JP2015009761A - 操舵制御装置 - Google Patents

操舵制御装置 Download PDF

Info

Publication number
JP2015009761A
JP2015009761A JP2013138705A JP2013138705A JP2015009761A JP 2015009761 A JP2015009761 A JP 2015009761A JP 2013138705 A JP2013138705 A JP 2013138705A JP 2013138705 A JP2013138705 A JP 2013138705A JP 2015009761 A JP2015009761 A JP 2015009761A
Authority
JP
Japan
Prior art keywords
steering
reaction force
torque
steering reaction
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013138705A
Other languages
English (en)
Inventor
弘樹 谷口
Hiroki Taniguchi
弘樹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013138705A priority Critical patent/JP2015009761A/ja
Publication of JP2015009761A publication Critical patent/JP2015009761A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】 旋回中の保舵トルク低減と車両の安定性向上とを両立できる操舵制御装置を提供する。
【解決手段】 セルフアライニングトルクが大きいほど大きな操舵反力トルクとなり、セルフアライニングトルク増加時よりもセルフアライニングトルク減少時の操舵反力トルクが小さくなる操舵反力トルク特性に基づいて操舵部1に操舵反力トルクを付与する際、道路の曲率が大きいほど、セルフアライニングトルクに対する操舵反力トルクが小さく、かつ、セルフアライニングトルク増減時の操舵反力トルクの差が大きくなるように操舵反力トルク特性を変更する。
【選択図】 図1

