WO2019116453A1 - 車両のステアリング制御方法および車両のステアリング制御装置 - Google Patents

車両のステアリング制御方法および車両のステアリング制御装置 Download PDF

Info

Publication number
WO2019116453A1
WO2019116453A1 PCT/JP2017/044617 JP2017044617W WO2019116453A1 WO 2019116453 A1 WO2019116453 A1 WO 2019116453A1 JP 2017044617 W JP2017044617 W JP 2017044617W WO 2019116453 A1 WO2019116453 A1 WO 2019116453A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
angle
command
turning
vehicle
Prior art date
Application number
PCT/JP2017/044617
Other languages
English (en)
French (fr)
Inventor
弘樹 谷口
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2019559453A priority Critical patent/JP6690794B2/ja
Priority to PCT/JP2017/044617 priority patent/WO2019116453A1/ja
Priority to CN201780097444.3A priority patent/CN111433110B/zh
Priority to EP17934673.9A priority patent/EP3725644B1/en
Priority to US16/771,267 priority patent/US10829153B1/en
Publication of WO2019116453A1 publication Critical patent/WO2019116453A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • B62D1/06Rims, e.g. with heating means; Rim covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/008Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear

Definitions

  • the present disclosure relates to a vehicle steering control method and a vehicle steering control apparatus.
  • a target steering angle is calculated by automatic operation control such as line tracing and lane keeping control while the vehicle is traveling, and steering of steered wheels and steering of a steering wheel are performed according to the target steering angle.
  • automatic operation control such as line tracing and lane keeping control while the vehicle is traveling
  • steering of steered wheels and steering of a steering wheel are performed according to the target steering angle.
  • the present invention was made in view of the above problems, and while performing steering in response to a target steering angle command, a vehicle capable of suppressing a sense of discomfort given to a driver even if frequent fine adjustment of the steering angle is performed. It is an object of the present invention to provide a steering control method and a steering control device for a vehicle.
  • the vehicle steering control method and the vehicle steering control device of the present disclosure determines whether the target turning angle command is a first turning angle command area having an angle equal to or less than a predetermined value and an angular velocity equal to or more than a predetermined value; It is determined whether it is a second turning angle command area other than the turning angle command area. Then, when the steering command angle and the steering command angle are generated based on the target turning angle command, the distribution of the steering command angle when the target turning angle command is the first steering angle command area is Compared with the distribution of the steering command angle in the case of the steering angle command area of the above, it is suppressed lower.
  • the first turning angle command area in which the angle is equal to or less than the predetermined value and the angular velocity is equal to or more than the predetermined value is compared with the other second turning angle command areas. Control the steering wheel's movement by reducing the distribution of the steering command angle. Therefore, when performing a correction rudder or the like in which the turning angle is small and the turning angular velocity is high, it is possible to suppress the movement such as the steering wheel from being pinched, and to suppress the discomfort given to the driver.
  • FIG. 1 is an overall schematic system diagram showing a steering by wire system to which a vehicle steering control method and a vehicle steering control device of a first embodiment are applied. It is a block diagram showing a control system of the steering by wire system. It is a block diagram which shows the principal part of the control system of the said steering by wire system. It is a characteristic view of the limiter in the principal part of the control system of the above-mentioned steering by wire system. It is a block diagram which shows the other principal part of the control system of the said steering by wire system. It is a flowchart which shows the flow of processing of control of the reaction force motor by the said steering by wire system, and a steering motor. It is an evaluation figure showing the evaluation result of Embodiment 1 and a comparative example.
  • Embodiment 1 First, the configuration will be described.
  • the steering control method of the vehicle and the steering control device of the vehicle according to the first embodiment are applied to a vehicle equipped with a steering by wire system that converts the movement of the steering wheel into an electric signal and transmits it to the left and right front wheels.
  • the configuration of the vehicle steering control system according to the first embodiment will be described by dividing it into “overall system configuration”, “configuration of control system”, and “control of steering angle and steering angle at the time of automatic driving control”.
  • FIG. 1 shows a steering control method of a vehicle according to a first embodiment and a steering by wire system SBWC to which a steering control device of the vehicle is applied.
  • SBWC steering by wire system
  • the steering by wire system SBWC mainly includes a steering unit 1, a steering unit 2, a steering clutch 3, and a steering controller 4.
  • the steering unit 1 receiving steering input of the driver and the steering unit 2 for steering the left and right front wheels (turned wheels) 5FL and 5FR are mechanically separated.
  • the steering unit 1 includes a steering wheel 11, a column shaft 12, and a reaction force motor 13.
  • the column shaft 12 rotates integrally with the steering wheel 11.
  • the reaction force motor 13 is, for example, a brushless motor, and an output shaft is a coaxial motor coaxial with the column shaft 12.
  • an output shaft is a coaxial motor coaxial with the column shaft 12.
  • the steering shaft 14 is steered against the column shaft 12 according to a command from the steering controller 4.
  • Output force torque is output to the column shaft 12.
  • the reaction force motor 13 is provided with a steering angle sensor 51 for detecting the absolute rotation angle of the column shaft 12, that is, the steering angle of the steering wheel 11.
  • the steering unit 2 includes a pinion shaft 21, a steering gear 22, and a steering motor 23.
  • the steering gear 22 is a rack and pinion type steering gear, and steers the left and right front wheels 5FL and 5FR in accordance with the rotation of the pinion shaft 21.
  • the steering motor 23 is, for example, a brushless motor, and the output shaft is connected to the steering gear 22 via a reduction gear (not shown), and steers to the steering gear 22 according to a command from the steering controller 4 Output the turning torque for The steering motor 23 is provided with a steering angle sensor 52 that detects the steering angles of the left and right front wheels 5FL and 5FR by detecting the absolute rotation angle of the reaction force motor 13.
  • the steering clutch 3 is provided between the column shaft 12 of the steering unit 1 and the pinion shaft 21 of the steered unit 2 and mechanically disengages the steered unit 1 and the steered unit 2 by release. And the steering unit 2 are mechanically connected.
  • the steering controller 4 includes a steering angle servo control unit 41 and a steering angle servo control unit 42.
  • the steering angle servo control unit 41 steers the steering wheel 11 based on the target steering angle command from the automatic driving controller 100 and steers the left and right front wheels 5FL and 5FR. Generate corners and. Furthermore, the drive of the steering motor 23 of the steering unit 2 is controlled based on the steering command angle.
  • the steering angle servo control unit 42 applies a reaction force motor current for applying a reaction force to the column shaft 12 or rotating the steering wheel 11 by a predetermined angle based on a steering command angle and a steering angle to be detected. It is outputted to the reaction force motor 13 of the steering unit 1.
  • the reaction force motor 13 applies a reaction torque to the column shaft 12 to the driver's steering during the steer-by-wire control in which the driver steers. Further, during automatic operation control in which the driver does not steer the reaction force motor 13, the steering reaction force torque for turning (steering) the steering wheel 11 according to the turning amount of the left and right front wheels 5FL, 5FR is used as a column shaft. Give to twelve.
  • the steering controller 4 is composed of two on-vehicle control modules IDM and DAS, and the above-described steering angle servo control unit 41 and steering angle servo control unit 42 are configured across both control modules IDM and DAS. ing.
  • the turning angle servo control unit 41 includes a steering angle / turning angle ratio adjusting unit 411, a steering angle delay compensating unit 412, a variable gear ratio setting unit 413, and a robust model matching control unit 414.
  • the steering angle / turning angle ratio adjustment unit 411 adjusts the ratio (distribution) of the steering command angle to the target turning angle command based on the target turning angle command from the automatic driving controller 100, and a band pass filter Have the function of Specifically, in the case of a corrected rudder area in which the target turning angle command is an angle and an angular velocity corresponding to the corrected rudder, the steering angle / turning angle ratio adjusting unit 411 performs the uncorrected rudder distribution of the steering command angle. Keep it low compared to the area case. In particular, in the first embodiment, in the case of the correction rudder region, only steering of the left and right front wheels 5F and 5FR is performed so as not to steer the steering wheel 11 by setting the distribution of steering command angles to "0".
  • the steering angle / turning angle ratio adjusting unit 411 determines the steering command angle based on the target turning angle command. And steer the steering wheel 11 and steer the left and right front wheels 5F, 5FR. That is, when the driver is not steering the steering wheel 11 at the time of automatic operation control, when steering the left and right front wheels 5FL and 5FR in accordance with the target steering angle command, the steering wheel 11 is also set to the steering angle. The driver is steered according to the steering direction.
  • FIG. 3 is a block diagram showing the steering angle / turning angle ratio adjustment unit 411. As shown in FIG.
  • the steering angle / turning angle ratio adjustment unit 411 includes a secondary low pass filter 411 a and a limiter unit 411 b.
  • the secondary low-pass filter 411a passes a low frequency component which is a turning angle at which the steering is largely slowed among the target turning angle commands.
  • the limiter unit 411b inputs the high frequency component of the target turning angle command obtained by subtracting the low frequency component from the target turning angle command by the subtracting unit 411c. Then, limiter section 411b is lower than angle threshold ⁇ lim shown in FIG. 4 from the high frequency component of the target turning angle command, and the area (corrected rudder area) where the turning angular velocity (rate of change) is higher than angular velocity threshold ⁇ lim (upper limit ⁇ h) Let things pass).
  • the target turning angle command of the corrected rudder area which is equal to or smaller than the angle threshold ⁇ lim and equal to or larger than the angular velocity threshold ⁇ lim is a command value corresponding to the corrected rudder at the time of line trace control described later.
  • the subtracting unit 411d subtracts the target turning angle command of the corrected steering area having passed through the limiter unit 411b from the high frequency component, and adds it to the low frequency component of the target turning angle command in the adding unit 411e.
  • the steering instruction angle output from the steering angle / turning angle ratio adjustment unit 411 to the steering angle servo control unit 42 is the corrected rudder region (the angle threshold ⁇ lim or less in FIG. 4 and the angular velocity threshold ⁇ lim or more shown in FIG. The ones in the region below the upper limit value ⁇ h) are removed.
  • the angle threshold ⁇ lim for determining the corrected rudder region a value of about 5 deg, more preferably a value of about 3.3 deg, is used in the first embodiment, although it varies depending on the vehicle speed.
  • the angular velocity threshold value ⁇ lim for determining the corrected steering region a value within the range of 5 to 10 deg / s is used.
  • the steering angle delay compensation unit 412 adds a delay due to the weight of the steering wheel 11 to create a target steering command. That is, in the steering angle delay compensation unit 412, the subtraction unit 412a subtracts the primary delay from the low frequency component of the target change angle command indicating a large and slow turning, and adds this to the turning command angle. By using (addition unit 412b), the steering command angle is obtained by adding a delay due to the weight of the steering wheel 11.
  • variable gear ratio setting unit 413 is a gear that is a ratio of a turning angle to a steering angle when turning the left and right front wheels 5FL and 5FR at an angle according to the steering angle.
  • the ratio is variably set according to the vehicle speed and the like to generate a variable gear command angle.
  • the adding unit 415 adds the variable gear command angle and the turning command angle generated according to the target turning angle command to generate a final turning command angle. That is, at the time of steer-by-wire control, the variable gear command angle becomes the final turning command angle. On the other hand, at the time of automatic operation control, the sum of the variable gear command angle and the turning command angle becomes the final turning command angle.
  • the robust model matching control unit 414 optimizes the final turning command angle by using a robust model set in advance, and outputs this to the turning motor 23 as a turning motor current.
  • the steering angle servo control unit 42 includes an inverse variable gear ratio setting unit 421, a steering angle servo unit 422, a pseudo I axis force calculation unit 423, a PS map unit 424, and a steering rotation inhibition element calculation unit 425.
  • the reverse variable gear ratio setting unit 421 is an angle command value (steering angle) in which a gear ratio reverse to that of the variable gear ratio setting unit 413 is given to the steering command angle generated by the steering angle and turning angle ratio adjusting unit 411. Is generated and output to the steering angle servo unit 422.
