transport device 70B continuously transports the material 100B and injects the forging equipment 60B. Further, the receiving portion 712B continuously reciprocates, and when the receiving portion 712B is located at the receiving position, the maintenance mechanism 72B injects oil.
  • the timing at which the receiving portion 712B moves back from the receiving position to the starting position is preset.
  • the receiving unit 712B is controlled by the control platform 10B, and moves back to the starting position from the receiving position after a certain time.
  • the maintenance mechanism 72B injects oil.
  • the timing of the fuel injection by the maintenance mechanism 72B is that the receiving portion 712B has received the material 10B. That is, after the receiving portion 712B starts moving from the start position for a predetermined period of time, the maintenance mechanism 72B injects fuel.
  • the maintenance mechanism 72B injects oil.
  • two of the fuel injectors 721B are disposed on both sides of the receiving body 7123B and are sprayed toward the front, so that the oil sprayed from the injector 721B is The air is diffused upward in a misty manner to maintain the pressure applying mechanism 62B.
  • the fuel injector 721B Since the fuel injector 721B is injected forward, wherein the fuel injector 721B is injected at a timing when the receiving body 7123B is located under the pressure applying mechanism 62B and receives the material 100B, the fuel injection.
  • the mouth 721B is sprayed outward.
  • the timing of each of the fuel injection nozzles 721B may be consistent or inconsistent.
  • the timing of fuel injection by each of the injectors 721B is uniform.
  • the maintenance mechanism 72B includes a detecting portion, wherein the detecting portion detects that the receiving portion 712B receives the material 100B, and each of the fuel injectors 721B injects oil.
  • control platform 10B controls the receiving body 7123B to move to the receiving position
  • control platform 10B controls each of the fuel injectors 721B to inject oil outward after a predetermined time.
  • control platform 10B controls the maintenance mechanism 72B to inject oil after the receiving portion 712B moves to the receiving position.
  • the fuel injection nozzle 721B is preset, and the oil sprayed outward from the fuel injection nozzle 721B is misted to better lubricate the mold 61B of the forging equipment 30B and the application. Pressing mechanism 62B.
  • each of the fuel injection nozzles 721B is combined with the punching position of the nozzle holes (electric discharge machining process), the size of the orifice diameter, and the K-factor of the orifice hole type.
  • the electric discharge machining process and the liquid extrusion grinding process, the pressure of the orifice and the flow coefficient of the orifice (liquid extrusion grinding process) have a close relationship, so that the nozzle 721B continuously sprays a small amount of oil outward, wherein the oil
  • the droplets are sprayed to the forging space 600B to be misty, and can be sprayed to the pressing mechanism 62B and the mold 61B in a wider range, so that the pressing mechanism 62B and the mold 61B are in the process of fuel injection.
  • the effect of cooling and lubrication is obtained, which helps the forging press 23B to reduce mechanical damage in the subsequent forging.
  • the maintenance mechanism 72B injects oil into the forging space 600B, wherein the maintenance mechanism 721B injects oil in all directions of the forging space 600B instead of injecting oil in a direction. That is, the maintenance mechanism 72B injects oil uniformly to the forging device 23B, preventing some of the pressing mechanism 62B and/or the mold 61B from coming into contact with oil.
  • the pressure applying mechanism 62B can be controllably adjusted in accordance with the manufacturing requirements of the material 100B.
  • the forging device 60B includes at least two of the pressing mechanisms 62B, and the pressing mechanism 62B has different pressing modes, and the maintenance carrying device 70B will have different needs.
  • the material 100B is transported to different pressure applying mechanisms 62B, so that different materials 100B are subjected to different pressure or angle treatments. That is, the forging apparatus 60B is customized to correspond to the characteristics of the material 100B.
  • the forging production system further includes an oil mist absorber 80B, wherein the oil mist absorber 80B is disposed rearward of the forging apparatus 60B.
  • the oil mist absorber 80B corresponds to the highest point of the pressure applying mechanism 62B with respect to the ground.
  • the step (d) in the forging production method further comprises the following steps:
  • the step (c) in the forging production method further comprises the following steps:
  • step (c.2B) may occur in the process of step (c.3B), wherein the timing of the return from the receiving position is preset, when the pressing mechanism 62B After the preset time after the shift, the pressing mechanism 62B moves back.
  • the fuel is sprayed up and down until the forging device 60B can be located at the position of the sister, or during the return movement.
  • the step (c. 3B) is carried out after the step (c. 2B) in the forging production method.
  • Figure 23 of the accompanying drawings of the present invention shows a forging production system of a fifth preferred embodiment of the present invention, wherein the forging production system of the present embodiment and the forging production of the fourth preferred embodiment
  • the difference in the system is that the position and number of the maintenance mechanism 72B are different from those of the conveying mechanism 71B, and a new embodiment is achieved in which the number of the fuel injectors 721B of the forging production system is implemented as 4B
  • the fuel injector 721B is provided at the front end of the receiving portion 712B.
  • two of the fuel injectors 721B are disposed above the front end of the receiving portion 712B, wherein the other two of the fuel injectors 721B are disposed below the front end of the receiving portion 712B.
  • the plurality of the fuel injection nozzles 721B can integrally spray the forging space 600B such that the plurality of the fuel injection nozzles 721B collectively inject fuel to the pressing mechanism 62B and the mold 61B.
  • the fuel injectors 721B are respectively disposed upside down, and four of the fuel injectors 721B are collectively disposed at the front end of the receiving portion 712B, so that the two infusion bodies 722B can be respectively disposed therein. Adjacent, the two injectors 721B are infused to reduce the volume of the infusion body 722B. Further, the infusion body 722B is disposed on both sides of the receiving portion 712B such that when the receiving portion 712B is moved to the receiving position, the infusion mechanism 722B is located on the side of the forging device 60B To reduce the influence of high temperature on the infusion mechanism 722B.
  • the fuel injector 721B can directly spray the oil mist, that is, the liquid infusion mechanism 722B delivers the oil mist, and the high temperature oil mist is delivered to at least one of the fuel injections.
  • the nozzle 721B is such that the fuel injector 721B directly sprays the oil mist up and down, and the present invention is not limited at all.
  • the maintenance mechanism 72B is implemented as an oil mist generator and is disposed in front of the side of the forging device 60B. The maintenance mechanism 72B intermittently sprays the oil mist to the forging device 60B under the control of the control platform 10B.
  • FIG. 24A and FIG. 24B illustrate a forging production system of a sixth preferred embodiment of the present invention, wherein the forging production system of the present embodiment and the fourth preferred embodiment are
  • the forging production system differs in that the position and number of the maintenance mechanism 72B provided in the conveying mechanism 71B are different, and it becomes a new embodiment in which the number of the injectors 721B of the forging production system is implemented. There are 4B and the fuel injector 721B is provided at the side of the receiving portion 712B.
  • two of the fuel injectors 721B are vertically disposed on one side of the receiving body 7123B, wherein the other two of the fuel injectors 721B are vertically disposed on the receiving body 7123B The other side.
  • the up-and-down setting means that the pair of fuel injectors 721B are disposed in the upper and lower directions, so that the fuel injector 721B can simultaneously inject oil toward the pressure applying mechanism 62B and the mold 61B.
  • a pressing mechanism 62B is disposed above the mold 61B and collectively defines the forging space 600B.
  • two of the fuel injectors 721B inject fuel to the pressure applying mechanism 62B, wherein the other two of the fuel injectors 721B spray oil to the mold 61B.
  • the maintenance mechanism 72B is disposed on both sides of the receiving portion 712B, wherein the maintenance mechanism 72B is held at a front portion or an end portion of the receiving portion 712B.
  • the maintenance mechanism 72B is held at the front of the receiving portion 712B.
  • the maintenance mechanism 72B is disposed on both sides of the conveying mechanism 71B, wherein one of the fuel injectors 721B injects oil toward the mold 61B, wherein the other two of the fuel injectors 721B face the The pressing mechanism 62B injects oil.
  • the number of the injectors 721B may also be implemented as three, five, six, and more, and is not limited in the present invention. Further, the direction in which the plurality of the fuel injection nozzles 721B are injected is in the upper and lower directions. That is, at least one of the fuel injectors 721B is sprayed upward to maintain the pressure applying mechanism 62B, and at least one of the fuel injectors 721B is injected downward to maintain the mold 61B.
  • two of the fuel injectors 721B are disposed above both sides of the receiving portion 712B, and the fuel injector 721B is sprayed upward, wherein the fuel injector 721B is additionally Two nozzles are disposed below the two sides of the receiving portion 712B, and the fuel injectors 721B are sprayed downward, so that the four nozzles 721B can completely inject the oil into the forging space 600B. It is ensured that the pressing mechanism 62B and the mold 61B can be in full and in contact with the oil to achieve cooling and lubrication.
  • the two injectors 721B are oppositely disposed on one side of the receiving portion 712B, so that the infusion body 722B directly conveys oil to the two nozzles 721B, reducing the The volume required for the infusion body 722B of the maintenance mechanism 72B.
  • the other two of the fuel injectors 721B are oppositely disposed on the other side of the receiving portion 712B.
  • four of the fuel injectors 721B are disposed at the front of the receiving portion 712B.
  • the receiving portion 712B is moved to the receiving position to receive the falling material 100B, and then the maintenance mechanism 72B sprays oil up and down.
  • the oil mist absorber 80B is disposed behind the forging device 60B to continuously suck in the oil mist, preventing the oil mist from being left in the forging device 60B, which may cause pollution or even accidental occurrence.
  • the forging production system is safer and can improve the aging of production.
  • the oil mist absorber 80B is disposed directly behind the forging device 60B so that the oil mist can be directly sucked away. Further, the oil mist absorber 80B absorbs misty oil mist, smoke, and the like.
  • the absorption range of the oil mist absorber 80B is located between the mold 61B and the pressing mechanism 62B. Further, the absorption range of the oil mist absorber 80B is higher than the mold 61B and lower than The highest position of the pressing mechanism 62B is such that when the pressing mechanism 62B is moved up, each of the fuel injection nozzles 721B is sprayed up and down in the forging space 600B, respectively.
  • the oil mist absorber 80B can directly suck away the oil mist that is diffused in the forging space 600B.
  • the forging production system includes the detecting device 90B, wherein the detecting device 90B detects the state of the forging device 60B and the material 100B.
  • the detecting device 90B detects that the position of the forging device 60B and the material 100B is abnormal, the detecting device 90B transmits to the control platform 10B.
  • the control platform 10B controls the maintenance carrier 70B to stop moving or to operate as usual.
  • the detecting device 90B detects that the state of the forging device 60B and the material 100B is normal, the detecting device 90B transmits to the control platform 10B.
  • the control platform 10B controls the maintenance carrier 70B to normally carry the material 100B and fuel injection to maintain the forging device 60B.
  • the detecting device 90B detects the state of the forging device 60B and the material 100B in real time, so that the detecting device 90B ensures that the forging production system is safer.
  • the detecting device 90B detects that the pressing mechanism 62B is lifted up, and the material 100B continuously does not fall as the pressing mechanism 62B moves.
  • the detecting device 90B transmits adhesion abnormality information to the control platform 10B.
  • the control platform 10B controls the maintenance carrier 70B to stop at the receiving position and does not inject fuel.
  • the control platform 10B controls the sorting mechanism 52B to stop feeding.
  • the detecting device 90B detects that the forging device 60B has no material 100B.
  • the detecting device 90B sends no material information to the control platform 10B.
  • the control platform 10B controls the maintenance carrier 70B to inject fuel and move back to the starting position from the end position.
  • control platform 10B controls the sorting mechanism 52B to continue to convey the material 100B to the mold 61B.
  • the detecting device 90B detects that the pressing mechanism 62B is lifted up, wherein the material 100B is retained in the mold 61B without being brought up by the pressing mechanism 62B.
  • the detecting device 80B transmits position abnormality information to the control platform 10B, wherein the control platform 10B controls the maintenance carrying device 70B to stop at the receiving position and does not inject fuel.
  • control platform 10B controls the sorting mechanism 52B to stop feeding.
  • the detecting device 90B detects that the pressing mechanism 62B and the mold 61B are free of the material 100B, and the detecting device 90B sends no material information.
  • the control platform 10B controls the maintenance carrying device 70B to move back to the starting position after being injected into the oil, and then continuously perform reciprocating motion and fuel injection maintenance.
  • the sorting mechanism 52B is controlled by the control platform 10B to stop feeding.
  • the detecting device 90B detects that the pressing mechanism 62B is lifted up, and neither the pressing mechanism 62B nor the mold 61B has the material 100B.
  • the detecting device 90B sends no material information to the receiving position and injects fuel.
  • control platform 10B controls the sorting mechanism 52B to actively convey the material 100B to the mold 61B.
  • the detecting device 90B When the detecting device 90B detects that the forging device 60B has an open flame, the detecting device 90B transmits emergency processing information to the control platform 10B, wherein the control platform 10B controls the maintenance carrying device 70B to stop moving and injecting oil. At the same time, the control platform 10B stops the operation of the forging production system and performs alarm processing.
  • the forging production system can communicate with other of the forging production systems to stop operation and handle alarms, and the forging production system can communicate with other various systems to prevent open fire of a single system.
  • a wide range of hazards are not subject to any limitation in the present invention.
  • the detecting device 90B detects the position of the pressing mechanism 62B and the material 100B of the forging device 60B. When the pressing mechanism 62B moves up and down, if the material 100B is always moved with the pressing mechanism 62B or the material 100B does not move together with the movement of the pressing mechanism 62B The detecting device 90B detects the sudden situation after detecting and sends it to the control platform 10B.
  • the control platform 10B controls the maintenance carrier 70B to execute a program in an emergency.
  • the detecting device 90B can only detect and cannot determine, wherein the detecting device 90B delivers the detected information to the control platform 10B, and the forging device 60B is judged by the control platform 10B.
  • the operation of the maintenance carrying device 70B is controlled after the condition of the material 100B, and further the operation of the entire forging production system.
  • the detecting device 90B can be implemented as the monitor 14B of the control platform 10B in the first preferred embodiment, without any limitation in the present invention.
  • step (c) After receiving the forged material 100B from the forging apparatus 60B, the material 100B is conveyed away from the forging apparatus 60B such that the forging apparatus 60B is emptied to be after the forging apparatus 60B is injected. Perform step (a) again; and
  • the step (d) in the forging production method further comprises the following steps:
  • the step (b) and the step (c) in the forging production method further include the following steps:
  • the step (c) in the forging production method further comprises the following steps:
  • step (c.2B) in the forging production method can be carried out in the process of the step (c.3B).
  • the step (a) is performed after the step (c. 3B) in the forging production method.
  • the step (c.1B) in the forging production method further includes the following steps:
  • the step (c.1B) in the forging production method further includes the following steps:
  • the step (e) in the forging production method further comprises the following steps:
  • the step (c.4B) of the forging production method is performed after the step (e.1B) in the forging production method occurs.
  • the step (e.1B) in the forging production method further comprises the following steps:
  • the forging production method step (c.4B) is performed.
  • the step (e) in the forging production method further comprises the following steps:
  • the forging production method After the occurrence of the step (e.2B) in the forging production method, the forging production method performs the step (c.5B).
  • the step (e.1B) in the forging production method further comprises the following steps:
  • the forging production method further includes the following steps:
  • the step (g) of the forging production method is performed after the step (e.3B) in the forging production method occurs.
  • Embodiments of the various embodiments are freely combinable, and the invention is not limited at all.
  • the forging production system performs forging processing on at least one material 100A to obtain a product formed by forging.
  • the forging production system includes at least one hot melt apparatus 20A and at least one forging apparatus 30A.
  • the material 100A enters the hot melt apparatus 20A, and the hot melt apparatus 20A heats the material 100A such that the material 100A reaches a certain temperature.
  • the material 100A is then put into the forging device 30A, the forging device 30A forging the material 100A, forging the material 100A into a certain shape, the material 100A is processed, and the forging production is sent out. system.
  • the forging production system further includes at least one carrying device 40A and at least one feeding device 50A, one end of the carrying device 40A being coupled to the hot melt device 20A to receive the material 100A heated by the hot melt device 20A.
  • the material 100A moves along the carrying device 40A toward the forging device 30A.
  • the feeding device 50A takes the material 100A into the forging device 30A, and the forging device 30A forges the material 100A.
  • the carrying device 40A includes a feeding tool 41A that connects the hot melt device 20A, and feeds the material 100A into the hot melt device 20A for heating by the hot melt device 20A. .
  • the hot melt apparatus 20A includes at least one heater 21A and at least one heating chamber 22A, and a heating space 200 is formed inside the heating chamber 22A. Both ends of the heating chamber 22A communicate with the outside.
  • the feeding tool 41A is connected to one end of the heating chamber 22A, and the material 100A is sent to the heating space 200.
  • the heater 21A is disposed at one end of the heating chamber 22A toward the heating space 200. The heater 21A heats the heating space 200.
  • the carrier device 40A also includes at least one delivery tool 42A with one end of the delivery tool 42A coupled to the hot melt device 20A. After the hot melt apparatus 20A heats the material 100A, the material 100A enters the delivery tool 42A and moves from one end of the delivery tool 42A to the other end.
  • the conveying tool 42A includes at least one receiving end 421A, at least one guiding rail 422A and a discharging end 423A, and the receiving end 421A is connected to one end of the hot melt device 20A. Further, the receiving end 421A is in communication with one end of the heating chamber 22A.
  • the material 100A is heated from the heating chamber 22A after the heating space 200 in the heating chamber 22A is heated, and enters the receiving end 421A.
  • the material 100A continues to pass through the receiving end 421A and reaches the discharge end 423A along the guide rail 422A.
  • the receiving end 421A and the discharging end 423A are respectively located at two ends of the guide rail 422A.
  • the receiving end 421A is located at a height
  • the discharging end 423A is located at a low position
  • the guide rail 422A is connected to the receiving end 421A and the discharging end 423A
  • the guiding rail 422A is from a height
  • the receiving end 421A extends toward the lower discharge end 423A.
  • the material 100A moving from the receiving end 421A to the discharge end 423A along the guide rail 422A is moved from a height to a low position. That is, under the action of gravity, the material 100A can be slid from the receiving end 421A at a high position along the guide rail 422A to the discharge end 423A.
  • the feeding device 50A is disposed adjacent to the carrier device 40A.
  • the feeding device 50A faces the discharge end 423A of the delivery tool 42A.
  • the feeding device 50A grips the material 100A from the discharge end 423A, and the material 100A is put into the forging device 30A.
  • the feeding device 50A includes at least one transfer arm 51A and at least one gripping tool 52A disposed at one end of the transfer arm 51A toward the carrying device 40A and the forging device 30A.
  • the transfer arm 51A moves within a certain range, and the gripping tool 52A moves as the transport ratio 52 moves. That is, the feeding device 50A moves within a certain range.
  • the feeding device 50A grips the material 100A from the discharging end 423A, the feeding device 50A moves a certain distance to put the material into the forging device 30A.
  • the transfer arm 51A is rotated within a certain range to adjust the position of the gripping tool 52A.
  • the material 100A is moved from the receiving end 421A along the guide rail 422A to the discharge end 423A, and the gripping tool 52A grips the material 100A from the discharge end 423A, the transfer arm The 51A is rotated toward the forging device 30A to drive the gripping tool 52A to move to the forging device 30A.
  • the gripping tool 52A is aligned with the forging device 30A, the material 100A is put into the forging device 30A. .
  • the transfer arm 51A includes at least two adjustment arms 511A that are joined end to end to form a fixed end and a free end, respectively.
  • the fixed end and the free end are both ends of the transfer arm 51A.
  • An angle is formed between the adjacent adjustment arms 511A.
  • Each of the adjustment arms 511A can be rotated relative to each other such that the included angle can be adjusted.
  • One end of one of the adjustment arms 511A is fixed to one side.
  • the face may be the ground or one of the forging production systems, or one of the other carriers.
  • the free end is mounted with the gripping tool 52A.
  • the adjusting arm 511A rotates with the fixed end as a dot to adjust the direction and position.
  • Each of the adjustment arms 511A adjusts the position and direction, thereby adjusting a feeding posture of the transfer arm 51A, so that the position and orientation of the gripping tool 52A are adjusted.
  • the adjusting arm 511A rotates to a position where the discharging end 423A is located, so that the gripping tool 52A follows
  • the adjustment arm 511A is adjusted to a position near the discharge end 423A.
  • the position of the gripping tool 52A is further adjusted.
  • the adjusting arm 511A forming the free end is lowered to the position of the discharging end 423A, so that the gripping tool 52A
  • the height is adjusted to correspond to the height of the discharge end 423A, and the gripping tool 52A approaches the discharge end 423A from a height.
  • the other adjusting arm 511A cooperates with the adjusting arm 511A that needs to be lowered, and rotates the adjusting position with each other, so that the adjusting arm 511A that needs to be lowered is successfully lowered, and the height of the gripping tool 52A is adjusted.
  • the adjustment arm 511A forming the free end moves a certain distance in a direction close to the discharge end 423, so that the The gripping tool 52A is adjacent to the discharge end 423A.
  • the other adjustment arm 511A cooperates with the movement of the adjustment arm 511A to relatively rotate the feeding posture, so that the gripping tool 52A mounted to the free end approaches the discharge end 423A.
  • the gripping tool 52A grips the material 100A from the discharge end 423A.
  • the transfer arm 51A adjusts the feed posture according to the subsequent processing placement of the material 100A determined by the feature collected by the detecting device 60A, so that the gripping tool 52A delivers the material 100A to the correct position.
  • each of the adjustment arms 511A adjusts the direction and distance to the waste area such that the gripping tool 52A approaches the waste area.
  • the gripping tool 52A is adjusted to the scrap area by each of the adjusting arms 511A, the gripping tool 52A is opened, and the material 100A is put into the scrap area.
  • each of the adjusting arms 511A is rotated toward the forging device 30A to adjust the height of the gripping tool 52A.
  • the orientation and position are such that the gripping tool 52A is adjusted to the top of the forging device 30A that the material 100A needs to be placed into the forging apparatus 30.
  • the gripping tool 52A is opened such that the material 100A is thrown into the forging apparatus 30A.
  • the forging apparatus 30A forges the material 100A.
  • the testing device 60A detects the forging device 30A to cause the feeding device 50A to dispense the material 100A at an appropriate time.
  • the detecting device 60A detects that the material 100A has been put into the forging device 30A, if the feeding device 50A grips the new material 100A, the feeding device 50A needs to wait until the detecting The apparatus 60A detects that the material 100A is not present in the forging apparatus 30A, and the feeding apparatus 50 can put the material 100A into the forging apparatus 30A.
  • the detecting device 60A detects whether the forging device 30A is forging the material 100A or whether the material 100A has been put into waiting for forging, so that the feeding device 50A is put into operation when the forging device 30A is idle.
  • the material 100A ensures that the forging equipment 30A is forged smoothly, prevents interference, and causes failure.
  • the forging apparatus 30A includes a forging table 31A and a pressure device 32A.
  • the forging table 31A is provided with a mold 311A, and the material 100A is put into the mold 311A, and the pressure device 32A is placed. Pressing, the material 100A is pressed into the shape of the mold 311A.
  • the feeding device 50A transfers the material 100A from the discharge end 423A to the forging table 31A, wherein the gripping tool 52A grips the material 100A to align the mold 311A, and the material 100A The mold 311A is loaded. After the material 100A is put into the mold 311A, the pressure device 32A is pressed down, and the material 100A is forged according to the mold 311A.
  • the material 100A After the material 100A is forged, it needs to be transported away from the forging device 30A. After the pressure device 32A forges the material 100A, it moves up and back. Since the material 100A is forged by hot melt, the material 100A is brought up by the pressure device 32A.
  • the carrier device 40A also includes a discharge tool 43A that carries the material 100A away from the forging device 30A.
  • a discharge tool 43A that carries the material 100A away from the forging device 30A.
  • the discharge tool 43A has an inclined surface which is formed to be inclined outwardly downward from the discharge tool 43A toward one end of the forging apparatus 30A.
  • the material 100A is separated from the pressure device 32A and falls into the discharge tool 43A, the material 100A slides from the high end of the discharge tool 43A to the lower end of the outer side.
  • the material 100A is forged and leaves the forging production device.
  • the material 100A is automatically heated into the hot melt apparatus 20A by the feeding tool 41A of the carrying device 40A. Next, the material 100A is pushed out of the hot melt apparatus 20A to automatically enter the delivery tool 42A of the carrier apparatus 40A. The material 100A is automatically moved from the high end of the receiving end 421A to the lower end along the conveying tool 42A.
  • the feeding device 50A automatically transfers the material 100A from the feeding tool 41A to the forging device 30A.
  • the feeding device 30 puts the material 100A into the forging device 30A, the forging device 30A forges the material 100A, and forges the material 100A.
  • the discharge tool 43A receives the forged material 100A, which exits the forging production system. In the forging production process of the material 100A in the forging production system, manual intervention is not required, labor costs are reduced, and production safety is ensured.
  • the forging production apparatus further includes a maintenance device 70A that performs maintenance on the forging production device to ensure normal operation of the forging production device.
  • the maintenance device 70A includes at least one fuel injection device 71A that is disposed at a high end of the discharge tool 43A.
  • the fuel injection device 71A injects oil to the upper pressure device 32A and the lower forging table 31A.
  • the pressure device 32A and the forging table 31A are maintained.
  • the fuel injection device 71A injects the forging device 30A, lubricates the forging device 30A, and maintains the forging device 30A.
  • the maintenance device 70A further includes at least one exhaust device 72A that excludes smoke generated by the forging device 30A.
  • the material 100A has at least one feature that the material 100A needs to be subjected to different processing modes depending on the characteristics.
  • the material 100A formed of different materials needs to be heated to different temperatures, and whether the material 100A reaches a suitable temperature affects whether subsequent forging can be successful and can meet the requirements of the finished product.
  • the features of the material 100A are collected for analysis of the manner in which the material 100A is processed.
  • the forging production apparatus further includes at least one detecting device 60A that detects the material 100A and collects at least one feature of the material 100A.
  • the testing device 60A further analyzes the processing manner of the material 100A based on the characteristics of the material 100A.
  • the testing device 60A detects the material 100A and collects a material feature 101A of the material 100A.
  • the detecting device 100 analyzes the production mode corresponding to the material 100A according to the material feature 101A of the material 100A, such as the temperature at which the material 100A needs to be heated and the forging device 30A that the material 100A needs to be put into. .
  • the forging production device may include a plurality of the forging devices 30A, each of the forging devices 30A may forge the material 100A of the same material, or may perform the material 100A of different materials. forging.
  • Each of the forging apparatuses 30A may be provided with a different mold 311A, and the material 100A is put into the forging apparatus 30A of the corresponding mold 311A, which is forged, according to the difference of the finished product to be produced. The corresponding finished product.
  • the material 100A can be placed in the corresponding forging device 30A in accordance with the features acquired by the testing device 60A.
  • each of the forging apparatuses 30A forges the materials 100A of different materials.
  • the detecting device 60A detects the material 100A, collects the material characteristics of the material 100A, and analyzes that the materials of the material 100A are A, B, and C, respectively.
  • the detecting device 60A further analyzes the respective temperatures at which each of the materials 100A needs to be heated according to the material characteristics of the material 100A.
  • the material 100A enters the hot melt apparatus 20A through the feeding tool 41A.
  • the hot melt apparatus 20A heats the material 100A in accordance with the material characteristics 101A of the material 100A.
  • the material 100A is heated to exit the hot melt apparatus 20A and transported to the discharge end 423A by the delivery tool 42A.
  • the detecting device 60A detects the material 100A, collects a temperature characteristic 102A of the material 100A, and analyzes the temperature of the material 100A after being heated.
  • the testing device 60A further analyzes whether the material 100A is heated to a desired temperature based on the temperature characteristic 102A of the material 100A.
  • the feeding device 50A performs two methods of feeding and removing the material 100A according to the analysis result of the detecting device 60A.
  • the detecting device 60A analyzes that the material 100A is heated to a desired temperature
  • the feeding device 50A transports the material 100A from the discharging end 423A to the forging device 30A, and puts it into the forging device 30A. , forged by the forging apparatus 30A.
  • the feeding device 50A determines the forging device 30A to which the material 100A needs to be input according to the material feature 101A collected by the detecting device 60A.
  • the feeding device 50A puts the material 100A into the forging device 30A forging the corresponding material.
  • the transfer arm 51A faces the discharge end 423A and protrudes a certain distance toward the discharge end 423A such that the gripping tool 52A approaches the material 100A at the discharge end 423A.
  • the gripping tool 52A grips the material 100A from the discharge ton 423.
  • the transfer arm 51A is rotated in the direction of the forging device 30A to which the material 100A needs to be placed, so that the gripping tool 52A approaches the forging device 30A.
  • the transfer arm 51A strikes the forging device 30A a distance such that the gripping tool 52A moves above the forging table 31A.
  • the material 100A is aligned with the mold 311A, the gripping tool 52A is opened, and the material 100A is separated from the gripping tool 52A and is put into the mold 311A.
  • the detecting device 60A detects whether the forging device 30A is put into the material 100A.
  • the detecting device 30 further detects whether the mold 311A is put into the material 100A.
  • the pressure device 32A is pressed against the mold 311A, and the material 100A is forged, and is formed in accordance with the shape of the mold 311A.
  • the material 100A is moved upward, the discharging tool 43A moves to the lower side of the pressure device 32A, and the material 100A is separated from the pressure device 32A.
  • the discharge tool 43A moves outwardly away from the pressure device 32A, and the material 100A is removed from the discharge tool 43A and enters the finished product area.
  • the material 100A is forged and finished.
  • the detecting device 60A analyzes that the material 100A is not heated to a corresponding temperature according to the collected temperature characteristic 102A, the material 100A is discarded, and the feeding device 50A puts the material 100A into the waste area.
  • the transfer arm 51A is ejected toward the discharge end 423A, the gripping tool 52A is adjacent to the discharge end 423A, and the material 100A is taken from the discharge end 423A, the transfer The arm 51A is rotated in the direction of the waste area, the gripping tool 52A is close to the scrap area, the gripping tool 52A is opened, and the material 100A is separated from the gripping tool 52A and is thrown into the scrap area.
  • the detecting device 60A detects an outline feature 103A of the material 100A that is put into the forging production device.
  • the detecting device 60A analyzes the manner in which the material 100A is subsequently processed according to the acquired shape feature 103A.
  • one end of the gripping device 52A is fixed to the free end of the transfer arm 51A.
  • the angle between the gripping device 52A and the transfer arm 51A does not change.
  • the gripping position is adjusted by the feeding posture of the transfer arm 51A. The gripping device 52A transfers the material.
  • the angle between the gripping tool 52A and the transfer arm 51A is variable, that is, the gripping tool 52A is opposed to the transfer arm.
  • the 51A can be rotated.
  • the gripping tool 52A rotates to adjust a dispensing attitude of the material 100A being gripped.
  • the detecting device 60A detects the material 100A that is put into the forging production device, and collects the outer shape feature 103A of the material 100A into a strip shape.
  • the strip of material 100A needs to be vertically fed into the forging apparatus 30A for forging.
  • the material 100A After the material 100A is put into the forging production device, it is first heated by the feeding tool 41A into the hot melt device 20A. After the material 100A is heated, it leaves the hot melt apparatus 20A and enters the delivery tool 42A. Preferably, the material 100A enters the delivery tool 42A in a lying configuration. The material 100A is moved from the receiving end 421A of the delivery tool 42A along the guide rail 422A to the discharge end 423A.
  • the detecting device 60A detects the material 100A located at the discharging end 423A, and collects the shape feature 103A of the material.
  • the detection device 60A also collects the temperature characteristic 102A of the material 100A.
  • the detecting device 60A collects the shape feature 103A of the material 100A to lie horizontally at the discharging end 423A, and the temperature characteristic 102A reflects that the temperature of the material 100A is heated, the temperature is reached.
  • the feeding device 50A transfers the material 100A from the conveying tool 42A to the forging device 30A.
  • the transfer arm 51A protrudes a certain distance from the discharge end 423A, and the gripping tool 52A approaches the discharge end 423A, and the material 100A is gripped from the discharge end 423A.
  • the gripping tool 52A grips the material 100A from both sides of the material lying across the sheet so that the material 100A is sandwiched across.
  • the gripping tool 52A moves toward the forging device 30A under the rotation of the transfer arm 51A with the material 100A interposed therebetween.
  • the transfer arm 51A strikes the forging device 30A a distance such that the gripping tool 52A moves above the forging table 31A.
  • the gripping tool 52A is rotated by an angle such that the material 100A that is gripped is vertical.
  • the gripping tool 52A opens the material 100A after being aligned with the mold 311A, and the material 100A is detached from the gripping tool 52A, and is vertically loaded into the mold 311A of the forging table 31A.
  • the pressure device 32A applies pressure to the material 100A for forging.
  • the gripping tool 52A adjusts the placing posture of the material 100A before the material 100A is put into the forging apparatus 30A for forging, and the placing posture of the material 100A from the lying position.
  • the placement posture is changed to the vertical, so that the material 100A is vertically fed into the forging apparatus 30A, and is subsequently forged in a vertical state.
  • the timing at which the gripping tool 52A adjusts the dispensing posture of the material 100A may be selected before the material 100A is gripped away from the conveying tool 42A until the material 100A is put into the forging device 30A.
  • the picking tool 52A can start adjusting the placing posture of the material 100A after the material 100A leaves the discharging end 423A, before the material 100A is put into the forging device 30A, The dispensing posture of the material 100A is adjusted so that the material 100A enters the forging device 30A in the correct dispensing posture.
  • the profile feature 103A of the material 100A is captured by the inspection device 60A as a flat cylinder.
  • the material 100A is vertically moved from the receiving end 421A along the guide rail 422A to the discharge end 423A in such a manner that the bottom surface abuts the conveying tool 42A.
  • the detecting device 60A collects the shape feature 103A of the material 100A at the discharge end 423A.
  • the profile feature 103A of the material 100A is captured in a vertical pose.
  • the feeding device 50A transfers the material 100A from the discharge end 423A to the forging device 30A.
  • the transfer arm 51A protrudes to the discharge end 423A by a certain distance.
  • the gripping tool 52A is proximate to the discharge end 423A, the gripping tool 52A grips the material 100A from the side of the material 100A, and the transfer arm 51A moves toward the forging apparatus 30A, the clip The take-up tool 52A approaches the forging device 30A until it moves above the forging table 31A.
  • the material 100A is transferred to the upper side of the forging table 31A in a vertical dispensing posture.
  • the gripping tool 52A is opened, the material 100A is disengaged from the gripping tool 52A, and is thrown into the mold 311A in a vertical dispensing posture, and the pressure device 31 forges the material 100A.
  • the profile feature 103A of the material 100A affects the manner in which the material 100A is subsequently processed.
  • the feeding tool 50 determines the posture when the material 100A is transferred and the placement posture of the material 100A into the forging table 31A according to the outer shape feature 103A of the material 100A.
  • the subsequent processed manner corresponding to the outer shape feature 103A of the material 100A may be input in advance in the feeding device 50A, and the feeding device 50A is set to select the same processing manner according to the outer shape feature 103A of the material 100A. , for example, adjusting the placement posture of the material 100A.
  • the forging production apparatus performs a forging production method for forging production of the material 100A.
  • the forging production method includes the following steps:
  • 803A picking up the material 100A one by one;
  • the material 100A is put into the hot melt apparatus 20A through the feeding tool 41A of the carrying device 40A.
  • the hot melt apparatus 20A heats the material 100A, that is, performs the step 802A.
  • the conveying tool 42A of the carrying device 40A conveys the material 100A away from the hot melt device 20A, and conveys the material 100A to the forging device 30A.
  • the receiving end 421A catches the material 100A that has been heated from the hot melt apparatus 20A, and the material 100A moves along the guide rail 422A to the discharge end 423A.
  • the feeding device 50A puts the material 100A into the forging device 30A.
  • the transfer arm 51A is directed toward the discharge end 423A to the discharge end 423A, and the gripping tool 52A grips the material 100A from the discharge end 423A.
  • the transfer arm 51A adjusts the direction and distance to the forging device 30A, and adjusts the feeding posture, so that the gripping tool 52A Moving to the upper side of the forging table 31A, the material 100A is aligned with the mold 311A of the forging table 31A, the gripping tool 52A is opened, and the material 100A is put into the mold of the forging table 31A. 311A.
  • the pressure device 32A above the forging table 31A is pressed down after the forging table 31A is put into the material 100A, and the material 100A is pressed according to the shape of the mold 311A. Forging. After forging, the pressure device 32A moves upward.
  • the material 100A is moved upward by the pressure device 32A, and the side discharge tool 43A is directed downward of the pressure device 32A. mobile.
  • the material 100A is detached from the pressure device 32A, the material 100A is dropped into the lower discharge tool 43A, and the discharge tool 43A is moved outward, leaving the forging device 30A with the material 100A.
  • the material 100A is moved from the upper end of the discharge tool 43A to the lower end and further moved to the finished product area by the discharge tool 43A.
  • the method further includes the following steps:
  • the detecting device 60 collects the temperature characteristic of the material 100A that has reached the discharge end 423A via the delivery tool 42A, and selects a subsequent processing manner of the material 100A according to the temperature characteristic 102A.
  • Step 902A is performed to analyze that the temperature characteristic 102A of the material 100A reflects that the temperature of the material 100A after heating does not meet the requirements, and it is determined that the material 100A cannot be forged.
  • step 902A After the step 902A, the following steps are included:
  • Step 903A is performed to determine that the material 100A cannot be forged, and the material 100A is put into the waste area.
  • the feeding device 50A takes the material 100A from the discharging end 423A, turns to the waste area, and feeds the material 100A to the waste area.
  • the transfer arm 51A aligns the gripping tool 52A with the discharge end 423A and moves toward the discharge end 423A until the gripping tool 52A approaches the discharge end 523, the clip The take-up tool 52A3 opens to contact the material 100A from both sides of the material 100A.
  • the gripping tool 423 holds the material 100A.
  • the transfer arm 51A adjusts the direction to move toward the scrap area, and the gripping tool 52A is aligned with the scrap area.
  • the gripping tool 52A is opened and the material 100A is detached from the gripping tool 52A.
  • the material 100A is put into the waste area.
  • the step 902A is performed to determine that the material 100A reaches the temperature requirement
  • the step 804A is performed, and the material 100A is put into the forging device 30A by the feeding device 50A.
  • step 804A Before the step 804A, the following steps are further included:
  • the step 904A is performed, and the shape feature 103A of the material 100A is collected by the detecting device 60 at the discharging end 423A.
  • Step 902A is performed to determine whether the material 100A can be forged according to the shape feature 103A of the material 100A to determine a subsequent processing manner of the material 100A.
  • the step 903A is performed, and the material 100A is put into the waste area.
  • the step 804A is performed, and the material 100A is put into the forging apparatus 30A.
  • the step 902A further includes a step 905A of adjusting the placement posture of the material 100A.
  • the material 100A is determined to be forged, and according to the shape feature 103A, the material 100A is determined to be put into the placing posture of the forging device 30A, and the step 905A is performed.
  • the feeding device 50A adjusts the placement posture of the material 100A.
  • Step 804A is executed to put the material 100A into the forging device 30A according to the adjusted placement posture.
  • the detecting device 60 collects the shape feature 103A of the material 100A at the discharge end 423A, the strip shape is lie on the discharge end 423A, and the step 902A is performed to determine the location.
  • the material 100A can be forged.
  • the material is gripped by the gripping tool 52A, and the transfer arm 51A adjusts the direction and distance to the forging device 30A.
  • the gripping tool 52A adjusts the dispensing posture of the material 100A during movement with the transfer arm 51A. Specifically, the gripping tool 52A is rotated at a certain angle with the transfer arm 51A as an axis, so that the material 100A is adjusted from the lying posture when being gripped to the vertical placing posture.
  • Step 804A is performed, and when the gripping tool 52A is moved above the forging table 31A, the gripping tool 52A puts the material 100A into the forging table 31A in a vertical posture.
  • the step 805A and the step 806A are continued, so that the material 100A is forged and then enters the finished product area, and the forging production of the material 100A is completed.
  • the temperature characteristic 102A and the shape feature 103A of the material 100A are both in compliance with the requirement that the material 100A can be forged later, so that the material 100A continues to be forged and produced. That is, after the temperature feature 102A and the shape feature 103A of the material 100A are collected through the step 901A and the step 904A, the step 902A is performed to determine whether the material 100A can be forged. .
  • the material 100A it is judged whether the material 100A can be forged according to the characteristics of the material 100A being collected, and the processing manner in which the material 100A is forged. A subsequent production mode of the material 100A is automatically selected based on the characteristics of the material 100A.
  • a forging production system and a management method thereof according to an eighth preferred embodiment of the present invention are disclosed and illustrated in the following description, wherein the forging
  • the production equipment comprises a hot melt apparatus 20', a forging apparatus 30', a guide rail 60' and a running equipment 70'.
  • At least one material 100' is put into the hot melt apparatus 20', and the material 100' is heated in the hot melt apparatus 20' to a preset temperature, which is manually set and in a subsequent process Can be adjusted, then the material 100' is sent from the hot melt device 20' to the head end of the rail 60', and the rail 60' conveys the material 100', the material 100' is located The trailing end of the guide rail 60' is gripped by the running device 70' to the forging apparatus 30' for further forging forming.
  • the rail 60' transports the material 100' from the hot melt apparatus 20' to the forging apparatus 30'
  • the rail 60' implements the material 100' from the hot melt apparatus 20' to the transportation of the forging equipment 30'.
  • the material 100' is transported from the hot melt device 20' to the forging device 30' by the guide rail 60', and the guide rail 60' functions to prevent the material 100' from being transported in the above-mentioned transportation. Producing contact with a worker, thereby preventing the material 100' in a high temperature state from causing accidental injury to the worker or causing damage to the material when the worker contacts the material 100', for example, the material 100' dropped to the ground.
  • the guide rail 60' of this embodiment can be considered equivalent to the slide rail mechanism 411' of the above embodiment.
  • the operating device 70' further performs operations such as grasping, sending, and the like of the material 100', thereby reducing labor costs and making the production process more secure.
  • the hot melt device 20' includes a heating chamber 21' and a heater 22'.
  • the hot melt device 20' has a heating space 200', and the heating space 200' is disposed inside the heating chamber 21'.
  • the heating chamber 21' defines the heating space 200', and the heating chamber 21' is heated by the heater 22'.
  • the heater 22' heats the heating space 200' of the heating chamber 21', and the heating space 200' is used to heat the material 100' to a preset temperature.
  • the preset temperature is regulated by the user, and the user can make a change to the preset temperature according to the collected information, thereby better achieving the heating of the material 100'.
  • the material 100' is heated inside the heating space 200' of the heating chamber 21', and then the material 100' is sequentially sent out of the heating space 200' to the rail 60'.
  • the guide rail 60' and the running device 70' carry the material 100' to flow in the forging production equipment such that the material 100' undergoes various processes until it is output to the forging production equipment.
  • the hot melt apparatus 20' may be, but not limited to, a furnace or the like, and the material 100' is sent out of the hot melt apparatus 20' in order after being heated inside the hot melt apparatus 20'.
  • the heating temperature of the heating chamber 21' is controllably set. Depending on the requirements of the material 100', the heating chamber 21' is correspondingly heated by the heater 22' and causes the material 100' to reach a predetermined temperature within the heating space 200' so that For subsequent processing.
  • the material 100' has at least one feature, and it will be understood by those skilled in the art that at least one feature of the material 100' is defined by a different angle for the material 100'.
  • the feature of the material 100' includes an outline feature 101', a temperature feature 102' and a position feature 103'.
  • the profile feature 101&apos is a numerical representation of the shape of the material 100' by which the shape of the material 100' can be identified.
  • the shape information of the material 100' can be obtained by a fit between a distance sensor, a weight sensor, or a plurality of sensors.
  • the temperature characteristic 102' is representative of the temperature value of the material 100' by which the surface temperature of the material 100' can be identified.
  • information on the surface temperature of the material 100' is obtained by a temperature sensor, an infrared sensor, or a combination of a plurality of sensors.
  • the position feature 103' is a relative position value representation of the material 100' by which the actual position of the material 100' can be identified.
  • information on the relative position of the material 100' is obtained by cooperation between an infrared sensor or sensors.
  • the shape feature 101', the temperature feature 102' and the position feature 103' are used to know the actual condition of the material 100', thereby determining whether the material 100' is sent to the next device or discharged. The production process of forging production equipment.
  • the forging apparatus 30' performs a pressure forming operation on the material 100' that has been heated such that the material 100' is forged.
  • the forging device 30' includes a mold 31' and a pressing mechanism 32', and the material 100' is conveyed by the guide rail 60' by the running device 70' to the mold 31', the pressing The mechanism 32' applies pressure to the material 100' inside the mold 31' such that the material 100' is compression molded inside the mold 31'.
  • the speed, the force and the frequency of the pressing mechanism 32' are adjustable, and the shape and size of the mold 31' are adjustable.
  • the setting of the mechanism 32' can be adjusted based on the condition of the material 100' itself and the needs of the user.
  • the forging device 30' has a forging space 300' defined by the mold 31', the forging space 300' being formed inside the mold 31', the material 100' being in the The forging space 300' of the mold 31' is pressure-impacted by the pressing mechanism 32' so that the material 100' is forged at a high temperature to become the green body.
  • the running device 70' includes a carrying tool 71' and a discharging tool 72'.
  • the carrying tool 71' may be, but not limited to, being independently disposed, and the carrying tool 71' can The rail 60' is transferred to the mold 31'.
  • the carrying tool 71' may be independently provided.
  • the carrying tool 71' may also be provided on the base of the forging device 30'.
  • the transporting tool 71' of the present embodiment can be understood as the transporting mechanism 412 of the above embodiment, and the discharging tool 72' can be understood as the discharging tool 43 of the above embodiment.
  • the handling tool 71' carries the material 100' from the rail 60' to the mold 31' of the forging apparatus 30', the material 100' is inside the mold 31'
  • the material 100' is temporarily adhered by the pressing mechanism 32', and at this time, the discharging tool 72' is extended and received.
  • the material 100' dropped from the pressing mechanism 32' the material 100' is transported one by one from the heating space 200' of the hot melt apparatus 20' to the guide rail 60', one by one
  • the conveyance tool 71' is conveyed to the mold 31', and receives the forging of the pressing mechanism 32'.
  • the guide rail 60 ' Not only allows the hot melt apparatus 20' to be connected to the production of the forging apparatus 30', but also to allow the material 100' to come out of the hot melt apparatus 20' and into the forging apparatus 30'. During containment, the material 100' is placed on the rail 60' awaiting gripping.
  • the carrying tool 71' includes a gripping end 711' and a transfer arm 712'.
  • the gripping end 711' is disposed on the transfer arm 712', and the gripping end 711' is gripped by the guide rail.
  • the material 100' is conveyed 60', the gripping end 711' is controllably coupled to the transfer arm 712', and the gripping end 711' is movable on the transfer arm 712'
  • the gripping end 711' is set to a running track, ensuring that the gripping end 711' can smoothly grip the material 100' to which the rail 60' is transported, and the transport arm 712' controls the gripping End 711' grips the material 100'.
  • the rail 60' transports and houses the material 100' for the gripping end 711' of the transporting tool 71', and the gripping end 711' grips the material 100' and moves to the The forged space 300' inside the mold 31' of the forging apparatus 30'.
  • the gripping end 711' can be understood as the gripping end 4121 of the above embodiment
  • the transfer arm 712' can be understood as the transfer arm 4122 of the above embodiment.
  • the discharge tool 72' is capable of transporting the material 100' away from the forging production facility.
  • the discharge tool 72' is disposed on a base of the forging device 30', and the discharge tool 72' protrudes after the pressing mechanism 32' forges the mold 31', the discharge tool 72' receives the material 100' dropped from the pressure applying mechanism 32', and the material 100' slides out of the forging production equipment along the discharge tool 72'.
  • the structure of the discharge tool 72' may be, but not limited to, having a chute through which the material 100' is received, and the discharge tool 72' allows the material 100' to be dropped to an external collection box.
  • the tool 72' secures the material 100' from the forging device 30' to the outer collection bin. More specifically, starting from the hot melt apparatus 20', the material 100' is initially processed by the forging production equipment, and the discharge tool 72' carries the material 100' away from the forging production equipment such that The material 100' ends the flow in the forging production facility.
  • the material 100' is transported by the rail 60', the rail 60' carries the material 100' from the hot melt apparatus 20' to the forging apparatus 30', and the handling tool 71' carries the The material 100' is in the forged space 300' corresponding to the mold 31'.
  • the pressing mechanism 32' adjustably adjusts the pressing mode in accordance with the manufacturing requirements of the material 100'. In a specific implementation, the pressing pressure or pressing angle of the pressing mechanism 32' can be adjusted.
  • the guide rail 60' includes a slide rail 61' and a transport rail 62', and the material 100' is sequentially transferred from the heating space 200' of the heating chamber 21' of the hot melt device 20' to the The slide rail 61', the material 100' is slid from the slide rail 61' to the transport rail 62', the slide rail 61' is integrated with the transport rail 62', and the transport rail 62' is Seamlessly coupled to the sliding guide 61'.
  • the sliding guide 61' is integrally formed with the conveying guide 62', and the sliding guide 61' and the conveying guide 62' together constitute the The rail 60', the material 100' is slid easily from the slide rail 61' to the transport rail 62'.
  • the sliding guide 61' is preferably in shape from top to bottom, facilitating the material 100' to slide from one end of the sliding guide 61' to the other end, and also facilitating the sliding guide 61' to be extended to the hot melt apparatus.
  • the heating chamber 21' of the 20', the manner in which the sliding guide rail 61' cooperates with the heating chamber 21' may be a joint, or a fitting manner in which there is a drop without direct contact, for example, the sliding guide 61' One end of the heating chamber 21' is extended below the heating chamber 21' to receive the material 100' that is transferred, regardless of which of the above modes of engagement, the material 100' is not affected from the heating chamber 21' The transfer to the slide rail 61' in turn is received.
  • one end of the slide rail 61' is extended to the hot melt apparatus 20', and the slide rail 61' supplies the material 100' from the heating chamber 21' of the hot melt apparatus 20'.
  • the heating space 200' is slid to the conveying guide 62', and the material 100' is sequentially transferred from the hot melt device 20' to the sliding guide 61', and the material 100' is sequentially slid from the
  • the guide rail 61' slides to the transport rail 62', and the material 100' temporarily stays at the transport rail 62', waiting for the gripping end 711' of the transporting tool 71' of the operating device 70' Clipping.
  • the sliding guide 61' has a collecting end 611', a sliding surface 612' and a sliding passage 614'.
  • the collecting end 611' is disposed at a front end of the sliding guide 61' to collect the material 100' processed by the hot melt device 20', and the collecting end 611' is folded into the hot melt device
  • the heating chamber 21' of 20', the folding mentioned herein is folded and matched, and the collecting end 611' is capable of receiving each of the materials 100' conveyed inside the heating chamber 21', the collecting
  • the manner in which the end 611' cooperates with the hot-melt device 20' can be a connection, and can also be a misalignment that does not directly contact with a certain drop.
  • the collection end 611' can be successfully received by any means. Each of the materials 100' to which the heating chamber 21' is delivered is described.
  • the material 100' is collected by the collecting end 611' and enters the sliding channel 614', and the material 100' slides inside the sliding channel 614' to the sliding surface 612'.
  • the collecting end 611' can be understood as the collecting end 4111 of the above embodiment
  • the sliding path 614' can be understood as the sliding path 4112 of the above embodiment.
  • the sliding guide rail 61' includes two sliding sidewalls 613', each of the sliding sidewalls 613' extending upward from opposite sides of the sliding surface 612', and the sliding passage 614' is formed on each of the sliding sidewalls Between the 613', the sliding sidewall 613' and the sliding surface 612' define the sliding channel 614', and the collecting end 611' is connected to the respective sliding sidewall 613'.
  • the sliding channel 614' extends to the collecting end 611', the material 100' can enter the sliding channel 614' through the collecting end 611', and the material 100' enters the sliding channel 614' and is realized from above. And slide down.
  • Each of the sliding sidewalls 613' acts as a barrier on both sides such that the material 100' does not fall off when sliding in the taxiing channel 614', which may be, but is not limited to, smooth Surface, thereby reducing the resistance encountered during the sliding of the material 100', so that the material 100' is smooth when the sliding surface 612' is slid, and does not delay the transportation time of the material 100' There is also no wear on the material 100', which reduces the consumption of the material 100' during transportation.
  • the conveying guide 62' has a given end 621' and a conveying passage 624' and includes a conveying surface 622'.
  • the given end 621' is disposed on the conveying guide 62' for the material 100' to arrive in sequence, the given end 621' is located at the end of the conveying guide 62', and the material 100' is sequentially slid
  • the conveying surface 622' stays and waits for being gripped by the gripping end 711'.
  • the conveying surface 622 ′ is integrated with the sliding surface 612 ′, the conveying passage 624 ′ is communicated to the sliding passage 614 ′, and the material 100 ′ can slide from the sliding surface 612 ′ to the The conveying surface 622' is described.
  • the delivery channel 624' is extended to the given end 621', the material 100' reaches the given end 621' through the delivery channel 624' and stays at the given end 621' to be The gripping end 711' is clamped.
  • the material 100' sequentially reaches the given end 621' of the transport rail 62', and the gripping end 711' of the transporting tool 71' extends to the given end 621 'Clip each of the materials 100'.
  • the giving end 621' can be understood as the giving end 4113 of the above embodiment.
  • the conveying guide 62' includes two conveying side walls 623', each of the conveying side walls 623' extending upward from both sides of the conveying surface 622', and the conveying passage 624' is located at each of the conveying side walls 623' Between the conveying surface 622 ′ and the conveying side wall 623 ′, the conveying passage 624 ′ is defined, and the conveying side wall 623 ′ and the sliding side wall 613 ′ are preferably integrally formed, and the conveying is performed.
  • the face 622' is integral with the sliding surface 612', the conveying passage 624' is in communication with the sliding passage 614', and the material 100' is slidable from the sliding passage 614' to the conveying passage 624', the material 100' is conveyed inside the conveying passage 624', the material 100' continues to slide on the conveying surface 622', and each of the conveying side walls 623' ensures that the material 100' slides on
  • the conveying passage 624' may be, but not limited to, a smooth surface, thereby reducing the resistance encountered during the sliding of the material 100', so that the material 100' is
  • the conveying surface 622' is very slippery when sliding Chang, the delay will not finally in sight 'transport time, will not have a material 100' of the material 100 caused by wear and tear, reduced 100 'consumption of the material during transport.
  • the delivery channel 624' communicates with the taxi channel 614' such that the material 100' can smoothly slide from the taxi channel 614' to the delivery channel 624', the delivery channel 624' being connected To the given end 621', the material 100' is transported from the delivery channel 624' to the given end 621', the material 100' stays at the given end 621' and is The gripping end 711' of the carrying tool 71' is gripped.
  • the given end 621' is for the material 100' to rest, and the delivery side wall 623' ensures that the material 100' does not fall when the delivery channel 624' is delivered.
  • the conveying guide 62' further includes an intercepting member 625', the intercepting member 625' including at least one end portion, the end portion being provided to any of the conveying side walls 623', to the other conveying side wall 623' extends, when the number of the ends is two, each of the ends is provided on each of the conveying side walls 623', and the intercepting member 625' is provided at the conveying guide 62'
  • the intercepting member 625' intercepts the material 100' at the given end 621' such that the material 100' is exactly limited to a fixed position within the given end 621' a position for the gripping end 711' to smoothly grip the material 100' from the fixed position, so that the positional feature 103' of the material 100' is secured, facilitating the transfer arm 712' to drive The gripping end 711' smoothly grips the material 100'.
  • the opening of the collecting end 611' should be larger than the actual volume of the material 100', so that the collecting end 611' can easily accommodate the material 100' that is delivered, the material 100' After the heating chamber 21' is delivered, it is received by the collecting end 611', and the sliding passage 614' is designed to be gradually narrowed to allow the material 100' to be sent to the conveying guide 62' after being entered.
  • the conveying passage 624' wherein the sliding passage 614' is preferably tapered to adjust the position of the material 100' when it passes, for the material 100' to reach the conveying guide 62'
  • the conveying passage 624' ensures that the position to be transported does not shift so that the positional feature 103' of the material 100' is secured.
  • the forging production apparatus further includes a control platform 10' that controls the temperature, speed, etc. of the processing of the material 100' by the hot melt apparatus 20', the forging apparatus 30' being The control platform 10' adjusts the speed, frequency, etc. for the forging of the material 100', and the control platform 10' receives various feedback information such as the shape feature 101', the temperature feature 102' and the position feature 103' Thereby adjusting the processing of the material 100'.
  • the control platform 10' includes an arithmetic unit 11', a feedback unit 12', an actuator 13' and a monitor 14'.
  • the arithmetic unit 11', the feedback unit 12', the actuator 13' and the monitor 14' are communicably connected to each other.
  • the operator 11' calculates feedback data of the hot melt device 20' and the forging device 30' obtained by the feedback device 12', and the actuator 13' controls the heating chamber 21' by the calculation result The pressing mechanism 32' and the operating device 70'.
  • the operating device 70' receives the control of the actuator 13' such that the gripping end 711' grips any of the materials 100' or discharges any of the materials 100', any of the materials 100'.
  • the temperature feature 102' and the location feature 103' can be submitted as feedback data
  • the monitor 14' can pre-set relevant control parameters of the operator 11'
  • the feedback device 12' Feedback information is displayed to enable interactive control.
  • the monitor 14' can be, but is not limited to, a temperature sensor, an infrared sensor, or a number of sensors, and the like.
  • the control platform 10' directs the gripping end 711' to identify the qualified material 100' from the given end 621' of the guide rail 60' to be clamped into the next process, the unqualified The item 100' is excluded.
  • the sliding guide rail 61' has at least one curved portion, and the sliding guide rail 61' can assume a shape, and the sliding guide rail 61' is configured to be assembled
  • the hot melt apparatus 20' is simpler and shortens the path of the material 100' from the hot melt apparatus 20' to the forging apparatus 30', and the rail 60' is assembled to the hot melt apparatus. 20' is more flexible with the forging device 30' and saves space.
  • the forging apparatus includes at least two of the pressing mechanisms 32', and the pressing mechanisms 32' respectively have different pressing modes, and are respectively transported through the rails 60'.
  • the forging apparatus 30&apos can be designed to be customized to the characteristics of the material 100'.
  • the mold 31' corresponds to the outer shape feature 101' of the material 100', and the pressing mechanism 32' corresponds to the temperature characteristic 102', so that different materials 100' are subjected to the corresponding forging treatment. .
  • the heating space 200' and the forging space 300' are saturated.
  • the guide rail 60' will Waiting or adjusting is carried to the unheated heating space 200' and the forging space 300'.
  • the rail 60' will be adjusted to convey the material 100' to ensure that the material 100' is in the hot melt apparatus 20' and the forging device 30' and the efficiency of forward and backward flow.
  • the profile feature 101' of the material 100' is changed, i.e., becomes the formed blank.
  • the profile feature 101' of the material 100' is then tested to determine if the material 100' is a qualified product. For a qualified product, the forging process will be terminated and the material 100' will be produced. For the unqualified material 100' will return to the beginning and further processing or final discharge depending on the material 100'.
  • FIG. 38 of the accompanying drawings of the present invention a rail arrangement in accordance with another preferred embodiment of the present invention is disclosed and illustrated in the following description, and only the differences from the above-described embodiments are set forth below. It is to be noted that the differences are merely described based on the simplicity and ease of understanding of the present invention, wherein the rail device is a guide rail 80", and the rail 80" is disposed on the hot melt device 20" Between the forging device 30" and the material from the hot melt device 20" to the forging device 30", the material 100" is heated from the hot melt device 20" Through the guide rail 80" is transported to the forging device 30", the material 100" is transported through the guide rail 80" to avoid the consumption generated during transportation, and the safety can be improved to avoid contact with other items or worker.
  • the guide rail 80" includes a collecting end 81", a given end 85", and has a sliding passage 84".
  • the sliding passage 84" is extended to the collecting end 81" and the giving end 85", and the collecting end 81" is extended to the hot melt apparatus 20" to collect the hot melt apparatus 20" in turn
  • the given end 85" is waiting to be gripped by the gripping end 711".
  • the collecting end 81 ” is folded in the hot-melt device 20 ′′, and the folding and the fitting of the collecting end 81′′ and the hot-melting device 20 ′′ are not limited.
  • the collecting end 81" is placed under the heating chamber 21" of the hot melt device 20" to receive the transfer.
  • the resulting material 100 regardless of the change in the manner of cooperation, does not affect the collection end 81" collecting the material 100".
  • the shape of the guide rail 80" is preferably inclined from top to bottom.
  • the shape of the sliding passage 84" is preferably inclined from top to bottom to facilitate the sliding of the material 100", the material 100" from the The collecting end 81" slides through the sliding passage 84" to the giving end 85" and waits for being gripped.
  • the guide rail 80" further includes a sliding surface 82" and two sliding side walls 83", each of the sliding side walls 83” extending upward from opposite sides of the sliding surface 82", the sliding surface 82" and each The sliding side walls 83" collectively define the sliding path 84", the sliding path 84" being located between each of the sliding side walls 83", and the material 100" is each slid when the sliding path 84" is slid The sliding sidewalls 83" are not blocked from falling.
  • the sliding surfaces 82" may be, but are not limited to, a smooth surface, thereby reducing the resistance encountered during the sliding of the material 100" such that the material 100 "When the sliding surface 82" slides smoothly, it does not bump the transportation time of the material 100", nor does it cause wear on the material 100", reducing the material 100" during transportation. Consumption in the middle.
  • the guide rail 80" further includes an intercepting member 86", the intercepting member 86" is disposed at the giving end 85", and the two ends of the intercepting member 86" are respectively fixed to the respective sliding side walls 83"
  • the intercepting member 86" passes through the sliding passage 83", and the distance between the intercepting member 86" and the sliding surface 82" is smaller than the height of the material 100" so that the material 100" slides on the sliding line
  • the channel 84" can be intercepted by the intercepting member 86", the intercepting member 86" intercepting the material 100" that is slid along the sliding path 83" to the given end 85", the material 100"
  • the intercepting member 86" is limited to the given end 85" waiting to be gripped.
  • the tilting design of the guide rail 80" from top to bottom enables the material 100" to smoothly slide on the sliding passage 84", and the guide rail 80" engages the heat.
  • the melting device 20" and the forging device 30" are extended to the heating chamber 21" through the collecting end 81" and the given end 85” is extended to the forging device 30" Within a distance, the preset distance is not in direct contact but the distance is relatively close, it can be understood that the given end 85" is extended to the vicinity of the forging device 30", so as to shorten the gripping end 711"
  • the given end 85" grips the path of the material 100" to the interior of the mold 31".
  • the guide rail 80" has at least one curved portion to better fit the installation of the hot melt apparatus 20" and the forging apparatus 30".
  • the bending Part of the manner in which the guide rail 80" is tilted from top to bottom to achieve a one-sided configuration, the shape of the crucible facilitates the assembly and placement of the hot melt apparatus 20" and the forging apparatus 30".
  • Space, the meandering configuration of the rails 80" allows the hot melt apparatus 20" and the forging apparatus 30" to be placed together compactly, thereby saving space, notably the rails
  • the "80" extends from the hot melt apparatus 20" to the forging apparatus 30", it is limited to being bent to exhibit a ⁇ shape without affecting the sliding of the material 100".
  • the conveyor belt extends from the collecting end 81" to the giving end 85"
  • the conveyor belt is preferably driven by two wheels and a motor, the motor provides power, and each of the wheels drives The belt operates such that the material 100" is conveyed from the collection end 81" by the conveyor belt to the dispensing end 85".

