WO2019134715A1 - (甲基)丙烯醛氧化催化剂及其制备方法 - Google Patents

(甲基)丙烯醛氧化催化剂及其制备方法 Download PDF

Info

Publication number
WO2019134715A1
WO2019134715A1 PCT/CN2019/072085 CN2019072085W WO2019134715A1 WO 2019134715 A1 WO2019134715 A1 WO 2019134715A1 CN 2019072085 W CN2019072085 W CN 2019072085W WO 2019134715 A1 WO2019134715 A1 WO 2019134715A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nano carbon
meth
solution
carbon fiber
Prior art date
Application number
PCT/CN2019/072085
Other languages
English (en)
French (fr)
Inventor
温新
罗鸽
金鑫磊
吴通好
庄岩
钱志刚
褚小东
Original Assignee
上海华谊新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华谊新材料有限公司 filed Critical 上海华谊新材料有限公司
Priority to US16/959,647 priority Critical patent/US11964937B2/en
Publication of WO2019134715A1 publication Critical patent/WO2019134715A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J27/192Molybdenum with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • B01J27/228Silicon carbide with phosphorus, arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a heteropolyacid salt catalyst for preparing (meth)acrylic acid from (meth)acrolein and a synthetic method thereof, which have the advantages of high activity and selectivity, and long service life.
  • Methyl methacrylate is an important organic chemical raw material used primarily for the production of polymethyl methacrylate (PMMA) or plexiglass.
  • methyl methacrylate is also used in coatings, adhesives, lubricants, sizing agents, printing auxiliaries and insulating infusion materials.
  • the main process for the production of methyl methacrylate is the acetone cyanohydrin method, but the process requires the use of the highly toxic substance hydrocyanic acid as a raw material, and a large amount of ammonium hydrogen sulfate will be produced as a by-product, which causes great pressure on the environment. After the 1980s, Japan Catalyst Chemical Co., Ltd.
  • Methyl acrylate production process The process first oxidizes isobutylene to methacrolein (MAL), reoxidizes it to methacrylic acid (MAA), and finally esterifies with methanol to form methyl methacrylate (MMA).
  • MAL methacrolein
  • MAA methacrylic acid
  • MMA methyl methacrylate
  • Catalysts for the oxidation of MAL to MAA are known in the art.
  • US20150105583, US20140316160, US20120065427, etc. disclose the oxidation of MAL to MAA using a heteropolyacid/salt catalyst which has the disadvantages of low yield and longevity. Shorter.
  • Chinese patent CN 104001543A reports a method for synthesizing a heteropolyacid salt of a core-shell structure, the core being phosphonium molybdate or ammonium molybdenum vanadate, and the outer layer being ammonium phosphomolybdate or phosphomolybdate ⁇ , the outermost layer is a transition metal salt of phosphomolybdic acid.
  • this catalyst overcomes some of the drawbacks of conventional heteropolyacid/salt catalysts, the synthesis process of such catalysts is cumbersome and has low production efficiency. Therefore, it is imperative to develop a catalyst with better catalytic performance.
  • Nano carbon fiber is a new type of carbon material. Because of its unique structure and properties, it is considered to have important application prospects in the fields of materials and catalysis. As a catalyst carrier material, nano carbon fiber not only has the properties of traditional carbon materials such as activated carbon and carbon black, but also has the characteristics of large specific surface area, acid and alkali resistance, medium pore structure and high electrical conductivity.
  • nanocarbon fibers instead of, for example, activated carbon as a support contributes to improved catalytic performance
  • loading amount for example, from 5 wt% to 15 wt%
  • the catalyst activity is remarkably lowered while the propylene selectivity is only There is a slight increase, but overall it is not conducive to the increase of propylene yield.
  • the decrease in activity can be partly attributed to the decrease of specific surface area, and more likely that the loss of active center is caused by the loading of nano carbon fiber by more phosphorus oxide.”
  • Another object of the present invention is to provide a modified heteropolyacid/salt catalyst for the oxidation of (meth)acrolein to produce (meth)acrylic acid.
  • an aspect of the present invention provides a heteropolyacid salt catalyst for the oxidation of (meth)acrolein to produce (meth)acrylic acid having a composition represented by the following formula:
  • Mo 12 P a Cs b V c D e O f is a heteropolyacid salt main catalyst, C is a nano carbon fiber additive, and Z is a carrier thermal conductive diluent;
  • Mo, P, Cs, V, and O represent molybdenum, phosphorus, antimony, vanadium, and oxygen, respectively;
  • D represents a selected from the group consisting of copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), antimony (Sb), zinc (Zn), tungsten (W), silicon (Si), nickel (Ni), palladium. At least one element in (Pd);
  • Z is a carrier thermally conductive diluent, which is a mixture of one or more of SiC, SiO 2 , MoO 3 , WO 3 or TiO 2 , preferably a mixture of one or more of SiC, MoO 3 or TiO 2 .
  • Another aspect of the invention relates to a process for the preparation of a heteropolyacid catalyst for the oxidation of (meth)acrolein to (meth)acrylic acid, comprising the steps of:
  • (meth)acrolein means methacrolein, acrolein, and a mixture thereof.
  • (meth)acrylic acid means acrylic acid, formaldehyde acrylic acid, their C1-C4 alkyl esters, and mixtures thereof formed in any ratio.
  • composite oxide refers to a multicomponent oxide, at least one of which is a transition metal oxide.
  • the composite oxide used for the catalytic reaction is a composite oxide catalyst.
  • Composite oxides include heteropolyacids, heteropolyacid salts, homopolyacids, polyacid salts, oxyacid salts, spinels, and the like.
  • the present invention relates to a heteropolyacid salt catalyst for the oxidation of (meth)acrolein to produce (meth)acrylic acid.
  • the catalyst of the present invention has the composition represented by the following formula:
  • the catalyst of the present invention consists of three parts, namely a Mo 12 P a Cs b V c D e O f heteropolyacid salt procatalyst, a nano carbon fiber additive or a nano carbon fiber modifier and a carrier thermally conductive diluent.
  • Mo, P, Cs, V and O represent molybdenum, phosphorus, antimony, vanadium and oxygen, respectively; and D represents copper (Cu), magnesium (Mg), manganese (Mn). At least one element of iron (Fe), antimony (Sb), zinc (Zn), tungsten (W), silicon (Si), nickel (Ni), palladium (Pd).
