WO2019131617A1 - 塗料組成物 - Google Patents

塗料組成物 Download PDF

Info

Publication number
WO2019131617A1
WO2019131617A1 PCT/JP2018/047535 JP2018047535W WO2019131617A1 WO 2019131617 A1 WO2019131617 A1 WO 2019131617A1 JP 2018047535 W JP2018047535 W JP 2018047535W WO 2019131617 A1 WO2019131617 A1 WO 2019131617A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
component
less
polycarbonate diol
composition
Prior art date
Application number
PCT/JP2018/047535
Other languages
English (en)
French (fr)
Inventor
康文 川合
恵理子 星野
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2019561706A priority Critical patent/JP6801125B2/ja
Priority to CN201880084012.3A priority patent/CN111511853A/zh
Priority to EP18895707.0A priority patent/EP3733799B1/en
Publication of WO2019131617A1 publication Critical patent/WO2019131617A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4063Mixtures of compounds of group C08G18/62 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Definitions

  • the present invention relates to a coating composition.
  • Priority is claimed on Japanese Patent Application No. 2017-248448, filed Dec. 25, 2017, and Japanese Patent Application No. 2017-248449, filed Dec. 25, 2017, the contents of which are incorporated herein by reference. Is incorporated herein by reference.
  • the polycarbonate diol is, for example, one synthesized from an alkylene diol compound such as 1,6-hexanediol and a carbonate compound such as dimethyl carbonate, diethyl carbonate and ethylene carbonate.
  • Polycarbonate diol is widely used as a polyol etc. which are one of the raw materials of a polyurethane resin.
  • polyester polyol and polyether polyol are widely used conventionally.
  • polycarbonate diol as a raw material in comparison with them, it is expected that a polyurethane resin excellent in hydrolysis resistance, heat resistance, weather resistance, chemical resistance, abrasion resistance, adhesion and the like can be obtained. Be done.
  • polycarbonate diol can be further blended in a paint, a coating agent and the like in which a crosslinking agent having reactivity with hydroxyl group such as melamine resin, isocyanate compound, block isocyanate compound and the like is blended.
  • a crosslinking agent having reactivity with hydroxyl group such as melamine resin, isocyanate compound, block isocyanate compound and the like is blended.
  • Patent Document 1 discloses a polycarbonate / polyoxyethylene copolymer and a method for producing the same.
  • polyurethane resins are conventionally used in a wide range of areas such as synthetic leather, artificial leather, adhesives, paints for furniture, paints for automobiles, etc.
  • Polyethers, polyesters and polycarbonates are used as polyol components to be reacted with isocyanates It has However, in recent years, the demand for resistance of polyurethane resin, such as heat resistance, weather resistance, hydrolysis resistance, solvent resistance, sunscreen resistance, scratch resistance, etc., is increasing.
  • Patent Document 1 discloses a coating composition using a polycarbonate diol as a polyol component.
  • Patent Document 2 discloses a polycarbonate diol / polyether block copolymer.
  • the present invention has been made in view of the above circumstances, and provides a coating composition capable of forming a coating film excellent in low temperature transparency, scratch resistance and adhesion.
  • the present invention has been made in view of the above circumstances, and provides a coating composition capable of forming a coating film excellent in scratch recovery and heat resistance.
  • the coating composition according to the 1-1 aspect of the present invention comprises the following component (1-A1), the following component (1-B) and the following component (1-C).
  • Component (1-A1) contains a structure represented by the following general formula (I) and a polycarbonate structure represented by the following general formula (II), both ends are hydroxyl groups, and the number average molecular weight is It is a polycarbonate diol composition which is 300 or more and 10000 or less, and 5 mass of structure represented by said general formula (I) with respect to the total mass of the structure represented by said general formula (I) and said polycarbonate structure % Or more and 50% or less by mass, and a polycarbonate diol composition containing 50% or more by mass and 95% or less by mass of the polycarbonate structure;
  • R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 11 may be the same as or different from each other, and n 11 is a number of 3 or more and 70 or less.
  • R 21 represents a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 15 carbon atoms, or an aromatic hydrocarbon group. R 21 may be the same as or different from each other, and n 21 is a number of 1 or more and 50 or less.
  • (1-C) component An organic solvent having a solubility parameter (SP value) of 8.0 (cal / cm 3 ) 1/2 or more and 25.0 (cal / cm 3 ) 1/2 or less.
  • SP value solubility parameter
  • the coating composition according to the first-first aspect has a solubility parameter of 8.0 (cal / cm 3 ) 1/2 or more and 15.00 (cal / cm 3 ) 1/2 as the (1-C) component.
  • the coating composition according to the first-first aspect may include, as the component (1-C), an organic solvent having a vapor pressure of 1.0 kPa or more at 20 ° C.
  • the coating composition according to the first-first aspect further includes a component (1-A2), and the component (1-A2) is a polyol component other than the component (1-A1), and 50 mass% or more and 100 mass% or less of the component (1-A1) and 0 mass of the component (1-A2) with respect to the total mass of the component (1-A1) and the component (1-A2) You may contain% or more and 50 mass% or less.
  • the coating composition according to the first-first aspect further includes a component (1-A2), and the component (1-A2) is a polyol component other than the component (1-A1), and 70 mass% or more and 100 mass% or less of the component (1-A1) and 0 mass of the component (1-A2) with respect to the total mass of the component (1-A1) and the component (1-A2) You may contain% or more and 30 mass% or less.
  • component (1-A1) 5% by mass to 30% by mass of the structure represented by the general formula (I) with respect to the total mass of the structure represented by the general formula (I) and the polycarbonate structure below, and, 70 mass% or more and 95 mass% or less of the polycarbonate structure may be contained.
  • component (1-A1) 5% by mass or more and 20% by mass of the structure represented by the general formula (I) with respect to the total mass of the structure represented by the general formula (I) and the polycarbonate structure Below, and, 80 mass% or more and 95 mass% or less of the polycarbonate structure may be contained.
  • n11 may be 6 or more and 50 or less.
  • the structure represented by the general formula (I) may be a polyoxyethylene structure.
  • the structure represented by the general formula (I) contains an oxy 1-methylethylene group and an oxyethylene group, and the structure represented by the general formula (I) 10% by mass or more and 100% by mass or less of the oxy 1-methylethylene group and 0% by mass or more and 90% by mass or less of the oxyethylene group with respect to the total mass of
  • the structure represented by the general formula (I) contains an oxytetramethylene group and an oxy 2,2-dimethyltrimethylene group, and in the general formula (I) Containing 10% by mass or more and 100% by mass or less of the oxytetramethylene group and 0% by mass or more and 90% by mass or less of the oxy 2,2-dimethyltrimethylene group based on the total mass of the represented structure It is also good.
  • the paint composition according to the first-first aspect may further contain water, and the water content in the paint composition may be 10% by mass or less.
  • the coating composition according to the 2-1 aspect of the present invention comprises the following component (2-A1), the following component (2-A2), the following component (2-B) and the following component (2-C),
  • the total amount of the (2-A1) component and the (2-A2) component is 3% by mass to 99% by mass of the (2-A1) component, and 1% by mass of the (2-A2) component % Or more and 97% by mass or less.
  • Component (2-A1) contains a structure represented by the following general formula (I) and a polycarbonate structure represented by the following general formula (II), both ends are hydroxyl groups, and the number average molecular weight is It is a polycarbonate diol composition which is 300 or more and 10000 or less, and 5 mass of structure represented by said general formula (I) with respect to the total mass of the structure represented by said general formula (I) and said polycarbonate structure % Or more and 35% by mass or less, and a polycarbonate diol composition containing the polycarbonate structure in an amount of 65% by mass or more and 95% by mass or less;
  • R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 11 may be the same as or different from each other, and n 11 is a number of 7 or more and 70 or less.
  • R 21 represents a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 15 carbon atoms, or an aromatic hydrocarbon group. R 21 may be the same as or different from each other, and n 21 is a number of 1 or more and 50 or less.
  • Component (2-A2) a polyol component other than the component (2-A1);
  • (2-C) component organic solvent
  • the coating composition according to the above-mentioned embodiment 2-1 comprises 5% by mass to 50% by mass of the component (2-A1) based on the total mass of the component (2-A1) and the component (2-A2).
  • the component (2-A2) may be contained in an amount of 50% by mass or more and 95% by mass or less.
  • the coating composition according to the above-described embodiment 2-1 includes 5% by mass to 30% by mass of the component (2-A1) based on the total mass of the component (2-A1) and the component (2-A2).
  • the component (2-A2) may be contained in an amount of 70% by mass or more and 95% by mass or less.
  • component (2-A1) 5% by mass or more and 20% by mass of the structure represented by the general formula (I) with respect to the total mass of the structure represented by the general formula (I) and the polycarbonate structure Below, and, 80 mass% or more and 95 mass% or less of the polycarbonate structure may be contained.
  • n11 may be 7 or more and 50 or less in the general formula (I).
  • the structure represented by the general formula (I) may be a polyoxyethylene structure.
  • the structure represented by the general formula (I) contains an oxy 1-methylethylene group and an oxyethylene group, and the structure represented by the general formula (I) 10% by mass or more and 100% by mass or less of the oxy 1-methylethylene group and 0% by mass or more and 90% by mass or less of the oxyethylene group with respect to the total mass of
  • the structure represented by the general formula (I) contains an oxytetramethylene group and an oxy 2,2-dimethyltrimethylene group, and in the general formula (I) Containing 5% by mass or more and 100% by mass or less of the oxytetramethylene group and 0% by mass or more and 95% by mass or less of the oxy 2,2-dimethyltrimethylene group based on the total mass of the structure represented It is also good.
  • the paint composition according to the above-mentioned embodiment 2-1 may further contain water, and the water content in the paint composition may be 10% by mass or less.
  • a coating film excellent in low-temperature transparency, scratch resistance and adhesion can be formed.
  • the coating film excellent in flaw recovery property and heat resistance can be formed.
  • the present embodiment modes for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following description, and various modifications can be made within the scope of the present invention.
  • polyol means a compound having two or more hydroxy groups (-OH).
  • the paint composition of the present embodiment contains the (1-A1) component, the (1-B) component and the (1-C) component.
  • the component (1-A1) is a polyol component (hereinafter sometimes referred to as “component (1-A)”), and is a polycarbonate diol composition.
  • component (1-B) is an isocyanate compound which is a curing agent.
  • component (1-C) is an organic solvent.
  • the coating composition of the present embodiment contains the components (1-A1), (1-B) and (1-C) of the configuration shown below, thereby achieving low temperature transparency, scratch resistance and adhesion. An excellent coating film can be formed. The details of each of these components are described below.
  • the polycarbonate diol composition (component (1-A1)) contained in the paint composition of the present embodiment has a structure represented by the following general formula (I) (hereinafter sometimes referred to as “structure (I)”) And a polycarbonate structure (hereinafter sometimes referred to as “polycarbonate structure (II)”) represented by the following general formula (II).
  • R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 11 may be the same as or different from each other, and n 11 is a number of 3 or more and 70 or less.
  • R 21 represents a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 15 carbon atoms, or an aromatic hydrocarbon group. R 21 may be the same as or different from each other, and n 21 is a number of 1 or more and 50 or less.
  • the structure represented by the general formula (I) is 5% by mass or more and 50% by mass or less; It is preferable to contain by mass% or more and 95 mass% or less.
  • the content of the structure represented by the general formula (I) and the content of the polycarbonate structure in the polycarbonate diol composition can be measured, for example, by the following methods (1) to (4).
  • the polycarbonate diol composition is subjected to alkaline hydrolysis in ethanolic potassium hydroxide solution to regenerate the diol component.
  • (3) The precipitated salt is separated by filtration and the filtrate is subjected to GPC measurement.
  • the concentration of the diol having hydroxyl groups at both ends of the structure represented by the general formula (I) in the filtrate is determined from a separately prepared calibration curve.
  • the mass of the diol having hydroxyl groups at both ends of the structure represented by the general formula (I) is calculated, and the value divided by the mass of the polycarbonate diol composition used for the alkaline hydrolysis is represented by the general formula (I) It is the content of diol in which both ends of the structure represented are hydroxyl groups.
  • the terminal structure of the structure represented by the general formula (I) in the polycarbonate diol composition (component (1-A1)) has one terminal bonded to a carbonate group (-O-CO-O-), A terminal structure in which the other terminal is bonded to a hydroxyl group (-OH), a terminal structure in which both terminals are bonded to a carbonate group (-O-CO-O-), or a hydroxyl group (-OH) at both terminals Terminal structure attached to
  • both ends of the molecule having the structure represented by the general formula (I) in the polycarbonate diol composition (component (1-A1)) are hydroxyl groups.
  • the molecule having a polycarbonate structure contained in the polycarbonate diol composition (component (1-A1)) has hydroxyl groups at both ends. That is, the molecule having a polycarbonate structure contained in the polycarbonate diol composition (component (1-A1)) is a polycarbonate diol.
  • Urethane formation reaction rate or state in usage of polycarbonate diol composition due to impurities in various raw materials used for producing polycarbonate diol composition, terminal structure etc. by-produced during production of polycarbonate diol composition In some cases, some of the terminal hydroxyl groups may be converted to alkyl groups or aryl groups that do not react with isocyanate groups for control.
  • the terminal group of the polycarbonate diol also includes the case where strictly 100 mol% of both ends are not a hydroxyl group.
  • the ratio of the hydroxyl group to the total molar amount of the terminal group is preferably 90 mol% or more, and more preferably 95 mol% or more.
  • the both terminal structure of the polycarbonate diol contained in the polycarbonate diol composition can be confirmed, for example, based on the method of measuring the terminal hydroxyl group concentration described in Japanese Patent No. 3874664 (reference 1).
  • solvents such as tetrahydrofuran, acetone, and methanol can be used as a solvent for recovering the fraction.
  • the number average molecular weight of the polycarbonate diol composition is preferably 300 or more and 10000 or less, more preferably 400 or more and 10000 or less, and still more preferably 500 or more and 3000 or less.
  • the number average molecular weight is at least the above lower limit, the flexibility and low temperature properties of the thermoplastic urethane obtained from the polycarbonate diol composition tend to be better.
  • the number average molecular weight is less than or equal to the above upper limit value, molding processability of the thermoplastic urethane obtained from the polycarbonate diol composition tends to be better.
  • the number average molecular weight can be calculated from the hydroxyl value of polycarbonate diol using the method described in the examples described later.
  • the content of the structure (I) is preferably 5% by mass or more and 50% by mass or less, with respect to the total mass of the structure (I) and the polycarbonate structure. % Or more and 30 mass% or less is more preferable, and 5 mass% or more and 20 mass% or less is more preferable.
  • the content of the structure (I) is at least the above lower limit value, a coating film excellent in scratch resistance and adhesion can be obtained. Moreover, the decomposition
  • the terminal structure of structure (I) is a terminal structure in which one end is bonded to a carbonate group and the other end is bonded to a hydroxyl group, both ends are A terminal structure bonded to a carbonate group or a terminal structure bonded to a hydroxyl group at both terminals.
  • the terminal structure of the structure (I) has a terminal structure in which one end is bonded to a carbonate group and the other end is bonded to a hydroxyl group, It may be a mixture of a terminal structure in which both ends are bonded to a carbonate group and a terminal structure in which both ends are bonded to a hydroxyl group.
  • R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group.
  • the plurality of R 11 may be identical to or different from one another. Among them, the plurality of R 11 are preferably identical to each other because of easy synthesis.
  • the divalent linear aliphatic hydrocarbon group for R 11 has 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • divalent linear aliphatic hydrocarbon group for R 11 examples include ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptylene group, octylene group and the like.
  • the divalent branched aliphatic hydrocarbon group for R 11 has 3 to 20 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably 3 to 6 carbon atoms.
  • divalent branched aliphatic hydrocarbon group for R 11 examples include an isopropylene group, an isobutylene group, a tert-butylene group, an isopentylene group, a 2,2-dimethyltrimethylene group, an isohexylene group and an isoheptylene group. And isooctylene group.
  • the divalent cyclic aliphatic hydrocarbon group for R 11 has 6 to 20 carbon atoms, preferably 6 to 12 carbon atoms, and more preferably 6 to 8 carbon atoms.
  • divalent cyclic aliphatic hydrocarbon group for R 11 examples include a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group and the like.
  • the divalent aromatic hydrocarbon group for R 11 has 6 to 15 carbon atoms, preferably 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • divalent aromatic hydrocarbon group for R 11 for example, a phenylene group, a naphthylene group, and the like.
  • R 11 a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms (ie, an alkylene group) is preferable, and a divalent having 2 to 6 carbon atoms is preferable. Or a divalent aliphatic aliphatic hydrocarbon group having 3 to 6 carbon atoms is more preferable, and a divalent linear aliphatic carbonization having 2 to 6 carbon atoms is more preferable. Hydrogen is more preferred.
  • n11 represents the number of repetitions of the structure (-R 11 -O-). n11 is a number of 3 or more and 70 or less, a number of 3 or more and 60 or less is preferable, and a number of 6 or more and 50 or less is more preferable.
  • n 11 is at least the above lower limit value, the amount of the diol having hydroxyl groups at both ends of the structure represented by the general formula (I), which is a raw material, can be reduced.
  • the water resistance and heat resistance of the coating film obtained using the component (A1) tend to be further improved.
  • n11 is less than or equal to the above upper limit value, the crystallinity of the polycarbonate diol composition tends to be further suppressed.
  • n11 can be determined by subjecting a polycarbonate diol composition to alkaline decomposition to take out a raw material diol component, and performing GC-MS measurement, LC-MS measurement and gel permeation chromatography (GPC) measurement on the component.
  • GPC gel permeation chromatography
  • a polyoxyalkylene structure is preferable as the structure (I).
  • preferable oxyalkylene groups included in the structure (I) include an oxyethylene group, an oxy 1-methylethylene group, an oxytetramethylene group, an oxy 2,2-dimethyltrimethylene group and the like. Among them, oxyethylene group is preferable.
  • the polyoxyethylene structure in which all the oxyalkylene groups contained in the structure (I) are oxyethylene groups.
  • the structure (I) contains an oxy 1-methylethylene group and an oxyethylene group, 10% by mass or more and 100% by mass or less of the oxy 1-methylethylene group with respect to the total mass of the structure (I) It is preferable to contain 0 mass% or more and 90 mass% or less of ethylene groups.
  • the structure (I) contains an oxytetramethylene group and an oxy 2,2-dimethyltrimethylene group, 10 mass% or more and 100 mass% or less of the oxytetramethylene group with respect to the total mass of the structure (I)
  • the oxy-2,2-dimethyltrimethylene group is contained in an amount of 0% by mass or more and 90% by mass or less.
  • the content of the polycarbonate structure (II) is preferably 50% by mass or more and 95% by mass or less, based on the total mass of the structure (I) and the polycarbonate structure (II). % Or more and 95 mass% or less are more preferable, and 80 mass% or more and 95 mass% or less are more preferable.
  • the content of the polycarbonate structure (II) is equal to or more than the above lower limit, a coating film excellent in water resistance, heat resistance, chemical resistance, abrasion resistance and the like can be obtained. Moreover, compatibility with the polyether polyol of a polycarbonate diol composition is more excellent because content (II) of polycarbonate structure is below the said upper limit.
  • R 21 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 15 carbon atoms, or an aromatic hydrocarbon group.
  • a plurality of R 21 may be identical to or different from one another. Among them, a plurality of R 21 are preferably identical to each other because of easy synthesis.
  • the divalent linear aliphatic hydrocarbon group for R 21 has 2 to 15 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably 3 to 10 carbon atoms.
  • divalent linear aliphatic hydrocarbon group having 2 or more and 15 or less carbon atoms in R 21 include the same ones as exemplified in the above-mentioned R 11 .
  • butylene, pentylene or hexylene is preferable from the viewpoint of versatility.
  • the divalent branched aliphatic hydrocarbon group for R 21 has 3 to 15 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably 3 to 10 carbon atoms.
  • divalent branched aliphatic hydrocarbon group having 2 or more and 15 or less carbon atoms in R 21 include the same ones as those exemplified for the above-mentioned R 11 .
  • isopentylene group or isohexylene group is preferable from the viewpoint of versatility.
  • the divalent cyclic aliphatic hydrocarbon group for R 21 has 3 to 15 carbon atoms, preferably 6 to 15 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • divalent cyclic aliphatic hydrocarbon group for R 21 include the same ones as those exemplified for R 11 above. Among them, a cyclohexylene group is preferable from the viewpoint of versatility.
  • the divalent aromatic hydrocarbon group for R 21 has 6 to 15 carbon atoms, preferably 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • divalent aromatic hydrocarbon group for R 21 examples include the same ones as exemplified in the above R 11.
  • R 21 a divalent linear aliphatic hydrocarbon group having 3 to 10 carbon atoms or a divalent branched aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferable, and carbon is preferably It is more preferable that the number is 3 or more and 10 or less bivalent linear aliphatic hydrocarbon group.
  • n21 represents the number of repeating of the carbonate structure (-R 21 -O-CO-O-). n21 is a number of 1 or more and 50 or less, preferably 2 or more and 50 or less, more preferably 3 or more and 30 or less, and 4 or more and 20 or less.
  • N 21 can be determined by subjecting a polycarbonate diol composition to alkaline decomposition to remove a raw material diol component, and performing GC-MS measurement, LC-MS measurement, and GPC measurement on the component.
  • the polycarbonate diol composition (component (1-A1)) comprises an ether diol represented by the following general formula (I-1) (hereinafter sometimes referred to as “ether diol (I-1)”), It can be obtained by the transesterification reaction using a polycarbonate diol represented by the formula (II-1) (hereinafter sometimes referred to as “polycarbonate diol (II-1)”).
  • R 111 is the same as R 11 above.
  • N 111 is the same as n 11 above.
  • R 211 and R 212 are respectively the same as the above R 21.
  • n 211 is the same as the above n 21.
  • the ether diol (I-1) used for producing the polycarbonate diol composition (component (1-A1)) may be any one having a structure represented by the above general formula (I-1). Among them, polyoxyalkylene diols are preferable as the ether diol (I-1). As the ether diol (I-1), products of various molecular weights are commercially available, and such commercially available products can also be used. Examples of commercial products of the ether diol (I-1) include polys such as “polyethylene glycol” series manufactured by Wako Pure Chemical Industries, Ltd., “polytetramethylene oxide” series, “PTXG” series manufactured by Asahi Kasei Corp. Oxyalkylene diol etc. are mentioned.
  • the number average molecular weight of the ether diol (I-1) is not particularly limited, but is preferably 400 or more and 3000 or less, and more preferably 600 or more and 2000 or less.
  • the number average molecular weight of the ether diol (I-1) used for the production is equal to or more than the above lower limit value, the amount of the ether diol (I-1) used as the raw material can be further reduced. Furthermore, the water resistance and heat resistance of the coating film obtained from the polycarbonate diol composition tend to be further improved.
  • the number average molecular weight of the ether diol (I-1) used for the production is less than or equal to the above upper limit value, the crystallinity of the polycarbonate diol composition tends to be further suppressed.
  • the polycarbonate diol (II-1) used for the production of the polycarbonate diol composition (component (1-A1)) may be one having a structure represented by the above general formula (II-1).
  • the method for producing the polycarbonate diol (II-1) is not particularly limited, and a known method can also be adopted. For example, a carbonate compound and a diol compound can be reacted in the presence of a transesterification catalyst to obtain polycarbonate diol (II-1).
  • the carbonate compound used for producing the polycarbonate diol (II-1) is not limited to the following, and examples thereof include alkylene carbonate, dialkyl carbonate, diaryl carbonate and the like.
  • alkylene carbonate examples include ethylene carbonate, trimethylene carbonate, 1,2-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,2-pentylene carbonate and the like.
  • dialkyl carbonates examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate and the like.
  • diaryl carbonate a diphenyl carbonate etc. are mentioned, for example.
  • alkylene carbonate is preferable, and ethylene carbonate is more preferable.
  • diol compound examples include, but are not limited to, linear diols, branched diols, cyclic diols, and diols having an aromatic ring.
  • linear diol for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8 And -octanediol, 1,9-nanodiol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol and the like.
  • branched diols examples include 2-methyl-1,8-octanediol, neopentyl glycol, 2-ethyl-1,6-hexanediol, 2-methyl-1,3-propanediol, 3-methyl- 1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol and the like.
  • cyclic diols examples include 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 2-bis (4-hydroxycyclohexyl) -propane and the like.
  • diols having an aromatic ring examples include p-xylenediol, p-tetrachloroxylenediol, 1,4-bis (hydroxyethoxy) benzene, 2,2-bis [(4-hydroxyethoxy) phenyl] propane and the like. It can be mentioned.
  • linear diols are preferable, and 1,5-pentanediol or 1,6-hexanediol is more preferable.
  • a transesterification catalyst can be used in the production of the polycarbonate diol (II-1) which is a raw material.
  • the catalyst can be selected from conventional transesterification catalysts.
  • transesterification catalyst examples include alkali metals and alkaline earth metals, alcoholates thereof, hydrides thereof, oxides thereof, amides thereof, hydroxides thereof and salts thereof and the like.
  • salts of alkali metals and alkaline earth metals carbonates, nitrogen-containing borates, basic salts with organic acids and the like can be mentioned.
  • alkali metal lithium, sodium, potassium etc. are mentioned, for example.
  • alkaline earth metal magnesium, calcium, strontium, barium etc. are mentioned, for example.
  • metals other than alkali metals and alkaline earth metals for example, metals other than alkali metals and alkaline earth metals, and salts thereof, alcoholates thereof, and organic compounds containing the metals Etc.
  • metals other than alkali metals and alkaline earth metals include, for example, aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, zirconium, niobium, molybdenum, ruthenium, Rhodium, palladium, silver, indium, tin, antimony, tungsten, rhenium, osmium, iridium, platinum, gold, thallium, lead, bismuth, ytterbium and the like can be mentioned.
  • transesterification catalysts can be used singly or in combination of two or more.
  • transesterification reaction catalyst transesterification to obtain polycarbonate diol is more favorably performed, and when polycarbonate diol obtained is used, the influence on urethane reaction is less, sodium, potassium, magnesium, potassium, One or more metals selected from the group consisting of titanium, zirconium, tin, lead and ytterbium, or salts thereof, alkoxides thereof, or organic compounds containing such metals are preferred. Further, as the transesterification catalyst, one or more metals selected from the group consisting of magnesium, titanium, ytterbium, tin and zirconium are more preferable.
  • preferable transesterification catalysts include organic compounds of lead, organic compounds of titanium, and the like.
  • organic compound of lead examples include lead acetate trihydrate, tetraphenyl lead, lead stearate and the like.
  • Examples of the organic compound of titanium include titanium tetra-n-butoxide, titanium tetra n-propoxide, titanium tetraisopropoxide and the like.
  • 0.00001 mass% or more and 0.1 mass% or less are preferable with respect to the total mass of a raw material, and, as for the usage-amount of a transesterification reaction catalyst, 0.0001 mass% or more and 0.05 mass% or less are more preferable.
  • the transesterification catalyst used for the transesterification reaction is not consumed by the transesterification reaction when heat treatment is performed subsequent to the production of the polycarbonate diol, it can be calculated based on the amount of the transesterification catalyst used.
  • the metal content of the transesterification catalyst contained in the polycarbonate diol can be determined by measurement by ICP (emission spectroscopy, Inductively Coupled Plasma).
  • the polycarbonate diol (II-1) used in the production of the polycarbonate diol composition (component (1-A1)) has a catalyst poison such as a phosphate ester compound to deactivate the transesterification catalyst used in the production. It may be added.
  • polycarbonate diol (II-1) which is a raw material contains catalyst poisoning of the transesterification catalyst used at the time of production
  • ether diol (I-1) and polycarbonate diol (II-) are used.
  • the transesterification reaction with 1) tends to be difficult to proceed. Therefore, in the production of the polycarbonate diol composition (component (1-A1)), a necessary amount of the above-described transesterification catalyst can be added newly.
  • the transesterification reaction in the present embodiment tends to proceed normally.
  • the reaction temperature in the production process of the polycarbonate diol composition (component (1-A1)) or if it is desired to shorten the reaction time the necessary amount of transesterification catalyst may be newly added. it can. In that case, the same transesterification reaction catalyst used in the production of the polycarbonate diol (II-1) as a raw material can be adopted.
  • the polycarbonate diol (II-1) used for producing the polycarbonate diol composition (component (1-A1)) may be a homopolycarbonate diol obtained from one kind of diol compound, or from two or more kinds of diol compounds. It may be a copolymerized polycarbonate diol obtained.
  • homopolycarbonate diols obtained using, for example, 1,6-hexanediol widely used in the market are usually solid at normal temperature. Therefore, the polycarbonate diol composition (component (1-A1) component) obtained by the transesterification reaction of the homopolycarbonate diol with the ether diol (I-1) also tends to be solid at normal temperature.
  • a copolymerized polycarbonate diol obtained using two types of 1,5-pentanediol and 1,6-hexanediol is liquid at normal temperature. Therefore, the polycarbonate diol composition (component (1-A1) component) obtained by the transesterification reaction of the copolymerized polycarbonate diol and the ether diol (I-1) also tends to be liquid at normal temperature.
  • the number average molecular weight of the polycarbonate diol (II-1) used for the production of the polycarbonate diol composition (component (1-A1)) is not particularly limited, but is preferably 500 or more and 5000 or less, and more preferably 1000 or more and 3000 or less.
  • the number average molecular weight of the polycarbonate diol (II-1) When the number average molecular weight of the polycarbonate diol (II-1) is not less than the above lower limit value, the performance expected of the polycarbonate diol tends to be further improved. On the other hand, when the number average molecular weight of the polycarbonate diol (II-1) is less than or equal to the above upper limit, the increase in viscosity of the polycarbonate diol composition (component (1-A1)) can be suppressed more effectively, and the handleability is improved. It tends to improve more.
  • the polycarbonate diol composition (component (1-A1)) can also be produced by the polycondensation reaction of the ether diol (I-1) with a carbonate compound, using the ether diol (I-1) as a diol.
  • a carbonate compound such as a carbonate compound
  • the ether diol (I-1) as a diol.
  • it is usually necessary to heat at high temperature for a long time. Therefore, the possibility of occurrence of undesired side reactions may be increased, or the workload on switching of production types may be increased.
  • an ether diol (I-1) is used without using a polycondensation reaction using an ether diol (I-1) and a carbonate compound.
  • polycarbonate diol (II-1) are preferable.
  • the transesterification reaction can be carried out by mixing the ether diol (I-1) and the polycarbonate diol (II-1) and stirring while heating.
  • the temperature of the transesterification reaction is not particularly limited, but is preferably 120 ° C. or more and 200 ° C. or less, and more preferably 140 ° C. or more and 180 ° C. or less.
  • reaction temperature By making reaction temperature more than the said lower limit, transesterification can be performed in a short time, and it is excellent in economical efficiency.
  • reaction temperature By setting the reaction temperature to the upper limit or less, coloring of the obtained polycarbonate diol composition can be more effectively prevented.
  • the reaction pressure of transesterification is not particularly limited, but is preferably normal pressure or more and 1 MPa or less. By setting the reaction pressure in the above range, the reaction can be carried out more simply. Moreover, when using an auxiliary material, transesterification reaction can be promoted more efficiently by pressurizing to some extent in consideration of these vapor pressures etc.
  • component (1-A1) As a method of controlling the number average molecular weight of the polycarbonate diol composition (component (1-A1)), for example, selecting one having an appropriate molecular weight of polycarbonate diol (II-1) as a raw material, or controlling the molecular weight From the viewpoint, it is preferable to carry out the transesterification reaction in the presence of one or more kinds of the ether diol (I-1).
  • the progress and completion of transesterification can be confirmed by GPC measurement.
  • the peak derived from the raw material ether diol (I-1) gradually decreases with time, and the peak disappears, whereby the polycarbonate diol (II-1) which is the raw material It can be confirmed that the structure derived from the ether diol (I-1) is bonded to the end or the inside of the polymer chain.
  • a step of dehydration treatment of the raw material to be used may be performed as a pretreatment before the above-described transesterification reaction.
  • a step of adding the above-mentioned catalyst poison to the transesterification catalyst may be performed.
  • ⁇ (1-A2) Component Other Polyol Component>
  • the paint composition of the present embodiment is added to the above-mentioned polycarbonate diol composition (component (1-A1)) as a main component polyol component (component (1-A)), and other polyol components ((1 -A2) component may be contained.
  • Examples of the other polyol component (component (1-A2)) include, but are not limited to, polyester polyol, polyether polyol, acrylic polyol, polyolefin polyol, fluorine polyol and the like. In addition, these polyols are the same as the polyols listed as the other polyol component ((2-A2) component) in the paint composition of Embodiment 2 described later.
  • ether diol (I-1) which is a raw material of polycarbonate diol composition ((1-A1) component), and polycarbonate diol (II-1)
  • diol compounds which are raw materials of polycarbonate diol (II-1) are also included.
  • the coating composition of the present embodiment further includes another polyol component ((1-A2) component), the above polycarbonate diol composition ((1-A1) component) and other polyol components ((1-A2)
  • the component (1-A1) is contained in an amount of 70% by mass to 100% by mass
  • the component (1-A2) is contained in an amount of 0% by mass to 30% by mass with respect to the total mass of the component).
  • the isocyanate compound contained in the paint composition of the present embodiment is not particularly limited as long as it works as a curing agent for the paint composition, and one having two or more isocyanate groups at the end is used.
  • isocyanate compounds for example, linear aliphatic diisocyanates, cyclic aliphatic diisocyanates, aromatic diisocyanates, isocyanate compounds having 3 or more isocyanate groups, and isocyanurate modified products of these isocyanate compounds And biuret-modified products.
  • linear aliphatic diisocyanates examples include hexamethylene diisocyanate and trimethylhexamethylene diisocyanate.
  • cyclic aliphatic diisocyanates examples include isophorone diisocyanate and the like.
  • aromatic diisocyanate examples include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate and naphthylene diisocyanate.
  • isocyanate compound having three or more isocyanate groups for example, triphenylmethane-4,4′-4 ′ ′-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4,6-triisocyanate Examples include natoene and 4,4'-dimethyldiphenylmethane-2,2 ', 5,5'-tetraisocyanate.
  • the isocyanate compound may be a commercially available one, or may be synthesized using a known method.
  • an isocyanate compound 24A-100, 22A-75P, TPA-100, TKA-100, P301-75E, D101, D201, 21S-75E, MFA-75B, MHG-80B, TUL-100, for example.
  • the content of the isocyanate compound (component (1-B)) may be appropriately adjusted according to the molar amount of the hydroxyl group of the main component polyol.
  • the molar ratio (NCO / OH) of the isocyanate group of the isocyanate compound ((1-B) component) to the hydroxyl group of the polyol can be, for example, 0.2 or more and 5.0 or less, for example, 0 4 or more and 3.0, for example, 0.5 or more and 2.0 or less.
  • NCO / OH When NCO / OH is at least the above lower limit, a tougher coating tends to be obtained. On the other hand, when NCO / OH is less than the above upper limit value, the smoothness of the coating film tends to be further improved.
  • the organic solvent ((1-C) component) contained in the paint composition of the present embodiment has a solubility parameter (SP value) of 8.0 (cal / cm 3 ) 1/2 or more and 25.0 (cal / cm 3)
  • SP value solubility parameter
  • the organic solvent which is 1/2 or less is preferable, and the organic solvent which is 8.0 (cal / cm 3 ) 1/2 or more and 15.0 (cal / cm 3 ) 1/2 or less is more preferable, 8.0 ( The organic solvent which is cal / cm 3 ) 1/2 or more and 12.0 (cal / cm 3 ) 1/2 or less is more preferable.
  • the organic solvent ((1-C) component) contained in the paint composition of the present embodiment has an SP value in the above range and a vapor pressure at 20 ° C. of 1.0 kPa or more preferable.
  • the coating composition of the present embodiment can obtain a coating film excellent in low temperature transparency and scratch resistance by containing the organic solvent (component (1-C)) having the above constitution.
  • organic solvents include amide solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, carbonate solvents, aromatic hydrocarbon solvents and the like.
  • amide solvents examples include dimethylformamide and the like.
  • sulfoxide solvents examples include dimethyl sulfoxide and the like.
  • ketone solvents examples include methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone and the like.
  • ether solvents examples include tetrahydrofuran and the like.
  • ester solvents examples include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, propylene glycol 1-monomethyl ether 2-acetate and the like.
  • Examples of the carbonate solvent include dimethyl carbonate, diethyl carbonate and propylene carbonate.
  • aromatic hydrocarbon solvent examples include toluene, xylene and the like.
  • organic solvents may be used alone or in combination of two or more.
  • the solubility parameter (SP value) is 8.0 (cal / cm 3 ) 1/2 or more 15.0 (parts) methyl alcohol, methyl isobutyl ketone, diisobutyl ketone, methyl acetate, ethyl acetate, butyl acetate, acetic acid because it is an organic solvent having a cal / cm 3 ) 1/2 or less and a vapor pressure at 20 ° C. of 1.0 kPa or more One or more selected from the group consisting of isobutyl and toluene are preferred.
  • the content of the organic solvent (component (1-C)) in the paint composition of the present embodiment can be, for example, 30% by mass or more and 90% by mass or less based on the total mass of the paint composition, for example It can be 40 mass% or more and 80 mass% or less, for example, can be 50 mass% or more and 70 mass% or less.
  • the coating composition of the present embodiment can be added to the (1-A1) component, the (1-A2) component, the (1-B) component, and the (1-C) component to be used in various applications. Accordingly, curing accelerators (catalysts), fillers, flame retardants, dyes, organic or inorganic pigments, mold release agents, flow control agents, plasticizers, antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, You may contain other additives ((1-D) component), such as an antifoamer, a leveling agent, and a coloring agent.
  • the curing accelerator is not particularly limited, and examples thereof include commonly used monoamines, diamines, other triamines, cyclic amines, alcohol amines, ether amines, metal catalysts and the like.
  • Examples of monoamines include triethylamine, N, N-dimethylcyclohexylamine and the like.
  • diamine examples include tetramethylethylenediamine and the like.
  • alcohol amino examples include dimethyl ethanolamine and the like.
  • the metal catalyst is not particularly limited.
  • the filler, the dye, the organic or inorganic pigment, and the colorant are not particularly limited, and, for example, woven fabric, glass fiber, carbon fiber, polyamide fiber, mica, kaolin, bentonite, metal powder, azo pigment, carbon black And clay, silica, talc, gypsum, alumina white, barium carbonate and the like which are generally used.
  • a flame retardant for example, an inorganic flame retardant, an aromatic bromine compound, a phosphorus flame retardant etc. are mentioned.
  • inorganic flame retardant examples include antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate and the like.
  • aromatic bromine compound examples include hexabromobenzene, decabromodiphenylethane, 4,4-dibromobiphenyl, ethylene bistetrabromophthalimide and the like.
  • Examples of phosphorus-based flame retardants include resorcinol bis-diphenyl phosphate, resorcinol bis-dixylenyl phosphate and the like.
  • the release agent, the flowability adjuster and the leveling agent are not particularly limited, and for example, silicone, aerosil, wax, stearate, polysiloxane such as BYK-331 (manufactured by BYK Chemical Co.), and the like are used.
  • the plasticizer is not particularly limited.
  • phthalic acid esters phthalic acid esters, phosphoric acid esters, fatty acid esters, pyromellitic acid esters, epoxy plasticizers, polyether plasticizers, liquid rubber, non-aromatic paraffin oil Etc.
  • the antioxidant, the ultraviolet light absorber, the light stabilizer and the heat stabilizer are not particularly limited, and for example, phosphorus compounds, phenol derivatives, compounds containing sulfur, and tin compounds can be used. These may be used alone or in combination of two or more.
  • Examples of phosphorus compounds include aliphatic group- and aromatic group-substituted aromatic esters of phosphoric acid and phosphorous acid and hypophosphorous acid derivatives.
  • Specific examples of the phosphorus compound include phenyl phosphonic acid, phenyl phosphinic acid, diphenyl phosphonic acid, polyphosphonates, dialkyl pentaerythritol diphosphites, dialkyl bisphenol A diphosphites and the like.
  • a hindered phenol compound etc. are mentioned, for example.
  • a compound containing sulfur a thioether type compound, a dithio acid salt type compound, a mercapto benzimidazole type compound, a thiocarbanilide type compound, a thiodipropionic acid ester etc. are mentioned, for example.
  • tin compounds include tin malate, dibutyltin monoxide and the like.
  • silicone oil modified silicone oil, nonionic surfactant, mineral oil etc. are mentioned.
  • silicone oil high molecular weight polydimethylsiloxane etc. are mentioned, for example.
  • modified silicone oil examples include, for example, amino group-introduced silicone oil.
  • nonionic surfactant examples include polyoxyethylene alkyl ether and the like.
  • the coating composition of the present embodiment preferably contains at least an antioxidant, an ultraviolet light absorber, a light stabilizer and a heat stabilizer as other additives (component (1-D)).
  • the paint composition of the present embodiment may contain a solvent or water derived from a raw material.
  • the content of water contained in the coating composition of the present embodiment is preferably 10% by mass or less.
  • ⁇ Method for Producing Coating Composition of Embodiment 1 As a method for producing the coating composition of the present embodiment, the above component (1-A1), the above component (1-B), the above component (1-C), and, if necessary, the above component (1-A2) There is no particular limitation as long as it is a method of mixing the component (1) and the component (1-D). Specifically as a manufacturing method of the paint composition of this embodiment, after stirring for 5 minutes or more and 60 minutes or less at a rotation speed of 50 rpm or more and 1000 rpm or less, using a stirrer, for example, a vacuum degassing machine is used. And the like. «Paint composition of Embodiment 2» The paint composition of the present embodiment contains the (2-A1) component, the (2-A2) component, the (2-B) component and the (2-C) component.
  • the component (2-A1) is a polyol component (hereinafter sometimes referred to as "component (2-A)"), and is a polycarbonate diol composition.
  • component (2-A2) is a polyol component (component (2-A)), and is a polyol component other than the polycarbonate diol composition (component (2-A1)).
  • component (2-B) is an isocyanate compound which is a curing agent.
  • the component (2-C) is an organic solvent.
  • the coating composition of the present embodiment is 3% by mass to 99% by mass of the component (2-A1) and the total mass of the component (2-A1) and the component (2-A2), and
  • the component (2-A2) is preferably contained in an amount of 1% by mass to 97% by mass.