Description

本発明は、操舵制御装置に関する。
特許文献1には、カーブにおけるドライバのステアリング操作の容易化を目的とし、セルフアライニングトルクに応じてステアリングホイールに付与する操舵反力を、カーブの曲率が大きいほど小さくする技術が開示されている。
特開平11-78938号公報
しかしながら、上記従来技術にあっては、ドライバの保舵トルクは低減するものの、曲率が大きいほど保舵トルクの変化に対する操舵角の変動が大きくなるため、車両の安定性が低下するという問題があった。
本発明の目的は、旋回中の保舵トルクの低減と車両の安定性向上とを両立できる操舵制御装置を提供することにある。
本発明では、道路の曲率が大きいほど、セルフアライニングトルクに対する操舵反力が小さく、かつ、セルフアライニングトルク増減時の操舵反力の差が大きくなるように操舵反力特性を変更する。
よって、本発明にあっては、道路の曲率が大きいほどドライバの保舵トルクを低減できる。また、道路の曲率が大きいほど操舵トルクの変化に対する操舵角の変動を小さくできる。よって、旋回中の保舵トルク低減と車両の安定性向上とを両立できる。
実施例1の車両の操舵系を示すシステム図である。 転舵制御部19の制御ブロック図である。 操舵反力制御部20の制御ブロック図である。 外乱抑制指令転舵角演算部32の制御ブロック図である。 ヨー角に応じた反発力演算部37の制御ブロック図である。 横位置に応じた反発力演算部38の制御ブロック図である。 ヨー角F/B制御および横位置F/B制御の制御領域を示す図である。 高速道路の直線路を走行中の車両が単発的な横風を受けた場合のヨー角変化を示すタイムチャートである。 高速道路の直線路を走行中の車両が連続的な横風を受けた場合に横位置F/B制御を実施しないときのヨー角変化および横位置変化を示すタイムチャートである。 高速道路の直線路を走行中の車両が連続的な横風を受けた場合に横位置F/B制御を実施したときのヨー角変化および横位置変化を示すタイムチャートである。 操舵反力トルク演算部34の制御ブロック図である。 ある車速における(a)第1操舵反力特性マップ、(b)第2操舵反力特性マップである。 実施例1におけるステアリングホイールの操舵角とドライバの操舵トルクとの関係を示す特性図である。 操舵反力トルクオフセット部36の制御ブロック図である。 逸脱余裕時間に応じた反力演算部39の制御ブロック図である。 横位置に応じた反力演算部40の制御ブロック図である。 セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性が操舵反力トルクの絶対値が大きくなる方向へオフセットした状態を示す図である。 ステアリングホイールの操舵角とドライバの操舵トルクとの関係を示す特性図である。 セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性を操舵反力トルクの絶対値が大きくなる方向へオフセットすることにより、ステアリングホイールの操舵角とドライバの操舵トルクとの関係を示す特性が変化した状態を示す図である。
〔実施例1〕
[システム構成]
図1は、実施例1の車両の操舵系を示すシステム図である。
実施例1の操舵装置は、操舵部1、転舵部2、バックアップクラッチ3、SBWコントローラ4を主要な構成とし、ドライバの操舵入力を受ける操舵部1と、左右前輪(転舵輪)5FL,5FRを転舵する転舵部2とが機械的に切り離されたステアバイワイヤ(SBW)システムを採用している。
操舵部1は、ステアリングホイール6、コラムシャフト7、反力モータ8および操舵角センサ9を備える。
コラムシャフト7は、ステアリングホイール6と一体に回転する。
反力モータ8は、例えば、ブラシレスモータであり、出力軸がコラムシャフト7と同軸の同軸モータであり、SBWコントローラ4からの指令に応じて、コラムシャフト7に操舵反力トルクを出力する。
操舵角センサ9は、コラムシャフト7の絶対回転角、すなわち、ステアリングホイール6の操舵角を検出する。
転舵部2は、ピニオンシャフト11、ステアリングギア12、転舵モータ13、および転舵角センサ14を備える。
ステアリングギア12は、ラック&ピニオン式のステアリングギアであり、ピニオンシャフト11の回転に応じて前輪5L,5Rを転舵する。
転舵モータ13は、例えば、ブラシレスモータであり、出力軸が図外の減速機を介してラックギア15と接続され、SBWコントローラ4からの指令に応じて、ラック16に前輪5を転舵するための転舵トルクを出力する。
転舵角センサ14は、転舵モータ13の絶対回転角を検出する。ここで、転舵モータ13の回転角と前輪5の転舵角とは常に一意に定まる相関関係があるため、転舵モータ13の回転角から前輪5の転舵角を検出できる。以下では特に記載しない限り、前輪5の転舵角は転舵モータ13の回転角から算出されたものとする。
バックアップクラッチ3は、操舵部1のコラムシャフト7と転舵部2のピニオンシャフト11との間に設けられ、解放により操舵部1と転舵部2とを機械的に切り離し、締結により操舵部1と転舵部2とを機械的に接続する。
SBWコントローラ4には、上記操舵角センサ9および転舵角センサ14に加え、カメラ17により撮影された自車前方の走行路の映像および車速センサ18により検出された車速(車体速)が入力される。
SBWコントローラ4は、前輪5FL,5FRの転舵角を制御する転舵制御部19と、コラムシャフト7に付与する操舵反力トルクを制御する操舵反力制御部(操舵反力制御手段,コントローラ)20と、映像処理部21とを有する。
転舵制御部19は、各入力情報に基づいて指令転舵角を生成し、生成した指令転舵角を電流ドライバ22へ出力する。