  • a, b, c, e, and f represent the atomic ratio of each element
  • a 0.1-3, preferably from 0.3 to 2.5, more preferably from 0.5 to 2.1, preferably from 0.8 to 1.8, most preferably from 1 to 1.5;
  • b 0.01-3, preferably 0.05-2.5, more preferably 0.1-2.2, preferably 0.2-1.8, preferably 0.8-1.0;
  • c 0.01-5, preferably 0.05-4, more preferably 0.1-3.5, preferably 0.5-3.0, preferably 1-2;
  • e 0.01-2, preferably 0.05-1.8, more preferably 0.1-1.3, preferably 0.2-1, preferably 0.5-0.8;
  • f is an atomic ratio of oxygen required to satisfy the valence of each component described above.
  • the procatalyst is selected from the group consisting of Mo 12 P 1.5 V 0.6 Cs 1.5 Cu 0.3 , Mo 12 P 1.5 V 0.6 Cs 1.5 Zn 0.3 Pd 0.05 , Mo 12 P 1.5 V 0.6 Cs 1.5 Cu 0.3 Sb 0.2 , Mo 12 P 1.5 V 0.6 Cs 1.5 Zn 0.3 W 0.2 , Mo 12 P 1.5 V 0.6 Cs 1.5 Cu 0.3 Mg 0.2 , Mo 12 P 1.5 V 0.6 Cs 1.5 Cu 0.25 Pd 0.05 , Mo 12 P 1.5 V 0.6 Cs 1.0 Ni 0.5 Cu 0.25 Pd 0.05 , Mo 12 P 1.5 V 0.6 Cs 1.5 Cu 0.15 Zn 0.1 Si 0.05 , Mo 12 P 1.5 V 0.6 Cs 1.5 Cu 0.25 Mn 0.1 , Mo 12 V 1.0 P 1.5 Cs 1.0 Cu 0.3 , Mo 12 V 1.0 P 1.5 Cs 1.0 Cu 0.2 , Mo 12 V 1.0 P 1.5 Cs 1.0 Cu 0.2 , Mo 12 V 1.0 P 1.5 Cs 1.0 Cs 1.0 C
  • the catalyst of the present invention comprises a nano carbon fiber additive or a nano carbon fiber modifier dispersed in the main catalyst, and the nano carbon fiber modifier is added in an amount of 3-10% by weight of the main catalyst, preferably 4-9.5%, more preferably 5-9%, preferably 6-8%, preferably 6.5-7.5%.
  • the present inventors have found that if nanocarbon fibers are added as an additive to the heteropolyacid main catalyst in a proportion of 3 to 10% by weight, the catalytic activity of the catalyst can be remarkably improved.
  • the nanocarbon fiber to be used in the present invention is not particularly limited and may be various commercially available nano carbon fibers.
  • the nanocarbon fibers are selected from the group consisting of plate nano carbon fibers, fish bone nano carbon fibers, and tubular nano carbon fibers, preferably tubular nano carbon fibers.
  • the nanocarbon fiber is obtained by using a ⁇ -Al 2 O 3 loading mass fraction of 20% nickel-iron alloy (nickel weight ratio of 2:1) as a catalyst and CO as carbon.
  • Source synthetic fish bone nano carbon fiber The synthesis is carried out in a horizontal quartz tubular reactor. 1.0 g of the catalyst was reduced overnight at 600 ° C with a volume fraction of 25% hydrogen-argon mixed gas. Then, a CO/H 2 mixed gas (flow rate: 100 ml/min) having a volume fraction of 80% was introduced and synthesized for 24 hours, and the nano carbon fiber yield was about 20 g/g of the catalyst.
  • the nanocarbon fibers were ultrasonically dispersed in 0.1 mol/l hydrochloric acid and soaked for two days, filtered and washed until neutral and dried at 120 ° C overnight.
  • the nanocarbon fibers are produced by catalytic chemical vapor deposition.
  • the diameter of the nanocarbon fibers of the present invention is generally between 50 and 200 nm, preferably between 60 and 180 nm, more preferably between 70 and 160 nm, preferably between 80 and 140 nm, preferably between 90 and 120 nm, for example about 100 nm. When it is used, it can be directly added to the reaction liquid for preparing the main catalyst in a solid form.
  • the catalyst of the present invention also includes an oxide which doubles as a carrier and a thermally conductive diluent.
  • the carrier thermally conductive diluent is selected from one or a mixture of SiC, SiO 2 , MoO 3 , WO 3 or TiO 2 in any ratio, preferably SiC, MoO 3 or TiO a mixture of one or more of 2 . .
  • the carrier heat-transfer diluent is used in an amount of 11.1 to 50%, preferably 15 to 45%, more preferably 20 to 40%, preferably 25 to 35%, preferably 28 to 32, based on the mass of the main catalyst. %.
  • the method for producing the catalyst of the present invention comprises the following steps:
  • the precursor compound of the catalyst element used in the mixed solution or slurry is not particularly limited, and a nitrate, a carbonate, an acetate, an oxide, a halide, an oxide, an oxo acid salt or the like of each constituent element of the catalyst can be used.
  • Non-limiting examples of suitable molybdenum precursor compounds are, for example, molybdenum trioxide, ammonium paramolybdate, phosphomolybdic acid or molybdate, and the like, preferably ammonium paramolybdate.
  • Non-limiting examples of suitable phosphorus precursor compounds are, for example, phosphorus pentoxide, phosphoric acid, phosphomolybdic acid, ammonium phosphate, and the like, preferably phosphoric acid.
  • Non-limiting examples of suitable vanadium precursor compounds are, for example, vanadium pentoxide, ammonium metavanadate, and the like, preferably ammonium metavanadate.
  • Non-limiting examples of the ruthenium precursor compound used are, for example, cerium nitrate, cerium chloride or cerium hydroxide, and preferably cerium nitrate.
  • the precursor compound is dissolved or dispersed at a temperature of from 40 to 60 °C.
  • Non-limiting examples of suitable solvents are, for example, water, ethanol, etc., preferably water.
  • the ratio of each active component in the catalyst of the present invention is based on the atomic ratio of molybdenum of 12, the ratio of phosphorus is 0.1-3, preferably 0.5-2.5, more preferably 1.0-2.3; the ratio of cerium is 0.01-3, preferably 0.1-2, more preferably 0.5-1.5; the proportion of vanadium is 0.01-5, preferably 0.02-4.5, more preferably 0.1-4; the ratio of element D is 0.01-2, preferably 0.05-1.8, more preferably 0.1. -1.3.
  • solution A and solution B are prepared first:
  • Solution A is configured by dissolving at least a compound of molybdenum, phosphorus, and vanadium in a solvent.
  • solution A may also contain O atoms as well as ammonium groups.
  • Suitable solvents include, for example, water, ethanol, and the like, and water is preferably used.
  • the amount of water is about 100 to 400 parts by weight, preferably 200 to 300 parts by weight, based on 100 parts by weight of the total amount of the compound for preparing the slurry.
  • Solution B is configured by dissolving a ruthenium compound and a compound containing element D in a solvent.
  • the solvent to be used may, for example, be water, ethanol or the like, and water is preferably used.