  • the steering angle servo unit 422 generates and outputs a reaction force command that is a command for controlling the generated torque of the reaction force motor 13 so as to turn (steer) the steering wheel 11 following the angle command value (steering angle). .
  • the steering angle servo unit 422 performs feedback control based on the steering angle detected by the steering angle sensor 51 when following the angle command value (steering angle). That is, the steering angle servo unit 422 generates a reaction force command according to the deviation between the angle command value and the detected steering angle.
  • the reaction force command is a steering command at the time of automatic operation control.
  • the output of the PS map unit 424 is added to the output of the steering angle servo unit 422 by the addition unit 426.
  • the pseudo I-axis force calculation unit 423 and the PS map unit 424 perform feedforward control based on the offset command with respect to the reaction force command.
  • the steering rotation inhibition element calculation unit 425 adds the steering reaction torque (SAT reaction force) generated by the tire lateral force, the viscosity in the steering unit 1 and the steering reaction torque due to friction in the addition unit 427.
  • the steering reaction torque is calculated based on a tire lateral force-steering reaction torque conversion map or the like.
  • the automatic driving controller 100 executes line trace control for controlling turning of the left and right front wheels 5FL, 5FR so as to cause the vehicle to travel along a white line of the road as automatic driving control. Then, as this line trace control, based on the lateral position, curvature, yaw angle, and yaw rate, stability control for the purpose of improving the stability of the vehicle against disturbances (crosswind, road surface unevenness, haze, road surface cant, etc.) is executed. Target turning angle command is generated.
  • the yaw angle feedback control corrects the turning angle according to the yaw angle which is the angle between the white line and the traveling direction of the vehicle, and reduces the yaw angle generated due to the disturbance.
  • the lateral position feedback control corrects the turning angle according to the distance to the white line (lateral position), and reduces the lateral position change that is the integral value of the yaw angle generated due to the disturbance.
  • the automatic driving controller 100 is configured to form a target turning angle command, such as a repulsive force calculation unit 101 corresponding to a yaw angle and a repulsive force calculation unit 102 corresponding to a lateral position.
  • a target yaw moment calculation unit 103, a target yaw acceleration calculation unit 104, a target yaw rate calculation unit 105, and a target turning angle calculation unit 106 are provided.
  • the repulsive force calculation unit 101 calculates the repulsive force of the vehicle for reducing the yaw angle generated due to the disturbance in the yaw angle feedback control based on the yaw angle, the curvature and the vehicle speed.
  • the repulsive force calculation unit 102 calculates the repulsive force of the vehicle for reducing the lateral position change caused by the disturbance in the lateral position feedback control based on the yaw angle, the curvature, the vehicle speed and the lateral position.
  • the target yaw moment calculator 103 calculates the ratio of the rear wheel axle weight to the vehicle weight with respect to the lateral repulsive force which is the sum of the repulsive force of the vehicle for reducing the yaw angle and the repulsive force of the vehicle for reducing lateral position change. A value obtained by multiplying the wheel base and the wheel base is set as a target yaw moment.
  • the target yaw acceleration calculation unit 104 calculates a target yaw acceleration by multiplying the target yaw moment by the yaw inertia moment coefficient.
  • the target yaw rate calculator 105 calculates a target yaw rate by multiplying the target yaw acceleration by the head time.
  • the target turning angle calculation unit 106 calculates the disturbance suppression command turning angle ⁇ st * based on the target yaw rate ⁇ *, the wheel base WHEEL_BASE, the vehicle speed V, and the characteristic speed vCh of the vehicle.
  • the disturbance suppression command turning angle ⁇ st * can be obtained by the following arithmetic expression (1).
  • the characteristic speed Vch of the vehicle is a parameter in a known "Ackermann equation" and represents the self-steering characteristic of the vehicle.
  • ⁇ st * ( ⁇ * ⁇ WHEEL_BASE ⁇ (1+ (V / vCh) 2) ⁇ 180) / (V ⁇ M_PI) (1)
  • M_PI is a predetermined coefficient.
  • the limiter processing unit 107 limits the maximum value of the disturbance suppression command turning angle ⁇ st * and the upper limit of the change rate.
  • the maximum value corresponds to the rotation of the left and right front wheels 5FL, 5FR corresponding to the range of play when the steering angle of the steering wheel 11 is in the angle range of play (for example, 3 ° left and right) near the neutral position in a conventional steering device.
  • a steering angle range (for example, 0.2 ° left and right) is used.
  • the conventional steering device is a steering device in which the steering unit 1 and the steering unit 2 are mechanically connected.
  • step S1 a target turning angle command is received from the automatic driving controller 100. This reception is performed by the turning angle servo control unit 41.
  • step S2 it is determined whether or not the angle of the target turning angle command is equal to or less than the angle threshold ⁇ lim, and the angular velocity of the target turning angle command is a corrected rudder region equal to or higher than the angular velocity threshold ⁇ lim. Then, if the target turning angle command is a corrected rudder area equal to or smaller than the angle threshold ⁇ lim and equal to or larger than the angular velocity threshold ⁇ lim, the process proceeds to step S3 and uncorrected rudder is not smaller than the angle threshold ⁇ lim or not larger than the angular velocity threshold ⁇ lim. In the case of the area, the process proceeds to step S4.
  • step S3 that is advanced when the angle and angular velocity of the target turning angle command are within the correction threshold region that is equal to or less than the angle threshold ⁇ lim and the angular velocity threshold ⁇ lim, it is determined that the target turning angle command is correction steering of fine steering. Then, a turning command angle is generated from the target turning angle command, and this is used as a final turning command angle. That is, the steering angle servo control unit 41 sets the distribution of the steering command angle to the steering angle servo control unit 42 to “0” so as not to steer the steering wheel 11. Then, the steering angle servo control unit 41 outputs a steering instruction angle only to the steering unit 2, generates a final steering instruction angle from the steering instruction angle, and steers the left and right front wheels 5FL and 5FR.
  • step S4 uncorrected steering (large slow steering) is performed in step S4 in the case of an uncorrected steering region in which the angle and angular velocity of the target turning angle command are not less than angle threshold ⁇ lim or not more than angular velocity threshold ⁇ lim. to decide.
  • the steering angle servo control unit 41 distributes the steering instruction angle to the steering angle servo control unit 42.
  • step S5 the steering angle servo section 422 of the steering angle servo control section 42 generates a reaction force command according to the deviation between the steering command angle and the detected steering angle (feedback control). Then, the offset command by feed forward control and the component that inhibits the rotation of the steering wheel 11 are added, and the reaction motor current is output to drive the reaction motor 13.
  • variable gear ratio setting unit 413 calculates a variable gear command angle which is a turning angle responsive to the steering angle from the steering angle detected by the steering angle sensor 51.
  • the variable gear command angle with respect to the steering angle is variable according to the vehicle speed.
  • step S7 the variable gear command angle and the steering command angle generated by the steering angle servo control unit 41 are added to obtain the final steering command angle.
  • a final steering instruction angle is produced
  • step S8 the robust model matching control unit 414 drives the steered motor 23 so that the steered angles (tie and corner) of the left and right front wheels 5FL and 5FR become the final steered command angles by the robust model matching control. .
  • the steering wheel 11 when turning the left and right front wheels 5FL and 5FR, the steering wheel 11 is also turned (steered) by an amount according to the reverse variable gear ratio. Thereby, the driver can visually know the turning direction and the turning amount by turning the steering wheel 11 at the time of turning by automatic driving.
  • FIG. 7 is a diagram showing evaluation results of the comparative example at the time of automatic operation and the first embodiment. As shown in this figure, in the plurality of comparative examples, the evaluation of the steering operation smoothness is low. This is an evaluation given by the above-mentioned impression of the vibration of the steering wheel 11.
  • the steering angle / steering angle ratio adjustment unit 411 of the steering angle servo control unit 41 outputs the steering instruction angle and the steering instruction angle according to the target steering angle command output by the automatic driving controller 100. Distribute.
  • the target turning angle command is a corrected rudder region equal to or smaller than the angle threshold ⁇ lim and equal to or larger than the angular velocity threshold ⁇ lim
  • the target turning angle command is determined to be a corrected rudder, and distribution to the steering command angle is It is assumed that “0”, and only the turning command angle is generated.
  • the steering for correcting the rudder is performed on the left and right front wheels 5FL and 5FR, and the line trace control is smoothly performed, while the turning (steering) of the steering wheel 11 corresponding to the correcting rudder is performed. Do not do.
  • the steering wheel 11 does not have a slight turning (pickling) according to the correction rudder.
  • the driver does not feel uncomfortable due to the steering wheel 11 sticking, and does not give an impression that the movement of the steering wheel 11 is not smooth.
  • a thick solid line indicates the evaluation result of the first embodiment, and it can be seen that the evaluation of the steering operation smoothness is higher than that of the comparative example.
  • the evaluation of the appropriateness of the line trace is high. This is because, as described above, the steering of the left and right front wheels 5FL and 5FR may not be canceled if the target steering angle command is in the correction steering region, as described above. Then, in addition to this, the automatic driving controller 100 calculates the repulsive force according to the yaw angle and the lateral position when generating the target turning angle command, and based on this, the target turning angle command is generated. It is a result.
  • the steering wheel 11 is steered according to the turning angle, and the driver turns the steering wheel and the turning amount of the vehicle. You can know visually by the movement of
  • the steering angle delay compensation unit 412 gives a delay in consideration of the delay due to the weight of the steering wheel to the turning command angle formed by the target turning angle command that performs such large and slow steering. Therefore, the left and right front wheels 5FL and 5FR can be steered by an instruction taking into consideration the delay to improve the line traceability, and the steering wheel 11 can perform smooth steering without becoming a resistance of the driver's operation.
  • the corrected rudder command area is an area of an angle equal to or smaller than the angle threshold ⁇ lim corresponding to the corrected rudder in line trace control traveling along the target travel line and an angular velocity area equal to or greater than the angular velocity threshold ⁇ lim.
  • the vehicle steering control method according to the first embodiment
  • the generation of the target turning angle command is generated based on at least one of the yaw angle and the yaw rate. Therefore, line traceability in line trace control can be improved. That is, when the yaw angle is generated due to a disturbance or the like, the yaw angle can be decreased to improve the stability of the vehicle against the disturbance. As a result, as shown in the evaluation result of FIG. 7, line traceability can be improved.
  • the vehicle steering control method compensates for the delay due to the weight of the steering wheel 11 at the turning command angle. Therefore, when the low response servo control is performed in the steering angle servo control unit 42, a delay in steering occurs due to the weight of the steering wheel 11, but the delay can be compensated for and steered. As a result, while improving the line traceability as described above, the steering wheel 11 can be steered smoothly without becoming a resistance of the driver's operation.
  • a steering motor and a reaction force motor are shown as the steering actuator and the steering actuator, respectively.
  • the steering wheel and the steered wheels are mechanically separated at the time of release of the steering clutch, but by fastening the steering clutch, it is possible to mechanically connect both of them.
  • the present invention may be applied to those in which the steering wheel and the turning wheels are separated so as not to be mechanically connected at all.
  • the case of the second turning angle command area (uncorrected rudder command area)
  • the distribution may be made relatively lower than the steering command angle in the case of the second turning angle command area (non-corrected rudder command area), and the distribution need not be "0”.
  • the distribution amount may be variably set such that the distribution to the steering command angle is lowered.
  • the target turning angle command showed what was produced
  • the turning command angle when distributing from the target turning angle command to the turning command angle, the turning command angle is generated from the high frequency component of the target turning angle command, and a low frequency wave corresponding to the steering angle is generated.
  • the target turning angle command may be used as the turning command angle as it is.
  • the generation of the target turning angle command is formed from the yaw angle, the point is that it is sufficient to know the yaw angle or the yaw rate with respect to the line trace target.
  • the target turning angle command may be generated from the yaw rate and the yaw rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