Abstract

本发明提供一种一锻压生产管理方法,包括步骤: A.采集所投入的一物料的至少一特征; B.根据所述物料的所述特征,对应性地抉择锻压处理的操作因素的温度、压力或模具中的至少一个; C.运送所述物料至抉择结果;以及 D.处理所述物料直至产出成品。本发明无需人为操作能够使得至少一物料自行地经过热熔和锻压而成型,从而完成大批量的所述物料的生产,兼顾成型所需要的压力、温度和模具等等操作因素,并减少对所述物料的识别需求,进而实现大规模的生产。

Description

锻压生产系统及其管理方法 技术领域
本发明涉及自动化生产领域,特别是用于热锻压生产以实现高效率制造的生产系统,以及生产管理方法。
背景技术
金属或者合金的锻压、锻造是冶金工业中的主要生产环节。通过热熔和压力对金属制件进行塑造和加工的热锻压主要用于制造板材、带材、管材、型材和线材等金属材料。因为其精度和稳定性都有较高的要求,对于设备和操作都相应地提高了难度。
传统的锻压生产中,需要多个不同设备之间的操作,而且设备之间都需要工人进行操作。常见的一种传统锻压生产中,一位或者多位工人需要操作来完成一次生产。为了实现大批量的生产,需要投入更多的设备和人力来完成。
通常地,金属或者合金原料被初步地处理为坯体。需要人为地将多个坯体放入一加热炉,在所述加热炉中使得坯体得到加热。一般采用的热锻压温度为:碳素钢800~1250℃;合金结构钢850~1150℃;高速钢900~1100℃;常用的铝合金380~500℃;钛合金850~1000℃;黄铜650~750℃。也就是说,不同的合金需要被加热到的温度是不同的。一旦温度不达标,后续的操作也就无效。目前,在大批量的操作中,需要经验丰富的工人观察坯体被烧红的状态。确认坯体温度合适之后,人为地需要选出合适的,用一夹取夹子来移动被烧红的坯体。
在需要冲压的情况下,人为地需要将被烧红的坯体夹取至一冲压机床。然后,在操作所述冲压机床再压紧所述坯体,使得坯体被锻压成型。通常的情况下,坯体在机床上的一模具中,所述模具是下陷于所述冲压机床的平面。在锻压成型之后,这里又需要人为地将成型的坯体拿出来,放在成品区域中。而且,在生产中这样的反复的操作之后是需要对所述模具和所述冲压机床进行刷油操作。因为所述模具和所述冲压机床都经过高温和高压,需要刷油做一定的维护。那么这个刷油的操作也是需要人为进行的。传统的所述冲压机床有一些可以喷出机油,但是机油喷出的时机并不好控制,如果意外地碰到高温的坯体或者模具,很容易引发意外。而且机油容易外溅,造成所述冲压机床周围是很脏又很油的。但是人工的涂油,所产生的油烟对人体和设备都有不好的影响,对人体和环境并不友好。由上所述,传统的锻压生产中对人工的依赖很严重,而且对工人的经验要求也是很高的。设备之间的配合也不紧密,无法直接的相互衔接。可以理解的是,现有技术的生产过程中,对于所述坯体状态的判断还是只能够通过人为地方式进行。但是通过人视觉判断的方式准确性较低,比较容易出现判断失误,从而导致生产制造事故发生。
物料被加热后,处于高温状态,被工人夹取时存在滑落的危险,物料一旦滑落,摔在地上被损坏,造成浪费,同时工人夹取高温状态的物料时,也存在一定的危险性,万一不慎被烫伤,后果也比较严重,高温状态的物料亦会影响夹子或铲子的使用寿命。最后,工人需要始终守在设备旁边,保持高度注意力,对劳动力成本要求较高,生产成本进一步被增加。
另外,生产设备全部地操作很难实现无人化。特别是目前的图像识别技术没有发展到工业生产级别,程序算法过于复杂,而且成本十分昂贵。例如,能够在高温生产环境下进行识别的摄像头不仅成本高,而且维护成本也居高不下。但是,工人的工作时间跟不上设备的全天候运行时间,很难达到利益平衡。
在自动化生产进步的当下,配合人力管理和产能需要,基于大批量生产的需求,对锻压生产中多个设备之间制造操作的产线化是很需要的。
发明内容
本发明的一个目的在于提供一种锻压生产系统及其管理方法,利用一控制平台针对锻压生产中各环节进行监测和控制,使得热熔和锻压工艺被紧密的衔接,进而形成锻压自动化产线,极大地提高生产效率。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,无需人为操作能够使得至少一物料自行地经过热熔和锻压而成型,从而完成大批量的所述物料的生产。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,兼顾成型所需要的压力、温度和模具等等操作因素,并减少对所述物料的识别需求,进而实现大规模的生产。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,充分利用经验与生产实际的结合,保证所述物料在生产中各个环节的参数有效化。本发明的另一个目的在于提供一种锻压生产系统及其管理方法,从生产过程中严格地控制压力、温度和模具等等操作因素,保证大批量生产中的良率。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,根据所述物料的特征,自动地进行相应的加工处理,使得大批量多类型产品的同时加工成为可能。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述物料在进入所述生产系统和离开所述生产系统的阶段都避免所述物料高温的状态,在所述生产系统完成高温状态的锻压操作,进而维护生产中的安全。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述控制平台进一步地对一采集处理、一热熔设备、一锻造设备以及一运载设备进行检测和控制,以供待处理的所述物料经过锻压生产线而被处理完成。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,通过所述物料被投入所述热熔设备,在所述锻造设备成型,进而完成对所述物料的制造处理。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,根据所述物料的特征,例如温度特征,相应的进行所述热熔设备或者所述锻造设备,使得所述物料在合理的温度和压力下被加工,提升生产效率。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述运载设备在所述热熔设备和所述锻造设备之间进行物料运送,使得物料在所述热熔设备和所述锻造设备之间顺畅地流转。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述运载设备将锻压成型的所述物料运出所述锻造设备,使得高温状态下的所述物料都由所述运载设备操作,无需人为接触所述物料而操作。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述控制平台进一步地包括一运算器、一反馈器、一执行器以及一监控器,所述反馈器获得所述热熔设备、所述锻造设备以及所述运载设备的监测数据,以供所述运算器进行计算,进而所述执行器根据计算对所述热熔设备、所述锻造设备以及所述运载设备执行控制,保证所述生产系统的稳定性和鲁棒性。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,针对所述反馈器得到的反馈,对所述生产系统实行控制,根据需要可以添加控制条件和限制,针对所述物料的制造要求而设计。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述物料投入所述热熔设备之后可以自动地流转,所述物料的高温状态都处于所述生产系统之中,进而完成锻压的制造。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述运载设备对所述物料在制造过程中进行搬运和运送,通过所述运载设备使得所述物料在所述热熔设备和所述锻造设备之间和所述锻造设备运出的流转,维持所述物料的制造进程。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述运载设备进一步地包括一给料工具和一送料工具,所述给料工具搬运所述物料在所述热熔设备和所述锻造设备之间流转,使得所述物料的热熔阶段和锻压阶段得到衔接。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述送料工具运送所述物料离开所述锻造设备,进而完成所述物料的制造成型并使其离开所述生产系统。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述物料在离开所述生产系统钱进一步地包括一检测设备,对加工制造完成的所述物料进行合格判断。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述运载设备进一步地包括一入料工具和一出料工具,所述入料工具搬运所述物料至所述热熔设备,使其开始锻压处理,所述出料工具搬运所述物料离开所述锻压处理,优选地搬运所述检测设备后合格的所述物料离开锻压生产线。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述热熔设备或者所述锻造设备可以采用传统的处理进行使用,配合所述控制平台和所述运载环节进而形成所述生产系统,进而无需人为操作,在降低成本的同时提高生产效率。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,进一步地提供一维护设备,所述维护设备对所述生产系统的各个处理进行维护,优选地对所述锻造设备进行保养,使得所述生产系统保持有效的工作状态,延长使用寿命并维护所述生产系统的生产及周围环境。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,所述维护设备进一步地包括一涂油工具,所述涂油工具被所述控制平台控制而对所述锻造设备进行涂油维护,根据所述锻造设备的状态做针对性维护。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,兼顾程序与工人经验,兼顾生产效率的实际与人力管理的实际,提高整体的生产管理效率。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,通过先采集所述物料的特征,再进行相应的所述热熔设备、所述锻造设备和所述检测设备,使得不同的所述物料的坯料可以同时的进行制造并获得不同类型的产品。本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述锻压生产系统在对物料锻压之前,通过采集所述物料的特征,筛选合适加工的所述物料进入到锻压模具中,避免坏料、废料进入锻压模具,从而提高产品合格率。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述锻压生产系统的所述坏料排除机构排除生产制造过程中出现的坏料,避免加工所述坏料,从而提高生产效率,和产品的合格率。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述锻压生产系统的所述坏料排除机构排除生产制造过程中出现的废料、坏料,避免加工所述坏料,而避免破坏所述锻压生产系统中的模具。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述锻压生产系统通过采集所述物料被加热后的特征,判断所述物料是否属能够被加工。换言之,所述锻压生产系统通过采集所述物料的特征,比如温度特征,形状特征、大小特征、位置特征、重量特征等,判断所述物料是否属于废料,如果判断出所述物料属于废料或者坏料,则由所述坏料排除机构排除。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述坏料排除机构与所述锻压生产系统的搬运机构为同一装置,其中所述搬运机构根据所述物料的判断结果搬运所述物料,搬运符合加工的所述物料至所述模具中进行加工,和排出不符合加工的废料。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述坏料排除机构在所述锻压生产系统的正常加工过程中排出前端的所述坏料,避免后方等着的所述物料在等待的过程中降温,从而避免加工过程中由于等待造成的所述坯料降温的恶性循环。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述坏料排除机构反向地运输不符合锻压加工的坏料,特别是温度加工不够的坯料至热熔装置附近,以便对温度不够的所述坯料进一步加热,能够被再次加工。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述坏料排除机构排除运输过程中的所述坏料,减少后续的所述坯料在等待加工过程中的排队时间,提高了加工效率,也减少了所述坯料在等待过程中温度的降低值,保持所述坯料加工的。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述坏料排除机构进一步包括一夹取装置和支撑所述夹取装置执行夹取动作的操作臂,其中所述夹取装置夹取运输过程中的坏料。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述夹取装置可被操作地调整夹取方向和抓取角度,以便抓取不同角度和停放位置的所述坏料。
本发明的另一个目的在于提供一种锻压生产系统及其管理方法,其中所述坏料排除机构被设置在所述锻压生产系统的搬运机构的前端,在所述搬运机构搬运所述物料之前,由所述坏料排除机构将不符合加工条件的所述废料排出,提升了生产加工效率。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述锻压生产系统包括一控制平台、一供料设备以及一锻造设备,其中所述控制平台控制所述供料设备和所述锻造设备,其中所述供料设备加热所述物料后输送至所述锻造设备,其中所述锻造设备锻造所述物料成型。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述锻压生产系统包括一维护运载设备,其中所述维护运载设备接收被锻造的所述物料并对所述锻压设备喷油维护,缩短接收与维护的时间,提高生产效率。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述维护运载设备包括一输送机构和一维护机构,其中所述维护机构被设置于所述输送机构,其中所述输送机构可往复运动地接收被锻造的所述物料,在所述输送机构位于所述锻造设备时,所述维护机构上下喷油至所述锻造设备。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述维护机构上下地喷油雾至所述施压机构和所述模具,以维护所述锻造设备。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述输送机构被设置于所述模具的一侧,并移动至所述锻造设备界定的一锻造空间,以接收到脱离所述施压机构的所述模具。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述输送机构被设置于所述模具的一侧,能够保 护所述输送机构的驱动部分减少被所述锻造设备的高温影响。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述输送机构被设置于所述模具的一侧,其中所述输送机构的一端被抬起,以使得所述输送机构被倾斜地保持移动至所述锻造设备的所述锻造空间以接收到自所述施压机构下落的所述物料,而不会受到所述模具的阻碍。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述维护运载设备实现自动喷油维护,避免人工涂油工作所造成的人身危险。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述维护运载设备接收到被锻造的所述物料并输送至一存储区域,取缔了人工输送的劳力,使得所述维护运载设备更加高效安全。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述锻压生产系统包括一检测设备,其中所述检测设备实时地检测所述维护运载设备的运行状态和所述物料的位置是否异常。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述锻造设备包括一施压机构和一模具,其中所述物料被输送至所述模具后,所述施压机构向下施压于所述物料以使得所述物料成型,其中所述检测设备检测所述施压机构和所述模具是否粘连所述物料,当所述检测设备检测到所述施压机构或所述模具粘连所述物料,所述检测设备发送物料位置异常信息于所述控制平台,其中所述控制平台控制所述维护运载设备停止并不喷油。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中当所述检测设备检测到所述施压机构和所述模具没有物料的时候,所述检测设备发送无物料信息于所述控制平台,其中所述控制平台控制所述维护运载设备继续往复运动,并在所述维护运载设备位于所述锻造装置时同时上下喷油。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述检测设备检测到所述锻造设备有明火时,所述检测设备发送紧急情况信息于所述控制平台,其中所述控制平台控制所述锻造设备、所述供料设备以及所述维护运载设备紧急停止并报警。本发明的另一个优势在于提供一锻压生产系统及其管理方法,其中所述检测设备检测到所述锻造设备有明火时,所述控制平台发送紧急情况至其他锻压生产系统和其他系统,防止危险状况的发生。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,所述锻压生产系统对至少一物料进行自动处理,无需人工操作,实现高效率自动化生产。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,所述锻压生产系统通过至少一检测设备对所述物料进行检测和采集,并根据采集到的数据,对所述物料的生产方式进行自动选择,使得所述锻压生产系统根据所述物料的特征进行自动生产,适应所述物料的不同特征,生产出不同的产品。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,所述锻压生产系统包括一送料设备,所述送料设备根据所述物料的特征选择所述物料被投入的位置,当所述物料按照其特征后续可以被处理,所述送料工具将所述物料投入所述锻造设备。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,所述送料设备夹取所述物料,调整姿态实现所述物料的转移。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,当所述物料按照其特征需要被排出生产,所述送料设备将所述物料转移出所述锻压生产系统。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,所述送料设备包括一转运臂和一夹取工具,所述夹取工具被安装于所述转运臂,所述转运臂调整方向、位置,使得所述夹取工具被调整朝向和位置,所述送料设备可以灵活调整姿态。
本发明的另一个优势在于提供一锻压生产系统及其管理方法,所述转运臂包括至少二调节臂,各所述调节臂首尾相接,各所述调节臂相对转动,以调整所述转运臂的整体姿态,进而调整所述夹取装置的位置,实现所述物料的转移。
本发明的一个目的在于提供一锻压生产系统及其管理方法,所述导轨装置搬运所述物料在一热熔设备和一锻造设备之间流转,使得所述物料的热熔阶段和锻压阶段得到衔接。
本发明的另一个目的在于提供一锻压生产系统及其管理方法,所述导轨装置通过一滑行面供所述物料自上而下地滑行,至少一物料在一滑行轨道上被输送,无需人工操作,避免高温的所述物料对人工的不良影响,节省人力成本。
本发明的另一个目的在于提供一锻压生产系统及其管理方法,所述导轨装置能够实现一蜿蜒的形态,使得所述热熔设备与所述锻造设备能够被紧凑地摆放在一起,节省使用空间。
本发明的另一个目的在于提供一锻压生产系统及其管理方法,所述导轨装置通过一给出端与所述锻造设备保持在一 定的预设距离内,缩短了一夹取端自所述给出端夹取所述物料至所述锻造设备的路径。
本发明的另一个目的在于提供一锻压生产系统及其管理方法,所述导轨装置通过一拦截件拦住所述物料,所述物料被所述拦截件拦截,便于所述物料在固定的位置上被夹取。
本发明的另一个目的在于提供一锻压生产系统及其管理方法,所述导轨装置通过一逐渐收窄的滑行通道,保障所述物料最终被输送的位置准确,便于在固定的位置上被夹取。
本发明的另一个目的在于提供一锻压生产系统及其管理方法,所述滑行导轨能够呈现弯曲形态,便于所述导轨装置与其他设备的装配,同时节省使用空间。
本发明的另一个目的在于提供一锻压生产系统及其管理方法,无需人为操作能够使得所述物料自行地经过热熔和锻压而成型,便于大批量的所述物料的生产。
依本发明的一个方面,本发明进一步提供一锻压生产系统,包括:
一控制平台;
一热熔设备,其中所述热熔设备对至少一物料进行加热,使得所述物料被加热至一定的温度;
一锻造设备,其中所述锻造设备被所述控制平台控制以对已经加热的所述物料施加压力,进而使得所述物料被锻压成型;以及
一运载设备,其中所述运载设备被所述控制平台控制地运载所述物料在所述热熔设备和锻造设备之间流转。
根据本发明的一个实施例,所述控制平台对述物料采集至少一特征,其中所述检测设备连接于所述控制平台,所述控制平台判断所述物料是否满足进行后续的锻压设备的要求。
根据本发明的一个实施例,所述控制平台判断若所述物料满足要求,则继续设备所述物料,若所述物料不满足要求,则排出所述物料。
根据本发明的一个实施例,所述控制平台根据所述物料的所述特征,抉择相应的锻压设备的参数。
根据本发明的一个实施例,所述的锻压生产系统,进一步包括:一检测设备,其中所述检测设备采集所述物料的所述特征。
根据本发明的一个实施例,所述检测设备判断所述物料是否被合格地成型,其中若所述物料被判断为合格的,将所述物料进一步地产出,其中若所述物料为不合格的,将所述物料排出生产。
根据本发明的一个实施例,所述物料的特征进一步地包括:一外形特征和一温度特征,其中所述外形特征为所述物料的形状数值体现,所述温度特征为所述物料的温度数值体现。
根据本发明的一个实施例,所述运载设备将所述物料运送所述物料至所述控制平台所抉择的结果。
根据本发明的一个实施例,所述运载设备进一步地包括一入料工具和一出料工具,其中所述入料工具将所述物料投入所述锻压生产系统,其中所述出料工具将所述物料作为产品而离开所述锻压生产系统,以使所述物料自行地进行各项步骤并得到设备。
根据本发明的一个实施例,所述入料工具将所述物料作为坯料投入所述锻压生产系统,其中所述出料工具将所述物料作为已经成型的坯料而离开所述锻压生产系统。
根据本发明的一个实施例,所述热熔设备对所述物料进行加热,以所述物料被加热至一定温度以对应于锻压设备。
根据本发明的一个实施例,所述热熔设备进一步地包括一加热室和一加热器,其中所述加热器被所述控制平台控制,其中所述物料滞留所述加热室的时间被所述控制平台控制。
根据本发明的一个实施例,所述热熔设备提供一加热空间,其中所述物料被所述运载设备的所述入料工具运载至所述加热空间而进一步地被加热。
根据本发明的一个实施例,在被运送至所述加热空间之前,所述控制平台判断所述加热空间是否为空余,其中若所述加热空间为空余的情况下,则继续运送所述物料至所述加热工具。
根据本发明的一个实施例,所述热熔设备对所述物料进行加热之后,所述锻造设备对所述物料施压压力以成型。
根据本发明的一个实施例,所述锻压设备进一步地提供一模具和一施压机构,其中所述运载设备将所述物料放入所述模具,其中所述施压机构对在所述模具的所述物料进行施加压力而成型。
根据本发明的一个实施例,根据所述物料的锻压要求,所述施压机构被可控制地调整施压方式。
根据本发明的一个实施例,调整施压方式包括调整所述施压机构的施压压力。
根据本发明的一个实施例,调整施压方式包括调整所述施压机构的施压角度。
根据本发明的一个实施例,所述锻压设备进一步地提供一锻造空间,其中所述锻造空间被形成于所述模具和所述施压机构之间。
根据本发明的一个实施例,在所述运载设备的所述给料工具将所述物料传至所述施压机构之前,所述控制平台判断所述锻造空间是否空余,其中若所述锻造空间为空余的情况下,则继续运送所述物料至所述施压机构。
根据本发明的一个实施例,所述运载设备进一步地包括一给料工具和一送料工具,其中当所述物料在所述热熔设备和所述锻造设备之间进行自动流转的进程中,所述给料工具将所述物料从所述热熔设备送至所述锻造设备,所述送料工具将所述物料从所述锻造设备送至所述出料工具。
根据本发明的一个实施例,所述外形特征通过选自组合:距离传感器、重量传感器、压力传感器中的一种或多种而获得。
根据本发明的一个实施例,所述温度特征通过选自组合:温度传感器、红外传感器中的一种或多种而获得。
依本发明的一个方面,本发明进一步提供一锻压生产管理方法,包括步骤:
A.采集所投入的一物料的至少一特征;
B.根据所述物料的所述特征,对应性地抉择锻压处理的操作因素的温度、压力或模具中的至少一个;
C.运送所述物料至抉择结果;以及
D.处理所述物料直至产出成品。
根据本发明的一个实施例,步骤A中的所投入所述物料预先地匹配地对应于成品的锻压操作因素。
根据本发明的一个实施例,步骤A中的所述物料为对应于至少两种成品。
根据本发明的一个实施例,在步骤A之前,进一步地包括步骤:匹配成品与锻压操作因素。
根据本发明的一个实施例,步骤D进一步地包括步骤:检测已经处理的所述物料是否为成品。
根据本发明的一个实施例,步骤D进一步地包括步骤:判断所述物料是否被合格地成型而为成品,其中若所述物料被判断为合格的,将所述物料进一步地产出,其中若所述物料为不合格的,将所述物料排出并返回。
根据本发明的一个实施例,在步骤B进一步包括步骤:根据所述物料的所述特征,控制相应的锻压处理的参数。
根据本发明的一个实施例,所述物料的特征进一步地包括:一外形特征和一温度特征,其中所述外形特征为所述物料的形状数值体现,所述温度特征为所述物料的温度数值体现。
根据本发明的一个实施例,所述外形特征通过选自组合:距离传感器、重量传感器、压力传感器中的一种或多种而获得。
根据本发明的一个实施例,所述温度特征通过选自组合:温度传感器、红外传感器中的一种或多种而获得。
根据本发明的一个实施例,步骤D进一步地包括一热熔处理,其中所述热熔处理对所述物料进行加热,以将所述物料被加热至一定温度以对应于锻压处理。
根据本发明的一个实施例,步骤D进一步地包括一锻造处理,其中所述热熔处理对所述物料进行加热之后,所述锻造处理对所述物料施压压力以成型。
根据本发明的一个实施例,所述步骤C进一步地包括一运载处理,其中所述运载处理运载所述物料在所述热熔处理和所述锻造处理之间进行流转,以使所述物料自行地得到处理。
根据本发明的另一方面,本发明进一步提供一锻压生产系统的坏料排除方法,其中所述坏料排除方法包括以下步骤:
(a)获取至少一坯料的至少一特征;
(b)基于获取到的所述特征,判断所述坯料是否属于坏料;以及
(c)如果判断所述坯料属于坏料或废料,藉由至少一坏料排除装置排除所述坏料或废料;如果判断所述坯料适于加工,则返回执行步骤(a)。
依本发明的另一个方面,本发明进一步提供一维护运载设备,适用于一锻造设备,包括:
一维护机构;其中所述维护机构上下喷油至所述锻造设备;和
一输送机构,其中所述输送机构于一开始位置至一接收位置往复运动,以于所述接收位置接收被锻造的所述物料后运载所述物料离开所述锻造设备,其中所述物料被所述锻造设备锻造,其中所述开始位置位于所述锻造设备的一侧,其中所述接收位置位于所述锻造设备,其中在所述输送机构于所述接收位置接收到下落的所述物料后,所述输送机构运载所述物料移回所述开始位置。
依本发明的另一个方面,本发明进一步提供一锻造生产方法,包括以下步骤:
(a)于一锻造空间,锻造被加热的至少一物料;和
(b)从所述锻造空间接收被锻造成型的物料后,输送所述物料离开所述锻造空间,使得所述锻造空间被清空以在所述锻造空间被喷油后而再次执行步骤(a)。
依本发明的另一个方面,本发明进一步提供一锻压生产方法,包括以下步骤:
(A)投入至少一物料;
(B)采集所述物料的特征;以及
(C)根据所述物料的特征,投放所述物料至相应位置,若所述物料可以被锻造,则投放所述物料至一锻造设备,若所述物料不可以被锻造,则丢弃所述物料。
依本发明的另一个方面,本发明进一步提供一导轨装置,适于运输至少一物料,包括:
一收集端,其中所述收集端位于所述导轨装置的首端,以供当所述物料被所述导轨装置运输时被所述收集端收合;
一给出端,其中所述给出端位于所述导轨装置的尾端,以供当所述物料被停留于所述给出端时被限位进入等待被夹取的状态;以及
一滑行通道,其中所述滑行通道的首尾两端分别延伸至所述收集端及所述给出端,所述滑行通道被倾斜地设置,所述收集端与所述给出端相应地被设于所述滑行通道的上游与下游。
依本发明的再一个方面,本发明进一步提供一导轨装置,适于运输至少一物料,包括:
一收集端,其中所述收集端位于所述导轨装置的首端,以供当所述物料被所述导轨装置运输时被所述收集端收合;
一给出端,其中所述给出端位于所述导轨装置的尾端,以供当所述物料被停留于所述给出端时被限位进入等待被夹取的状态;
一滑行通道,其中所述滑行通道的首尾两端分别延伸至所述收集端及所述给出端,所述滑行通道被水平地设置,所述收集端与所述给出端相对应地被设置;以及
一传送带,其中所述传送带被设于所述滑行通道的底部,所述传送带的两端分别延伸至所述收集端与所述给出端,以供当所述物料进入所述输送通道后被所述传送带运输。
附图说明
图1是根据本发明的一个优选实施例的一锻压生产系统的整体示意图。
图2是根据本发明的上述优选实施例的所述锻压生产系统的示意框图。
图3是根据本发明的上述优选实施例的所述锻压生产系统的流程示意图。
图4是根据本发明的上述优选实施例的所述锻压生产管理方法的一种可行模式的流程示意图。
图5是根据本发明的上述优选实施例的所述锻压生产管理方法的温度控制的流程示意图。
图6是根据本发明的上述优选实施例的所述锻压生产管理方法的一种可行模式的流程示意图。
图7是根据本发明的上述优选实施例的所述锻压生产系统的上述模式的部分流转示意图。
图8是根据本发明的另一优选实施例的所述锻压生产系统及其管理方法的模具控制的示意图。
图9是根据本发明的上述优选实施例的所述锻压生产系统的整体示意图。
图10是根据本发明的上述优选实施例的所述锻压生产系统的生产示意图。
图11是根据本发明的第三较佳实施例的一锻压生产系统的整体平面示意图。
图12是根据本发明的上述较佳实施例的所述锻压生产系统的生产流程示意图。
图13A是根据本发明的上述较佳实施例的所述锻压生产系统的一热熔设备的示意图。
图13B是根据本发明的上述较佳实施例的所述锻压生产系统的一探测装置的探测的示意图。
图13C是根据本发明的上述较佳实施例的所述锻压生产系统运输所述物料的示意图。
图14是根据本发明的上述较佳实施例的所述锻压生产系统坏料排除装置排除废料的示意图。
图15是根据本发明的上述较佳实施例的所述锻压生产系统的所述锻造设备的示意图。
图16是根据本发明的上述较佳实施例的所述锻压生产系统的所述坏料排除机构的另一可选实施方式的示意图。
图17是根据本发明的上述较佳实施例的所述锻压生产系统的控制示意框图。
图18是根据本发明的上述较佳实施例的所述锻压生产系统的坏料排除方法的方法步骤示意图。
图19是根据本发明的第四个优选实施例的一锻压生产系统的示意图。
图20是根据本发明的上述优选实施例的一锻压生产方法的示意图。
图21是根据本发明的上述优选实施例的所述锻压生产系统的所述维护运载设备的立体示意图。
图22A至图22B是根据本发明的上述优选实施例的所述锻压生产系统中的所述维护运载设备工作的示意图。
图23是根据本发明的一第五个优选实施例的一锻压生产系统的一维护运载设备的立体示意图。
图24A是根据本发明的一第六个优选实施例的一锻压生产系统的一维护运载设备的立体示意图。
图24B是根据本发明的上述优选实施例的所述锻压生产系统的示意图。
图25是根据本发明的上述优选实施例的一锻压生产方法的示意图。
图26是根据本发明的上述优选实施例的所述锻压生产系统中一检测锻压过程的示意图。
图27是根据本发明的第七优选实施例的所述锻压生产系统的示意图。
图28是根据本发明的上述优选实施例的一锻压生产方法的示意图。
图29是根据本发明的上述优选实施例的所述锻压生产方法的示意图。
图30是根据本发明的上述优选实施例的所述锻压生产方法的示意图。
图31是根据本发明的上述优选实施例的所述锻压生产系统的所述热熔设备的示意图。
图32是根据本发明的上述优选实施例的所述锻压生产系统的所述送料设备送料示意图。
图33是根据本发明的上述优选实施例的所述锻压生产系统的示意图。
图34是根据本发明的上述优选实施例的一变形实施方式的所述锻压生产系统的示意图。
图35是根据本发明的上述优选实施例的所述锻压生产系统的所述锻造设备的示意图。
图36为根据本发明的第八优选实施例的一锻压生产系统及其管理方法的整体示意图。
图37为根据本发明的上述优选实施例的所述导轨装置的整体示意图。
图38为根据本发明的又一优选实施例的一导轨装置的整体示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
本发明提供一锻压生产系统,如图1、图2以及图3所示,所述锻压生产系统进一步地包括一热熔设备20和一锻造设备30。所述热熔设备20对至少一物料100进行加热,使得所述物料100被加热至合适的温度,以进行后续的锻压操作。所述热熔设备20进一步地包括一加热室21和一加热器22。所述锻压生产系统进一步地包括一运载设备40。所述运载设备40运载所述物料100进行流转,使得所述物料100自行地进行各项处理。所述运载设备40进一步地包括一入料工具44和一出料工具43。所述入料工具44将所述物料100投入所述锻压生产系统。所述出料工具43将所述物料100作为产品而离开所述锻压生产系统。值得一提的是,所述入料工具44和所述出料工具43将所述物料自动地加入锻压处理中。自所述入料工具44开始,所述物料100开始处理所述锻压生产系统中。所述出料工具43将所述物料100带离所述锻压生产系统,使得所述物料100结束在所述锻压生产系统中的流程。换句话说,所述物料在所述锻压生产系统中无需人工的操作,不但减少了人工的成本,而且保证了生产的安全。
更多地,依据不同的成品要求,所述物料100有多种的类型。尤其是,所述物料100最初的坯料形状与成品要求有直接的关系。在本优选实施例中,所述物料100的选择基于成品的需要。在另外的一个实施例中,根据不同的成品需要从原料中选择适合的所述物料100而加入所述锻压生产系统。也就是说,在本优选实施例中,所述物料100的原料决定了所经历的生产过程,所述热熔设备20与所述锻造设备30分别实行对应于原料的操作。
具体地,所述物料100被所述运载设备40运输至所述热熔设备20后,主要地在所述加热室21中并被加热。值得一 提的是,所述加热室21的加热温度可以被控制地设置。根据所述物料100的需要,所述加热室21相应地被所述加热器22进行加热,并使得所述物料100达到预定的温度。更多地,所述热熔设备20提供一加热空间200,所述物料100被所述运载设备40的所述入料工具44运载至所述加热空间200而进一步地被加热。