  • the amount of water is about 200 to 800 parts by weight, preferably 300 to 400 parts by weight, based on 100 parts by weight of the total amount of the compound for preparing the slurry.
  • Solution A and solution B were then mixed and nanocarbon fibers were added.
  • drying conditions and methods suitable for use in the process of the present invention are not particularly limited and may be any drying method and drying temperature known in the art.
  • spray drying, evaporative drying, drum drying, etc. are preferred, preferably spray drying.
  • the dried catalyst blank can be pulverized as needed.
  • Non-limiting examples of suitable thermally conductive diluents are, for example, a mixture of one or more of SiC, SiO 2 , MoO 3 , WO 3 or TiO 2 , preferably one or more of SiC, MoO 3 or TiO 2 Kind of mixture.
  • the carrier thermally conductive diluent comprises from 11.1% to 50%, preferably from 15% to 48%, based on the total weight of the main catalyst.
  • Suitable mixing equipment for mixing with a thermally conductive diluent are not specifically required and may be any mixing equipment known in the art.
  • the mixing device is selected from the group consisting of a double cone mixer, a multi-directional motion mixer, a slot mixer, and the like.
  • the process of the invention further comprises shaping the mixture of the catalyst blank mixture and the carrier thermally conductive absorbent.
  • the molding method is not particularly limited, and any molding method known in the art can be used.
  • the mixture is formed by a dry molding process or a wet molding process.
  • a tablet molding method, an extrusion molding method, a granulation molding method, or the like can be employed.
  • a desired shape such as a cylindrical shape, a ring shape, a spherical shape, or the like can be selected.
  • a lubricant such as graphite or the like may be added in a small amount during molding.
  • the calcination of the catalyst ingot is carried out in an oxygen-containing atmosphere.
  • the calcination temperature is from 300 to 450 ° C, preferably from 350 to 400 ° C.
  • the calcination time is from 60 to 600 minutes, preferably from 120 to 540 minutes, preferably from 240 to 480 minutes.
  • the oxygen-containing atmosphere suitable for use in the calcination step of the present invention has an oxygen mass concentration of not less than 10%, preferably not less than 20%.
  • the catalyst is prepared by dissolving ammonium paramolybdate, ammonium metavanadate, and phosphoric acid in warm water to obtain a solution A.
  • the cerium nitrate and copper nitrate were dissolved in warm water to obtain a solution B.
  • the solutions A and B are mixed, stirred uniformly, then added with carbon nanofibers, stirred and spray dried, and the obtained catalyst precursor dried material is pulverized, mixed with the carrier heat-conductive diluent, uniformly mixed, and then added with an appropriate amount of water using a piston type.
  • the extrusion molding machine is extruded to obtain a ring-shaped cylinder. It is then calcined in a stream of air to produce the final finished catalyst.
  • the catalyst of the present invention is suitable for the gas phase oxidation synthesis of (meth)acrolein (meth)acrylic acid.
  • the method of synthesizing comprises:
  • the preheated mixture is passed to a fixed bed column reactor equipped with the catalyst of the present invention for selective oxidation to synthesize (meth)acrylic acid.
  • the molecular oxygen may be derived from pure oxygen, oxygen-enriched or air, and the diluent gas may be one of N 2 , CO, CO 2 or H 2 O or a mixture thereof in any ratio.
  • the oxidation reaction conditions are:
  • the temperature is 220 to 300 ° C, preferably 240 to 280 ° C;
  • the pressure is 0.05 to 0.5 MPa, preferably atmospheric pressure
  • the total space velocity of the reaction raw material mixture is 1000-5000 h -1 , preferably 1200-3000 h -1 ;
  • the molar concentration of (meth)acrylic acid is from 1 to 20%, preferably from 3 to 8%;
  • the molar ratio of O 2 to (meth)acrolein is from 0.5 to 8, preferably from 1 to 5;
  • the molar ratio of water vapor to (meth)acrolein is from 1 to 15, preferably from 3 to 10.
  • (Meth) acrolein conversion rate (mol%) 100 ⁇ (molar number of (meth)acrolein supplied - number of moles of (meth)acrolein remaining after the reaction) / (meth) propylene supplied Number of moles of aldehyde
  • (Meth)acrylic acid selectivity (mol%) 100 ⁇ (moles of (meth)acrylic acid produced by the reaction) / (moles of (meth)acrylaldehyde supplied - (meth) acrolein remaining after the reaction Molar number)
  • (Meth)acrylic acid yield (mol%) 100 ⁇ (moles of (meth)acrylic acid produced by the reaction) / moles of (meth)acrylaldehyde supplied
  • Example 1 32.2 g of copper nitrate in Example 1 was changed to 21.5 g of copper nitrate, and other preparation conditions were unchanged, and the elemental composition other than oxygen of the obtained catalyst was as follows.
  • Example 1 32.2 g of copper nitrate in Example 1 was changed to 41.5 g of ferric nitrate, and other preparation conditions were unchanged, and the elemental composition other than oxygen of the obtained catalyst was as follows.
  • Example 1 The 68 g of tubular nano carbon fiber in Example 1 was replaced with 132 g of plate type nano carbon fiber, and other preparation conditions were unchanged, and the elemental composition other than oxygen of the obtained catalyst was as follows.
  • the carbon nanofibers in Example 1 were removed, and other preparation conditions were unchanged, and the elemental composition other than oxygen of the obtained catalyst was as follows.
  • Example 1 68 g of the tubular nano carbon fiber in Example 1 was replaced with 68 g of graphite having a particle size of micron order, and other preparation conditions were unchanged, and the elemental composition other than oxygen of the obtained catalyst was as follows.
  • the 525 g of TiO 2 in Example 1 was changed to 525 g of ZrO 2 , and other preparation conditions were unchanged, and the elemental composition other than oxygen of the obtained catalyst was as follows.
  • Example 1 The 68 g of tubular nano carbon fiber in Example 1 was replaced with 350 g of tubular nano carbon fiber, and other preparation conditions were unchanged, and the elemental composition other than oxygen of the obtained catalyst was as follows.
  • the catalyst was found to be relatively loose and difficult to form. Finally, the catalytic oxidation reaction is abandoned.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Dispersion Chemistry (AREA)