目標転舵角指令に応答する転舵は行いつつ、転舵角の頻繁な微調整を行ってもドライバに与える違和感を抑制可能な車両のステアリング制御方法を提供する。 操転舵コントローラ(4)は、走行環境情報に基づいて作成された目標転舵角指令を入力し(ステップS1)、目標転舵角指令が、角度閾値(θlim)以下、かつ、角速度閾値(ωlim)以上の修正舵領域か、修正舵領域以外の非修正舵領域かを判定し(ステップS2)、目標転舵角指令に基づいて操舵指令角と転舵指令角とを生成するときに、修正舵領域では、操舵指令角の配分を「0」とし、転舵指令角のみ生成し(S3)、非修正舵領域では、操舵指令角と転舵指令角とを生成する(S3、S5,S8)。

Description

車両のステアリング制御方法および車両のステアリング制御装置
 本開示は、車両のステアリング制御方法および車両のステアリング制御装置に関する。
 従来、車両走行中に、ライントレース、レーンキープ制御などの自動運転制御により目標操舵角を算出し、この目標操舵角に応じて、転舵輪の転舵およびステアリングホイールの操舵を行うものが知られている(例えば、特許文献1参照)。
  この従来技術では、目標操舵角が入力されると、実舵角と、目標操舵角との偏差に基づいて、電動パワーステアリングモータを駆動する制御電流を算出し、算出した制御電流によって電動パワーステアリングモータを駆動し、操舵反力トルクを発生させる。
特開2016-97827号公報
 しかしながら、目標操舵角と実操舵角の偏差に基づいてアクチュエータにより操舵させた場合、例えば、高精度でライントレース、レーンキープなどを行おうとすると、操舵角を微調整する修正舵が頻繁に発生する。そして、この修正舵が頻繁に発生した場合、ステアリングホイールに、ピクピク動くような微動が発生し、ドライバに違和感を与えるおそれがある。
 本発明は、上記問題に着目してなされたもので、目標転舵角指令に応答する転舵を行いつつ、転舵角の頻繁な微調整を行ってもドライバに与える違和感を抑制可能な車両のステアリング制御方法および車両のステアリング制御装置を提供することを目的とする。
 本開示の車両のステアリング制御方法および車両のステアリング制御装置は、目標転舵角指令が、角度が所定値以下、かつ、角速度が所定値以上の第1の転舵角指令領域か、この第1の転舵角指令領域以外の第2の転舵角指令領域かを判定する。そして、目標転舵角指令に基づいて操舵指令角と転舵指令角とを生成するとき、目標転舵角指令が第1の転舵角指令領域の場合の操舵指令角の配分を、第2の転舵角指令領域の場合の操舵指令角の配分と比較して低く抑える。
 したがって、目標転舵角指令を入力した場合、角度が所定値以下、かつ、角速度が所定値以上の第1の転舵角指令領域では、それ以外の第2の転舵角指令領域と比較して、操舵指令角の配分を低く抑え、ステアリングホイールの動きを抑える。
  よって、転舵角が小さく転舵角速度が高い修正舵などを行った場合に、ステアリングホイールのぴくつくような動きを抑え、ドライバに与える違和感を抑えることができる。
実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置が適用されたステアリングバイワイヤシステムを示す全体概略システム図である。 前記ステアリングバイワイヤシステムの制御系を示すブロック図である。 前記ステアリングバイワイヤシステムの制御系の要部を示すブロック図である。 前記ステアリングバイワイヤシステムの制御系の要部におけるリミッタの特性図である。 前記ステアリングバイワイヤシステムの制御系の他の要部を示すブロック図である。 前記ステアリングバイワイヤシステムによる反力モータ、転舵モータの制御の処理の流れを示すフローチャートである。 実施の形態1と比較例との評価結果を表す評価図である。
 以下、本開示の車両のステアリング制御方法および車両のステアリング制御装置の実施の形態を、図面に基づいて説明する。
(実施の形態1)
  まず、構成を説明する。
  実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置は、ステアリングホイールの動きを電気信号に替えて左右前輪に伝えるステアリングバイワイヤシステムを搭載した車両に適用したものである。以下、実施の形態1の車両のステアリング制御装置の構成を、「全体システム構成」、「制御系の構成」、「自動運転制御時の操舵角、転舵角の制御」に分けて説明する。
 [全体システム構成]
  図1は、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置が適用されたステアリングバイワイヤシステムSBWCを示す。以下、図1に基づき、全体システム構成を説明する。
 ステアリングバイワイヤシステムSBWCは、操舵部1、転舵部2、ステアリングクラッチ3、操転舵コントローラ4を主要な構成とする。そして、ステアリングバイワイヤシステムSBWCは、ドライバの操舵入力を受ける操舵部1と、左右前輪(転舵輪)5FL,5FRを転舵する転舵部2とが機械的に切り離されている。
 操舵部1は、ステアリングホイール11、コラムシャフト12、反力モータ13を備える。なお、コラムシャフト12は、ステアリングホイール11と一体に回転する。
 反力モータ13は、例えば、ブラシレスモータであり、出力軸がコラムシャフト12と同軸の同軸モータであり、ドライバの操舵時には、操転舵コントローラ4からの指令に応じて、コラムシャフト12に操舵反力トルクを出力する。また、後述する自動運転制御時には、操転舵コントローラ4からの指令に応じて、コラムシャフト12に、ステアリングホイール11を能動的に操舵させる操舵反力トルクを出力する。
  なお、反力モータ13には、コラムシャフト12の絶対回転角、すなわち、ステアリングホイール11の操舵角を検出する操舵角センサ51が設けられている。
 転舵部2は、ピニオンシャフト21、ステアリングギア22、転舵モータ23を備える。ステアリングギア22は、ラック&ピニオン式のステアリングギアであり、ピニオンシャフト21の回転に応じて左右前輪5FL,5FRを転舵する。
 転舵モータ23は、例えば、ブラシレスモータであり、出力軸が図外の減速機を介してステアリングギア22と接続され、操転舵コントローラ4からの指令に応じて、ステアリングギア22に転舵するための転舵トルクを出力する。
  なお、転舵モータ23には、反力モータ13の絶対回転角を検出することで、左右前輪5FL,5FRの転舵角を検出する転舵角センサ52が設けられている。
 ステアリングクラッチ3は、操舵部1のコラムシャフト12と転舵部2のピニオンシャフト21との間に設けられ、解放により操舵部1と転舵部2とを機械的に切り離し、締結により操舵部1と転舵部2とを機械的に接続する。
 [制御系の構成]
  操転舵コントローラ4は、転舵角サーボ制御部41と操舵角サーボ制御部42とを備える。
  転舵角サーボ制御部41は、自動運転コントローラ100からの目標転舵角指令に基づき、ステアリングホイール11を回動(操舵)させる操舵指令角と、左右前輪5FL,5FRを転舵させる転舵指令角とを生成する。さらに、この転舵指令角に基づいて転舵部2の転舵モータ23の駆動を制御する。
 操舵角サーボ制御部42は、操舵指令角および検出する操舵角などに基づいて、コラムシャフト12に反力を付与させたり、スアテリングホイール11を所定角度だけ回動させたりする反力モータ電流を操舵部1の反力モータ13へ出力する。なお、反力モータ13は、ドライバが操舵を行うステアバイワイヤ制御時には、ドライバの操舵に対する反力トルクをコラムシャフト12に与える。また、反力モータ13は、ドライバが操舵を行わない自動運転制御時には、左右前輪5FL,5FRの転舵量に応じてステアリングホイール11を回動(操舵)させるための操舵反力トルクをコラムシャフト12に与える。
 次に、図2に基づいて、操転舵コントローラ4の構成をさらに詳細に説明する。
  操転舵コントローラ4は、車載された2つのコントロールモジュールIDM,DASにより構成され、上述した転舵角サーボ制御部41、操舵角サーボ制御部42は、両コントロールモジュールIDM,DASに跨って構成されている。
 転舵角サーボ制御部41は、操舵角・転舵角比率調整部411と、操舵角遅れ補償部412と、可変ギア比設定部413と、ロバストモデルマッチング制御部414を備える。
 操舵角・転舵角比率調整部411は、自動運転コントローラ100からの目標転舵角指令に基づいて、目標転舵角指令に対する操舵指令角の比率(配分)を調整するもので、バンドパスフィルタの機能を有する。