  • the paint composition of the present embodiment contains 5% by mass to 50% by mass of the component (2-A1) with respect to the total mass of the component (2-A1) and the component (2-A2), And it is more preferable to contain 50 to 95 mass% of the said (2-A2) components.
  • the paint composition of the present embodiment contains 5% by mass to 30% by mass of the component (2-A1) with respect to the total mass of the component (2-A1) and the component (2-A2), And it is more preferable to contain 70 to 95 mass% of the said (2-A2) components.
  • the coating composition according to the present embodiment has a scratch recovery property by containing the components (2-A1), (2-A2), (2-B) and (2-C) of the configuration shown below.
  • a coating film excellent in heat resistance can be formed. The details of each of these components are described below.
  • the polycarbonate diol composition contained in the paint composition of the present embodiment contains a polycarbonate diol.
  • the polycarbonate diol has a structure represented by the following general formula (I) (hereinafter sometimes referred to as “structure (I)”) and a polycarbonate structure represented by the following general formula (II) in a molecular chain (Hereinafter sometimes referred to as "polycarbonate structure (II)").
  • R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 11 may be the same as or different from each other, and n 11 is a number of 7 or more and 70 or less.
  • R 21 represents a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 15 carbon atoms, or an aromatic hydrocarbon group. R 21 may be the same as or different from each other, and n 21 is a number of 1 or more and 50 or less.
  • the total weight of the structure represented by the general formula (I) and the polycarbonate structure is 5% by mass or more and 35% by mass or less of the structure represented by the general formula (I); It is preferable to contain by mass% or more and 95 mass% or less.
  • the content of the structure represented by the general formula (I) and the content of the polycarbonate structure in the polycarbonate diol composition can be measured, for example, by the following methods (1) to (4).
  • the polycarbonate diol composition is subjected to alkaline hydrolysis in ethanolic potassium hydroxide solution to regenerate the diol component.
  • (3) The precipitated salt is separated by filtration and the filtrate is subjected to GPC measurement.
  • the concentration of the diol having hydroxyl groups at both ends of the structure represented by the general formula (I) in the filtrate is determined from a separately prepared calibration curve.
  • the mass of the diol having hydroxyl groups at both ends of the structure represented by the general formula (I) is calculated, and the value divided by the mass of the polycarbonate diol composition used for the alkaline hydrolysis is represented by the general formula (I) It is the content of diol in which both ends of the structure represented are hydroxyl groups.
  • the terminal structure of the structure represented by the general formula (I) in the polycarbonate diol composition (component (2-A1)) has one terminal bonded to a carbonate group (-O-CO-O-), A terminal structure in which the other terminal is bonded to a hydroxyl group (-OH), a terminal structure in which both terminals are bonded to a carbonate group (-O-CO-O-), or a hydroxyl group (-OH) at both terminals Terminal structure attached to
  • both ends of the molecule having the structure represented by the general formula (I) in the polycarbonate diol composition (component (2-A1)) are hydroxyl groups.
  • the molecule having a polycarbonate structure contained in the polycarbonate diol composition (component (2-A1)) has hydroxyl groups at both ends. That is, the molecule having a polycarbonate structure contained in the polycarbonate diol composition (component (2-A1)) is a polycarbonate diol.
  • Urethane formation reaction rate or state in usage of polycarbonate diol composition due to impurities in various raw materials used for producing polycarbonate diol composition, terminal structure etc. by-produced during production of polycarbonate diol composition In some cases, some of the terminal hydroxyl groups may be converted to alkyl groups or aryl groups that do not react with isocyanate groups for control.
  • the terminal group of the polycarbonate diol also includes the case where strictly 100 mol% of both ends are not a hydroxyl group.
  • the ratio of the hydroxyl group to the total molar amount of the terminal group is preferably 90 mol% or more, and more preferably 95 mol% or more.
  • the both terminal structure of the polycarbonate diol contained in the polycarbonate diol composition can be confirmed, for example, based on the method of measuring the terminal hydroxyl group concentration described in Japanese Patent No. 3874664 (reference 1).
  • solvents such as tetrahydrofuran, acetone, and methanol can be used as a solvent for recovering the fraction.
  • the number average molecular weight of the polycarbonate diol composition is preferably 300 or more and 10000 or less, more preferably 400 or more and 10000 or less, and still more preferably 500 or more and 3000 or less.
  • the number average molecular weight is at least the above lower limit, the flexibility and low temperature properties of the thermoplastic urethane obtained from the polycarbonate diol composition tend to be better.
  • the number average molecular weight is less than or equal to the above upper limit value, molding processability of the thermoplastic urethane obtained from the polycarbonate diol composition tends to be better.
  • the number average molecular weight can be calculated from the hydroxyl value of polycarbonate diol using the method described in the examples described later.
  • the content of the structure (I) is preferably 5% by mass to 35% by mass with respect to the total mass of the structure (I) and the polycarbonate structure, and 5% by mass % Or more and 20 mass% or less are more preferable, and 5 mass% or more and 15 mass% or less are more preferable.
  • the terminal structure of the structure (I) has one terminal bonded to a carbonate group and the other terminal bonded to a hydroxyl group, or both A terminal structure in which the terminal is bonded to a carbonate group, or a terminal structure in which both terminals are bonded to a hydroxyl group.
  • the terminal structure of the structure (I) has a terminal structure in which one end is bonded to a carbonate group and the other end is bonded to a hydroxyl group, It may be a mixture of terminal structures in which both ends are bonded to a carbonate group.
  • R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group.
  • the plurality of R 11 may be identical to or different from one another. Among them, the plurality of R 11 are preferably identical to each other because of easy synthesis.
  • the divalent linear aliphatic hydrocarbon group for R 11 has 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • divalent linear aliphatic hydrocarbon group for R 11 examples include ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptylene group, octylene group and the like.
  • the divalent branched aliphatic hydrocarbon group for R 11 has 3 to 20 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably 3 to 6 carbon atoms.
  • divalent branched aliphatic hydrocarbon group for R 11 examples include an isopropylene group, an isobutylene group, a tert-butylene group, an isopentylene group, a 2,2-dimethyltrimethylene group, an isohexylene group and an isoheptylene group. And isooctylene group.
  • the divalent cyclic aliphatic hydrocarbon group for R 11 has 6 to 20 carbon atoms, preferably 6 to 12 carbon atoms, and more preferably 6 to 8 carbon atoms.
  • divalent cyclic aliphatic hydrocarbon group for R 11 examples include a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group and the like.
  • the divalent aromatic hydrocarbon group for R 11 has 6 to 15 carbon atoms, preferably 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • divalent aromatic hydrocarbon group for R 11 for example, a phenylene group, a naphthylene group, and the like.
  • R 11 a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms (ie, an alkylene group) is preferable, and a divalent having 2 to 6 carbon atoms is preferable. Or a divalent aliphatic aliphatic hydrocarbon group having 3 to 6 carbon atoms is more preferable, and a divalent linear aliphatic carbonization having 2 to 6 carbon atoms is more preferable. Hydrogen is more preferred.
  • n11 represents the number of repetitions of the structure (-R 11 -O-). n11 is a number of 7 or more and 70 or less, a number of 7 or more and 60 or less is preferable, and a number of 7 or more and 50 or less is more preferable.
  • n11 is at least the above lower limit value, the amount of the diol having hydroxyl groups at both ends of the structure represented by the general formula (I), which is a raw material, can be reduced.
  • the water resistance and heat resistance of the coating film obtained using the component (A1) tend to be further improved.
  • n11 is less than or equal to the above upper limit value, the crystallinity of the polycarbonate diol composition tends to be further suppressed.
  • n11 can be determined by subjecting a polycarbonate diol composition to alkaline decomposition to take out a raw material diol component, and performing GC-MS measurement, LC-MS measurement and gel permeation chromatography (GPC) measurement on the component.
  • GPC gel permeation chromatography
  • a polyoxyalkylene structure is preferable as the structure (I).
  • preferable oxyalkylene groups included in the structure (I) include an oxyethylene group, an oxy 1-methylethylene group, an oxytetramethylene group, an oxy 2,2-dimethyltrimethylene group and the like. Among them, oxyethylene group is preferable.
  • the polyoxyethylene structure in which all the oxyalkylene groups contained in the structure (I) are oxyethylene groups.
  • the structure (I) contains an oxy 1-methylethylene group and an oxyethylene group, 10% by mass or more and 100% by mass or less of the oxy 1-methylethylene group with respect to the total mass of the structure (I) It is preferable to contain 0 mass% or more and 90 mass% or less of ethylene groups.
  • the structure (I) contains an oxytetramethylene group and an oxy 2,2-dimethyltrimethylene group, 10 mass% or more and 100 mass% or less of the oxytetramethylene group with respect to the total mass of the structure (I)
  • the oxy-2,2-dimethyltrimethylene group is contained in an amount of 0% by mass or more and 90% by mass or less.
  • the content of the polycarbonate structure (II) is preferably 65% by mass or more and 95% by mass or less, based on the total mass of the structure (I) and the polycarbonate structure (II). % Or more and 95 mass% or less are more preferable, 80 mass% or more and 95 mass% or less are more preferable, and 85 mass% or more and 95 mass% or less are particularly preferable.
  • the content of the polycarbonate structure (II) is equal to or more than the above lower limit, a coating film excellent in water resistance, heat resistance, chemical resistance, abrasion resistance and the like can be obtained. Moreover, compatibility with the polyether polyol of a polycarbonate diol composition is more excellent because content (II) of polycarbonate structure is below the said upper limit.
  • R 21 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 15 carbon atoms, or an aromatic hydrocarbon group.
  • a plurality of R 21 may be identical to or different from one another. Among them, a plurality of R 21 are preferably identical to each other because of easy synthesis.
  • the divalent linear aliphatic hydrocarbon group for R 21 has 2 to 15 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably 3 to 10 carbon atoms.
  • divalent linear aliphatic hydrocarbon group having 2 or more and 15 or less carbon atoms in R 21 include the same ones as exemplified in the above-mentioned R 11 .
  • butylene, pentylene or hexylene is preferable from the viewpoint of versatility.
  • the divalent branched aliphatic hydrocarbon group for R 21 has 3 to 15 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably 3 to 10 carbon atoms.
  • divalent branched aliphatic hydrocarbon group having 2 or more and 15 or less carbon atoms in R 21 include the same ones as those exemplified for the above-mentioned R 11 .
  • isopentylene group or isohexylene group is preferable from the viewpoint of versatility.
  • the divalent cyclic aliphatic hydrocarbon group for R 21 has 3 to 15 carbon atoms, preferably 6 to 15 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • divalent cyclic aliphatic hydrocarbon group for R 21 include the same ones as those exemplified for R 11 above. Among them, a cyclohexylene group is preferable from the viewpoint of versatility.
  • the divalent aromatic hydrocarbon group for R 21 has 6 to 15 carbon atoms, preferably 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • divalent aromatic hydrocarbon group for R 21 examples include the same ones as exemplified in the above R 11.
  • R 21 a divalent linear aliphatic hydrocarbon group having 3 to 10 carbon atoms or a divalent branched aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferable, and carbon is preferably It is more preferable that the number is 3 or more and 10 or less bivalent linear aliphatic hydrocarbon group.
  • n21 represents the number of repeating of the carbonate structure (-R 21 -O-CO-O-). n21 is a number of 1 or more and 50 or less, preferably 2 or more and 50 or less, more preferably 3 or more and 30 or less, and 4 or more and 20 or less.
  • N 21 can be determined by subjecting a polycarbonate diol composition to alkaline decomposition to remove a raw material diol component, and performing GC-MS measurement, LC-MS measurement, and GPC measurement on the component.
  • the polycarbonate diol composition comprises an ether diol represented by the following general formula (I-1) (hereinafter sometimes referred to as “ether diol (I-1)”), It can be obtained by the transesterification reaction using a polycarbonate diol represented by the formula (II-1) (hereinafter sometimes referred to as “polycarbonate diol (II-1)”).
  • R 111 is the same as R 11 above.
  • N 111 is the same as n 11 above.
  • R 211 and R 212 are respectively the same as the above R 21.
  • n 211 is the same as the above n 21.
  • the ether diol (I-1) used for producing the polycarbonate diol composition (component (2-A1)) may be any one having a structure represented by the above general formula (I-1). Among them, polyoxyalkylene diols are preferable as the ether diol (I-1). As the ether diol (I-1), products of various molecular weights are commercially available, and such commercially available products can also be used. Examples of commercial products of the ether diol (I-1) include polys such as “polyethylene glycol” series manufactured by Wako Pure Chemical Industries, Ltd., “polytetramethylene oxide” series, “PTXG” series manufactured by Asahi Kasei Corp. Oxyalkylene diol etc. are mentioned.
  • the number average molecular weight of the ether diol (I-1) is not particularly limited, but is preferably 400 or more and 3000 or less, and more preferably 600 or more and 2000 or less.
  • the number average molecular weight of the ether diol (I-1) used for the production is equal to or more than the above lower limit value, the amount of the ether diol (I-1) used as the raw material can be further reduced. Furthermore, the water resistance and heat resistance of the coating film obtained from the polycarbonate diol composition tend to be further improved.
  • the number average molecular weight of the ether diol (I-1) used for the production is less than or equal to the above upper limit value, the crystallinity of the polycarbonate diol composition tends to be further suppressed.
  • the polycarbonate diol (II-1) used in the production of the polycarbonate diol composition (component (2-A1)) may be any one as long as it has a structure represented by the above general formula (II-1).
  • the method for producing the polycarbonate diol (II-1) is not particularly limited, and a known method can also be adopted. For example, a carbonate compound and a diol compound can be reacted in the presence of a transesterification catalyst to obtain polycarbonate diol (II-1).
  • the carbonate compound used for producing the polycarbonate diol (II-1) is not limited to the following, and examples thereof include alkylene carbonate, dialkyl carbonate, diaryl carbonate and the like.
  • alkylene carbonate examples include ethylene carbonate, trimethylene carbonate, 1,2-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,2-pentylene carbonate and the like.
  • dialkyl carbonates examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate and the like.
  • diaryl carbonate a diphenyl carbonate etc. are mentioned, for example.
  • alkylene carbonate is preferable, and ethylene carbonate is more preferable.
  • diol compound examples include, but are not limited to, linear diols, branched diols, cyclic diols, and diols having an aromatic ring.
  • linear diol for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8 And -octanediol, 1,9-nanodiol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol and the like.
  • branched diols examples include 2-methyl-1,8-octanediol, neopentyl glycol, 2-ethyl-1,6-hexanediol, 2-methyl-1,3-propanediol, 3-methyl- 1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol and the like.
  • cyclic diols examples include 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 2-bis (4-hydroxycyclohexyl) -propane and the like.
  • diols having an aromatic ring examples include p-xylenediol, p-tetrachloroxylenediol, 1,4-bis (hydroxyethoxy) benzene, 2,2-bis [(4-hydroxyethoxy) phenyl] propane and the like. It can be mentioned.
  • linear diols are preferable, and 1,5-pentanediol or 1,6-hexanediol is more preferable.
  • a transesterification catalyst can be used in the production of the polycarbonate diol (II-1) which is a raw material.
  • the catalyst can be selected from conventional transesterification catalysts.
  • transesterification reaction catalyst examples include alkali metals and alkaline earth metals, alcoholates thereof, hydrides thereof, oxides thereof, amides thereof, hydroxides thereof and salts thereof and the like.
  • salts of alkali metals and alkaline earth metals carbonates, nitrogen-containing borates, basic salts with organic acids and the like can be mentioned.
  • alkali metal lithium, sodium, potassium etc. are mentioned, for example.
  • alkaline earth metal magnesium, calcium, strontium, barium etc. are mentioned, for example.
  • metals other than alkali metals and alkaline earth metals for example, metals other than alkali metals and alkaline earth metals, and salts thereof, alcoholates thereof, and organic compounds containing the metals Etc.
  • metals other than alkali metals and alkaline earth metals include, for example, aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, zirconium, niobium, molybdenum, ruthenium, Rhodium, palladium, silver, indium, tin, antimony, tungsten, rhenium, osmium, iridium, platinum, gold, thallium, lead, bismuth, ytterbium and the like can be mentioned.
  • transesterification catalysts can be used singly or in combination of two or more.
  • transesterification reaction catalyst transesterification to obtain polycarbonate diol is more favorably performed, and when polycarbonate diol obtained is used, the influence on urethane reaction is less, sodium, potassium, magnesium, potassium, One or more metals selected from the group consisting of titanium, zirconium, tin, lead and ytterbium, or salts thereof, alkoxides thereof, or organic compounds containing such metals are preferred. Further, as the transesterification catalyst, one or more metals selected from the group consisting of magnesium, titanium, ytterbium, tin and zirconium are more preferable.
  • preferable transesterification catalysts include organic compounds of lead, organic compounds of titanium, and the like.
  • organic compound of lead examples include lead acetate trihydrate, tetraphenyl lead, lead stearate and the like.
  • Examples of the organic compound of titanium include titanium tetra-n-butoxide, titanium tetra n-propoxide, titanium tetraisopropoxide and the like.
  • 0.00001 mass% or more and 0.1 mass% or less are preferable with respect to the total mass of a raw material, and, as for the usage-amount of a transesterification reaction catalyst, 0.0001 mass% or more and 0.05 mass% or less are more preferable.
  • the transesterification catalyst used for the transesterification reaction is not consumed by the transesterification reaction when heat treatment is performed subsequent to the production of the polycarbonate diol, it can be calculated based on the amount of the transesterification catalyst used.
  • the metal content of the transesterification catalyst contained in the polycarbonate diol can be determined by measurement by ICP (emission spectroscopy, Inductively Coupled Plasma).
  • the polycarbonate diol (II-1) used in the production of the polycarbonate diol composition (component (2-A1)) has a catalyst poison such as a phosphoric acid ester compound to deactivate the transesterification catalyst used in its production. It may be added.
  • polycarbonate diol (II-1) which is a raw material contains catalyst poisoning of the transesterification catalyst used at the time of production
  • ether diol (I-1) and polycarbonate diol (II-) are used.
  • the transesterification reaction with 1) tends to be difficult to proceed. Therefore, in the production of the polycarbonate diol composition (component (2-A1)), a necessary amount of the above-described transesterification catalyst can be added newly.
  • the transesterification reaction in the present embodiment tends to proceed normally.
  • a necessary amount of transesterification catalyst may be newly added. it can.
  • the same transesterification reaction catalyst used in the production of the polycarbonate diol (II-1) as a raw material can be adopted.
  • the polycarbonate diol (II-1) used for producing the polycarbonate diol composition (component (2-A1)) may be a homopolycarbonate diol obtained from one kind of diol compound, or from two or more kinds of diol compounds. It may be a copolymerized polycarbonate diol obtained.
  • homopolycarbonate diols obtained using, for example, 1,6-hexanediol widely used in the market are usually solid at normal temperature. Therefore, the polycarbonate diol composition (component (2-A1)) obtained by the transesterification reaction of the homopolycarbonate diol with the ether diol (I-1) also tends to be solid at normal temperature.
  • a copolymerized polycarbonate diol obtained using two types of 1,5-pentanediol and 1,6-hexanediol is liquid at normal temperature. Therefore, the polycarbonate diol composition (component (2-A1)) obtained by the transesterification reaction of the copolymerized polycarbonate diol with the ether diol (I-1) also tends to be liquid at normal temperature.
  • the number average molecular weight of the polycarbonate diol (II-1) used for producing the polycarbonate diol composition (component (2-A1)) is not particularly limited, but is preferably 500 or more and 5000 or less, and more preferably 1000 or more and 3000 or less.
  • the number average molecular weight of the polycarbonate diol (II-1) When the number average molecular weight of the polycarbonate diol (II-1) is not less than the above lower limit value, the performance expected of the polycarbonate diol tends to be further improved. On the other hand, when the number average molecular weight of the polycarbonate diol (II-1) is less than or equal to the above upper limit, the increase in viscosity of the polycarbonate diol composition (component (2-A1)) can be suppressed more effectively, and the handleability is improved. It tends to improve more.
  • the polycarbonate diol composition (component (2-A1)) can also be produced by the polycondensation reaction of the ether diol (I-1) with a carbonate compound, using the ether diol (I-1) as a diol.
  • a carbonate compound such as a carbonate compound
  • ether diol (I-1) as a diol.
  • it is usually necessary to heat at high temperature for a long time. Therefore, the possibility of occurrence of undesired side reactions may be increased, or the workload on switching of production types may be increased.
  • an ether diol (I-1) is used without using a polycondensation reaction using an ether diol (I-1) and a carbonate compound.
  • polycarbonate diol (II-1) are preferable.
  • the transesterification reaction can be carried out by mixing the ether diol (I-1) and the polycarbonate diol (II-1) and stirring while heating.
  • the temperature of the transesterification reaction is not particularly limited, but is preferably 120 ° C. or more and 200 ° C. or less, and more preferably 140 ° C. or more and 180 ° C. or less.
  • reaction temperature By making reaction temperature more than the said lower limit, transesterification can be performed in a short time, and it is excellent in economical efficiency.
  • reaction temperature By setting the reaction temperature to the upper limit or less, coloring of the obtained polycarbonate diol composition can be more effectively prevented.
  • the reaction pressure of transesterification is not particularly limited, but is preferably normal pressure or more and 1 MPa or less. By setting the reaction pressure in the above range, the reaction can be carried out more simply. Moreover, when using an auxiliary material, transesterification reaction can be promoted more efficiently by pressurizing to some extent in consideration of these vapor pressures etc.
  • the number average molecular weight of the polycarbonate diol composition for example, selecting one having an appropriate molecular weight of polycarbonate diol (II-1) as a raw material, or controlling the molecular weight From the viewpoint, it is preferable to carry out the transesterification reaction in the presence of one or more kinds of the ether diol (I-1).
  • the progress and completion of transesterification can be confirmed by GPC measurement.
  • the peak derived from the raw material ether diol (I-1) gradually decreases with time, and the peak disappears, whereby the polycarbonate diol (II-1) which is the raw material It can be confirmed that the structure derived from the ether diol (I-1) is bonded to the end or the inside of the polymer chain.
  • the above-mentioned transesterification may be preceded by, for example, a step of dehydration treatment of the raw material to be used as pretreatment.
  • a step of adding the above-mentioned catalyst poison to the transesterification catalyst may be performed.
  • the paint composition of the present embodiment is added to the polycarbonate diol composition (component (2-A1)) as a main component polyol component (component (2-A)), and further, other polyol components ((2 -A2) component) is contained.
  • the coating composition of the present embodiment contains the component (2-A2) in an amount of 1% by mass or more and 97% by mass or less based on the total mass of the component (2-A1) and the component (2-A2).
  • the content is preferably 50% by mass or more and 95% by mass or less, and more preferably 70% by mass or more and 95% by mass or less.
  • Examples of the other polyol component ((2-A2) component) include, but are not limited to, polyester polyols, polyether polyols, acrylic polyols, polyolefin polyols, fluorine polyols and the like.
  • ether diol (I-1) which is a raw material of polycarbonate diol composition ((2-A1) component), and polycarbonate diol (II-1)
  • diol compounds which are raw materials of polycarbonate diol (II-1) are also included.
  • polyester polyol The polyester polyol can be obtained, for example, by condensation reaction of a dibasic acid alone or a mixture of two or more with a polyhydric alcohol alone or a mixture of two or more.
  • dibasic acid examples include carboxylic acids such as succinic acid, adipic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, 1,4-cyclohexanedicarboxylic acid and the like.
  • polyhydric alcohol examples include ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, trimethylpentanediol, cyclohexanediol, trimethylolpropane, glycerin and pentaerythritol. And 2-methylolpropanediol, ethoxylated trimethylolpropane and the like.
  • the condensation reaction can be carried out by mixing the above-mentioned components and heating at about 160 to 220 ° C.
  • polycaprolactones obtained by ring-opening polymerization of lactones such as ⁇ -caprolactone using polyhydric alcohol can also be used as the polyester polyol.
  • the polyester polyol obtained by the above-mentioned production method can be modified using an aromatic diisocyanate, an aliphatic diisocyanate, an alicyclic diisocyanate, a compound obtained therefrom, and the like. Among them, it is preferable to modify the polyester polyol using an aliphatic diisocyanate, an alicyclic diisocyanate, and a compound obtained therefrom, from the viewpoint of the weather resistance and yellowing resistance of the resulting coating film.
  • the polyester polyol When the paint composition of the present embodiment contains a solvent with a large amount of water, a part of the carboxylic acid derived from a dibasic acid or the like in the polyester polyol is left to be neutralized and neutralized with a base such as amine or ammonia. By doing this, the polyester polyol can be made water-soluble or water-dispersible resin.
  • polyether polyol The polyether polyol can be obtained, for example, using any of the following methods (1) to (3).
  • a method of obtaining polyether polyols by random or block addition of an alkylene oxide alone or a mixture with a polyhydroxy compound alone or a mixture using a catalyst (1) A method of obtaining polyether polyols by random or block addition of an alkylene oxide alone or a mixture with a polyhydroxy compound alone or a mixture using a catalyst.
  • the catalyst examples include hydroxides (lithium, sodium, potassium, etc.), strongly basic catalysts (alcoholate, alkylamines, etc.), complex metal cyanide complexes (metal porphyrin, zinc hexacyanocobaltate complex, etc.), etc.
  • alkylene oxide examples include ethylene oxide, propylene oxide, butylene oxide, cyclohexene oxide, styrene oxide and the like.
  • polyvalent hydroxy compound examples include those shown in the following (i) to (vi).
  • (Iv) Disaccharides such as trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, melibiose and the like.
  • V Trisaccharides such as raffinose, gentianose, and meletitose.
  • the acrylic polyol it is preferable to use one that is uniformly dissolved (compatible) in the organic solvent used for the coating composition. If the acrylic polyol is uniformly dissolved in the organic solvent, a homogeneous coating composition is obtained, and the appearance, smoothness, transparency, adhesion and the like of the coating film are improved.
  • the hydroxyl value of the acrylic polyol is preferably 10 mg KOH / g or more and 500 mg KOH / g or less, more preferably 20 mg KOH / g or more and 400 mg KOH / g or less, and more preferably 30 mg KOH / g or more and 300 mg KOH / g from the viewpoint of mechanical properties of the coating. The following are more preferable.
  • the hydroxyl value of the polyol is measured according to the method of measuring the hydroxyl value of polycarbonate diol described in the examples described later.
  • dissolves uniformly in the organic solvent for example, the acrylic polyol obtained by the polymerization method mentioned later can be used.
  • organic solvent type acrylic polyol it is preferable to use an organic solvent type acrylic polyol. It is preferable to refrain from using a water-dispersed acrylic polyol, as it generally has poor compatibility with organic solvents and causes water to be mixed in the paint.
  • the water content in the paint composition is preferably 10% or less, more preferably 5% or less, because if the water content in the paint composition is large, it affects the appearance, smoothness, transparency, adhesion and the like of the coating film. More preferably, it is 1% or less.
  • the amount of water in the paint composition can be measured by Karl Fischer titration method.
  • the polymerization method of the acrylic polyol may, for example, polymerize only a polymerizable monomer having one or more active hydrogens in one molecule, or a polymerizable monomer having one or more active hydrogens in one molecule, Accordingly, a method of copolymerizing the polymerizable monomer and another copolymerizable monomer can be used.
  • Examples of the polymerizable monomer having one or more active hydrogens in one molecule include those shown in the following (i) to (vi). These may be used alone or in combination of two or more.
  • Acrylic acid esters having active hydrogen such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate and the like.
  • Methacrylic acid having active hydrogen such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate and the like Esters.
  • (Iii) (Meth) acrylic acid esters having polyvalent active hydrogen such as (meth) acrylic acid monoester of triol such as glycerin and trimethylolpropane.
  • (V) An adduct of glycidyl (meth) acrylate and a monobasic acid (eg, acetic acid, propionic acid, p-tert-butylbenzoic acid, etc.).
  • a monobasic acid eg, acetic acid, propionic acid, p-tert-butylbenzoic acid, etc.
  • Examples of other monomers copolymerizable with the polymerizable monomer include those shown in the following (i) to (iv). These may be used alone or in combination of two or more.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid etc., unsaturated amides (acrylamide, N-methylol acrylamide, diacetone acrylamide etc.).
  • Vinyl monomers having a hydrolyzable silyl group such as vinyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ - (meth) acrylopropyltrimethoxysilane and the like.
  • acrylic polyol As a specific production method of the acrylic polyol, for example, solution polymerization of the above-mentioned monomer is carried out in the presence of a known radical polymerization initiator such as peroxide or azo compound, and diluted with an organic solvent or the like as required. Thus, an acrylic polyol can be obtained.
  • the acrylic polyol may be a commercially available one, or may be synthesized using a known method. Examples of commercially available acrylic polyols include acrylic polyols manufactured by Allex, such as Setalux 1152, Setalux 1184, Setalux 1186, Setalux 1903, Setalux 1906, Setalux 1907, Setalux 1909, Setalux 1910, and the like.
  • polyolefin polyol examples include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene having two or more hydroxyl groups, polyisoprene having two or more hydroxyl groups, hydrogenated polyisoprene having two or more hydroxyl groups, and the like.
  • the number of hydroxyl groups (Hereafter, "an average number of hydroxyl groups") which 1 statistical molecule of polyolefin polyol has may be 2 or more.
  • fluorine polyol means a polyol containing fluorine in the molecule.
  • fluorine polyols include fluoroolefins, cyclovinyl ethers and hydroxy compounds disclosed in, for example, JP-A-57-34107 (Reference 1) and JP-A-61-275311 (Reference 2).
  • Copolymers, such as alkyl vinyl ether and monocarboxylic acid vinyl ester, etc. are mentioned.
  • the isocyanate compound contained in the paint composition of the present embodiment is not particularly limited as long as it works as a curing agent for the paint composition, and one having two or more isocyanate groups at the end is used.
  • isocyanate compounds for example, linear aliphatic diisocyanates, cyclic aliphatic diisocyanates, aromatic diisocyanates, isocyanate compounds having 3 or more isocyanate groups, and isocyanurate modified products of these isocyanate compounds And biuret-modified products.
  • linear aliphatic diisocyanates examples include hexamethylene diisocyanate and trimethylhexamethylene diisocyanate.
  • cyclic aliphatic diisocyanates examples include isophorone diisocyanate and the like.
  • aromatic diisocyanate examples include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate and naphthylene diisocyanate.
  • isocyanate compound having three or more isocyanate groups for example, triphenylmethane-4,4′-4 ′ ′-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4,6-triisocyanate Examples include natoene and 4,4'-dimethyldiphenylmethane-2,2 ', 5,5'-tetraisocyanate.
  • the isocyanate compound may be a commercially available one, or may be synthesized using a known method.
  • an isocyanate compound 24A-100, 22A-75P, TPA-100, TKA-100, P301-75E, D101, D201, 21S-75E, MFA-75B, MHG-80B, TUL-100, for example.
  • the content of the isocyanate compound (component (2-B)) may be appropriately adjusted according to the molar amount of the hydroxyl group of the main component polyol.
  • the molar ratio (NCO) of the isocyanate group of the isocyanate compound (component (2-B)) to the hydroxyl group of the polyol can be, for example, 0.2 or more and 5.0 or less, for example, 0.4 It can be 3.0 or more, for example, can be 0.5 or more and 2.0 or less.
  • NCO / OH When NCO / OH is at least the above lower limit, a tougher coating tends to be obtained. On the other hand, when NCO / OH is less than the above upper limit value, the smoothness of the coating film tends to be further improved.
  • organic solvent organic solvent>
  • the organic solvent ((2-C) component) contained in the paint composition of the present embodiment may function as a solvent of the paint composition.
  • organic solvent examples include amide solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, carbonate solvents, aromatic hydrocarbon solvents and the like.
  • amide solvents examples include dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.
  • sulfoxide solvents examples include dimethyl sulfoxide and the like.
  • ketone solvents examples include methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone and the like.
  • ether solvents examples include tetrahydrofuran, dioxane and the like.
  • ester solvents examples include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, propylene glycol 1-monomethyl ether 2-acetate and the like.
  • Examples of the carbonate solvent include dimethyl carbonate, diethyl carbonate and propylene carbonate.
  • aromatic hydrocarbon solvent examples include toluene, xylene and the like.
  • organic solvents may be used alone or in combination of two or more.
  • organic solvent ((2-C) component) contained in the paint composition of the present embodiment dimethylformamide, dimethylacetamide, N-methylpyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, methyl acetate, ethyl acetate
  • organic solvent ((2-C) component) contained in the paint composition of the present embodiment dimethylformamide, dimethylacetamide, N-methylpyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, methyl acetate, ethyl acetate
  • One or more selected from the group consisting of butyl acetate, isobutyl acetate, propylene glycol 1-monomethyl ether 2-acetate, toluene, and xylene is preferable.
  • the content of the organic solvent ((2-C) component) in the paint composition of the present embodiment can be, for example, 10% by mass or more and 90% by mass or less based on the total mass of the paint composition, for example It can be 15 mass% or more and 70 mass% or less, for example, can be 20 mass% or more and 50 mass% or less.
  • the coating composition of the present embodiment can be added to the above component (2-A1), the above component (2-A2), the above component (2-B), and the above component (2-C) according to various uses. It may contain other additives ((2-D) component) such as a curing accelerator (catalyst), urethane beads, a matting agent, a leveling agent, and a thixotropic agent. By appropriately containing these other additives (component (2-D)), coating compositions having different properties, such as soft feel coatings and clear coatings, can be obtained.
  • additives such as a curing accelerator (catalyst), urethane beads, a matting agent, a leveling agent, and a thixotropic agent.
  • the curing accelerator is not particularly limited, and, for example, monoamines, diamines, other triamines, cyclic amines, alcohol amines, ether amines, metal catalysts and the like can be used.
  • Examples of monoamines include triethylamine, N, N-dimethylcyclohexylamine and the like.
  • diamine examples include tetramethylethylenediamine and the like.
  • alcohol amino examples include dimethyl ethanolamine and the like.
  • the metal catalyst is not particularly limited.
  • the matting agent is not particularly limited, and examples thereof include organic fine powder, inorganic fine powder and the like. These matting agents may be used alone or in combination of two or more.
  • organic fine powder for example, a crosslinked acrylic resin polymerized using an unsaturated carboxylic acid alkyl ester monomer and a crosslinking agent, an unsaturated nitrile monomer, an aromatic vinyl monomer and a crosslinking agent are used. And crosslinked resins which have been polymerized.
  • unsaturated carboxylic acid alkyl ester monomers examples include methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate and the like.
  • unsaturated nitrile monomers examples include acrylonitrile, methacrylonitrile, ethacrylonitrile and the like.
  • aromatic vinyl monomer examples include styrene and ⁇ -methylstyrene.
  • organic fine powders may be used alone or in combination of two or more.
  • inorganic fine powder examples include metal oxide fine powder, silicate compound fine powder, metal carbonate fine powder, nitride fine powder, gypsum fine powder, clay fine powder, talc fine powder, natural mica fine powder and the like.
  • metal oxide fine powder examples include silicon oxide fine powder, titanium oxide fine powder, aluminum oxide fine powder, zirconium oxide fine powder and the like.
  • fine powder of a silicate compound for example, fine powder of aluminum silicate, fine powder of magnesium silicate and the like can be mentioned.
  • Examples of the metal carbonate fine powder include calcium carbonate fine powder and barium carbonate fine powder.
  • nitride fine powder examples include titanium nitride fine powder, silicon nitride fine powder and the like.
  • These inorganic fine powders may be used alone or in combination of two or more.
  • silicon oxide fine powder is preferable as the inorganic fine powder.
  • examples of the silicon oxide fine powder include hydrated or anhydrous silica fine powder.
  • Such fine silica powder include, for example, “ACEMAT OK 412 (trade name)”, “ACEMAT OK 607 (trade name)”, “ACEMAT OK 900 (trade name)”, “ACEMATT TS” manufactured by Evonik. 100 (trade name), ACEMAT OK 520 (trade name), ACEMAT 3600 (trade name), ACEMAT 3300 (trade name), and the like.
  • the leveling agent is not particularly limited, and, for example, silicone, aerosil, wax, stearate, polysiloxane such as BYK-331 (manufactured by BYK Chemical Co.), and the like are used.
  • the thixotropic agent As a thixotropic agent, the thixotropic agent conventionally used for the thermosetting resin composition of cream solder can be used. Specific examples of the thixotropic agent include castor oil, hydrogenated castor oil, and a thixotropic agent based on sorbitol.
  • the paint composition of the present embodiment may contain a solvent or water derived from a raw material.
  • the content of water contained in the coating composition of the present embodiment is preferably 10% by mass or less.
  • ⁇ Method for Producing Coating Composition of Embodiment 2 As a manufacturing method of the paint constituent of this embodiment, 3 mass% or more and 99 mass% or less of the above-mentioned (2-A1) ingredient to the total mass of the above-mentioned (2-A1) ingredient and the above-mentioned (2-A2) ingredient And the component (2-A1), the component (2-A2), the component (2-B), and the component (2-B1) such that the component (2-A2) is contained in an amount of 1% by mass to 97% by mass. It is not particularly limited as long as it is a method of mixing the component (2-D) and the above component (2-D) as required.
  • a manufacturing method of the paint composition of this embodiment after stirring for 5 minutes or more and 60 minutes or less at a rotation speed of 50 rpm or more and 1000 rpm or less, using a stirrer, for example, a vacuum degassing machine is used. Method of degassing operation.
  • Coating method Although it does not specifically limit as a coating method of the coating composition of this invention, for example, after mixing each component immediately before coating, the method of apply
  • the paint composition of the present invention is a car, a bus, a railway vehicle, a building machine, an agricultural machine, a floor, a wall and a roof of a building, a metal product, a mortar and a concrete product, a woodworking product, a plastic product, a calcium silicate board and a gypsum board Etc. It can be suitably used in a wide range of fields such as painting on ceramic building materials and the like.
  • hydroxyl Value was measured by the following method. First, using a volumetric flask, pyridine was added to 12.5 g of acetic anhydride to make 50 mL, and an acetylation reagent was prepared. Then, 2.5 to 5.0 g of the sample was precisely weighed in a 100 mL eggplant flask. Then, 5 mL of acetylation reagent and 10 mL of toluene were added with a whole pipet, and a cooling pipe was attached, and the mixture was stirred and heated at 100 ° C. for 1 hour.
  • E represents a sample titration volume (mL)
  • F represents a blank test titration volume (mL)
  • G represents a sample weight (g)
  • f represents a titration solution factor.
  • H represents a hydroxyl value (mg-KOH / g).
  • Solubility parameter (SP value) of organic solvent The solubility parameter (SP value) of the organic solvent is described in Reference 2 (Shinichi Ueda et al., “Study on the solubility parameter of additives," Study on paints, No. 152, pages 41 to 46, 2010.) It measured according to.
  • Adhesiveness 1 Production of Coating A necessary number of releasable paper adhesive tapes were attached as spacers to both ends of a polymethyl methacrylate plate (PMMA plate, manufactured by Mitsubishi Rayon "Akrilite” (trade name)). Next, each paint composition was dropped onto the top of the plate and coated using a glass rod (diameter 8 mm) so that the dry film thickness would be 30 to 40 ⁇ m. Next, after curing for 5 minutes under an atmosphere of 50% RH at 23 ° C., baking and drying were performed for 30 minutes at 60 ° C. Then, it was allowed to age for one week in an atmosphere of 50% RH at 23 ° C. to form a coating.
  • PMMA plate polymethyl methacrylate plate
  • a coating film was cut out from a polypropylene plate into a size of 10 mm wide ⁇ 50 mm long, and used as a coating film sample for heat resistance.
  • the coating sample was allowed to stand in an oven at 120 ° C. for 2 days.
  • the breaking stress of the coating film sample by a tensile test was measured.
  • the atmosphere temperature in the tensile test was set at 23 ° C. and 50% RH, the distance between the chucks was 20 mm, and the tensile speed was 20 mm / min.
  • the breaking stress of the coating film sample before being placed in an oven at 120 ° C. was measured by a tensile test to obtain Y0.
  • Break stress retention (%) (Y1 / Y0) ⁇ 100 (v)
  • the reactor was directly connected to a condenser, and the temperature of the oil bath was raised to 180 ° C., and then the pressure was gradually lowered to carry out the reaction for another 2 hours, and polycarbonate diol 1-a-1 (2278 g liquid at normal temperature) Got).
  • the hydroxyl value of the obtained polycarbonate diol 1-a-1 was 109.8 mg KOH / g.
  • the number average molecular weight was 1022.
  • Synthesis Example 1-2 Preparation of Polycarbonate Diol 1-a-2 230 g of 1,5-pentanediol, 1,6- in a 1 L glass flask equipped with a rectification column packed with a regular packing and a stirrer. After 250 g of hexanediol and 400 g of ethylene carbonate were charged in the reactor, 0.0468 g of titanium tetra-n-butoxide was loaded as a catalyst. The reactor was immersed in an oil bath of 180 ° C., and a reaction was carried out at a reaction temperature of 165 ° C. for 12 hours while extracting a part of the distillate.
  • the reactor was directly connected to a condenser, and the temperature of the oil bath was raised to 180 ° C., and then the pressure was gradually lowered to carry out the reaction for further 4 hours, and polycarbonate diol 1-a-2 (437 g liquid at normal temperature) Got).
  • the hydroxyl value of the obtained polycarbonate diol 1-a-2 was 55.6 mg KOH / g.
  • the number average molecular weight was 2018.
  • Synthesis Example 1-3 Production of Polycarbonate Diol Composition 1-A-1 90 parts by mass of polycarbonate diol 1-a-1 obtained in Synthesis Example 1-1 was added to a 1 L glass flask equipped with a stirrer. 10 parts by mass (40 g) of (360 g) and polyoxyethylene diol (manufactured by Wako Pure Chemical Industries, Ltd., "polyethylene glycol 1000" (trade name), number average molecular weight: about 1000) was charged. They were then heated with stirring and maintained at a temperature in the reactor at about 145 ° C. for 6 hours.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-1 was 108.7 mg KOH / g.
  • the number average molecular weight was 1032.
  • Synthesis Example 1-4 Preparation of Polycarbonate Diol Composition 1-A-2
  • 90 parts by mass of polycarbonate diol 1-a-1 obtained in Synthesis Example 1-1 10 parts by mass (40 g) of (360 g) and polyoxytetramethylene diol (manufactured by Mitsubishi Chemical Co., Ltd., “PTMG 1000” (trade name), number average molecular weight: about 1000) were charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as the temperature in the reactor to obtain polycarbonate diol composition 1-A-2.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-2 was 109.1 mg KOH / g.
  • the number average molecular weight was 1028.
  • Synthesis Example 1-5 Preparation of Polycarbonate Diol Composition 1-A-3
  • 90 parts by mass of polycarbonate diol 1-a-1 obtained in Synthesis Example 1-1 10 parts by mass (40 g) of (360 g) and a copolymer of tetrahydrofuran and neopentyl glycol (manufactured by Asahi Kasei Corp., “PTXG1830” (trade name), number average molecular weight: about 1830) were charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as the temperature in the reactor to obtain polycarbonate diol composition 1-A-3.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-3 was 104.3 mg KOH / g.