Abstract

公开了(甲基)丙烯醛氧化催化剂及其制备方法。所述催化剂具有下式表示的组成。其中,Mo12PaCsbVcDeOf为杂多酸盐主催化剂、C为纳米碳纤维添加剂、Z为载体导热稀释剂;Mo、P、Cs、V以及O分别表示钼、磷、铯、钒以及氧元素;D表示选自铜、铁、镁、锰、锑、锌、钨、硅、镍、钯中至少一种元素;a、b、c、e以及f表示各元素的原子比率,a=0.1~3,b=0.01~3,c=0.01~5,e=0.01~2,f为满足上述各组分的化合价所需要的氧的原子比率;x、y代表主催化剂和载体导热稀释剂Z的重量,y/x=11.1~50%;t代表纳米碳纤维的重量,t/x=3-10%。x(Mo12PaCsbVcDeOf)+tC/yZ

Description

(甲基)丙烯醛氧化催化剂及其制备方法 技术领域
本发明涉及一种用(甲基)丙烯醛制备(甲基)丙烯酸的杂多酸盐催化剂及其合成方法,所述的催化剂具有活性及选择性高、使用寿命长的优点。
背景技术
甲基丙烯酸甲酯(MMA)是一种重要的有机化工原料,主要用于生产聚甲基丙烯酸甲酯(PMMA)或有机玻璃。另外,甲基丙烯酸甲酯还用于涂料、粘结剂、润滑剂、浸润剂、印染助剂和绝缘灌注材料等。生产甲基丙烯酸甲酯主要采用的工艺为丙酮氰醇法,但该工艺需使用剧毒物质氢氰酸为原料,且会副产大量硫酸氢铵,对环境造成很大压力。上世纪八十年代以后,日本触媒化学公司率先建成以异丁烯为原料的甲基丙烯酸甲酯生产装置(C4工艺),由于该工艺对环境压力小,生产成本低,已经成为全球第二大甲基丙烯酸甲酯生产工艺。该工艺首先将异丁烯氧化制成甲基丙烯醛(MAL),再氧化制成甲基丙烯酸(MAA),最后与甲醇酯化生成甲基丙烯酸甲酯(MMA)。
将MAL氧化制成MAA的催化剂是本领域已知的,例如US20150105583,US20140316160,US20120065427等公开了采用杂多酸/盐催化剂将MAL氧化制成MAA,这种催化剂的缺点是收率不高,寿命较短。
中国专利CN 104001543A报道了一种核壳结构的杂多酸盐的合成方法,核为磷钼钒酸铯盐或磷钼钒酸铵盐,次外层为磷钼钒酸铵或磷钼钒酸铯,最外层为磷钼钒酸的过渡金属盐。虽然这种催化剂克服了常规杂多酸/盐催化剂的一些缺陷,但这种催化剂的合成方法工序繁琐,生产效率低。因此开发具有更佳催化性能的催化剂势在必行。
纳米碳纤维是一种新型炭材料,因其具有独特的结构和性能,被认为在材料、催化等领域具有重要的应用前景。纳米碳纤维作为催化剂载体材料,不仅具有活性炭、炭黑等传统炭材料适用于催化剂载体的性质,如比表面积大、耐酸碱等,还具有中孔结构为主、高电导率等特点。
隋志军等“纳米碳纤维负载磷氧化物催化剂催化丙烷氧化脱氢研究”(《天然气化工》2005年第30卷第5期)公开了用纳米碳纤维负载磷氧化物作为催化剂催 化氧化丙烷。虽然使用纳米碳纤维代替例如活性炭作为载体有助于提高催化性能,但是该文提到“当负载量增加(例如由5重量%增加至15重量%)时,催化剂活性明显降低,同时丙烯选择性仅略有增加,但总体而言不利于丙烯得率的增加。活性的降低可部分归因于比表面积减少,更可能是纳米碳纤维被更多磷氧化物负载后造成了活性中心的丧失”。
因此,本领域该需要提供一种用于(甲基)丙烯醛氧化制备(甲基)丙烯酸的杂多酸/盐催化剂的改性方法,以便通过改性进一步提高所述催化剂的活性、选择性和稳定性。
本领域还需要提供一种经改性的用于(甲基)丙烯醛氧化制备(甲基)丙烯酸的杂多酸/盐催化剂。
发明内容
本发明的目的是提供一种用于(甲基)丙烯醛氧化制备(甲基)丙烯酸的杂多酸/盐催化剂的改性方法,以便通过改性进一步提高所述催化剂的活性、选择性和稳定性。
本发明的另一个目的是提供一种经改性的用于(甲基)丙烯醛氧化制备(甲基)丙烯酸的杂多酸/盐催化剂。
因此,本发明的一个方面是提供一种用于(甲基)丙烯醛氧化制备(甲基)丙烯酸的杂多酸盐催化剂,它具有下式表示的组成:
x(Mo 12P aCs bV cD eO f)+tC/yZ
其中,Mo 12P aCs bV cD eO f为杂多酸盐主催化剂、C为纳米碳纤维添加剂、Z为载体导热稀释剂;
Mo、P、Cs、V以及O分别表示钼、磷、铯、钒以及氧元素;
D表示选自铜(Cu)、铁(Fe)、镁(Mg)、锰(Mn)、锑(Sb)、锌(Zn)、钨(W)、硅(Si)、镍(Ni)、钯(Pd)中至少一种元素;
Z为载体导热稀释剂,为SiC、SiO 2、MoO 3、WO 3或TiO 2中的一种或多种的混合物,优选SiC、MoO 3或TiO 2中的一种或几种的混合物。
a、b、c、e以及f表示各元素的原子比率,a=0.1~3,b=0.01~3,c=0.01~5,e=0.01~2,f为满足上述各组分的化合价所需要的氧的原子比率;
x、y代表主催化剂和载体导热稀释剂Z的重量,y/x=11.1~50%;
t代表纳米碳纤维的重量,t/x=3-10%。
本发明的另一方面涉及所述用于(甲基)丙烯醛氧化制备(甲基)丙烯酸的杂多酸 盐催化剂的制备方法,它包括如下步骤:
(a)按化学计量混合钼前体化合物溶液、磷前体化合物溶液和钒前体化合物溶液,形成混合溶液A;按化学计量混合铯前体化合物溶液和铜前体化合物溶液,形成溶液B;
(b)将溶液A和溶液B混合,加入纳米碳纤维,干燥;
(c)将得到的干燥体与载体导热稀释剂混合、成型并焙烧。
具体实施方式
在本发明中,术语“(甲基)丙烯醛”是指甲基丙烯醛、丙烯醛及其混合物。
在本发明中,术语“(甲基)丙烯酸”是指丙烯酸、甲醛丙烯酸、它们的C1-C4烷酯及其任意比例形成的混合物。
在本领域,术语“复合氧化物”系指多组分氧化物,其中至少有一种是过渡金属氧化物。用于催化反应的复合氧化物即为复合氧化物催化剂。复合氧化物包括杂多酸、杂多酸盐、同多酸、同多酸盐、含氧酸盐、尖晶石等。
A. 催化剂
本发明涉及一种用于(甲基)丙烯醛氧化制备(甲基)丙烯酸的杂多酸盐催化剂。本发明催化剂具有下式表示的组成:
x(Mo 12P aCs bV cD eO f)+tC/yZ
换句话说,本发明催化剂由三部分组成,即Mo 12P aCs bV cD eO f杂多酸盐主催化剂、纳米碳纤维添加剂或纳米碳纤维改性剂和载体导热稀释剂。
1.Mo 12P aCs bV cD eO f杂多酸盐主催化剂
在本发明杂多酸盐主催化剂中,Mo、P、Cs、V以及O分别表示钼、磷、铯、钒以及氧元素;D表示选自铜(Cu)、镁(Mg)、锰(Mn)、铁(Fe)、锑(Sb)、锌(Zn)、钨(W)、硅(Si)、镍(Ni)、钯(Pd)中至少一种元素。
a、b、c、e以及f表示各元素的原子比率,
a=0.1-3,较好为0.3-2.5,更好为0.5-2.1,宜为0.8-1.8,最好1-1.5;
b=0.01-3,较好为0.05-2.5,更好为0.1-2.2,宜为0.2-1.8,最好0.8-1.0;
c=0.01-5,较好为0.05-4,更好为0.1-3.5,宜为0.5-3.0,最好1-2;
e=0.01-2,较好为0.05-1.8,更好为0.1-1.3,宜为0.2-1,最好0.5-0.8;
f为满足上述各组分的化合价所需要的氧的原子比率。
在本发明的一个较好实例中,所述主催化剂选自Mo 12P 1.5V 0.6Cs 1.5Cu 0.3、Mo 12P 1.5V 0.6Cs 1.5Zn 0.3Pd 0.05、Mo 12P 1.5V 0.6Cs 1.5Cu 0.3Sb 0.2、Mo 12P 1.5V 0.6Cs 1.5Zn 0.3W 0.2、Mo 12P 1.5V 0.6Cs 1.5Cu 0.3Mg 0.2、Mo 12P 1.5V 0.6Cs 1.5Cu 0.25Pd 0.05、Mo 12P 1.5V 0.6Cs 1.0Ni 0.5Cu 0.25Pd 0.05、Mo 12P 1.5V 0.6Cs 1.5Cu 0.15Zn 0.1Si 0.05、Mo 12P 1.5V 0.6Cs 1.5Cu 0.25Mn 0.1、Mo 12V 1.0P 1.5Cs 1.0Cu 0.3、Mo 12V 1.0P 1.5Cs 1.0Cu 0.2、Mo 12V 1.0P 1.5Cs 1.0C 10Fe 0.3、或其两种或更多种以任意比例形成的混合物。