  具体的には、操舵角・転舵角比率調整部411は、目標転舵角指令が修正舵に相当する角度および角速度である修正舵領域の場合は、操舵指令角の配分を、非修正舵領域の場合と比較して低く抑える。特に、本実施の形態1では、修正舵領域である場合、操舵指令角の配分を「0」としてステアリングホイール11を操舵させないように、左右前輪5F,5FRの転舵のみ行う。
 また、操舵角・転舵角比率調整部411は、目標転舵角指令が修正舵に相当する角度および角速度ではない非修正舵領域の場合には、目標転舵角指令に基づいて操舵指令角を生成し、ステアリングホイール11を操舵および左右前輪5F,5FRの転舵を行う。すなわち、自動運転制御時でドライバがステアリングホイール11の操舵を行っていない場合、目標転舵角指令に応じて左右前輪5FL,5FRを転舵させる際には、ステアリングホイール11もその転舵角に応じて操舵させてドライバに転舵方向を報せる。
 図3は、操舵角・転舵角比率調整部411を示すブロック図である。
  操舵角・転舵角比率調整部411は、二次のローパスフィルタ411aおよびリミッタ部411bを備える。
 二次のローパスフィルタ411aは、目標転舵角指令のうち、大きくゆっくりとした操舵となる転舵角である低周波成分を通過させる。
  リミッタ部411bは、目標転舵角指令から低周波成分を減算部411cで減算した目標転舵角指令の高周波成分を入力する。そして、リミッタ部411bは、目標転舵角指令の高周波成分から、図4に示す角度閾値θlim以下であり、転舵角速度(変化率)が角速度閾値ωlim以上(上限ωh)の領域(修正舵領域)のものを通過させる。つまり、角度閾値θlim以下、かつ、角速度閾値ωlim以上である修正舵領域の目標転舵角指令は、後述するライントレース制御時の修正舵に相当する指令値である。
 そして、減算部411dは、高周波成分から、リミッタ部411bを通過した修正舵領域の目標転舵角指令を減算し、加算部411eにおいて、目標転舵角指令の低周波成分に加算する。
 したがって、操舵角・転舵角比率調整部411から操舵角サーボ制御部42に出力する操舵指令角は、図4に示す修正舵領域(図4の角度閾値θlim以下、かつ、角速度閾値ωlim以上であり上限値ωh以下の領域)のものが取り除かれている。
  ここで、修正舵領域を判別する角度閾値θlimとしては、本実施の形態1では、車速により多少異なるが、5deg程度の値、さらに好ましくは、3.3deg程度の値を用いる。また、修正舵領域を判別する角速度閾値ωlimとしては、5~10deg/sの範囲内の値を用いる。
 図2に戻り、操舵角遅れ補償部412は、ステアリングホイール11の重さによる遅れ分を付加して目標転舵指令を作成する。すなわち、 操舵角遅れ補償部412では、減算部412aにおいて、大きくゆっくりとした転舵を示す目標転角指令の低周波成分から、その一次遅れ分を減算し、これを、転舵指令角に加算(加算部412b)することにより、ステアリングホイール11の重さによる遅れ分を付加した転舵指令角とする。
 可変ギア比設定部413は、ステアリングホイール11の操舵が行われた場合に、その操舵角に応じた角度で左右前輪5FL,5FRを転舵させるにあたり、操舵角に対する転舵角の比率であるギア比を車速などに応じて可変設定し、可変ギア指令角を生成する。
 そして、この可変ギア指令角と、目標転舵角指令に応じて生成された転舵指令角とを、加算部415において加算して最終転舵指令角を生成する。すなわち、ステアバイワイヤ制御時には、可変ギア指令角が最終転舵指令角となる。一方、自動運転制御時には、可変ギア指令角と転舵指令角との加算値が最終転舵指令角となる。
  ロバストモデルマッチング制御部414は、予め設定されたロバストモデルにより最終転舵指令角の最適化を図り、これを転舵モータ23に転舵モータ電流として出力する。
 次に、操舵角サーボ制御部42について説明する。
  操舵角サーボ制御部42は、逆可変ギア比設定部421、舵角サーボ部422、疑似I軸力算出部423、PSマップ部424、ステアリング回転阻害要素算出部425を備える。
 逆可変ギア比設定部421は、操舵角・転舵角比率調整部411において生成された操舵指令角に対し、可変ギア比設定部413とは逆のギア比を与えた角度指令値(操舵角)を生成し、舵角サーボ部422へ出力する。
 舵角サーボ部422は、角度指令値(操舵角)に追従してステアリングホイール11を回動(操舵)させるよう反力モータ13の発生トルクを制御する指令である反力指令を生成し出力する。なお、この舵角サーボ部422は、角度指令値(操舵角)への追従にあたり、操舵角センサ51が検出する操舵角に基づくフィードバック制御を行う。すなわち、舵角サーボ部422は、角度指令値と検出操舵角との偏差に応じて反力指令を生成する。なお、この反力指令は、自動運転制御時には操舵指令となる。
 また、舵角サーボ部422の出力には、PSマップ部424の出力が加算部426にて加算される。疑似I軸力算出部423およびPSマップ部424は、反力指令に対してオフセット指令によるフィードフォワード制御を行う。
 ステアリング回転阻害要素算出部425は、タイヤ横力によって発生する操舵反力トルク(SAT反力)や、操舵部1における粘性やフリクションによる操舵反力トルクが加算部427にて加算される。なお、操舵反力トルクは、タイヤ横力-操舵反力トルク変換マップなどに基づいて演算する。
 次に、自動運転コントローラ100における目標転舵角指令の生成について簡単に説明する。
  自動運転コントローラ100は、自動運転制御として自車両を道路の白線に沿って走行させるように左右前輪5FL,5FRの転舵を制御するライントレース制御を実行する。
  そして、このライントレース制御として、横位置、曲率、ヨー角、ヨーレイトに基づいて、外乱(横風、路面凹凸、轍、路面カントなど)に対する車両の安定性向上を目的とするスタビリティ制御を実行して目標転舵角指令を生成している。
 このスタビリティ制御としては、ヨー角フィードバック制御および横位置フィードバック制御を実行する。
  ヨー角フィードバック制御は、白線と自車進行方向との成す角度であるヨー角に応じて転舵角を補正し、外乱により発生したヨー角を減少させる。
  横位置フィードバック制御は、白線までの距離(横位置)に応じて転舵角を補正し、外乱により発生したヨー角の積分値である横位置変化を減少させる。
 具体的には、図5に示すように、自動運転コントローラ100は、目標転舵角指令を形成する構成として、ヨー角に応じた反発力演算部101、横位置に応じた反発力演算部102、目標ヨーモーメント演算部103、目標ヨー加速度演算部104、目標ヨーレイト演算部105、目標転舵角演算部106を備える。
 ヨー角に応じた反発力演算部101は、ヨー角と曲率と車速とに基づき、ヨー角フィードバック制御において外乱により発生したヨー角を減らすための車両の反発力を演算する。
 横位置に応じた反発力演算部102は、ヨー角と曲率と車速と横位置とに基づいて、横位置フィードバック制御において外乱により発生した横位置変化を減らすための車両の反発力を演算する。
 目標ヨーモーメント演算部103は、ヨー角を減らすための車両の反発力と横位置変化を減らすための車両の反発力とを加算した横方向反発力に対し、車両重量に対する後輪軸重の割合と、ホイールベースとを乗じた値を目標ヨーモーメントとする。
 目標ヨー加速度演算部104は、目標ヨーモーメントにヨー慣性モーメント係数を乗じて目標ヨー加速度を演算する。
  目標ヨーレイト演算部105は、目標ヨー加速度に車頭時間を乗じて目標ヨーレイトを演算する。
 目標転舵角演算部106は、目標ヨーレイトφ*、ホイールベースWHEEL_BASE、車速Vおよび車両の特性速度vChなどに基づき、外乱抑制指令転舵角δst*を演算する。ここで、外乱抑制指令転舵角δst*は、下記の演算式(1)により求めることができる。また、車両の特性速度Vchとは、既知の"アッカーマン方程式"の中のパラメータであり、車両のセルフステアリング特性を表すものである。
δst* = (φ*×WHEEL_BASE×(1+(V/vCh)2)×180)/(V×M_PI) ・・・(1)
なお、M_PIは所定の係数である。
 リミッタ処理部107は、外乱抑制指令転舵角δst*の最大値および変化率の上限を制限する。最大値は、コンベンショナルな操舵装置において、ステアリングホイール11の操舵角が中立位置付近の遊びの角度範囲(例えば、左右3°)にあるときの当該遊びの範囲に対応する左右前輪5FL,5FRの転舵角範囲(例えば、左右0.2°)とする。なお、コンベンショナルな操舵装置とは、操舵部1と転舵部2とが機械的に接続された操舵装置である。
 [自動運転制御時の操舵角、転舵角の制御]