  • the number average molecular weight was 1075.
  • Synthesis Example 1-6 Production of Polycarbonate Diol Composition 1-A-4
  • a 500 mL glass flask equipped with a stirrer 97 parts by mass of polycarbonate diol 1-a-1 obtained in Synthesis Example 1-1 3 parts by mass (9 g) of (291 g) and polyoxyethylene diol (manufactured by Wako Pure Chemical Industries, Ltd., “polyethylene glycol 1000” (trade name), number average molecular weight: about 1000) was charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as the temperature in the reactor to obtain polycarbonate diol composition 1-A-4.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-4 was 108.5 mg KOH / g.
  • the number average molecular weight was 1034.
  • Synthesis Example 1-7 Preparation of Polycarbonate Diol Composition 1-A-5
  • a 500 mL glass flask equipped with a stirrer 95 parts by mass of polycarbonate diol 1-a-1 obtained in Synthesis Example 1-1 5 parts by mass (15 g) of (285 g) and polyoxyethylene diol (manufactured by Wako Pure Chemical Industries, Ltd., “polyethylene glycol 1000” (trade name), number average molecular weight: about 1000) was charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as the temperature in the reactor to obtain polycarbonate diol composition 1-A-5.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-5 was 109.2 mg KOH / g.
  • the number average molecular weight was 1027.
  • Synthesis Example 1-8 Preparation of Polycarbonate Diol Composition 1-A-6
  • 80 parts by mass of polycarbonate diol 1-a-2 obtained in Synthesis Example 1-2 20 parts by mass (80 g) of (320 g) and polyoxyethylene diol (manufactured by Wako Pure Chemical Industries, Ltd., "polyethylene glycol 1000" (trade name), number average molecular weight: about 1000) was charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as the temperature in the reactor to obtain polycarbonate diol composition 1-A-6.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-6 was 66.9 mg KOH / g.
  • the number average molecular weight was 1677.
  • Synthesis Example 1-9 Production of Polycarbonate Diol Composition 1-A-7
  • 70 parts by mass of polycarbonate diol 1-a-1 obtained in Synthesis Example 1-1 30 parts by mass (120 g) of (280 g) and polyoxytetramethylene diol (manufactured by Mitsubishi Chemical Corporation, "PTMG 1000" (trade name), number average molecular weight: about 1000) were charged. Then, they were heated with stirring and maintained at a temperature in the reactor of about 145 ° C. for 6 hours to obtain polycarbonate diol composition 1-A-7.
  • PTMG 1000 polyoxytetramethylene diol
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-7 was 110.3 mg KOH / g.
  • the number average molecular weight was 1017.
  • Synthesis Example 1-10 Preparation of Polycarbonate Diol Composition 1-A-8
  • 70 parts by mass of polycarbonate diol 1-a-1 obtained in Synthesis Example 1-1 30 parts by weight (120 g) of (280 g) and a copolymer of tetrahydrofuran and neopentyl glycol (manufactured by Asahi Kasei Corp., “PTXG1830” (trade name), number average molecular weight: about 1830) were charged. Then, they were heated with stirring and maintained at a temperature in the reactor of about 145 ° C. for 6 hours to obtain polycarbonate diol composition 1-A-8.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-8 was 94.4 mg KOH / g.
  • the number average molecular weight was 1188.
  • the reactor is directly connected to a condenser, and the temperature of the oil bath is raised to 180 ° C., and then the pressure is gradually lowered to carry out the reaction for further 8 hours. Obtained 508 g).
  • the hydroxyl value of the obtained polycarbonate diol 1-a-3 was 112.0 mg KOH / g.
  • the number average molecular weight was 1002.
  • Synthesis Example 1-12 Production of Polycarbonate Diol Composition 1-A-9
  • a 500 mL glass flask equipped with a stirrer 90 parts by mass of polycarbonate diol 1-a-3 obtained in Synthesis Example 1-11 10 parts by mass (30 g) of (270 g) and polyoxyethylene diol (manufactured by Wako Pure Chemical Industries, Ltd., "polyethylene glycol 1000" (trade name), number average molecular weight: about 1000) was charged. Then, they were heated with stirring, and maintained at a temperature in the reactor of about 145 ° C. for 6 hours to obtain polycarbonate diol composition 1-A-9.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-9 was 110.1 mg KOH / g.
  • the number average molecular weight was 1019.
  • polycarbonate diol 1-a-4 (white solid at normal temperature) 925 g) was obtained.
  • the hydroxyl value of the obtained polycarbonate diol 1-a-4 was 56.2 mg KOH / g.
  • the number average molecular weight was 1997.
  • Synthesis Example 1-14 Preparation of Polycarbonate Diol Composition 1-A-10
  • a 500 mL glass flask equipped with a stirrer 90 parts by mass of polycarbonate diol 1-a-4 obtained in Synthesis Example 1-13 10 parts by mass (30 g) of (270 g) and polyoxytetramethylene diol (manufactured by BASF, “PolyTHF 2000” (trade name), number average molecular weight: about 2000) were charged. Then, they were heated with stirring and maintained at a temperature in the reactor of about 145 ° C. for 6 hours to obtain a polycarbonate diol composition 1-A-10.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 1-A-10 was 56.1 mg KOH / g.
  • the number average molecular weight was 2,000.
  • Example 1-1 Production of Coating Composition 1-1 10 g of the polycarbonate diol composition 1-A-1 obtained in Synthesis Example 1-3 as a main agent, BYK “BYK-331” (a leveling agent) 0.08 g of a trade name) and 20.27 g of ethyl acetate as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. Further, 3.52 g of "TPA-100" (trade name) (polyisocyanate; NCO content: 23.1%) manufactured by Asahi Kasei Co., Ltd. as a curing agent so that the molar ratio of NCO / OH is 1.00.
  • TPA-100 trade name
  • Example 1-2 Preparation of coating composition 1-2 Using the same method as Example 1-1 except that butyl acetate was used instead of ethyl acetate as a solvent, coating composition 1- I got two. Evaluation was performed based on the above method using the obtained paint composition 1-2. The results are shown in Table 1-1 below.
  • Example 1-3 Preparation of Coating Composition 1-3 Using the same method as Example 1-1, except that isobutyl acetate was used instead of ethyl acetate as a solvent, Coating Composition 1- I got three. Evaluation was performed based on the above-mentioned method using the obtained paint composition 1-3. The results are shown in Table 1-1 below.
  • Example 1-4 Preparation of Coating Composition 1-4
  • Coating Composition 1-4 was prepared using the same method as Example 1-1, except that methyl ethyl ketone was used instead of ethyl acetate as the solvent. I got Evaluation was performed based on the above method using the obtained paint composition 1-4. The results are shown in Table 1-1 below.
  • Example 1-5 Preparation of Coating Composition 1-5
  • Coating Composition 1 was prepared using the same method as Example 1-1 except that methyl isobutyl ketone was used instead of ethyl acetate as the solvent. I got -5. Evaluation was performed based on the above-mentioned method using the obtained paint composition 1-5. The results are shown in Table 1-1 below.
  • Example 1-6 Preparation of Coating Composition 1-6 Using the same method as Example 1-1, except that toluene was used as a solvent, instead of ethyl acetate, a coating composition 1-6 was prepared. I got Evaluation was performed based on the above-mentioned method using the obtained paint composition 1-6. The results are shown in Table 1-1 below.
  • Example 1-7 Preparation of Coating Composition 1-7
  • Coating Composition 1-7 was prepared using the same method as Example 1-1, except that xylene was used instead of ethyl acetate as the solvent. I got Evaluation was performed based on the above-mentioned method using the obtained paint composition 1-7. The results are shown in Table 1-1 below.
  • Example 1-8 Preparation of Coating Composition 1-8 Using the same method as Example 1-1, except that acetonitrile was used instead of ethyl acetate as a solvent, a coating composition 1-8 I got Evaluation was performed based on the above-mentioned method using the obtained paint composition 1-8. The results are shown in Table 1-2 below.
  • Example 1-9 Production of Coating Composition 1-9 10 g of the polycarbonate diol composition 1-A-5 obtained in Synthesis Example 1-7 as a main agent, BYK “BYK-331” as a leveling agent 0.08 g of trade name (trade name) and 20.30 g of ethyl acetate as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. Further, 3.54 g of "TPA-100" (trade name) (polyisocyanate; NCO content: 23.1%) manufactured by Asahi Kasei Co., Ltd. as a curing agent so that the molar ratio of NCO / OH is 1.00.
  • TPA-100 trade name
  • Example 1-10 Production of Coating Composition 1-10 10 g of the polycarbonate diol composition 1-A-6 obtained in Synthesis Example 1-8 as a main agent, BYK “BYK-331” as a leveling agent 0.07 g of a trade name) and 18.24 g of ethyl acetate as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. Further, 2.17 g of "TPA-100" (trade name) (polyisocyanate; NCO content: 23.1%) manufactured by Asahi Kasei Co., Ltd. as a curing agent so that the molar ratio of NCO / OH is 1.00.
  • TPA-100 trade name
  • Example 1-11 Production of Coating Composition 1-11 10 g of the polycarbonate diol composition 1-A-2 obtained in Synthesis Example 1-4 as a main ingredient, BYK "BYK-331" as a leveling agent 0.08 g of a trade name) and 20.29 g of ethyl acetate as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. Further, 3.54 g of "TPA-100" (trade name) (polyisocyanate; NCO content: 23.1%) manufactured by Asahi Kasei Co., Ltd. as a curing agent so that the molar ratio of NCO / OH is 1.00.
  • TPA-100 trade name
  • Example 1-12 Production of Coating Composition 1-12 10 g of the polycarbonate diol composition 1-A-3 obtained in Synthesis Example 1-5 as a main ingredient, BYK "BYK-331" as a leveling agent 0.08 g of trade name (trade name) and 20.06 g of ethyl acetate as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. Further, 3.38 g of “TPA-100” (trade name) (polyisocyanate; NCO content: 23.1%) manufactured by Asahi Kasei Co., Ltd. as a curing agent so that the molar ratio of NCO / OH is 1.00.
  • Example 1-13 Production of Coating Composition 1-13 10 g of the polycarbonate diol composition 1-A-7 obtained in Synthesis Example 1-9 as a main agent, BYK “BYK-331" as a leveling agent 0.08 g of trade name (trade name) and 20.35 g of ethyl acetate as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. Further, 3.57 g of "TPA-100" (trade name) (polyisocyanate; NCO content: 23.1%) manufactured by Asahi Kasei Co., Ltd. as a curing agent so that the molar ratio of NCO / OH is 1.00.
  • TPA-100 trade name
  • Example 1-14 Production of Coating Composition 1-14 10 g of the polycarbonate diol composition 1-A-8 obtained in Synthesis Example 1-10 as a main agent, BYK “BYK-331” as a leveling agent 0.08 g of a trade name) and 19.58 g of ethyl acetate as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. Furthermore, 3.06 g of "TPA-100" (trade name) (polyisocyanate; NCO content: 23.1%) manufactured by Asahi Kasei Co., Ltd.
  • TPA-100 trade name
  • Example 1-15 Production of Coating Composition 1-15 10 g of the polycarbonate diol composition 1-A-9 obtained in Synthesis Example 1-12 as a main ingredient, BYK “BYK-331" as a leveling agent 0.09 g of trade name) and 21.25 g of ethyl acetate as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. Furthermore, 4.18 g of “TKA-100” (trade name) (polyisocyanate; NCO content: 21.7%) manufactured by Asahi Kasei Co., Ltd.
  • Example 1-16 Production of Coating Composition 1-16 10 g of the polycarbonate diol composition 1-A-10 obtained in Synthesis Example 1-14 as a main ingredient, BYK “BYK-331” as a leveling agent 0.07 g of a trade name) and 18.18 g of ethyl acetate as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. Furthermore, 2.13 g of "TKA-100" (trade name) (polyisocyanate; NCO content: 21.7%) manufactured by Asahi Kasei Co., Ltd.
  • Example 1-17 Preparation of Coating Composition 1-17 Synthesis Example for Resin Component of “Setalux 1152” (trade name) (acrylic polyol; hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%) manufactured by Allnex Corporation Obtained by 10 g of “Setalux 1152” (trade name) as a main agent and Synthesis Example 1-3 so that the mass ratio of the resin component of the polycarbonate diol composition 1-A-1 obtained in 1-3 was 45/55 Measure 7.46 g of the polycarbonate composition 1-A-1, and 0.12 g of “BYK-331” (trade name) manufactured by BYK as a leveling agent, and 19.60 g of butyl acetate as a solvent.
  • “Setalux 1152” (acrylic polyol; hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%) manufactured by Allnex Corporation Obtained by 10 g of “Setalux 1152” (trade name) as a
  • Example 1-19 Preparation of Coating Composition 1-19 Synthesis Example for Resin Component of “Setalux 1152” (trade name) (acrylic polyol; hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%) manufactured by Allnex Corporation 1 g of “Setalux 1152” (trade name) was obtained as a main agent and Synthesis Example 1-7 such that the mass ratio of the resin component of the polycarbonate diol composition 1-A-5 obtained in 1-7 was 45/55 Measure 7.46 g of the polycarbonate composition 1-A-5, 0.12 g of “BYK-331” (trade name) manufactured by BYK as a leveling agent, and 15.39 g of butyl acetate as a solvent.
  • Example 1-20 Preparation of coating composition 1-20 Synthesis example for the resin component of "Setalux 1152" (trade name) (acrylic polyol; hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%) manufactured by Allnex Corporation Obtained with 10 g of “Setalux 1152” (trade name) as a main agent and Synthesis Example 1-8 so that the mass ratio of the resin component of the polycarbonate diol composition 1-A-6 obtained in 1-8 was 45/55. Measure 7.46 g of the polycarbonate composition 1-A-6, 0.12 g of “BYK-331” (trade name) manufactured by BYK as a leveling agent, and 14.30 g of butyl acetate as a solvent.
  • “Setalux 1152” (acrylic polyol; hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%) manufactured by Allnex Corporation Obtained with 10 g of “Setalux 1152” (trade name) as a main agent and
  • Example 1-21 Preparation of coating composition 1-21 A synthesis example for the resin component of "Setalux 1152" (trade name) (acrylic polyol; hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%) manufactured by Allnex Corporation 1 g of “Setalux 1152” (trade name) was obtained as a main agent so that the mass ratio of the resin component of the polycarbonate diol composition 1-A-5 obtained in 1-7 would be 30/70 and Synthesis Example 1-7 Measure 7.12 g of the polycarbonate composition 1-A-5, 0.09 g of “BYK-331” (trade name) manufactured by BYK as a leveling agent, and 12.36 g of ethyl acetate as a solvent.
  • “Setalux 1152” (acrylic polyol; hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%) manufactured by Allnex Corporation 1 g of “Setalux 1152” (trade name) was obtained as a main agent
  • Example 1-22 Preparation of coating composition 1-22 A synthesis example for the resin component of "Setalux 1152" (trade name) (acrylic polyol; hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%) manufactured by Allnex Corporation Obtained with 5 g of “Setalux 1152” (trade name) as a main agent and Synthetic Example 1-8 so that the mass ratio of the resin component of the polycarbonate diol composition 1-A-6 obtained in 1-8 was 30/70. Measure 7.12 g of the polycarbonate composition 1-A-6, 0.09 g of "BYK-331” (trade name) manufactured by BYK as a leveling agent, and 11.32 g of ethyl acetate as a solvent.
  • “Setalux 1152” (acrylic polyol; hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%) manufactured by Allnex Corporation Obtained with 5 g of “Setalux 1152” (trade name) as a
  • Comparative Example 1-1 Preparation of Coating Composition 1-23 Using the same method as Example 1-1, except that diisobutyl ketone was used instead of ethyl acetate as a solvent, a coating composition 1- I got nineteen. Evaluation was performed based on the above-mentioned method using the obtained paint composition 1-19. The results are shown in Table 1-4 below.
  • Comparative Example 1-2 Production of Coating Composition 1-24 10 g of the polycarbonate diol composition 1-A-1 obtained in Synthesis Example 1-3 as a main ingredient, BYK “BYK-331” as a leveling agent 0.08 g of a trade name) and 20.27 g of hexane as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer. However, the polycarbonate diol composition 1-A-1 obtained in Synthesis Example 1-3 did not dissolve in hexane, and did not lead to the preparation of a paint composition.
  • Comparative Example 1-3 Production of Coating Composition 1-25 10 g of the polycarbonate diol composition 1-A-2 obtained in Synthesis Example 1-4 as a main ingredient, BYK “BYK-331” as a leveling agent 0.08 g of a trade name) and 20.27 g of hexane as a solvent were respectively measured, and stirring was performed at 600 rpm for 5 minutes using a stirrer.
  • the polycarbonate diol composition 1-A-2 obtained in Synthesis Example 1-4 did not dissolve in hexane, and did not lead to the preparation of a paint composition.
  • Comparative Example 1-4 Production of Coating Composition 1-26 10 g of the polycarbonate diol composition 1-A-3 obtained in Synthesis Example 1-5 as a main agent, BYK-33 manufactured by BYK as a leveling agent 0.08 g (trade name) and 20.27 g of hexane as a solvent were respectively weighed and stirred for 5 minutes at 600 rpm using a stirrer. However, the polycarbonate diol composition 1-A-3 obtained in Synthesis Example 1-5 did not dissolve in hexane, and did not lead to the preparation of a paint composition.
  • coating compositions 1-1 to 1-22 containing an organic solvent having an SP value of 8.3 or more as the component (1-C) (Examples 1-1 to 1- 22)
  • the low temperature transparency and scratch resistance of the obtained coating film are better than the coating composition 1-23 (Comparative Example 1-1) containing an organic solvent having an SP value of less than 8.0
  • Comparative Examples 1-2 to 1-4 containing an organic solvent having an SP value of 7.3 could not produce a paint composition.
  • a polycarbonate diol composition having a content of the structure (I) of 5% by mass to 30% by mass and a content of the polycarbonate structure of 70% by mass to 90% by mass
  • the coating composition 1-1 to 1-22 (Examples 1-1 to 1-22) containing the polycarbonate having a content of the structure (I) of 3% by mass and a content of the polycarbonate structure of 97% by mass
  • the scratch resistance and the adhesion were better than those of the coating composition 1-27 (comparative example 1-5) containing the diol composition.
  • coating compositions 1-1 to 1-16, 1-18 and 1-21 to 5 each include a polycarbonate diol composition having a mass ratio of (1-A1) component / (1-A2) component of 70/30 or more. 1-22 (Examples 1-1 to 1-16, 1-18 and 1-21 to 1-22), the mass ratio of the (1-A1) component to the (1-A2) component is 55/45 Adhesion was better than paint compositions 1-17 and 1-19 to 1-20 (Examples 1-17 and 1-19 to 1-20) containing polycarbonate diol compositions.
  • the mass ratio of (1-A1) component / (1-A2) component is 70/30 or more, and the vapor pressure at 20 ° C. as the (1-C) component is 1.0 kPa or more Coating compositions 1-1 to 1-6, 1-8 to 1-16, 1-18 and 1-21 to 1-22 containing solvents (Examples 1-1 to 1-6, 1-8 to 1- 16, 1-18 and 1-21 to 1-22), the mass ratio of (1-A1) component / (1-A2) component is 70/30 or more, and the vapor pressure at 20 ° C.
  • the mass ratio of the coating composition 1-7 (Example 1-7) containing the organic solvent of 7 to 0.9 kPa and the component (1-A1) / (1-A2) is less than 70/30
  • the coating film formed from the coating composition of the present embodiment is excellent in low-temperature transparency, scratch resistance and adhesion.
  • the reactor was directly connected to a condenser, and the temperature of the oil bath was raised to 180 ° C., and then the pressure was gradually lowered to carry out the reaction for another 2 hours, and polycarbonate diol 2-a-1 (2278 g) which was liquid at normal temperature Got).
  • the hydroxyl value of the obtained polycarbonate diol 2-a-1 was 109.8 mg KOH / g.
  • the number average molecular weight was 1022.
  • Synthesis Example 2-2 Preparation of Polycarbonate Diol 2-a-2 230 g of 1,5-pentanediol, 1,6- in a 1 L glass flask equipped with a rectification column packed with a regular packing and a stirrer. After 250 g of hexanediol and 400 g of ethylene carbonate were charged in the reactor, 0.0468 g of titanium tetra-n-butoxide was loaded as a catalyst. The reactor was immersed in an oil bath of 180 ° C., and a reaction was carried out at a reaction temperature of 165 ° C. for 12 hours while extracting a part of the distillate.
  • the reactor was directly connected to a condenser, and the temperature of the oil bath was raised to 180 ° C., and then the pressure was gradually lowered to carry out the reaction for further 3 hours, and polycarbonate diol 2-a-2 (466 g liquid at normal temperature) Got).
  • the hydroxyl value of the obtained polycarbonate diol 2-a-2 was 55.2 mg KOH / g.
  • the number average molecular weight was 2033.
  • Synthesis Example 2-3 Preparation of Polycarbonate Diol Composition 2-A-1
  • polycarbonate diol 2-a-1 obtained in Synthesis Example 2-1 10 parts by mass (40 g) of (360 g) and polyoxyethylene diol (manufactured by Wako Pure Chemical Industries, Ltd., "polyethylene glycol 1000" (trade name), number average molecular weight: about 1000) was charged. They were then heated with stirring and maintained at a temperature in the reactor at about 145 ° C. for 6 hours.
  • polycarbonate diol composition is added by adding 85% phosphoric acid to titanium tetra-n-butoxide in a mass ratio of 2.0 times and heating at a reactor internal temperature of 115 ° C. for 3 hours.
  • 2-A-1 was obtained.
  • gel permeation chromatography hereinafter sometimes abbreviated as "GPC" measurement is performed on the reaction solution over time, and the peaks derived from the raw materials disappear and peaks derived from the product The progress of the reaction and the like were confirmed by confirming the appearance of Hc over time.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-1 was 108.7 mg KOH / g.
  • the number average molecular weight was 1032.
  • Synthesis Example 2-4 Preparation of Polycarbonate Diol 2-a-3 550 g of 2-methyl-1,3-propanediol was contained in a 3 L glass flask equipped with a rectification column packed with a regular packing and a stirrer. After 423 g of 1,4-butanediol and 952 g of ethylene carbonate were charged in the reactor, 0.1925 g of titanium tetra-n-butoxide was added as a catalyst. The reactor was immersed in a 170 ° C. oil bath and reacted at a reaction temperature of 155 ° C. for 25 hours while extracting a part of the distillate.
  • the reactor was directly connected to a condenser, and the temperature of the oil bath was raised to 170 ° C., and then the pressure was gradually lowered to carry out the reaction for further 5 hours, and polycarbonate diol 2-a-3 (577 g) which was liquid at normal temperature Got).
  • the hydroxyl value of the obtained polycarbonate diol 2-a-3 was 53.0 mg KOH / g.
  • the number average molecular weight was 2117.
  • Synthesis Example 2-5 Preparation of Polycarbonate Diol Composition 2-A-2
  • 90 parts by mass of polycarbonate diol 2-a-1 obtained in Synthesis Example 2-1 10 parts by mass (40 g) of (360 g) and polyoxytetramethylene diol (manufactured by Mitsubishi Chemical Co., Ltd., “PTMG 1000” (trade name), number average molecular weight: about 1000) were charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as a temperature in the reactor to obtain a polycarbonate diol composition 2-A-2.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-2 was 109.1 mg KOH / g.
  • the number average molecular weight was 1028.
  • Synthesis Example 2-6 Preparation of Polycarbonate Diol Composition 2-A-3
  • 70 parts by mass of polycarbonate diol 2-a-1 obtained in Synthesis Example 2-1 30 parts by mass (120 g) of (280 g) and polyoxytetramethylene diol (manufactured by Mitsubishi Chemical Corporation, "PTMG 1000" (trade name), number average molecular weight: about 1000) were charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as the temperature in the reactor to obtain a polycarbonate diol composition 2-A-3.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-3 was 110.3 mg KOH / g.
  • the number average molecular weight was 1017.
  • Synthesis Example 2-7 Preparation of Polycarbonate Diol Composition 2-A-4
  • 90 parts by mass of polycarbonate diol 2-a-1 obtained in Synthesis Example 2-1 10 parts by mass (40 g) of (360 g) and a copolymer of tetrahydrofuran and neopentyl glycol (manufactured by Asahi Kasei Corp., “PTXG1830” (trade name), number average molecular weight: about 1830) were charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as a temperature in the reactor to obtain a polycarbonate diol composition 2-A-4.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-4 was 104.3 mg KOH / g.
  • the number average molecular weight was 1075.
  • Synthesis Example 2-8 Preparation of Polycarbonate Diol Composition 2-A-5
  • 70 parts by mass of polycarbonate diol 2-a-1 obtained in Synthesis Example 2-1 30 parts by weight (120 g) of (280 g) and a copolymer of tetrahydrofuran and neopentyl glycol (manufactured by Asahi Kasei Corp., “PTXG1830” (trade name), number average molecular weight: about 1830) were charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as a temperature in the reactor to obtain a polycarbonate diol composition 2-A-5.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-5 was 94.4 mg KOH / g.
  • the number average molecular weight was 1188.
  • Synthesis Example 2-9 Preparation of Polycarbonate Diol Composition 2-A-6
  • a 500 mL glass flask equipped with a stirrer 79 parts by mass of polycarbonate diol 2-a-2 obtained in Synthesis Example 2-2 21 parts by mass (63 g) of (237 g) and polyoxytetramethylene diol (manufactured by BASF, “PolyTHF 250” (trade name), number average molecular weight: about 250) were charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as the temperature in the reactor to obtain polycarbonate diol composition 2-A-6.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-6 was 135.0 mg KOH / g.
  • the number average molecular weight was 831.
  • Synthesis Example 2-10 Production of Polycarbonate Diol Composition 2-A-7
  • a 500 mL glass flask equipped with a stirrer 61 parts by mass of polycarbonate diol 2-a-1 obtained in Synthesis Example 2-1 39 parts by mass (117 g) of (183 g) and polyoxytetramethylene diol (manufactured by BASF, “PolyTHF 650” (trade name), number average molecular weight: about 650) were charged. Then, they were heated with stirring and maintained at a temperature in the reactor of about 145 ° C. for 6 hours to obtain a polycarbonate diol composition 2-A-7.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-7 was 136.4 mg KOH / g.
  • the number average molecular weight was 823.
  • the reactor is directly connected to a condenser, and the temperature of the oil bath is raised to 180 ° C., and then the pressure is gradually lowered to carry out the reaction for further 8 hours, and polycarbonate diol 2-a-4 (white solid at normal temperature) Obtained 508 g).
  • the hydroxyl value of the obtained polycarbonate diol 2-a-4 was 112.0 mg KOH / g.
  • the number average molecular weight was 1002.
  • Synthesis Example 2-12 Production of Polycarbonate Diol Composition 2-A-8
  • 90 parts by mass of polycarbonate diol 2-a-4 obtained in Synthesis Example 2-11 10 parts by mass (30 g) of (270 g) and polyoxyethylene diol (manufactured by Wako Pure Chemical Industries, Ltd., "polyethylene glycol 1000" (trade name), number average molecular weight: about 1000) was charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as the temperature in the reactor to obtain polycarbonate diol composition 2-A-8.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-8 was 110.1 mg KOH / g.
  • the number average molecular weight was 1019.
  • Synthesis Example 2-13 Production of Polycarbonate Diol 2-a-5
  • a 3-liter glass flask equipped with a rectification column filled with a regular packing and a stirrer is 961 g of 1,10-decanediol, and ethylene carbonate
  • 0.010 g of lead (II) trihydrate was added as a catalyst.
  • the reactor was immersed in a 140 ° C. oil bath and reacted at a reaction temperature of 165 ° C. for 12 hours while extracting a part of the distillate.
  • the reactor was directly connected to a condenser, and the temperature of the oil bath was raised to 200 ° C., and then the pressure was gradually lowered to carry out the reaction for further 4 hours, and polycarbonate diol 2-a-5 (white solid at normal temperature) 925 g) was obtained.
  • the hydroxyl value of the obtained polycarbonate diol 2-a-5 was 56.2 mg KOH / g.
  • the number average molecular weight was 1997.
  • Synthesis Example 2-14 Preparation of Polycarbonate Diol Composition 2-A-9
  • a 500 mL glass flask equipped with a stirrer 90 parts by mass of polycarbonate diol 2-a-5 obtained in Synthesis Example 2-13 10 parts by mass (30 g) of (270 g) and polyoxytetramethylene diol (manufactured by BASF, “PolyTHF 2000” (trade name), number average molecular weight: about 2000) were charged. Then, they were heated with stirring and maintained at about 145 ° C. for 6 hours as a temperature in the reactor to obtain a polycarbonate diol composition 2-A-9.
  • reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-9 was 56.1 mg KOH / g.
  • the number average molecular weight was 2,000.
  • Synthesis Example 2-15 Preparation of Polycarbonate Diol Composition 2-A-10
  • 80 parts by mass of polycarbonate diol 2-a-2 obtained in Synthesis Example 2-2 20 parts by mass (80 g) of (320 g) and polyoxyethylene diol (manufactured by Wako Pure Chemical Industries, Ltd., "polyethylene glycol 1000" (trade name), number average molecular weight: about 1000) was charged. Then, they were heated with stirring, and maintained at a temperature in the reactor of about 145 ° C. for 6 hours to obtain a polycarbonate diol composition 2-A-10.
  • the reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-10 was 66.7 mg KOH / g.
  • the number average molecular weight was 1682.
  • Synthesis Example 2-16 Preparation of Polycarbonate Diol Composition 2-A-11
  • a 500 mL glass flask equipped with a stirrer 95 parts by mass of polycarbonate diol 2-a-1 obtained in Synthesis Example 2-1 5 parts by mass (15 g) of (285 g) and polyoxyethylene diol (manufactured by Wako Pure Chemical Industries, Ltd., “polyethylene glycol 1000” (trade name), number average molecular weight: about 1000) was charged. Then, they were heated with stirring and maintained at a temperature in the reactor of about 145 ° C. for 6 hours to obtain a polycarbonate diol composition 2-A-11.
  • the reaction solution is subjected to GPC measurement with time, and the disappearance of the peak derived from the raw material and the appearance of the peak derived from the product are confirmed over time, whereby the progress of the reaction etc. confirmed.
  • reaction advances almost quantitatively based on the preparation amount of a raw material, and having a structure corresponding to it, GPC measurement over time Confirmed by.
  • the hydroxyl value of the obtained polycarbonate diol composition 2-A-11 was 109.2 mg KOH / g.
  • the number average molecular weight was 1027.
  • Example 2-1 Production of Coating Composition 2-1
  • Resin component of acrylic polyol manufactured by Allnex, “Setalux 1152” (trade name), hydroxyl value 138.6 mg KOH / g resin, solid content 61 mass%)
  • TKA-100 Japanese X-100
  • Example 2-2 Production of Coating Composition 2-2 Mass Ratio of Resin Component of Polycarbonate Diol Composition 2-A-1 Obtained in Synthesis Example 2-3 to Resin Component of “Setalux 1152” (trade name)
  • “Setalux 1152” Mass ratio of (2-A1) component to (2-A2) component
  • NCO / OH to be 1.00
  • 15g and 1.02 g of the polycarbonate composition 2-A-1 obtained in Synthesis Example 2-3, 4.76 g of "TKA-100" (trade name) as a curing agent, and acetic acid as a solvent 9.07 g of butyl was weighed out and mixed respectively. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-2. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-2. The results are shown in Table 2-1 below.
  • Example 2-3 Preparation of Coating Composition 2-3 Mass Ratio of Resin Component of Polycarbonate Diol Composition 2-A-1 Obtained in Synthesis Example 2-3 to Resin Component of “Setalux 1152” (trade name)
  • "Setalux 1152” Mass ratio of (2-A1) component / (2-A2) component
  • NCO / OH molar ratio to 1.00 15g and 2.29 g of the polycarbonate composition 2-A-1 obtained in Synthesis Example 2-3
  • 5.23 g of "TKA-100" (trade name) as a curing agent, and acetic acid as a solvent 10.82 g of butyl was separately weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-3. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-3. The results are shown in Table 2-1 below.
  • Example 2-4 Production of coating composition 2-4 Mass ratio of resin component of polycarbonate diol composition 2-A-1 obtained in Synthesis Example 2-3 to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152" (Mass ratio of (2-A1) component / (2-A2) component) to 30/70, and NCO / OH molar ratio to 1.00 12g and 3.14 g of the polycarbonate composition 2-A-1 obtained in Synthesis Example 2-3, 4.68 g of "TKA-100" (trade name) as a curing agent, and acetic acid as a solvent 10.45 g of butyl was separately weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-4. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-4. The results are shown in Table 2-1 below.
  • Example 2-5 Production of coating composition 2-5 Mass ratio of resin component of polycarbonate diol composition 2-A-1 obtained in Synthesis Example 2-3 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component / (2-A2) component) to 45/55, and NCO / OH molar ratio to 1.00 10g and 4.99 g of the polycarbonate composition 2-A-1 obtained in Synthesis Example 2-3, "TKA-100” (trade name) as the curing agent, 4.79 g, and acetic acid as the solvent 11.98 g of butyl and 0.15 g of dibutyltin dilaurate (diluted with 1% butyl acetate) as a catalyst were respectively weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a coating composition 2-5. Evaluation was performed based on the above-mentioned method using the obtained coating composition 2-5. The results are shown in
  • Example 2-6 Preparation of Coating Composition 2-6 Mass Ratio of Resin Component of Polycarbonate Diol Composition 2-A-1 Obtained in Synthesis Example 2-3 to Resin Component of “Setalux 1152” (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component to (2-A2) component) is 95/5, and the molar ratio of NCO / OH is 1.00.
  • Example 2-7 Production of Coating Composition 2-7 Mass Ratio of Resin Component of Polycarbonate Diol Composition 2-A-2 Obtained in Synthesis Example 2-5 to Resin Component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component / (2-A2) component) to 30/70, and NCO / OH molar ratio to 1.00 15.0 g and 3.92 g of the polycarbonate diol composition 2-A-2 obtained in Synthesis Example 2-5, "TKA-100" (trade name) as a curing agent, 5.85 g, as a solvent Each 13.07 g of butyl acetate was weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-7. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-7. The results are shown in Table 2-2 below.
  • Example 2-8 Production of coating composition 2-8 Mass ratio of resin component of polycarbonate diol composition 2-A-3 obtained in Synthesis Example 2-6 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component / (2-A2) component) to 30/70, and NCO / OH molar ratio to 1.00 15.0g and 3.92g of polycarbonate diol composition 2-A-3 obtained in Synthesis Example 2-6, 5.87g of "TKA-100" (trade name) as a curing agent, and a solvent 13.09 g of butyl acetate was separately weighed and mixed. Then, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-8. Evaluation was performed using the obtained coating composition 8 based on the above-mentioned method. The results are shown in Table 2-2 below.
  • Example 2-9 Production of paint composition 2-9 Mass ratio of resin component of polycarbonate diol composition 2-A-4 obtained in Synthesis Example 2-7 to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component / (2-A2) component) to 30/70, and NCO / OH molar ratio to 1.00 15.0 g of the trade name) and 3.92 g of the polycarbonate diol composition 2-A-4 obtained in Synthesis Example 2-7, 5.79 g of “TKA-100” (trade name) as the curing agent, as the solvent 13.01 g of butyl acetate was separately weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-9. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-9. The results are shown in Table 2-2 below.
  • Example 2-10 Production of coating composition 2-10 Mass ratio of resin component of polycarbonate diol composition 2-A-5 obtained in Synthesis Example 2-8 to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component / (2-A2) component) to 30/70, and NCO / OH molar ratio to 1.00 15.0 g of the trade name) and 3.92 g of the polycarbonate diol composition 2-A-5 obtained in Synthesis Example 2-8, 5.65 g of “TKA-100” (trade name) as the curing agent, as the solvent 12.87 g of butyl acetate was separately weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-10. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-10. The results are shown in Table 2-2 below.
  • Example 2-11 Production of Coating Composition 2-11 Mass ratio of resin component of polycarbonate diol composition 2-A-2 obtained in Synthesis Example 2-5 to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component to (2-A2) component) to be 10/90 and that of NCO / OH to be 1.00. 15.0 g and 1.02 g of the polycarbonate diol composition 2-A-2 obtained in Synthesis Example 2-5, 4.86 g of "TKA-100" (trade name) as a curing agent, and a solvent 9.07 g of butyl acetate was weighed out and mixed respectively. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a coating composition 2-11. Evaluation was performed based on the above method using the obtained paint composition 2-11. The results are shown in Table 2-2 below.
  • Example 2-12 Production of coating composition 2-12 Mass ratio of resin component of polycarbonate diol composition 2-A-3 obtained in Synthesis Example 2-6 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component to (2-A2) component) to be 10/90 and that of NCO / OH to be 1.00. 15.0 g and 1.02 g of the polycarbonate diol composition 2-A-3 obtained in Synthesis Example 2-6, 4.76 g of "TKA-100" (trade name) as a curing agent, and a solvent 9.08 g of butyl acetate was separately weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-12. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-12. The results are shown in Table 2-2 below.
  • Example 2-13 Production of coating composition 2-13 Mass ratio of resin component of polycarbonate diol composition 2-A-4 obtained in Synthesis Example 2-7 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component to (2-A2) component) to be 10/90 and that of NCO / OH to be 1.00. 15.0 g and 1.02 g of the polycarbonate diol composition 2-A-4 obtained in Synthesis Example 2-7, 4.74 g of "TKA-100" (trade name) as a curing agent, and a solvent 9.06 g of butyl acetate was weighed out and mixed respectively. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-13. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-13. The results are shown in Table 2-2 below.
  • Example 2-14 Production of coating composition 2-14 Mass ratio of resin component of polycarbonate diol composition 2-A-5 obtained in Synthesis Example 2-8 to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152 (commercial item so that the mass ratio of (2-A1) component / (2-A2) component) is 10/90 and the molar ratio of NCO / OH is 1.00 Name), and 1.02 g of polycarbonate diol composition 2-A-5 obtained in Synthesis Example 2-8, 4.71 g of "TKA-100" (trade name) as a curing agent, as a solvent 9.02 g of butyl acetate was separately weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-14. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-14. The results are shown in Table 2-2 below.
  • Example 2-15 Production of coating composition 2-15 Mass ratio of resin component of polycarbonate diol composition 2-A-8 obtained in Synthesis Example 2-12 with respect to resin component of "Setalux 1152" (trade name) "Setalux 1152” (main agent) so that (mass ratio of (2-A1) component / (2-A2) component) is 10/90, and molar ratio of NCO / OH is 1.10 12 g, and 0.81 g of the polycarbonate composition 2-A-9 obtained in Synthesis Example 2-14, polyisocyanate as a curing agent (manufactured by Asahi Kasei Corp., “TKA-100” (trade name), NCO 4.19 g of a content of 21.7%) and 7.59 g of butyl acetate as a solvent were respectively mixed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-15. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-15.
  • Example 2-16 Production of coating composition 2-16 Mass ratio of resin component of polycarbonate diol composition 2-A-9 obtained in Synthesis Example 2-14 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component to (2-A2) component) to be 10/90 and that of NCO / OH to be 1.00.
  • Example 2-17 Preparation of Coating Composition 2-17 Polycarbonate Diol Composition 2-A Obtained in Synthesis Example 2-15 for Resin Component (Component (2-A2)) of “Setalux 1152” (trade name)
  • the mole ratio of NCO / OH is such that the mass ratio of the resin component (component (2-A1)) of -10 (mass ratio of (2-A1) component / (2-A2) component) is 5/95 So that the ratio is 1.00, 12 g of “Setalux 1152” (trade name) as the main agent and 0.39 g of the polycarbonate composition 2-A-10 obtained in Synthesis Example 2-15, and polyisocyanate (c 3.59 g of “TKA-100” (trade name) having an NCO content of 21.7%, manufactured by Asahi Kasei Corp., and 6.61 g of butyl acetate as a solvent were respectively weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition
  • Example 2-18 Production of coating composition 2-18 Mass ratio of resin component of polycarbonate diol composition 2-A-10 obtained in Synthesis Example 2-15 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component to (2-A2) component) to be 10/90 and that of NCO / OH to be 1.00. 15) and 1.02 g of the polycarbonate composition 2-A-10 obtained in Synthesis Example 2-15, 4.61 g of "TKA-100" (trade name) as a curing agent, and acetic acid as a solvent Each 8.93 g of butyl was weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-18. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-18. The results are shown in Table 2-3 below.
  • Example 2-19 Production of coating composition 2-19 Mass ratio of resin component of polycarbonate diol composition 2-A-10 obtained in Synthesis Example 2-15 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component / (2-A2) component) to 20/80, and NCO / OH molar ratio to 1.00 15g and 2.29 g of the polycarbonate composition 2-A-10 obtained in Synthesis Example 2-15, 4.90 g of "TKA-100" (trade name) as a curing agent, and acetic acid as a solvent 10.49 g of butyl was separately weighed and mixed. Then, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-19. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-19. The results are shown in Table 2-3 below.
  • Example 2-20 Production of paint composition 2-20 Mass ratio of resin component of polycarbonate diol composition 2-A-10 obtained in Synthesis Example 2-15 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component / (2-A2) component) to 30/70, and NCO / OH molar ratio to 1.00 12g and 3.14 g of the polycarbonate composition 2-A-10 obtained in Synthesis Example 2-15, 4.22 g of "TKA-100" (trade name) as a curing agent, and acetic acid as a solvent Each 10.00 g of butyl was weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-20. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-20. The results are shown in Table 2-3 below.
  • Example 2-21 Production of coating composition 2-21 Mass ratio of resin component of polycarbonate diol composition 2-A-10 obtained in Synthesis Example 2-15 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component / (2-A2) component) to 45/55, and NCO / OH molar ratio to 1.00 10g and 4.07 g of polycarbonate composition 2-A-10 obtained in Synthesis Example 2-15, "TKA-100" (trade name) as a curing agent, 3.95 g, and acetic acid as a solvent 11.10 g of butyl and 0.15 g of dibutyltin dilaurate (diluted with 1% butyl acetate) as a catalyst were respectively weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-21. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-21. The results
  • Example 2-22 Production of coating composition 2-22 Mass ratio of resin component of polycarbonate diol composition 2-A-10 obtained in Synthesis Example 2-15 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component to (2-A2) component) is 95/5, and the molar ratio of NCO / OH is 1.00.
  • Example 2-23 Preparation of Coating Composition 2-23 Synthesis Example 2 for Resin Component of Polyoxytetramethylene Diol ("PTMG 2000” (trade name) manufactured by Mitsubishi Chemical Corporation, hydroxyl value 56.1 mg KOH / g resin)
  • the mass ratio of the resin component of the polycarbonate diol composition 2-A-1 obtained in (3) is 80/20
  • As a main agent 2.0 g of “PTMG 2000” (trade name) and 8.0 g of the polycarbonate composition 2-A-1 obtained in Synthesis Example 2-3 so that the molar ratio of NCO / OH is 1.00 , 3.39 g of "TKA-100" (trade name) as a curing agent, and 13.39 g of butyl acetate as a solvent, and dibutyltin dilaurate as a catalyst (diluted by 1% butyl acetate) 0.13 g, was mixed taking Ri respectively amounts. Next, stirring was performed at 600 rpm
  • Example 2-24 Production of paint composition 2-24 Mass ratio of resin component of polycarbonate diol composition 2-A-1 obtained in Synthesis Example 2-3 with respect to resin component of "PTMG 2000” (trade name) “PTMG2000” (main agent) so that the mass ratio of ((2-A1) component / (2-A2) component) is 95/5, and the molar ratio of NCO / OH is 1.00 0.50 g, and 9.50 g of the polycarbonate composition 2-A-1 obtained in Synthesis Example 2-3, "TKA-100" (trade name) as a curing agent, 3.66 g, acetic acid as a solvent 13.66 g of butyl and 0.13 g of dibutyltin dilaurate (diluted with 1% butyl acetate) as a catalyst were respectively weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-24. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-24. The results
  • Example 2-25 Production of paint composition 2-25 Mass ratio of resin component of polycarbonate diol composition 2-A-11 obtained in Synthesis Example 2-16 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component to (2-A2) component) to be 10/90 and that of NCO / OH to be 1.00. 15) and 1.02 g of the polycarbonate composition 2-A-11 obtained in Synthesis Example 2-16, 4.76 g of “TKA-100” (trade name) as a curing agent, and acetic acid as a solvent 9.12 g of butyl was weighed out and mixed respectively. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-25. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-25. The results are shown in Table 2-3 below.
  • Example 2-26 Production of coating composition 2-26 Mass ratio of resin component of polycarbonate diol composition 2-A-11 obtained in Synthesis Example 2-16 with respect to resin component of "Setalux 1152" (trade name) As the main agent, “Setalux 1152” (Mass ratio of (2-A1) component / (2-A2) component) to 30/70, and NCO / OH molar ratio to 1.00 12g and 3.14 g of the polycarbonate composition 2-A-11 obtained in Synthesis Example 2-16, 4.68 g of "TKA-100" (trade name) as a curing agent, and acetic acid as a solvent Each 10.46 g of butyl was weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-26. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-26. The results are shown in Table 2-3 below.
  • Comparative Example 2-1 Production of Coating Composition 2-27 10 g of “Setalux 1152” (trade name) as a main agent and “Asahi Kasei Co., Ltd.” as a curing agent so that the molar ratio of NCO / OH is 1.00 2.94 g of TKA-100 (trade name) and 5.12 g of butyl acetate as a solvent were respectively weighed and mixed. Next, stirring was performed at 600 rpm for 20 minutes using a stirrer to obtain a paint composition 2-27. Evaluation was performed based on the above-mentioned method using the obtained paint composition 2-27. The results are shown in Table 2-4 below.
  • Comparative Example 2-6 Preparation of Coating Composition 2-32
  • the repetition number n11 of the structure (I) is 7 or more and 70 or less
  • the repetition number n21 of the polycarbonate structure (II) is 1 or more and 50 or less
  • 2 Coating composition 2-1 to 2-26 containing the component -A1 and (2-A1) / (2-A2) being 10/90 or more and 30/70 or less (Examples 2-1 to 2- (2) In the case of No. 26), a coating film having better scratch recovery and heat resistance than the coating compositions 2-27 to 34 (Comparative Examples 2-1 to 2-8) not having the above-mentioned configuration was obtained.
  • paint compositions 2-7 and 2-8 (Examples 2-7 and 2-8), paint compositions 2-9 and 2-10 (Examples 2-9 and 2-10), paint composition 2 From the comparison of -11 and 2-12 (Examples 2-11 and 2-12) and coating compositions 2-13 and 2-14 (Examples 2-13 and 2-14), respectively, the polycarbonate structure As the content of (II) increased, the heat resistance tended to be further improved.
  • the coating film formed from the coating composition of the present embodiment is excellent in scratch recovery and heat resistance.
  • the paint composition of this embodiment is a car, a bus, a railway vehicle, a building machine, an agricultural machine, a floor of a building, a wall and a roof, a metal product, a mortar and a concrete product, a woodworking product, a plastic product, a calcium silicate board and It can be suitably used in a wide range of fields such as painting on ceramic building materials such as gypsum board.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本発明は、(1-A1)成分:式(I)(式中、R11は、2価の脂肪族炭化水素基等であり、n11は3以上70以下の数である)で表される構造と、式(II)(式中、R21は、2価の脂肪族炭化水素基等であり、n21は1以上50以下の数である)で表されるポリカーボネート構造とを含有し、両末端が水酸基であり、且つ、数平均分子量が300以上10000以下であるポリカーボネートジオール組成物であって、式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、式(I)で表される構造を5質量%以上50質量%以下、及び前記ポリカーボネート構造を50質量%以上95質量%以下含有するポリカーボネートジオール組成物、イソシアネート化合物及び有機溶剤を含む塗料組成物を提供する。