更多地图3所示为本发明的优选实施例所提供的所述锻压生产系统的一种可行的生产管理方法,其包括以下步骤:
601:投入至少一物料100;
602:采集所述物料100的至少一特征;
603:根据采集的所述物料100的所述特征,抉择所述物料100的锻压处理方式;
604:运送所述物料100至抉择结果;
605:根据抉择的处理方式,处理所述物料100;以及
606:产出制造完成的所述物料100。
更具体地,所述物料100为需要锻压制造进而将其成型的金属或者合金类材料。本领域的技术人员可以理解的是,所述物料100在锻压制造中需要综合的考虑所述物料100的状态,使得所述物料100在一定温度和压力下变形而成型为产品。通常地,所述物料100在被投入时为一坯料,经过所述放生产系统后,所述物料为一产品。值得一提的是,在所述物料100的生产阶段,所有需要被控制的压力、温度或者模具等等操作因素被匹配并关联,使得成品的所述物料100具有较高的自动生产过程。而且,对于大批量的生产,所述物料100所对应的操作因素的稳定对应关系,保证了成品的一致性以及生产的高效率。
另外,所述物料100具有至少一个特征,所述特征可以被采集并利用于抉择所述物料100后续的处理方式。也就是说,所述物料100具有可以被侦测到的本质,根据不同的所述物料100,将要进行的处理也是不同的。更多地,在锻压处理中具体的参数也是不同的,也使得所述物料100除了可以被制造为不同类型的产品以外,也可以根据所述物料100的状态进行相应的处理,使得所述物料100相应地得到合适的锻压处理。尤其对于金属或者合金而言,锻压处理中合适的温度和压力将对金属性能产生很大的影响。那么通过类似定制化的方式对所述物料100的采集和处理,所述生产系统适于处理不同所述物料100为相应的产品。
值得一提的是,所述生产系统无需人工操作,根据所述物料100自动的进行锻压处理。更多的,步骤604中运送所述物料100为机械化的操作,避免所述物料100在高温期间与人工接触,保障生产安全可靠。如图3所示,所述锻压生产系统的一种流程。首先,将所述物料100投入所述生产系统。也就是如图所示的所述生产系统的入料。在所述物料100进入所述生产系统后,每个所述物料100的加工需要被采集。针对所述物料100的成品需要决定接下来操作因素。优选地,通过传感方式对所述物料100进行特征采集,保证每个所述物料100的特征被所述生产系统知晓。然后,因为每个所述物料100的特征不相同,所需要进行的锻压处理也不同,那么进行抉择。换句话说,通过所述物料100的不同特征状态,进而决定并选择所述物料100将要进行怎么样的后期的处理。接着,根据所采集到的所述物料100的特征,将所述物料100运送至抉择结果,使得所述物料100经受相应的处理。需要注意的是,因为锻压处理中的所述物料100需要出于高温状态,在运送所述物料100的步骤中不需要人工的操作和接触,保证生产安全。进一步地,根据抉择结果的处理方式,加工所述物料100,使得对所述物料100的加工和处理的方式是根据所述物料100的状态而决定的。最后产出所述物料100,进而完成出料并结束对所述物料100的锻压加工。
所述锻压生产系统进一步地可以在步骤605和步骤606之间实现步骤:
6051:检测所述物料100。
在所述物料100被加工完成之后,通过检测所述物料100被锻压的情况,进一步地判断所述物料100是否被合格地制造并成型。而对于合格的所述物料100,进一步地产出。对于不合格的所述物料100,将被排出并返回步骤602。也就是说,所述物料100被进一步地返回所述锻压生产系统的起始,重新地开始对所述物料100的生产制造过程。
经过步骤6051的检测,所述物料100被合乎要求地成型,进而完成锻压加工。值得一提的是,对于不同类型的所述物料100,所执行的检测标准是不同的。总得来说,不同的所述物料100的坯料进入所述锻压生产系统,经过采集和加工,被制造和成型为不同类型所述物料100的产品,并执行不同的检测标准,保证产出的所述物料100符合相应的生产标准。
本领域的技术人员可以理解的是,所述物料100所具有的至少一特征是不同的角度的对于所述物料100的定义方式。所述物料100的特征进一步地包括:一外形特征101、一温度特征102以及一位置特征103。所述外形特征101为所述物料100的形状数值体现,通过所述外形特征101可以识别所述物料100的形状。优选地,通过距离传感器、重量传感器或者多个传感器之间相应的配合进而得到所述物料100的形状信息。所述温度特征102为所述物料100的温度数值体现,通 过所述温度特征102可以识别所述物料100的外表温度。优选地,通过温度传感器、红外传感器或者多个传感器之间相应的配合进而得到所述物料100的外表温度的信息。所述位置特征103为所述物料100的相对位置数值体现,通过所述位置特征103可以识别所述物料100的位置所在。优选地,通过距离传感器、压力传感器或者多个传感器之间相应的配合进而得到所述物料100的相对位置的信息。根据所述外形特征101、所述温度特征102以及所述位置特征103进而得到所述物料100所对应的或者所需要的锻压加工方式。例如,对于所述外形特征101为
Figure PCTCN2019071500-appb-000001
的铜合金,可以预先地被设定接下来需要加热至700℃的加工处理,并使用A类型模具进行冲压成型,那么所述物料100将被抉择加热、施压以及模具的加工方式,进而自行地被执行抉择结果的处理并得到预先设定的产品。
如图4所示,所述锻压生产系统的一种具体的流程被阐释。为方便描述和理解,本图中的优选实施例针对一个所述物料100的进程进行描述。可以理解的是,对于多个所述物料100,采用并线执行或者循环中断的方式都可以实现流程。首先地,投入所述物料100,开始所述物料100在所述锻压生产系统的制造。也就是步骤601。然后,通过传感器对所述物料100进行特征采集,对应地获得所述物料100的加工需求,掌握到所匹配的操作因素。本优选实施例中对于所述物料100的所述外形特征101进行采集,进而获得所述物料100的外形数据信息。也就是步骤602。然后根据所述外形特征101的数据信息,判断所述物料100的坯料形状。本优选实施例中,从所述物料100的形状得到所述物料100的坯料种类。也就是说,当不同的所述物料100被投入所述锻压生产系统中,根据传感得到的所述物料100的不同进行判断。一种可行的情况中,所述物料100为预设的形状类型将进入下一步骤,不满足预设条件的将被排出。另一种可行的情况中,可以被制造的外形具有至少两种要求,也就是说所述物料100有两种可以被进一步地制造成型。根据不同的需求,步骤603将所述物料100进行分类处理。优选地,根据所述物料100的所述外形特征101,将决定所述物料100适合的所述模具。然后,所述物料100被运送至抉择结果,即步骤604。接着,相应地,对所述物料100在所述模具中冲压成型。也就是步骤605。加工完成后,所述物料100的所述外形特征101被改变。然后对所述物料100的所述外形特征101进行检测,从而得到所述物料100是否为合格的产品,即步骤6051。对于合格的产品将结束锻压制造方法,产出所述物料100,也就是步骤606的出料。而对于不合格的所述物料100将返回起始,视所述物料100的情况进行进一步的加工或者被排出。
值得一提的是,根据步骤602的传感采集而得到所述物料100的特征,将通过步骤603中决定所述物料100将受到的加热的方式,也就是在所述加热室21受到的加热方式。更多地,所述加热室21对于不同的所述物料100的加工处理可以为不同的。也就是说,根据所述物料100的传感采集的不同,被决定的加热方式也是相对应的。更多地,所述加热空间200可以为至少两个,为至少两种所述物料100提供加热方式。进一步地,除了对所述加热空间200进行控制之外,对于所述物料100处于所述加热室21的时间和处于所述加热空间200的位置也可以进行控制,从而到达实现不同加热方式的处理。
所述锻造设备30对已经加热的所述物料100进行压力成型操作,使得所述物料100被成型。所述锻造设备30进一步地提供一模具31和一施压机构32。所述运载设备40将所述物料100放入所述模具,所述施压机构32对在所述模具31的所述物料100进行施加压力,使得所述物料100成型。所述锻造设备30进一步地提供一锻造空间300,其中所述锻造空间300形成于所述模具31和所述施压机构32之间。所述物料100处于所述锻造空间300被所述施压机构32进行压力冲击,使得所述物料100在高温下被成型。根据步骤602的传感采集结果,以及步骤603中的抉择结果,所述物料100被所述运载设备40运送至相应的所述模具31所对应的所述锻造空间300中,即步骤604。值得一提的是,所述施压机构32根据所述物料100的制造需要可被控制地调整施压方式。例如,根据步骤602中的传感采集结果,调整所述施压机构32的施压压力或者施压角度。在一种可行的方式中,所述锻造设备30包括至少两个所述施压机构32,所述施压机构32之间具有不同的施压方式,通过所述运载设备40将不同需要的所述物料100运送至不同的所述施压机构32,进而使得不同的所述物料100得到不同的压力或者角度处理。也就是说,所述锻造设备30为对应所述物料100的特征而定制的。优选地,所述模具31对应于所述物料100的所述外形特征101,所述施压机构32对应于所述温度特征102,使得不同的合金坯料得到相适应的锻压处理。
值得一提的是,所述加热空间200和所述锻造空间300存在饱和的情况。当所述加热空间200和所述锻造空间300饱和,也就是不能为后续的所述物料100提供所述热熔设备20和所述锻造设备30时,所述运载设备40将给予等待或者调整运送至不饱和的所述加热空间200和所述锻造空间300中。因此,介于所述加热空间200和所述锻造空间300的限制,所述运载设备40将进行调整运送所述物料100的方式,以保证所述物料100在所述热熔设备20和所述锻造设备30以及前后流转的效率。
如图5和图7所示,基于上述的所述锻压生产系统的一生产管理方法的一种具体的流程被阐释。通常地,所述物料 100在被投入时为一坯料,经过所述锻压生产系统的所述加热室21后,所述物料为一高温坯料。而经过所述锻压生产系统的所述施压机构32后,所述物料为一成型坯料。为方便描述和理解,本图中的优选实施例针对一个所述物料100的进程进行描述。可以理解的是,对于多个所述物料100,采用并线执行或者循环中断的方式都可以实现流程。首先地,投入所述物料100,开始所述物料100在所述锻压生产系统的制造。也就是步骤601。然后,通过传感器对所述物料100进行特征采集。本优选实施例中对于所述物料100的所述温度特征102进行采集,进而获得所述物料100的外表温度数据信息。也就是步骤602。然后根据所述温度特征102的数据信息,判断所述物料100的坯料种类。本优选实施例中,从所述物料100的温度得到所述物料100的坯料种类和后续需要达到的温度。也就是说,当不同的所述物料100被投入所述锻压生产系统中,根据传感得到的所述物料100的不同进行判断。根据不同的需求,步骤603将所述物料100进行分类处理。优选地,根据所述物料100的所述温度特征102,将决定所述物料100适合的所述加热室21。然后,所述物料100成为所述高温坯料被运送至抉择结果,即步骤604。接着,相应地,对所述物料100在所述加热室21中被加热至预定温度。也就是步骤605。加工完成后,所述物料100的所述温度特征102被改变。然后对所述物料100的所述温度特征102进行检测,从而得到所述物料100是否为合格的产品,即步骤6051。对于合格的产品将结束锻压制造方法,产出所述物料100,也就是步骤606的出料。而对于不合格的所述物料100将返回起始,视所述物料100的情况进行进一步的加工或者被最终排出。
更多地,在另外可行的方式中,首先地,投入所述物料100,开始所述物料100在所述锻压生产系统的制造。也就是步骤601。然后,通过传感器对所述物料100进行特征采集。本优选实施例中对于所述物料100的所述外形特征101和所述温度特征102进行采集,进而获得所述物料100的形状和外表温度数据信息。也就是步骤602。然后根据所述外形特征101和所述温度特征102的数据信息,判断所述物料100的坯料种类。本优选实施例中,从所述物料100的所述外形特征101得到所述物料100的坯料种类和后续需要达到的温度。也就是说,当不同的所述物料100被投入所述锻压生产系统中,根据传感得到的所述物料100的种类不同进行判断。根据不同的需求,步骤603将所述物料100进行分类处理。优选地,根据所述物料100的种类,将决定所述物料100适合的所述施压机构32。然后,所述物料100成为所述成型坯料被运送至抉择结果的所述锻造空间300,即步骤604。接着,相应地,对所述物料100在所述施压机构32中被压制成型。也就是步骤605。加工完成后,所述物料100的所述外形特征101被改变,也就是成为所述成型坯料。然后对所述物料100的所述外形特征101进行检测,从而得到所述物料100是否为合格的产品,即步骤6051。对于合格的产品将结束锻压制造方法,产出所述物料100,也就是步骤606的出料。而对于不合格的所述物料100将返回起始,视所述物料100的情况进行进一步的加工或者被最终排出。
本优选实施例的所述锻压生产系统的所述运载设备40进一步地包括一给料工具41和一送料工具42。当所述物料100需要在所述热熔设备20和所述锻造设备30之间进行自动流转的进程中,所述给料工具41将所述物料100从所述热熔设备20送至所述锻造设备30,所述送料工具42将所述物料100从所述锻造设备300送至所述出料工具43。也就是所述给料工具42负责操作所述物料100的所述高温坯料阶段,所述送料工具42负责操作所述物料100的所述成型坯料阶段值得一提的是,在多个处理之间流传中,所述物料100并不需要额外的人工搬运,使得所述物料100在高温状态都远离人工,保持所述物料100的安全生产。
更多地,如图8和图9所示,另一优选实施例中的所述运载设备40的所述给料工具41进一步地包括一滑轨机构411和一搬运机构412,其中所述滑轨机构411连接所述加热室21,使得所述物料100从所述加热室21中离开后落入所述滑轨机构411,其中所述搬运机构412将所述物料100从所述滑轨机构411中搬运至所述锻造设备40。所述滑轨机构411具有至少一收集端4111、一滑行通道4112以及一给出端4113。所述收集端4111从所述加热室21中获得已经加热好的所述物料100,所述物料100经由所述滑行通道4112最后抵达所述给出端4113。也就是说,所述搬运机构412从所述给出端4113的位置开始搬运。那么,对于所述搬运机构412来说,搬运动作的起点和终点是很容易定位的。优选地,所述搬运机构412包括一夹取端4121和一转运臂4122,其中所述夹取端4121操作所述物料100进而通过所述转运臂4122进行位置的转换。
如图5和图6所示,所述物料100经过所述热熔设备20和所述锻造设备30的流程和流经步骤被阐述。
为方便描述和理解,本优选实施例针对一个所述物料100的进程进行描述。可以理解的是,对于多个所述物料100,采用并线执行或者循环中断的方式都可以实现流程。首先地,投入所述物料100,开始所述物料100在所述锻压生产系统的制造。进行所述入料工具44。然后,通过传感器对所述物料100进行特征采集。本优选实施例中对于所述物料100的所述外形特征101和所述温度特征102进行采集,进而获得所述物料100的需要进行的加工方式。也就是步骤602。然后根据传感采集的数据信息,判断所述物料100的坯料种类。本优选实施例中,从所述物料100的温度得到所述物料100 的坯料种类和后续需要达到的温度。也就是说,当不同的所述物料100被投入所述锻压生产系统中,根据传感得到的所述物料100的不同进行判断。根据不同的需求,步骤603将所述物料100进行分类处理。优选地,根据所述物料100的种类,将决定所述物料100适合的所述加热室21和施压机构32。然后,所述物料100被运送至抉择结果,即步骤604。值得一提的是,在被运送至所述加热空间200之前,需要提前判断所述加热空间200是否为空余状态,也就是能否加热即将到达的所述物料100。在所述加热空间200空余的情况下,继续运送所述物料100至所述加热室21。接着,相应地,对所述物料100在所述加热室21中被加热至预定温度。也就是步骤605。加工完成后,所述物料100的所述温度特征102被改变。然后对所述物料100的所述温度特征102进行检测,从而得到所述物料100是否为合格的产品,即步骤6051。对于合格的产品将结束锻压制造方法,产出所述物料100,也就是进行所述给料处理41。而对于不合格的所述物料100将返回起始,视所述物料100的情况进行进一步的加工或者被最终排出。这里需要注意的是,对于所述锻造设备30的投入所述物料100为所述给料处理41,也就是所述锻造设备30的步骤601。然后,通过传感器对所述物料100进行特征采集。本优选实施例中对于所述物料100的所述外形特征101和所述温度特征102进行采集,进而获得所述物料100的形状和外表温度数据信息。也就是所述锻造设备30的步骤602。然后根据所述外形特征101和所述温度特征102的数据信息,判断所述物料100的种类。本优选实施例中,从所述物料100的所述外形特征101得到所述物料100的坯料种类和后续需要的所述模具31和所述施压机构32的设置。也就是说,当不同的所述物料100被投入所述锻压生产系统中,根据传感得到的所述物料100的种类不同进行判断。然后,所述物料100被运送至抉择结果的所述锻造空间300,即步骤604。值得一提的是,在所述运载设备40的所述给料工具41将所述物料100传至所述施压机构32之前,进一步地对于所述锻造空间300时候空余进行判断。对于所述锻造空间300空余的情况,继续运送所述物料100至所述施压机构32。接着,相应地,对所述物料100在所述施压机构32中被压制成型。也就是步骤605。加工完成后,所述物料100的所述外形特征101被改变,并被所述送料工具42送出所述施压机构32。然后对所述物料100的所述外形特征101和温度特征102进行检测,从而得到所述物料100是否为合格的产品,即步骤6051。对于合格的产品将结束锻压制造方法,产出所述物料100,也就是步骤606所对应的所述出料工具43。而对于不合格的所述物料100将返回起始,视所述物料100的情况进行进一步的加工或者被最终排出。
需要注意的是,这里所提到的排出和出料工具是不同的。对于所述物料100的排出,表示所述物料100被排出于所述锻压生产系统,等待进一步地回收。而所述出料工具43为所述物料100被正常地加工生产而被制造,等待下一步地处理或者作为产品而离开所述锻压生产系统。换句话说,所述出料工具43操作的为所述物料100的成型坯料,而排出为所述物料100的废料。
本优选实施例的所述锻压生产系统提供一控制平台10,其中所述控制平台10进一步地包括一运算器11、一反馈器12、一执行器13以及一监控器14。如图2所示,所述运算器11、所述反馈器12、所述执行器13以及所述监控器14相互之间可通信地连接。所述运算器11将所述反馈器12得到的所述热熔设备20和所述锻造设备30的反馈数据,进行控制性的计算,进而所述执行器13控制所述加热室21、所述施压机构32以及所述运载设备40。而所述监控器14可预先设定所述运算器11的相关控制参数,并将所述反馈器12的反馈信息显示,从而实现交互控制。
所述锻压生产系统的步骤605进一步地包括一维护设备50。所述维护设备50被所述控制平台10进行控制,根据所述热熔设备20或者所述锻造设备30的需要进行进一步地维护操作,以保持所述热熔设备20或者所述锻造设备30的生产能力,提供所述锻压生产系统的整体效率。更多地,所述维护设备50进一步地包括一涂油工具51和一排烟工具52,如图9。所述涂油工具51被设置于所述施压机构32,对所述施压机构32和所述模具31进行油性护理。所述排烟工具52被设置于所述涂油工具52,对于高温油烟进行回收,进而保证所述施压机构32工作环境的清洁。
一种在所述加热室21和所述施压机构32流转示意如图5和图6所示。首先,所述物料100在所述加热室21中被加热至预定温度,使得所述物料100处于高温状态。所述物料100被送至所述给料工具41。因为加工完成后所述物料100的所述温度特征102被改变,需要对所述物料100的所述温度特征102进行检测,从而得到所述物料100是否适合进行所述锻造设备30。对于温度合适的产品将准备进行所述给料处理41。而对于不合格的所述物料100将被最终排出。这里需要注意的是,对于所述锻造设备30的投入所述物料100为所述给料处理41,也就是所述锻造设备30的步骤601。然后,通过传感器对所述物料100进行特征采集。本优选实施例中已经事先地对于所述物料100的所述外形特征101和所述温度特征102进行采集,进而获得所述物料100的形状和外表温度数据,判断得到了所述物料100的种类。也就是说,不同的所述物料100被投入所述锻压生产系统中,根据传感得到的所述物料100的种类不同进行判断,并给予执行。然后,对于所述锻造空间300时候空余进行判断。对于所述锻造空间300空余的情况,将继续所述给料工具41运送所述物料100至 所述施压机构32。而对于所述锻造空间300不空余的情况,将进行等待。需要注意的是,在等待中,所述物料100的温度也在被检测,以保证所述物料100的高温状态。也就是说,只有在所述物料100的温度适合,而且所述锻造空间300空余的情况下,所述运载设备40的所述给料工具41将所述物料100传至所述施压机构32。接着,对所述物料100在相应的所述施压机构32中被压制成型。最后由所述送料工具42送出所述锻造设备30。当所述物料100离开所述锻造设备30,所述维护设备50的所述涂油工具51对所述锻造设备30开始进行。也就是说,每次的所述施压机构32都对应有所述涂油工具51的执行。需要注意的是,所述给料工具41和所述送料工具42帮助运载高温状态的所述物料100,使得所述物料100的高温在得以被保持的情况下,自行地进行加工流转。
本优选实施例针对多个不同种类所述物料100的进程进行描述,如图1,并举例为三种需要进行加工的所述物料100。预先地,通过所述控制平台10进行具体制造方式的设置。例如,设置方形的所述物料100采用所述模具31B进行一定压力的成型制造;设置圆形的所述物料100采用所述模具31A进行一定压力的成型制造;设置三角形的所述物料100采用所述模具31C进行一定压力的成型制造。首先地,投入所述物料100,开始所述物料100在所述锻压生产系统的制造。进行所述入料工具44。然后,通过传感器对所述物料100进行特征采集。对于所述物料100的所述外形特征101和所述温度特征102进行采集,进而获得所述物料100的需要进行的加工方式。也就是步骤602。根据传感采集的数据信息,判断所述物料100的坯料种类。本优选实施例中,从所述物料100的温度得到所述物料100的坯料种类和后续需要达到的温度。也就是说,当三种所述物料100被投入所述锻压生产系统中,根据传感得到的所述物料100相应进行判断。根据不同的需求,在步骤603将所述物料100进行分类处理。优选地,根据所述物料100的种类,将决定所述物料100适合的所述加热室21和施压机构32和相应地处理方式。然后,所述物料100被运送至抉择结果,即步骤604。值得一提的是,在被运送至所述加热空间200之前,需要提前判断所述加热空间200是否为空余状态,也就是能否加热即将到达的所述物料100。在所述加热空间200空余的情况下,继续运送所述物料100至所述加热室21。接着,相应地,对所述物料100在所述加热室21中被加热至预定温度。本流程中,采用控制所述物料100在所述加热空间200中停留的时间来得到不同的加热效果。加工完成后,所述物料100的所述温度特征102被改变。然后对所述物料100的所述温度特征102进行检测,从而得到所述物料100是否为合格的产品,即步骤6051。对于合格的产品将产出所述物料100,也就是开始进行所述给料处理41。优选地,所述给料处理41采用滑轨和机械手的配合完成。而对于不合格的所述物料100将返回起始,视所述物料100的情况进行进一步的加工或者被最终排出。然后,通过传感器对所述物料100进行特征采集。对于所述物料100的所述外形特征101,进而获得所述物料100的形状数据信息,判断所述物料100的种类。本优选实施例中,从所述物料100的所述外形特征101得到所述物料100的坯料种类和后续需要的所述模具31和所述施压机构32的设置,即具体的所述模具31A、31B或者31C和对应的压力大小和角度。也就是说,当不同的所述物料100被投入所述锻压生产系统中,根据传感得到的所述物料100的种类不同进行判断。然后,所述物料100被运送至抉择结果所述模具31所对应的所述锻造空间300,即步骤604。值得一提的是,在所述运载设备40的所述给料工具41将所述物料100传至所述施压机构32之前,进一步地对于所述锻造空间300时候空余进行判断。对于所述锻造空间300空余的情况,继续运送所述物料100至所述施压机构32。接着,相应地,对所述物料100在所述施压机构32中被压制成型。也就是步骤605。加工完成后,所述物料100的所述外形特征101被改变,并被所述送料工具42送出所述施压机构32。然后对所述物料100的所述外形特征101和温度特征102进行检测,从而得到所述物料100是否为合格的产品。对于合格的产品将结束锻压制造方法,产出所述物料100,也就是步骤606所对应的所述出料工具43。而对于不合格的所述物料100将返回起始,视所述物料100的情况进行进一步的加工或者被最终排出。
在另外的实施例的所述生产管理方法中,包括步骤:
A.采集所投入的一物料的至少一特征;
B.根据所述物料的所述特征,对应性地抉择锻压处理的操作因素的温度、压力或模具中的至少一个;
C.运送所述物料至抉择结果;以及
D.处理所述物料直至产出成品。
具体地,根据需求,为所述物料100的加工成品,挑选特定的所述物料100作为原材料,设定所述锻压生产系统的操作因素进行生产。
也就是说,针对同一类型的所述物料100,如图8所示,所述锻压生产设备对温度、压力以及模具进行调整,以生产所述物料100对应的成品。预先地,通过所述控制平台10对应的配比关系设定,决定对应所述物料100的操作因素。例如,之前使用三角的所述模具31A进行锻压生产。接着,投入所述物料100,开始所述物料100在所述锻压生产系统的制 造。进入所述入料工具44。然后,通过传感器对所述物料100进行特征采集。对于所述物料100的所述外形特征101和所述温度特征102进行采集,进而获得所述物料100的需要进行的加工方式,根据所述物料100的圆形的特征,决定使用所述模具31B。也就是步骤602。根据传感采集的数据信息,判断所述物料100的坯料种类。本优选实施例中,从所述物料100的温度得到所述物料100的坯料种类和后续需要达到的温度。也就是说,当三种所述物料100被投入所述锻压生产系统中,根据传感得到的所述物料100相应进行判断。根据不同的需求,在步骤603将所述物料100进行分类处理。优选地,根据所述物料100的种类,将决定所述物料100适合的所述加热室21和施压机构32和相应地处理方式。也就是更换三角的所述模具31A为圆形的所述模具31B。然后,所述物料100被运送至抉择结果,即步骤604。值得一提的是,在被运送至所述加热空间200之前,需要提前判断所述加热空间200是否为空余状态,也就是能否加热即将到达的所述物料100。在所述加热空间200空余的情况下,继续运送所述物料100至所述加热室21。接着,相应地,对所述物料100在所述加热室21中被加热至预定温度。本流程中,采用控制所述物料100在所述加热空间200中停留的时间来得到不同的加热效果。加工完成后,所述物料100的所述温度特征102被改变。然后对所述物料100的所述温度特征102进行检测,从而得到所述物料100是否为合格的产品,即步骤6051。对于合格的产品将产出所述物料100,也就是开始进行所述给料处理41。优选地,所述给料处理41采用滑轨和机械手的配合完成。而对于不合格的所述物料100将返回起始,视所述物料100的情况进行进一步的加工或者被最终排出。然后,通过传感器对所述物料100进行特征采集。对于所述物料100的所述外形特征101,进而获得所述物料100的形状数据信息,判断所述物料100的种类。本优选实施例中,因生产需要,选择投入圆形的所述物料100,所述外形特征101决定后续需要的所述模具31和所述施压机构32的设置,即具体的所述模具31A、31B或者31C和对应的压力大小和角度。这与上述优选实施例是有差距的。也就是说,当需求的所述物料100被投入所述锻压生产系统中,根据所述物料100的种类不同进行决定。然后,所述物料100被运送至抉择结果所述模具31B所对应的所述锻造空间300,即步骤604。值得一提的是,在所述运载设备40的所述给料工具41将所述物料100传至所述施压机构32之前,进一步地对于所述锻造空间300时候空余进行判断。对于所述锻造空间300空余的情况,继续运送所述物料100至所述施压机构32。接着,相应地,对所述物料100在所述施压机构32中被压制成型。也就是步骤605。加工完成后,所述物料100的所述外形特征101被改变,并被所述送料工具42送出所述施压机构32。然后对所述物料100的所述外形特征101和温度特征102进行检测,从而得到所述物料100是否为合格的产品。对于合格的产品将结束锻压制造方法,产出所述物料100,也就是步骤606所对应的所述出料工具43。而对于不合格的所述物料100将返回起始,视所述物料100的情况进行进一步的加工或者被最终排出。
更多地,所述锻压生产系统的整体示意如图9和图10。根据所投入的所述物料100,所述控制平台10进行生产操作因素的具体设定。也就是说,无需完全依赖对所述物料100的识别检测,所述控制平台10的运算压力较小。所述运载设备40的移动方向也为单向的,更方便提升生产速度。优选地,所述热熔设备20被置于所述锻造设备30的一侧,使得所述热熔设备20的所述加热室21朝向统一的一侧。当多个所述锻压生产系统被设置之后,工人可以方便观看所述加热室21的工作状态。特别地,在所述锻压生产管理方法中的步骤603中可以使用具有经验的工作人员参与。也就是说,避免工人的大量失业和经验损失,所述锻压生产管理方法兼顾生产效率的实际与人力管理的实际,提高整体的生产管理效率。
参照本发明说明书附图之图11至图17所示,依照本发明第三较佳实施例的一锻压生产系统在接下来的描述中被阐述。所述锻压生产系统包括一控制系统910、一热熔设备920、一锻造设备930、一运载设备940、以及至少一坏料排除装置950,其中所述控制系统910通信地连接于所述热熔装置920、所述锻造设备930、所述运载设备940、以及所述坏料排除装置950,控制被加工的物料在设备之间加工和运输,从而使得所述物料从未加工的坯料(或胚料)经过所述锻造设备930的锻压加工成为成型的坯料。所述热熔设备920加热被投入的所述物料的坯料,其中所述控制系统910根据所述物料的种类的和需要加工的需求设定所述热熔设备920的加热时间,加热温度、以及加热方式等。所述运载设备940运输所述热熔装置920加热后的所述坯料,和将所述坯料输送至所述锻造设备930中,藉由所述锻造设备930对所述坯料锻压,以加工成为产品的成品。
所述坏料排除装置950在所述运载设备940运载的过程中,排除加热后的不合格的坯料,比如温度不合格的坯料,尺寸大小不合适的坯料、形状不适合锻压的坯料、重量不合格的坯料、摆放位置不合适的坯料等坏料或废料。可以理解的是,在本发明的该较佳实施例中是,所述废料或所述坏料是不适宜在所述锻造设备930中加工的所述坯料。所述坏料排除装置950将不适宜所述锻造设备930加工的所述坏料排除,避免所述运载设备940将所述坏料运输至所述锻造设备930进行下一步锻压,从而避免了坏料对所述锻造设备930造成的损伤。由于在加工过程中排除了废料加工的过程,从而加快了所述锻压生产系统的工作效率和产品的合格率。
所述锻压生产系统进一步包括至少一探测装置960,其中所述探测装置960探测所述坯料的至少一特征,其中所述特征包括形状特征、尺寸特征、温度特征、重量特征、材料特征、位置特征等。所述控制系统910基于所述探测装置960探测到的所述特征信息判断出所述坯料是否适合在所述锻造设备930中加工。如果所述控制系统910基于所述探测装置960的探测信息判断所述坯料符合锻压加工条件,则由所述锻造设备930锻造所述坯料。相反地,如果所述控制系统基于所述探测装置960的探测信息判断所述坯料不符合锻压加工条件,则由所述坏料排除装置950排除所述坏料,以免所述坏料被运输至所述锻造设备930,损坏所述锻造设备930。
所述运载设备940运载所述坯料至所述热熔设备920,其中所述热熔设备920基于所述控制系统910设定的加热时间,加热温度加热所述坯料至适于锻压加工的温度。相应地,所述运载设备940包括至少一入料工具944,其中所述入料工具944添加所述坯料至所述热熔设备920中,藉由所述热熔设备920加热所述坯料。值得一提的是,与上述第一较佳实施例相同的是,所述热熔设备920包括一加热室921和一加热器922,其中所述入料工具944将所述坯料添加至所述加热室921中,藉由所述加热器922对所述加热室921内的所述坯料加热至所述控制系统910设定的加工温度,或者按照设定的加热时间加热所述坯料。值得一提的是,在本发明的中,所述加热器922被邻近地设置于所述加热室921,或者所述加热器922被设置于所述加热室921内部,从而对所述加热室921内部的所述坯料进行加热。可以理解的是,所述热熔装置922的所述加热器922的加热方式可以是通过燃料燃烧加热的方式或者是通过电加热的方式对所述加热室921加热。值得一体地是,在本发明的该较佳实施例中,所述加热器922的置热方式在此仅仅作为示例性质的而非作为限制。因此,所述加热器922的置热方式还可以被实施为其他方式,比如微波加热的方式。
参照附图13A所示,所述热熔设备920的所述加热室921设有至少一进料口9211和至少一出料口9212,其中所述入料工具944将未加工的所述坯料通过所述进料口9211添加至所述热熔设备920的所述加热室921。加热后的所述坯料从所述加热室921的所述出料口9212被取出,或者被运出。优选地,所述加热器922被邻近地设置于所述加热室921的所述出料口9212,其中所述加热器922自所述出料口9212的外部向内地对所述加热室921加热。更优选地,所述加热器922通过燃料燃烧加热的方式自所述出料口9212向内地对所述加热室921内的所述坯料加热。可以理解的是,在所述加热室921的内部,所述坯料自所述加热室921的所述入料口9211进入,其中所述入料口9211的温度低于所述出料口9212处的温度。因此,所述坯料在所述加热室921内部能够从温度低的所述入料口9211到所述温度高的所述出料口9212逐渐的加热。可以理解的是,这样的加热方式能够使得所述坯料受热均匀,加热效果好,并且当所述坯料加热后,从所述出料口9212向外运输时能够保持较高的温度。
如图11所述,所述运载设备940进一步包括至少一出料工具943,其中所述出料工具943将生产加工完成的物料或者成型的坯料带离所述锻压生产系统。可以理解的是,所述出料工具943是被设置于所述锻压生产系统的尾端的装置。所述运载设备940进一步包括至少一给料工具941和至少一送料工具942,其中所述给料工具941将所述物料从所述热熔设备920输送至所述锻造设备930,所述送料工具942将所述物料从所述锻造设备930送至所述出料工具943。换言之,所述坯料被加热后,所述给料工具941输送所述胚料至所述锻造设备930,被锻造成型的所述坯料被所述送料工具942输送至所述出料工具930,藉由所述出料工具943代理加工成型的所述坯料。