  次に、上述した操転舵コントローラ4による自動運転制御時における操舵角、転舵角の制御について、図6のフローチャートに基づいて説明する。なお、この制御は、走行中の自度運転制御時に実行を開始するもので、自動運転コントローラ100からの目標転舵角指令に応じて、左右前輪5FL,5FRを転舵するとともに、この転舵をドライバに報せるべくステアリングホイール11を操舵する。
 ステップS1では、自動運転コントローラ100から目標転舵角指令を受信する。なお、この受信は、転舵角サーボ制御部41にて行う。
 続くステップS2では、目標転舵角指令の角度が角度閾値θlim以下、かつ、目標転舵角指令の角速度が角速度閾値ωlim以上の修正舵領域であるか判定する。そして、目標転舵角指令が、角度閾値θlim以下、かつ、角速度閾値ωlim以上の修正舵領域である場合はステップS3に進み、角度閾値θlim以下でないか、角速度閾値ωlim以上でないかの非修正舵領域の場合はステップS4に進む。
 目標転舵角指令の角度および角速度が、角度閾値θlim以下、かつ、角速度閾値ωlim以上の修正舵領域である場合に進むステップS3では、目標転舵角指令が微舵の修正操舵と判定する。そして、目標転舵角指令から転舵指令角を生成しこれを最終転舵指令角とする。すなわち、転舵角サーボ制御部41では、操舵角サーボ制御部42への操舵指令角の配分を「0」としてステアリングホイール11を操舵させないようにする。そして、転舵角サーボ制御部41から、転舵部2へのみ転舵指令角を出力し、この転舵指令角から最終転舵指令角を生成し左右前輪5FL,5FRの転舵を行う。
 一方、目標転舵角指令の角度および角速度が、角度閾値θlim以下でないか、角速度閾値ωlim以上でないかの非修正舵領域の場合に進むステップS4では、非修正操舵(大きくゆっくりとした操舵)と判断する。そして、転舵角サーボ制御部41では、操舵角サーボ制御部42に操舵指令角を配分する。
  続くステップS5では、操舵角サーボ制御部42の舵角サーボ部422において、操舵指令角と検出されている操舵角との偏差に応じて反力指令を生成する(フィードバック制御)。そして、フィードフォワード制御によるオフセット指令およびステアリングホイール11の回転を阻害する要素分を加算して、反力モータ電流を出力し反力モータ13を駆動させる。
 続くステップS6では、可変ギア比設定部413により操舵角センサ51が検出する操舵角から、操舵角に応答する転舵角である可変ギア指令角を演算する。なお、この操舵角に対する可変ギア指令角は、車速に応じて可変としている。
  そして、ステップS7において、可変ギア指令角と、転舵角サーボ制御部41において生成した転舵指令角とを加算して最終転舵指令角とする。なお、ステップS2においてYESと判定した場合、操舵指令角は生成しないため、ステップS3において生成した転舵指令角のみにより最終転舵指令角を生成する。
 ステップS8では、ロバストモデルマッチング制御部414において、ロバストモデルマッチング制御により、左右前輪5FL、5FRの転舵角(タイや角)が最終転舵指令角となるように、転舵モータ23を駆動させる。
 (実施の形態1の作用)
  以下に、実施の形態1の車両のステアリング制御装置の作用を説明する。
  この作用の説明において、まず、実施の形態1の車両のステアリング制御装置の解決課題を比較例に基づいて説明する。
  この比較例は、自動運転コントローラ100から受信した目標転舵角指令から、操舵角領域、非操舵領域にかかわらず、転舵指令角、操舵指令角を生成し、かつ、いずれの領域でも操舵指令角の配分を同様にした場合である。
 この場合、左右前輪5FL,5FRを転舵する際には、ステアリングホイール11も、その逆可変ギア比に応じた量だけ回動(操舵))する。これにより、ドライバは、自動運転による転舵時に、ステアリングホイール11が回動することにより、転舵方向や転舵量を視覚的に知ることができる。
 しかしながら、自動運転制御においてライントレース制御を実行する場合のような高速走行時には、時々刻々と微舵による修正舵が必要となる。この場合、ステアリングホイール11が、修正舵に応じて小刻みに回動し、ドライバは単にステアリングホイール11が振動している(ぴくつきが生じる)ように見え、ドライバに違和感を与えるおそれがある。
  また、このようにステアリングホイール11に振動(ぴくつき)が生じた場合、ドライバに対して、ステアリングホイール11の動きが滑らかでない印象を与える。
 図7は、自動運転時の比較例と本実施の形態1との評価結果を示す図である。
  この図に示すように、複数の比較例において、ステアリング作動の滑らかさの評価が低くなっている。これは、上述のステアリングホイール11の振動(ぴくつき)による印象が与えた評価である。
 次に、本実施の形態1の場合を説明する。
  (目標転舵角指令が修正舵領域の場合)
  本実施の形態1では、自動運転コントローラ100が出力する目標転舵角指令により、転舵角サーボ制御部41の操舵角・転舵角比率調整部411において転舵指令角と操舵指令角とに配分する。
 この配分において、目標転舵角指令が、角度閾値θlim以下、かつ、角速度閾値ωlim以上の修正舵領域の場合は、目標転舵角指令が修正舵と判断し、操舵指令角への配分を「0」とし、転舵指令角のみを生成する。
 したがって、左右前輪5FL,5FRに対しては、修正舵のための転舵を行い、円滑にライントレース制御を実行しつつ、ステアリングホイール11に対しては、修正舵に対応する回動(操舵)は行わない。
 よって、ステアリングホイール11に、修正舵に応じた小刻みな回動(ぴくつき)が生じることがない。これにより、ドライバに対して、ステアリングホイール11のぴくつきによる違和感を与えることがないとともに、ステアリングホイール11の動きが滑らかでない印象を与えることがない。
  図7において、太い実線は、実施の形態1の評価結果を示しており、ステアリング作動の滑らかの評価が比較例と比べて高いことがわかる。
 さらに、図7に示すように、本実施の形態1の評価結果では、ライントレースの適切さの評価が高い。
  これは、1つには、上記のように、目標転舵角指令が修正舵領域の場合に、左右前輪5FL、5FRの転舵はキャンセルしないことがある。
  そして、これに加え、自動運転コントローラ100が、目標転舵角指令を生成するのにあたり、ヨー角、横位置に応じた反発力を演算し、これに基づいて、目標転舵角指令を生成した結果である。
 (非修正操舵相当の目標転舵指令角の場合)
  目標転舵角指令が、角度閾値θlimよりも大きいか、角速度閾値ωlim未満の非修正舵領域の場合、大きくゆっくりとした操舵(非修正舵)と判断する。この場合、転舵角サーボ制御部41の操舵角・転舵角比率調整部411は、目標転舵角指令から転舵指令角と操舵指令角との両方を生成する(ステップS3)。
 したがって、左右前輪5FL,5FRを転舵させてライントレース制御を実行しつつ、ステアリングホイール11を、転舵角に応じて操舵させ、ドライバは、自車両の転舵および転舵量をステアリングホイール11の動きにより視覚的に知ることができる。
 さらに、このような大きくゆっくりとした操舵を行う目標転舵角指令により形成される転舵指令角には、操舵角遅れ補償部412により、ハンドルの重さによる遅れ分を考慮した遅れを与える。このため、左右前輪5FL,5FRは遅れを考慮した指令で転舵させてライントレース性を向上させつつ、ステアリングホイール11はドライバの操作の抵抗にならない滑らかな操舵が可能となる。
 (実施の形態1の効果)
  以下に、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置の効果を列挙する。
  1)実施の形態1の車両のステアリング制御方法は、
ステアリングホイール11と、
ステアリングホイール11と機械的に切り離された転舵輪としての左右前輪5FL,5FRと、
ステアリングホイール11に操舵反力トルクを付与する操舵アクチュエータとしての反力モータ13と、
左右前輪5FL,5FRを転舵させる転舵アクチュエータとしての転舵モータ23と、
反力モータ13と転舵モータ23とを、走行環境情報に基づいて駆動させてステアリングホイール11の操舵角および左右前輪5FL,5FRの転舵角を制御する制御装置としての操転舵コントローラ4と、
を備えた車両のステアリング制御方法であって、
走行環境情報に基づいて作成された目標転舵角指令を入力し(ステップS1)、
目標転舵角指令が、角度が角度閾値θlim以下、かつ、角速度が角速度閾値ωlim以上の修正舵領域(第1の転舵角指令領域)か、修正舵領域以外の非修正舵領域(第2の転舵角指令領域)かを判定し(ステップS2)、