Description

塗料組成物
 本発明は、塗料組成物に関する。
 本願は、2017年12月25日に日本に出願された特願2017-248448号、2017年12年25日に日本に出願された特願2017-248449号に基づき優先権を主張し、その内容をここに援用する。
 ポリカーボネートジオールは、例えば、1,6-ヘキサンジオール等のアルキレンジオール化合物と、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート等のカーボネート化合物とから合成されるものである。ポリカーボネートジオールは、ポリウレタン樹脂の原料の一つであるポリオール等として汎用されている。
 ポリウレタン樹脂の原料であるポリオールとしては、従来、ポリエステルポリオールやポリエーテルポリオールが幅広く用いられている。一方、それらと比較して、ポリカーボネートジオールを原料として用いることで、耐加水分解性、耐熱性、耐候性、耐薬品性、耐磨耗性、密着性等に優れるポリウレタン樹脂が得られることが期待される。
 また、例えば、メラミン樹脂、イソシネート化合物、ブロックイソシネート化合物等の水酸基と反応性を有する架橋剤を配合した塗料及びコーティング剤等に、ポリカーボネートジオールを更に配合することもできる。これにより、得られる塗料及びコーティング剤において、弾性や各種基材に対する密着性の改良、耐擦り傷性や耐チッピング性の改良、及び、手触りの良い柔軟な触感(いわゆるソフトフィール性)の付与等が期待される。
 特許文献1には、ポリカーボネート/ポリオキシエチレン共重合体、及びその製造方法が開示されている。
 また、従来、ポリウレタン樹脂は、合成皮革、人工皮革、接着剤、家具用塗料、自動車用塗料等の幅広い領域で使用されており、イソシアネートと反応させるポリオール成分としてポリエーテルやポリエステル、ポリカーボネートが用いられてきた。しかしながら、近年、耐熱性、耐候性、耐加水分解性、耐溶剤性や耐日焼け止め性、耐傷付き性等、ポリウレタン樹脂の耐性への要求が高まっている。
 一般的に、ポリオール成分としてポリカーボネートジオールを用いたポリウレタン樹脂は、ポリエーテルやポリエステルを用いたポリウレタン樹脂よりも耐傷付き性に優れることが知られている。特許文献1には、ポリオール成分としてポリカーボネートジオールを使用した塗料組成物が開示されている。特許文献2には、ポリカーボネートジオール/ポリエーテルブロック共重合体が開示されている。
特開平2-289616号公報 特開2006-124486号公報
 しかしながら、特許文献1に開示されたようなポリカーボネートジオールを溶剤系での用途においては、用いる有機溶剤の選定において改善の余地を有していた。
 本発明は、上記事情に鑑みてなされたものであって、低温透明性、耐擦り傷性及び密着性に優れた塗膜を形成可能な塗料組成物を提供する。
 また、特許文献1及び特許文献2に記載のポリカーボネートジオールを用いたポリウレタン樹脂においても、家具用塗料等の耐傷付き性や耐熱性の要求物性が厳しい用途においては改善の余地を有していた。
 本発明は、上記事情に鑑みてなされたものであって、傷回復性及び耐熱性に優れた塗膜を形成可能な塗料組成物を提供する。
 すなわち、本発明は、以下の態様を含む。
 本発明の第1-1態様に係る塗料組成物は、下記(1-A1)成分、下記(1-B)成分及び下記(1-C)成分を含む。
 (1-A1)成分:下記一般式(I)で表される構造と、下記一般式(II)で表されるポリカーボネート構造とを含有し、両末端が水酸基であり、且つ、数平均分子量が300以上10000以下であるポリカーボネートジオール組成物であって、前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上50質量%以下、及び、前記ポリカーボネート構造を50質量%以上95質量%以下含有するポリカーボネートジオール組成物;
Figure JPOXMLDOC01-appb-C000005
(一般式(I)中、R11は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR11は互いに同一であってもよく、異なっていてもよい。n11は3以上70以下の数である。)
Figure JPOXMLDOC01-appb-C000006
(一般式(II)中、R21は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR21は互いに同一であってもよく、異なっていてもよい。n21は1以上50以下の数である。)
 (1-B)成分:イソシアネート化合物;
 (1-C)成分:溶解度パラメーター(SP値)が、8.0(cal/cm1/2以上25.0(cal/cm1/2以下である有機溶剤。
 上記第1-1態様に係る塗料組成物は、前記(1-C)成分として、溶解度パラメーターが8.0(cal/cm1/2以上15.00(cal/cm1/2以下である有機溶剤を含んでもよい。
 上記第1-1態様に係る塗料組成物は、前記(1-C)成分として、20℃における蒸気圧が1.0kPa以上である有機溶剤を含んでもよい。
 上記第1-1態様に係る塗料組成物は、更に、(1-A2)成分を含み、前記(1-A2)成分は、前記(1-A1)成分以外のポリオール成分であり、且つ、前記(1-A1)成分及び前記(1-A2)成分の合計質量に対して、前記(1-A1)成分を50質量%以上100質量%以下、及び、前記(1-A2)成分を0質量%以上50質量%以下含有してもよい。
 上記第1-1態様に係る塗料組成物は、更に、(1-A2)成分を含み、前記(1-A2)成分は、前記(1-A1)成分以外のポリオール成分であり、且つ、前記(1-A1)成分及び前記(1-A2)成分の合計質量に対して、前記(1-A1)成分を70質量%以上100質量%以下、及び、前記(1-A2)成分を0質量%以上30質量%以下含有してもよい。
 前記(1-A1)成分において、前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上30質量%以下、及び、前記ポリカーボネート構造を70質量%以上95質量%以下含有してもよい。
 前記(1-A1)成分において、前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上20質量%以下、及び、前記ポリカーボネート構造を80質量%以上95質量%以下含有してもよい。
 上記第1-1態様に係る塗料組成物において、前記一般式(I)中、n11は6以上50以下の数であってもよい。
 上記第1-1態様に係る塗料組成物において、前記一般式(I)で表される構造が、ポリオキシエチレン構造であってもよい。
 上記第1-1態様に係る塗料組成物において、前記一般式(I)で表される構造が、オキシ1-メチルエチレン基及びオキシエチレン基を含み、前記一般式(I)で表される構造の総質量に対して、前記オキシ1-メチルエチレン基を10質量%以上100質量%以下、及び、前記オキシエチレン基を0質量%以上90質量%以下含有してもよい。
 上記第1-1態様に係る塗料組成物において、前記一般式(I)で表される構造が、オキシテトラメチレン基及びオキシ2,2-ジメチルトリメチレン基を含み、前記一般式(I)で表される構造の総質量に対して、前記オキシテトラメチレン基を10質量%以上100質量%以下、及び、前記オキシ2,2-ジメチルトリメチレン基を0質量%以上90質量%以下含有してもよい。
 上記第1-1態様に係る塗料組成物は、更に、水分を含み、塗料組成物中の水分の含有量が10質量%以下であってもよい。
 本発明の第2-1態様に係る塗料組成物は、下記(2-A1)成分、下記(2-A2)成分、下記(2-B)成分及び下記(2-C)成分を含み、前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、前記(2-A1)成分を3質量%以上99質量%以下、及び、前記(2-A2)成分を1質量%以上97質量%以下含有する。
 (2-A1)成分:下記一般式(I)で表される構造と、下記一般式(II)で表されるポリカーボネート構造とを含有し、両末端が水酸基であり、且つ、数平均分子量が300以上10000以下であるポリカーボネートジオール組成物であって、前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上35質量%以下、及び、前記ポリカーボネート構造を65質量%以上95質量%以下含有するポリカーボネートジオール組成物;
Figure JPOXMLDOC01-appb-C000007
(一般式(I)中、R11は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR11は互いに同一であってもよく、異なっていてもよい。n11は7以上70以下の数である。)
Figure JPOXMLDOC01-appb-C000008
(一般式(II)中、R21は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR21は互いに同一であってもよく、異なっていてもよい。n21は1以上50以下の数である。)
 (2-A2)成分:前記(2-A1)成分以外のポリオール成分;
 (2-B)成分:イソシアネート化合物;
 (2-C)成分:有機溶剤。
 上記第2-1態様に係る塗料組成物は、前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、前記(2-A1)成分を5質量%以上50質量%以下、及び、前記(2-A2)成分を50質量%以上95質量%以下含有してもよい。
 上記第2-1態様に係る塗料組成物は、前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、前記(2-A1)成分を5質量%以上30質量%以下、及び、前記(2-A2)成分を70質量%以上95質量%以下含有してもよい。
 前記(2-A1)成分において、前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上20質量%以下、及び、前記ポリカーボネート構造を80質量%以上95質量%以下含有してもよい。
 上記第2-1態様に係る塗料組成物において、前記一般式(I)中、n11は7以上50以下の数であってもよい。
 上記第2-1態様に係る塗料組成物において、前記一般式(I)で表される構造が、ポリオキシエチレン構造であってもよい。
 上記第2-1態様に係る塗料組成物において、前記一般式(I)で表される構造が、オキシ1-メチルエチレン基及びオキシエチレン基を含み、前記一般式(I)で表される構造の総質量に対して、前記オキシ1-メチルエチレン基を10質量%以上100質量%以下、及び、前記オキシエチレン基を0質量%以上90質量%以下含有してもよい。
 上記第2-1態様に係る塗料組成物において、前記一般式(I)で表される構造が、オキシテトラメチレン基及びオキシ2,2-ジメチルトリメチレン基を含み、前記一般式(I)で表される構造の総質量に対して、前記オキシテトラメチレン基を5質量%以上100質量%以下、及び、前記オキシ2,2-ジメチルトリメチレン基を0質量%以上95質量%以下含有してもよい。
 上記第2-1態様に係る塗料組成物は、更に、水分を含み、塗料組成物中の水分の含有量が10質量%以下であってもよい。
 上記態様の塗料組成物によれば、低温透明性、耐擦り傷性及び密着性に優れた塗膜を形成することができる。
 また、上記態様によれば、傷回復性及び耐熱性に優れた塗膜を形成することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、詳細に説明する。なお、本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
 なお、本明細書において、「ポリオール」とは、2つ以上のヒドロキシ基(-OH)を有する化合物を意味する。
≪実施形態1の塗料組成物≫
 本実施形態の塗料組成物は、(1-A1)成分、(1-B)成分及び(1-C)成分を含む。
 (1-A1)成分は、ポリオール成分(以下、「(1-A)成分」と称する場合がある)であり、ポリカーボネートジオール組成物である。
 (1-B)成分は、硬化剤であるイソシアネート化合物である。
 (1-C)成分は、有機溶媒である。
 本実施形態の塗料組成物は、下記に示す構成の(1-A1)成分、(1-B)成分及び(1-C)成分を含むことにより、低温透明性、耐擦り傷性及び密着性に優れた塗膜を形成することができる。これら各成分について、以下に詳細を説明する。
<(1-A1)成分:ポリカーボネートジオール組成物>
 本実施形態の塗料組成物に含まれるポリカーボネートジオール組成物((1-A1)成分)は、下記一般式(I)で表される構造(以下、「構造(I)」と称する場合がある)と、下記一般式(II)で表されるポリカーボネート構造(以下、「ポリカーボネート構造(II)」と称する場合がある)とを含有する。
Figure JPOXMLDOC01-appb-C000009
(一般式(I)中、R11は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR11は互いに同一であってもよく、異なっていてもよい。n11は3以上70以下の数である。)
Figure JPOXMLDOC01-appb-C000010
(一般式(II)中、R21は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR21は互いに同一であってもよく、異なっていてもよい。n21は1以上50以下の数である。)
 また、一般式(I)で表される構造及びポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上50質量%以下、及び、前記ポリカーボネート構造を50質量%以上95質量%以下含有することが好ましい。
 ポリカーボネートジオール組成物中の一般式(I)で表される構造の含有量及びポリカーボネート構造の含有量は、例えば、以下の(1)~(4)に示す方法により測定することができる。(1)ポリカーボネートジオール組成物をエタノール性水酸化カリウム溶液中でアルカリ加水分解し、ジオール成分を再生させる。(2)フェノールフタレインを指示薬として、塩酸を加えて中和する。(3)析出させた塩を濾別し、濾液をGPC測定する。(4)濾液中の一般式(I)で表される構造の両末端が水酸基であるジオールの濃度を、別途作製した検量線から求める。その濃度から一般式(I)で表される構造の両末端が水酸基であるジオールの質量を算出し、アルカリ加水分解に用いたポリカーボネートジオール組成物の質量で除した値が一般式(I)で表される構造の両末端が水酸基であるジオールの含有量である。
 また、ポリカーボネートジオール組成物((1-A1)成分)中の一般式(I)で表される構造の末端構造は、一方の末端がカーボネート基(-O-CO-O-)に結合し、もう一方の末端が水酸基(-OH)に結合している末端構造、両末端がカーボネート基(-O-CO-O-)に結合している末端構造、又は、両末端が水酸基(-OH)に結合している末端構造である。
 また、ポリカーボネートジオール組成物((1-A1)成分)中の一般式(I)で表される構造を有する分子の両末端は水酸基である。
 ポリカーボネートジオール組成物((1-A1)成分)に含まれるポリカーボネート構造を有する分子は、その両末端が水酸基である。すなわち、ポリカーボネートジオール組成物((1-A1)成分)に含まれるポリカーボネート構造を有する分子は、ポリカーボネートジオールである。ポリカーボネートジオール組成物の製造に使用する各種原料中の不純物や、ポリカーボネートジオール組成物の製造時に副生する末端構造等に起因して、又は、ポリカーボネートジオール組成物の使用用途におけるウレタン化反応速度や状態コントロールのために、末端の水酸基の一部をイソシアネート基と反応しないアルキル基やアリール基等に変換する場合もある。本実施形態ではこのような場合も考慮し、上記ポリカーボネートジオールの末端基は、厳密に両末端の100モル%が水酸基でない場合も包含する。かかる観点から、末端基の総モル量に対する水酸基の割合は、90モル%以上であることが好ましく、95モル%以上であることがより好ましい。
 ポリカーボネートジオール組成物に含まれるポリカーボネートジオールの両末端構造は、例えば、特許第3874664号公報(参考文献1)に記載の末端水酸基濃度を測定する方法に準拠して確認することができる。
 但し、留分を回収する溶剤としてはエタノールの他に、テトラヒドロフランやアセトン、メタノール等の溶剤が使用できる。
 ポリカーボネートジオール組成物((1-A1)成分)の数平均分子量は、300以上10000以下が好ましく、400以上10000以下がより好ましく、500以上3000以下がさらに好ましい。
 数平均分子量が上記下限値以上であることで、ポリカーボネートジオール組成物から得られる熱可塑性ウレタンの柔軟性、及び低温特性がより良好となる傾向がある。一方、数平均分子量が上記上限値以下であることで、ポリカーボネートジオール組成物得られる熱可塑性ウレタンの成型加工性がより良好となる傾向がある。
 数平均分子量は、後述する実施例に記載の方法を用いて、ポリカーボネートジオールの水酸基価から算出することができる。
[構造(I)]
 ポリカーボネートジオール組成物((1-A1)成分)において、構造(I)及びポリカーボネート構造の合計質量に対して、構造(I)の含有量は、5質量%以上50質量%以下が好ましく、5質量%以上30質量%以下がより好ましく、5質量%以上20質量%以下がさらに好ましい。
 構造(I)の含有量が上記下限値以上であることにより、耐傷付き性及び密着性により優れた塗膜が得られる。また、構造(I)の含有量が上記上限値以下であることにより、ポリカーボネートジオール組成物の熱による分解がより抑えられる。
 ポリカーボネートジオール組成物((1-A1)成分)において、構造(I)の末端構造は、一方の末端がカーボネート基に結合し、もう一方の末端が水酸基に結合している末端構造、両末端がカーボネート基に結合している末端構造、又は、両末端が水酸基に結合している末端構造である。
 また、ポリカーボネートジオール組成物((1-A1)成分)において、構造(I)の末端構造は、一方の末端がカーボネート基に結合し、もう一方の末端が水酸基に結合している末端構造と、両末端がカーボネート基に結合している末端構造と、両末端が水酸基に結合している末端構造との混合であってもよい。
 次いで、構造(I)の詳細について、以下に説明する。
(R11
 一般式(I)中、R11は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR11は互いに同一であってもよく、異なっていてもよい。中でも、合成が容易であることから、複数あるR11は互いに同一であることが好ましい。
 R11における2価の直鎖状脂肪族炭化水素基としては、炭素数が2以上20以下であり、2以上12以下であることが好ましく、2以上6以下であることがより好ましい。
 R11における2価の直鎖状脂肪族炭化水素基として具体的は、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプチレン基、オクチレン基等が挙げられる。
 R11における2価の分岐鎖状脂肪族炭化水素基としては、炭素数が3以上20以下であり、3以上12以下であることが好ましく、3以上6以下であることがより好ましい。
 R11における2価の分岐鎖状肪族炭化水素基として具体的には、例えば、イソプロピレン基、イソブチレン基、tert-ブチレン基、イソペンチレン基、2,2-ジメチルトリメチレン基、イソヘキシレン基、イソヘプチレン基、イソオクチレン基等が挙げられる。
 R11における2価の環状脂肪族炭化水素基としては、炭素数が6以上20以下であり、6以上12以下であることが好ましく、6以上8以下であることがより好ましい。
 R11における2価の環状の脂肪族炭化水素基として具体的には、例えば、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基等が挙げられる。
 R11における2価の芳香族炭化水素基としては、炭素数が6以上15以下であり、6以上12以下であることが好ましく、6以上10以下であることがより好ましい。
 R11における2価の芳香族炭化水素基として具体的には、例えば、フェニレン基、ナフチレン基等が挙げられる。
 中でも、R11としては、炭素数2以上20以下の2価の直鎖状、分岐鎖状又は環状の脂肪族炭化水素基(すなわち、アルキレン基)が好ましく、炭素数2以上6以下の2価の直鎖状脂肪族炭化水素基、又は、炭素数3以上6以下の2価の分岐鎖状肪族炭化水素基がより好ましく、炭素数2以上6以下の2価の直鎖状脂肪族炭化水素基がさらに好ましい。
(n11)
 一般式(I)中、n11は構造(-R11-O-)の繰り返し数を表す。n11は、3以上70以下の数であり、3以上60以下の数が好ましく、6以上50以下の数がより好ましい。
 n11が上記下限値以上であることにより、原料である一般式(I)で表される構造の両末端が水酸基であるジオールの使用量を低減することができるため、ポリカーボネートジオール組成物((1-A1)成分)を用いて得られる塗膜の耐水性や耐熱性がより向上する傾向にある。また、n11が上記上限値以下であることにより、ポリカーボネートジオール組成物の結晶性がより抑えられる傾向にある。
 上記n11は、ポリカーボネートジオール組成物をアルカリ分解して原料ジオール成分を取り出し、当該成分についてGC-MS測定、LC-MS測定及びゲルパーミエーションクロマトグラフィー(GPC)測定を行うことで求めることができる。
 中でも、構造(I)としては、ポリオキシアルキレン構造が好ましい。
 構造(I)に含まれる好ましいオキシアルキレン基として具体的には、例えば、オキシエチレン基、オキシ1-メチルエチレン基、オキシテトラメチレン基、オキシ2,2-ジメチルトリメチレン基等が挙げられる。中でも、オキシエチレン基が好ましい。
 また、構造(I)に含まれるオキシアルキレン基が全てオキシエチレン基である、ポリオキシエチレン構造であることが特に好ましい。
 構造(I)が、オキシ1-メチルエチレン基及びオキシエチレン基を含む場合、構造(I)の総質量に対して、オキシ1-メチルエチレン基を10質量%以上100質量%以下、及び、オキシエチレン基を0質量%以上90質量%以下含有することが好ましい。
 構造(I)が、オキシテトラメチレン基及びオキシ2,2-ジメチルトリメチレン基を含む場合、構造(I)の総質量に対して、オキシテトラメチレン基を10質量%以上100質量%以下、及び、前記オキシ2,2-ジメチルトリメチレン基を0質量%以上90質量%以下含有することが好ましい。
[ポリカーボネート構造(II)]
 本実態形態のポリカーボネートジオール組成物において、構造(I)及びポリカーボネート構造(II)の合計質量に対して、ポリカーボネート構造(II)の含有量は、50質量%以上95質量%以下が好ましく、70質量%以上95質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。
 ポリカーボネート構造(II)の含有量が上記下限値以上であることにより、耐水性、耐熱性、耐薬品性、耐摩耗性等により優れた塗膜が得られる。また、ポリカーボネート構造の含有量(II)が上記上限値以下であることにより、ポリカーボネートジオール組成物のポリエーテルポリオールとの相溶性がより優れる。
 次いで、ポリカーボネート構造(II)の詳細について、以下に説明する。
(R21
 一般式(II)中、R21は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR21は互いに同一であってもよく、異なっていてもよい。中でも、合成が容易であることから、複数あるR21は互いに同一であることが好ましい。
 R21における2価の直鎖状脂肪族炭化水素基としては、炭素数が2以上15以下であり、3以上12以下であることが好ましく、3以上10以下であることがより好ましい。
 R21における炭素数2以上15以下の2価の直鎖状脂肪族炭化水素基として具体的は、上記R11において例示されたものと同様のものが挙げられる。中でも、汎用性の観点から、ブチレン基、ペンチレン基又はヘキシレン基が好ましい。
 R21における2価の分岐鎖状脂肪族炭化水素基としては、炭素数が3以上15以下であり、3以上12以下であることが好ましく、3以上10以下であることがより好ましい。
 R21における炭素数2以上15以下の2価の分岐鎖状肪族炭化水素基として具体的には、上記R11において例示されたものと同様のものが挙げられる。中でも、汎用性の観点から、イソペンチレン基又はイソヘキシレン基が好ましい。
 R21における2価の環状脂肪族炭化水素基としては、炭素数が3以上15以下であり、6以上15以下であることが好ましく、6以上10以下であることがより好ましい。
 R21における2価の環状の脂肪族炭化水素基として具体的には、上記R11において例示されたものと同様のものが挙げられる。中でも、汎用性の観点から、シクロヘキシレン基が好ましい。
 R21における2価の芳香族炭化水素基としては、炭素数が6以上15以下であり、6以上12以下であることが好ましく、6以上10以下であることがより好ましい。
 R21における2価の芳香族炭化水素基として具体的には、上記R11において例示されたものと同様のものが挙げられる。
 中でも、R21としては、炭素数3以上10以下の2価の直鎖状脂肪族炭化水素基、又は、炭素数3以上10以下の2価の分岐鎖状肪族炭化水素基が好ましく、炭素数3以上10以下の2価の直鎖状脂肪族炭化水素基がより好ましい。
(n21)
 一般式(I)中、n21は、カーボネート構造(-R21-O-CO-O-)の繰り返し数を表す。n21は1以上50以下の数であり、2以上50以下の数が好ましく、3以上30以下の数がより好ましく、4以上20以下の数である。
 n21は、ポリカーボネートジオール組成物をアルカリ分解して原料ジオール成分を取りだし、当該成分について、GC-MS測定、LC-MS測定及びGPC測定を行うことで求めることができる。
<ポリカーボネートジオール組成物((1-A1)成分)の製造方法>
 ポリカーボネートジオール組成物((1-A1)成分)は、下記一般式(I-1)で表されるエーテルジオール(以下、「エーテルジオール(I-1)」と称する場合がある)と、下記一般式(II-1)で表されるポリカーボネートジオール(以下、「ポリカーボネートジオール(II-1)」と称する場合がある)とを用いて、エステル交換反応を行うことで得ることができる。
Figure JPOXMLDOC01-appb-C000011
(一般式(I-1)中、R111は上記R11と同じである。n111は上記n11と同じである。)
Figure JPOXMLDOC01-appb-C000012
(一般式(I-1)中、R211及びR212はそれぞれ上記R21と同じである。n211は上記n21と同じである。)
[エーテルジオール(I-1)]
 ポリカーボネートジオール組成物((1-A1)成分)の製造に用いられるエーテルジオール(I-1)としては、上記一般式(I-1)で表される構造を有するものであればよい。中でも、エーテルジオール(I-1)としては、ポリオキシアルキレンジオールが好ましい。エーテルジオール(I-1)は、各種の分子量の製品が市販されており、このような市販品を用いることもできる。エーテルジオール(I-1)の市販品としては、例えば、和光純薬工業株式会社製の「ポリエチレングリコール」シリーズや、「ポリテトラメチレンオキシド」シリーズ、旭化成株式会社製の「PTXG」シリーズ等のポリオキシアルキレンジオール等が挙げられる。
 エーテルジオール(I-1)の数平均分子量は、特に限定されないが、400以上3000以下が好ましく、600以上2000以下がより好ましい。製造に用いられるエーテルジオール(I-1)の数平均分子量が上記下限値以上であることにより、原料のエーテルジオール(I-1)の使用量をより低減することができる。さらに、ポリカーボネートジオール組成物から得られる塗膜の耐水性や耐熱性がより向上される傾向にある。製造に用いられるエーテルジオール(I-1)の数平均分子量が上記上限値以下であることにより、ポリカーボネートジオール組成物の結晶性がより抑えられる傾向にある。
[ポリカーボネートジオール(II-1)]
 ポリカーボネートジオール組成物((1-A1)成分)の製造に用いられるポリカーボネートジオール(II-1)としては、上記一般式(II-1)で表される構造を有するものであればよい。ポリカーボネートジオール(II-1)の製造方法としては、特に限定されず、公知の方法を採用することもできる。例えば、カーボネート化合物と、ジオール化合物とを、エステル交換触媒の存在下で反応させて、ポリカーボネートジオール(II-1)を得ることができる。
(カーボネート化合物)
 ポリカーボネートジオール(II-1)の製造に用いられるカーボネート化合物としては、以下のものに限定されないが、例えば、アルキレンカーボネート、ジアルキルカーボネート、ジアリールカーボネート等が挙げられる。
 アルキレンカーボネートとしては、例えば、エチレンカーボネート、トリメチレンカーボネート、1,2-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,2-ペンチレンカーボネート等が挙げられる。
 ジアルキルカーボネートとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等が挙げられる。
 ジアリールカーボネートとしては、例えば、ジフェニルカーボネート等が挙げられる。
 中でも、ポリカーボネートジオール(II-1)の製造に用いられるカーボネート化合物としては、アルキレンカーボネートが好ましく、エチレンカーボネートがより好ましい。
(ジオール化合物)
 ポリカーボネートジオール(II-1)の製造に用いられるジオール化合物としては、以下のものに限定されないが、例えば、直鎖状ジオール、分岐鎖状ジオール、環状ジオール、芳香環を有するジオールが挙げられる。
 直鎖状ジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ナノジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等が挙げられる。
 分岐鎖状ジオールとしては、例えば、2-メチル-1,8-オクタンジオール、ネオペンチルグリコール、2-エチル-1,6-ヘキサンジオール、2-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジメチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール等が挙げられる。
 環状ジオールとしては、例えば、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、2-ビス(4-ヒドロキシシクロヘキシル)-プロパン等が挙げられる。
 芳香環を有するジオールとしては、例えば、p-キシレンジオール、p-テトラクロロキシレンジオール、1,4-ビス(ヒドロキシエトキシ)ベンゼン、2,2-ビス〔(4-ヒドロキシエトキシ)フェニル〕プロパン等が挙げられる。
 中でも、直鎖状ジオールが好ましく、1,5-ペンタンジオール又は1,6-ヘキサンジオールがより好ましい。
[ポリカーボネートジオール組成物((1-A1)成分)及びポリカーボネートジオール(II-1)の製造条件]
 原料であるポリカーボネートジオール(II-1)の製造に際しては、エステル交換反応触媒を用いることができる。触媒としては、通常のエステル交換反応触媒から選択することができる。
 エステル交換反応触媒としては、例えば、アルカリ金属及びアルカリ土類金属、並びに、そのアルコラート、その水素化物、そのオキシト゛、そのアミド、その水酸化物及びその塩等が挙げられる。
 アルカリ金属及びアルカリ土類金属の塩としては、炭酸塩、窒素含有ホウ酸塩、有機酸との塩基性塩等が挙げられる。
 アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム等が挙げられる。
 アルカリ土類金属としては、例えば、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
 また、アルカリ金属及びアルカリ土類金属以外の金属を用いたエステル交換触媒としては、例えば、アルカリ金属及びアルカリ土類金属以外の金属、並びに、その塩、そのアルコラート、及び、該金属を含む有機化合物等が挙げられる。
 アルカリ金属及びアルカリ土類金属以外の金属として具体的には、例えば、アルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、インジウム、スズ、アンチモン、タングステン、レニウム、オスミウム、イリジウム、白金、金、タリウム、鉛、ビスマス、イッテルビウム等が挙げられる。
 これらエステル交換触媒を1種単独で、又は、2種以上組み合わせて、使用することができる。
 中でも、エステル交換反応触媒としては、ポリカーボネートジオールを得るエステル交換反応がより良好に行われ、得られるポリカーボネートジオールを用いた場合にウレタン反応に対する影響もより少ないことから、ナトリウム、カリウム、マグネシウム、カリウム、チタン、ジルコニウム、スズ、鉛及びイッテルビウムからなる群より選択される1種以上の金属、又は、それらの塩、それらのアルコキシド、若しくはそれら金属を含む有機化合物が好ましい。
 また、エステル交換反応触媒としては、マグネシウム、チタン、イッテルビウム、スズ及びジルコニウムからなる群より選択される1種以上の金属がより好ましい。
 好ましいエステル交換触媒として具体的には、例えば、鉛の有機化合物、チタンの有機化合物等が挙げられる。
 鉛の有機化合物としては、例えば、酢酸鉛三水和物、テトラフェニル鉛、ステアリン酸鉛等が挙げられる。
 チタンの有機化合物としては、例えば、チタンテトラ-n-ブトキシド、チタンテトラn-プロポキシド、チタンテトライソプロポキシド等が挙げられる。
 エステル交換反応触媒の使用量は、原料の総質量に対して、0.00001質量%以上0.1質量%以下が好ましく、0.0001質量%以上0.05質量%以下がより好ましい。
 エステル交換反応に用いたエステル交換触媒は、ポリカーボネートジオールの製造に引き続き加熱処理を行う場合は、エステル交換反応で消費されていないため、エステル交換反応触媒の使用量を元に算出できる。市販のポリカーボネートジオールを用いる場合等においては、ポリカーボネートジオールに含まれるエステル交換反応触媒の金属量を、ICP(発光分光分析法、Inductively Coupled Plasma)により測定して求められる。
 ポリカーボネートジオール組成物((1-A1)成分)の製造に用いられるポリカーボネートジオール(II-1)は、その製造時に用いたエステル交換反応触媒を失活させるため、リン酸エステル化合物等の触媒毒を添加したものであってもよい。
 原料であるポリカーボネートジオール(II-1)中に、その製造時に用いられたエステル交換反応触媒の触媒毒等が含まれている場合、通常、エーテルジオール(I-1)と、ポリカーボネートジオール(II-1)とのエステル交換反応が進み難くなる傾向にある。そのため、ポリカーボネートジオール組成物((1-A1)成分)の製造に際しては、新たに上記したエステル交換反応触媒を必要量添加することができる。
 一方、原料であるポリカーボネートジオール(II-1)中に、エステル交換反応触媒の触媒毒が含まれていない場合は、通常、本実施形態におけるエステル交換反応は進み易い傾向にある。しかしながら、ポリカーボネートジオール組成物((1-A1)成分)の製造工程における反応温度をより下げたい場合や反応時間をより短くしたい場合等にも、新たにエステル交換反応触媒を必要量添加することができる。その場合、原料であるポリカーボネートジオール(II-1)の製造において用いるエステル交換反応触媒と同様のものを採用することができる。
 また、ポリカーボネートジオール組成物((1-A1)成分)の製造に用いられるポリカーボネートジオール(II-1)は、1種のジオール化合物から得られるホモポリカーボネートジオールでもよいし、2種以上のジオール化合物から得られる共重合系ポリカーボネートジオールでもよい。
 上記に例示したポリカーボネートジオール(II-1)のうちいずれのものを用いても、エーテルジオール(I-1)とのエステル交換反応により、ポリカーボネートジオール組成物((1-A1)成分)を得ることができる。
 しかしながら、例えば、市場で広く用いられている1,6-ヘキサンジオールを用いて得られたホモ系ポリカーボネートジオールは、通常、常温で固体である。そのため、該ホモ系ポリカーボネートジオールと、エーテルジオール(I-1)とのエステル交換反応により得られるポリカーボネートジオール組成物((1-A1)成分)も常温で固体である傾向にある。
 一方、例えば、1,5-ペンタンジオール及び1,6-ヘキサンジオールの2種類を用いて得られた共重合系ポリカーボネートジオールは常温で液体である。そのため、該共重合系ポリカーボネートジオールと、エーテルジオール(I-1)とのエステル交換反応により得られるポリカーボネートジオール組成物((1-A1)成分)も常温で液体である傾向にある。
 よって、取り扱い性の観点からは、原料であるポリカーボネートジオールとしては、常温で液体であるものが好まれる場合が多い。
 ポリカーボネートジオール組成物((1-A1)成分)の製造に用いられるポリカーボネートジオール(II-1)の数平均分子量は、特に限定されないが、500以上5000以下が好ましく、1000以上3000以下がより好ましい。
 ポリカーボネートジオール(II-1)の数平均分子量が上記下限値以上であることにより、ポリカーボネートジオールに期待される性能がより向上する傾向にある。一方、ポリカーボネートジオール(II-1)の数平均分子量が上記上限値以下であることにより、ポリカーボネートジオール組成物((1-A1)成分)の高粘度化をより効果的に抑制でき、取り扱い性がより向上する傾向にある。
 ポリカーボネートジオール組成物((1-A1)成分)は、ジオールとしてエーテルジオール(I-1)を用い、該エーテルジオール(I-1)とカーボネート化合物との重縮合反応により製造することもできる。しかし、このようなポリカーボネートジオールの重縮合反応を進行させるためには、通常、高温で長時間加熱する必要がある。そのため、望まない副反応が生じる可能性が高くなったり、製造品種の切り替えにおける作業負荷が増えたりすることがある。
 かかる観点から、ポリカーボネートジオール組成物((1-A1)成分)の製造方法としては、エーテルジオール(I-1)とカーボネート化合物とを用いた重縮合反応を用いずに、エーテルジオール(I-1)とポリカーボネートジオール(II-1)とを用いたエステル交換反応により製造することが好ましい。
 エステル交換反応は、具体的には、エーテルジオール(I-1)とポリカーボネートジオール(II-1)とを混合し、加熱しながら撹拌することにより、実施できる。
 エステル交換反応の温度は、特に限定されないが、120℃以上200℃以下が好ましく、140℃以上180℃以下より好ましい。
 反応温度を上記下限値以上とすることで、エステル交換反応をより短時間で行うことができ経済性に優れる。反応温度を上記上限値以下とすることで、得られるポリカーボネートジオール組成物の着色をより効果的に防止することができる。
 エステル交換反応の反応圧力は、特に限定されないが、常圧以上1MPa以下が好ましい。反応圧力を上記範囲とすることで、反応をより簡便に実施できる。また、副原料を用いる場合、これらの蒸気圧等を考慮して、ある程度加圧することでエステル交換反応をより効率よく促進させるができる。
 ポリカーボネートジオール組成物((1-A1)成分)の数平均分子量を制御する方法としては、例えば、原料であるポリカーボネートジオール(II-1)の分子量が適当なものを選択することや、分子量調節の観点から、エーテルジオール(I-1)の1種類又は2種類以上の存在下でエステル交換反応を行うこと等が好ましい。
 エステル交換反応の進行と完了は、GPC測定によって確認することができる。エステル交換反応の進行に伴い、原料であるエーテルジオール(I-1)に由来するピークは経時的に小さくなっていき、該ピークが消失したことにより、原料であるポリカーボネートジオール(II-1)の末端やポリマー鎖の内部に、エーテルジオール(I-1)に由来する構造が結合されたことが確認できる。
 ポリカーボネートジオール組成物((1-A1)成分)の製造方法では、上記したエステル交換反応の前に、前処理として、使用する原料の脱水処理を行う工程等を行ってよい。
 ポリカーボネートジオール組成物((1-A1)成分)の製造方法では、上記したエステル交換反応の後に、後処理として、エステル交換反応触媒に対する前述の触媒毒を添加する工程等を行ってもよい。
<(1-A2)成分:その他ポリオール成分>
 本実施形態の塗料組成物は、主剤であるポリオール成分((1-A)成分)として、上記ポリカーボネートジオール組成物((1-A1)成分)に加えて、更に、その他のポリオール成分((1-A2)成分)を含有してもよい。
 その他のポリオール成分((1-A2)成分)としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、ポリオレフィンポリオール、フッ素ポリオール等が挙げられ、これらに限定されない。なお、これらのポリオールは、後述する実施形態2の塗料組成物におけるその他のポリオール成分((2-A2)成分)として挙げられたポリオールと同じである。
 また、その他のポリオール成分((1-A2)成分)としては、ポリカーボネートジオール組成物((1-A1)成分)の原料であるエーテルジオール(I-1)、及び、ポリカーボネートジオール(II-1)、並びに、ポリカーボネートジオール(II-1)の原料であるジオール化合物も包含される。
 本実施形態の塗料組成物において、更に、その他のポリオール成分((1-A2)成分)を含む場合、上記ポリカーボネートジオール組成物((1-A1)成分)及びその他のポリオール成分((1-A2)成分)の合計質量に対して、(1-A1)成分を70質量%以上100質量%以下、及び、(1-A2)成分を0質量%以上30質量%以下含有することが好ましい。
<(1-B)成分:イソシアネート化合物>
 本実施形態の塗料組成物に含まれるイソシアネート化合物は、塗料組成物の硬化剤として働くものであれば特に制限されず、末端にイソシアネート基を2個以上有するものを用いる。
 このようなイソシアネート化合物としては、例えば、鎖状脂肪族ジイソシアネート、環状脂肪族ジイソシアネート、芳香族ジイソシアネート、及び、3個以上のイソシアネート基を有するイソシアネート化合物、並びに、これらのイソシアネート化合物のイソシアヌレート化変性品、及び、ビウレット化変性品等が挙げられる。
 鎖状脂肪族ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート及びトリメチルヘキサメチレンジイソシアネート等が挙げられる。
 環状脂肪族ジイソシアネートとしては、例えば、イソホロンジイソシアネート等が挙げられる。
 芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート及びナフチレンジイソシアネート等が挙げられる。
 3個以上のイソシアネート基を有するイソシアネート化合物としては、例えば、トリフェニルメタン-4,4’-4’’-トリイソシアネート、1,3,5-トリイソシアナトベンゼン、2,4,6-トリイソシアナトトエン及び4,4’-ジメチルジフェニルメタン-2,2’,5,5’-テトライソシアネート等が挙げられる。
 イソシアネート化合物は市販のものを用いてもよく、公知の方法を用いて合成してもよい。
 イソシアネート化合物の市販品としては、例えば、24A-100、22A-75P、TPA-100、TKA-100、P301-75E、D101、D201、21S-75E、MFA-75B、MHG-80B、TUL-100、TLA-100、TSA-100、TSS-100、TSE-100、E402-80B、E405-80B、AE700-100、A201H、17B-60P、TPA-B80E、MF-B60B、MF-K60B、SBB-70P、SBN-70D、E402-B80B、WB40-100、WT30-100、WT31-100、WB40-80D、WT20-100、WL70-100、WE50-100、WM44-L70G等の旭化成株式会社製の「デュラネート(商品名)」シリーズ等が挙げられる。
 本実施形態の塗料組成物において、イソシアネート化合物((1-B)成分)の含有量は、主剤であるポリオールの水酸基のモル量に応じて、適宜に調整すればよい。
 具体的には、ポリオールの水酸基に対する、イソシアネート化合物((1-B)成分)のイソシアネート基のモル比(NCO/OH)は、例えば0.2以上5.0以下とすることができ、例えば0.4以上3.0とすることができ、例えば0.5以上2.0以下とすることができる。
 NCO/OHが上記下限値以上であると、より強靱な塗膜が得られる傾向にある。一方、NCO/OHが上記上限値以下であると、塗膜の平滑性がより向上する傾向にある。
<(1-C)成分:有機溶剤>
 本実施形態の塗料組成物に含まれる有機溶剤((1-C)成分)は、溶解度パラメーター(SP値)が8.0(cal/cm1/2以上25.0(cal/cm1/2以下である有機溶剤が好ましく、8.0(cal/cm1/2以上15.0(cal/cm1/2以下である有機溶剤がより好ましく、8.0(cal/cm1/2以上12.0(cal/cm1/2以下である有機溶剤がさらに好ましい。
 また、本実施形態の塗料組成物に含まれる有機溶剤((1-C)成分)は、SP値が上記範囲であることに加えて、20℃における蒸気圧が1.0kPa以上であることが好ましい。
 本実施形態の塗料組成物は、上記構成を有する有機溶剤((1-C)成分)を含むことで、低温透明性及び耐擦り傷性に優れた塗膜を得ることができる。
 このような有機溶剤として具体的は、例えば、アミド系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、炭酸エステル溶媒、芳香族炭化水素系溶剤等が挙げられる。
 アミド系溶剤としては、例えば、ジメチルホルムアミド等が挙げられる。
 スルホキシド系溶剤としては、例えば、ジメチルスルホキシド等が挙げられる。
 ケトン系溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン等が挙げられる。
 エーテル系溶剤としては、例えば、テトラヒドロフラン等が挙げられる。
 エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、プロピレングリコール1-モノメチルエーテル2-アセタート等が挙げられる。
 炭酸エステル溶媒としては、例えば、炭酸ジメチル、炭酸ジエチル、炭酸プロピレン等が挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン等が挙げられる。
 これらの有機溶剤は、単独で用いてもよく、2種以上の混合溶媒として用いてもよい。
 中でも、本実施形態の塗料組成物に含まれる有機溶剤((1-C)成分)としては、溶解度パラメーター(SP値)が、8.0(cal/cm1/2以上15.0(cal/cm1/2以下である有機溶剤であり、20℃における蒸気圧が1.0kPa以上であることから、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、及び、トルエンからなる群より選択される1種以上が好ましい。
 本実施形態の塗料組成物中の有機溶剤((1-C)成分)の含有量は、塗料組成物の総質量に対して、例えば30質量%以上90質量%以下とすることができ、例えば40質量%以上80質量%以下とすることができ、例えば50質量%以上70質量%以下とすることができる。
<(1-D)成分:その他添加剤>
 本実施形態の塗料組成物は、上記(1-A1)成分、上記(1-A2)成分、上記(1-B)成分、及び、上前記(1-C)成分に加えて、各種用途に応じて硬化促進剤(触媒)、充填剤、難燃剤、染料、有機又は無機顔料、離型剤、流動性調整剤、可塑剤、酸化防止剤、紫外線吸収剤、光安定剤、熱安定剤、消泡剤、レベリング剤、着色剤等のその他添加剤((1-D)成分)を含有してもよい。
 硬化促進剤としては、特に限定されないが、例えば、モノアミン、ジアミン、その他トリアミン、環状アミン、アルコールアミン、エーテルアミン、金属触媒等の一般的に用いられるものが挙げられる。
 モノアミンとしては、例えば、トリエチルアミン、N,N-ジメチルシクロヘキシルアミン等が挙げられる。
 ジアミンとしては、例えば、テトラメチルエチレンジアミン等が挙げられる。
 アルコールアミノとしては、例えば、ジメチルエタノールアミン等が挙げられる。
 金属触媒としては、特に限定されないが、例えば、酢酸カリウム、2-エチルへキサン酸カリウム、酢酸カルシウム、オクチル酸鉛、ジブチル錫ジラウレート、オクチル酸錫、ビスマスネオデカノエート、ビスマスオキシカーボネート、ビスマス2-エチルヘキサノエート、オクチル酸亜鉛、亜鉛ネオデカノエート、ホスフィン、ホスホリン等が挙げられる。