2.纳米碳纤维添加剂或纳米碳纤维改性剂
本发明催化剂包括分散在所述主催化剂中的纳米碳纤维添加剂或纳米碳纤维改性剂,按所述主催化剂的重量计,所述纳米碳纤维改性剂的加入量为3-10%,较好为4-9.5%,更好为5-9%,宜为6-8%,优选6.5-7.5%。
本发明人发现,如果将纳米碳纤维作为添加剂以3-10重量%的比例加入所述杂多酸主催化剂中,则可明显提高催化剂的催化活性。
适用于本发明的纳米碳纤维无特别的限制,可以是市售的各种纳米碳纤维。在本发明的一个实例中,所述纳米碳纤维选自板式纳米碳纤维、鱼骨式纳米碳纤维和管式纳米碳纤维,优选管式纳米碳纤维。
在本发明的一个实例中,所述纳米碳纤维是用如下方法制得的:以γ-Al 2O 3负载质量分数20%镍铁合金(镍铁重量比为2∶1)为催化剂,CO为碳源合成鱼骨式纳米碳纤维。合成在水平石英管式反应器中进行。1.0g催化剂在600℃下经体积分数25%的氢-氩混合气还原过夜。然后通入体积分数80%的CO/H 2混合气(流量100ml/min)合成24小时,纳米碳纤维得率约20g/g催化剂。将此纳米碳纤维在0.1mol/l的盐酸中超声分散并浸泡两天,过滤并洗涤至中性后120℃干燥过夜。
在本发明的另一个实例中,纳米碳纤维采用催化化学气相沉积法制得。
本发明纳米碳纤维的直径一般在50-200nm之间,较好为60-180nm之间,更好为70-160nm,宜为80-140nm,优选90-120nm,例如约100nm。使用时可直接以固体形式加入到用于制备主催化剂的反应液中。
3.载体导热稀释剂
本发明催化剂还包括兼作载体和导热稀释剂的氧化物。在本发明的一个实例中,所述载体导热稀释剂选自SiC、SiO 2、MoO 3、WO 3或TiO 2中的一种或几种以任意比例形成的混合物,优选SiC、MoO 3或TiO 2中的一种或几种的混合物。。
以所述主催化剂的重量计,所述载体导热稀释剂的用量为11.1-50%,较好为15-45%,更好为20-40%,宜为25-35%,优选28-32%。
B. 催化剂的制造方法
本发明催化剂的制造方法包括如下步骤:
i)将相应组分元素的前体化合物溶解或悬浮于溶剂中,混合得到溶液或浆料,将所述纳米碳纤维加入所述溶液或浆料中
混合溶液或浆料所用的催化剂元素的前体化合物没有特别限定,可使用催化剂各构成元素的硝酸盐、碳酸盐、醋酸盐、氧化物、卤化物、氧化物、含氧酸盐等。
适用的钼前体化合物的非限定性例子有,例如三氧化钼、仲钼酸铵、磷钼酸或钼酸盐等,优选为仲钼酸铵。
适用的磷前体化合物的非限定性例子有,例如五氧化二磷、磷酸、磷钼酸、磷酸铵等,优选为磷酸。
适用的钒前体化合物的非限定性例子有,例如五氧化二钒、偏钒酸铵等,优选为偏钒酸铵。
使用的铯前体化合物的非限定性例子有,例如硝酸铯、氯化铯或氢氧化铯等,优选为硝酸铯。
对前体化合物溶解所需溶剂和温度没有特殊要求,只要使用的化合物能完全溶解或均匀混合即可。在本发明的一个实例中,将所述前体化合物在40-60℃的温度下进行溶解或分散。
适用的溶剂的非限定性例子有,例如水、乙醇等,优选使用水。
本发明催化剂中各活性组分的比,以钼原子比为12为基准,磷的比例为0.1-3,较好0.5-2.5,更好1.0-2.3;铯的比例为0.01-3,较好0.1-2,更好0.5-1.5;钒的比例为0.01-5,较好0.02-4.5,更好0.1-4;元素D的比例为0.01-2,较好为0.05-1.8,更好为0.1-1.3。
在本发明的一个实例中,先制备溶液A和溶液B:
溶液A通过至少将钼、磷、钒的化合物溶于溶剂中而配置。除钼、磷以及钒原子外,溶液A还可以含有O原子以及铵根。适用的溶剂可列举例如水、乙醇等,优选使用水。以制备浆料的化合物总量为100重量份计,水量约为100~400重量份,优选200~300重量份。
溶液B通过将铯化合物和含元素D的化合物溶于溶剂中而配置。适用的溶剂 可列举例如水、乙醇等,优选使用水。以制备浆料的化合物总量为100重量份计,水量约为200~800重量份,优选300~400重量份。
随后将溶液A和溶液B相混合,加入纳米碳纤维。
(ii)干燥
适用于本发明方法的干燥条件和方法无特别的限制,可以是本领域已知的任何干燥方法和干燥温度。在本发明的一个实例中,选择喷雾干燥,蒸发干燥,转鼓干燥等,优选喷雾干燥。
可根据需要对经干燥的催化剂坯料进行粉碎。
(ii)将得到的干燥坯料与载体导热稀释剂混合、成型并焙烧。
适用的导热稀释剂的非限定性例子有,例如SiC、SiO 2、MoO 3、WO 3或TiO 2中的一种或多种的混合物,优选SiC、MoO 3或TiO 2中的一种或几种的混合物。
在本发明的一个较好实例中,以主催化剂的总重量计,所述载体导热稀释剂占11.1-50%,较好15-48%。
适用的与导热稀释剂混合的混合设备没有特殊要求,可以是本领域已知的任何混合设备。在本发明的一个较好实例中,所述混合设备选自双锥混合机、多向运动混合机、槽型混合机等。
在本发明的一个实例中,本发明方法还包括对催化剂坯料混合物和载体导热吸收剂的混合物进行成型。所述成型方法没有特殊要求,可以使用本领域已知的任何成型方法。在本发明的一个实例中,采用干式成型法或者湿式成型法对混合物进行成型。例如可采用压片成型法、挤出成型法、造粒成型法等。对成型品的形状也没有特殊要求,可以选择圆柱形、环形、球形等所需要的形状。此外,在成型时,可以少量添加润滑剂,例如石墨等。
催化剂坯料的焙烧在含氧气氛中进行。焙烧温度为300-450℃,优选350-400℃。焙烧时间为60-600分钟,较好120-540分钟,优选240-480分钟。
适用于本发明焙烧步骤的含氧气氛中,氧气质量浓度不低于10%,优选不低于20%。
在本发明的一个实例中,所述催化剂是如下制得的,将仲钼酸铵、偏钒酸铵、磷酸溶解于温水中,得溶液A。将硝酸铯和硝酸铜溶解于温水中,得到溶液B。在此温度下将溶液A和B混合,搅拌均匀后加入纳米碳纤维,搅拌后进行喷雾干燥,得到的催化剂前体干燥物粉碎后,与载体导热稀释剂混合,混合均匀后加入 适量水使用活塞式挤出成型机挤出成型,得到环状圆柱体。然后在空气流中焙烧,制得最终的成品催化剂。
本发明催化剂适用于(甲基)丙烯醛气相氧化合成(甲基)丙烯酸。在本发明的一个实例中,所述合成方法包括:
-预热(甲基)丙烯醛原料、空气(含分子氧的稀释气体)及水蒸气的混合物;和
-将经预热的混合物通入装有本发明催化剂的固定床列管反应器中进行选择氧化反应,以合成(甲基)丙烯酸。
适用的含分子氧的稀释气体中,分子氧可以来自于纯氧、富氧或空气,稀释气体可以是N 2、CO、CO 2或H 2O中的一种或它们按任意比例的混合物。
在本发明的一个实例中,所述氧化反应条件为:
温度为220~300℃,优选240~280℃;
压力为0.05~0.5MPa,优选常压;
反应原料混合气总空速为1000~5000h -1,优选1200~3000h -1
(甲基)丙烯酸的摩尔浓度为1~20%,优选3~8%;
O 2与(甲基)丙烯醛的摩尔比为0.5~8,优选1~5;
水蒸气与(甲基)丙烯醛的摩尔比为1~15,优选3~10。、
C. 催化氧化反应结果的计算方法