相应地,所述运载设备940的所述给料工具941进一步地包括一滑轨机构9411和一搬运机构9412,其中所述滑轨机构9411连接至所述加热室921,使得所述坯料从所述加热室921中离开后落入所述滑轨机构9411,其中所述搬运机构9412将所述坯料从所述滑轨机构9411中搬运至所述锻造设备940。值得一提的是,所述给料工具941的所述滑轨机构9411是承接和运输所述坯料的一滑动轨道。所述滑轨机构9411进一步包括至少一收集端94111、一滑行通道94112以及一给出端94113。所述收集端94111从所述加热室921中获取已经加热好的所述物料9100,所述物料9100经由所述滑行通道94112最后抵达所述给出端94113。优选地,所述坯料由所述收集端94111顺着所述滑行通道94112至所述给出端94113。当多个所述坯料从所述热熔设备920被取出时,所述坯料沿所述滑行通道94112依次地排列至所述给出端94113。
如图11和图13C所示,所述滑轨机构9411的所述收集端94111被设置连接于所述热熔设备920的所述加热室921的所述出料口9212,以承接从所述出料口9212加热后的所述坯料。所述滑轨机构9411进一步设有至少一承载槽94114,其中所述承载槽94114被形成于所述滑轨机构9411的上侧,其中所述坯料从所述加热室921中加热后,沿所述滑轨机构9411的所述承载槽94114自所述收集端94111滑动至所述给出端94113。优选地,所述滑轨机构9411的所述承载槽94114在承载输送所述坯料的过程中,纠正所述坯料的摆放方式。换言之,所述滑轨机构9411从所述收集端94111承接所述坯料后在运输至所述给出端94113的过程中纠正所述坯料的姿势,以便于后续设备的转运。可以理解的是,所述滑轨机构9411的所述承载槽94114适于所述坯料的大小和形状呈现斜坡的结构。
如图13B所示,所述探测装置960探测所述坯料的至少一特征,其中所述控制系统910基于所述探测装置960探测的所述坯料的特征结果判断所述坯料是否属于坏料或废料。当所述控制系统910得到的判断所述坯料的特征结果是坏料或废料,则控制所述坏料排除装置950将所述坏料或废料从所述滑轨机构9411中排除,避免所述坏料影像生产进程,同时也避免废料进入到锻压生产中,损害所述锻造设备930。所述探测装置960被设置于所述运载设备940的所述给料工具941,以探测所述给料工具941中承载的所述坯料的所述特征。换言之,所述探测装置960探测所述滑轨机构9411中的所述坯料的所述特征,以判断进入到所述锻造设备930之前的所述坯料的特征是否符合锻压生产要求。比如,所述探测装置960探测所述坯料的形状特征、重量特征、位置特征、温度特征、材料特征等的至少一特征因素。所述控制系统910基于所述特征控制所述坏料排除装置950的动作,和控制所述搬运机构9412的搬运动作。
更值得一提的是,在本发明中,所述坏料排除装置950被设置于所述搬运机构9412的前端,当所述滑轨机构9411输送所述坯料至所述滑轨机构9411的所述给出端94113时,所述坏料排除装置950先排除不适于加工的所述坏料。
相应地,所述探测装置960被实施为设置于所述滑轨机构9411的一种传感装置,或者两种以上的组合传感器,其中所述探测装置960通过拍照探测、红外传感探测、图形探测、重量探测等探测方式探测所述滑轨机构9411中所述坯料的所述特征。可以理解的是,所述探测装置960被通信地连接于所述控制系统910,其中所述控制系统910基于所述探测装置960探测的一种探测信息或者多种探测信息的组合信息,分析得出所述坯料的特征是否符合锻压需求。
所述坏料排除装置950排除所述滑轨机构9411中承载的所述坯料。所述坏料排除装置950进一步包括至少一排废机构951和一废料收集装置952,其中所述排废机构951将所述滑轨机构9411中不合格的所述坯料排除到所述废料收集装置952,藉由所述废料收集装置952收集所述坯料。可以理解的是,所述废料收集装置952收集到的所述坯料可被再次加入到所述热熔设备920,以便再次加热后适于被锻压加工。
优选地,在本发明的第二较佳实施例中,所述排废机构951通过夹取或剔除的方式将所述滑轨机构9411中的所述废料排除至所述废料收集装置952。更优选地,所述排废机构951被实施为一机械手装置,所述排废机构951通过夹取的方式选择所述滑轨机构9411中的所述坯料,和移送至所述废料收集装置952。
参照本发明说明书附图之图13B所示,所述排废机构951包括至少一夹取装置9511和支撑所述夹取装置9511操作的一操作臂9512,其中所述夹取装置9511被设置于所述操作臂9512的一个端部,藉由所述操作臂9512支撑地操作所述夹取装置9511夹取被识别的所述坏料。所述夹取装置9511可被操作地设置于所述操作臂9512的端部,其中所述操作臂9512操作所述夹取装置9511夹取所述坏料,将所述坏料排出锻压生产工艺的流程。所述夹取装置9511可转动地设置于所述操作臂9512的端部,其中所述操作臂9512可转动地操作所述夹取装置9511,以便夹取不同位置的所述坏料。
相应地,所述夹取装置9511在所述操作臂9512的操作和控制作用下夹取所述坏料,并将所述坏料排除至所述废料收集装置952。所述夹取装置9511可被所述操作臂9512操作地打开和夹持,以夹取和放置加工过程中出现的所述坏料。优选地,所述排废机构951的所述夹取装置9511为机械手的抓取装置,其中所述夹取装置9511在所述操作臂9512的操作控制下可操作调整抓取角度、抓取力度、以及抓取方向等。
所述操作臂9512操作所述夹取装置9511抓取和放置所述坏料,其中所述操作臂9512进一步包括至少一第一操作杆95121和至少一第二操作杆95122,其中所述第二操作杆95122可转动的连接所述夹取装置9511于所述第一操作杆95121。所述第二操作杆95122可传动地、旋转地连接于所述第一操作杆95121,其中所述第二操作杆95122被所述第一操作杆95121旋转地控制所述夹取装置9511的抓取和放置位置。
值得一提的是,所述第一操作杆95121可在周向和周向地方向转动,以驱动所述第二操作杆95122和所述夹取装置9511至合适的抓取位置。所述第一操作杆95121周向的平行转动所述第二操作杆95122至所述坏料的位置,藉由所述第二操作杆95122操作所述夹取装置9511抓取所述坏料。当所述夹取装置9511抓取后,所述第一操作杆95121沿周向方向反向地转动所述第二操作杆95122至所述废料收集装置952,以便所述夹取装置9511将所述坏料放置于所述废料收集装置952。
所述第一操作杆95121基于所述坏料的位置轴向地转动所述第二操作杆95122,上下地驱动所述第二操作杆95122和所述夹取装置9511的移动,以便将所述坏料夹取出轨道,和设置抓取的距离。相应地,所述第二操作杆95122的一个端部可旋转地连接于所述第一操作杆95121,以便所述第一操作杆95121上下地移动所述第二操作杆95122和所述夹取装置9511,并将所述夹取装置9511抓取的所述坏料移除轨道。当所述第二操作杆95122被所述第一操作杆95121沿轴向方向向外地转动时,所述夹取装置9511在所述第二操作杆95122的支撑作用下向外地伸展,以便抓取远处的所述坏料。相应地,当所述第二操作杆95122被所述第一操作杆9511沿轴向方向向内地转动时,所述夹取装置9511夹取近距离的所述 坏料。换言之,所述第二操作臂9512可在沿中心点和重心轴的方向实现任意角度的转动,以驱动所述夹取装置9511左右地、前后地、以及上下地运动,进而夹取轨道远近任意位置的所述坏料。
值得一提的是,所述操作臂9512的所述第一操作杆95121和所述第二操作杆95122可在周向的和轴向的方向上转动,以驱动所述夹取装置9511在上下方向和左右的方向移动,从而实现夹取和移除的动作。可以理解的是,所述操作臂9512左右方向地、前后方向地、以及上下方向地转动,操作所述夹取装置9511夹取轨道上的所述坏料。
所述夹取装置9511可旋转操作地设置于所述第二操作杆95122的下端,其中所述第二操作杆95122可旋转地操作所述夹取装置9511,以便夹取任意摆放位置的所述坏料。比如,倾斜堆放的所述坏料、歪倒的所述坏料、破损的所述坏料卡住的所述坏料等。所述夹取装置9511被所述第二操作杆95122沿周向地方向转动地操作,以适于夹取任意存放角度的所述坏料。
值得一提的是,在本发明的第二较佳实施例中,所述坏料排除装置950与所述搬运机构9412分别完成不同的搬运动作,其中所述坏料排除装置950基于所述控制系统910的控制指令排除所述滑轨机构9411中的废料。所述搬运机构9412搬运所述滑轨机构9411中使用加工的所述坯料至所述锻造设备930,以供所述锻造设备930加工成为成型的坯料。
所述搬运机构9412包括一夹取端94121和一转运臂94122,其中所述夹取端94121通过夹取的方式获取所述滑轨机构9411的所述物料,和将所述物料放置到所述锻造设备930。所述转运臂94122操作所述夹取端94121的夹取动作和释放动作,并且控制所述夹取端94121的夹取位置和释放位置,以便精确地选择所述锻造设备930。所述转运臂94122在轴向和轴向的方向转动,以控制所述夹取端94121的位置,进而通过所述转运臂94122对所述坯料进行位置的转换。
如图16所示,所述锻造设备930对已经加热的所述坯料进行压力成型操作,使得所述坯料被成型。所述锻造设备930进一步地提供一模具931和一施压机构932。所述运载设备940将所述坯料放入所述模具,所述施压机构932对在所述模具931的所述坯料进行施加压力,使得所述坯料成型。所述锻造设备930进一步地提供一锻造空间9300,其中所述锻造空间9300形成于所述模具931和所述施压机构932之间。所述坯料处于所述锻造空间9300被所述施压机构932进行压力冲击,使得所述坯料在高温下被成型。可以理解的是,所述锻造设备930的所述模具931被设置具有加工所述成型坯料的结构,其中所述模具931被对应地设置于所述试压机构932,藉由所述试压机构932锻压所述模具931中的所述坯料加工成为锻压产品。也就是说,所述锻造设备930为对应所述坯料的特征而定制的。优选地,所述模具931对应于所述坯料的所述外形特征,所述施压机构932对应于所述温度特征,使得不同的合金坯料得到相适应的锻压处理。
需要注意的是,这里所提到的排出和出料工具是不同的。对于所述坯料的排出,表示所述坯料被排出于所述锻压生产系统,等待进一步地回收。而所述出料工具943为所述坯料被正常地加工生产而被制造,等待下一步地处理或者作为产品而离开所述锻压生产系统。换句话说,所述出料工具943操作的为所述坯料的成型坯料,而排出为所述坯料的废料。
如图17所示,所述控制系统910进一步地包括一运算器911、一反馈器912、一执行器913以及一监控器914。所述运算器911、所述反馈器912、所述执行器913以及所述监控器914相互之间可通信地连接。所述运算器911将所述反馈器912得到的所述热熔设备920和所述锻造设备930的反馈数据,进行控制性的计算,进而所述执行器913控制所述加热室921、所述施压机构932以及所述运载设备940。而所述监控器914可预先设定所述运算器911的相关控制参数,并将所述反馈器912的反馈信息显示,从而实现交互控制。
所述反馈器912获取所述探测装置960探测的所述特征数据,其中所述运算器911提取出所述探测装置960获取的所述特征数据对应的所述坯料的至少一特征。比如所述运算器911根据所述探测装置960探测的数据提取出所述坯料的位置特征、形状特征、材料特征、温度特征、重量特征等至少一特征。换言之,所述运算器911基于所述反馈器912获取的数据信息提取出所述坯料的特征信息对应的物料的特征,进而判断出所述坯料是否能够被用于锻压加工。示例性地,所述探测装置960通过拍摄的方式获取所述滑轨机构9411中所述坯料的至少一图像,其中所述反馈器912将所述探测装置960探测到的数据信息反馈至所述运算器911。所述运算器911通过图像识别的方式识别出所述坯料当前的摆放位置,形状,大小等数据,并且所述运算器911根据识别出的数据信息,判断所述坯料是否适于被所述搬运机构9412搬运。如果所述坯料的摆放位置不正,比如侧歪、倾斜、大小不合适、形状异形等,则所述运算器911得出所述坯料部适于被所述搬运机构9412搬运。相应地,所述执行器913基于所述运算器911的结果控制所述坏料排除装置950执行排除操作,以免所述坯料占用空间,影像锻压生产的进度。相反地,如果所述运算器911计算得出所述坯料适于被所述锻造设备930锻压生产,则由所述执行器913控制所述搬运机构9412执行搬运操作,搬运所述坯料至所述锻造设备930的所述模具931,以供所述锻造设备930锻压加工所述坯料。
所述锻压生产系统进一步地包括一维护设备970。所述维护设备970被所述控制系统910进行控制,根据所述热熔设 备920或者所述锻造设备930的需要进行进一步地维护操作,以保持所述热熔设备920或者所述锻造设备930的生产能力,提供所述锻压生产系统的整体效率。更多地,所述维护设备970进一步地包括一涂油工具971和一排烟工具972。所述涂油工具971被设置于所述施压机构932,对所述施压机构932和所述模具931进行油性护理。所述排烟工具972被设置于所述涂油工具952,对于高温油烟进行回收,进而保证所述施压机构932工作环境的清洁。
优选地,所述排烟工具972被邻近地设置于所述锻造设备930的上方,其中所述排烟工具972吸收所述锻造设备930在锻压所述坯料时产生的油烟,和所述涂油工具在涂油时产生的油烟。所述涂油工具971被设置于所述送料工具942,其中所述涂油工具971在所述送料工具942送料过程中执行对所述锻造设备930的涂油操作。
详细地说,所述涂油工具971进一步包括一上涂油工具9711和一下涂油工具9712,其中所述上涂油工具9711和所述下涂油工具9712被分别设置于所述送料工具942的上方和下方。所述送料工具942在执行送料操作时,接收所述锻压工具930锻造完成的所述成型坯料,和将所述成型坯料移送至所述出料工具943,藉由所述出料工具产出成型后的所述坯料。所述上涂油工具9711通过喷涂的方式将油喷涂至所述锻造设备930的施压机构932或者所述模具931的上端。所述下涂油工具9712通过喷涂油的方式将油喷涂至所述模具931的下端,或者所述施压机构932。可以理解的是,所述涂油工具971通过对所述锻造设备930涂油的方式,降低所述锻造设备930表面的温度,同时润滑所述施压机构932和所述模具931表面,避免杂物粘在所述模具931的内表面。
所述送料工具942可活动地伸缩于所述锻造设备930的所述锻造空间9300,以接收所述锻造设备930锻造生成的所述成型坯料。值得一提的是,所述锻造设备930的所述施压机构932锻压所述坯料,当所述坯料从所述锻造设备930的所述模具931中离压脱模时,所述坯料被所述施压机构932从所述模具931中带离。换言之,所述锻造设备930的所述施压机构932在锻压所述坯料后将成型后的所述坯料从所述模具931中带离,使得所述坯料脱模于所述模具931。当所述坯料被所述施压机构932带离出所述模具931后,所述坯料在自身重力作用下从所述施压机构932脱离下坠至所述送料工具942。
所述送料工具942进一步包括一伸缩机构9421和至少一承接机构9422,其中所述承接机构9422被可活动地设置于所述伸缩机构9421,藉由所述伸缩机构9421带动所述承接机构9422伸缩于所述锻造设备930的所述锻造空间9300。所述送料工具942被通信地连接于所述控制系统910,其中所述控制系统910控制所述送料工具942的伸缩动作,以便所述承接机构9422承接从所述施压机构932脱落的所述坯料。
值得一提的是,所述涂油工具971被设置于所述送料工具942的所述承接机构9422,其中所述上涂油工具9711被设置于所述承接机构9422的上侧,所述下涂油工具9712被对应地设置于所述承接机构9422的下侧。可以理解的是,所述伸缩机构9421驱动所述承接机构9422伸缩于所述锻造设备930的所述承接机构9422,其中所述承接机构9422在承接从所述施压机构932脱落的所述坯料后,所述涂油工具971向上地和向下地对所述锻造设备930涂油。
所述坯料在所述加热室921中被加热至预定温度,使得所述坯料处于高温状态。所述坯料被送至所述给料工具941。因为加工完成后所述坯料的所述温度特征9102被改变,需要对所述坯料的所述温度特征9102进行检测,从而得到所述坯料是否适合进行所述锻造设备930。对于温度合适的产品将准备进行所述给料处理941。而对于不合格的所述坯料将被最终排出。然后,通过传感器对所述坯料进行特征采集。本优选实施例中已经事先地对于所述坯料的所述外形特征9101和所述温度特征9102进行采集,进而获得所述坯料的形状和外表温度数据,判断得到了所述坯料的种类。也就是说,不同的所述坯料被投入所述锻压生产系统中,根据传感得到的所述坯料的种类不同进行判断,并给予执行。然后,对于所述锻造空间9300时候空余进行判断。对于所述锻造空间9300空余的情况,将继续所述给料工具941运送所述坯料至所述施压机构932。而对于所述锻造空间9300不空余的情况,将进行等待。需要注意的是,在等待中,所述坯料的温度也在被检测,以保证所述坯料的高温状态。也就是说,只有在所述坯料的温度适合,而且所述锻造空间9300空余的情况下,所述运载设备940的所述给料工具941将所述坯料传至所述施压机构932。接着,对所述坯料在相应的所述施压机构932中被压制成型。最后由所述送料工具942送出所述锻造设备930。当所述坯料离开所述锻造设备930,所述维护设备970的所述涂油工具971对所述锻造设备930开始进行。也就是说,每次的所述施压机构932都对应有所述涂油工具971的执行。需要注意的是,所述给料工具941和所述送料工具942帮助运载高温状态的所述坯料,使得所述坯料的高温在得以被保持的情况下,自行地进行加工流转。
参照本发明说明书附图之图16所示,依照本发明第二较佳实施例的所述锻压生产系统的另一可选实施方式在接下来的描述中被阐明。所述锻压生产系统包括一控制系统910、一热熔设备920、一锻造设备930、一运载设备940、至少一坏料排除装置950,以及至少一探测装置960,其中所述控制系统910通信地连接于所述热熔装置920、所述锻造设备930、 所述运载设备940、以及所述坏料排除装置950,控制被加工的物料在设备之间加工和运输,从而使得所述物料从未加工的坯料(或胚料)经过所述锻造设备930的锻压加工成为成型的坯料。值得一提的是,在本可选实施方式中,所述锻压生产系统的所述控制系统910、所述热熔设备920、所述锻造设备930、所述运载设备940的结构与上述第二较佳实施例中的相同。不同点是,所述坏料排除装置950被实施为所述运载设备940的给料工具941的所述搬运机构9412。换言之,所述坏料排除装置950与所述运载设备940的所述搬运机构9412为同一装置,其中所述搬运机构9412既能够搬运所述滑轨机构9411中合格的所述坯料至所述锻造设备930中进行锻造,也能够将所述滑轨机构9411中的坏料至所述废料收集装置952。
所述给料工具940的所述搬运机构9412被所述控制系统910控制,藉由所述控制系910基于所述探测装置960的探测信息控制所述搬运机构9412执行搬运操作或执行排除操作。
参照本发明说明书附图18所示,基于本发明上述第二较佳实施例的所述锻压生产系统,本发明进一步提供所述锻压生产系统的一坏料排除方法,其中所述坏料排除方法包括如下步骤:
(a)获取所述坯料的至少一特征;
(b)基于获取到的所述特征,判断所述坯料是否属于坏料或废料;以及
(c)如果判断所述坯料属于坏料或废料,藉由至少一坏料排除装置950排除所述坏料或废料;如果判断所述坯料适于加工,则返回执行步骤(a)。
进一步地,在上述坏料排除方法的步骤(a)中,所述探测装置960探测所述滑轨机构9411中所述坯料的所述特征信息。所述探测装置960以传感探测的方式探测所述坯料的位置特征、温度特征、形状特征、重量特征、材料特征、大小特征、以及摆放的姿势特征等至少一特征信息。
在上述坏料排除方法的步骤(b)中,所述探测装置960探测的所述坯料的所述特征被传输至所述控制系统910,其中所述控制系统910基于所述探测装置960探测得到的所述特征信息和所述锻造设备930的锻压数据判断所述坯料是否属于坏料或废料。所述控制系统910的所述反馈器912获取所述探测装置960探测到的所述特征数据信息,和将所述特征数据信息传输至所述控制系统910的所述运算器911,藉由所述运算器计算所述特征数据信息,以得出所述坯料的判断结果。
所述控制系统910的所述执行器913执行所述运算器911运算得出的所述判断结果,和控制所述坏料排除装置950的动作运行,以排除所述坏料或废料。
在上述坏料排除方法的步骤(c)中,所述坏料排除装置950被所述执行器913控制执行所述坏料的排除动作。所述坏料排除装置950通过机械夹取的方式移除所述滑轨机构9411中的所述坏料至所述废料收集装置952,其中所述废料收集装置952收集被排除的所述坯料。
在上述坏料排除方法中,进一步包括步骤(d)回收被排出的所述废料至所述热熔设备920,以供所述热熔装置920对所述坯料在此热熔加工。
参考图19至图22B,本发明的第三个优选实施例的一锻压生产系统及其维护运载设备被详细地揭露并诠释,其中所述锻压生产系统与第一个优选实施例不同而成为新的实施例。
参考图19,所述锻压生产系统进一步地包括一控制平台10B、一供料设备50B、一锻造设备60B以及一维护运载设备70B。所述控制平台10B控制所述供料设备50B、所述锻造设备60B以及所述维护运载设备70B。所述供料设备50B提供被加热的物料100B于所述锻造设备60B。所述锻造设备60B锻压所述物料100B。所述维护运载设备70B运载被所述锻造设备60B锻造好的所述物料100B,并且对所述锻造设备60B喷油维护。也就是说,所述维护运载设备70B自动地接收被所述锻造设备60B锻压的所述物料100B后输送出去并自动喷油以维护所述锻造设备60B。
所述物料100B在本发明中以一个为例。
所述供料设备50B包括一热熔装置51B和一送拣机构52B。所述热熔装置51B接收到所述物料100B后对所述物料100B加热,使得所述物料100B被加热至一定的温度。所述送拣机构52B自动地输送被加热的所述物料100B后,根据所述物料100B的状态自动地分拣所述物料100B后输送适配的所述物料100B至所述锻造设备60B。
值得一提的是,所述送拣机构52B自动地输送所述物料100B至所述锻造设备60B。
可选地,所述送拣机构52B可根据被加热的所述物料100B的不同,将所述物料100B输送至不同的所述锻造设备60B,在此方面本发明不受任何限制。
在所述控制平台10B的控制下,所述锻造设备60B锻压所述物料100B,进而使得所述物料被锻压成型。
所述维护运载设备70B被适配地设置于所述锻造设备60B。所述维护运载设备70B自动地接收被锻压完成的所述物 料100B后输送出去,并在接送的往复运动的过程中对所述锻造设备60B喷油,以维护所述锻造设备60B。
值得一提的是,所述锻压装置30B对所述物料100B加压后,带起所述物料100B向上移动。所述维护运载设备70B自动地移动至所述物料100B下方以接收所述物料100B。进一步地说,所述维护运载设备70B接收所述物料100B时位于所述锻造设备60B中,所述维护运载设备70B对所述锻造设备60B进行喷油维护。而后,所述维护运载设备70B移出所述锻造设备60B,以使得所述维护运载设备70B可运输所述物料100B至一存储区域。
已经被加热的所述物料100B被所述锻造设备60B进行压力成型操作,使得所述物料100B被成型。所述锻造设备60B进一步地提供一模具61B和一施压机构62B。所述送拣机构52B输送所述物料100B放入所述模具61B。被置于所述模具61B的所述物料100B受到所述施压机构62B施加的压力,使得所述物料100B成型。
值得一提的是,所述施压机构62B位于所述模具61B的高处,其中所述施压机构62B向下锻压所述物料100B后,向上抬起。在高温锻压的过程中,所述物料100B被所述施压机构62B带起。所述维护运载设备70B移动至所述模具61B上方,并接住自然下落的成型的所述物料100B,并喷油至所述施压机构62B和所述模具61B。而后,所述维护运载设备70B携带成型的所述物料100B移动至所述施压机构62B一侧后输送出去。
所述锻造设备60B进一步地提供一锻造空间600B,其中所述锻造空间600B形成于所述模具61B和所述施压机构62B之间。所述物料100B处于所述锻造空间600B被所述施压机构62B进行压力冲击,使得所述物料100B在高温下被成型。根据步骤602B的传感采集结果,以及步骤603B中的抉择结果,所述物料100B被所述维护运载设备70B运送至相应的所述模具61B所对应的所述锻造空间600B中。
值得一提的是,所述锻造空间600B被所述施压机构62B和所述模具61B界定,当所述施压机构62B向所述模具61B冲压时,所述锻造空间600B逐渐变小并保持一固定形态的空间大小以容置所需要的被加压物料100B。
优选地,所述维护运载设备70B被设置于所述模具61B一侧,并与所述模具61B处于同一高度,使得所述维护运载设备70B可移动其中的部件至所述锻造空间600B接收到被锻压的所述物料100B。
值得一提的是,所述物料100B被所述施压机构62B冲压后随着所述施压机构62B的上移而被粘连地带起。进一步地说,当所述物料100B的惯性和所述物料100B的重力大于所述物料100B与所述施压机构62B的粘连力以及所述物料100B和所述施压机构62B的摩擦力时,所述物料100B下落。
参考图21,所述维护运载设备70B包括一输送机构71B和一维护机构72B,其中所述维护机构72B被设置于所述输送机构71B的端部。所述输送机构71B可左右地移动,当所述输送机构71B被移动至所述施压机构62B下方时,所述维护机构72B向所述施压机构62B和所述模具61B喷油。
所述输送机构71B自一开始位置至一接收位置往复运动,以接收到自所述施压机构62B下落的所述物料100B后输送出去。进一步地说,所述接收位置指的是所述输送机构71B移动至所述锻压空间600B并处于所述施压机构62B中心的正下方。所述开始位置指的是所述输送机构71B未移动时的初始位置。所述开始位置位于所述锻造设备60B的一侧。所述接收位置允许所述输送结构71B接收地自所述施压机构62B下落的所述物料100B。
根据本发明的第三个优选实施例,所述维护机构72B包括至少二个喷油嘴721B和一输液主体722B。所述输液主体722B输送机油至所述喷油嘴721B。在所述控制平台10B的控制下,所述喷油嘴721B喷撒机油至所述锻压空间600B。
每个所述喷油嘴721B被设置于所述输送机构71B,并对所述施压机构62B和所述模具61B喷油。所述喷油嘴721B的其中至少一个被设置于所述输送机构71B的侧上方。
可选地,所述喷油嘴721B的其中另外至少一个被设置于所述输送机构71B的下方。也就是说,至少两个所述喷油嘴721B分别朝向所述施压机构62B和所述模具61B设置,以使得至少两个所述喷油嘴721B向两侧的所述施压机构62B和所述模具61B喷油,以维护所述喷油嘴721B和所述模具61B。
所述输送机构71B包括一驱动部711B和一接收部712B,其中所述驱动部711B驱动所述接收部712B往复移动,使得所述接收部712B被驱动地自所述开始位置至所述接收位置往复运动。进一步地说,所述接收位置指的是所述接收部712B移动至所述施压机构62B下方能接收到被锻压的物料100B的位置。
参考本发明的第三个优选实施例,所述接收部712B在所述驱动部711B滑动,使得所述接收部712B被所述驱动部711B拖动地往复移动。
所述物料100B被供料于所述锻造空间600B。所述物料100B被所述锻造设备60B锻压结束后,所述接收部712B从所述锻造空间600B接收被锻造成型的物料100B后,输送所述物料100B离开所述锻造空间600B,使得所述锻造空间600B被清空以在所述锻造空间600B被喷油后而再次执行供料于所述锻造空间600B后,所述锻压设备60B锻压所述物料100B。
所述驱动部711B包括一滑轨7111B和一驱动组件7112B。所述驱动组件7112B带动所述接收部712B往复地移动。所述接收部712B被驱动地于所述滑轨7111B往复运动,以多次运载所述物料100B至所述存储区域。
所述接收部712B自所述驱动部711B向预设方向延伸,使得所述接收部712B向预设方向移动至所述锻造空间600B后,接收到下落的所述物料100B。
所述接收部712B具有一送料通道7120B、连通所述送料通道7120B的一进料口7121B和一出料口7122B,其中所述进料口7121B和所述出料口7122B连通所述送料通道7120B和外界空气。
所述进料口7121B向上地被形成,使得自所述施压机构62B脱离的所述物料100B自所述进料口7121B掉落于所述接收部712B,并通过所述送料通道7120B后,自所述进料口7121B落于所述存储区域。
所述出料口7122B被形成于所述接收部712B的后方。当所述接收部712B接收到所述物料100B后,移回至初始位置,并带动所述物料100B沿着所述送料通道7120B,自所述出料口7122B离开所述输送机构71B。
所述接收部712B移回至所述滑轨7111B的所述开始位置时,所述接收部712B输送所述物料100B通过所述出料口7122B至所述存储区域。
值得一提的是,所述维护机构72B位于所述输送机构71B的所述进料口7121B侧。当所述输送机构71B移动至所述接收位置时,所述维护机构72B向外喷油。
在本发明中定义所述进料口7121B位于所述出料口7122B的前端。所述保护部7124B被设置于所述接收主体7123B的中部且位于所述接收主体7123B的上方。
所述维护运载设备70B被设置于所述锻造设备60B一侧,其中所述维护运载设备70B的所述接收部712B被驱动地向所述锻造设备60B往复运动。所述驱动组件7112B被设置于所述锻造设备60B的后方。所述接收部712B传动地被连接于所述驱动组件7112B,以使得所述驱动组件7112B运动并带动被设置于一侧的所述接收部712B往复移动于所述滑轨7111B,以允许所述接收部712B移动至所述锻造空间600B时,所述接收部712B倾斜地被置于所述施压机构62B和所述模具61B之间并能够接收到脱离所述施压机构62B粘连的所述物料100B。所述接收部712B被牵引地移回至所述开始位置,并允许所述物料100B自所述出料口7122B下落至所述存储区域。
所述接收部712B被设置于所述锻造设备60B的一侧。
优选地,所述接收部712B水平地移动至所述接收位置。所述接收部712B倾斜地被保持往复运动。
所述接收部712B的所述进料口7121B的一端被抬高。所述进料口7121B高于所述出料口7122B。换句话说,所述出料口7122B自所述进料口7121B落入的所述物料100B可沿着所述送料通道7120B下滑,并从所述出料口7122B脱离所述接收部712B。换句话说,所述接收部712B能够接收到被所述施压机构62B带起的所述物料100B后,运载所述物料100B并移回至所述开始位置,并允许所述物理100B沿着所述送料通道7120B下滑后从所述出料口7122B脱离所述接收部712B。
所述接收部712B被设置于所述模具61B的一侧,由于所述接收部712B的所述进料口7121B的一端被抬起,而使得所述接收部712B相对倾斜地被设置。所述接收部712B向所述模具61B移动并移动至所述模具61B的上方以接收到下落的所述物料100B。
所述驱动组件7112B被设置于所述接收部712B的一侧并驱动所述接收部712B
值得一提的是,所述驱动组件7112B被设置于所述滑轨7111B的一侧。
所述接收部712B包括一接收主体7123B和一保护部7124B,其中所述保护部7124B被匹配地设置于所述接收主体7123B上方。所述接收主体7123B和所述保护部7124B界定所述进料口7121B、所述送料通道7120B以及所述出料口7122B。所述接收主体7123B被实施为一长条形槽,且所述接收主体7123B被斜向上地设置于所述轨道所述接收主体7123B倾斜地设置。所述接收主体7123B自所述保护部7124B向移动方向延伸,使得所述驱动部711B被驱动地向所述移动方向移动时,所述接收主体7123B被带动地移动至所述施压机构62B下方后接收到下落的所述物料100B,使得所述物料100B依次地通过所述接收主体7123B和所述保护部7124B移动至所述存储区域。
所述接收主体7123B被倾斜地设置。参考地面,所述进料口7121B相对于所述出料口7122B高。也就是说,所述接收主体7123B向斜向上地被保持,使得所述接收主体7123B接收到下落的所述物料100B,并允许所述物料100B沿着所述送料通道7120B下滑,并从所述出料口7122B脱离。
倾斜设置的所述接收主体7123B,使得即使在所述接收主体7123B向后回移的时候,下落的所述物料100B可沿着所述接收主体7123B移动并从所述出料口7122B下落至所述存储区域。
值得一提的是,所述接收主体7123B倾斜角度是被预设的,所述接收主体7123B能够允许所述物料100B自由地下落并防止所述物料100B脱离所述接收主体7123B的通道。
优选地,所述接收主体7123B被实施为横截面为“U”型的轨道,使得所述接收主体7123B能够自上方接收到下落的所述物料100B。
所述保护部7124B被设置于所述接收主体7123B上方并与所述接收主体7123B形成一开口。也就是说,所述保护部7124B和所述接收主体7123B界定所述进料口7121B和所述出料口7122B。
所述保护部7124B包括一延展板71241B和一盖体71242B。所述延展板71241B自所述盖体71242B斜向上地延伸,防止下落的所述物料100B向外掉落,同时减少机油向后方喷洒,而造成所述维护运载设备70B和外部环境的污染。
值得一提的是,所述盖体71242B被设置于所述接收主体7123B上方,并且所述盖体71242B被覆盖于所述接收主体7123B的中部,进而防止所述物料100B脱离轨道运行。
优选地,接收部712B被设置于所述锻造设备60B的一平台边缘,其中所述物料100B可从所述出料口7122B下落至所述存储区域。
可选地,所述输送机构71B包括一分拣平台,其中所述分拣平台接收到自所述出料口7122B下落的所述物料100B并分拣后输送至不同的区域。值得一提的是,所述分拣平台区分拣废品和合格的产品后分别输送至不同的所述存储区域。
优选地,所述喷油嘴721B的数量被实施为三个,其中两个所述喷油嘴721B被分别设置于所述接收主体7123B的两侧,并且位于所述进料口7121B附近,其中一个所述喷油嘴721B被设置于所述接收主体7123B的底端,并且位于所述进料口7121B附近。
所述接收部712B向前移动和向后移动的时机是被预设的。
参考图22A至图22B,所述控制平台10B控制下,当所述施压机构62B抬起,而后,所述接收部712B自所述开始位置向所述接收位置移动。
所述接收部712B移动至所述接收位置,接收到下落的所述物料100B。
在所述控制平台10B控制下,所述维护机构72B喷油。
在所述维护机构72B喷油后,所述接收部712B自所述接收位置移回所述开始位置,并允许所述物料100B于所述出料口7122B下落至所述存储区域。