 充填剤、染料、有機又は無機顔料、及び、着色剤としては、特に限定されないが、例えば、織布、ガラス繊維、炭素繊維、ポリアミド繊維、雲母、カオリン、ベントナイト、金属粉、アゾ顔料、カーボンブラック、クレー、シリカ、タルク、石膏、アルミナ白、炭酸バリウム等の一般的に用いられているものが挙げられる。
 難燃剤としては、特に限定されないが、例えば、無機難燃剤、芳香族臭素化合物、リン系難燃剤等が挙げられる。
 無機難燃剤としては、例えば、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、ほう酸亜鉛等が挙げられる。
 芳香族臭素化合物としては、例えば、ヘキサブロモベンゼン、デカブロモジフェニルエタン、4,4-ジブロモビフェニル、エチレンビステトラブロモフタルイミド等が挙げられる。
 リン系難燃剤としては、例えば、レゾルシノールビス-ジフェニルホスフェート、レゾルシノールビス-ジキシレニルホスフェート等が挙げられる。
 離型剤、流動性調整剤及びレベリング剤としては、特に限定されないが、例えば、シリコーン、エアロジル、ワックス、ステアリン酸塩、BYK-331(BYKケミカル社製)のようなポリシロキサン等が用いられる。
 可塑剤としては、特に限定されないが、例えば、フタル酸エステル類、燐酸エステル類、脂肪酸エステル類、ピロメリット酸エステル、エポキシ系可塑剤、ポリエーテル系可塑剤、液状ゴム、非芳香族系パラフィンオイル等が挙げられる。
 酸化防止剤、紫外線吸収剤、光安定剤及び熱安定剤としては特に限定されないが、例えば、リン化合物、フェノール系誘導体、硫黄を含む化合物、スズ系化合物を用いることができる。これらは単独で用いても2種以上組み合わせて用いてもよい。
 リン化合物としては、例えば、燐酸及び亜燐酸の脂肪族基及び芳香族基置換芳香族エステル並びに次亜燐酸誘導体等が挙げられる。リン化合物として具体的には、例えば、フェニルホスホン酸、フェニルホスフィン酸、ジフェニルホスホン酸、ポリホスホネート、ジアルキルペンタエリスリトールジホスファイト、ジアルキルビスフェノールAジホスファイト等が挙げられる。
 フェノール系誘導体としては、例えば、ヒンダードフェノール化合物等が挙げられる。
 硫黄を含む化合物としては、例えば、チオエーテル系化合物、ジチオ酸塩系化合物、メルカプトベンズイミダゾール系化合物、チオカルバニリド系化合物、チオジプロピオン酸エステル等が挙げられる。
 スズ系化合物としては、例えば、スズマレート、ジブチルスズモノオキシド等が挙げられる。
 消泡剤としては、特に限定されないが、例えば、シリコーン油、変性シリコーン油、ノニオン界面活性剤、鉱物油等が挙げられる。
 シリコーン油としては、例えば、高分子量ポリジメチルシロキサン等が挙げられる。
 変性シリコーン油としては、例えば、アミノ基導入シリコーン油等が挙げられる。
 ノニオン界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル等が挙げられる。
 中でも、本実施形態の塗料組成物は、その他添加剤((1-D)成分)として、少なくとも酸化防止剤、紫外線吸収剤、光安定剤及び熱安定剤を含有することが好ましい。
 また、本実施形態の塗料組成物は、溶媒、又は、原料に由来する水分を含んでいてもよい。本実施形態の塗料組成物に含まれる水分の含有量は、10質量%以下であることが好ましい。
≪実施形態1の塗料組成物の製造方法≫
 本実施形態の塗料組成物の製造方法としては、上記(1-A1)成分、上記(1-B)成分、及び、上記(1-C)成分、並びに、必要に応じて上記(1-A2)成分及び上記(1-D)成分を混合する方法であれば特に制限されない。本実施形態の塗料組成物の製造方法としては、具体的には、例えば、撹拌機等を用いて、回転数50rpm以上1000rpm以下で、5分間以上60分間以下撹拌後、真空脱泡器を用いて脱泡操作を行う方法等が挙げられる。
≪実施形態2の塗料組成物≫
 本実施形態の塗料組成物は、(2-A1)成分、(2-A2)成分、(2-B)成分及び(2-C)成分を含む。
 (2-A1)成分は、ポリオール成分(以下、「(2-A)成分」と称する場合がある)であり、ポリカーボネートジオール組成物である。
 (2-A2)成分は、ポリオール成分((2-A)成分)であり、ポリカーボネートジオール組成物((2-A1)成分)以外のポリオール成分である。
 (2-B)成分は、硬化剤であるイソシアネート化合物である。
 (2-C)成分は、有機溶媒である。
 本実施形態の塗料組成物は、前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、前記(2-A1)成分を3質量%以上99質量%以下、及び、前記(2-A2)成分を1質量%以上97質量%以下含有することが好ましい。
 また、本実施形態の塗料組成物は、前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、前記(2-A1)成分を5質量%以上50質量%以下、及び、前記(2-A2)成分を50質量%以上95質量%以下含有することがより好ましい。
 また、本実施形態の塗料組成物は、前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、前記(2-A1)成分を5質量%以上30質量%以下、及び、前記(2-A2)成分を70質量%以上95質量%以下含有することがさらに好ましい。
 本実施形態の塗料組成物は、下記に示す構成の(2-A1)成分、(2-A2)成分、(2-B)成分及び(2-C)成分を含むことにより、傷回復性及び耐熱性に優れた塗膜を形成することができる。これら各成分について、以下に詳細を説明する。
<(2-A1)成分:ポリカーボネートジオール組成物>
 本実施形態の塗料組成物に含まれるポリカーボネートジオール組成物は、ポリカーボネートジオールを含む。このポリカーボネートジオールは、分子鎖内に、下記一般式(I)で表される構造(以下、「構造(I)」と称する場合がある)と、下記一般式(II)で表されるポリカーボネート構造(以下、「ポリカーボネート構造(II)」と称する場合がある)とを含有する。
Figure JPOXMLDOC01-appb-C000013
(一般式(I)中、R11は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR11は互いに同一であってもよく、異なっていてもよい。n11は7以上70以下の数である。)
Figure JPOXMLDOC01-appb-C000014
(一般式(II)中、R21は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR21は互いに同一であってもよく、異なっていてもよい。n21は1以上50以下の数である。)
 また、一般式(I)で表される構造及びポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上35質量%以下、及び、前記ポリカーボネート構造を65質量%以上95質量%以下含有することが好ましい。
 ポリカーボネートジオール組成物中の一般式(I)で表される構造の含有量及びポリカーボネート構造の含有量は、例えば、以下の(1)~(4)に示す方法により測定することができる。(1)ポリカーボネートジオール組成物をエタノール性水酸化カリウム溶液中でアルカリ加水分解し、ジオール成分を再生させる。(2)フェノールフタレインを指示薬として、塩酸を加えて中和する。(3)析出させた塩を濾別し、濾液をGPC測定する。(4)濾液中の一般式(I)で表される構造の両末端が水酸基であるジオールの濃度を、別途作製した検量線から求める。その濃度から一般式(I)で表される構造の両末端が水酸基であるジオールの質量を算出し、アルカリ加水分解に用いたポリカーボネートジオール組成物の質量で除した値が一般式(I)で表される構造の両末端が水酸基であるジオールの含有量である。
 また、ポリカーボネートジオール組成物((2-A1)成分)中の一般式(I)で表される構造の末端構造は、一方の末端がカーボネート基(-O-CO-O-)に結合し、もう一方の末端が水酸基(-OH)に結合している末端構造、両末端がカーボネート基(-O-CO-O-)に結合している末端構造、又は、両末端が水酸基(-OH)に結合している末端構造である。
 また、ポリカーボネートジオール組成物((2-A1)成分)中の一般式(I)で表される構造を有する分子の両末端は水酸基である。
 ポリカーボネートジオール組成物((2-A1)成分)に含まれるポリカーボネート構造を有する分子は、その両末端が水酸基である。すなわち、ポリカーボネートジオール組成物((2-A1)成分)に含まれるポリカーボネート構造を有する分子は、ポリカーボネートジオールである。ポリカーボネートジオール組成物の製造に使用する各種原料中の不純物や、ポリカーボネートジオール組成物の製造時に副生する末端構造等に起因して、又は、ポリカーボネートジオール組成物の使用用途におけるウレタン化反応速度や状態コントロールのために、末端の水酸基の一部をイソシアネート基と反応しないアルキル基やアリール基等に変換する場合もある。本実施形態ではこのような場合も考慮し、上記ポリカーボネートジオールの末端基は、厳密に両末端の100モル%が水酸基でない場合も包含する。かかる観点から、末端基の総モル量に対する水酸基の割合は、90モル%以上であることが好ましく、95モル%以上であることがより好ましい。
 ポリカーボネートジオール組成物に含まれるポリカーボネートジオールの両末端構造は、例えば、特許第3874664号公報(参考文献1)に記載の末端水酸基濃度を測定する方法に準拠して確認することができる。
 但し、留分を回収する溶剤としてはエタノールの他に、テトラヒドロフランやアセトン、メタノール等の溶剤が使用できる。
 ポリカーボネートジオール組成物((2-A1)成分)の数平均分子量は、300以上10000以下が好ましく、400以上10000以下がより好ましく、500以上3000以下がさらに好ましい。
 数平均分子量が上記下限値以上であることで、ポリカーボネートジオール組成物から得られる熱可塑性ウレタンの柔軟性、及び、低温特性がより良好となる傾向がある。一方、数平均分子量が上記上限値以下であることで、ポリカーボネートジオール組成物から得られる熱可塑性ウレタンの成型加工性がより良好となる傾向がある。
 数平均分子量は、後述する実施例に記載の方法を用いて、ポリカーボネートジオールの水酸基価から算出することができる。
[構造(I)]
 ポリカーボネートジオール組成物((2-A1)成分)において、構造(I)及びポリカーボネート構造の合計質量に対して、構造(I)の含有量は、5質量%以上35質量%以下が好ましく、5質量%以上20質量%以下がより好ましく、5質量%以上15質量%以下がさらに好ましい。
 構造(I)の含有量が上記下限値以上であることにより、傷回復性により優れた塗膜が得られる。また、構造(I)の含有量が上記上限値以下であることにより、耐熱性により優れた塗膜が得られる。
 ポリカーボネートジオール組成物((2-A1)成分)において、構造(I)の末端構造は、一方の末端がカーボネート基に結合し、もう一方の末端が水酸基に結合している末端構造、又は、両末端がカーボネート基に結合している末端構造、又は、両末端が水酸基に結合している末端構造である。
 また、ポリカーボネートジオール組成物((2-A1)成分)において、構造(I)の末端構造は、一方の末端がカーボネート基に結合し、もう一方の末端が水酸基に結合している末端構造と、両末端がカーボネート基に結合している末端構造との混合であってもよい。
 次いで、構造(I)の詳細について、以下に説明する。
(R11
 一般式(I)中、R11は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR11は互いに同一であってもよく、異なっていてもよい。中でも、合成が容易であることから、複数あるR11は互いに同一であることが好ましい。
 R11における2価の直鎖状脂肪族炭化水素基としては、炭素数が2以上20以下であり、2以上12以下であることが好ましく、2以上6以下であることがより好ましい。
 R11における2価の直鎖状脂肪族炭化水素基として具体的は、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプチレン基、オクチレン基等が挙げられる。
 R11における2価の分岐鎖状脂肪族炭化水素基としては、炭素数が3以上20以下であり、3以上12以下であることが好ましく、3以上6以下であることがより好ましい。
 R11における2価の分岐鎖状肪族炭化水素基として具体的には、例えば、イソプロピレン基、イソブチレン基、tert-ブチレン基、イソペンチレン基、2,2-ジメチルトリメチレン基、イソヘキシレン基、イソヘプチレン基、イソオクチレン基等が挙げられる。
 R11における2価の環状脂肪族炭化水素基としては、炭素数が6以上20以下であり、6以上12以下であることが好ましく、6以上8以下であることがより好ましい。
 R11における2価の環状の脂肪族炭化水素基として具体的には、例えば、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基等が挙げられる。
 R11における2価の芳香族炭化水素基としては、炭素数が6以上15以下であり、6以上12以下であることが好ましく、6以上10以下であることがより好ましい。
 R11における2価の芳香族炭化水素基として具体的には、例えば、フェニレン基、ナフチレン基等が挙げられる。
 中でも、R11としては、炭素数2以上20以下の2価の直鎖状、分岐鎖状又は環状の脂肪族炭化水素基(すなわち、アルキレン基)が好ましく、炭素数2以上6以下の2価の直鎖状脂肪族炭化水素基、又は、炭素数3以上6以下の2価の分岐鎖状肪族炭化水素基がより好ましく、炭素数2以上6以下の2価の直鎖状脂肪族炭化水素基がさらに好ましい。
(n11)
 一般式(I)中、n11は構造(-R11-O-)の繰り返し数を表す。n11は、7以上70以下の数であり、7以上60以下の数が好ましく、7以上50以下の数がより好ましい。
 n11が上記下限値以上であることにより、原料である一般式(I)で表される構造の両末端が水酸基であるジオールの使用量を低減することができるため、ポリカーボネートジオール組成物((2-A1)成分)を用いて得られる塗膜の耐水性や耐熱性がより向上する傾向にある。また、n11が上記上限値以下であることにより、ポリカーボネートジオール組成物の結晶性がより抑えられる傾向にある。
 上記n11は、ポリカーボネートジオール組成物をアルカリ分解して原料ジオール成分を取り出し、当該成分についてGC-MS測定、LC-MS測定及びゲルパーミエーションクロマトグラフィー(GPC)測定を行うことで求めることができる。
 中でも、構造(I)としては、ポリオキシアルキレン構造が好ましい。
 構造(I)に含まれる好ましいオキシアルキレン基として具体的には、例えば、オキシエチレン基、オキシ1-メチルエチレン基、オキシテトラメチレン基、オキシ2,2-ジメチルトリメチレン基等が挙げられる。中でも、オキシエチレン基が好ましい。
 また、構造(I)に含まれるオキシアルキレン基が全てオキシエチレン基である、ポリオキシエチレン構造であることが特に好ましい。
 構造(I)が、オキシ1-メチルエチレン基及びオキシエチレン基を含む場合、構造(I)の総質量に対して、オキシ1-メチルエチレン基を10質量%以上100質量%以下、及び、オキシエチレン基を0質量%以上90質量%以下含有することが好ましい。
 構造(I)が、オキシテトラメチレン基及びオキシ2,2-ジメチルトリメチレン基を含む場合、構造(I)の総質量に対して、オキシテトラメチレン基を10質量%以上100質量%以下、及び、前記オキシ2,2-ジメチルトリメチレン基を0質量%以上90質量%以下含有することが好ましい。
[ポリカーボネート構造(II)]
 本実態形態のポリカーボネートジオール組成物において、構造(I)及びポリカーボネート構造(II)の合計質量に対して、ポリカーボネート構造(II)の含有量は、65質量%以上95質量%以下が好ましく、70質量%以上95質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましく、85質量%以上95質量%以下が特に好ましい。
 ポリカーボネート構造(II)の含有量が上記下限値以上であることにより、耐水性、耐熱性、耐薬品性、耐摩耗性等により優れた塗膜が得られる。また、ポリカーボネート構造の含有量(II)が上記上限値以下であることにより、ポリカーボネートジオール組成物のポリエーテルポリオールとの相溶性がより優れる。
 次いで、ポリカーボネート構造(II)の詳細について、以下に説明する。
(R21
 一般式(II)中、R21は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR21は互いに同一であってもよく、異なっていてもよい。中でも、合成が容易であることから、複数あるR21は互いに同一であることが好ましい。
 R21における2価の直鎖状脂肪族炭化水素基としては、炭素数が2以上15以下であり、3以上12以下であることが好ましく、3以上10以下であることがより好ましい。
 R21における炭素数2以上15以下の2価の直鎖状脂肪族炭化水素基として具体的は、上記R11において例示されたものと同様のものが挙げられる。中でも、汎用性の観点から、ブチレン基、ペンチレン基又はヘキシレン基が好ましい。
 R21における2価の分岐鎖状脂肪族炭化水素基としては、炭素数が3以上15以下であり、3以上12以下であることが好ましく、3以上10以下であることがより好ましい。
 R21における炭素数2以上15以下の2価の分岐鎖状肪族炭化水素基として具体的には、上記R11において例示されたものと同様のものが挙げられる。中でも、汎用性の観点から、イソペンチレン基又はイソヘキシレン基が好ましい。
 R21における2価の環状脂肪族炭化水素基としては、炭素数が3以上15以下であり、6以上15以下であることが好ましく、6以上10以下であることがより好ましい。
 R21における2価の環状の脂肪族炭化水素基として具体的には、上記R11において例示されたものと同様のものが挙げられる。中でも、汎用性の観点から、シクロヘキシレン基が好ましい。
 R21における2価の芳香族炭化水素基としては、炭素数が6以上15以下であり、6以上12以下であることが好ましく、6以上10以下であることがより好ましい。
 R21における2価の芳香族炭化水素基として具体的には、上記R11において例示されたものと同様のものが挙げられる。
 中でも、R21としては、炭素数3以上10以下の2価の直鎖状脂肪族炭化水素基、又は、炭素数3以上10以下の2価の分岐鎖状肪族炭化水素基が好ましく、炭素数3以上10以下の2価の直鎖状脂肪族炭化水素基がより好ましい。
(n21)
 一般式(I)中、n21は、カーボネート構造(-R21-O-CO-O-)の繰り返し数を表す。n21は1以上50以下の数であり、2以上50以下の数が好ましく、3以上30以下の数がより好ましく、4以上20以下の数である。
 n21は、ポリカーボネートジオール組成物をアルカリ分解して原料ジオール成分を取りだし、当該成分について、GC-MS測定、LC-MS測定及びGPC測定を行うことで求めることができる。
<ポリカーボネートジオール組成物((2-A1)成分)の製造方法>
 ポリカーボネートジオール組成物((2-A1)成分)は、下記一般式(I-1)で表されるエーテルジオール(以下、「エーテルジオール(I-1)」と称する場合がある)と、下記一般式(II-1)で表されるポリカーボネートジオール(以下、「ポリカーボネートジオール(II-1)」と称する場合がある)とを用いて、エステル交換反応を行うことで得ることができる。
Figure JPOXMLDOC01-appb-C000015
(一般式(I-1)中、R111は上記R11と同じである。n111は上記n11と同じである。)
Figure JPOXMLDOC01-appb-C000016
(一般式(I-1)中、R211及びR212はそれぞれ上記R21と同じである。n211は上記n21と同じである。)
[エーテルジオール(I-1)]
 ポリカーボネートジオール組成物((2-A1)成分)の製造に用いられるエーテルジオール(I-1)としては、上記一般式(I-1)で表される構造を有するものであればよい。中でも、エーテルジオール(I-1)としては、ポリオキシアルキレンジオールが好ましい。エーテルジオール(I-1)は、各種の分子量の製品が市販されており、このような市販品を用いることもできる。エーテルジオール(I-1)の市販品としては、例えば、和光純薬工業株式会社製の「ポリエチレングリコール」シリーズや、「ポリテトラメチレンオキシド」シリーズ、旭化成株式会社製の「PTXG」シリーズ等のポリオキシアルキレンジオール等が挙げられる。
 エーテルジオール(I-1)の数平均分子量は、特に限定されないが、400以上3000以下が好ましく、600以上2000以下がより好ましい。製造に用いられるエーテルジオール(I-1)の数平均分子量が上記下限値以上であることにより、原料のエーテルジオール(I-1)の使用量をより低減することができる。さらに、ポリカーボネートジオール組成物から得られる塗膜の耐水性や耐熱性がより向上される傾向にある。製造に用いられるエーテルジオール(I-1)の数平均分子量が上記上限値以下であることにより、ポリカーボネートジオール組成物の結晶性がより抑えられる傾向にある。
[ポリカーボネートジオール(II-1)]
 ポリカーボネートジオール組成物((2-A1)成分)の製造に用いられるポリカーボネートジオール(II-1)としては、上記一般式(II-1)で表される構造を有するものであればよい。ポリカーボネートジオール(II-1)の製造方法としては、特に限定されず、公知の方法を採用することもできる。例えば、カーボネート化合物と、ジオール化合物とを、エステル交換触媒の存在下で反応させて、ポリカーボネートジオール(II-1)を得ることができる。
(カーボネート化合物)
 ポリカーボネートジオール(II-1)の製造に用いられるカーボネート化合物としては、以下のものに限定されないが、例えば、アルキレンカーボネート、ジアルキルカーボネート、ジアリールカーボネート等が挙げられる。
 アルキレンカーボネートとしては、例えば、エチレンカーボネート、トリメチレンカーボネート、1,2-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,2-ペンチレンカーボネート等が挙げられる。
 ジアルキルカーボネートとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等が挙げられる。
 ジアリールカーボネートとしては、例えば、ジフェニルカーボネート等が挙げられる。
 中でも、ポリカーボネートジオール(II-1)の製造に用いられるカーボネート化合物としては、アルキレンカーボネートが好ましく、エチレンカーボネートがより好ましい。
(ジオール化合物)
 ポリカーボネートジオール(II-1)の製造に用いられるジオール化合物としては、以下のものに限定されないが、例えば、直鎖状ジオール、分岐鎖状ジオール、環状ジオール、芳香環を有するジオールが挙げられる。
 直鎖状ジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ナノジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等が挙げられる。
 分岐鎖状ジオールとしては、例えば、2-メチル-1,8-オクタンジオール、ネオペンチルグリコール、2-エチル-1,6-ヘキサンジオール、2-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジメチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール等が挙げられる。
 環状ジオールとしては、例えば、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、2-ビス(4-ヒドロキシシクロヘキシル)-プロパン等が挙げられる。
 芳香環を有するジオールとしては、例えば、p-キシレンジオール、p-テトラクロロキシレンジオール、1,4-ビス(ヒドロキシエトキシ)ベンゼン、2,2-ビス〔(4-ヒドロキシエトキシ)フェニル〕プロパン等が挙げられる。
 中でも、直鎖状ジオールが好ましく、1,5-ペンタンジオール又は1,6-ヘキサンジオールがより好ましい。
[ポリカーボネートジオール組成物((2-A1)成分)及びポリカーボネートジオール(II-1)の製造条件]
 原料であるポリカーボネートジオール(II-1)の製造に際しては、エステル交換反応触媒を用いることができる。触媒としては、通常のエステル交換反応触媒から選択することができる。
 エステル交換反応触媒としては、例えば、アルカリ金属及びアルカリ土類金属、並びに、そのアルコラート、その水素化物、そのオキシド、そのアミド、その水酸化物及びその塩等が挙げられる。
 アルカリ金属及びアルカリ土類金属の塩としては、炭酸塩、窒素含有ホウ酸塩、有機酸との塩基性塩等が挙げられる。
 アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム等が挙げられる。
 アルカリ土類金属としては、例えば、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
 また、アルカリ金属及びアルカリ土類金属以外の金属を用いたエステル交換触媒としては、例えば、アルカリ金属及びアルカリ土類金属以外の金属、並びに、その塩、そのアルコラート、及び、該金属を含む有機化合物等が挙げられる。
 アルカリ金属及びアルカリ土類金属以外の金属として具体的には、例えば、アルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、インジウム、スズ、アンチモン、タングステン、レニウム、オスミウム、イリジウム、白金、金、タリウム、鉛、ビスマス、イッテルビウム等が挙げられる。
 これらエステル交換触媒を1種単独で、又は、2種以上組み合わせて、使用することができる。
 中でも、エステル交換反応触媒としては、ポリカーボネートジオールを得るエステル交換反応がより良好に行われ、得られるポリカーボネートジオールを用いた場合にウレタン反応に対する影響もより少ないことから、ナトリウム、カリウム、マグネシウム、カリウム、チタン、ジルコニウム、スズ、鉛及びイッテルビウムからなる群より選択される1種以上の金属、又は、それらの塩、それらのアルコキシド、若しくはそれら金属を含む有機化合物が好ましい。
 また、エステル交換反応触媒としては、マグネシウム、チタン、イッテルビウム、スズ及びジルコニウムからなる群より選択される1種以上の金属がより好ましい。
 好ましいエステル交換触媒として具体的には、例えば、鉛の有機化合物、チタンの有機化合物等が挙げられる。
 鉛の有機化合物としては、例えば、酢酸鉛三水和物、テトラフェニル鉛、ステアリン酸鉛等が挙げられる。
 チタンの有機化合物としては、例えば、チタンテトラ-n-ブトキシド、チタンテトラn-プロポキシド、チタンテトライソプロポキシド等が挙げられる。
 エステル交換反応触媒の使用量は、原料の総質量に対して、0.00001質量%以上0.1質量%以下が好ましく、0.0001質量%以上0.05質量%以下がより好ましい。
 エステル交換反応に用いたエステル交換触媒は、ポリカーボネートジオールの製造に引き続き加熱処理を行う場合は、エステル交換反応で消費されていないため、エステル交換反応触媒の使用量を元に算出できる。市販のポリカーボネートジオールを用いる場合等においては、ポリカーボネートジオールに含まれるエステル交換反応触媒の金属量を、ICP(発光分光分析法、Inductively Coupled Plasma)により測定して求められる。
 ポリカーボネートジオール組成物((2-A1)成分)の製造に用いられるポリカーボネートジオール(II-1)は、その製造時に用いたエステル交換反応触媒を失活させるため、リン酸エステル化合物等の触媒毒を添加したものであってもよい。
 原料であるポリカーボネートジオール(II-1)中に、その製造時に用いられたエステル交換反応触媒の触媒毒等が含まれている場合、通常、エーテルジオール(I-1)と、ポリカーボネートジオール(II-1)とのエステル交換反応が進み難くなる傾向にある。そのため、ポリカーボネートジオール組成物((2-A1)成分)の製造に際しては、新たに上記したエステル交換反応触媒を必要量添加することができる。
 一方、原料であるポリカーボネートジオール(II-1)中に、エステル交換反応触媒の触媒毒が含まれていない場合は、通常、本実施形態におけるエステル交換反応は進み易い傾向にある。しかしながら、ポリカーボネートジオール組成物((2-A1)成分)の製造工程における反応温度をより下げたい場合や反応時間をより短くしたい場合等にも、新たにエステル交換反応触媒を必要量添加することができる。その場合、原料であるポリカーボネートジオール(II-1)の製造において用いるエステル交換反応触媒と同様のものを採用することができる。
 また、ポリカーボネートジオール組成物((2-A1)成分)の製造に用いられるポリカーボネートジオール(II-1)は、1種のジオール化合物から得られるホモポリカーボネートジオールでもよいし、2種以上のジオール化合物から得られる共重合系ポリカーボネートジオールでもよい。
 上記に例示したポリカーボネートジオール(II-1)のうちいずれのものを用いても、エーテルジオール(I-1)とのエステル交換反応により、ポリカーボネートジオール組成物((2-A1)成分)を得ることができる。
 しかしながら、例えば、市場で広く用いられている1,6-ヘキサンジオールを用いて得られたホモ系ポリカーボネートジオールは、通常、常温で固体である。そのため、該ホモ系ポリカーボネートジオールと、エーテルジオール(I-1)とのエステル交換反応により得られるポリカーボネートジオール組成物((2-A1)成分)も常温で固体である傾向にある。
 一方、例えば、1,5-ペンタンジオール及び1,6-ヘキサンジオールの2種類を用いて得られた共重合系ポリカーボネートジオールは常温で液体である。そのため、該共重合系ポリカーボネートジオールと、エーテルジオール(I-1)とのエステル交換反応により得られるポリカーボネートジオール組成物((2-A1)成分)も常温で液体である傾向にある。
 よって、取り扱い性の観点からは、原料であるポリカーボネートジオールとしては、常温で液体であるものが好まれる場合が多い。
 ポリカーボネートジオール組成物((2-A1)成分)の製造に用いられるポリカーボネートジオール(II-1)の数平均分子量は、特に限定されないが、500以上5000以下が好ましく、1000以上3000以下がより好ましい。
 ポリカーボネートジオール(II-1)の数平均分子量が上記下限値以上であることにより、ポリカーボネートジオールに期待される性能がより向上する傾向にある。一方、ポリカーボネートジオール(II-1)の数平均分子量が上記上限値以下であることにより、ポリカーボネートジオール組成物((2-A1)成分)の高粘度化をより効果的に抑制でき、取り扱い性がより向上する傾向にある。
 ポリカーボネートジオール組成物((2-A1)成分)は、ジオールとしてエーテルジオール(I-1)を用い、該エーテルジオール(I-1)とカーボネート化合物との重縮合反応により製造することもできる。しかし、このようなポリカーボネートジオールの重縮合反応を進行させるためには、通常、高温で長時間加熱する必要がある。そのため、望まない副反応が生じる可能性が高くなったり、製造品種の切り替えにおける作業負荷が増えたりすることがある。
 かかる観点から、ポリカーボネートジオール組成物((2-A1)成分)の製造方法としては、エーテルジオール(I-1)とカーボネート化合物とを用いた重縮合反応を用いずに、エーテルジオール(I-1)とポリカーボネートジオール(II-1)とを用いたエステル交換反応により製造することが好ましい。
 エステル交換反応は、具体的には、エーテルジオール(I-1)とポリカーボネートジオール(II-1)とを混合し、加熱しながら撹拌することにより、実施できる。
 エステル交換反応の温度は、特に限定されないが、120℃以上200℃以下が好ましく、140℃以上180℃以下より好ましい。
 反応温度を上記下限値以上とすることで、エステル交換反応をより短時間で行うことができ経済性に優れる。反応温度を上記上限値以下とすることで、得られるポリカーボネートジオール組成物の着色をより効果的に防止することができる。
 エステル交換反応の反応圧力は、特に限定されないが、常圧以上1MPa以下が好ましい。反応圧力を上記範囲とすることで、反応をより簡便に実施できる。また、副原料を用いる場合、これらの蒸気圧等を考慮して、ある程度加圧することでエステル交換反応をより効率よく促進させるができる。
 ポリカーボネートジオール組成物((2-A1)成分)の数平均分子量を制御する方法としては、例えば、原料であるポリカーボネートジオール(II-1)の分子量が適当なものを選択することや、分子量調節の観点から、エーテルジオール(I-1)の1種類又は2種類以上の存在下でエステル交換反応を行うこと等が好ましい。
 エステル交換反応の進行と完了は、GPC測定によって確認することができる。エステル交換反応の進行に伴い、原料であるエーテルジオール(I-1)に由来するピークは経時的に小さくなっていき、該ピークが消失したことにより、原料であるポリカーボネートジオール(II-1)の末端やポリマー鎖の内部に、エーテルジオール(I-1)に由来する構造が結合されたことが確認できる。
 ポリカーボネートジオール組成物((2-A1)成分)の製造方法では、上記したエステル交換反応の前に、前処理として、使用する原料の脱水処理を行う工程等を行ってよい。
 ポリカーボネートジオール組成物((2-A1)成分)の製造方法では、上記したエステル交換反応の後に、後処理として、エステル交換反応触媒に対する前述の触媒毒を添加する工程等を行ってもよい。
<(2-A2)成分:その他ポリオール成分>
 本実施形態の塗料組成物は、主剤であるポリオール成分((2-A)成分)として、上記ポリカーボネートジオール組成物((2-A1)成分)に加えて、更に、その他のポリオール成分((2-A2)成分)を含有する。
 本実施形態の塗料組成物は、前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、(2-A2)成分を1質量%以上97質量%以下含有することが好ましく、50質量%以上95質量%以下含有することがより好ましく、70質量%以上95質量%以下含有することがさらに好ましい。
 その他のポリオール成分((2-A2)成分)としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、ポリオレフィンポリオール、フッ素ポリオール等が挙げられ、これらに限定されない。
 また、その他のポリオール成分((2-A2)成分)としては、ポリカーボネートジオール組成物((2-A1)成分)の原料であるエーテルジオール(I-1)、及び、ポリカーボネートジオール(II-1)、並びに、ポリカーボネートジオール(II-1)の原料であるジオール化合物も包含される。
[ポリエステルポリオール]
 ポリエステルポリオールは、例えば、二塩基酸の単独又は2種類以上の混合物と、多価アルコールの単独又は2種類以上の混合物とを、縮合反応させることによって得ることができる。
 前記二塩基酸としては、例えば、コハク酸、アジピン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸、1,4-シクロヘキサンジカルボン酸等のカルボン酸等が挙げられる。
 前記多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、トリメチルペンタンジオール、シクロヘキサンジオール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、2-メチロールプロパンジオール、エトキシ化トリメチロールプロパン等が挙げられる。
 ポリエステルポリオールの具体的な製造方法としては、例えば、上記の成分を混合し、約160~220℃で加熱することによって、縮合反応を行うことができる。
 又は、例えば、ε-カプロラクトン等のラクトン類を、多価アルコールを用いて開環重合して得られるようなポリカプロラクトン類等もポリエステルポリオールとして用いることができる。
 上述の製造方法で得られたポリエステルポリオールは、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート、及びこれらから得られる化合物等を用いて変性させることができる。中でも、得られる塗膜の耐候性及び耐黄変性等の観点から、ポリエステルポリオールは、脂肪族ジイソシアネート、脂環族ジイソシアネート、及びこれらから得られる化合物を用いて変性させることが好ましい。
 本実施形態の塗料組成物が水分量の多い溶剤を含む場合には、ポリエステルポリオール中の二塩基酸等に由来する一部のカルボン酸を残存させておき、アミン、アンモニア等の塩基で中和することで、ポリエステルポリオールを水溶性又は水分散性の樹脂とすることができる。
[ポリエーテルポリオール]
 ポリエーテルポリオールは、例えば、以下の(1)~(3)のいずれかの方法等を用いて得ることができる。
 (1)触媒を使用して、アルキレンオキシドの単独又は混合物を、多価ヒドロキシ化合物の単独又は混合物に、ランダム又はブロック付加して、ポリエーテルポリオール類を得る方法。
 前記触媒としては、例えば、水酸化物(リチウム、ナトリウム、カリウム等)、強塩基性触媒(アルコラート、アルキルアミン等)、複合金属シアン化合物錯体(金属ポルフィリン、ヘキサシアノコバルト酸亜鉛錯体等)等が挙げられる。
 前記アルキレンオキシドとしては、例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、シクロヘキセンオキシド、スチレンオキシド等が挙げられる。
 (2)ポリアミン化合物にアルキレンオキシドを反応させて、ポリエーテルポリオール類を得る方法。
 前記ポリアミン化合物としては、例えば、エチレンジアミン類等が挙げられる。
 前記アルキレンオキシドとしては、(1)で例示されたものと同様のものが挙げられる。
 (3)(1)又は(2)で得られたポリエーテルポリオール類を媒体としてアクリルアミド等を重合して、いわゆるポリマーポリオール類を得る方法。
 前記多価ヒドロキシ化合物としては、例えば、以下の(i)~(vi)に示すものが挙げられる。
 (i)ジグリセリン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等。
 (ii)エリトリトール、D-トレイトール、L-アラビニトール、リビトール、キシリトール、ソルビトール、マンニトール、ガラクチトール、ラムニトール等の糖アルコール系化合物。
 (iii)アラビノース、リボース、キシロース、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、ラムノース、フコース、リボデソース等の単糖類。
 (iv)トレハロース、ショ糖、マルトース、セロビオース、ゲンチオビオース、ラクトース、メリビオース等の二糖類。
 (v)ラフィノース、ゲンチアノース、メレチトース等の三糖類。
 (vi)スタキオース等の四糖類。
[アクリルポリオール]
アクリルポリオールは、塗料組成物に用いる有機溶剤中に均一に溶解(相溶)するものを用いることが好ましい。アクリルポリオールが有機溶剤に均一に溶解していれば、均質な塗料組成物が得られ、塗膜の外観、平滑性、透明性、密着性等が向上する。
アクリルポリオールの水酸基価は、塗膜の機械的物性の観点から、10mgKOH/g以上、500mgKOH/g以下が好ましく、20mgKOH/g以上、400mgKOH/g以下がより好ましく、30mgKOH/g以上、300mgKOH/g以下がさらに好ましい。ポリオールの水酸基価は、後述する実施例に記載するポリカーボネートジオールの水酸基価を測定する方法に準じて測定する。
有機溶剤に均一に溶解するアクリルポリオールであれば、特に限定されないが、例えば後述する重合方法で得られるアクリルポリオールを用いることができる。また、市販されているアクリルポリオールを用いる場合、有機溶剤系アクリルポリオールを使用することが好ましい。水分散系のアクリルポリオールは、一般的に有機溶剤との相溶性が乏しく、水が塗料に混入する原因などになるため、使用を控えることが好ましい。
 塗料組成物中の水分量が多いと塗膜の外観、平滑性、透明性や密着性等に影響するため、塗料組成物中の水分量は10%以下が好ましく、より好ましくは5%以下、さらに好ましくは1%以下である。塗料組成物中の水分量はカールフィッシャー滴定法によりで測定できる。
 アクリルポリオールの重合方法は、例えば、一分子中に1個以上の活性水素を有する重合性モノマーのみを重合させる、又は、一分子中に1個以上の活性水素を有する重合性モノマーと、必要に応じて、当該重合性モノマーと共重合可能な他のモノマーとを、共重合させる方法を用いることができる。
 前記一分子中に1個以上の活性水素を有する重合性モノマーとしては、例えば、以下の(i)~(vi)に示すものが挙げられる。これらを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (i)アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸-2-ヒドロキシブチル等の活性水素を有するアクリル酸エステル類。
 (ii)メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシブチル、メタクリル酸-3-ヒドロキシプロピル、メタクリル酸-4-ヒドロキシブチル等の活性水素を有するメタクリル酸エステル類。
 (iii)グリセリンやトリメチロールプロパン等のトリオールの(メタ)アクリル酸モノエステル等の多価活性水素を有する(メタ)アクリル酸エステル類。
 (iv)ポリエーテルポリオール類(例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等)と上記の活性水素を有する(メタ)アクリル酸エステル類とのモノエーテル。
 (v)グリシジル(メタ)アクリレートと一塩基酸(例えば、酢酸、プロピオン酸、p-tert-ブチル安息香酸等)との付加物。
 (vi)上記の活性水素を有する(メタ)アクリル酸エステル類の活性水素にラクトン類(例えば、ε-カプロラクタム、γ-バレロラクトン等)を開環重合させることにより得られる付加物。
 前記重合性モノマーと共重合可能な他のモノマーとしては、例えば、以下の(i)~(iv)に示すものが挙げられる。これらを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (i)アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸-2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸グリシジル等の(メタ)アクリル酸エステル類。
 (ii)アクリル酸、メタクリル酸、マレイン酸、イタコン酸等)、不飽和アミド類(アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド等の不飽和カルボン酸類。
 (iii)ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-(メタ)アクリロプロピルトリメトキシシラン等の加水分解性シリル基を有するビニルモノマー類。
 (iv)スチレン、ビニルトルエン、酢酸ビニル、アクリルニトリル、フマル酸ジブチル等のその他の重合性モノマー。
 アクリルポリオールの具体的な製造方法としては、例えば、上記のモノマーを、公知の過酸化物やアゾ化合物等のラジカル重合開始剤の存在下で溶液重合し、必要に応じて有機溶剤等で希釈することによって、アクリルポリオールを得ることができる。
 アクリルポリオールは市販のものを用いてもよく、公知の方法を用いて合成してもよい。
 アクリルポリオールの市販品としては、例えば、Setalux1152、Setalux1184、Setalux1186、Setalux1903、Setalux1906、Setalux1907、Setalux1909、Setalux1910等のAllnex社製のアクリルポリオール等が挙げられる。
[ポリオレフィンポリオール]
 ポリオレフィンポリオールとしては、例えば、水酸基を2個以上有するポリブタジエン、水酸基を2個以上有する水素添加ポリブタジエン、水酸基を2個以上有するポリイソプレン、水酸基を2個以上有する水素添加ポリイソプレン等が挙げられる。
 また、ポリオレフィンポリオールの統計的1分子が持つ水酸基数(以下、「水酸基平均数」と称する場合がある)は、2以上であることが好ましい。
[フッ素ポリオール]
本明細書において、「フッ素ポリオール」とは、分子内にフッ素を含むポリオールを意味する。フッ素ポリオールとして具体的には、例えば、特開昭57-34107号公報(参考文献1)、特開昭61-275311号公報(参考文献2)等で開示されているフルオロオレフィン、シクロビニルエーテル、ヒドロキシアルキルビニルエーテル、モノカルボン酸ビニルエステル等の共重合体等が挙げられる。
<(2-B)成分:イソシアネート化合物>
 本実施形態の塗料組成物に含まれるイソシアネート化合物は、塗料組成物の硬化剤として働くものであれば特に制限されず、末端にイソシアネート基を2個以上有するものを用いる。
 このようなイソシアネート化合物としては、例えば、鎖状脂肪族ジイソシアネート、環状脂肪族ジイソシアネート、芳香族ジイソシアネート、及び、3個以上のイソシアネート基を有するイソシアネート化合物、並びに、これらのイソシアネート化合物のイソシアヌレート化変性品、及び、ビウレット化変性品等が挙げられる。
 鎖状脂肪族ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート及びトリメチルヘキサメチレンジイソシアネート等が挙げられる。
 環状脂肪族ジイソシアネートとしては、例えば、イソホロンジイソシアネート等が挙げられる。
 芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート及びナフチレンジイソシアネート等が挙げられる。
 3個以上のイソシアネート基を有するイソシアネート化合物としては、例えば、トリフェニルメタン-4,4’-4’’-トリイソシアネート、1,3,5-トリイソシアナトベンゼン、2,4,6-トリイソシアナトトエン及び4,4’-ジメチルジフェニルメタン-2,2’,5,5’-テトライソシアネート等が挙げられる。
 イソシアネート化合物は市販のものを用いてもよく、公知の方法を用いて合成してもよい。
 イソシアネート化合物の市販品としては、例えば、24A-100、22A-75P、TPA-100、TKA-100、P301-75E、D101、D201、21S-75E、MFA-75B、MHG-80B、TUL-100、TLA-100、TSA-100、TSS-100、TSE-100、E402-80B、E405-80B、AE700-100、A201H、17B-60P、TPA-B80E、MF-B60B、MF-K60B、SBB-70P、SBN-70D、E402-B80B、WB40-100、WT30-100、WT31-100、WB40-80D、WT20-100、WL70-100、WE50-100、WM44-L70G等の旭化成株式会社製の「デュラネート(商品名)」シリーズ等が挙げられる。
 本実施形態の塗料組成物において、イソシアネート化合物((2-B)成分)の含有量は、主剤であるポリオールの水酸基のモル量に応じて、適宜に調整すればよい。
 具体的には、ポリオールの水酸基に対する、イソシアネート化合物((2-B)成分)のイソシアネート基のモル比(NCO)は、例えば0.2以上5.0以下とすることができ、例えば0.4以上3.0とすることができ、例えば0.5以上2.0以下とすることができる。
 NCO/OHが上記下限値以上であると、より強靱な塗膜が得られる傾向にある。一方、NCO/OHが上記上限値以下であると、塗膜の平滑性がより向上する傾向にある。
<(2-C)成分:有機溶剤>
 本実施形態の塗料組成物に含まれる有機溶剤((2-C)成分)は、塗料組成物の溶剤として働くものであればよい。
 有機溶剤として具体的は、例えば、アミド系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、炭酸エステル溶媒、芳香族炭化水素系溶剤等が挙げられる。
 アミド系溶剤としては、例えば、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。
 スルホキシド系溶剤としては、例えば、ジメチルスルホキシド等が挙げられる。
 ケトン系溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン等が挙げられる。
 エーテル系溶剤としては、例えば、テトラヒドロフラン、ジオキサン等が挙げられる。
 エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、プロピレングリコール1-モノメチルエーテル2-アセタート等が挙げられる。