(甲基)丙烯醛氧化合成(甲基)丙烯酸的转化率和选择性计算如下:
(甲基)丙烯醛转化率(mol%)=100×(所供给的(甲基)丙烯醛摩尔数-反应后剩余的(甲基)丙烯醛摩尔数)/所供给的(甲基)丙烯醛摩尔数
(甲基)丙烯酸选择性(mol%)=100×(反应生成的(甲基)丙烯酸摩尔数)/(所供给的(甲基)丙烯醛摩尔数-反应后剩余的(甲基)丙烯醛摩尔数)
(甲基)丙烯酸收率(mol%)=100×(反应生成的(甲基)丙烯酸摩尔数)/所供给的(甲基)丙烯醛摩尔数
下面将用具体的实施例来说明高性能催化剂的制备方法及其催化(甲基)丙烯醛选择氧化生成(甲基)丙烯酸的反应性能,但本发明的范围并不限于这些实施例。
实施例1
将1200克仲钼酸铵、66.3克偏钒酸铵、97克磷酸溶解于2400克60℃的蒸馏水中,得溶液A。将110.4克硝酸铯和32.2克硝酸铜溶解于400克60℃的蒸馏水中,得到溶液B。在此温度下将溶液A和B混合,搅拌均匀后加入68克管式纳米碳纤维(购自东莞市金耐新材料有限公司),搅拌2小时后进行喷雾干燥,得到的催化剂前体干燥物粉碎后,与525克载体导热稀释剂TiO 2混合,混合均匀后加入适量水使用活塞式挤出成型机挤出成型,得到外径5mm,通孔内径1.5mm,长度5mm的环状圆柱体。然后在380℃空气流中焙烧6小时,制得最终的成品催化剂,得到的催化剂的氧以外的元素组成如下所示。
71.8(Mo 12V 1.0P 1.5Cs 1.0Cu 0.3)+3.2C/25TiO 2
将1300克催化剂颗粒直接装入直径25mm、长3m的固定床列管式反应器中,在260℃(反应温度)、常压、MAL∶O 2∶N 2∶H 2O=1∶2∶8∶10、空速1500h -1下进行选择氧化反应。反应进行80小时后采集反应产物进行气相色谱分析,MAL转化率为92.1%,MAA选择性91.4%。在该条件下继续反应2000小时,分析结果为MAL转化率91.9%,MAA选择性91.5%。催化剂不发生劣化。
实施例2
将实施例1中32.2克硝酸铜更换为21.5克硝酸铜,其它制备条件不变,得到的催化剂的氧以外的元素组成如下所示。
71.8(Mo 12V 1.0P 1.5Cs 1.0Cu 0.2)+3.2C/25TiO 2
将1300克催化剂颗粒直接装入直径25mm、长3m的固定床列管式反应器中,在260℃(反应温度)、常压、MAL∶O 2∶N 2∶H 2O=1∶2∶8∶10、空速1500h -1下进行选择氧化反应。反应进行80小时后采集反应产物进行气相色谱分析,MAL转化率为87.5%,MAA选择性92.3%。在该条件下继续反应2000小时,分析结果为MAL转化率87.1%,MAA选择性92.4%。催化剂不发生劣化。
实施例3
将1300克实施例2中的催化剂颗粒直接装入直径25mm、长3m的固定床列管式反应器中,在270℃(反应温度)、常压、MAL∶O 2∶N 2∶H 2O=1∶2∶8∶10、空速1500h -1下进行选择氧化反应。反应进行80小时后采集反应产物进行气相色谱分析,MAL转化率为94.5%,MAA选择性89.3%。在该条件下继续反应2000小时,分析结果为MAL转化率94.0%,MAA选择性89.2%。催化剂不发生劣化。
实施例4
将实施例1中32.2克硝酸铜更换为41.5克硝酸铁,其它制备条件不变,得到的催化剂的氧以外的元素组成如下所示。
71.8(Mo 12V 1.0P 1.5Cs 1.0C 10Fe 0.3)+3.2C/25TiO 2
将1300克催化剂颗粒直接装入直径25mm、长3m的固定床列管式反应器中,在260℃(反应温度)、常压、MAL∶O 2∶N 2∶H 2O=1∶2∶8∶10、空速1500h -1下进行选择氧化反应。反应进行80小时后采集反应产物进行气相色谱分析,MAL转化率为95.2%,MAA选择性88.5%。在该条件下继续反应2000小时,分析结果为MAL转化率94.7%,MAA选择性88.7%。催化剂不发生劣化。
实施例5
将实施例1中68克管式纳米碳纤维更换为132克板式纳米碳纤维,其它制备条件不变,得到的催化剂的氧以外的元素组成如下所示。
68.7(Mo 12V 1.0P 1.5Cs 1.0C 20Cu 0.3)+6.3C/25TiO 2
将1300克催化剂颗粒直接装入直径25mm、长3m的固定床列管式反应器中,在260℃(反应温度)、常压、MAL∶O 2∶N 2∶H 2O=1∶2∶8∶10、空速1500h -1下进行选择氧化反应。反应进行80小时后采集反应产物进行气相色谱分析,MAL转化率为93.1%,MAA选择性89.0%。在该条件下继续反应2000小时,分析结果为MAL转化率93.0%,MAA选择性89.0%。催化剂不发生劣化。
比较例1
将实施例1中纳米碳纤维去除,其它制备条件不变,得到的催化剂的氧以外的元素组成如下所示。
75(Mo 12V 1.0P 1.5Cs 1.0Cu 0.3)/25TiO 2
将1300克催化剂颗粒直接装入直径25mm、长3m的固定床列管式反应器中, 在260℃(反应温度)、常压、MAL∶O 2∶N 2∶H 2O=1∶2∶8∶10、空速1500h -1下进行选择氧化反应。反应进行80小时后采集反应产物进行气相色谱分析,MAL转化率为85.1%,MAA选择性89.0%。在该条件下继续反应2000小时,分析结果为MAL转化率84.6%,MAA选择性88.7%。
比较例2
将实施例1中68克管式纳米碳纤维更换为68克粒径为微米级的石墨,其它制备条件不变,得到的催化剂的氧以外的元素组成如下所示。
71.8(Mo 12V 1.0P 1.5Cs 1.0Cu 0.3)+3.2C/25TiO 2
将1300克催化剂颗粒直接装入直径25mm、长3m的固定床列管式反应器中,在260℃(反应温度)、常压、MAL∶O 2∶N 2∶H 2O=1∶2∶8∶10、空速1500h -1下进行选择氧化反应。反应进行80小时后采集反应产物进行气相色谱分析,MAL转化率为86.1%,MAA选择性88.7%。在该条件下继续反应2000小时,分析结果为MAL转化率85.4%,MAA选择性89.0%。
比较例3
将实施例1中525克TiO 2更换为525克ZrO 2,其它制备条件不变,得到的催化剂的氧以外的元素组成如下所示。
71.8(Mo 12V 1.0P 1.5Cs 1.0Cu 0.3)+3.2C/25ZrO 2
将1300克催化剂颗粒直接装入直径25mm、长3m的固定床列管式反应器中,在260℃(反应温度)、常压、MAL∶O 2∶N 2∶H 2O=1∶2∶8∶10、空速1500h -1下进行选择氧化反应。反应进行80小时后采集反应产物进行气相色谱分析,MAL转化率为92.1%,MAA选择性87.2%。在该条件下继续反应2000小时,分析结果为MAL转化率92.0%,MAA选择性86.9%。
实施例6
将1300克实施例1中的催化剂颗粒直接装入直径25mm、长3m的固定床列管式反应器中,在260℃(反应温度)、常压、MAL∶O 2∶N 2∶H 2O=1∶2∶8∶10、空速1200h -1下进行选择氧化反应。反应进行80小时后采集反应产物进行气相色谱分析,MAL转化率为94.6%,MAA选择性90.8%。在该条件下继续反应2000小时,分 析结果为MAL转化率94.2%,MAA选择性90.3%。催化剂不发生劣化。
比较例4
将实施例1中68克管式纳米碳纤维更换为350克管式纳米碳纤维,其它制备条件不变,得到的催化剂的氧以外的元素组成如下所示。
58.3(Mo 12V 1.0P 1.5Cs 1.0C 20Cu 0.3)+16.7C/25TiO 2
发现此催化剂较为松散,难以成型。最终放弃进行催化氧化反应。