所述维护运输装置70B持续地进行运输所述物料100B并对所述锻造设备60B喷油。进一步地说,所述接收部712B持续地做往复运动,并在所述接收部712B位于所述接收位置时,所述维护机构72B喷油。
值得一提的是,所述的接收部712B自所述接收位置移回所述开始位置的时机是被预设的。当所述接收部712B移动至所述接收位置,所述接收部712B被所述控制平台10B控制,于一定时间后自所述接收位置移回所述开始位置。
优选地,所述接收部712B移动至所述接收位置后,所述维护机构72B喷油。
所述维护机构72B喷油的时机是所述接收部712B已接收到所述物料10B。也就是说,在所述接收部712B自所述开始位置开始移动一定预设时间后,所述维护机构72B喷油。
优选地,所述接收部712B的移动至所述接收位置后,所述维护机构72B喷油。
参考本发明的第三个优选实施例,所述喷油嘴721B的其中两个被设置于所述接收主体7123B的两侧并朝向前方喷油,使得所述喷油嘴721B喷出的机油在空气中以雾状的方式向上扩散,以维护所述施压机构62B。
由于所述喷油嘴721B向前喷油,其中所述喷油嘴721B喷油的时机为所述接收主体7123B位于所述施压机构62B下方,并接收到所述物料100B,所述喷油嘴721B向外喷油。
可选地,每个所述喷油嘴721B喷油的时机可以是一致的,也可以是不一致的。
参考本发明的第三个优选实施例,每个所述喷油嘴721B喷油的时机是一致的。
可选地,所述维护机构72B包括一检测部,其中所述检测部检测到所述接收部712B接收到所述物料100B时,每个所述喷油嘴721B喷油。
优选地,所述控制平台10B控制所述接收主体7123B移动至所述接收位置后,过一预设时间,所述控制平台10B控制每个所述喷油嘴721B向外喷油。
值得一提的是,所述控制平台10B控制所述维护机构72B于所述接收部712B移动至所述接收位置后喷油。
进一步地说,所述喷油嘴721B是预设的,所述喷油嘴721B向外喷出的油呈雾状,以更好地润滑所述锻压设备30B的所述模具61B和所述施压机构62B。
本领域技术人员应当可以理解并知晓,每个所述喷油嘴721B喷油的效果与所述喷孔打孔位置(电火花加工工艺)、喷孔孔径大小、喷孔孔型K系数(结合电火花加工工艺和液体挤压研磨工艺)、喷孔压力大小以及喷孔流量系数(液体挤压研磨工艺)有着密切的关系,使得所述喷油嘴721B向外持续地喷微量油,其中油滴被喷洒至所述锻压空间600B呈现雾状,能够更大范围地喷向所述施压机构62B和所述模具61B,使得所述施压机构62B和所述模具61B在喷油的过程中得到降温和润滑的效果,有助于所述锻压设备23B在接下来的锻压中减少机械损伤。
所述维护机构72B向所述锻造空间600B喷油,其中所述维护机构721B向所述锻造空间600B的四面八方地喷油,而不是定向地喷油。也就是说,所述维护机构72B对所述锻压装置23B喷油较为均匀,防止部分所述施压机构62B和/或所述模具61B未接触到油。
本领域技术人员应当可以理解并知晓,所述施压机构62B根据所述物料100B的制造需要可被控制地调整施压方式。在一种可行的方式中,所述锻造设备60B包括至少两个所述施压机构62B,所述施压机构62B之间具有不同的施压方式,通过所述维护运载设备70B将不同需要的所述物料100B运送至不同的所述施压机构62B,进而使得不同的所述物料100B得到不同的压力或者角度处理。也就是说,所述锻造设备60B为对应所述物料100B的特征而定制的。
所述锻造生产系统进一步地包括一油雾吸收器80B,其中所述油雾吸收器80B被设置于所述锻造设备60B的后方。优选地,相对于地面,所述油雾吸收器80B对应于所述施压机构62B的最高点。
参考图20,第四个优选实施例的一锻造生产方法被详细地揭露并诠释,其中所述锻造生产方法进一步地包括以下步骤:
(a)加热所述物料100B至一定温度后,供料至所述锻造空间600B;
(b)于所述锻造空间600B,锻造处理所述物料100B;
(c)往复移动的方式运载所述物料100B,并在所述锻造空间600B时,喷油至所述锻造空间600B;以及
(d)检验出货。
所述锻造生产方法中的步骤(d)进一步地包括以下步骤:
(d1B)检验所述物料100B;和
(d2B)出货。
所述锻造生产方法中的步骤(c)进一步地包括以下步骤:
(c.1B)当所述施压机构62B上移后,移动至所述接收位置以接收被锻造处理的所述物料100B;
(c.2B)上下喷油至所述锻造空间600B;以及
(c.3B)回程输送所述物料100B至所述存储区域。
值得一提的是,步骤(c.2B)可能发生于步骤(c.3B)的过程中,其中所述自所述接收位置回程的时机是被预设的,当所述施压机构62B上移后预设时间之后,所述施压机构62B回程移动。
上下喷油至所述锻造设备60B可以位于所述姐说位置时,也可以在回程移动过程中。优选地,所述锻造生产方法中的步骤(c.2B)后步骤(c.3B)进行。
本发明的附图说明之附图23示出了本发明的第五个优选实施例的一锻造生产系统,其中本实施例的所述锻造生产系统与第四个优选实施例的所述锻造生产系统不同的是所述维护机构72B被设置于所述输送机构71B的位置和数量不同,而成为新的实施例,其中所述锻造生产系统的所述喷油嘴721B的数量被实施为4B个且所述喷油嘴721B被设置于所述接收部712B的前端。
优选地,所述喷油嘴721B的其中二个被设置于所述接收部712B的前端的上方,其中所述喷油嘴721B的其中另外二个被设置于所述接收部712B的前端的下方,使得多个所述喷油嘴721B可对所述锻造空间600B全面地喷油,使得多个所述喷油嘴721B对所述施压机构62B和所述模具61B共同地喷油。
四个所述喷油嘴721B被分别上下地对立地设置,且四个所述喷油嘴721B被共同地设置于所述接收部712B的前端,使得两个所述输液主体722B可分别对其中相邻的,两个所述喷油嘴721B输液,减少所述输液主体722B的体积。进一步地说,所述输液主体722B被设置于所述接收部712B的两侧,以使得所述接收部712B被移动至所述接收位置时,所述输液机构722B位于所述锻造设备60B的侧部,减少高温对所述输液机构722B的影响。
本领域技术人员应当可以理解并知晓,所述喷油嘴721B可直接喷出油雾,也就是说,所述输液机构722B输送油雾,将高温的油雾输送至其中至少一个所述喷油嘴721B,使得所述喷油嘴721B直接上下地喷油雾,本发明不受任何限制。也就是说,所述维护机构72B被实施为一油雾发生器,且被设置于所述锻造设备60B的侧前方。所述维护机构72B在所述 控制平台10B的控制下间断地向所述锻造设备60B喷洒油雾。
本发明的附图说明之附图24A和图24B示出了本发明的第六个优选实施例的一锻造生产系统,其中本实施例的所述锻造生产系统与第四个优选实施例的所述锻造生产系统不同的是所述维护机构72B被设置于所述输送机构71B的位置和数量不同,而成为新的实施例,其中所述锻造生产系统的所述喷油嘴721B的数量被实施为4B个且所述喷油嘴721B被设置于所述接收部712B的侧部。
进一步地说,所述喷油嘴721B的其中两个被上下地设置于所述接收主体7123B的一侧,其中所述喷油嘴721B的其中另外两个被上下地设置于所述接收主体7123B的另一侧。被上下地设置指的是所述对喷油嘴721B朝向上下两个方向地设置,使得所述喷油嘴721B可朝向所述施压机构62B和所述模具61B同时喷油,其中所述施压机构62B被设置于所述模具61B的上方并共同界定所述锻造空间600B。
进一步地说,所述喷油嘴721B的其中两个向所述施压机构62B喷油,其中所述喷油嘴721B的其中另外两个向所述模具61B喷油。
所述维护机构72B被设置于所述接收部712B的两侧,其中所述维护机构72B被保持于所述接收部712B的前部或者端部。
优选地,所述维护机构72B被保持于所述接收部712B的前部。
本领域技术人员应当可以理解并知晓,所述喷油嘴721B朝向所两侧的数量可不一致。所述维护机构72B被设置于所述输送机构71B的两侧,其中所述喷油嘴721B的其中一个朝向所述模具61B喷油,其中所述喷油嘴721B的其中另外两个朝向所述施压机构62B喷油。
所述喷油嘴721B的数量还可以被实施为三个、五个、六个以及更多,在本发明中不受任何限制。此外,多个所述喷油嘴721B喷油的方向为上下两个方向。也就是说,所述喷油嘴721B的其中至少一个向上喷油维护所述施压机构62B,所述喷油嘴721B的其中至少一个向下喷油维护所述模具61B。优选地,所述喷油嘴721B的其中二个被设置于所述接收部712B的两侧的上方,并使得所述喷油嘴721B向上方喷油,其中所述喷油嘴721B的其中另外二个被设置于所述接收部712B的两侧的下方,并使得所述喷油嘴721B向下方喷油,使得四个所述喷油嘴721B可对所述锻造空间600B全面地喷油,保证所述施压机构62B和所述模具61B可且全面地接触到机油,以达到降温以及润滑。
值得一提的是,两个所述喷油嘴721B相对地设置于所述接收部712B的一侧,使得所述输液主体722B直接向两个所述喷油嘴721B输送机油,减少了所述维护机构72B的所述输液主体722B所需要的体积。
另外两个所述喷油嘴721B被相对地设置于所述接收部712B的另一侧。
优选地,四个所述喷油嘴721B都被设置于所述接收部712B的前部。
所述接收部712B被移动至所述接收位置,以接收到下落的所述物料100B,而后所述维护机构72B上下喷油。
优选地,所述油雾吸收器80B被设置于所述锻造设备60B的后方,持续地吸入油雾,防止所述油雾被留在所述锻造设备60B可能会造成污染,甚至意外的发生,通过所述油雾吸收器80B的使用,所述锻造生产系统更加安全并能够提高生产的使用时效。
所述油雾吸收器80B被设置于所述锻造设备60B的正后方,使得油雾可被直接地吸走。进一步地说,所述油雾吸收器80B吸取的是雾状的油雾和烟雾等。所述油雾吸收器80B的吸收范围位于所述模具61B和所述施压机构62B之间,进一步地说,所述油雾吸取器80B的吸收范围相对于所述模具61B高,且低于所述施压机构62B的最高位置,使得当所述施压机构62B上移,各个所述喷油嘴721B分别上下地喷油于所述锻造空间600B。所述油雾吸收器80B可直接吸走所述锻造空间600B弥漫的油雾。
参考说明书附图之附图24B和附图26,所述锻造生产系统包括所述检测装置90B,其中所述检测装置90B检测所述锻造设备60B和所述物料100B的状态。当所述检测装置90B检测到所述锻造设备60B和所述物料100B的位置异常时,所述检测装置90B发送给所述控制平台10B。所述控制平台10B控制所述维护运载设备70B停止移动或这照常运行。当所述检测装置90B检测到所述锻造设备60B和所述物料100B的状态正常时,所述检测装置90B发送给所述控制平台10B。所述控制平台10B控制所述维护运载设备70B正常运载所述物料100B以及喷油维护所述锻造设备60B。
值得一提的是,所述检测装置90B实时地检测所述锻造设备60B和所述物料100B的状态,使得所述检测装置90B保障所述锻造生产系统更加安全。
优选地,所述检测装置90B检测所述施压机构62B向上抬起,且所述物料100B持续地随着所述施压机构62B移动没有掉落。所述检测装置90B发送粘连异常信息于所述控制平台10B。而后,所述控制平台10B控制所述维护运载设备 70B停止于所述接收位置并不喷油。所述控制平台10B控制所述送拣机构52B停止送料。
当所述物料100B自所述锻造设备60B被取出时,所述检测装置90B检测后识别到所述锻造设备60B无物料100B。所述检测装置90B发送无物料信息于所述控制平台10B。而后,所述控制平台10B控制所述维护运载设备70B喷油并自所述结束位置移回所述开始位置。
当所述维护运载设备70B远离所述锻造设备60B,所述控制平台10B控制所述送拣机构52B继续输送所述物料100B于所述模具61B。
所述检测装置90B检测所述施压机构62B向上抬起,其中所述物料100B被留存于所述模具61B,而未被所述施压机构62B带起。所述检测装置80B发送位置异常信息于所述控制平台10B,其中所述控制平台10B控制所述维护运载设备70B停止于所述接收位置并不喷油。
当所述维护运载设备70B停止运作后,所述控制平台10B控制所述送拣机构52B停止送料。
当所述物料100B被脱离于所述锻造设备60B时,所述检测装置90B检测后识别所述施压机构62B和所述模具61B无所述物料100B,则所述检测装置90B发送无物料信息于所述控制平台10B。所述控制平台10B控制所述维护运载设备70B向外喷油后移回所述开始位置,而后持续地进行往复运动以及喷油维护。
而后,所述送拣机构52B被所述控制平台10B控制停止送料。
所述检测装置90B检测所述施压机构62B向上抬起,而所述施压机构62B和所述模具61B都没有所述物料100B。所述检测装置90B发送无物料信息于所述接收位置并喷油。
而后,所述控制平台10B控制所述送拣机构52B主动地输送所述物料100B于所述模具61B。
所述检测装置90B检测所述锻造设备60B有明火的时候,所述检测装置90B发送紧急处理信息于所述控制平台10B,其中所述控制平台10B控制所述维护运载设备70B停止移动和喷油,同时,所述控制平台10B停止所述锻造生产系统运作并报警处理。
本领域技术人员应当可以理解并知晓,所述锻造生产系统可通信于其他的所述锻造生产系统停止运作并报警处理,所述锻造生产系统可通信于其他各个系统,防止单一系统的明火应发大范围的危险,在本发明中不受任何限制。
所述检测装置90B检测所述锻造设备60B的所述施压机构62B和所述物料100B的位置。当所述施压机构62B上下运动时,如果所述物料100B一直随着所述施压机构62B移动的情况下或者所述物料100B没有随着所述施压机构62B的运动共同运动的情况下,所述检测装置90B检测后识别突发情况后发送给所述控制平台10B。所述控制平台10B控制所述维护运载设备70B执行突发状况下的程序。
值得一提的是,所述检测装置90B可只检测而不能够判断,其中所述检测装置90B输送检测到的信息至所述控制平台10B,通过所述控制平台10B的判断所述锻造设备60B和所述物料100B的情况后控制所述维护运载设备70B如何工作,进一步地是整个所述锻造生产系统的运作。
更值得一提的是,所述检测装置90B可被实施为第一个优选实施例中所述控制平台10B的所述监控器14B,在本发明中不受任何限制。
参考图25和图26,另个优选实施例的一锻造生产方法被详细地揭露并诠释,其中所述锻造生产方法进一步地包括以下步骤:
(a)加热所述物料100B至一定温度后,供料至所述锻造空间600B;
(b)藉由所述锻造设备60B,锻造处理所述物料100B;
(c)从所述锻造设备60B接收被锻造成型的物料100B后,输送所述物料100B离开所述锻造设备60B,使得所述锻造设备60B被清空以在所述锻造设备60B被喷油后而再次执行步骤(a);以及
(d)检验出货。
所述锻造生产方法中的步骤(d)进一步地包括以下步骤:
(d1B)检验所述物料100B;和
(d2B)出货。
所述锻造生产方法中的步骤(b)和步骤(c)之间进一步地包括以下步骤:
(e)检测锻造过程及所述物料100B的位置后判断是否有异常情况。
所述锻造生产方法中的步骤(c)进一步地包括以下步骤:
(c.1B)当施压结束后,移动至所述锻造设备60B以接收下落的所述物料100B;
(c.2B)上下喷油至所述锻造设备60B;以及
(c.3B)运载被锻造的所述物料100B远离所述锻造设备60B。
值得一提的是,所述锻造生产方法中的步骤(c.2B)可被执行于步骤(c.3B)的过程中。
所述锻造生产方法中的步骤(c.3B)之后执行所述步骤(a)。
所述锻造生产方法中的步骤(c.1B)之后进一步地包括以下步骤:
(c.4B)停止往复运动和喷油维护。
所述锻造生产方法中的步骤(c.1B)之后进一步地包括以下步骤:
(c.5B)上下喷油于所述锻造设备60B后,继续远离所述锻造设备60B。
所述锻造生产方法中的步骤(e)进一步地包括以下步骤:
(e.1B)检测后判断锻造过程中所述物料100B被粘连在所述锻造设备60B的任意位置。
当所述锻造生产方法中的步骤(e.1B)发生后,所述锻造生产方法步骤(c.4B)被执行。
所述锻造生产方法中的步骤(e.1B)进一步地包括以下步骤:
(e.1B.1B)检测后判断锻造过程中所述物料100B被粘连的位置选自组合施压机构62B和所述模具61B中的任意其一。
(e.1B.1B)当所述锻造生产方法中的步骤(e.1B.1B)发生后,所述锻造生产方法步骤(c.4B)被执行。
所述锻造生产方法中的步骤(e)进一步地包括以下步骤:
(e.2B)检测后判断锻造过程中无所述物料100B。
在所述锻造生产方法中的步骤(e.2B)发生后,所述锻造生产方法执行步骤(c.5B)。
在所述锻造生产方法中的步骤(e.1B)进一步地包括以下步骤:
(e.1B.3B)检测后判断锻造过程有明火。
在所述锻造生产方法进一步地包括以下步骤:
(g)紧急停止并报警。
在所述锻造生产方法中的步骤(e.3B)发生后,所述锻造生产方法步骤(g)被执行。
多个实施例的实施方式是可以自由组合的,本发明不受任何限制。
参考本发明的说明书附图27至20,依本发明的第七较佳实施例的在接下来的描述中被揭露和被阐述。所述锻压生产系统对至少一物料100A进行锻压加工,得到锻压后成型的产品。
如图27所示,所述锻压生产系统包括至少一热熔设备20A和至少一锻造设备30A。所述物料100A进入所述热熔设备20A,所述热熔设备20A对所述物料100A进行加热,使得所述物料100A达到一定温度。所述物料100A随后被投入所述锻造设备30A,所述锻造设备30A对所述物料100A进行锻压,将所述物料100A锻压成一定形状,所述物料100A被加工完毕,被送出所述锻压生产系统。
所述锻压生产系统还包括至少一运载设备40A和至少一送料设备50A,所述运载设备40A的一端连接所述热熔设备20A,以接收所述热熔设备20A加热后的所述物料100A。所述物料100A沿着所述运载设备40A向所述锻造设备30A移动。所述送料设备50A夹取所述物料100A投入所述锻造设备30A,所述锻造设备30A对所述物料100A进行锻压。
所述运载设备40A包括一入料工具41A,所述入料工具41A连接所述热熔设备20A,将所述物料100A送入所述热熔设备20A,以供所述热熔设备20A进行加热。
参照图31,所述热熔设备20A包括至少一加热器21A和至少一加热室22A,所述加热室22A内部形成一加热空间200。所述加热室22A的两端同外部连通。所述入料工具41A同所述加热室22A的一端连接,将所述物料100A送入所述加热空间200。所述加热器21A被设置于所述加热室22A的一端,朝向所述加热空间200。所述加热器21A向所述加热空间200加热。
所述运载设备40A还包括至少一输料工具42A,所述输料工具42A的一端同所述热熔设备20A连接。所述热熔设备20A加热所述物料100A后,所述物料100A进入所述输料工具42A,从所述输料工具42A的一端移动至另一端。
具体地,所述输料工具42A包括至少一接料端421A、至少一导轨422A和一出料端423A,所述接料端421A同所述热熔设备20A的一端连接。进一步地,所述接料端421A同所述加热室22A的一端连通。所述物料100A在所述加热室22A内的所述加热空间200被加热后,从所述加热室22A离开,进入所述接料端421A。所述物料100A继续通过所述接料端421A,沿着所述导轨422A到达所述出料端423A。所述接料端421A和所述出料端423A分别位于所述导轨422A的 两端。优选地,所述接料端421A位于高处,所述出料端423A位于低处,所述导轨422A连接所述接料端421A和所述出料端423A,所述导轨422A从高处的所述接料端421A向低处的所述出料端423A延伸。沿着所述导轨422A从所述接料端421A向所述出料端423A移动的所述物料100A,为从高处向低处移动。也就是说,在重力作用下,所述物料100A可以从高处的所述接料端421A沿着所述导轨422A滑动至所述出料端423A。
参照图32,所述送料设备50A被设置于所述运载设备40A旁。所述送料设备50A朝向所述输料工具42A的所述出料端423A。所述送料设备50A从所述出料端423A夹取所述物料100A,将所述物料100A投入所述锻造设备30A。
所述送料设备50A包括至少一转运臂51A和至少一夹取工具52A,所述夹具装置52被设置于所述转运臂51A的一端,朝向所述运载设备40A和所述锻造设备30A。所述转运臂51A在一定范围内移动,所述夹取工具52A随着所述转运比52移动而移动。也就是说,所述送料设备50A在一定范围内移动。
所述送料设备50A从所述出料端423A夹取所述物料100A后,移动一定的距离,将所述物料投入所述锻造设备30A。
具体地,所述转运臂51A在一定范围内转动,调整所述夹取工具52A的位置。所述物料100A从所述接料端421A沿着所述导轨422A移动至所述出料端423A,所述夹取工具52A从所述出料端423A夹取所述物料100A,所述转运臂51A向所述锻造设备30A转动,带动所述夹取工具52A向所述锻造设备30A移动,所述夹取工具52A对准所述锻造设备30A后,将所述物料100A投入所述锻造设备30A。
参照图32和图33,所述转运臂51A包括至少二调节臂511A,所述调节臂511A首尾相接,分别形成一固定端和一自由端。所述固定端和所述自由端为所述转运臂51A的两端。相邻所述调节臂511A之间形成一夹角。各所述调节臂511A可以发生相对转动,使得所述夹角可以被调节。其中一个所述调节臂511A的一端被固定于一面。所述面可以为地面或所述锻压生产系统的一处,或另一载体的一处。所述自由端被安装所述夹取工具52A。所述调节臂511A以所述固定端为圆点转动,调整方向和位置。
各所述调节臂511A调节位置和方向,进而调整所述转运臂51A的一送料姿态,使得所述夹取工具52A的位置和朝向被调整。
当所述送料设备50A需要从所述出料端423A夹取所述物料100A时,所述调节臂511A向所述出料端423A所在的位置转动,使得所述夹取工具52A随着所述调节臂511A被调整位置至所述出料端423A附近。
所述夹取工具52A的位置进一步被调整。当所述夹取工具52A的位置高于所述出料端423A的位置,形成所述自由端的所述调节臂511A向所述出料端423A的位置下探,使得所述夹取工具52A的高度被调整至同所述出料端423A的高度相适宜,所述夹取工具52A从高处向下接近所述出料端423A。其他所述调节臂511A配合需要下探的所述调节臂511A,相互转动着调整位置,使得需要下探的所述调节臂511A成功下探,调整所述夹取工具52A的高度。
当所述夹取工具52A同所述出料端423A之间的距离过大,形成所述自由端的所述调节臂511A沿着接近所述出料端423的方向移动一定的距离,使得所述夹取工具52A接近所述出料端423A。其他所述调节臂511A配合需要移动距离所述调节臂511A相对转动着所述送料姿态,使得被安装于所述自由端的所述夹取工具52A接近所述出料端423A。
所述夹取工具52A从所述出料端423A夹取所述物料100A。所述转运臂51A根据所述检测设备60A采集的所述特征确定的所述物料100A的后续处理放置,调整所述送料姿态,使得所述夹取工具52A将所述物料100A投放至正确的位置。当所述物料100A后续被确定为不可锻造,各所述调节臂511A向废品区调整方向和距离,使得所述夹取工具52A接近废品区。所述夹取工具52A由各所述调节臂511A调整至废品区时,所述夹取工具52A打开,所述物料100A被投入废品区。
当所述物料100A被确定为可以锻造,并确定所述物料100A需要被投入的所述锻造设备30A,各所述调节臂511A向所述锻造设备30A转动,调整所述夹取工具52A的高度、朝向和位置,使得所述夹取工具52A被调整至所述物料100A需要被投入所述锻造设备30的所述锻造设备30A的上方。所述夹取工具52A打开,使得所述物料100A被投入所述锻造设备30A。所述锻造设备30A对所述物料100A进行锻压。
值得一提的是,所述检测设备60A对所述锻造设备30A进行检测,以使所述送料设备50A在适当的时间投放所述物料100A。当所述检测设备60A检测到所述锻造设备30A中已被投入所述物料100A,所述送料设备50A若夹取了新的所述物料100A,所述送料设备50A需要等待,直至所述检测设备60A检测到所述锻造设备30A中未有所述物料100A,所述送料设备50可以将所述物料100A投入所述锻造设备30A。
也就是说,所述检测设备60A检测所述锻造设备30A是否正在锻造所述物料100A或是否已有所述物料100A被投入等待锻造,使得所述送料设备50A在所述锻造设备30A空闲时投入所述物料100A,保障所述锻造设备30A锻造顺利, 防止干扰,产生故障。
如图35所示,所述锻造设备30A包括一锻造台31A和一压力装置32A,所述锻造台31A被设置一模具311A,所述物料100A被投入所述模具311A,所述压力装置32A下压,将所述物料100A压成所述模具311A的形状。
所述送料设备50A将所述物料100A从所述出料端423A转送至所述锻造台31A,其中所述夹取工具52A夹取所述物料100A对准所述模具311A,将所述物料100A投入所述模具311A。所述物料100A被投入所述模具311A后,所述压力装置32A下压,将所述物料100A按照所述模具311A进行锻压。
所述物料100A被锻压成型后,需要被运送离开所述锻造设备30A。所述压力装置32A锻压所述物料100A后,向上往回移动。由于所述物料100A被热熔后锻压,所述物料100A被所述压力装置32A连带着带起。
所述运载设备40A还包括一出料工具43A,所述出料工具43A运载所述物料100A离开所述锻造设备30A。所述压力装置32A将所述物料100A在所述锻压台31锻压后,所述压力装置32A带着所述物料100A抬起,所述出料工具43A从所述锻造设备30A旁向所述锻造设备30A探出。所述出料工具43A移动至所述压力装置32A的下方,所述物料100A同所述压力装置32A脱离,落入所述出料工具43A,所述出料工具43A向外移动,带着所述物料100A离开所述锻造设备30A。
所述出料工具43A具有一倾斜面,所述倾斜面自所述出料工具43A朝向所述锻造设备30A的一端向外向下倾斜形成。当所述物料100A脱离所述压力装置32A,落入所述出料工具43A,所述物料100A从所述出料工具43A的高端向外侧的低端滑落。所述物料100A被锻造后离开所述锻造生产装置。
所述物料100A通过所述运载设备40A的所述入料工具41A自动地进入所述热熔设备20A被加热。接着,所述物料100A被推出所述热熔设备20A自动地进入所述运载设备40A的所述输料工具42A。所述物料100A沿着所述输料工具42A自动地从高端的所述接料端421A移动至低端。所述送料设备50A自动地将所述物料100A从所述入料工具41A转运至所述锻造设备30A。所述送料设备30将所述物料100A投入所述锻造设备30A,所述锻造设备30A锻造所述物料100A,将所述物料100A锻压成型。所述出料工具43A接收被锻造后的所述物料100A,所述物料100A离开所述锻压生产系统。在所述锻压生产系统对所述物料100A的锻压生产过程中,无需人工参与操作,减少了人工成本,且保证生产安全。
所述锻造生产装置还包括一维护设备70A,所述维护设备70A对所述锻造生产装置进行维护,以保障所述锻造生产装置的正常运行。
所述维护设备70A包括至少一喷油装置71A,所述喷油装置71A被设置于所述出料工具43A的高端。当所述出料工具43A从外侧向所述锻造设备30A移动,以接收所述物料100A时,所述喷油装置71A向上方的所述压力装置32A和下方的所述锻造台31A喷油,对所述压力装置32A和所述锻造台31A进行维护。所述喷油装置71A对所述锻造设备30A进行喷油,润滑所述锻造设备30A,维护所述锻造设备30A。
所述维护设备70A还包括至少一排烟装置72A,所述排烟装置72A对所述锻造设备30A产生的烟雾进行排除。
所述物料100A具有至少一特征,所述物料100A按照所述特征的不同,需要被执行不同的处理方式。不同材料形成的所述物料100A需要被加热至不同的温度,而所述物料100A是否达到合适的温度影响后续的锻造是否能够成功,并且能够符合成品要求。因此所述物料100A的所述特征被采集以供分析所述物料100A的处理方式。
所述锻造生产装置进一步包括至少一检测设备60A,所述检测设备60A对所述物料100A进行检测,采集所述物料100A的至少一特征。所述检测设备60A进一步根据所述物料100A的所述特征分析所述物料100A的处理方式。所述检测设备60A检测所述物料100A,采集所述物料100A的一材料特征101A。所述检测设备100根据所述物料100A的所述材料特征101A分析所述物料100A对应的生产方式,比如所述物料100A需要被加热的温度和所述物料100A需要被投入的所述锻造设备30A。
值得一提的是,所述锻造生产装置可以包括多个所述锻造设备30A,各所述锻造设备30A可以对相同材料的所述物料100A进行锻造,也可以对不同材料的所述物料100A进行锻造。各所述锻造设备30A可以被设置不同的所述模具311A,所述物料100A按照需要被制成的成品的不同,被投入被设置相应的所述模具311A的所述锻造设备30A,被锻造成相应的成品。所述物料100A可以按照所述检测设备60A采集的所述特征被投入相应的所述锻造设备30A。
当不同材料A、B、C制成的所述物料100A被投入所述锻造生产装置,各述锻造设备30A对不同材料的所述物料100A进行锻造。所述检测设备60A对所述物料100A进行检测,采集所述物料100A的所述材料特征,分析所述物料100A的材料分别为A、B、C。所述检测设备60A进一步根据所述物料100A的所述材料特征分析各所述物料100A需要被加热达到的相应温度。
所述物料100A通过所述入料工具41A进入所述热熔设备20A。所述热熔设备20A对所述物料100A按照所述物料100A的所述材料特征101A进行加热。所述物料100A被加热后离开所述热熔设备20A,并通过所述输料工具42A被运输至所述出料端423A。所述检测设备60A对所述物料100A进行检测,采集所述物料100A的一温度特征102A,分析所述物料100A被加热后的温度。所述检测设备60A进一步根据所述物料100A的所述温度特征102A分析所述物料100A是否被加热到符合要求的温度。
所述送料设备50A根据所述检测设备60A的分析结果对所述物料100A执行投料和移出两种方式。当所述检测设备60A分析所述物料100A被加热到符合要求的温度,所述送料设备50A将所述物料100A从所述出料端423A运送至所述锻造设备30A,投入所述锻造设备30A,由所述锻造设备30A锻造。其中,所述送料设备50A根据所述检测设备60A采集的所述材料特征101A,确定所述物料100A需要被投入的所述锻造设备30A。所述送料设备50A将所述物料100A投入锻造相应材料的所述锻造设备30A。具体地,所述转运臂51A朝向所述出料端423A,并向所述出料端423A探出一定距离,使得所述夹取工具52A接近位于所述出料端423A的所述物料100A。所述夹取工具52A从所述出料吨423夹取所述物料100A。所述转运臂51A向所述物料100A需要被投入的所述锻造设备30A方向转动,使得所述夹取工具52A接近所述锻造设备30A。所述转运臂51A向所述锻造设备30A探出一定距离,使得所述夹取工具52A移动至所述锻造台31A的上方。所述物料100A对准所述模具311A,所述夹取工具52A打开,所述物料100A脱离所述夹取工具52A,被投入所述模具311A。
所述检测设备60A对所述锻造设备30A是否被投入所述物料100A进行检测。所述检测设备30进一步检测所述模具311A是否被投入所述物料100A。当所述检测设备60A检测到所述锻造设备30A被投入所述模具,所述压力装置32A向所述模具311A下压,所述物料100A被锻压,按照所述模具311A的形状成型。
所述压力装置32A对所述物料100A进行锻压后,带着所述物料100A向上移动,所述出料工具43A向所述压力装置32A的下方移动,所述物料100A脱离所述压力装置32A掉入所述出料工具43A,所述出料工具43A向外移动离开所述压力装置32A的下方,所述物料100A从所述出料工具43A移出,进入成品区。所述物料100A被锻压完成。
当所述检测设备60A根据所采集的所述温度特征102A分析所述物料100A未被加热至相应温度,所述物料100A作废,所述送料设备50A将所述物料100A投入废品区。具体地,所述转运臂51A向所述出料端423A探出,所述夹取工具52A靠近所述出料端423A,并从所述出料端423A夹取所述物料100A,所述转运臂51A向废品区转动方向,所述夹取工具52A靠近废品区,所述夹取工具52A打开,所述物料100A脱离所述夹取工具52A,被投入废品区。
所述检测设备60A检测被投入所述锻造生产装置的所述物料100A的一外形特征103A。所述检测设备60A根据采集的所述外形特征103A分析所述物料100A后续被处理的方式。
在本发明的一个示例中,所述夹取装置52A的一端被固定于所述转运臂51A的自由端。所述夹取装置52A同所述转运臂51A之间的夹角不变。所述夹取装置52A从所述出料端423A夹取所述物料100A后,通过所述转运臂51A的所述送料姿态调整,被调整位置。所述夹取装置52A转移所述物料。
在本发明的另一个示例中,如图34所示,所述夹取工具52A同所述转运臂51A之间的夹角可变,也就是说,所述夹取工具52A相对所述转运臂51A可转动。所述夹取工具52A转动以调整被夹取的所述物料100A的一投放姿态。
举例地,所述检测设备60A检测被投入所述锻造生产装置的所述物料100A,采集所述物料100A的所述外形特征103A为长条状。长条状的所述物料100A需要被竖直投入所述锻造设备30A进行锻压。
所述物料100A被投入所述锻造生产装置后,首先通过所述入料工具41A进入所述热熔设备20A被加热。所述物料100A被加热后,离开所述热熔设备20A,进入所述输料工具42A。优选地,所述物料100A以横躺的形态进入所述输料工具42A。所述物料100A从所述输料工具42A的所述接料端421A沿着所述导轨422A移动至所述出料端423A。
所述检测设备60A对位于所述出料端423A的所述物料100A进行检测,采集所述物料的所述外形特征103A。所述检测设备60A也采集所述物料100A的所述温度特征102A。当所述检测设备60A采集到所述物料100A的所述外形特征103A为横躺在所述出料端423A时,且所述温度特征102A反映所述物料100A被加热后的温度达到要求,所述送料设备50A将所述物料100A从所述输料工具42A转运至所述锻造设备30A。
具体地,所述转运臂51A向所述出料端423A探出一定距离,所述夹取工具52A接近所述出料端423A,从所述出料端423A夹取所述物料100A。所述夹取工具52A从横躺的所述物料的两侧面夹住所述物料100A,使得所述物料100A被横躺着夹起。所述夹取工具52A夹着所述物料100A在所述转运臂51A的转动下,向所述锻造设备30A移动。所述转运臂51A向所述锻造设备30A探出一定距离,使得所述夹取工具52A移动至所述锻造台31A的上方。所述夹取工具52A 旋转一定角度,使得被夹取的所述物料100A呈竖直状。所述夹取工具52A将所述物料100A对准所述模具311A后打开,所述物料100A同所述夹取工具52A脱离,被竖直地投入所述锻造台31A的所述模具311A。所述压力装置32A对所述物料100A施加压力进行锻压。