 炭酸エステル溶媒としては、例えば、炭酸ジメチル、炭酸ジエチル、炭酸プロピレン等が挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン等が挙げられる。
 これらの有機溶剤は、単独で用いてもよく、2種以上の混合溶媒として用いてもよい。
 中でも、本実施形態の塗料組成物に含まれる有機溶剤((2-C)成分)としては、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、プロピレングリコール1-モノメチルエーテル2-アセタート、トルエン、及び、キシレンからなる群より選択される1種以上が好ましい。
 本実施形態の塗料組成物中の有機溶剤((2-C)成分)の含有量は、塗料組成物の総質量に対して、例えば10質量%以上90質量%以下とすることができ、例えば15質量%以上70質量%以下とすることができ、例えば20質量%以上50質量%以下とすることができる。
<(2-D)成分:その他添加剤>
 本実施形態の塗料組成物は、上記(2-A1)成分、上記(2-A2)成分、上記(2-B)成分、及び、上記(2-C)成分に加えて、各種用途に応じて、硬化促進剤(触媒)、ウレタンビーズ、艶消し剤、レベリング剤、チクソ剤等のその他添加剤((2-D)成分)を含有してもよい。これらその他添加剤((2-D)成分)を適宜含有することにより、ソフトフィール塗料、及び、クリア塗料等の、性質の異なる塗料組成物を得ることができる。
 硬化促進剤(触媒)としては、特に限定されないが、例えば、例えば、モノアミン、ジアミン、その他トリアミン、環状アミン、アルコールアミン、エーテルアミン、金属触媒等の一般的に用いられるものが挙げられる。
 モノアミンとしては、例えば、トリエチルアミン、N,N-ジメチルシクロヘキシルアミン等が挙げられる。
 ジアミンとしては、例えば、テトラメチルエチレンジアミン等が挙げられる。
 アルコールアミノとしては、例えば、ジメチルエタノールアミン等が挙げられる。
 金属触媒としては、特に限定されないが、例えば、酢酸カリウム、2-エチルへキサン酸カリウム、酢酸カルシウム、オクチル酸鉛、ジブチル錫ジラウレート、オクチル酸錫、ビスマスネオデカノエート、ビスマスオキシカーボネート、ビスマス2-エチルヘキサノエート、オクチル酸亜鉛、亜鉛ネオデカノエート、ホスフィン、ホスホリン等が挙げられる。
 艶消し剤としては、特に限定されないが、例えば、有機微粉末、無機微粉末等が挙げられる。これらの艶消し剤は、1種単独で用いてもよく、2種以上を併用して用いることもできる。
 有機微粉末としては、例えば、不飽和カルボン酸アルキルエステル単量体と架橋剤とを用いて重合された架橋アクリル樹脂、不飽和ニトリル単量体と芳香族ビニル単量体と架橋剤とを用いて重合された架橋樹脂が挙げられる。
 不飽和カルボン酸アルキルエステル単量体としては、例えば、メチルメタクリレート、メチルアクリレート、エチルアクリレート、ブチルアクリレート等が挙げられる。
 不飽和ニトリル単量体としては、例えば、アクリロニトリル、メタクリロニトリル、エタクリロニトリル等が挙げられる。
 芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン等が挙げられる。
 これらの有機微粉末は、1種単独で用いてもよく、2種以上を併用して用いることもできる。
 無機微粉末としては、例えば、金属酸化物微粉末、ケイ酸化合物微粉末、炭酸金属塩微粉末、窒化物微粉末、石膏微粉末、クレー微粉末、タルク微粉末、天然雲母微粉末等が挙げられる。
 金属酸化物微粉末としては、例えば、酸化ケイ素微粉末、酸化チタン微粉末、酸化アルミニウム微粉末、酸化ジルコニウム微粉末等が挙げられる。
 ケイ酸化合物微粉末としては、例えば、ケイ酸アルミニウム微粉末、ケイ酸マグネシウム微粉末等が挙げられる。
 炭酸金属塩微粉末としては、例えば、炭酸カルシウム微粉末、炭酸バリウム微粉末等が挙げられる。
 窒化物微粉末としては、例えば、窒化チタン微粉末、窒化ケイ素微粉末等が挙げられる。
 これらの無機微粉末は、1種単独で用いてもよく、2種以上を併用して用いることもできる。
 中でも、無機微粉末としては、酸化ケイ素微粉末が好ましい。酸化ケイ素微粉末としては、含水又は無水のシリカ微粉末が例示される。
 このようなシリカ微粉末として具体的には、例えば、Evonik社製「ACEMATT OK 412(商品名)」、「ACEMATT OK 607(商品名)」、「ACEMATT OK 900(商品名)」、「ACEMATT TS 100(商品名)」、「ACEMATT OK 520(商品名)」、「ACEMATT 3600(商品名)」、「ACEMATT 3300(商品名)」等が挙げられる。
 レベリング剤としては、特に限定されないが、例えば、シリコーン、エアロジル、ワックス、ステアリン酸塩、BYK-331(BYKケミカル社製)のようなポリシロキサン等が用いられる。
 チクソ剤としては、従来からクリームはんだの熱硬化性樹脂組成物に使用されているチクソ剤を使用することができる。チクソ剤として具体的には、例えば、ヒマシ油、水添ヒマシ油、ソルビトール系のチクソ剤等が挙げられる。
 また、本実施形態の塗料組成物は、溶媒、又は、原料に由来する水分を含んでいてもよい。本実施形態の塗料組成物に含まれる水分の含有量は、10質量%以下であることが好ましい。
≪実施形態2の塗料組成物の製造方法≫
 本実施形態の塗料組成物の製造方法としては、上記(2-A1)成分及び上記(2-A2)成分の合計質量に対し、前記(2-A1)成分を3質量%以上99質量%以下、及び、上記(2-A2)成分を1質量%以上97質量%以下含有するように、上記(2-A1)成分、上記(2-A2)成分、前記(2-B)成分及び前記(2-C)、並びに、必要に応じて、上記(2-D)成分を混合する方法であれば特に制限されない。
 本実施形態の塗料組成物の製造方法としては、具体的には、例えば、撹拌機等を用いて、回転数50rpm以上1000rpm以下で、5分間以上60分間以下撹拌後、真空脱泡器を用いて脱泡操作を行う方法が挙げられる。
≪塗装方法≫
 本発明の塗料組成物の塗装方法としては、特に限定されないが、例えば、各々の成分を塗装直前に混合した後、スプレー、ロール、はけ等で基材に塗布する方法が用いられる。予め、硬化剤である(1-B)成分以外を混合しておき、塗布直前に(1-B)成分を添加し均一に混合した後、塗布する方法も可能である。 
≪用途≫
 本発明の塗料組成物は、自動車、バス、鉄道車両、建築機械、農業機械、建築物の床や壁や屋根、金属製品、モルタルやコンクリート製品、木工製品、プラスチック製品、ケイ酸カルシウム板や石膏ボード等の窯業系建材等への塗装といった幅広い分野で好適に利用できる。
 以下、具体的な実施例及び比較例を挙げて本実施形態をさらに具体的に説明するが、本実施形態はその要旨を超えない限り、これらの実施例と比較例によって何ら限定されるものではない。本実施例中、特に断りがない限り、「部」及び「%」は質量基準に基づくものである。
 後述する実施例及び比較例における物性及び評価は、以下に示す方法により測定及び評価した。
[物性1]水酸基価
 水酸基価は、以下の方法で測定した。
 まず、メスフラスコを用い、無水酢酸12.5gにピリジンを加えて50mLとし、アセチル化試薬を調製した。次いで、100mLのナスフラスコに、サンプルを2.5~5.0g精秤した。次いで、アセチル化試薬5mLとトルエン10mLとをホールピペットで添加後、冷却管を取り付けて、100℃で1時間撹拌加熱した。次いで、蒸留水2.5mLをホールピペットで添加後、さらに10分加熱撹拌した。2~3分冷却後、エタノールを12.5mL添加した。次いで、指示薬としてフェノールフタレインを2~3滴入れ、0.5mol/Lのエタノール性水酸化カリウムで滴定した。次いで、アセチル化試薬5mL、トルエン10mL、及び、蒸留水2.5mLを100mLのナスフラスコに入れ、10分間加熱撹拌した後、同様に滴定を行った(空試験)。この結果をもとに、下記式(i)で水酸基価を計算した。
 水酸基価(mg-KOH/g)={(F-E)×28.05×f}/G   ・・・(i)
 なお、式(i)中、Eはサンプルの滴定量(mL)を表し、Fは空試験の滴定量(mL)を表し、Gはサンプル重量(g)を表し、fは滴定液のファクターを表す。
[物性2]数平均分子量
 数平均分子量は、[物性1]で求められた水酸基価から、下記式(ii)を用いて計算した。
 数平均分子量=2/(H×10-3/56.11)   ・・・(ii)
 なお、式(ii)中、Hは水酸基価(mg-KOH/g)を表す。
[物性3]有機溶剤の溶解度パラメーター(SP値)
 有機溶剤の溶解度パラメーター(SP値)は、参考文献2(上田伸一ら、「添加剤の溶解性パラメータに関する考察」、塗料の研究、No.152、第41頁~第46頁、2010年。)に準じて測定した。
[物性4]有機溶剤の蒸気圧
 有機溶剤の蒸気圧は、国際化学物質安全性カード(ICSC)のデータを参照した。また、国際化学物質安全性カード(ICSC)に記載のない物質に関しては、化学物質の環境リスク評価(環境省)のデータを参照した。蒸気圧データの記載のない有機溶剤に関しては、JIS K 2258-2に準じて測定した。
[評価1]低温透明性
1.塗膜の製造
 まず、ガラス板(JIS R3202、2mm×75mm×100mm)の両端に再剥離性の紙製粘着テープをスペーサーとして必要枚数貼り付けた。次いで、各塗料組成物を板の上部に滴下し、乾燥膜厚が30~40μmになるように、ガラス棒(直径8mm)を用いて塗工し、塗膜を得た。
2.低温透明性の評価
 得られた塗膜を23℃で50%RHの雰囲気下に設置した小型環境試験器(ESPEC SU-241)を用いて、5℃で1週間乾燥させ、ヘーズメーター(スガ試験機社製、HMG-2DP)によりヘーズ値を測定した。次いで、ヘーズ値から、以下の評価基準に基づいて、低温透明性を評価した。(評価基準)
 ◎:ヘーズ値が0.3以下であるもの
 ○:ヘーズ値が0.3より大きく0.5以下であるもの
 ×:ヘーズ値が0.5より大きいもの、又は、評価不可であるもの
[評価2]耐擦り傷性
 [評価1]の低温透明性にて評価した塗膜を用いて、RUBBING TESTER(太平理化工業株式会社製)に、真鍮ブラシ(スタンダード型、3行、アズワン製)を設置し、745g加重で20往復させて擦り傷を付けた。擦り傷を付けた直後の光沢(X1)を、変角光沢計(UGV-6P、スガ試験機株式会社製)を受光角60度、入射角60度に設定して測定した。
 耐擦り傷性試験前の同じ箇所の初期光沢をX0とし、光沢保持率を下記式(iii)で計算した。
 光沢保持率(%)=(X1/X0)×100   ・・・(iii)
 次いで、得られた光沢保持率から、以下の評価基準に基づいて、耐擦り傷性を評価した。なお、透明性(室温)の評価で塗膜が形成できていない場合や、ヘーズの値が1.0以上の塗膜は、再現性のある評価が困難であることから評価不可とした。(評価基準)
 ◎:光沢保持率が95%以上であるもの
 ○:光沢保持率が90%以上95%未満であるもの
 ×:光沢保持率が90%未満であるもの、又は、評価不可であるもの
[評価3]密着性
1.塗膜の製造
 ポリメチルメタクリレート板(PMMA板、三菱レーヨン社製、「アクリライト」(商品名))の両端に再剥離性の紙製粘着テープをスペーサーとして必要枚数貼り付けた。次いで、各塗料組成物を板の上部に滴下し、乾燥膜厚が30~40μmになるように、ガラス棒(直径8mm)を用いて塗工した。次いで、23℃で50%RHの雰囲気下で5分間養生後に60℃で30分間焼付け乾燥を行った。次いで、23℃で50%RHの雰囲気下で1週間養生させて、塗膜を形成させた。
2.密着性の評価
 密着性の評価は、JIS K5600-5-6:1999のクロスカット法に準じて、カッターナイフを用いて、1mm×1mmの大きさのマスが100マスとなるように塗膜に切り込みを入れた。そして、切り込みが入れられた塗膜表面にセロハンテープを貼り付け、それを引きはがし、残ったマスの数を測定した。測定されたマスの数から、以下の評価基準に基づいて、密着性を評価した。(評価基準)
 ◎:マスの数が90以上であるもの
 ○:マスの数が80以上90未満であるもの
 ×:マスの数が80未満であるもの、及び、評価不可のもの
[評価4-1]耐擦り傷性
 [評価1]の低温透明性にて評価した塗膜を用いて塗膜を用いて、RUBBING TESTER(太平理化工業株式会社製)に、真鍮ブラシ(スタンダード型、3行、アズワン製)を設置し、745g加重で20往復させて擦り傷を付けた。擦り傷を付けた直後の光沢(X1)を、変角光沢計(UGV-6P、スガ試験機株式会社製)を受光角60度、入射角60度に設定して測定した。
耐擦り傷性試験前の同じ箇所の初期光沢をX0とし、光沢保持率1を下記式(iii)で計算した。
 光沢保持率1(%)=(X1/X0)×100   ・・・(iii)
次いで、得られた光沢保持率1から、以下の評価基準に基づいて、耐擦り傷性を評価した。なお、透明性(室温)の評価で塗膜が形成できていない場合や、ヘーズの値が1.0以上の塗膜は、再現性のある評価が困難であることから評価不可とした。
(評価基準)
 ◎:光沢保持率が95%以上であるもの
 ○:光沢保持率が85%以上95%未満であるもの
 △:光沢保持率が75%以上85%未満であるもの
 ×:光沢保持率が75%未満であるもの、又は、評価不可であるもの
[評価4-2]傷回復性
 [評価4-1]の耐擦り傷性にて評価した塗膜を、23℃で50%RHの雰囲気下で1日間静置した。次いで、耐擦り傷性試験で傷のついた部分の光沢(X2)を測定した。次いで、光沢保持率2を下記式(iv)で計算した。
 光沢保持率2(%)=(X2/X0)×100   ・・・(iv)
 次いで、得られた光沢保持率2から、以下の評価基準に基づいて、耐擦り傷性を評価した。なお、透明性(室温)の評価で塗膜が形成できていない場合や、ヘーズの値が1.0以上の塗膜は、再現性のある評価が困難であることから評価不可とした。(評価基準)
 ◎:光沢保持率が95%以上であるもの
 ○:光沢保持率が90%以上95%未満であるもの
 △:光沢保持率が75%以上90%未満であるもの
 ×:光沢保持率が75%未満であるもの、又は、評価不可であるもの
[評価5]耐熱性
1.塗膜の製造
 ポリプロピレン板(タキロン社製、「P301A」(商品名)、2mm×150mm×150mm)上に、の両端に再剥離性の紙製粘着テープをスペーサーとして必要枚数貼り付けた。次いで、各塗料組成物を板の上部に滴下し、乾燥膜厚が30~40μmになるように、ガラス棒(直径8mm)を用いて塗工した。次いで、23℃で50%RHの雰囲気下で15分間養生した。次いで、60℃で60分間焼付け乾燥して、塗膜を得た。23℃、50%RHの雰囲気下で15分間養生後に60℃で60分間焼付け乾燥を行った。次いで、水平台の上で23℃、50%RHの雰囲気下で、1週間静置し、塗膜を形成させた。
2.耐熱性の評価
 ポリプロピレン板から塗膜を幅10mm×長さ50mmの大きさに切りだして、耐熱性用の塗膜サンプルとした。塗膜サンプルを120℃のオーブン内に2日間静置させた。次いで、引張試験による塗膜サンプルの破断応力を測定した。引張試験の雰囲気温度は23℃、50%RHに設定し、チャック間は20mm、引張速度は20mm/minとした。120℃のオーブンに入れる前の塗膜サンプルの破断応力を引張試験により測定しY0とした。次いで、120℃のオーブンに2日間静置した後の塗膜サンプルの破断応力を測定しY1とした。次いで、破断応力保持率を下記式(v)で計算した。
 破断応力保持率(%)=(Y1/Y0)×100・・・(v)
 次いで、得られた破断応力保持率から、以下の評価基準に基づいて、耐熱性を評価した。(評価基準)
 ◎:破断応力保持率が95%以上であるもの
 ○:破断応力保持率が90%以上95%未満であるもの
 △:破断応力保持率が75%以上90%未満であるもの
 ×:破断応力保持率が75%未満であるもの、又は、評価不可であるもの
[合成例1-1]ポリカーボネートジオール1-a-1の製造
 規則充填物を充填した精留塔と攪拌装置とを備えた5Lのガラス製フラスコに1,5-ペンタンジオール1191g、1,6-ヘキサンジオール1300g、及び、エチレンカーボネート1976gを反応器に仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.2236g入れた。反応器を180℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度165℃で12時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を180℃に上げた後、圧力を徐々に下げでさらに2時間反応を行い、常温で液体であるポリカーボネートジオール1-a-1(2278g)を得た。得られたポリカーボネートジオール1-a-1の水酸基価は、109.8mgKOH/gであった。数平均分子量は、1022であった。
[合成例1-2]ポリカーボネートジオール1-a-2の製造
 規則充填物を充填した精留塔と攪拌装置とを備えた1Lのガラス製フラスコに1,5-ペンタンジオール230g、1,6-ヘキサンジオール250g、及び、エチレンカーボネート400gを反応器に仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.0468g入れた。反応器を180℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度165℃で12時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を180℃に上げた後、圧力を徐々に下げでさらに4時間反応を行い、常温で液体であるポリカーボネートジオール1-a-2(437g)を得た。得られたポリカーボネートジオール1-a-2の水酸基価は、55.6mgKOH/gであった。数平均分子量は、2018であった。
[合成例1-3]ポリカーボネートジオール組成物1-A-1の製造
 攪拌装置を備えた1Lのガラス製フラスコに、合成例1-1で得られたポリカーボネートジオール1-a-1を90質量部(360g)、及び、ポリオキシエチレンジオール(和光純薬工業株式会社製、「ポリエチレングリコール1000」(商品名)、数平均分子量:約1000)を10質量部(40g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持した。次いで、85%リン酸をチタンテトラ-n-ブトキシドに対して、質量比で2.0倍量になるよう加えて、反応器内温度として115℃で3時間加熱処理することによりポリカーボネートジオール組成物1-A-1を得た。なお、エステル交換反応については、反応溶液について経時的にゲルパーミエーションクロマトグラフィー(以下、「GPC」と略記する場合がある)測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-1の水酸基価は、108.7mgKOH/gであった。数平均分子量は、1032であった。
[合成例1-4]ポリカーボネートジオール組成物1-A-2の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例1-1で得られたポリカーボネートジオール1-a-1を90質量部(360g)、及び、ポリオキシテトラメチレンジオール(三菱ケミカル株式会社製、「PTMG1000」(商品名)、数平均分子量:約1000)を10質量部(40g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物1-A-2を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-2の水酸基価は、109.1mgKOH/gであった。数平均分子量は、1028であった。
[合成例1-5]ポリカーボネートジオール組成物1-A-3の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例1-1で得られたポリカーボネートジオール1-a-1を90質量部(360g)、及び、テトラハイドロフランとネオペンチルグリコールの共重合ポリマー(旭化成株式会社製、「PTXG1830」(商品名)、数平均分子量:約1830)を10質量部(40g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物1-A-3を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-3の水酸基価は、104.3mgKOH/gであった。数平均分子量は、1075であった。
[合成例1-6]ポリカーボネートジオール組成物1-A-4の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例1-1で得られたポリカーボネートジオール1-a-1を97質量部(291g)、及び、ポリオキシエチレンジオール(和光純薬工業株式会社製、「ポリエチレングリコール1000」(商品名)、数平均分子量:約1000)を3質量部(9g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物1-A-4を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-4の水酸基価は、108.5mgKOH/gであった。数平均分子量は、1034であった。
[合成例1-7]ポリカーボネートジオール組成物1-A-5の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例1-1で得られたポリカーボネートジオール1-a-1を95質量部(285g)、及び、ポリオキシエチレンジオール(和光純薬工業株式会社製、「ポリエチレングリコール1000」(商品名)、数平均分子量:約1000)を5質量部(15g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物1-A-5を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-5の水酸基価は、109.2mgKOH/gであった。数平均分子量は、1027であった。
[合成例1-8]ポリカーボネートジオール組成物1-A-6の製造
 攪拌装置を備えた1Lのガラス製フラスコに、合成例1-2で得られたポリカーボネートジオール1-a-2を80質量部(320g)及び、ポリオキシエチレンジオール(和光純薬工業株式会社製、「ポリエチレングリコール1000」(商品名)、数平均分子量:約1000)を20質量部(80g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物1-A-6を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-6の水酸基価は、66.9mgKOH/gであった。数平均分子量は、1677であった。
[合成例1-9]ポリカーボネートジオール組成物1-A-7の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例1-1で得られたポリカーボネートジオール1-a-1を70質量部(280g)、及び、ポリオキシテトラメチレンジオール(三菱ケミカル株式会社製、「PTMG1000」(商品名)、数平均分子量:約1000)を30質量部(120g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物1-A-7を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-7の水酸基価は、110.3mgKOH/gであった。数平均分子量は、1017であった。
[合成例1-10]ポリカーボネートジオール組成物1-A-8の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例1-1で得られたポリカーボネートジオール1-a-1を70質量部(280g)、及び、テトラハイドロフランとネオペンチルグリコールの共重合ポリマー(旭化成株式会社製、「PTXG1830」(商品名)、数平均分子量:約1830)を30質量部(120g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物1-A-8を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-8の水酸基価は、94.4mgKOH/gであった。数平均分子量は、1188であった。
[合成例1-11]ポリカーボネートジオール1-a-3の製造
 規則充填物を充填した精留塔と攪拌装置とを備えた1Lのガラス製フラスコに1,6-ヘキサンジオール299g、1,4-シクロヘキサンジメタノール365g、及び、炭酸ジメチル450gを反応器に仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.0582g入れた。反応器を110~165℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度90~160℃で27時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を180℃に上げた後、圧力を徐々に下げでさらに8時間反応を行い、常温で白色固体であるポリカーボネートジオール1-a-3(508g)を得た。得られたポリカーボネートジオール1-a-3の水酸基価は、112.0mgKOH/gであった。数平均分子量は、1002であった。
[合成例1-12]ポリカーボネートジオール組成物1-A-9の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例1-11で得られたポリカーボネートジオール1-a-3を90質量部(270g)、及び、ポリオキシエチレンジオール(和光純薬工業株式会社製、「ポリエチレングリコール1000」(商品名)、数平均分子量:約1000)を10質量部(30g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物1-A-9を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-9の水酸基価は、110.1mgKOH/gであった。数平均分子量は、1019であった。
[合成例1-13]ポリカーボネートジオール1-a-4の製造
 規則充填物を充填した精留塔と攪拌装置とを備えた3Lのガラス製フラスコに1,10-デカンジオール961g、及び、エチレンカーボネート440gを反応器に仕込んだ後、触媒として酢酸鉛(II)三水和物を0,010g入れた。反応器を140℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度165℃で12時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を200℃に上げた後、圧力を徐々に下げでさらに4時間反応を行い、常温で白色固体であるポリカーボネートジオール1-a-4(925g)を得た。得られたポリカーボネートジオール1-a-4の水酸基価は、56.2mgKOH/gであった。数平均分子量は、1997であった。
[合成例1-14]ポリカーボネートジオール組成物1-A-10の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例1-13で得られたポリカーボネートジオール1-a-4を90質量部(270g)、及び、ポリオキシテトラメチレンジオール(BASF製「PolyTHF2000」(商品名)、数平均分子量:約2000)を10質量部(30g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物1-A-10を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物1-A-10の水酸基価は、56.1mgKOH/gであった。数平均分子量は、2000であった。
[実施例1-1]塗料組成物1-1の製造
 主剤として合成例1-3で得られたポリカーボネートジオール組成物1-A-1を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.08g、及び、溶剤として酢酸エチルを20.27g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TPA-100」(商品名)(ポリイソシアネート;NCO含有量23.1%)を3.52g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.14g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-1を得た。得られた塗料組成物1-1を用いて、上記の方法に基づき、評価を行った。結果を下記表1-1に示す。
[実施例1-2]塗料組成物1-2の製造
 溶剤として、酢酸エチルの代わりに、酢酸ブチルを用いた以外は、実施例1-1と同様の方法を用いて、塗料組成物1-2を得た。得られた塗料組成物1-2を用いて、上記の方法に基づき、評価を行った。結果を下記表1-1に示す。
[実施例1-3]塗料組成物1-3の製造
 溶剤として、酢酸エチルの代わりに、酢酸イソブチルを用いた以外は、実施例1-1と同様の方法を用いて、塗料組成物1-3を得た。得られた塗料組成物1-3を用いて、上記の方法に基づき、評価を行った。結果を下記表1-1に示す。
[実施例1-4]塗料組成物1-4の製造
 溶剤として、酢酸エチルの代わりに、メチルエチルケトンを用いた以外は、実施例1-1と同様の方法を用いて、塗料組成物1-4を得た。得られた塗料組成物1-4を用いて、上記の方法に基づき、評価を行った。結果を下記表1-1に示す。
[実施例1-5]塗料組成物1-5の製造
 溶剤として、酢酸エチルの代わりに、メチルイソブチルケトンを用いた以外は、実施例1-1と同様の方法を用いて、塗料組成物1-5を得た。得られた塗料組成物1-5を用いて、上記の方法に基づき、評価を行った。結果を下記表1-1に示す。
[実施例1-6]塗料組成物1-6の製造
 溶剤として、酢酸エチルの代わりに、トルエンを用いた以外は、実施例1-1と同様の方法を用いて、塗料組成物1-6を得た。得られた塗料組成物1-6を用いて、上記の方法に基づき、評価を行った。結果を下記表1-1に示す。
[実施例1-7]塗料組成物1-7の製造
 溶剤として、酢酸エチルの代わりに、キシレンを用いた以外は、実施例1-1と同様の方法を用いて、塗料組成物1-7を得た。得られた塗料組成物1-7を用いて、上記の方法に基づき、評価を行った。結果を下記表1-1に示す。
[実施例1-8]塗料組成物1-8の製造
 溶剤として、酢酸エチルの代わりに、アセトニトリルを用いた以外は、実施例1-1と同様の方法を用いて、塗料組成物1-8を得た。得られた塗料組成物1-8を用いて、上記の方法に基づき、評価を行った。結果を下記表1-2に示す。
[実施例1-9]塗料組成物1-9の製造
 主剤として合成例1-7で得られたポリカーボネートジオール組成物1-A-5を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.08g、及び、溶剤として酢酸エチルを20.30g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TPA-100」(商品名)(ポリイソシアネート;NCO含有量23.1%)を3.54g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.14g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-9を得た。得られた塗料組成物1-9を用いて、上記の方法に基づき、評価を行った。結果を下記表1-2に示す。
[実施例1-10]塗料組成物1-10の製造
 主剤として合成例1-8で得られたポリカーボネートジオール組成物1-A-6を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.07g、及び、溶剤として酢酸エチルを18.24g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TPA-100」(商品名)(ポリイソシアネート;NCO含有量23.1%)を2.17g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.12g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-10を得た。得られた塗料組成物1-10を用いて、上記の方法に基づき、評価を行った。結果を下記表1-2に示す。
[実施例1-11]塗料組成物1-11の製造
 主剤として合成例1-4で得られたポリカーボネートジオール組成物1-A-2を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.08g、及び、溶剤として酢酸エチルを20.29g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TPA-100」(商品名)(ポリイソシアネート;NCO含有量23.1%)を3.54g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.14g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-11を得た。得られた塗料組成物1-11を用いて、上記の方法に基づき、評価を行った。結果を下記表1-2に示す。
[実施例1-12]塗料組成物1-12の製造
 主剤として合成例1-5で得られたポリカーボネートジオール組成物1-A-3を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.08g、及び、溶剤として酢酸エチルを20.06g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TPA-100」(商品名)(ポリイソシアネート;NCO含有量23.1%)を3.38g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.13g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-12を得た。得られた塗料組成物1-12を用いて、上記の方法に基づき、評価を行った。結果を下記表1-2に示す。
[実施例1-13]塗料組成物1-13の製造
 主剤として合成例1-9で得られたポリカーボネートジオール組成物1-A-7を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.08g、及び、溶剤として酢酸エチルを20.35g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TPA-100」(商品名)(ポリイソシアネート;NCO含有量23.1%)を3.57g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.14g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-13を得た。得られた塗料組成物1-13を用いて、上記の方法に基づき、評価を行った。結果を下記表1-2に示す。
[実施例1-14]塗料組成物1-14の製造
 主剤として合成例1-10で得られたポリカーボネートジオール組成物1-A-8を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.08g、及び、溶剤として酢酸エチルを19.58g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TPA-100」(商品名)(ポリイソシアネート;NCO含有量23.1%)を3.06g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.13g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-14を得た。得られた塗料組成物1-14を用いて、上記の方法に基づき、評価を行った。結果を下記表1-2に示す。
[実施例1-15]塗料組成物1-15の製造
 主剤として合成例1-12で得られたポリカーボネートジオール組成物1-A-9を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.09g、及び、溶剤として酢酸エチルを21.25g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.10となるように、硬化剤として旭化成株式会社製「TKA-100」(商品名)(ポリイソシアネート;NCO含有量21.7%)を4.18g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.14g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-15を得た。得られた塗料組成物1-15を用いて、上記の方法に基づき、評価を行った。結果を下記表1-3に示す。
[実施例1-16]塗料組成物1-16の製造
 主剤として合成例1-14で得られたポリカーボネートジオール組成物1-A-10を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.07g、及び、溶剤として酢酸エチルを18.18g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.10となるように、硬化剤として旭化成株式会社製「TKA-100」(商品名)(ポリイソシアネート;NCO含有量21.7%)を2.13g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.12g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-16を得た。得られた塗料組成物1-16を用いて、上記の方法に基づき、評価を行った。結果を下記表1-3に示す。
[実施例1-17]塗料組成物1-17の製造
 Allnex社製「Setalux1152」(商品名)(アクリルポリオール;水酸基価138.6mgKOH/g樹脂、固形分61質量%)の樹脂成分に対する合成例1-3で得られたポリカーボネートジオール組成物1-A-1の樹脂成分の質量比が45/55となるように、主剤として「Setalux1152」(商品名)を10g及び合成例1-3で得られたポリカーボネート組成物1-A-1を7.46g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.12g、及び、溶剤として酢酸ブチルを19.60g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TKA-100」(商品名)(ポリイソシアネート;NCO含有量21.7%)を5.71g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.19g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-17を得た。得られた塗料組成物1-17を用いて、上記の方法に基づき、評価を行った。結果を下記表1-3に示す。
[実施例1-18]塗料組成物1-18の製造
 Allnex社製「Setalux1152」(商品名)(アクリルポリオール;水酸基価138.6mgKOH/g樹脂、固形分61質量%)の樹脂成分に対する合成例1-3で得られたポリカーボネートジオール組成物1-A-1の樹脂成分の質量比が30/70となるように、主剤として「Setalux1152」(商品名)を5g及び合成例1-3で得られたポリカーボネート組成物1-A-1を7.12g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.09g、及び、溶剤として酢酸エチルを15.48g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TKA-100」(商品名)(ポリイソシアネート;NCO含有量21.7%)を4.13g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.14g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-18を得た。得られた塗料組成物1-18を用いて、上記の方法に基づき、評価を行った。結果を下記表1-3に示す。
[実施例1-19]塗料組成物1-19の製造
 Allnex社製「Setalux1152」(商品名)(アクリルポリオール;水酸基価138.6mgKOH/g樹脂、固形分61質量%)の樹脂成分に対する合成例1-7で得られたポリカーボネートジオール組成物1-A-5の樹脂成分の質量比が45/55となるように、主剤として「Setalux1152」(商品名)を10g及び合成例1-7で得られたポリカーボネート組成物1-A-5を7.46g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.12g、及び、溶剤として酢酸ブチルを15.39g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TKA-100」(商品名)(ポリイソシアネート;NCO含有量21.7%)を5.73g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.19g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-19を得た。得られた塗料組成物1-19を用いて、上記の方法に基づき、評価を行った。結果を下記表1-3に示す。
[実施例1-20]塗料組成物1-20の製造
 Allnex社製「Setalux1152」(商品名)(アクリルポリオール;水酸基価138.6mgKOH/g樹脂、固形分61質量%)の樹脂成分に対する合成例1-8で得られたポリカーボネートジオール組成物1-A-6の樹脂成分の質量比が45/55となるように、主剤として「Setalux1152」(商品名)を10g及び合成例1-8で得られたポリカーボネート組成物1-A-6を7.46g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.12g、及び、溶剤として酢酸ブチルを14.30g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TKA-100」(商品名)(ポリイソシアネート;NCO含有量21.7%)を4.64g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.19g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-20を得た。得られた塗料組成物1-20を用いて、上記の方法に基づき、評価を行った。結果を下記表1-3に示す。
[実施例1-21]塗料組成物1-21の製造
 Allnex社製「Setalux1152」(商品名)(アクリルポリオール;水酸基価138.6mgKOH/g樹脂、固形分61質量%)の樹脂成分に対する合成例1-7で得られたポリカーボネートジオール組成物1-A-5の樹脂成分の質量比が30/70となるように、主剤として「Setalux1152」(商品名)を5g及び合成例1-7で得られたポリカーボネート組成物1-A-5を7.12g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.09g、及び、溶剤として酢酸エチルを12.36g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TKA-100」(商品名)(ポリイソシアネート;NCO含有量21.7%)を4.14g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.14g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-21を得た。得られた塗料組成物1-21を用いて、上記の方法に基づき、評価を行った。結果を下記表1-3に示す。
[実施例1-22]塗料組成物1-22の製造
 Allnex社製「Setalux1152」(商品名)(アクリルポリオール;水酸基価138.6mgKOH/g樹脂、固形分61質量%)の樹脂成分に対する合成例1-8で得られたポリカーボネートジオール組成物1-A-6の樹脂成分の質量比が30/70となるように、主剤として「Setalux1152」(商品名)を5g及び合成例1-8で得られたポリカーボネート組成物1-A-6を7.12g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.09g、及び、溶剤として酢酸エチルを11.32g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TKA-100」(商品名)(ポリイソシアネート;NCO含有量21.7%)を3.10g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.14g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-22を得た。得られた塗料組成物1-22を用いて、上記の方法に基づき、評価を行った。結果を下記表1-3に示す。
[比較例1-1]塗料組成物1-23の製造
 溶剤として、酢酸エチルの代わりに、ジイソブチルケトンを用いた以外は、実施例1-1と同様の方法を用いて、塗料組成物1-19を得た。得られた塗料組成物1-19を用いて、上記の方法に基づき、評価を行った。結果を下記表1-4に示す。
[比較例1-2]塗料組成物1-24の製造
 主剤として合成例1-3で得られたポリカーボネートジオール組成物1-A-1を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.08g、及び、溶剤としてヘキサンを20.27g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。しかしながら、合成例1-3で得られたポリカーボネートジオール組成物1-A-1がヘキサンに溶解せず、塗料組成物を調整するに至らなかった。
[比較例1-3]塗料組成物1-25の製造
 主剤として合成例1-4で得られたポリカーボネートジオール組成物1-A-2を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.08g、及び、溶剤としてヘキサンを20.27g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。しかしながら、合成例1-4で得られたポリカーボネートジオール組成物1-A-2がヘキサンに溶解せず、塗料組成物を調整するに至らなかった。
[比較例1-4]塗料組成物1-26の製造
 主剤として合成例1-5で得られたポリカーボネートジオール組成物1-A-3を10g、レベリング剤としてBYK社製「BYK-331」を0.08g(商品名)、及び、溶剤としてヘキサンを20.27g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。しかしながら、合成例1-5で得られたポリカーボネートジオール組成物1-A-3がヘキサンに溶解せず、塗料組成物を調整するに至らなかった。
[比較例1-5]塗料組成物1-27の製造
 主剤として合成例1-6で得られたポリカーボネートジオール組成物1-A-4を10g、レベリング剤としてBYK社製「BYK-331」(商品名)を0.08g、及び、溶剤として酢酸エチルを20.26g、それぞれ量り取って、撹拌機を用いて600rpmで5分間撹拌を行った。これに、NCO/OHのモル比が1.00となるように、硬化剤として旭化成株式会社製「TPA-100」(商品名)(ポリイソシアネート;NCO含有量23.1%)を3.52g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.14g、それぞれ量り取って添加し、撹拌機を用いて600rpmで10分間撹拌を行って塗料組成物1-23を得た。得られた塗料組成物1-23を用いて、上記の方法に基づき、評価を行った。結果を下記表1-4に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表1-1~1-3から、(1-C)成分として、SP値が8.3以上である有機溶剤を含む塗料組成物1-1~1-22(実施例1-1~1-22)は、SP値が8.0未満である有機溶剤を含む塗料組成物1-23(比較例1-1)よりも、得られた塗膜の低温透明性及び耐擦り傷性が良好であった。
 また、SP値が7.3である有機溶剤を含む比較例1-2~1-4は、塗料組成物を製造することができなかった。