目標転舵角指令に基づいて操舵指令角と転舵指令角とを生成するとき、目標転舵角指令が修正舵領域の場合の操舵指令角の配分を、目標転舵角指令が非修正舵領域の場合の操舵指令角の配分と比較して低く抑え(S3)、
操舵指令角に応じて反力モータ13を駆動させ、転舵指令角に応じて転舵モータ23を駆動させる(S5,S8)。
  したがって、ライントレース制御時に、修正舵を頻繁に行った場合に、目標転舵角指令の角度および角速度が修正舵領域である場合は、操舵指令角の配分を抑え、ステアリングホイール11の動きを抑える。
  よって、ステアリングホイール11のぴくつくような動きでドライバに与える違和感を抑えることができる。
  特に、本実施の形態1では、目標転舵角指令から操舵指令角への配分を「0」とするため、ステアリングホイール11の動きとして現れないようにできる。よって、ステアリングホイール11の動きによりドライバに与える違和感を確実に抑えることができる。
 2)実施の形態1の車両のステアリング制御方法は、
修正舵指令領域では、操舵指令角を生成することなく転舵指令角のみ生成し、非修正舵指令領域では、では、目標転舵角指令から操舵指令角と転舵指令角とを生成する。
  したがって、修正舵を頻繁に行った場合に、目標転舵角指令の修正舵指令領域では、ステアリングホイール11は全く動かず、より確実にドライバに違和感を与えないようにすることができる。
  また、非修正舵である大きくゆったりとした転舵を行う際には、左右前輪5FL,5FRの転舵の際には、ステアリングホイール11を操舵させ、ドライバに、自車両が転舵を行っていることを視覚的に報せることができる。
 3)実施の形態1の車両のステアリング制御方法は、
修正舵指令領域は、目標走行ラインに沿って走行するライントレース制御中の修正舵に相当する角度閾値θlim以下の角度および角速度閾値ωlim以上の角速度の領域である。
  これにより、ライントレース制御中の修正舵に対するステアリングホイール11の動きを確実に抑えることができる。
 4)実施の形態1の車両のステアリング制御方法は、
操舵角・転舵角比率調整部411において修正舵指令領域の目標転舵角指令から転舵指令角を生成する際は、ローパスフィルタ411sを通過した低周波成分を減算してリミッタ部411bを通過した目標転舵角指令の高周波成分から転舵指令角を生成する。
  したがって、転舵指令角に、精度良く修正微舵に相当する転舵を反映させることが可能となる。
 5)実施の形態1の車両のステアリング制御方法は、
非修正舵指令領域では、操舵角・転舵角比率調整部411において目標転舵角指令から操舵指令角を生成する際に、逆可変ギア比設定部421において逆可変ギア比を転舵指令角に対して与えて操舵指令角を生成する。
  したがって、左右前輪5F、5FRを転舵させた際に、ステアリングホイール11を操舵して転舵した際と同様の量だけステアリングホイール11を動かすことができる。それにより、ドライバに対して、ステアリングホイール11の動きで、自車両が転舵を行っていることを報せることに加え、その転舵量をステアリングヒール11の回動量により視覚的に報せることができる。
 6)実施の形態1の車両のステアリング制御方法は、
目標転舵角指令の生成は、ヨー角とヨーレイトとの少なくとも一方に基づいて生成する。
  したがって、ライントレース制御におけるライントレース性を向上できる。すなわち、外乱などによりヨー角が発生した場合に、ヨー角を減少させて外乱に対する車両の安定性向上を図ることができる。これにより、図7の評価結果に示されるように、ライントレース性を向上させることができる。
 7)実施の形態1の車両のステアリング制御方法は、
操舵角遅れ補償部412により、転舵指令角に、ステアリングホイール11の重さによる遅れ分を補償する。
  したがって、操舵角サーボ制御部42において、低応答のサーボとした場合に、ステアリングホイール11の重さで、操舵に遅れが生じるが、この遅れを補償して転舵させることができる。これにより、上記のようにライントレース性を向上させつつ、ステアリングホイール11は、ドライバの操作の抵抗にならない滑らかに操舵させることが可能となる。
 8)実施の形態1の車両のステアリング制御方法は、
ステアリングホイール11と、
ステアリングホイール11と機械的に切り離された転舵輪としての左右前輪5FL,5FRと、
ステアリングホイール11に操舵反力トルクを付与する操舵アクチュエータとしての反力モータ13と、
左右前輪5FL,5FRを転舵させる転舵アクチュエータとしての転舵モータ23と、
反力モータ13と転舵モータ23とを、走行環境情報に基づいて制御する制御装置としての操転舵コントローラ4と、
を備え、
操転舵コントローラ4は、
走行環境情報に基づいて作成された目標転舵角指令を入力し(ステップS1)、
目標転舵角指令が、角度が角度閾値θlim以下、かつ、角速度が角速度閾値ωlim以上の修正舵領域(第1の転舵角指令領域)か、修正舵領域以外の非修正舵領域(第2の転舵角指令領域)かを判定し(ステップS2)、
目標転舵角指令に基づいて操舵指令角と転舵指令角とを生成するとき、目標転舵角指令が修正舵領域の場合の操舵指令角の配分を、目標転舵角指令が非修正舵領域の場合の操舵指令角の配分と比較して低く抑え(S3)、
操舵指令角に応じて反力モータ13を駆動させ、転舵指令角に応じて転舵モータ23を駆動させる(S5,S8)。
  したがって、ライントレース制御時に、修正舵を頻繁に行った場合に、目標転舵角指令の角度および角速度が修正舵領域である場合は、操舵指令角の配分を抑え、ステアリングホイール11の動きを抑える。
  よって、ステアリングホイール11のぴくつくような動きでドライバに与える違和感を抑えることができる。
  特に、本実施の形態1では、目標転舵角指令から操舵指令角への配分を「0」とするため、ステアリングホイール11の動きとして現れないようにできる。よって、ステアリングホイール11の動きによりドライバに与える違和感を確実に抑えることができる。
 以上、本開示の車両のステアリング制御方法および車両のステアリング制御装置を実施の形態に基づき説明してきたが、具体的な構成については、この実施の形態に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 例えば、実施の形態では、転舵アクチュエータ、操舵アクチュエータとして、それぞれ転舵モータ、反力モータを示したが、これに限らず、モータ以外のアクチュエータを用いてもよい。
  さらに、実施の形態では、ステアリングホイールと転舵輪とは、ステアリングクラッチの解放時に機械的に切り離されているが、ステアリングクラッチを締結することにより、両者を機械的に接続することが可能なものを示したが、これに限定されない。すなわち、ステアリングホイールと転舵輪とが、全く機械的に接続することがないように切り離されたものに適用してもよい。
 また、目標転舵角指令の角速度が所定値以上の第1の転舵角指令領域(修正舵指令領域)の場合に、第2の転舵角指令領域(非修正舵指令領域)の場合と比較して、操舵指令角への配分を低く抑えるのにあたり、配分を「0」とする例を示した。しかしながら、その配分は、第2の転舵角指令領域(非修正舵指令領域)の場合の操舵指令角に対して相対的に低くすればよいもので、配分は「0」としなくてもよい。例えば、目標転舵角指令の転舵角が小さい程、あるいは、角速度が高い程、操舵指令角への配分を低くするなどのように配分量を可変設定するようにしてもよい。要は、第1の転舵角指令領域(修正舵指令領域)の場合に、第2の転舵角指令領域(非修正舵指令領域)の場合と比較して、操舵指令角への配分を低く抑えればよい。
 また、実施の形態では、目標転舵角指令は、自動運転コントローラが、自動運転制御としてライントレース制御を実行する際に生成されるものを示したが、これに限定されない。例えば、先行車両に追従する制御などにより生成されたものでもよい。あるいは、高速走行時以外の駐車時などにおける低速運転時に適用しても、本来、転舵を報せる情報としては不要のステアリングホイールの動きを抑えることが可能である。
 また、実施の形態では、目標転舵角指令から転舵指令角に配分する際に、目標転舵角指令の高周波成分から転舵指令角を生成し、これに操舵角に相当する低周波の一次遅れ成分を加算して転舵指令角としたものを示したが、これに限定されない。例えば、目標転舵角指令を、そのまま転舵指令角としてもよい。
 また、実施の形態では、目標転舵角指令の生成をヨー角から形成するものを示したが、要は、ライントレースの目標に対するヨー角あるいはヨーレイトが分かればよく、ヨーレイトから、あるいは、ヨー角とヨーレイトから目標転舵角指令を生成してもよい。