也就是说,所述夹取工具52A在所述物料100A被投入所述锻造设备30A进行锻压前,调整所述物料100A的所述投放姿态,将所述物料100A从横躺的所述投放姿态转变为竖直的所述投放姿态,使得所述物料100A被竖直投入所述锻造设备30A,并在后续以竖直状态被锻压。
所述夹取工具52A调整所述物料100A的所述投放姿态的时机可以选在所述物料100A被夹取着离开所述输料工具42A至所述物料100A被投入所述锻造设备30A前的时间中。所述夹取工具52A夹着所述物料100A离开所述出料端423A后即可开始调整所述物料100A的所述投放姿态,在所述物料100A被投入所述锻造设备30A前,所述物料100A的所述投放姿态被调整完毕即可,使得所述物料100A以正确的所述投放姿态进入所述锻造设备30A。
在本发明的另一个示例中,所述物料100A的所述外形特征103A被所述检测设备60A采集为扁圆柱体。所述物料100A以底面贴着所述输料工具42A的方式,竖直地从所述接料端421A沿着所述导轨422A移动至所述出料端423A。所述检测设备60A对所述物料100A在所述出料端423A的所述外形特征103A进行采集。所述物料100A的所述外形特征103A被采集为竖直姿态。所述送料设备50A将所述物料100A从所述出料端423A转运至所述锻造设备30A。
其中,所述转运臂51A向所述出料端423A探出一定距离。所述夹取工具52A接近所述出料端423A,所述夹取工具52A从所述物料100A的侧面夹住所述物料100A,所述转运臂51A向所述锻造设备30A移动,所述夹取工具52A接近所述锻造设备30A,直至移动至所述锻造台31A的上方。所述物料100A以竖直的所述投放姿态被转移至所述锻造台31A的上方。
所述夹取工具52A打开,所述物料100A脱离所述夹取工具52A,以竖直的所述投放姿态被投入所述模具311A,所述压力装置31对所述物料100A进行锻压。
所述物料100A的所述外形特征103A影响到所述物料100A后续被处理的方式。所述送料工具50根据所述物料100A的所述外形特征103A确定所述物料100A被转运时的姿态以及所述物料100A被投入所述锻造台31A的所述投放姿态。
所述物料100A的所述外形特征103A对应的后续被处理的方式可以预先在所述送料设备50A进行输入,设置所述送料设备50A根据所述物料100A的所述外形特征103A选择相同的处理方式,如调整所述物料100A的所述投放姿态。
如图28至图30所示,所述锻造生产装置执行一锻压生产方法,以对所述物料100A进行锻造生产。所述锻造生产方法包括以下步骤:
801A:通过所述入料工具41A自动投入所述物料100A;
802A:将所述物料100A加热至一定温度;
803A:逐个夹取所述物料100A;
804A:调整所述送料设备50A的一送料姿态,以将所述物料100A逐个投入所述锻造设备30A;
805A:锻压所述物料100A;
806A:运载所述物料100A离开所述锻造生产装置。
在所述步骤801A中,所述物料100A通过所述运载设备40A的所述入料工具41A被投入所述热熔设备20A。所述热熔设备20A对所述物料100A进行加热,即执行所述步骤802A。
在所述步骤803A中,所述运载设备40A的所述输料工具42A输送所述物料100A离开所述热熔设备20A,将所述物料100A向所述锻造设备30A输送。所述接料端421A接住被加热后从所述热熔设备20A离开的所述物料100A,所述物料100A沿着所述导轨422A移动至所述出料端423A。
在所述步骤803A中,所述送料设备50A将所述物料100A投入所述锻造设备30A。所述转运臂51A朝向所述出料端423A,向所述出料端423A探出,所述夹取工具52A从所述出料端423A夹取所述物料100A。
在所述步骤804A中,所述夹取工具52A夹取所述物料100A后,所述转运臂51A向所述锻造设备30A调整方向和距离,调整所述送料姿态,使得所述夹取工具52A移动至所述锻造台31A的上方,所述物料100A对准所述锻造台31A的所述模具311A,所述夹取工具52A打开,所述物料100A被投入所述锻造台31A的所述模具311A。
在所述步骤805A中,所述锻造台31A上方的所述压力装置32A在所述锻造台31A被投入所述物料100A后,向下压,将所述物料100A按照所述模具311A的形状进行锻压。锻压后,所述压力装置32A向上移动。
在所述步骤806A中,所述压力装置32A向上移动的过程中,所述物料100A被所述压力装置32A带着向上移动, 侧方的所述出料工具43A向所述压力装置32A的下方移动。所述物料100A同所述压力装置32A脱离,所述物料100A掉入下方的所述出料工具43A,所述出料工具43A向外侧移动,带着所述物料100A离开所述锻造设备30A。所述物料100A从所述出料工具43A的高端处移动至低端处,并通过所述出料工具43A进一步移动至成品区。
在所述步骤804A之前进一步包括以下步骤:
901A:获取所述物料100A的所述温度特征102A;
902A:判断所述物料100A是否可以被锻造。
所述检测设备60采集经由所述输料工具42A到达所述出料端423A的所述物料100A的所述温度特征,并根据所述温度特征102A选择所述物料100A的后续处理方式。执行所述步骤902A,分析所述物料100A的所述温度特征102A反应所述物料100A被加热后的温度不符合要求,判断所属物料100A无法被锻造。
在所述步骤902A之后包括以下步骤:
903A:丢弃所述物料100A。
执行所述步骤903A,判断所述物料100A无法被锻造,将所述物料100A投入废品区。具体地,所述送料设备50A将所述物料100A从所述出料端423A夹取后,转向废品区,将所述物料100A投至废品区。其中所述转运臂51A将所述夹取工具52A对准所述出料端423A,并向所述出料端423A移动,直至所述夹取工具52A接近所述出料端523,所述夹取工具52A3打开从所述物料100A的两侧接触所述物料100A。所述夹取工具423夹持所述物料100A。所述转运臂51A调整方向,向废品区移动,所述夹取工具52A对准废品区。所述夹取工具52A打开,所述物料100A同所述夹取工具52A脱离。所述物料100A被投入废品区。
执行所述步骤902A,判断所述物料100A达到温度要求时,执行所述步骤804A,通过所述送料设备50A将所述物料100A投入所述锻造设备30A。
在所述步骤804A之前还包括以下步骤:
904A:检测所述物料100A的所述外形特征103A;和
902A:判断所述物料100A是否可以被锻造。
执行所述步骤904A,在所述出料端423A,通过所述检测设备60采集所述物料100A的所述外形特征103A。执行所述步骤902A,根据所述物料100A的所述外形特征103A判断所述物料100A是否可以被锻造,以确定所述物料100A的后续处理方式。当所述物料100A被判断为不能被锻造,执行所述步骤903A,将所述物料100A投入废品区。当所述物料100A能够被锻造,执行所述步骤804A,将所述物料100A投入所述锻造设备30A。
在本发明的一个示例中,所述步骤902A之后进一步包括一步骤905A:调整所述物料100A的所述投放姿态。执行所述步骤902A,所述物料100A被判断为可以锻造,并根据所述外形特征103A确定所述物料100A被投入所述锻造设备30A的所述投放姿态,执行所述步骤905A,通过所述送料设备50A调整所述物料100A的所述投放姿态。执行所述步骤804A,将所述物料100A按照调整后的所述投放姿态投入所述锻造设备30A。
举例地,当所述检测设备60采集到所述物料100A在所述出料端423A的所述外形特征103A为长条状横躺在所述出料端423A,执行所述步骤902A,判断所述物料100A可以被锻造。继续执行所述步骤905A,通过所述夹取工具52A夹取所述物料,所述转运臂51A向所述锻造设备30A调整方向和距离。所述夹取工具52A在随着所述转运臂51A移动的过程中调整所述物料100A的所述投放姿态。具体地,所述夹取工具52A以所述转运臂51A为轴心,转动一定角度,使得所述物料100A从被夹取时的横躺姿态调整为竖直的所述投放姿态。执行所述步骤804A,当所述夹取工具52A移动至所述锻造台31A的上方,所述夹取工具52A将所述物料100A以竖直的所述投放姿态投入所述锻造台31A。继续执行所述步骤805A和所述步骤806A,使得所述物料100A被锻压后进入成品区,完成对所述物料100A的锻压生产。
值得一提的是,所述物料100A的所述温度特征102A和所述外形特征103A均要符合所述物料100A后续能够被锻造的要求,使得所述物料100A继续进行锻压生产。也就是说,需要通所述过步骤901A和所述步骤904A,采集所述物料100A的所述温度特征102A和所述外形特征103A后,执行所述步骤902A判断所述物料100A是否可以被锻造。
在所述锻造生产系统中,根据所述物料100A被采集的所述特征判断所述物料100A是否可以被锻造,以及所述物料100A被锻造的处理方式。根据所述物料100A的特征自动地选择所述物料100A的后续生产方式。
参考本发明的说明书附图之附图36至图37,依本发明的第八较佳实施例的一锻压生产系统及其管理方法在接下来的描述中被揭露和被阐述,其中所述锻压生产设备包括一热熔设备20’,一锻造设备30’,一导轨60’与一运转设备70’。至少一物料100’被投入所述热熔设备20’,所述物料100’在所述热熔设备20’内被加热至一预设温度,所述预设温度 由人工设置并且在后续工序中可被调整,然后所述物料100’被依次自所述热熔设备20’送出至所述导轨60’的首端,所述导轨60’输送所述物料100’,所述物料100’位于所述导轨60’的尾端时被所述运转设备70’夹取至所述锻造设备30’以进一步锻压成型。
值得注意的是,所述导轨60’将所述物料100’自所述热熔设备20’运输至所述锻压设备30’,所述导轨60’实现所述物料100’自所述热熔设备20’至所述锻压设备30’的运输。所述物料100’自所述热熔设备20’出来后被所述导轨60’运到所述锻压设备30’,所述导轨60’发挥的作用是避免了所述物料100’在上述运输途中产生与一工人的接触,从而避免了处于高温状态的所述物料100’对所述工人造成意外伤害或所述工人在接触所述物料100’时对所述物料产生损伤,例如将所述物料100’掉落在地。本实施例的所述导轨60’可以被认为等同于上述实施例的所述滑轨机构411’。
在后续工序进行过程中,所述运转设备70’进一步对所述物料100’进行抓取、送出等动作,减少了人工成本,使得生产过程更具安全性。
在各项工序完成后,所述物料100’成为一坯体,被所述运转设备70’输出所述锻压生产设备并被收集。所述物料100’进入所述热熔设备20’的方式多样化,所述物料100’可以是但不限于被一入料工具投入所述热熔设备20’,所述物料100’也可以被人工投放到所述热熔设备20’中被加热,在此不做限制。所述热熔设备20’包括一加热室21’与一加热器22’,所述热熔设备20’具有一加热空间200’,所述加热空间200’被设于所述加热室21’内部,所述加热室21’定义所述加热空间200’,所述加热室21’被所述加热器22’加热。在具体实施过程中,所述加热器22’加热所述加热室21’的所述加热空间200’,所述加热空间200’供所述物料100’被加热至一预设温度使用,所述预设温度由使用者调控,使用者能够根据收集到的信息对所述预设温度作出更改,从而更好地实现所述物料100’的加热。所述物料100’被投入所述加热室21’的所述加热空间200’内部被加热,然后所述物料100’被依次送出所述加热空间200’至所述导轨60’。接下来,所述导轨60’及所述运转设备70’运载所述物料100’在所述锻压生产设备内流转,使得所述物料100’经历各项工序,直至被输出所述锻压生产设备。所述热熔设备20’可以是但不限于火炉等,所述物料100’在所述热熔设备20’内部被加热后,按照次序被送出所述热熔设备20’。
所述物料100’被放入所述热熔设备20’后,主要在所述加热室21’的所述加热空间200’中被加热。值得一提的是,所述加热室21’的加热温度可控地被设置。根据所述物料100’的需要,所述加热室21’相应地被所述加热器22’进行加热,并使得所述物料100’在所述加热空间200’内达到预先设定的温度,以便于后续加工。
所述物料100’具有至少一特征,本领域的技术人员可以理解的是,所述物料100’所具有的至少一特征是不同的角度的对于所述物料100’的定义方式。在本实施例中,所述物料100’的特征包括一外形特征101’、一温度特征102’与一位置特征103’。所述外形特征101’是对所述物料100’的形状数值体现,通过所述外形特征101’能够识别所述物料100’的形状。在具体实施过程中,能够通过距离传感器、重量传感器或若干传感器之间的配合得到所述物料100’的形状信息。所述温度特征102’为所述物料100’的温度数值体现,通过所述温度特征102’能够识别所述物料100’的外表温度。在具体实施过程中,通过温度传感器、红外传感器或者若干传感器之间的配合得到所述物料100’的外表温度的信息。所述位置特征103’为所述物料100’的相对位置数值体现,通过所述位置特征103’可以识别所述物料100’的实际位置。在具体实施过程中,通过红外传感器或若干传感器之间的配合得到所述物料100’的相对位置的信息。所述外形特征101’、所述温度特征102’与所述位置特征103’被用来获知所述物料100’的实际情况,进而决定所述物料100’被送往下一设备或被排出所述锻压生产设备的生产过程。
所述锻造设备30’对已经加热的所述物料100’进行压力成型操作,使得所述物料100’被锻压成型。所述锻造设备30’包括一模具31’与一施压机构32’,所述物料100’被所述导轨60’输送被所述运转设备70’放至所述模具31’,所述施压机构32’对在所述模具31’内部的所述物料100’施加压力,使得所述物料100’在所述模具31’内部被压制成型。所述施压机构32’的速度、力度、频率均可调,所述模具31’的形状、大小可调,在锻压所述物料100’的过程中,所述模具31’和所述施压机构32’的设定能够基于所述物料100’本身的情况及使用者的需要被调节。
所述锻造设备30’具有一锻造空间300’,所述锻造空间300’被所述模具31’定义,所述锻造空间300’被形成于所述模具31’内部,所述物料100’在所述模具31’的所述锻造空间300’被所述施压机构32’进行压力冲击,使得所述物料100’被高温下被锻压成型,成为所述坯体。
所述运转设备70’包括一搬运工具71’与一出料工具72’,所述搬运工具71’可以是但不限于被独立地设置,所述搬运工具71’能够将所述物料100’自所述导轨60’传递至所述模具31’。在本实施例中,所述搬运工具71’可以被独立地设置,在本发明的另一变形实施例中,所述搬运工具71’也可以被设于所述锻造设备30’的基座。本实施例的所述 搬运工具71’可以理解为上述实施例的所述搬运机构412,所述出料工具72’可以理解为上述实施例的所述出料工具43。
在具体实施过程中,所述搬运工具71’搬运所述物料100’自所述导轨60’至所述锻造设备30’的所述模具31’,所述物料100’在所述模具31’内部的所述锻造空间300’接受所述施压机构32’的锻压后,所述物料100’被所述施压机构32’短暂地黏住,此时所述出料工具72’伸出并接收自所述施压机构32’掉落的所述物料100’,所述物料100’逐个地自所述热熔设备20’的所述加热空间200’被输送至所述导轨60’,逐个地被所述搬运工具71’搬运至所述模具31’,接受所述施压机构32’的锻压。
值得注意的是,所述物料100’不仅能够通过所述导轨60’被输送,还能够在所述导轨60’的端部短暂停留,等待被所述搬运工具71’夹取,所述导轨60’不仅使得所述热熔设备20’与所述锻造设备30’的生产得到连接,还能够供所述物料100’自所述热熔设备20’出来与进入所述锻造设备30’之间的过程中得到收容,所述物料100’位于所述导轨60’上等待被夹取。
所述搬运工具71’包括一夹取端711’与一转运臂712’,所述夹取端711’被设于所述转运臂712’,所述夹取端711’夹取被所述导轨60’输送的所述物料100’,所述夹取端711’可控制地被连接至所述转运臂712’,所述夹取端711’能够在所述转运臂712’上活动,所述夹取端711’被设定一运行轨道,确保所述夹取端711’能够顺利夹取所述导轨60’输送到的所述物料100’,所述转运臂712’控制着所述夹取端711’夹取所述物料100’。所述导轨60’运输并收容所述物料100’供所述搬运工具71’的所述夹取端711’夹取,所述夹取端711’夹取所述物料100’并移动至所述锻造设备30’的所述模具31’内部的所述锻造空间300’。
所述施压机构32’将所述物料100’锻压成型,然后所述出料工具72’移送所述物料100’至一外部收集箱,藉此完成所述物料100’的加工。值得注意的是,所述夹取端711’可以理解为上述实施例的所述夹取端4121,所述转运臂712’可以理解为上述实施例的所述转运臂4122。
所述出料工具72’能够输送所述物料100’离开所述锻压生产设备。所述出料工具72’被设置于所述锻造设备30’的基座,所述出料工具72’在所述施压机构32’锻压所述模具31’后伸出,所述出料工具72’接收所述施压机构32’上掉落的所述物料100’,所述物料100’沿所述出料工具72’滑出所述锻压生产设备。所述出料工具72’的结构可以是但不限于具有容纳所述物料100’通过的滑槽,所述出料工具72’允许所述物料100’掉落至一外部收集箱,所述出料工具72’保障所述物料100’自所述锻造设备30’到达所述外部收集箱。更具体地,自所述热熔设备20’开始,所述物料100’开始被所述锻压生产设备处理,所述出料工具72’将所述物料100’带离所述锻压生产设备,使得所述物料100’结束在所述锻压生产设备中的流程。
所述物料100’被所述导轨60’运送,所述导轨60’运送所述物料100’自所述热熔设备20’至所述锻造设备30’等待,所述搬运工具71’搬运所述物料100’至所述模具31’所对应的所述锻造空间300’中。所述施压机构32’根据所述物料100’的制造需要可控地调整施压方式。在具体实施过程中,所述施压机构32’的施压压力或者施压角度能够被调整。
所述导轨60’包括一滑行导轨61’与一输送导轨62’,所述物料100’自所述热熔设备20’的所述加热室21’的所述加热空间200’被依次传递至所述滑行导轨61’,所述物料100’自所述滑行导轨61’滑行至所述输送导轨62’,所述滑行导轨61’与所述输送导轨62’形成一体,所述输送导轨62’被无缝衔接于所述滑行导轨61’。
具体而言,在所述物料100’的滑行过程中,所述滑行导轨61’与所述输送导轨62’为一体成型,所述滑行导轨61’与所述输送导轨62’共同组成了所述导轨60’,所述物料100’轻松地自所述滑行导轨61’滑行至所述输送导轨62’。
所述滑行导轨61’形状优选为自上而下,便于所述物料100’自所述滑行导轨61’的一端滑行至另一端,也便于所述滑行导轨61’被延伸至所述热熔设备20’的所述加热室21’,所述滑行导轨61’与所述加热室21’的配合方式可以是衔接,也可以是不直接接触而存在落差的配合方式,例如所述滑行导轨61’的一端被延伸至所述加热室21’下方以接到被传递出来的所述物料100’,无论是以上哪种配合方式,都不会影响所述物料100’自所述加热室21’被依次传递至所述滑行导轨61’被接收。更具体地说,所述滑行导轨61’一端被延伸至所述热熔设备20’,所述滑行导轨61’供所述物料100’自所述热熔设备20’的所述加热室21’的所述加热空间200’滑行至所述输送导轨62’,所述物料100’依次被从所述热熔设备20’传递至所述滑行导轨61’,所述物料100’依次从所述滑行导轨61’滑行至所述输送导轨62’,所述物料100’在所述输送导轨62’短暂停留,等待被所述运转设备70’的所述搬运工具71’的所述夹取端711’夹取。
所述滑行导轨61’具有一收集端611’、一滑行面612’与一滑行通道614’。所述收集端611’被设于所述滑行导轨61’的首端以收集所述热熔设备20’加工后的所述物料100’,所述收集端611’收合于所述热熔设备20’的所述加热室 21’,本文所提及的收合即收拢及配合,所述收集端611’能够接收所述加热室21’内部被传递的各个所述物料100’,所述收集端611’与所述热熔设备20’的配合方式能够是衔接,也能够是存在一定落差的不直接接触的错位配合,无论何种配合方式,所述收集端611’能够顺利接收到自所述加热室21’被传递出来的各个所述物料100’。
所述物料100’被所述收集端611’收集并进入所述滑行通道614’,所述物料100’于所述滑行通道614’内部滑行于所述滑行面612’。值得注意的是,所述收集端611’可以理解为上述实施例的所述收集端4111,所述滑行通道614’可以理解为上述实施例的所述滑行通道4112。所述滑行导轨61’包括二滑行侧壁613’,各个所述滑行侧壁613’分别自所述滑行面612’两侧向上延伸,所述滑行通道614’被形成于各个所述滑行侧壁613’之间,所述滑行侧壁613’与所述滑行面612’共同定义所述滑行通道614’,所述收集端611’被连接于所述各个所述滑行侧壁613’,所述滑行通道614’延伸至所述收集端611’,所述物料100’能够通过所述收集端611’进入所述滑行通道614’,所述物料100’进入所述滑行通道614’后实现自上而下地滑行。各个所述滑行侧壁613’在两侧发挥阻挡作用,使得所述物料100’在所述滑行通道614’中滑行时不会掉落下来,所述滑行面612’可以是但不限于光滑的表面,以此减少所述物料100’滑行过程中遇到的阻力,使得所述物料100’在所述滑行面612’滑行时十分顺畅,不会磕磕碰碰延迟所述物料100’的运输时间,也不会对所述物料100’造成磨损,减少了所述物料100’在运输过程中的消耗。
所述输送导轨62’具有一给出端621’与一输送通道624’并且包括一输送面622’。所述给出端621’被设于所述输送导轨62’供所述物料100’依次到达,所述给出端621’位于所述输送导轨62’的端部,所述物料100’依次滑行至所述输送面622’停留并等待被所述夹取端711’夹取。所述输送面622’与所述滑行面612’为一体的设计,所述输送通道624’被连通至所述滑行通道614’,所述物料100’能够自所述滑行面612’滑行至所述输送面622’。此外,所述输送通道624’被延伸至所述给出端621’,所述物料100’通过所述输送通道624’到达所述给出端621’,并在给出端621’停留等待被所述夹取端711’夹取。
更具体地说,所述物料100’依次地到达所述输送导轨62’的所述给出端621’,所述搬运工具71’的所述夹取端711’伸至所述给出端621’夹取各个所述物料100’。值得注意的是,所述给出端621’可以理解为上述实施例的所述给出端4113。所述输送导轨62’包括二输送侧壁623’,各个所述输送侧壁623’自所述输送面622’的两侧向上延伸,所述输送通道624’位于各个所述输送侧壁623’之间,所述输送面622’与所述输送侧壁623’共同定义所述输送通道624’,所述输送侧壁623’与所述滑行侧壁613’优选为一体成型设计,所述输送面622’与所述滑行面612’为一体的设计,所述输送通道624’与所述滑行通道614’被连通,所述物料100’能够自所述滑行通道614’滑行至所述输送通道624’,所述物料100’在所述输送通道624’内部被输送,所述物料100’持续滑行于所述输送面622’,各个所述输送侧壁623’保障所述物料100’滑行于所述输送通道624’时不掉落下来,所述输送面622’可以是但不限于光滑的表面,以此减少所述物料100’滑行过程中遇到的阻力,使得所述物料100’在所述输送面622’滑行时十分顺畅,不会磕磕碰碰延迟所述物料100’的运输时间,也不会对所述物料100’造成磨损,减少了所述物料100’在运输过程中的消耗。
具体地说,所述输送通道624’连通所述滑行通道614’使得所述物料100’能够顺利地从所述滑行通道614’滑行至所述输送通道624’,所述输送通道624’被连通至所述给出端621’,所述物料100’自所述输送通道624’被输送至所述给出端621’,所述物料100’停留于所述给出端621’并被所述搬运工具71’的所述夹取端711’夹取。所述给出端621’供所述物料100’停留,所述输送侧壁623’保障所述物料100’于所述输送通道624’被输送时不会掉落。值得注意的是,所述物料100’自所述滑行通道614’滑行至所述输送通道624’时,能够是由于惯性作用力持续滑行至被所述输送通道624’连通的所述给出端621’,也能够是由于下一所述物料100’的推移作用力使得所述物料100’持续滑行至所述给出端621’。
所述输送导轨62’进一步包括一拦截件625’,所述拦截件625’包括至少一端部,所述端部被设于任一所述输送侧壁623’,向另一所述输送侧壁623’延伸,当所述端部的数量为两个时,各个所述端部被设于各个所述输送侧壁623’,所述拦截件625’被设于所述输送导轨62’的所述给出端621’,所述拦截件625’拦截所述物料100’于所述给出端621’,使得所述物料100’恰好地被限位于所述给出端621’内的一固定位置,供所述夹取端711’自所述固定位置上顺利地夹取所述物料100’,使得所述物料100’的所述位置特征103’得到保障,便于所述转运臂712’带动所述夹取端711’顺利夹取所述物料100’。
值得注意的是,所述收集端611’的开口应大于所述物料100’的实际体积,以便所述收集端611’能够轻松地收容被传递出来的所述物料100’,所述物料100’自所述加热室21’被传递出来后被所述收集端611’收容,所述滑行通道614’被设计为逐渐变窄以允许所述物料100’进入后被送到所述输送导轨62’的所述输送通道624’,所述滑行通道614’ 优选为逐渐变窄的设计使得所述物料100’通过时的位置得到调节,以供所述物料100’到达所述输送导轨62’的所述输送通道624’时确保被传输的位置不会发生偏移,使得所述物料100’的所述位置特征103’得到保障。在具体实施过程中,多个所述物料100’依次被所述收集端611’收集,然后依次滑行通过所述滑行通道614’时所述位置特征103’被矫正,使得所述物料100’到达所述停靠轨道42’的所述给出端621’时位置准确。在具体实施过程中,所述滑行通道614’逐渐变窄的设计可以是但不限于通过两个滑行侧壁613’被逐步地靠近实现的,在此不作过多限制。所述锻压生产设备进一步包括一控制平台10’,所述控制平台10’控制所述热熔设备20’对所述物料100’进行加工的温度、速度等,所述锻造设备30’被所述控制平台10’调整对所述物料100’锻压的速度、频率等,所述控制平台10’接收各项反馈信息例如所述外形特征101’、所述温度特征102’与所述位置特征103’,藉此调整对所述物料100’的加工。
所述控制平台10’包括一运算器11’、一反馈器12’、一执行器13’与一监控器14’。所述运算器11’、所述反馈器12’、所述执行器13’与所述监控器14’被可通信地相互连接。所述运算器11’计算所述反馈器12’得到的所述热熔设备20’和所述锻造设备30’的反馈数据,所述执行器13’藉此计算结果控制所述加热室21’、所述施压机构32’以及所述运转设备70’。所述运转设备70’接收所述执行器13’的控制进而使得所述夹取端711’夹取任一所述物料100’或排出任一所述物料100’,任一所述物料100’的所述温度特征102’和所述位置特征103’能够作为反馈数据被提交,所述监控器14’能够预先设定所述运算器11’的相关控制参数,并将所述反馈器12’的反馈信息显示,从而实现交互控制。在具体实施过程中,所述监控器14’可以是但不限于温度传感器、红外传感器或者若干传感器等。此外,所述控制平台10’指挥所述夹取端711’识别合格的所述物料100’自所述导轨60’的所述给出端621’被夹取进入下一工序,不合格的所述物料100’被排除。
值得注意的是,在本发明的另一变形实施例,仅陈述与本实施例的不同之处在于,所述物料100’自所述滑行导轨61’进入所述输送导轨62’的方式,可以是依靠传送带实施,一传送带被设置于所述输送导轨62’的底部,所述物料100’自所述滑行导轨61’进入所述输送导轨62’时依靠所述传送带进行传送,所述传动带被二轮与一电机带动运转,所述电机提供动力,各个所述轮带动所述传动带运转。应当注意的是,仅陈述与本实施例的不同之处是为了阐述清楚,简明扼要,不作为对此变形实施例的任何限制。
在本发明的另一变形实施例中,所述滑行导轨61’具有至少一弯曲部,所述滑行导轨61’能够呈现一蜿蜒形态,所述滑行导轨61’的蜿蜒形态使得装配于所述热熔设备20’时更为简易,并且缩短了所述物料100’自所述热熔设备20’到达所述锻造设备30’的路径,所述导轨60’被装配于所述热熔设备20’与所述锻造设备30’时更为灵活,并且节省空间。
本发明的又一变形实施例中,所述锻造设备包括至少两个所述施压机构32’,所述施压机构32’分别具有不同的施压方式,通过所述导轨60’分别运送具有不同需求的所述物料100’至不同的所述施压机构32’,使得不同的所述物料100’得到不同的压力或者角度处理。在具体实施过程中,所述锻造设备30’能够被设计为对应所述物料100’的特征进行定制。所述模具31’对应于所述物料100’的所述外形特征101’,所述施压机构32’对应于所述温度特征102’,使得不同的所述物料100’得到相对应的锻压处理。值得注意的是,在此变形实施例中,所述加热空间200’和所述锻造空间300’存在饱和的情况。当所述加热空间200’和所述锻造空间300’饱和,也就是不能为后续的所述物料100’提供所述热熔设备20’和所述锻造设备30’时,所述导轨60’将给予等待或者调整运送至不饱和的所述加热空间200’和所述锻造空间300’中。因此,介于所述加热空间200’和所述锻造空间300’的限制,所述导轨60’将进行调整运送所述物料100’的方式,以保证所述物料100’在所述热熔设备20’和所述锻造设备30’以及前后流转的效率。加工完成后,所述物料100’的所述外形特征101’被改变,也就是成为所述成型坯料。然后对所述物料100’的所述外形特征101’进行检测,从而得到所述物料100’是否为合格的产品。对于合格的产品将结束锻压制造过程,产出所述物料100’。而对于不合格的所述物料100’将返回起始,视所述物料100’的情况进行进一步的加工或者被最终排出。
参考本发明的说明书附图之附图38,依本发明的另一较佳实施例的一导轨装置在接下来的描述中被揭露和被阐述,下面仅阐述与上述实施例的不同之处,值得注意的是,仅阐述不同之处是基于描述简洁及便于理解,不作为对本发明的限制,其中所述导轨装置为导轨80”,所述导轨80”被设于所述热熔设备20”与所述锻造设备30”之间以供所述物料100”自所述热熔设备20”流转至所述锻造设备30”,所述物料100”自所述热熔设备20”被高温加热后通过所述导轨80”被输送至所述锻造设备30”,所述物料100”通过所述导轨80”被输送能够尽量避免在输送途中产生的消耗,也能够提高安全保障避免了接触其他物品或工人。
所述导轨80”包括一收集端81”、一给出端85”,并且具有一滑行通道84”。所述滑行通道84”被延伸至所述收集端 81”及所述给出端85”,所述收集端81”被延伸至所述热熔设备20”以收集所述热熔设备20”依次传递的所述物料100”,所述物料100”通过所述收集端81”进入所述滑行通道84”,所述物料100”在所述滑行通道84”实现自上而下的滑行,抵达所述给出端85”等待被所述夹取端711”夹取。所述收集端81”收合于所述热熔设备20”,本文所提及的收合即收拢及配合,所述收集端81”与所述热熔设备20”的配合方式不做限制,可以是衔接的配合方式,也可以是存在落差的不直接接触的配合方式,例如所述收集端81”被置于所述热熔设备20”的所述加热室21”的下方以接收被传递出来的所述物料100”,无论配合方式产生何种变化均不影响所述收集端81”收集所述物料100”。
所述导轨80”形状优选为自上而下地倾斜,同样的,所述滑行通道84”形状优选为自上而下地倾斜,以便于所述物料100”的滑行,所述物料100”自所述收集端81”通过所述滑行通道84”滑行至所述给出端85”并等待被夹取。
所述导轨80”进一步包括一滑行面82”与二滑行侧壁83”,各个所述滑行侧壁83”分别自所述滑行面82”的两侧向上延伸,所述滑行面82”与各个所述滑行侧壁83”共同定义所述滑行通道84”,所述滑行通道84”位于各个所述滑行侧壁83”之间,所述物料100”在所述滑行通道84”滑行时被各个所述滑行侧壁83”阻挡不会掉落下来。所述滑行面82”可以是但不限于光滑的表面,以此减少所述物料100”滑行过程中遇到的阻力,使得所述物料100”在所述滑行面82”滑行时十分顺畅,不会磕磕碰碰延迟所述物料100”的运输时间,也不会对所述物料100”造成磨损,减少了所述物料100”在运输过程中的消耗。
所述导轨80”进一步包括一拦截件86”,所述拦截件86”被设于所述给出端85”,所述拦截件86”两端被分别固定于各个所述滑行侧壁83”,所述拦截件86”穿过所述滑行通道83”,所述拦截件86”与所述滑行面82”的距离小于所述物料100”的高度使得所述物料100”滑行于所述滑行通道84”时能够被拦截于所述拦截件86”,所述拦截件86”拦截沿所述滑行通道83”滑行至所述给出端85”的所述物料100”,所述物料100”被所述拦截件86”限位于所述给出端85”等待被夹取。
值得注意的是,在本实施例中,所述导轨80”自上而下的倾斜设计使得所述物料100”能够顺利地于所述滑行通道84”滑行,所述导轨80”衔接所述热熔设备20”与所述锻造设备30”时,通过所述收集端81”被延伸至所述加热室21”及所述给出端85”被延伸至所述锻造设备30”保持在一预设距离内,所述预设距离为不直接接触但是距离较为接近,可以理解为所述给出端85”被延伸至所述锻造设备30”附近,以便于缩短所述夹取端711”自所述给出端85”夹取所述物料100”至所述模具31”内部的路径。
在发明的其他变形实施例中,所述导轨80”具有至少一弯曲部分以便更好地配合所述热熔设备20”及所述锻造设备30”的安装。在具体实施过程中,所述弯曲部分供所述导轨80”自上而下地倾斜设置的同时实现一蜿蜒的形态,所述蜿蜒的形态便于所述热熔设备20”与所述锻造设备30”的装配及摆放更节省空间,所述导轨80”的蜿蜒形态允许所述热熔设备20”与所述锻造设备30”能够被紧凑地挨着放在一起,藉此节省占用空间,值得注意的是,所述导轨80”自所述热熔设备20”延伸至所述锻造设备30”时,仅限于在需要的情况下被弯曲呈现蜿蜒形态,不会影响所述物料100”的滑行。
在本发明的另一变形实施例中,仅阐述与上述实施例的不同之处,值得注意的是,仅阐述与上述实施例的不同之处是为了描述简洁便于理解,不作为对本发明的任何限制。其中所述导轨80”能够是水平方向延伸,所述收集端81”与所述给出端85”均在水平方向被对应地设置,依托一传送带完成所述物料100”自所述收集端81”到所述给出端85”的移动。更具体地,所述传送带自所述收集端81”延伸至所述给出端85”,所述传送带优选为被二轮与一电机带动运转,所述电机提供动力,各个所述轮带动所述传动带运转,使得所述物料100”自所述收集端81”被所述传送带输送至所述给出端85”。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (95)