Claims (10)

  1. 一种用于(甲基)丙烯醛氧化制备(甲基)丙烯酸的杂多酸催化剂,它具有下式表示的组成:
    x(Mo 12P aCs bV cD eO f)+tC/yZ
    其中,Mo 12P aCs bV cD eO f为杂多酸盐主催化剂、C为纳米碳纤维添加剂、Z为载体导热稀释剂;
    Mo、P、Cs、V以及O分别表示钼、磷、铯、钒以及氧元素;
    D表示选自铜、铁、镁、锰、锑、锌、钨、硅、镍、钯中至少一种元素;
    Z表示选自SiC、SiO 2、MoO 3、WO 3或TiO 2中的一种或几种以任意比例形成的混合物。
    a、b、c、e以及f表示各元素的原子比率,a=0.1~3,b=0.01~3,c=0.01~5,e=0.01~2,f为满足上述各组分的化合价所需要的氧的原子比率;
    x、y代表主催化剂和载体导热稀释剂Z的重量,y/x=11.1~50%;
    t代表纳米碳纤维的重量,t/x=3-10%。
  2. 如权利要求1所述的杂多酸催化剂,其特征在于
    a=0.3-2.5,更好为0.5-2.1,宜为0.8-1.8,最好1-1.5;
    b=0.05-2.5,更好为0.1-2.2,宜为0.2-1.8,最好0.8-1.0;
    c=0.05-4,更好为0.1-3.5,宜为0.5-3.0,最好1-2;
    e=0.05-1.8,更好为0.1-1.3,宜为0.2-1,最好0.5-0.8。
  3. 如权利要求1所述的杂多酸催化剂,其特征在于所述主催化剂选自
    Mo 12P 1.5V 0.6Cs 1.5Cu 0.3、Mo 12P 1.5V 0.6Cs 1.5Zn 0.3Pd 0.05、Mo 12P 1.5V 0.6Cs 1.5Cu 0.3Sb 0.2
    Mo 12P 1.5V 0.6Cs 1.5Zn 0.3W 0.2,Mo 12P 1.5V 0.6Cs 1.5Cu 0.3Mg 0.2,Mo 12P 1.5V 0.6Cs 1.5Cu 0.25Pd 0.05
    Mo 12P 1.5V 0.6Cs 1.0Ni 0.5Cu 0.25Pd 0.05,Mo 12P 1.5V 0.6Cs 1.5Cu 0.15Zn 0.1Si 0.05
    Mo 12P 1.5V 0.6Cs 1.5Cu 0.25Mn 0.1,Mo 12V 1.0P 1.5Cs 1.0Cu 0.3,Mo 12V 1.0P 1.5Cs 1.0Cu 0.2
    Mo 12V 1.0P 1.5Cs 1.0C 10Fe 0.3,或其两种或更多种形成的混合物。
  4. 如权利要求1-3中任一项所述的杂多酸催化剂,其特征在于,按所述主催化剂的重量计,所述纳米碳纤维改性剂的加入量为4-9.5%,更好为5-9%,宜为6-8%,优选6.5-7.5%。
  5. 如权利要求1-3中任一项所述的杂多酸催化剂,其特征在于所述纳米碳纤维选自板式纳米碳纤维、鱼骨式纳米碳纤维和管式纳米碳纤维,优选管式纳米碳纤维。
  6. 如权利要求1-3中任一项所述的杂多酸催化剂,其特征在于所述纳米碳纤维的直径在50-200nm之间,较好为60-180nm之间,更好为70-160nm,宜为80-140nm,优选90-120nm,例如约100nm。
  7. 如权利要求1-6中任一项所述的杂多酸催化剂的制备方法,它包括如下步骤:
    (a)按化学计量混合钼前体化合物溶液、磷前体化合物溶液和钒前体化合物溶液,形成混合溶液A;按化学计量混合铯前体化合物溶液和铜前体化合物溶液,形成溶液B;
    (b)将溶液A和溶液B混合,加入纳米碳纤维,干燥;
    (c)将得到的干燥体与载体导热稀释剂混合、成型并焙烧。
  8. 如权利要求7所述的方法,其特征在于它包括如下步骤:
    将仲钼酸铵、偏钒酸铵、磷酸溶解于温水中,得溶液A;
    将硝酸铯和硝酸铜溶解于温水中,得到溶液B;
    在此温度下将溶液A和B混合,搅拌均匀后加入纳米碳纤维,搅拌后进行喷雾干燥,得到的催化剂前体干燥物粉碎后,与载体导热稀释剂混合,混合均匀后加入适量水使用活塞式挤出成型机挤出成型,得到环状圆柱体;
    然后在空气流中焙烧,制得最终的成品催化剂。
  9. 如权利要求7或8所述的方法,其特征在于所述纳米碳纤维选自板式纳米碳纤维、鱼骨式纳米碳纤维和管式纳米碳纤维,优选管式纳米碳纤维。
  10. 如权利要求1-6中任一项所述的催化剂在(甲基)丙烯醛氧化制备(甲基)丙烯酸的反应中的用途。
PCT/CN2019/072085 2018-01-02 2019-01-17 (甲基)丙烯醛氧化催化剂及其制备方法 WO2019134715A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/959,647 US11964937B2 (en) 2018-01-02 2019-01-17 (Meth)acrolein oxidation catalyst and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810001362.0A CN109985649B (zh) 2018-01-02 2018-01-02 (甲基)丙烯醛氧化催化剂及其制备方法
CN201810001362.0 2018-01-02

Publications (1)

Publication Number Publication Date
WO2019134715A1 true WO2019134715A1 (zh) 2019-07-11

Family

ID=67128907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072085 WO2019134715A1 (zh) 2018-01-02 2019-01-17 (甲基)丙烯醛氧化催化剂及其制备方法

Country Status (3)