 また、(1-A1)成分として、構造(I)の含有量が5質量%以上30質量%以下であり、ポリカーボネート構造の含有量が70質量%以上90質量%以下であるポリカーボネートジオール組成物を含む塗料組成物1-1~1-22(実施例1-1~1-22)は、構造(I)の含有量が3質量%であり、ポリカーボネート構造の含有量が97質量%であるポリカーボネートジオール組成物を含む塗料組成物1-27(比較例1-5)よりも耐擦り傷性及び密着性が良好であった。
 また、(1-A1)成分/(1-A2)成分の質量比が70/30以上であるポリカーボネートジオール組成物を含む塗料組成物1-1~1-16、1-18及び1-21~1-22(実施例1-1~1-16、1-18及び1-21~1-22)は、(1-A1)成分/(1-A2)成分の質量比が55/45であるポリカーボネートジオール組成物を含む塗料組成物1-17及び1-19~1-20(実施例1-17及び1-19~1-20)よりも、密着性がより良好であった。
 また、(1-A1)成分/(1-A2)成分の質量比が70/30以上であり、且つ、(1-C)成分として、20℃での蒸気圧が1.0kPa以上である有機溶剤を含む塗料組成物1-1~1-6、1-8~1-16、1-18及び1-21~1-22(実施例1-1~1-6、1-8~1-16、1-18及び1-21~1-22)は、(1-A1)成分/(1-A2)成分の質量比が70/30以上であり、且つ、20℃での蒸気圧が0.7~0.9kPaである有機溶剤を含む塗料組成物1-7(実施例1-7)及び(1-A1)成分/(1-A2)成分の質量比が70/30以未満であり、且つ、20℃での蒸気圧が1.0kPa以上である有機溶剤を含む塗料組成物1-17及び1-19~1-20(実施例1-17及び1-19~1-20)よりも、低温透明性がより良好であった。
 以上のことから、本実施形態の塗料組成物から形成された塗膜は、低温透明性、耐擦り傷性及び密着性に優れていることが確認された。
[合成例2-1]ポリカーボネートジオール2-a-1の製造
 規則充填物を充填した精留塔と攪拌装置とを備えた5Lのガラス製フラスコに1,5-ペンタンジオール1191g、1,6-ヘキサンジオール1300g、及び、エチレンカーボネート1976gを反応器に仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.2236g入れた。反応器を180℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度165℃で12時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を180℃に上げた後、圧力を徐々に下げでさらに2時間反応を行い、常温で液体であるポリカーボネートジオール2-a-1(2278g)を得た。得られたポリカーボネートジオール2-a-1の水酸基価は、109.8mgKOH/gであった。数平均分子量は、1022であった。
[合成例2-2]ポリカーボネートジオール2-a-2の製造
 規則充填物を充填した精留塔と攪拌装置とを備えた1Lのガラス製フラスコに1,5-ペンタンジオール230g、1,6-ヘキサンジオール250g、及び、エチレンカーボネート400gを反応器に仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.0468g入れた。反応器を180℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度165℃で12時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を180℃に上げた後、圧力を徐々に下げでさらに3時間反応を行い、常温で液体であるポリカーボネートジオール2-a-2(466g)を得た。得られたポリカーボネートジオール2-a-2の水酸基価は、55.2mgKOH/gであった。数平均分子量は、2033であった。
[合成例2-3]ポリカーボネートジオール組成物2-A-1の製造
 攪拌装置を備えた1Lのガラス製フラスコに、合成例2-1で得られたポリカーボネートジオール2-a-1を90質量部(360g)、及び、ポリオキシエチレンジオール(和光純薬工業株式会社製、「ポリエチレングリコール1000」(商品名)、数平均分子量:約1000)を10質量部(40g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持した。次いで、85%リン酸をチタンテトラ-n-ブトキシドに対して、質量比で2.0倍量になるよう加えて、反応器内温度として115℃で3時間加熱処理することによりポリカーボネートジオール組成物2-A-1を得た。なお、エステル交換反応については、反応溶液について経時的にゲルパーミエーションクロマトグラフィー(以下、「GPC」と略記する場合がある)測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-1の水酸基価は、108.7mgKOH/gであった。数平均分子量は、1032であった。
[合成例2-4]ポリカーボネートジオール2-a-3の製造
 規則充填物を充填した精留塔と攪拌装置とを備えた3Lのガラス製フラスコに2-メチル-1,3-プロパンジオール550g、1,4-ブタンジオール423g、及び、エチレンカーボネート952gを反応器に仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.1925g入れた。反応器を170℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度155℃で25時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を170℃に上げた後、圧力を徐々に下げでさらに5時間反応を行い、常温で液体であるポリカーボネートジオール2-a-3(577g)を得た。
 得られたポリカーボネートジオール2-a-3の水酸基価は、53.0mgKOH/gであった。数平均分子量は、2117であった。
[合成例2-5]ポリカーボネートジオール組成物2-A-2の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例2-1で得られたポリカーボネートジオール2-a-1を90質量部(360g)、及び、ポリオキシテトラメチレンジオール(三菱ケミカル株式会社製、「PTMG1000」(商品名)、数平均分子量:約1000)を10質量部(40g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-2を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-2の水酸基価は、109.1mgKOH/gであった。数平均分子量は、1028であった。
[合成例2-6]ポリカーボネートジオール組成物2-A-3の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例2-1で得られたポリカーボネートジオール2-a-1を70質量部(280g)、及び、ポリオキシテトラメチレンジオール(三菱ケミカル株式会社製、「PTMG1000」(商品名)、数平均分子量:約1000)を30質量部(120g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-3を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-3の水酸基価は、110.3mgKOH/gであった。数平均分子量は、1017であった。
[合成例2-7]ポリカーボネートジオール組成物2-A-4の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例2-1で得られたポリカーボネートジオール2-a-1を90質量部(360g)、及び、テトラハイドロフランとネオペンチルグリコールの共重合ポリマー(旭化成株式会社製、「PTXG1830」(商品名)、数平均分子量:約1830)を10質量部(40g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-4を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-4の水酸基価は、104.3mgKOH/gであった。数平均分子量は、1075であった。
[合成例2-8]ポリカーボネートジオール組成物2-A-5の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例2-1で得られたポリカーボネートジオール2-a-1を70質量部(280g)、及び、テトラハイドロフランとネオペンチルグリコールの共重合ポリマー(旭化成株式会社製、「PTXG1830」(商品名)、数平均分子量:約1830)を30質量部(120g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-5を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-5の水酸基価は、94.4mgKOH/gであった。数平均分子量は、1188であった。
[合成例2-9]ポリカーボネートジオール組成物2-A-6の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例2-2で得られたポリカーボネートジオール2-a-2を79質量部(237g)、及び、ポリオキシテトラメチレンジオール(BASF製「PolyTHF250」(商品名)、数平均分子量:約250)を21質量部(63g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-6を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-6の水酸基価は、135.0mgKOH/gであった。数平均分子量は、831であった。
[合成例2-10]ポリカーボネートジオール組成物2-A-7の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例2-1で得られたポリカーボネートジオール2-a-1を61質量部(183g)、及び、ポリオキシテトラメチレンジオール(BASF製「PolyTHF650」(商品名)、数平均分子量:約650)を39質量部(117g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-7を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-7の水酸基価は、136.4mgKOH/gであった。数平均分子量は、823であった。
[合成例2-11]ポリカーボネートジオール2-a-4の製造
 規則充填物を充填した精留塔と攪拌装置とを備えた1Lのガラス製フラスコに1,6-ヘキサンジオール299g、1,4-シクロヘキサンジメタノール365g、及び、炭酸ジメチル450gを反応器に仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.0582g入れた。反応器を110~165℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度90~160℃で27時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を180℃に上げた後、圧力を徐々に下げでさらに8時間反応を行い、常温で白色固体であるポリカーボネートジオール2-a-4(508g)を得た。得られたポリカーボネートジオール2-a-4の水酸基価は、112.0mgKOH/gであった。数平均分子量は、1002であった。
[合成例2-12]ポリカーボネートジオール組成物2-A-8の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例2-11で得られたポリカーボネートジオール2-a-4を90質量部(270g)、及び、ポリオキシエチレンジオール(和光純薬工業株式会社製、「ポリエチレングリコール1000」(商品名)、数平均分子量:約1000)を10質量部(30g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-8を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-8の水酸基価は、110.1mgKOH/gであった。数平均分子量は、1019であった。
[合成例2-13]ポリカーボネートジオール2-a-5の製造
 規則充填物を充填した精留塔と攪拌装置とを備えた3Lのガラス製フラスコに1,10-デカンジオール961g、及び、エチレンカーボネート440gを反応器に仕込んだ後、触媒として酢酸鉛(II)三水和物を0,010g入れた。反応器を140℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度165℃で12時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を200℃に上げた後、圧力を徐々に下げでさらに4時間反応を行い、常温で白色固体であるポリカーボネートジオール2-a-5(925g)を得た。得られたポリカーボネートジオール2-a-5の水酸基価は、56.2mgKOH/gであった。数平均分子量は、1997であった。
[合成例2-14]ポリカーボネートジオール組成物2-A-9の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例2-13で得られたポリカーボネートジオール2-a-5を90質量部(270g)、及び、ポリオキシテトラメチレンジオール(BASF製「PolyTHF2000」(商品名)、数平均分子量:約2000)を10質量部(30g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-9を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-9の水酸基価は、56.1mgKOH/gであった。数平均分子量は、2000であった。
[合成例2-15]ポリカーボネートジオール組成物2-A-10の製造
 攪拌装置を備えた1Lのガラス製フラスコに、合成例2-2で得られたポリカーボネートジオール2-a-2を80質量部(320g)及び、ポリオキシエチレンジオール(和光純薬工業株式会社製、「ポリエチレングリコール1000」(商品名)、数平均分子量:約1000)を20質量部(80g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-10を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-10の水酸基価は、66.7mgKOH/gであった。数平均分子量は、1682であった。
[合成例2-16]ポリカーボネートジオール組成物2-A-11の製造
 攪拌装置を備えた500mLのガラス製フラスコに、合成例2-1で得られたポリカーボネートジオール2-a-1を95質量部(285g)、及び、ポリオキシエチレンジオール(和光純薬工業株式会社製、「ポリエチレングリコール1000」(商品名)、数平均分子量:約1000)を5質量部(15g)仕込んだ。次いで、これらを撹拌しながら加熱し、反応器内温度として約145℃で6時間維持し、ポリカーボネートジオール組成物2-A-11を得た。なお、エステル交換反応については、反応溶液について経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出現を経時的に確認することで、その反応の進行等を確認した。そして、最終的に得られたポリカーボネートジオール組成物については、原料の仕込み量に基づいて、ほぼ定量的に反応が進んでおり、それに対応する構造を有していることも、GPCの経時的測定によって確認した。
 得られたポリカーボネートジオール組成物2-A-11の水酸基価は、109.2mgKOH/gであった。数平均分子量は、1027であった。
[実施例2-1]塗料組成物2-1の製造
 アクリルポリオール(Allnex製、「Setalux1152」(商品名)、水酸基価138.6mgKOH/g樹脂、固形分61質量%)の樹脂成分((2-A2)成分)に対する合成例2-3で得られたポリカーボネートジオール組成物2-A-1の樹脂成分((2-A1)成分)の質量比((2-A1)成分/(2-A2)成分の質量比)が5/95となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を12g及び合成例2-3で得られたポリカーボネート組成物2-A-1を0.39g、硬化剤としてポリイソシアネート(旭化成株式会社製、「TKA-100」(商品名)、NCO含有量21.7%)を3.64g、並びに、溶剤として酢酸ブチルを6.67g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-1を得た。得られた塗料組成物2-1を用いて、上記の方法に基づき、評価を行った。結果を下記表2-1に示す。
[実施例2-2]塗料組成物2-2の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-3で得られたポリカーボネートジオール組成物2-A-1の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15g及び合成例2-3で得られたポリカーボネート組成物2-A-1を1.02g、硬化剤として「TKA-100」(商品名)を4.76g、並びに、溶剤として酢酸ブチルを9.07g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-2を得た。得られた塗料組成物2-2を用いて、上記の方法に基づき、評価を行った。結果を下記表2-1に示す。
[実施例2-3]塗料組成物2-3の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-3で得られたポリカーボネートジオール組成物2-A-1の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が20/80となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15g及び合成例2-3で得られたポリカーボネート組成物2-A-1を2.29g、硬化剤として「TKA-100」(商品名)を5.23g、並びに、溶剤として酢酸ブチルを10.82g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-3を得た。得られた塗料組成物2-3を用いて、上記の方法に基づき、評価を行った。結果を下記表2-1に示す。
[実施例2-4]塗料組成物2-4の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-3で得られたポリカーボネートジオール組成物2-A-1の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が30/70となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を12g及び合成例2-3で得られたポリカーボネート組成物2-A-1を3.14g、硬化剤として「TKA-100」(商品名)を4.68g、並びに、溶剤として酢酸ブチルを10.45g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-4を得た。得られた塗料組成物2-4を用いて、上記の方法に基づき、評価を行った。結果を下記表2-1に示す。
[実施例2-5]塗料組成物2-5の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-3で得られたポリカーボネートジオール組成物2-A-1の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が45/55となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を10g及び合成例2-3で得られたポリカーボネート組成物2-A-1を4.99g、硬化剤として「TKA-100」(商品名)を4.79g、並びに、溶剤として酢酸ブチルを11.98g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.15g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-5を得た。得られた塗料組成物2-5を用いて、上記の方法に基づき、評価を行った。結果を下記表2-1に示す。
[実施例2-6]塗料組成物2-6の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-3で得られたポリカーボネートジオール組成物2-A-1の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が95/5となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を1.0g及び合成例2-3で得られたポリカーボネート組成物2-A-1を11.59g、硬化剤として「TKA-100」(商品名)を4.64g、溶剤として酢酸ブチルを16.45g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.16g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-6を得た。得られた塗料組成物2-6を用いて、上記の方法に基づき、評価を行った。結果を下記表2-1に示す。
[実施例2-7]塗料組成物2-7の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-5で得られたポリカーボネートジオール組成物2-A-2の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が30/70となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15.0g及び合成例2-5で得られたポリカーボネートジオール組成物2-A-2を3.92g、硬化剤として「TKA-100」(商品名)を5.85g、溶剤として酢酸ブチルを13.07g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-7を得た。得られた塗料組成物2-7を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-8]塗料組成物2-8の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-6で得られたポリカーボネートジオール組成物2-A-3の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が30/70となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15.0g及び合成例2-6で得られたポリカーボネートジオール組成物2-A-3を3.92g、硬化剤として「TKA-100」(商品名)を5.87g、溶剤として酢酸ブチルを13.09g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-8を得た。得られた塗料組成物8を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-9]塗料組成物2-9の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-7で得られたポリカーボネートジオール組成物2-A-4の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が30/70となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15.0g及び合成例2-7で得られたポリカーボネートジオール組成物2-A-4を3.92g、硬化剤として「TKA-100」(商品名)を5.79g、溶剤として酢酸ブチルを13.01g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-9を得た。得られた塗料組成物2-9を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-10]塗料組成物2-10の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-8で得られたポリカーボネートジオール組成物2-A-5の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が30/70となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15.0g及び合成例2-8で得られたポリカーボネートジオール組成物2-A-5を3.92g、硬化剤として「TKA-100」(商品名)を5.65g、溶剤として酢酸ブチルを12.87g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-10を得た。得られた塗料組成物2-10を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-11]塗料組成物2-11の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-5で得られたポリカーボネートジオール組成物2-A-2の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15.0g及び合成例2-5で得られたポリカーボネートジオール組成物2-A-2を1.02g、硬化剤として「TKA-100」(商品名)を4.76g、溶剤として酢酸ブチルを9.07g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-11を得た。得られた塗料組成物2-11を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-12]塗料組成物2-12の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-6で得られたポリカーボネートジオール組成物2-A-3の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15.0g及び合成例2-6で得られたポリカーボネートジオール組成物2-A-3を1.02g、硬化剤として「TKA-100」(商品名)を4.76g、溶剤として酢酸ブチルを9.08g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-12を得た。得られた塗料組成物2-12を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-13]塗料組成物2-13の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-7で得られたポリカーボネートジオール組成物2-A-4の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15.0g及び合成例2-7で得られたポリカーボネートジオール組成物2-A-4を1.02g、硬化剤として「TKA-100」(商品名)を4.74g、溶剤として酢酸ブチルを9.06g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-13を得た。得られた塗料組成物2-13を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-14]塗料組成物2-14の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-8で得られたポリカーボネートジオール組成物2-A-5の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152(商品名)」を15.0g及び合成例2-8で得られたポリカーボネートジオール組成物2-A-5を1.02g、硬化剤として「TKA-100」(商品名)を4.71g、溶剤として酢酸ブチルを9.02g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-14を得た。得られた塗料組成物2-14を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-15]塗料組成物2-15の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-12で得られたポリカーボネートジオール組成物2-A-8の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.10となるように、主剤として「Setalux1152」(商品名)を12g及び合成例2-14で得られたポリカーボネート組成物2-A-9を0.81g、硬化剤としてポリイソシアネート(旭化成株式会社製、「TKA-100」(商品名)、NCO含有量21.7%)を4.19g、並びに、溶剤として酢酸ブチルを7.59g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-15を得た。得られた塗料組成物2-15を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-16]塗料組成物2-16の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-14で得られたポリカーボネートジオール組成物2-A-9の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を12g及び合成例2-14で得られたポリカーボネート組成物2-A-9を0.81g、硬化剤としてポリイソシアネート(旭化成株式会社製、「TKA-100」(商品名)、NCO含有量21.7%)を3.66g、並びに、溶剤として酢酸ブチルを7.11g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-16を得た。得られた塗料組成物2-16を用いて、上記の方法に基づき、評価を行った。結果を下記表2-2に示す。
[実施例2-17]塗料組成物2-17の製造
 「Setalux1152」(商品名)の樹脂成分((2-A2)成分)に対する合成例2-15で得られたポリカーボネートジオール組成物2-A-10の樹脂成分((2-A1)成分)の質量比((2-A1)成分/(2-A2)成分の質量比)が5/95となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を12g及び合成例2-15で得られたポリカーボネート組成物2-A-10を0.39g、硬化剤としてポリイソシアネート(旭化成株式会社製、「TKA-100」(商品名)、NCO含有量21.7%)を3.59g、並びに、溶剤として酢酸ブチルを6.61g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-17を得た。得られた塗料組成物2-17を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[実施例2-18]塗料組成物2-18の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-15で得られたポリカーボネートジオール組成物2-A-10の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15g及び合成例2-15で得られたポリカーボネート組成物2-A-10を1.02g、硬化剤として「TKA-100」(商品名)を4.61g、並びに、溶剤として酢酸ブチルを8.93g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-18を得た。得られた塗料組成物2-18を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[実施例2-19]塗料組成物2-19の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-15で得られたポリカーボネートジオール組成物2-A-10の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が20/80となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15g及び合成例2-15で得られたポリカーボネート組成物2-A-10を2.29g、硬化剤として「TKA-100」(商品名)を4.90g、並びに、溶剤として酢酸ブチルを10.49g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-19を得た。得られた塗料組成物2-19を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[実施例2-20]塗料組成物2-20の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-15で得られたポリカーボネートジオール組成物2-A-10の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が30/70となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を12g及び合成例2-15で得られたポリカーボネート組成物2-A-10を3.14g、硬化剤として「TKA-100」(商品名)を4.22g、並びに、溶剤として酢酸ブチルを10.00g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-20を得た。得られた塗料組成物2-20を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[実施例2-21]塗料組成物2-21の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-15で得られたポリカーボネートジオール組成物2-A-10の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が45/55となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を10g及び合成例2-15で得られたポリカーボネート組成物2-A-10を4.07g、硬化剤として「TKA-100」(商品名)を3.95g、並びに、溶剤として酢酸ブチルを11.10g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.15g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-21を得た。得られた塗料組成物2-21を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[実施例2-22]塗料組成物2-22の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-15で得られたポリカーボネートジオール組成物2-A-10の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が95/5となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を1.0g及び合成例2-15で得られたポリカーボネート組成物2-A-10を11.59g、硬化剤として「TKA-100」(商品名)を2.96g、溶剤として酢酸ブチルを14.62g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.15g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-22を得た。得られた塗料組成物2-22を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[実施例2-23]塗料組成物2-23の製造
ポリオキシテトラメチレンジオール(三菱ケミカル株式会社製「PTMG2000」(商品名)、水酸基価56.1mgKOH/g樹脂)の樹脂成分に対する合成例2-3で得られたポリカーボネートジオール組成物2-A-1の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が80/20となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「PTMG2000」(商品名)を2.0g及び合成例2-3で得られたポリカーボネート組成物2-A-1を8.0g、硬化剤として「TKA-100」(商品名)を3.39g、並びに、溶剤として酢酸ブチルを13.39g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.13g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-23を得た。得られた塗料組成物2-23を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[実施例2-24]塗料組成物2-24の製造
 「PTMG2000」(商品名)の樹脂成分に対する合成例2-3で得られたポリカーボネートジオール組成物2-A-1の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が95/5となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「PTMG2000」(商品名)を0.50g及び合成例2-3で得られたポリカーボネート組成物2-A-1を9.50g、硬化剤として「TKA-100」(商品名)を3.66g、溶剤として酢酸ブチルを13.66g、及び、触媒としてジラウリン酸ジブチルスズ(1%酢酸ブチル希釈)を0.13g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-24を得た。得られた塗料組成物2-24を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[実施例2-25]塗料組成物2-25の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-16で得られたポリカーボネートジオール組成物2-A-11の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15g及び合成例2-16で得られたポリカーボネート組成物2-A-11を1.02g、硬化剤として「TKA-100」(商品名)を4.76g、並びに、溶剤として酢酸ブチルを9.12g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-25を得た。得られた塗料組成物2-25を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[実施例2-26]塗料組成物2-26の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-16で得られたポリカーボネートジオール組成物2-A-11の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が30/70となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を12g及び合成例2-16で得られたポリカーボネート組成物2-A-11を3.14g、硬化剤として「TKA-100」(商品名)を4.68g、並びに、溶剤として酢酸ブチル10.46g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-26を得た。得られた塗料組成物2-26を用いて、上記の方法に基づき、評価を行った。結果を下記表2-3に示す。
[比較例2-1]塗料組成物2-27の製造
 NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を10g、硬化剤として旭化成株式会社製「TKA-100」(商品名)を2.94g、並びに、溶剤として酢酸ブチルを5.12g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-27を得た。得られた塗料組成物2-27を用いて、上記の方法に基づき、評価を行った。結果を下記表2-4に示す。
[比較例2-2]塗料組成物2-28の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-1で得られたポリカーボネートジオール2-a-1の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152(商品名)」を15.0g及び合成例2-1で得られたポリカーボネートジオール2-a-1を1.02g、硬化剤として「TKA-100」(商品名)を4.76g、溶剤として酢酸ブチルを9.08g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-28を得た。得られた塗料組成物2-28を用いて、上記の方法に基づき、評価を行った。結果を下記表2-4に示す。
[比較例2-3]塗料組成物2-29の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-1で得られたポリカーボネートジオール2-a-1の質量比((2-A1)成分/(2-A2)成分の質量比)が30/70となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152(商品名)」を15.0g及び合成例2-1で得られたポリカーボネートジオール2-a-1を3.92g、硬化剤として「TKA-100」(商品名)を5.86g、溶剤として酢酸ブチルを13.08g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-29を得た。得られた塗料組成物2-29を用いて、上記の方法に基づき、評価を行った。結果を下記表2-4に示す。
[比較例2-4]塗料組成物2-30の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-3で得られたポリカーボネートジオール組成物2-A-1の質量比((2-A1)成分/(2-A2)成分の質量比)が2/98となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152(商品名)」を15.0g及び合成例2-3で得られたポリカーボネートジオール組成物2-A-1を0.19g、硬化剤として「TKA-100」(商品名)を4.45g、溶剤として酢酸ブチルを7.93g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-30を得た。得られた塗料組成物2-30を用いて、上記の方法に基づき、評価を行った。結果を下記表2-4に示す。
[比較例2-5]塗料組成物2-31の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-2で得られたポリカーボネートジオール2-a-2の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152(商品名)」を15.0g及び合成例2-2で得られたポリカーボネートジオール2-a-2を1.02g、硬化剤として「TKA-100」(商品名)を4.57g、溶剤として酢酸ブチルを8.89g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-31を得た。得られた塗料組成物2-31を用いて、上記の方法に基づき、評価を行った。結果を下記表2-4に示す。
[比較例2-6]塗料組成物2-32の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-4で得られたポリカーボネートジオール2-a-3の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152(商品名)」を15.0g及び合成例2-4で得られたポリカーボネートジオール2-a-3を1.02g、硬化剤として「TKA-100」(商品名)を4.85g、溶剤として酢酸ブチルを9.17g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-32を得た。得られた塗料組成物2-32から塗膜形成を行ったが、塗膜が白濁しており、評価を実施することが出来なかった。
[比較例2-7]塗料組成物2-33の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-9で得られたポリカーボネートジオール組成物2-A-6の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が10/90となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152(商品名)」を15.0g及び合成例2-9で得られたポリカーボネートジオール組成物2-A-6を1.02g、硬化剤として「TKA-100」(商品名)を4.85g、溶剤として酢酸ブチルを9.17g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-33を得た。得られた塗料組成物2-33を用いて、上記の方法に基づき、評価を行った。結果を下記表2-4に示す。
[比較例2-8]塗料組成物2-34の製造
 「Setalux1152」(商品名)の樹脂成分に対する合成例2-10で得られたポリカーボネートジオール組成物2-A-7の樹脂成分の質量比((2-A1)成分/(2-A2)成分の質量比)が30/70となるように、且つ、NCO/OHのモル比が1.00となるように、主剤として「Setalux1152」(商品名)を15.0g及び合成例2-8で得られたポリカーボネートジオール組成物2-A-5を3.92g、硬化剤として「TKA-100」(商品名)を5.65g、溶剤として酢酸ブチルを12.87g、それぞれ量り取って混合した。次いで、撹拌機を用いて600rpmで20分間撹拌を行って塗料組成物2-34を得た。得られた塗料組成物2-34を用いて、上記の方法に基づき、評価を行った。結果を下記表2-4に示す。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表2-1~2-4から、構造(I)の繰り返し数n11が7以上70以下の数であり、ポリカーボジネート構造(II)の繰り返し数n21が1以上50以下の数である(2-A1)成分を含み、且つ、(2-A1)/(2-A2)が10/90以上30/70以下である塗料組成物2-1~2-26(実施例2-1~2-26)は、上記構成を有しない塗料組成物2-27~34(比較例2-1~2-8)よりも、傷回復性及び耐熱性が良好な塗膜が得られた。
 また、塗料組成物2-7及び2-8(実施例2-7及び2-8)、塗料組成物2-9及び2-10(実施例2-9及び2-10)、塗料組成物2-11及び2-12(実施例2-11及び2-12)、並びに、塗料組成物2-13及び2-14(実施例2-13及び2-14)それぞれの比較から、ポリカージネート構造(II)の含有量の上昇に伴い、耐熱性がより向上する傾向が見られた。
 また、塗料組成物2-1~2-6(実施例2-1~2-6)の比較、塗料組成物2-7及び2-11(実施例2-7及び2-11)の比較、塗料組成物2-8及び2-12(実施例2-8及び2-12)の比較、塗料組成物2-9及び2-13(実施例2-9及び2-13)の比較、塗料組成物2-10及び2-14(実施例2-10及び2-14)の比較、塗料組成物2-17~2-22(実施例2-17~2-22)の比較、並びに、塗料組成物2-25~2-26(実施例2-25~2-16)の比較から、(2-A2)成分に対する(2-A1)成分の質量比((2-A1)成分/(2-A2)成分の質量比)の上昇に伴い、傷回復性がより向上する傾向が見られた。
 以上のことから、本実施形態の塗料組成物から形成された塗膜は、傷回復性及び耐熱性に優れていることが確認された。
 本実施形態の塗料組成物は、自動車、バス、鉄道車両、建築機械、農業機械、建築物の床、壁及び屋根、金属製品、モルタル及びコンクリート製品、木工製品、プラスチック製品、ケイ酸カルシウム板及び石膏ボード等の窯業系建材等への塗装といった幅広い分野で好適に利用できる。