  1. 一锻压生产管理方法,其特征在于,包括步骤:
    A.采集所投入的一物料的至少一特征;
    B.根据所述物料的所述特征,对应性地抉择锻压处理的操作因素的温度、压力或模具中的至少一个;
    C.运送所述物料至抉择结果;以及
    D.处理所述物料直至产出成品。
  2. 根据权利要求1所述的锻压生产管理方法,其中步骤A中的所投入所述物料预先地匹配地对应于成品的锻压操作因素。
  3. 根据权利要求1所述的锻压生产管理方法,其中步骤A中的所述物料为对应于至少两种成品。
  4. 根据权利要求1所述的锻压生产管理方法,在步骤A之前,进一步地包括步骤:匹配成品与锻压操作因素。
  5. 根据权利要求4所述的锻压生产管理方法,其中步骤D进一步地包括步骤:检测已经处理的所述物料是否为成品。
  6. 根据权利要求5所述的锻压生产管理方法,其中步骤D进一步地包括步骤:判断所述物料是否被合格地成型而为成品,其中若所述物料被判断为合格的,将所述物料进一步地产出,其中若所述物料为不合格的,将所述物料排出并返回。
  7. 根据权利要求4所述的锻压生产管理方法,其中在步骤B进一步包括步骤:根据所述物料的所述特征,控制相应的锻压处理的参数。
  8. 根据权利要求7所述的锻压生产管理方法,其中所述物料的特征进一步地包括:一外形特征和一温度特征,其中所述外形特征为所述物料的形状数值体现,所述温度特征为所述物料的温度数值体现。
  9. 根据权利要求8所述的锻压生产管理方法,其中所述外形特征通过选自组合:距离传感器、重量传感器、压力传感器中的一种或多种而获得。
  10. 根据权利要求8所述的锻压生产管理方法,其中所述温度特征通过选自组合:温度传感器、红外传感器中的一种或多种而获得。
  11. 根据权利要求7所述的锻压生产管理方法,其中步骤D进一步地包括一热熔处理,其中所述热熔处理对所述物料进行加热,以将所述物料被加热至一定温度以对应于锻压处理。
  12. 根据权利要求11所述的锻压生产管理方法,其中步骤D进一步地包括一锻造处理,其中所述热熔处理对所述物料进行加热之后,所述锻造处理对所述物料施压压力以成型。
  13. 根据权利要求12所述的锻压生产管理方法,其中所述步骤C进一步地包括一运载处理,其中所述运载处理运载所述物料在所述热熔处理和所述锻造处理之间进行流转,以使所述物料自行地得到处理。
  14. 一锻压生产系统,其特征在于,包括:
    一控制平台,其中所述控制平台被预先地载入成品所需的锻压操作因素;
    一热熔设备,其中所述热熔设备受到所述控制平台的控制而对至少一个的所述物料进行加热,使得根据成品需要,所述物料被加热至一定的温度;
    一锻造设备,其中所述锻造设备被置于所述热熔设备的一侧,其中所述锻造设备被所述控制平台控制以对已经加热的所述物料施加压力,进而使得根据成品需要地所述物料被锻压成型;以及
    一运载设备,其中所述运载设备被所述控制平台控制地运载所述物料抵达所述热熔设备,在所述热熔设备和所述锻造设备之间以及离开所述锻造设备之间流转。
  15. 根据权利要求14所述的锻压生产系统,其中所述控制平台对述物料采集至少一特征,其中所述检测设备连接于所述控制平台,所述控制平台判断所述物料是否满足进行后续的锻压设备的要求。
  16. 根据权利要求15所述的锻压生产系统,其中所述控制平台判断若所述物料满足要求,则继续设备所述物料,若所述物料不满足要求,则排出所述物料。
  17. 根据权利要求14所述的锻压生产系统,其中所述控制平台根据所述物料的所述特征,抉择相应的锻压设备的参数。
  18. 根据权利要求14所述的锻压生产系统,进一步包括:一检测设备,其中所述检测设备采集所述物料的所述特征。
  19. 根据权利要求18所述的锻压生产系统,其中所述检测设备判断所述物料是否被合格地成型,其中若所述物料被判断为合格的,将所述物料进一步地产出,其中若所述物料为不合格的,将所述物料排出生产。
  20. 根据权利要求17所述的锻压生产系统,其中所述物料的特征进一步地包括:一外形特征和一温度特征,其中所 述外形特征为所述物料的形状数值体现,所述温度特征为所述物料的温度数值体现。
  21. 根据权利要求19所述的锻压生产系统,其中所述运载设备将所述物料运送所述物料至所述控制平台所抉择的结果。
  22. 一锻压生产系统,其特征在于,包括:
    一控制系统;
    一热熔设备,其中所述热熔设备基于所述控制系统设定的加热参数加热至少一坯料,以使得所述坯料适于被锻压加工;
    一锻造设备,其中所述锻造设备被所述控制系统控制以对已经加热的所述坯料施加压力,进而使得所述坯料被锻压成型;
    一运载设备,其中所述运载设备被所述控制系统控制地运载所述坯料在所述热熔设备和锻造设备之间流转;以及
    至少一坏料排除装置,其中所述坏料排除装置移除所述热熔设备加热后的所述坯料中的废料。
  23. 根据权利要求22所述的锻压生产系统,其中所述坏料排除装置被邻近地设置于所述运载设备,藉由所述控制系统控制所述坏料排除装置操作所述废料,移除所述运载设备运载的所述废料。
  24. 根据权利要求22或23所述的锻压生产系统,其中所述锻压生产系统进一步包括至少一探测装置,其中所述探测装置探测所述运载设备运载的所述坯料的至少一特征,所述探测装置探测的特征数据被传输至所述控制系统,藉由所述控制系统判断所述坯料是否满足进行后续的锻压设备的要求。
  25. 根据权利要求24所述的锻压生产系统,其中所述控制系统基于所述探测装置探测的所述特征数据信息判断所述坯料是否属于废料或坏料,并且当所述坯料被判断为废料时,所述控制系统控制所述坏料排除装置操作所述坯料移除所述运载设备,当所述坯料被判断为合格时,所述坯料被进一步地执行锻压加工。
  26. 根据权利要求24或25所述的锻压生产系统,其中所述探测装置探测所述坯料的特征选自外形特征、温度特征、重量特征、位置特征、材料特征中的任一或多个特征的组合,其中所述外形特征为所述坯料的形状数值体现,所述温度特征为所述坯料的温度数值体现。
  27. 根据权利要求23或25所述的锻压生产系统,其中所述坏料排除装置包括至少一排废机构,其中所述排废机构被设置于所述运载设备,所述排废机构通过夹取或剔除的方式排除所述运载设备承载的所述废料。
  28. 根据权利要求27所述的锻压生产系统,其中所述排废机构为一机械手装置。
  29. 根据权利要求28所述的锻压生产系统,其中所述排废机构包括一操作臂和至少一夹取装置,其中所述夹取装置被设置于所述操作臂的端部,其中所述操作臂基于坏料识别信号操作所述夹取装置抓取和排出所述坏料。
  30. 根据权利要求29所述的锻压生产系统,其中所述操作臂包括一第一操作杆和至少一第二操作杆,其中所述第二操作杆将所述夹取装置传动地连接至所述第一操作杆,所述第二操作杆支撑地操作所述夹取装置的夹取和排出动作。
  31. 根据权利要求30所述的锻压生产系统,其中所述第二操作杆可转动地连接至所述第一操作杆,其中所述第二操作杆绕所述第一操作杆的端部轴向地转动,以供所述第二操作杆伸展和回收所述夹取装置。
  32. 根据权利要求31所述的锻压生产系统,其中所述第一操作杆可转动地驱动所述第二操作杆运动,所述第二操作杆被所述第一操作杆驱动沿所述第一操作杆的周向方向转动,以供所述第二操作杆移动所述夹取装置至所述坏料的位置。
  33. 12、根据权利要求30所述的锻压生产系统,其中所述夹取装置可传动地设置于所述第二操作杆,所述夹取装置被所述第二操作杆转动地操作夹取任意角度位置的所述坏料。
  34. 根据权利要求27至33任一所述的锻压生产系统,其中所述坏料排除装置进一步包括至少一废料收集装置,所述废料收集装置收集所述排废机构排除的所述废料,以供所述热熔设备对所述废料再次加工。
  35. 根据权利要求22所述的锻压生产系统,其中所述运载设备进一步地包括一入料工具和一出料工具,其中所述入料工具将所述坯料投入所述锻压生产系统,其中所述出料工具将所述坯料作为产品而离开所述锻压生产系统,以使所述坯料自行地进行各项步骤并得到设备。
  36. 根据权利要求23所述的锻压生产系统,其中所述热熔设备通信地连接于所述控制系统,其中所述控制系统控制所述热熔设备加热所述坯料的温度,或者控制所述坯料的加热时间。
  37. 根据权利要求36所述的锻压生产系统,其中所述热熔设备进一步地包括一加热室和一加热器,其中所述加热器被所述控制平台控制,其中所述坯料滞留所述加热室的时间被所述控制平台控制。
  38. 根据权利要求37所述的锻压生产系统,其中所述加热室设有至少一进料口和至少一出料口,其中所述加热器被邻近地设置于所述出料口,以便均匀地加热所述加热室中的所述坯料,和保持所述坯料从所述出料口运出时保持温度。
  39. 根据权利要求37所述的锻压生产系统,其中所述锻造设备进一步包括至少一模具和至少一施压机构,其中所述运载设备将所述坯料置入所述模具,其中所述施压机构对在所述模具的所述坯料进行施加压力而成型。
  40. 根据权利要求38所述的锻压生产系统,其中所述运载设备进一步地包括至少一给料工具和至少一送料工具,其中当所述坯料在所述热熔设备和所述锻造设备之间进行自动流转的进程中,所述给料工具将所述坯料从所述热熔设备送至所述锻造设备,所述送料工具将所述坯料从所述锻造设备送至所述出料工具。
  41. 根据权利要求41所述的锻压生产系统,其中所述运载设备的所述给料工具包括一滑轨机构和至少一搬运机构,其中所述滑轨机构连接至所述热熔设备,以承接输送所述热熔装置加热的所述坯料,其中所述搬运机构搬运所述滑轨机构的所述坯料至所述锻压设备。
  42. 根据权利要求41所述的锻压生产系统,其中所述坏料排除装置的所述排废机构被邻近地设置于所述滑轨机构,位于所述搬运机构前方,所述坏料排除装置排除所述搬运机构搬运所述坯料之前的所述废料。
  43. 根据权利要求41所述的锻压生产系统,其中所述坏料排除装置的所述排废机构与所述搬运机构为同一装置,其中所述搬运机构基于所述控制系统的控制指令搬运所述滑轨机构的所述坯料至所述锻造设备,和移除所述滑轨机构的所述废料。
  44. 根据权利要求40所述的锻压生产系统,其中所述锻压生产系统进一步包括至少一维护设备,其中所述维护设备被所述控制系统控制,和对所述锻造设备进行维护。
  45. 根据权利要求44所述的锻压生产系统,其中所述维护设备包括至少一涂油工具和至少一排烟工具,其中所述涂油工具对所述锻造设备涂油,以降低所述锻造设备的温度和保持所述锻造设备润滑,其中所述排烟工具吸收所述锻压生产系统产生的烟雾。
  46. 根据权利要求45所述的锻压生产系统,其中所述涂油工具进一步包括至少一上涂油工具和至少一下涂油工具,其中所述上涂油工具被设置于所述送料工具的上方,向上地对所述锻造设备以喷涂的方式涂油,所述下涂油具被设置于所述送料工具的下方,向下地对所述锻造设备以喷涂的方式涂油。
  47. 根据权利要求26所述的锻压生产系统,其中所述外形特征通过选自组合:距离传感器、重量传感器、压力传感器中的一种或多种而获得。
  48. 根据权利要求26所述的锻压生产系统,其中所述温度特征通过选自组合:温度传感器、红外传感器中的一种或多种而获得。
  49. 一锻压生产系统的坏料排除方法,其特征在于,其中所述坏料排除方法包括以下步骤:
    (a)获取至少一坯料的至少一特征;
    (b)基于获取到的所述特征,判断所述坯料是否属于坏料或废料;以及
    (c)如果判断所述坯料属于坏料或废料,藉由至少一坏料排除装置排除所述坏料或废料;如果判断所述坯料适于加工,则返回执行步骤(a)。
  50. 根据权利要求49所述的坏料排除方法,其中在上述坏料排除方法的步骤(a)中,由至少一探测装置探测所述坯料,以获取所述坯料的所述特征。
  51. 根据权利要求50所述的坏料排除方法,其中在上述坏料排除方法的步骤(a)中,藉由所述探测装置以传感探测的方式探测所述坯料的位置特征、温度特征、形状特征、重量特征、材料特征、大小特征、以及摆放的姿势特征等至少一特征信息。
  52. 根据权利要求50所述的坏料排除方法,其中在上述坏料排除方法的步骤(b)中,所述探测装置探测的所述坯料的所述特征被传输至一控制系统,其中所述控制系统基于所述特征信息和所述锻造设备的锻压数据判断所述坯料是否属于坏料或废料,和控制所述排除装置操作排除所述坏料。
  53. 根据权利要求49所述的坏料排除方法,其中在上述坏料排除方法的步骤(c)中,所述坏料排除装置通过机械夹取的方式移除所述坏料至一废料收集装置。
  54. 根据权利要求53所述的坏料排除方法,在上述坏料排除方法中,进一步包括步骤(d)回收被排出的所述废料至所述热熔设备,以供所述热熔装置对所述坯料在此热熔加工。
  55. 一维护运输设备,适用于一锻造设备,其特征在于,包括:
    一维护机构;其中所述维护机构上下喷油至所述锻造设备;和
    一输送机构,其中所述输送机构于一开始位置至一接收位置往复运动,以于所述接收位置接收被锻造的所述物料后运 载所述物料离开所述锻造设备,其中所述物料被所述锻造设备锻造,其中所述开始位置位于所述锻造设备的一侧,其中所述接收位置位于所述锻造设备,其中在所述输送机构于所述接收位置接收到下落的所述物料后,所述输送机构运载所述物料移回所述开始位置。
  56. 根据权利要求55所述的维护运输设备,其中所述维护机构的位置选自以下组合所述输送机构的前端和前部中至少其一,其中所述输送机构移动至所述接收位置,其中所述维护机构上下喷油至所述锻造设备。
  57. 根据权利要求55所述的维护运输设备,其中所述输送机构被设置于所述锻造设备的一侧,其中所述输送机构包括一驱动部和一接收部,其中所述接收部被所述驱动部驱动地于所述开始位置至所述接收位置往复移动。
  58. 根据权利要求57所述的维护运输设备,其中所述接收部被倾斜地设置,其中所述接收部包括一送料通道以及导通所述送料通道与外部空间的一进料口和一出料口,在所述接收部接收到被所述锻造设备带起的所述物料后,向所述开始位置回移的所述接收部允许所述物料下滑地通过所述送料通道后从所述出料口被输送至一存储区域。
  59. 根据权利要求55所述的维护运输设备,其中所述输送机构包括至少一个输液主体和至少二个所述喷油嘴,其中在所述接收部被拖动地移动至所述接收位置后,所述喷油嘴向外喷洒油雾,其中所述输液主体输送机油至所述喷油嘴。
  60. 根据权利要求55所述的维护运输设备,其中所述喷油嘴的其中至少一个向下喷油,其中所述喷油嘴的其中至少一个向上喷油,以喷油维护所述锻造设备。
  61. 根据权利要求57所述的维护运输设备,其中所述驱动部包括一滑轨和一驱动组件,其中所述驱动组件被设置于一侧,其中所述驱动组件驱动所述接收部往复运动于所述滑轨。
  62. 一锻造生产方法,其特征在于,包括以下步骤:
    (a)于一锻造空间,锻造被加热的至少一物料;和
    (b)从所述锻造空间接收被锻造成型的物料后,输送所述物料离开所述锻造空间,使得所述锻造空间被清空以在所述锻造空间被喷油后而再次执行步骤(a)。
  63. 根据权利要求45所述的锻造生产方法,其中所述锻造生产方法的步骤(b)进一步地包括以下步骤:
    (b1)当施压结束后,移动至所述锻造空间以接收被锻造处理的所述物料;
    (b2)当位于所述锻造空间时,上下地喷油雾至所述锻造空间;以及
    (b3)移回至一开始位置。
  64. 根据权利要求63所述的锻造生产方法,其中所述锻造生产方法的步骤(b2)可发生在所述锻造生产方法的步骤(b3)的过程中。
  65. 根据权利要求62所述的锻造生产方法,其中所述锻造生产方法的步骤(b)之后进一步地包括以下步骤:
    (c)检测锻造过程及所述物料的位置是否有异常情况。
  66. 根据权利要求64所述的锻造生产方法,其中所述锻造生产方法的步骤(c)中检测到的异常情况包括以下组合锻造过程中有明火、所述物料的位置异常、无物料中的至少其一。
  67. 根据权利要求62所述的锻造生产方法,其中所述锻造生产方法的步骤(a)之前进一步地包括以下步骤:
    (d)自动地供料于所述锻造空间。
  68. 一锻压生产方法,其特征在于,包括以下步骤:
    (A)投入至少一物料;
    (B)采集所述物料的特征;以及
    (C)根据所述物料的特征,投放所述物料至相应位置,若所述物料可以被锻造,则投放所述物料至一锻造设备,若所述物料不可以被锻造,则丢弃所述物料。
  69. 根据权利要求68所述的锻压生产方法,所述步骤(C)之后还包括步骤:
    锻压所述物料;和
    移出锻压后的所述物料。
  70. 根据权利要求68所述的锻压生产方法,其中所述步骤(B)进一步包括以下步骤:
    检测所述物料的一外形特征;和
    检测所述物料的一温度特征。
  71. 根据权利要求70所述的锻压生产方法,其中所述步骤(C)进一步包括以下步骤:
    若根据所述物料的所述温度特征确定所述物料被加热至合适的温度,则通过一送料设备投放所述物料。
  72. 根据权利要求71所述的锻压生产方法,其中所述步骤(C)进一步包括以下步骤:
    夹取已被加热的所述物料;
    根据采集到的所述物料的所述特征,判断所述物料是否可以被锻造;
    若所述物料可以被锻造,则判断所述物料是否需要被调整投入所述锻造设备的一投放姿态,若所述物料需要被调整所述投放姿态,则通过所述送料设备调整所述物料的所述投放姿态;以及
    投入所述物料至所述锻造设备。
  73. 一锻压生产设备,适用于锻压至少一物料,其特征在于,包括:
    一热熔设备,其中所述热熔设备接收所述物料并加热至一预设温度;
    一锻造设备,其中所述锻造设备锻压被加热后的所述物料;
    一导轨,其中所述导轨被设于所述热熔设备与所述锻造设备之间,所述导轨自所述热熔设备延伸至所述锻造设备,所述导轨接收所述热熔设备传递的所述物料,各个所述物料通过所述导轨被输送至所述锻造设备;以及
    一运转设备,其中所述运转设备夹取所述导轨输送的所述物料并放入所述锻造设备进行锻压。
  74. 根据权利要求73所述的锻压生产设备,其中所述导轨包括一收集端,所述收集端被延伸至所述热熔设备,以供接收所述热熔设备传递的所述物料,所述收集端位于所述导轨的首端。
  75. 根据权利要求73所述的锻压生产设备,其中所述导轨包括一给出端,所述给出端被延伸至所述锻造设备并保持在一定预设距离内,各个所述物料被输送至所述给出端等待被所述运转设备夹取,所述给出端位于所述导轨的尾端。
  76. 根据权利要求74或75所述的锻压生产设备,其中所述导轨具有一滑行通道,所述滑行通道的首端与尾端分别延伸至所述收集端及所述给出端,以供当所述物料被所述收集端收集时通过所述滑行通道到达所述给出端。
  77. 根据权利要求76所述的锻压生产设备,其中所述导轨进一步包括二滑行侧壁,所述滑行通道位于各个所述滑行侧壁之间,当所述物料滑行于所述滑行通道时被各个所述滑行侧壁阻挡不会掉落。
  78. 根据权利要求77所述的锻压生产设备,其中所述导轨进一步包括一滑行面,各个所述滑行侧壁分别自所述滑行面的两侧向上延伸,所述滑行面与各个所述滑行侧壁共同定义所述滑行通道。
  79. 根据权利要求78所述的锻压生产设备,其中所述导轨进一步包括一拦截件,所述拦截件被设于所述给出端,当所述物料到达所述给出端时被所述拦截件保持在一固定位置,以供所述夹取端顺利夹取。
  80. 根据权利要求79所述的锻压生产设备,其中所述导轨被自上而下地倾斜地设置。
  81. 根据权利要求80所述的锻压生产设备,其中所述导轨进一步包括一输送面,所述输送面被水平方向地设计,所述输送面被连接于所述滑行面,各个所述滑行侧壁延伸至所述输送面的两侧,所述输送面与所述滑行面及各个所述滑行侧壁共同定义所述滑行通道,所述给出端被设于所述输送面。
  82. 根据权利要求81所述的锻压生产设备,其中所述导轨具有至少一弯曲部,所述导轨呈现一蜿蜒形态,以供更好地被装配于所述热熔设备与所述锻压设备之间,缩短所述物料的输送途径。
  83. 根据权利要求82所述的锻压生产设备,其中所述滑行通道被各个所述滑行侧壁定义,各个所述滑行侧壁被逐步靠拢以限制所述滑行通道逐渐收窄。
  84. 根据权利要求73所述的锻压生产设备,进一步包括一控制平台,所述控制平台采集所述物料的至少一特征,并控制所述热熔设备、所述锻造设备以及所述运转设备。
  85. 根据权利要求73所述的锻压生产设备,其中所述导轨被水平方向地设置。
  86. 根据权利要求73所述的锻压生产设备,进一步包括一控制平台,其中所述控制平台采集所述物料的至少一特征,并控制所述热熔设备、所述锻造设备以及所述运转设备。
  87. 一导轨装置,适于运输至少一物料,其特征在于,包括:
    一收集端,其中所述收集端位于所述导轨装置的首端,以供当所述物料被所述导轨装置运输时被所述收集端收合;
    一给出端,其中所述给出端位于所述导轨装置的尾端,以供当所述物料被停留于所述给出端时被限位进入等待被夹取的状态;以及
    一滑行通道,其中所述滑行通道的首尾两端分别延伸至所述收集端及所述给出端,所述滑行通道被倾斜地设置,所述收集端与所述给出端相应地被设于所述滑行通道的上游与下游。
  88. 根据权利要求87所述的导轨装置,进一步具有一滑行面并且包括二滑行侧壁,其中所述滑行通道被设于各个所述滑行侧壁之间,当所述物料滑行于所述滑行通道时被各个所述滑行侧壁阻挡不会掉落,各个所述滑行侧壁分别自所述滑 行面的两侧向上延伸,所述滑行面与各个所述滑行侧壁共同定义所述滑行通道。
  89. 根据权利要求87所述的导轨装置,进一步包括一拦截件,所述拦截件被设于所述给出端,当所述物料到达所述给出端时被所述拦截件限位。
  90. 根据权利要求87所述的导轨装置,进一步具有至少一弯曲部,以供所述导轨装置呈现蜿蜒形态。
  91. 一导轨装置,适于运输至少一物料,其特征在于,包括:
    一滑行导轨,其中所述滑行导轨包括一收集端并且具有一滑行通道,所述滑行通道被自上而下地倾斜地设置,所述滑行通道延伸至所述收集端;和
    一输送导轨,其中所述输送导轨包括一给出端并且具有一输送通道,所述输送通道被水平方向地设置,所述输送通道被连通于所述滑行通道,所述收集端与所述给出端分别位于所述导轨装置的上下游,当所述物料被所述收集端收合后,通过所述滑行通道与所述输送通道,停留于所述给出端被限位进入等待被夹取的状态。
  92. 根据权利要求91所述的导轨装置,其中所述输送导轨进一步包括一拦截件,其中所述拦截件被设于所述给出端,当所述物料到达所述给出端时被所述拦截件限位。
  93. 根据权利要求91所述的导轨装置,其中所述滑行导轨包括二滑行侧壁,其中所述输送导轨进一步包括二输送侧壁,所述滑行通道位于各个所述滑行侧壁之间,所述输送通道位于各个所述输送侧壁之间,所述滑行通道被连通于所述输送通道,各个所述滑行侧壁与各个所述输送侧壁相对应地分别形成一体。
  94. 根据权利要求93所述的导轨装置,其中所述滑行导轨包括一滑行面,所述输送导轨包括一输送面,所述滑行面与各个所述滑行侧壁共同定义所述滑行通道,所述输送面与各个所述输送侧壁共同定义所述输送通道,所述滑行面被连接于所述输送面。
  95. 一导轨装置,适于运输至少一物料,包括:
    一收集端,其中所述收集端位于所述导轨装置的首端,以供当所述物料被所述导轨装置运输时被所述收集端收合;
    一给出端,其中所述给出端位于所述导轨装置的尾端,以供当所述物料被停留于所述给出端时被限位进入等待被夹取的状态;
    一滑行通道,其中所述滑行通道的首尾两端分别延伸至所述收集端及所述给出端,所述滑行通道被水平地设置,所述收集端与所述给出端相对应地被设置;以及
    一传送带,其中所述传送带被设于所述滑行通道的底部,所述传送带的两端分别延伸至所述收集端与所述给出端,以供当所述物料进入所述输送通道后被所述传送带运输。
PCT/CN2019/071500 2018-01-12 2019-01-12 锻压生产系统及其管理方法 WO2019137512A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/961,923 US11571734B2 (en) 2018-01-12 2019-01-12 Forging and pressing production system and management method therefor
US18/156,312 US20230150013A1 (en) 2018-01-12 2023-01-18 Forging and Pressing Production System and Management Method Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810031529.8 2018-01-12
CN201810031529 2018-01-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/961,923 A-371-Of-International US11571734B2 (en) 2018-01-12 2019-01-12 Forging and pressing production system and management method therefor
US18/156,312 Continuation US20230150013A1 (en) 2018-01-12 2023-01-18 Forging and Pressing Production System and Management Method Therefor