Claims (8)

  1.  ステアリングホイールと、
     前記ステアリングホイールと機械的に切り離された転舵輪と、
     前記ステアリングホイールに操舵反力トルクを付与する操舵アクチュエータと、
     前記転舵輪を転舵させる転舵アクチュエータと、
     前記操舵アクチュエータと前記転舵アクチュエータとを走行環境情報に基づいて駆動させて前記転舵輪の転舵角および前記ステアリングホイールの操舵角を制御する制御装置と、
    を備えた車両のステアリング制御方法であって、
     前記走行環境情報に基づいて作成された目標転舵角指令を入力し、
     前記目標転舵角指令が、角度が所定値以下、かつ、角速度が所定値以上の第1の転舵角指令領域か、この第1の転舵角指令領域以外の第2の転舵角指令領域かを判定し、
     前記目標転舵角指令に基づいて操舵指令角と転舵指令角とを生成するとき、前記目標転舵角指令が前記第1の転舵角指令領域の場合の前記操舵指令角の配分を、前記第2の転舵角指令領域の場合の前記操舵指令角の配分と比較して低く抑え、
     前記操舵指令角に応じて前記操舵アクチュエータを駆動させ、前記転舵指令角に応じて前記転舵アクチュエータを駆動させる車両のステアリング制御方法。
  2.  請求項1に記載の車両のステアリング制御方法において、
     前記第1の転舵角指令領域では、前記操舵指令角を生成することなく前記転舵指令角のみ生成し、前記第2の転舵角指令領域では、前記目標転舵角指令から前記操舵指令角と前記転舵指令角とを生成する車両のステアリング制御方法。
  3.  請求項1または請求項2に記載の車両のステアリング制御方法において、
     前記第1の転舵角指令領域は、目標走行ラインに沿って走行中の修正舵に相当する角度および角速度である車両のステアリング制御方法。
  4.  請求項1~請求項3のいずれか1項に記載の車両のステアリング制御方法において、
     前記第1の転舵角指令領域の前記目標転舵角指令から前記転舵指令角を生成する際は、前記目標転舵角指令の高周波成分から前記転舵指令角を生成する車両のステアリング制御方法。
  5.  請求項1~請求項4のいずれか1項に記載の車両のステアリング制御方法において、
     前記第2の転舵角指令領域では、前記目標転舵角指令から前記操舵指令角を生成する際に、前記ステアリングホイールの操舵に対して前記転舵輪に与える可変ギア比の逆の比である逆可変ギア比を前記転舵指令角に対して与える車両のステアリング制御方法。
  6.  請求項1~請求項5のいずれか1項に記載の車両のステアリング制御方法において、
     前記目標転舵角指令の生成は、ヨー角とヨーレイトとの少なくとも一方に基づいて行う車両のステアリング制御方法。
  7.  請求項1~請求項6のいずれか1項に記載の車両のステアリング制御方法において、
     前記転舵指令角に、前記ステアリングホイールの重さによる遅れ分を補償する車両のステアリング制御方法。
  8.  ステアリングホイールと、
     前記ステアリングホイールと機械的に切り離された転舵輪と、
     前記ステアリングホイールに操舵反力トルクを付与する操舵アクチュエータと、
     前記転舵輪を転舵させる転舵アクチュエータと、
     前記操舵アクチュエータと前記転舵アクチュエータとを、走行環境情報に基づいて制御する制御装置と、
    を備え、
     前記制御装置は、
    前記目標転舵角指令が、角度が所定値以下、かつ、角速度が所定値以上の第1の転舵角指令領域か、この第1の転舵角指令領域以外の第2の転舵角指令領域かを判定し、
    前記目標転舵角指令に基づいて操舵指令角と転舵指令角とを生成し、かつ、前記目標転舵角指令が前記第1の転舵角指令領域の場合の前記操舵指令角の配分を、前記第2の転舵角指令領域の場合の前記操舵指令角の配分と比較して低く抑え、
    前記操舵指令角に応じて前記操舵アクチュエータを駆動させ、前記転舵指令角に応じて前記転舵アクチュエータを駆動させる車両のステアリング制御装置。
PCT/JP2017/044617 2017-12-12 2017-12-12 車両のステアリング制御方法および車両のステアリング制御装置 WO2019116453A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019559453A JP6690794B2 (ja) 2017-12-12 2017-12-12 車両のステアリング制御方法および車両のステアリング制御装置
PCT/JP2017/044617 WO2019116453A1 (ja) 2017-12-12 2017-12-12 車両のステアリング制御方法および車両のステアリング制御装置
CN201780097444.3A CN111433110B (zh) 2017-12-12 2017-12-12 车辆的转向控制方法及车辆的转向控制装置
EP17934673.9A EP3725644B1 (en) 2017-12-12 2017-12-12 Vehicle steering control method and vehicle steering control device
US16/771,267 US10829153B1 (en) 2017-12-12 2017-12-12 Vehicle steering control method and vehicle steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044617 WO2019116453A1 (ja) 2017-12-12 2017-12-12 車両のステアリング制御方法および車両のステアリング制御装置

Publications (1)

Publication Number Publication Date
WO2019116453A1 true WO2019116453A1 (ja) 2019-06-20

Family

ID=66819061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044617 WO2019116453A1 (ja) 2017-12-12 2017-12-12 車両のステアリング制御方法および車両のステアリング制御装置

Country Status (5)