Claims (21)

  1.  下記(1-A1)成分、下記(1-B)成分及び下記(1-C)成分を含む塗料組成物。
     (1-A1)成分:下記一般式(I)で表される構造と、下記一般式(II)で表されるポリカーボネート構造とを含有し、両末端が水酸基であり、且つ、
     数平均分子量が300以上10000以下であるポリカーボネートジオール組成物であって、
     前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上50質量%以下、及び、前記ポリカーボネート構造を50質量%以上95質量%以下含有するポリカーボネートジオール組成物;
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)中、R11は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR11は互いに同一であってもよく、異なっていてもよい。n11は3以上70以下の数である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(II)中、R21は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR21は互いに同一であってもよく、異なっていてもよい。n21は1以上50以下の数である。)
     (1-B)成分:イソシアネート化合物;
     (1-C)成分:溶解度パラメーター(SP値)が、8.0(cal/cm1/2以上25.0(cal/cm1/2以下である有機溶剤。
  2.  前記(1-C)成分として、溶解度パラメーターが8.0(cal/cm1/2以上15.00(cal/cm1/2以下である有機溶剤を含む請求項1に記載の塗料組成物。
  3.  前記(1-C)成分として、20℃における蒸気圧が1.0kPa以上である有機溶剤を含む請求項1又は2に記載の塗料組成物。
  4.  更に、(1-A2)成分を含み、
     前記(1-A2)成分は、前記(1-A1)成分以外のポリオール成分であり、且つ、
     前記(1-A1)成分及び前記(1-A2)成分の合計質量に対して、前記(1-A1)成分を50質量%以上100質量%以下、及び、前記(1-A2)成分を0質量%以上50質量%以下含有する請求項1~3のいずれか一項に記載の塗料組成物。
  5.  更に、(1-A2)成分を含み、
     前記(1-A2)成分は、前記(1-A1)成分以外のポリオール成分であり、且つ、
     前記(1-A1)成分及び前記(1-A2)成分の合計質量に対して、前記(1-A1)成分を70質量%以上100質量%以下、及び、前記(1-A2)成分を0質量%以上30質量%以下含有する請求項1~4のいずれか一項に記載の塗料組成物。
  6.  前記(1-A1)成分において、前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上30質量%以下、及び、前記ポリカーボネート構造を70質量%以上95質量%以下含有する請求項1~5のいずれか一項に記載の塗料組成物。
  7.  前記(1-A1)成分において、前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上20質量%以下、及び、前記ポリカーボネート構造を80質量%以上95質量%以下含有する請求項1~6のいずれか一項に記載の塗料組成物。
  8.  前記一般式(I)中、n11は6以上50以下の数である請求項1~7のいずれか一項に記載の塗料組成物。
  9.  前記一般式(I)で表される構造が、ポリオキシエチレン構造である請求項1~8のいずれか一項に記載の塗料組成物。
  10.  前記一般式(I)で表される構造が、オキシ1-メチルエチレン基及びオキシエチレン基を含み、前記一般式(I)で表される構造の総質量に対して、前記オキシ1-メチルエチレン基を10質量%以上100質量%以下、及び、前記オキシエチレン基を0質量%以上90質量%以下含有する請求項1~8のいずれか一項に記載の塗料組成物。
  11.  前記一般式(I)で表される構造が、オキシテトラメチレン基及びオキシ2,2-ジメチルトリメチレン基を含み、前記一般式(I)で表される構造の総質量に対して、前記オキシテトラメチレン基を10質量%以上100質量%以下、及び、前記オキシ2,2-ジメチルトリメチレン基を0質量%以上90質量%以下含有する請求項1~8のいずれか一項に記載の塗料組成物。
  12.  更に、水分を含み、
     塗料組成物中の水分の含有量が10質量%以下である請求項1~11のいずれか一項に記載の塗料組成物。
  13.  下記(2-A1)成分、下記(2-A2)成分、下記(2-B)成分及び下記(2-C)成分を含み、
     前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、前記(2-A1)成分を3質量%以上99質量%以下、及び、前記(2-A2)成分を1質量%以上97質量%以下含有する塗料組成物。
     (2-A1)成分:下記一般式(I)で表される構造と、下記一般式(II)で表されるポリカーボネート構造とを含有し、両末端が水酸基であり、且つ、
     数平均分子量が300以上10000以下であるポリカーボネートジオール組成物であって、
     前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上35質量%以下、及び、前記ポリカーボネート構造を65質量%以上95質量%以下含有するポリカーボネートジオール組成物;
    Figure JPOXMLDOC01-appb-C000003
    (一般式(I)中、R11は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR11は互いに同一であってもよく、異なっていてもよい。n11は7以上70以下の数である。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(II)中、R21は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数あるR21は互いに同一であってもよく、異なっていてもよい。n21は1以上50以下の数である。)
     (2-A2)成分:前記(2-A1)成分以外のポリオール成分;
     (2-B)成分:イソシアネート化合物;
     (2-C)成分:有機溶剤。
  14.  前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、前記(2-A1)成分を5質量%以上50質量%以下、及び、前記(2-A2)成分を50質量%以上95質量%以下含有する請求項13に記載の塗料組成物。
  15.  前記(2-A1)成分及び前記(2-A2)成分の合計質量に対して、前記(2-A1)成分を5質量%以上30質量%以下、及び、前記(2-A2)成分を70質量%以上95質量%以下含有する請求項13又は14に記載の塗料組成物。
  16.  前記(2-A1)成分において、前記一般式(I)で表される構造及び前記ポリカーボネート構造の合計質量に対して、前記一般式(I)で表される構造を5質量%以上20質量%以下、及び、前記ポリカーボネート構造を80質量%以上95質量%以下含有する請求項13~15のいずれか一項に記載の塗料組成物。
  17.  前記一般式(I)中、n11は7以上50以下の数である請求項13~16のいずれか一項に記載の塗料組成物。
  18.  前記一般式(I)で表される構造が、ポリオキシエチレン構造である請求項13~17のいずれか一項に記載の塗料組成物。
  19.  前記一般式(I)で表される構造が、オキシ1-メチルエチレン基及びオキシエチレン基を含み、前記一般式(I)で表される構造の総質量に対して、前記オキシ1-メチルエチレン基を10質量%以上100質量%以下、及び、前記オキシエチレン基を0質量%以上90質量%以下含有する請求項13~17いずれか一項に記載の塗料組成物。
  20.  前記一般式(I)で表される構造が、オキシテトラメチレン基及びオキシ2,2-ジメチルトリメチレン基を含み、前記一般式(I)で表される構造の総質量に対して、前記オキシテトラメチレン基を5質量%以上100質量%以下、及び、前記オキシ2,2-ジメチルトリメチレン基を0質量%以上95質量%以下含有する請求項13~17いずれか一項に記載の塗料組成物。
  21.  更に、水分を含み、
     塗料組成物中の水分の含有量が10質量%以下である請求項13~20のいずれか一項に記載の塗料組成物。
PCT/JP2018/047535 2017-12-25 2018-12-25 塗料組成物 WO2019131617A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019561706A JP6801125B2 (ja) 2017-12-25 2018-12-25 塗料組成物
CN201880084012.3A CN111511853A (zh) 2017-12-25 2018-12-25 涂料组合物
EP18895707.0A EP3733799B1 (en) 2017-12-25 2018-12-25 Paint composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-248449 2017-12-25
JP2017248449 2017-12-25
JP2017248448 2017-12-25
JP2017-248448 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019131617A1 true WO2019131617A1 (ja) 2019-07-04

Family

ID=67067386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047535 WO2019131617A1 (ja) 2017-12-25 2018-12-25 塗料組成物

Country Status (4)

Country Link
EP (1) EP3733799B1 (ja)
JP (1) JP6801125B2 (ja)
CN (1) CN111511853A (ja)
WO (1) WO2019131617A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555670A (zh) * 2019-10-15 2022-05-27 旭化成株式会社 聚碳酸酯二醇组合物
WO2022210289A1 (ja) * 2021-03-29 2022-10-06 東ソー株式会社 塗料組成物、キット、塗膜及び塗膜の形成方法
WO2022224996A1 (ja) 2021-04-21 2022-10-27 旭化成株式会社 ポリカーボネートジオール組成物

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734107A (en) 1980-08-08 1982-02-24 Asahi Glass Co Ltd Room temperature-curable fluorine-containing copolymer
JPS61275311A (ja) 1984-12-18 1986-12-05 Dainippon Ink & Chem Inc 硬化可能なフルオロオレフイン共重合体及びその製造法
JPH02289616A (ja) 1987-08-04 1990-11-29 Asahi Chem Ind Co Ltd 脂肪族コポリカーボネートジオール
JP2006124486A (ja) 2004-10-28 2006-05-18 Asahi Kasei Chemicals Corp 水酸基末端を有するポリカーボネート/ポリエーテルブロック共重合体
JP3874664B2 (ja) 2000-05-24 2007-01-31 旭化成ケミカルズ株式会社 高い1級末端oh比率を有するポリカーボネートジオール
JP2007084652A (ja) * 2005-09-21 2007-04-05 Showa Denko Kk オーバーコート用樹脂組成物
JP2011190390A (ja) * 2010-03-16 2011-09-29 Asahi Kasei Chemicals Corp コーティング剤組成物
US20120308828A1 (en) * 2011-05-31 2012-12-06 Sdc Technologies, Inc. Anti-fog polyurethane coating compositions
JP2014080530A (ja) * 2012-10-17 2014-05-08 Asahi Kasei Chemicals Corp ポリカーボネートジオール組成物、及びその製造方法
JP2014201680A (ja) * 2013-04-05 2014-10-27 富士重工業株式会社 塗料組成物
WO2015170374A1 (ja) * 2014-05-07 2015-11-12 旭化成ケミカルズ株式会社 水系組成物用ポリカーボネート/ポリオキシエチレンブロック共重合体、及びそれを含む水系組成物、水系塗料組成物、水系インキ組成物、水系粘着剤組成物
JP2017119755A (ja) * 2015-12-28 2017-07-06 日華化学株式会社 水分散型ポリカーボネート系ポリウレタン樹脂組成物、それを用いて処理した繊維製品、及び水分散型ポリカーボネート系ポリウレタン樹脂組成物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101818266B1 (ko) * 2009-12-17 2018-01-12 미쯔비시 케미컬 주식회사 폴리카보네이트디올 함유 조성물 및 그 제조 방법, 그리고 그것을 사용한 폴리우레탄 및 그 제조 방법
JP6129681B2 (ja) * 2013-08-09 2017-05-17 旭化成株式会社 ポリカーボネートジオール、熱可塑性ポリウレタン、コーティング組成物及び塗膜
JP6329457B2 (ja) * 2013-08-09 2018-05-23 旭化成株式会社 コポリカーボネートジオール、熱可塑性ポリウレタン、コーティング組成物及び塗膜
CN103965431B (zh) * 2014-05-16 2016-08-17 中国科学院兰州化学物理研究所 合成树脂、制备方法及利用该合成树脂制备的背涂液
CN107353394B (zh) * 2017-08-23 2022-10-28 黄山联固新材料科技有限公司 一种涂料、聚氨酯及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734107A (en) 1980-08-08 1982-02-24 Asahi Glass Co Ltd Room temperature-curable fluorine-containing copolymer
JPS61275311A (ja) 1984-12-18 1986-12-05 Dainippon Ink & Chem Inc 硬化可能なフルオロオレフイン共重合体及びその製造法
JPH02289616A (ja) 1987-08-04 1990-11-29 Asahi Chem Ind Co Ltd 脂肪族コポリカーボネートジオール
JP3874664B2 (ja) 2000-05-24 2007-01-31 旭化成ケミカルズ株式会社 高い1級末端oh比率を有するポリカーボネートジオール
JP2006124486A (ja) 2004-10-28 2006-05-18 Asahi Kasei Chemicals Corp 水酸基末端を有するポリカーボネート/ポリエーテルブロック共重合体
JP2007084652A (ja) * 2005-09-21 2007-04-05 Showa Denko Kk オーバーコート用樹脂組成物
JP2011190390A (ja) * 2010-03-16 2011-09-29 Asahi Kasei Chemicals Corp コーティング剤組成物
US20120308828A1 (en) * 2011-05-31 2012-12-06 Sdc Technologies, Inc. Anti-fog polyurethane coating compositions
JP2014080530A (ja) * 2012-10-17 2014-05-08 Asahi Kasei Chemicals Corp ポリカーボネートジオール組成物、及びその製造方法
JP2014201680A (ja) * 2013-04-05 2014-10-27 富士重工業株式会社 塗料組成物
WO2015170374A1 (ja) * 2014-05-07 2015-11-12 旭化成ケミカルズ株式会社 水系組成物用ポリカーボネート/ポリオキシエチレンブロック共重合体、及びそれを含む水系組成物、水系塗料組成物、水系インキ組成物、水系粘着剤組成物
JP2017119755A (ja) * 2015-12-28 2017-07-06 日華化学株式会社 水分散型ポリカーボネート系ポリウレタン樹脂組成物、それを用いて処理した繊維製品、及び水分散型ポリカーボネート系ポリウレタン樹脂組成物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733799A4
SHINICHI UEDA ET AL.: "Discussion on solubility parameter of additive", PAINT RESEARCH, vol. 152, 2010, pages 41 - 46

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555670A (zh) * 2019-10-15 2022-05-27 旭化成株式会社 聚碳酸酯二醇组合物
EP4047034A4 (en) * 2019-10-15 2022-12-21 Asahi Kasei Kabushiki Kaisha POLYCARBONATEDIOL COMPOSITION
WO2022210289A1 (ja) * 2021-03-29 2022-10-06 東ソー株式会社 塗料組成物、キット、塗膜及び塗膜の形成方法
WO2022224996A1 (ja) 2021-04-21 2022-10-27 旭化成株式会社 ポリカーボネートジオール組成物

Also Published As

Publication number Publication date
EP3733799A1 (en) 2020-11-04
EP3733799B1 (en) 2023-05-10
CN111511853A (zh) 2020-08-07
JPWO2019131617A1 (ja) 2020-07-02
EP3733799A4 (en) 2021-02-24
JP6801125B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6712311B2 (ja) ブロックポリイソシアネート組成物、一液型コーティング組成物、塗膜、及び塗装物品
JP7073064B2 (ja) 塗料組成物
EP3733799B1 (en) Paint composition
JP5570043B2 (ja) 乾燥速度が速くかつ耐性が改善されたソフトフィール塗料用硬化性組成物
JP6843538B2 (ja) 塗料組成物
JP5344852B2 (ja) ポリカーボネートジオールを含有する硬化性塗料用組成物
JP4974342B2 (ja) 水性ポリイソシアネート組成物及びそれを含む水性塗料組成物
JP6139853B2 (ja) ポリカーボネートジオール組成物、及びその製造方法
CN110305324B (zh) 水系组合物用聚碳酸酯/聚氧乙烯嵌段共聚物、以及包含其的水系组合物
JP6393122B2 (ja) ポリイソシアネート組成物、塗料組成物及び塗膜
EP3896136A1 (en) Two-pack curable urethane adhesive
CN112778888B (zh) 聚氨酯涂膜的制造方法和涂料组合物
JP2011105886A (ja) ポリイソシアネート組成物、及び二液型ポリウレタン組成物
JP7183054B2 (ja) 塗料組成物
EP3575341B1 (en) Polycarbonate diol composition
JP2014214301A (ja) ポリイソシアネート組成物
JP2021075632A (ja) 塗料組成物
EP3524630B1 (en) Coating composition
JP7206101B2 (ja) ポリイソシアネート組成物、塗料組成物及び塗膜
JP2020029505A (ja) 親水性ポリイソシアネート組成物、硬化剤組成物及び水系コーティング組成物
JPH08325516A (ja) 新規なウレタン系塗料組成物
JP2020192497A (ja) 塗装方法、塗膜及び塗料キット
WO2021166953A1 (ja) ポリイソシアネート化合物、並びに、それを用いたポリウレタン樹脂形成用組成物、及びその硬化物
JPWO2021075558A1 (ja) 粘着剤、粘着シート及び光学部材
TW202200745A (zh) 濕氣硬化型熱熔接著劑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561706

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018895707

Country of ref document: EP

Effective date: 20200727