Publications (1)

Publication Number Publication Date
WO2019137512A1 true WO2019137512A1 (zh) 2019-07-18

Family

ID=67218218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071500 WO2019137512A1 (zh) 2018-01-12 2019-01-12 锻压生产系统及其管理方法

Country Status (3)

Country Link
US (2) US11571734B2 (zh)
CN (13) CN110026507A (zh)
WO (1) WO2019137512A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026507A (zh) * 2018-01-12 2019-07-19 宁波会德丰铜业有限公司 自动安装系统及其方法
CN111054812B (zh) * 2019-12-20 2021-11-19 浙江赛赛轴承有限公司 一种轴承加工用两次加热下料工艺及其设备
CN112893726A (zh) * 2021-04-29 2021-06-04 黄伟龙 一种拐角固定钣金的锻造方法
CN113319230B (zh) * 2021-06-10 2022-07-08 浙江宝圣科技有限公司 一种高精度合金锻造件热模锻造设备
CN113275500B (zh) * 2021-07-26 2021-10-26 徐州达一重锻科技有限公司 一种适用于锻压机的原料输送设备
CN115990629A (zh) * 2021-10-18 2023-04-21 深圳富桂精密工业有限公司 冲压设备的异常检测方法、装置、设备及介质
CN115255239A (zh) * 2022-08-29 2022-11-01 江苏满锐精密工具有限公司 一种用于金属器件锻造的锻造装置
CN116786743B (zh) * 2023-08-24 2023-10-31 山西天宝集团有限公司 一种新能源风力发电压力机智能对中法兰的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050115297A1 (en) * 2003-12-01 2005-06-02 General Electric Company Precision control of airfoil thickness in hot forging
CN101456059A (zh) * 2007-12-12 2009-06-17 中冶京诚工程技术有限公司 专用自由锻造液压机组及其使用方法
CN105397005A (zh) * 2015-12-24 2016-03-16 德阳中联机械制造有限公司 抽油杆全自动锻造生产线
CN106180803A (zh) * 2016-08-30 2016-12-07 湖北东方玉扬电子科技有限公司 全自动刹车片钻床
CN107282835A (zh) * 2017-05-16 2017-10-24 浙江大学 工业机器人智能锻造线系统及应用

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2054590A1 (de) * 1970-11-06 1972-05-10 Schloemann Ag Steuerung einer hydraulischen Schmiedepresse
DE3039914C2 (de) * 1980-10-23 1983-01-27 Langenstein & Schemann Ag, 8630 Coburg Schmier/Ausblaseinrichtung einer Umformmaschine
JPS6186040A (ja) * 1984-10-03 1986-05-01 Daido Steel Co Ltd 鍛造用油圧プレスモニタ方法および装置
JPH06102244B2 (ja) * 1986-05-15 1994-12-14 株式会社日立製作所 タ−ビン翼の鍛造方法
JPH0444269Y2 (zh) * 1987-12-30 1992-10-19
JPH02104438A (ja) * 1988-10-11 1990-04-17 Honda Motor Co Ltd バルブスプリングリテーナ形成用型装置
FR2648062B1 (fr) * 1989-06-07 1992-10-30 Peugeot Installation automatique perfectionnee de transfert et forgeage de pieces metalliques quelconques
JP3130702B2 (ja) * 1993-06-01 2001-01-31 川崎重工業株式会社 自動熱間鍛造設備と自動熱間鍛造方法
JPH07185721A (ja) * 1993-12-28 1995-07-25 Toyota Motor Corp 熱間鍛造金型の潤滑剤吹付装置の配管接続構造
US6272892B1 (en) * 1999-03-19 2001-08-14 Sumitomo Heavy Industries, Ltd. Forging press apparatus, controller of automation device used therefor and shut height controller
JP4037593B2 (ja) * 1999-12-07 2008-01-23 松下電器産業株式会社 部品実装方法及びその装置
KR20010112169A (ko) * 2001-11-13 2001-12-20 김창일 자동차용 엔진 밸브의 밸브 태핏 제조 방법
CN1215915C (zh) * 2002-05-17 2005-08-24 广东工业大学 一种可实现工艺参数优化控制的电镦机
JP4920452B2 (ja) * 2006-02-28 2012-04-18 昭和電工株式会社 熱間鍛造装置、鍛造製品製造方法および鍛造製品
JP4871209B2 (ja) * 2007-05-21 2012-02-08 株式会社神戸製鋼所 金属素材の鍛造方法及び鍛造装置
US20100236317A1 (en) * 2009-03-19 2010-09-23 Sigelko Jeff D Method for forming articles at an elevated temperature
CN102266900B (zh) * 2010-06-07 2015-11-25 蒂森克虏伯金属成型技术有限公司 用于制造锻压的钢板成型构件的方法和热成型装置
CN101915645B (zh) * 2010-07-02 2012-08-29 浙江博威汽车空调有限公司 汽车膨胀阀气密性检测装置及其使用方法
CN201749013U (zh) * 2010-07-02 2011-02-16 浙江博威汽车空调有限公司 汽车膨胀阀气密性检测装置
CN102303083B (zh) * 2011-06-30 2013-05-29 钢铁研究总院 制备难变形合金饼坯的快速等温锻造方法和装置
CN103894530B (zh) * 2012-12-27 2017-01-11 洪国珍 金属构件温锻造控制方法及其模具系统
CN103111574B (zh) * 2013-03-21 2015-05-20 重庆大学 一种热模锻压力机自动喷墨吹风系统
WO2014170919A1 (en) * 2013-04-15 2014-10-23 Vea S.R.L. Method of controlling a forging system and relative system
CN103405985A (zh) * 2013-08-19 2013-11-27 安徽安簧机械股份有限公司 一种热模锻压机水膜除尘设备
CN103537599B (zh) * 2013-10-18 2015-11-18 中南大学 用于锻压机的控制方法及其控制系统
KR101392178B1 (ko) * 2013-12-24 2014-05-08 구제율 단조용 압출재의 제조방법 및 장치
CN103894823B (zh) * 2014-02-28 2019-01-18 温岭市金悦自动化设备有限公司 阀门组装流水线
CN104001847B (zh) * 2014-05-05 2016-05-04 北京机电研究所 温热锻造模具的自动冷却润滑系统
CN104190837A (zh) * 2014-07-17 2014-12-10 奚进洲 一种冷镦机运行状态的监测方法及监测装置
CN104438946B (zh) * 2014-11-18 2016-04-06 周俊雄 一种锁套盖帽铆接设备及其铆接方法
CN104502030B (zh) * 2015-01-07 2017-06-16 日丰企业集团有限公司 阀门气密性检测系统
CN104826973B (zh) * 2015-03-20 2016-06-22 余国平 适用于锻压设备的自动进出料装置
CN104889297B (zh) * 2015-05-15 2016-08-31 安庆师范学院 一种液压式锻压机床的全闭环控制系统及控制方法
CN204694421U (zh) * 2015-05-17 2015-10-07 黄丽英 阀门检漏测试装置
CN105015183B (zh) * 2015-07-06 2017-06-23 珠海格力电器股份有限公司 钣金喷涂件打标系统
CN105195655A (zh) * 2015-09-25 2015-12-30 武汉新威奇科技有限公司 工业机器人锻造自动线系统及其控制方法
DE102015116974A1 (de) * 2015-10-06 2017-04-06 Langenstein & Schemann Gmbh Umformvorrichtung, insbesondere Spindelpresse und Verfahren zur umformenden Bearbeitung von Werkstücken
CN105773132B (zh) * 2015-12-30 2017-12-29 考普瑞西元器件(珠海)有限公司 燃气阀自动装配线
RU2705841C1 (ru) * 2016-01-14 2019-11-12 Арконик Инк. Способы получения изделий посредством аддитивного производства
CN205519281U (zh) * 2016-03-24 2016-08-31 大连阳迪科技有限公司 一种具有喷油和吹屑功能的冲压机械手
CN205414287U (zh) * 2016-03-30 2016-08-03 浙江东雄重工有限公司 冷镦机变频自动控制系统
CN105642801B (zh) * 2016-04-05 2017-06-30 浙江大学台州研究院 阀门锻前恒温加热上料一体机
CN106141693A (zh) * 2016-08-04 2016-11-23 陕西奥邦锻造有限公司 一种汽车前轴生产线及加工方法
TWM534082U (en) * 2016-08-16 2016-12-21 Wang Xin Ning Rotation structure for controlling toy manipulator
CN106270324B (zh) * 2016-08-27 2018-03-27 安徽长青电子机械(集团)有限公司 一种脚手架扣件自动生产系统
CN206104779U (zh) * 2016-08-30 2017-04-19 华电郑州机械设计研究院有限公司 一种自动化锻造生产线控制装置
CN106345963A (zh) * 2016-10-27 2017-01-25 河南机电高等专科学校 一种炉温自动调节系统的锻造加热炉
JP6626073B2 (ja) * 2017-11-22 2019-12-25 ファナック株式会社 自動清掃装置およびプレス機
CN110026507A (zh) * 2018-01-12 2019-07-19 宁波会德丰铜业有限公司 自动安装系统及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050115297A1 (en) * 2003-12-01 2005-06-02 General Electric Company Precision control of airfoil thickness in hot forging
CN101456059A (zh) * 2007-12-12 2009-06-17 中冶京诚工程技术有限公司 专用自由锻造液压机组及其使用方法
CN105397005A (zh) * 2015-12-24 2016-03-16 德阳中联机械制造有限公司 抽油杆全自动锻造生产线
CN106180803A (zh) * 2016-08-30 2016-12-07 湖北东方玉扬电子科技有限公司 全自动刹车片钻床
CN107282835A (zh) * 2017-05-16 2017-10-24 浙江大学 工业机器人智能锻造线系统及应用

Also Published As

Publication number Publication date
CN110026509A (zh) 2019-07-19
CN110026510A (zh) 2019-07-19
CN210498173U (zh) 2020-05-12
CN110026508A (zh) 2019-07-19
CN210498171U (zh) 2020-05-12
US20230150013A1 (en) 2023-05-18
CN113351813A (zh) 2021-09-07
CN110026509B (zh) 2021-06-15
CN113351813B (zh) 2023-07-25
CN210188353U (zh) 2020-03-27
CN110026507A (zh) 2019-07-19
CN110026511A (zh) 2019-07-19
CN209953717U (zh) 2020-01-17
CN210498172U (zh) 2020-05-12
CN113263125A (zh) 2021-08-17
CN113263125B (zh) 2023-05-05
CN110026508B (zh) 2024-03-15
US11571734B2 (en) 2023-02-07
US20200391277A1 (en) 2020-12-17
CN110026512A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2019137512A1 (zh) 锻压生产系统及其管理方法
CN106112538A (zh) 自动铆压组装设备
CN108941228A (zh) 一种全自动立式红冲设备
CN107215641A (zh) 一种冲压生产线线末自动装框系统及方法
CN102152104B (zh) 软管装配机自动送管装置
CN107214518A (zh) 一种铜棒自动锻造切边设备
KR102050239B1 (ko) 제품 및 스크랩 자동 처리장치
CN113731835B (zh) 汽车曲轴的质检系统
AU2016379188B2 (en) Pick or put station with controllable receptacle exchange
CN207953131U (zh) 注射针自动组装系统
CN206373562U (zh) 一种pcb板全自动装配线
CN110026513B (zh) 锻压生产方法
CN205464168U (zh) 一种用于抽油杆全自动锻造生产线的上料架
CN112792520A (zh) 一种锚固螺栓或t型螺栓热成型自动生产系统及生产方法
CN207615596U (zh) 一种高效率全自动热锻制造系统
CN219266015U (zh) 一种磁瓦在线缺陷检测装置
CN113800250B (zh) 低电阻高功率合金电阻及其智能生产线
Buechner et al. Material handling equipment for induction heating systems
CN213316254U (zh) 一种锻件分料布料装置
CN216510979U (zh) 一种热处理自动化输送系统
JPS63132742A (ja) 加熱炉への素材供給取出し装置
CN214133788U (zh) 高速铁路接触网简统化铝合金零部件锻造自动化生产线
CN113084534A (zh) 电饭煲内胆生产系统和电饭煲内胆生产系统的运行方法
CN117324272A (zh) 热轧棒材挑非装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738335

Country of ref document: EP

Kind code of ref document: A1