Country Link
US (1) US10829153B1 (ja)
EP (1) EP3725644B1 (ja)
JP (1) JP6690794B2 (ja)
CN (1) CN111433110B (ja)
WO (1) WO2019116453A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109679A (zh) * 2020-09-21 2020-12-22 重庆交通大学 防双手猛打方向盘的装置
CN112140868A (zh) * 2020-10-13 2020-12-29 武汉鲸鱼座机器人技术有限公司 一种满足自动驾驶冗余要求的底盘架构与控制方法
JP2021014220A (ja) * 2019-07-15 2021-02-12 トヨタ自動車株式会社 車両用外乱対処システム
WO2021085178A1 (ja) * 2019-11-01 2021-05-06 株式会社デンソー 回転機制御装置
WO2021085177A1 (ja) * 2019-11-01 2021-05-06 株式会社デンソー 回転機制御装置
JP2021078340A (ja) * 2019-11-01 2021-05-20 株式会社デンソー 回転機制御装置
JP2021078341A (ja) * 2019-11-01 2021-05-20 株式会社デンソー 回転機制御装置
WO2022030423A1 (ja) * 2020-08-03 2022-02-10 株式会社デンソー 複数モータ駆動システム
JP2022105819A (ja) * 2021-01-05 2022-07-15 いすゞ自動車株式会社 操舵制御装置
DE102021202278A1 (de) 2021-03-09 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Beeinflussen und/oder Betreiben eines Lenksystems und Lenksystem insbesondere für ein Fahrzeug
DE102021202285A1 (de) 2021-03-09 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zur Beeinflussung eines Fahrzeugverhaltens
EP4112422A1 (en) * 2021-06-28 2023-01-04 Toyota Jidosha Kabushiki Kaisha Vehicle control system and vehicle control method
WO2023012738A1 (en) * 2021-08-06 2023-02-09 Alaimo Samantha Maria Calogera Vehicle steering system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016113260B4 (de) * 2016-07-19 2022-05-25 Hubtex Maschinenbau Gmbh & Co. Kg Betriebsverfahren und Flurförderzeug
KR102049923B1 (ko) * 2018-08-27 2019-11-28 현대모비스 주식회사 엠디피에스 시스템의 제어 장치 및 방법
JP7445387B2 (ja) * 2019-02-27 2024-03-07 株式会社ジェイテクト 操舵制御装置
US11498619B2 (en) * 2020-01-15 2022-11-15 GM Global Technology Operations LLC Steering wheel angle bias correction for autonomous vehicles using angle control
CN113401217B (zh) * 2021-01-06 2022-09-13 丰疆智能(深圳)有限公司 自动驾驶的转向控制方法和方向盘转向单元
DE102021202482B4 (de) * 2021-03-15 2023-06-29 Continental Automotive Technologies GmbH Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs
CN113665664B (zh) * 2021-08-06 2022-08-19 上海汽车工业(集团)总公司 Sbw角度跟随前馈控制方法、存储介质和控制系统
DE102021209078A1 (de) * 2021-08-18 2023-02-23 Volkswagen Aktiengesellschaft Steer-by-Wire-Lenksystem und Verfahren zum Betreiben eines Steer-by-Wire-Lenksystems
US11801866B2 (en) 2021-09-29 2023-10-31 Canoo Technologies Inc. Emergency motion control for vehicle using steering and torque vectoring
US11845422B2 (en) 2021-09-29 2023-12-19 Canoo Technologies Inc. Path tracking control for self-driving of vehicle with yaw moment distribution
US11845465B2 (en) * 2021-09-29 2023-12-19 Canoo Technologies Inc. Autonomous lateral control of vehicle using direct yaw moment control
DE102022200403A1 (de) * 2022-01-14 2023-07-20 Volkswagen Aktiengesellschaft Steer-by-Wire-Lenksystem und Verfahren zum Betreiben eines Steer-by-Wire-Lenksystems
CN115214774B (zh) * 2022-04-01 2023-09-22 广州汽车集团股份有限公司 后轮控制方法、装置、计算机设备及汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137122A (ja) * 2001-10-31 2003-05-14 Toyota Motor Corp 車輌用自動操舵装置
JP2004268659A (ja) * 2003-03-06 2004-09-30 Toyota Motor Corp 車輌用操舵制御装置
JP2015003727A (ja) * 2014-09-01 2015-01-08 Ntn株式会社 ステアバイワイヤの操舵反力制御装置
JP2015009761A (ja) * 2013-07-02 2015-01-19 日産自動車株式会社 操舵制御装置
JP2016097827A (ja) 2014-11-21 2016-05-30 富士重工業株式会社 車両の走行制御装置
WO2016162902A1 (ja) * 2015-04-09 2016-10-13 日産自動車株式会社 車線維持支援装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3338702A1 (de) * 1982-10-28 1984-05-03 Toyo Kogyo Co. Ltd., Hiroshima Vierrad-lenkung fuer fahrzeuge
JP3160751B2 (ja) * 1995-07-20 2001-04-25 本田技研工業株式会社 無段変速駆動車両における操舵制御装置
JP3627120B2 (ja) * 1997-02-19 2005-03-09 光洋精工株式会社 車両用操舵装置
DE10137292A1 (de) * 2001-08-01 2003-03-06 Continental Teves Ag & Co Ohg Fahrer-Assistenzsystem und Verfahren zu dessen Betrieb
JP4107471B2 (ja) * 2001-11-19 2008-06-25 三菱電機株式会社 車両用操舵装置
JP4231416B2 (ja) * 2004-01-07 2009-02-25 トヨタ自動車株式会社 車両の操舵装置
JP2005297622A (ja) * 2004-04-07 2005-10-27 Toyoda Mach Works Ltd 操舵システム
JP4608948B2 (ja) * 2004-05-27 2011-01-12 日産自動車株式会社 車両用操舵装置
US7500537B2 (en) * 2004-08-25 2009-03-10 Toyota Jidosha Kabushiki Kaisha Steering apparatus for vehicle
JP4622448B2 (ja) * 2004-10-19 2011-02-02 株式会社ジェイテクト 車両用操舵装置
JP4492471B2 (ja) * 2005-07-25 2010-06-30 トヨタ自動車株式会社 パワーステアリング装置。
JP2007269047A (ja) * 2006-03-30 2007-10-18 Honda Motor Co Ltd 操舵反力制御装置
JP5286982B2 (ja) * 2007-08-02 2013-09-11 日産自動車株式会社 車両用操舵制御装置及び方法
CN101746407B (zh) * 2008-12-12 2013-06-05 联创汽车电子有限公司 具有主动回正控制功能的电动助力转向系统
CN101811515B (zh) * 2009-12-18 2011-12-14 江苏长江环境科技工程有限公司 用于汽车主动转向系统的控制装置
CN102947166B (zh) * 2010-06-23 2015-07-22 丰田自动车株式会社 车辆行驶控制装置
CN106170431B (zh) * 2014-04-16 2018-04-27 日本精工株式会社 电动助力转向装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137122A (ja) * 2001-10-31 2003-05-14 Toyota Motor Corp 車輌用自動操舵装置
JP2004268659A (ja) * 2003-03-06 2004-09-30 Toyota Motor Corp 車輌用操舵制御装置
JP2015009761A (ja) * 2013-07-02 2015-01-19 日産自動車株式会社 操舵制御装置
JP2015003727A (ja) * 2014-09-01 2015-01-08 Ntn株式会社 ステアバイワイヤの操舵反力制御装置
JP2016097827A (ja) 2014-11-21 2016-05-30 富士重工業株式会社 車両の走行制御装置
WO2016162902A1 (ja) * 2015-04-09 2016-10-13 日産自動車株式会社 車線維持支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725644A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014220A (ja) * 2019-07-15 2021-02-12 トヨタ自動車株式会社 車両用外乱対処システム
JP7196793B2 (ja) 2019-07-15 2022-12-27 トヨタ自動車株式会社 車両用外乱対処システム
JP2021078340A (ja) * 2019-11-01 2021-05-20 株式会社デンソー 回転機制御装置
JP7283443B2 (ja) 2019-11-01 2023-05-30 株式会社デンソー 回転機制御装置
WO2021085177A1 (ja) * 2019-11-01 2021-05-06 株式会社デンソー 回転機制御装置
JP2021078341A (ja) * 2019-11-01 2021-05-20 株式会社デンソー 回転機制御装置
CN114630782A (zh) * 2019-11-01 2022-06-14 株式会社电装 旋转电机控制装置
JP7205519B2 (ja) 2019-11-01 2023-01-17 株式会社デンソー 回転機制御装置
CN114630782B (zh) * 2019-11-01 2024-04-02 株式会社电装 旋转电机控制装置
WO2021085178A1 (ja) * 2019-11-01 2021-05-06 株式会社デンソー 回転機制御装置
WO2022030423A1 (ja) * 2020-08-03 2022-02-10 株式会社デンソー 複数モータ駆動システム
CN112109679A (zh) * 2020-09-21 2020-12-22 重庆交通大学 防双手猛打方向盘的装置
CN112109679B (zh) * 2020-09-21 2022-08-16 重庆交通大学 防双手猛打方向盘的装置
CN112140868A (zh) * 2020-10-13 2020-12-29 武汉鲸鱼座机器人技术有限公司 一种满足自动驾驶冗余要求的底盘架构与控制方法
JP2022105819A (ja) * 2021-01-05 2022-07-15 いすゞ自動車株式会社 操舵制御装置
JP7347450B2 (ja) 2021-01-05 2023-09-20 いすゞ自動車株式会社 操舵制御装置
DE102021202285A1 (de) 2021-03-09 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zur Beeinflussung eines Fahrzeugverhaltens
WO2022189021A1 (de) 2021-03-09 2022-09-15 Robert Bosch Gmbh Vorrichtung und verfahren zur beeinflussung eines fahrzeugverhaltens
WO2022189022A1 (de) 2021-03-09 2022-09-15 Robert Bosch Gmbh Vorrichtung und verfahren zum beeinflussen und/oder betreiben eines lenksystems und lenksystem insbesondere für ein fahrzeug
DE102021202278A1 (de) 2021-03-09 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Beeinflussen und/oder Betreiben eines Lenksystems und Lenksystem insbesondere für ein Fahrzeug
EP4112422A1 (en) * 2021-06-28 2023-01-04 Toyota Jidosha Kabushiki Kaisha Vehicle control system and vehicle control method
US12097916B2 (en) 2021-06-28 2024-09-24 Toyota Jidosha Kabushiki Kaisha Vehicle control system and vehicle control method
WO2023012738A1 (en) * 2021-08-06 2023-02-09 Alaimo Samantha Maria Calogera Vehicle steering system

Also Published As

Publication number Publication date
EP3725644B1 (en) 2022-02-09
JPWO2019116453A1 (ja) 2020-04-16
CN111433110A (zh) 2020-07-17
US20200377152A1 (en) 2020-12-03
JP6690794B2 (ja) 2020-04-28
CN111433110B (zh) 2021-06-11
US10829153B1 (en) 2020-11-10
EP3725644A1 (en) 2020-10-21
EP3725644A4 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2019116453A1 (ja) 車両のステアリング制御方法および車両のステアリング制御装置
JP5896091B1 (ja) 電動パワーステアリング装置
US9604670B2 (en) Steering control device
JP5794393B2 (ja) 操舵制御装置
JP4779495B2 (ja) 車両用操舵装置
JP5794394B2 (ja) 操舵制御装置
WO2016072143A1 (ja) 電動パワーステアリング装置
WO2019087864A1 (ja) 操舵制御装置
JP4293021B2 (ja) 車両用操舵装置
JP4470565B2 (ja) 車両用操舵装置
WO2014109150A1 (ja) スタビリティ制御装置
WO2014054476A1 (ja) 操舵制御装置
WO2014054475A1 (ja) 操舵制御装置
JP6220687B2 (ja) 電動パワーステアリング装置
JP4997478B2 (ja) 車両用操舵装置
WO2014050566A1 (ja) 操舵制御装置
JP5971126B2 (ja) 操舵制御装置
JP2012020652A (ja) サーボ制御装置
JP6220688B2 (ja) 電動パワーステアリング装置
JP2015009761A (ja) 操舵制御装置
JP5347499B2 (ja) 車両制御装置及び車両制御方法
JP5971128B2 (ja) 操舵制御装置
JP4715314B2 (ja) 車両用操舵装置
JP2010089751A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017934673

Country of ref document: EP

Effective date: 20200713