Country Link
US (1) US11964937B2 (zh)
CN (1) CN109985649B (zh)
WO (1) WO2019134715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555047A (zh) * 2022-11-02 2023-01-03 天津大学 一种用于甲基丙烯酸合成的丝网状纳米聚合物微球催化剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939810B (zh) * 2021-03-29 2023-05-16 上海师范大学 一种丙烯醛氨氧化合成丙烯腈的方法
CN116371417B (zh) * 2023-03-06 2023-10-03 济南悟通生物科技有限公司 一种用于合成3,4-二甲基吡咯的催化剂及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810750A (zh) * 2006-02-28 2006-08-02 上海华谊丙烯酸有限公司 一种杂多酸催化脱除1,3-丙二醇中微量醛基的方法
US20150105583A1 (en) * 2012-05-18 2015-04-16 Nippon Kayaku Kabushiki Kaisha Catalyst For Methacrylic Acid Production, Process For Producing The Same, And Process For Producing Methacrylic Acid Using The Catalyst
CN104646014A (zh) * 2013-11-18 2015-05-27 上海华谊新材料有限公司 改性的复合氧化物催化剂及其改性方法
CN105435805A (zh) * 2014-08-18 2016-03-30 上海华谊新材料有限公司 催化剂、用该催化剂生产丙烯酸的方法和反应系统
CN105772087A (zh) * 2014-12-26 2016-07-20 上海华谊新材料有限公司 杂多酸盐催化剂及其制备方法
CN106881101A (zh) * 2015-12-15 2017-06-23 上海华谊新材料有限公司 复合氧化物催化剂及其制备方法和用途
CN106881128A (zh) * 2015-12-15 2017-06-23 上海华谊新材料有限公司 杂多酸盐催化剂及其制备方法和用途

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969965B2 (ja) * 1991-01-17 1999-11-02 住友化学工業株式会社 イソブタンの接触酸化によるメタクリル酸の製造方法
DE4113423A1 (de) * 1991-04-25 1992-10-29 Roehm Gmbh Mit makroporen durchsetzter oxidationskatalysator
JPH07251075A (ja) * 1994-03-15 1995-10-03 Mitsubishi Rayon Co Ltd 不飽和カルボン酸合成用触媒及びそれを用いた不飽和カルボン酸の製造方法
CN1057989C (zh) * 1998-04-22 2000-11-01 中国石油化工总公司 异构烷烃与烯烃的烷基化方法
JP3892244B2 (ja) * 2001-03-21 2007-03-14 株式会社日本触媒 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の製造方法
JP3800043B2 (ja) * 2001-06-28 2006-07-19 住友化学株式会社 メタクリル酸製造用触媒、その製造方法およびメタクリル酸の製造方法
JP2010058288A (ja) * 2008-09-01 2010-03-18 Sumitomo Chemical Co Ltd 押出成形体の製造方法
JP5091840B2 (ja) * 2008-11-19 2012-12-05 住友化学株式会社 押出成形体の製造方法
JP5570142B2 (ja) 2009-05-26 2014-08-13 日本化薬株式会社 メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
CN101579631A (zh) * 2009-06-22 2009-11-18 上海华谊丙烯酸有限公司 一种用于低碳烯烃选择氧化制备不饱和醛反应的催化剂的制备方法
EP2324912A1 (en) * 2009-10-29 2011-05-25 China Petroleum & Chemical Corporation A composite solid acid catalyst comprising a heteropoly compound and an inorganic acid on an inorganic porous support, its preparation porcess and use in alkylation reactions
KR102005358B1 (ko) 2011-11-17 2019-07-30 닛뽄 가야쿠 가부시키가이샤 메타크릴산 제조용 촉매 및 그것을 이용한 메타크릴산의 제조 방법
CN103831131B (zh) * 2012-11-21 2016-04-06 上海华谊丙烯酸有限公司 催化剂、其制备方法和用途
CN104001543B (zh) 2014-06-09 2016-08-03 中国科学院过程工程研究所 一种甲基丙烯醛氧化制甲基丙烯酸的催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810750A (zh) * 2006-02-28 2006-08-02 上海华谊丙烯酸有限公司 一种杂多酸催化脱除1,3-丙二醇中微量醛基的方法
US20150105583A1 (en) * 2012-05-18 2015-04-16 Nippon Kayaku Kabushiki Kaisha Catalyst For Methacrylic Acid Production, Process For Producing The Same, And Process For Producing Methacrylic Acid Using The Catalyst
CN104646014A (zh) * 2013-11-18 2015-05-27 上海华谊新材料有限公司 改性的复合氧化物催化剂及其改性方法
CN105435805A (zh) * 2014-08-18 2016-03-30 上海华谊新材料有限公司 催化剂、用该催化剂生产丙烯酸的方法和反应系统
CN105772087A (zh) * 2014-12-26 2016-07-20 上海华谊新材料有限公司 杂多酸盐催化剂及其制备方法
CN106881101A (zh) * 2015-12-15 2017-06-23 上海华谊新材料有限公司 复合氧化物催化剂及其制备方法和用途
CN106881128A (zh) * 2015-12-15 2017-06-23 上海华谊新材料有限公司 杂多酸盐催化剂及其制备方法和用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555047A (zh) * 2022-11-02 2023-01-03 天津大学 一种用于甲基丙烯酸合成的丝网状纳米聚合物微球催化剂及其制备方法
CN115555047B (zh) * 2022-11-02 2023-08-08 天津大学 一种用于甲基丙烯酸合成的丝网状纳米聚合物微球催化剂及其制备方法

Also Published As

Publication number Publication date
CN109985649A (zh) 2019-07-09
US20210078929A1 (en) 2021-03-18
US11964937B2 (en) 2024-04-23
CN109985649B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
TW514555B (en) Modified carrier, complex oxide catalyst with use of the modified carrier and process for preparation of acrylic acid using said catalyst
JP3943291B2 (ja) アクロレインおよびアクリル酸の製造方法
WO2019134715A1 (zh) (甲基)丙烯醛氧化催化剂及其制备方法
JP4185217B2 (ja) 複合酸化物触媒、並びに(メタ)アクロレインおよび(メタ)アクリル酸の製造方法
JP3744750B2 (ja) 複合酸化物触媒およびアクリル酸の製造方法
US8507626B2 (en) Catalyst for producing of acrylic acid, method for producing acrylic acid using the catalyst and method for producing water-absorbent resin using the acrylic acid
JP6674441B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
US8017547B2 (en) Method for manufacturing catalyst for use in production of methacrylic acid
CN103831131B (zh) 催化剂、其制备方法和用途
WO2014181839A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JPH0523596A (ja) メタクロレイン及びメタクリル酸製造用触媒の調製法
JP4242597B2 (ja) 不飽和アルデヒド合成用触媒とその製造方法、およびその触媒を用いた不飽和アルデヒドの製造方法
JP5626208B2 (ja) アンモ酸化触媒及びそれを用いたニトリル化合物の製造方法
CN113976179B (zh) 一种空心结构催化剂及其制备方法和用途
JP4442317B2 (ja) 複合酸化物触媒の製造方法
CN103877987B (zh) 丙烯酸催化剂及其制备方法
JP4022047B2 (ja) メタクリル酸合成用触媒の製造方法、メタクリル酸合成用触媒およびメタクリル酸の製造方法
WO2019141203A1 (zh) 甲基丙烯醛氧化制备甲基丙烯酸的催化剂及其制备方法
KR102297983B1 (ko) (메타)아크롤레인 및/또는 (메타)아크릴산 제조용 촉매 조성물과 이의 제조 방법
JP2005305421A (ja) 複合酸化物触媒の製造方法
CN104646056B (zh) 一种钼磷系杂多酸盐催化剂及其制备方法和用途
CN103157484B (zh) 催化剂及其制备方法
JP2004351297A (ja) メタクリル酸製造用触媒、その製造方法およびメタクリル酸の製造方法
JP2004130261A (ja) 不飽和アルデヒドおよび不飽和カルボン酸の合成用触媒の製造方法
CN104646012B (zh) 丙烯选择性氧化催化剂及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19735925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19735925

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19735925

Country of ref document: EP

Kind code of ref document: A1