電流ドライバ22は、転舵角センサ14により検出される実転舵角を指令転舵角と一致させる角度フィードバックにより転舵モータ13への指令電流を制御する。
操舵反力制御部20は、各入力情報に基づいて指令操舵反力トルクを生成し、生成した指令操舵反力トルクを電流ドライバ23へ出力する。
電流ドライバ23は、反力モータ8の電流値から推定される実操舵反力トルクを指令操舵反力トルクと一致させるトルクフィードバックにより反力モータ8への指令電流を制御する。
映像処理部21は、カメラ17により撮影された自車前方の走行路の映像からエッジ抽出等の画像処理によって走行車線左右の白線(走行路区分線)を認識する。
加えて、SBWコントローラ4は、SBWシステムのフェール時、バックアップクラッチ3を締結して操舵部1と転舵部2とを機械的に連結し、ステアリングホイール6の操舵によるラック16の軸方向移動を可能とする。このとき、転舵モータ13のアシストトルクによりドライバの操舵力を補助する電動パワーステアリングシステム相当の制御を行ってもよい。
上記SBWシステムにおいて、各センサ、各コントローラ、各モータを複数設けた冗長系としてもよい。また、転舵制御部19と操舵反力制御部20を別体としてもよい。
実施例1では、ドライバの修正操舵量の低減および操舵負担の軽減を狙いとし、スタビリティ制御および修正操舵低減制御を実施する。
スタビリティ制御は、外乱(横風、路面凹凸、轍、路面カント等)に対する車両の安定性向上を目的とし、2つのフィードバック(F/B)制御を行う。
1.ヨー角F/B制御
白線と自車進行方向とのなす角度であるヨー角に応じて転舵角を補正し、外乱により発生したヨー角を減少させる。
2.横位置F/B制御
白線までの距離(横位置)に応じて転舵角を補正し、外乱により発生したヨー角の積分値である横位置変化を減少させる。
修正操舵低減制御は、ドライバの操舵入力に対する車両の安定性向上を目的とし、2つの反力オフセット制御と、1つの反力特性変更制御とを行う。
1.横位置に応じた反力オフセット制御
横位置に応じてセルフアライニングトルクに応じた操舵反力特性を操舵反力の絶対値が大きくなる方向へオフセットし、ドライバが操舵角中立位置をまたぐ修正操舵を行ったときに操舵トルクの符号が反転するのを抑制する。
2.逸脱余裕時間に応じた反力オフセット制御
逸脱余裕時間(白線への到達時間)に応じてセルフアライニングトルクに応じた操舵反力特性を操舵反力の絶対値が大きくなる方向へオフセットし、ドライバが操舵角中立位置をまたぐ修正操舵を行ったときに操舵トルクの符号が反転するのを抑制する。
3.曲率に応じた反力特性変更制御
白線の曲率が大きいほど、セルフアライニングトルクに対する操舵反力が小さく、かつ、セルフアライニングトルク増減時の操舵反力の差が大きくなるように操舵反力特性を変更し、旋回時におけるドライバの保舵力を低減すると共に、保舵力変化に対する保舵角変化を抑制して車両の安定性を高める。
[転舵制御部]
図2は、転舵制御部19の制御ブロック図である。
SBW指令転舵角演算部31は、操舵角と車速とに基づいてSBW指令転舵角を演算する。
外乱抑制指令転舵角演算部32は、車速と白線情報とに基づき、スタビリティ制御においてSBW指令転舵角を補正するための外乱抑制指令転舵角を演算する。外乱抑制指令転舵角演算部32の詳細については後述する。
加算器19aは、SBW指令転舵角と外乱抑制指令転舵角とを加算した値を最終的な指令転舵角として電流ドライバ22へ出力する。
[操舵反力制御部]
図3は、操舵反力制御部20の制御ブロック図である。
横力演算部33は、操舵角と車速とに基づき、あらかじめ実験等により求めたコンベンショナルな操舵装置における車速毎の操舵角とタイヤ横力との関係を表す操舵角−横力変換マップを参照してタイヤ横力を演算する。操舵角−横力変換マップは、操舵角が大きいほどタイヤ横力が大きく、かつ、操舵角が小さいときは大きいときよりも操舵角の変化量に対するタイヤ横力の変化量が大きく、かつ、車速が高いほどタイヤ横力が小さくなる特性を有する。
操舵反力トルク演算部34は、横力と車速と白線情報とに基づき、操舵反力トルクを演算する。操舵反力トルク演算部34の詳細については後述する。
加算器20aは、操舵反力トルクとステアリング特性に応じた操舵反力トルク成分(ばね項、粘性項、慣性項)を加算する。ばね項は操舵角に比例する成分であり、操舵角に所定のゲインを乗じて算出する。粘性項は操舵角速度に比例する成分であり操舵角速度に所定のゲインを乗じて算出する。慣性項は操舵角加速度に比例する成分であり、操舵角加速度に所定のゲインを乗じて算出する。
操舵反力トルクオフセット部36は、車速と自車前方の走行路の映像とに基づき、横位置または逸脱余裕時間に応じた反力オフセット制御において操舵反力特性をオフセットするための操舵反力トルクオフセット量を演算する。操舵反力トルクオフセット部36の詳細については後述する。
加算器20bは、ステアリング特性に応じた操舵反力トルク成分を加算した後の操舵反力トルクと操舵トルクオフセット量とを加算した値を最終的な指令操舵反力トルクとして電流ドライバ23へ出力する。
[外乱抑制指令転舵角演算部]
図4は、外乱抑制指令転舵角演算部32の制御ブロック図である。
ヨー角演算部32aは、前方注視点での白線と自車進行方向とのなす角度であるヨー角を演算する。前方注視点でのヨー角は、所定時間(例えば、0.5秒)後の白線と自車進行方向とのなす角度とする。カメラ17により撮影された走行路の映像に基づいてヨー角を演算することで、簡単かつ高精度にヨー角を検出できる。
曲率演算部32bは、前方注視点での白線の曲率を演算する。
横位置演算部32cは、前方注視点先での白線までの距離を演算する。
ヨー角に応じた反発力演算部37は、ヨー角と曲率と車速とに基づき、ヨー角F/B制御において外乱により発生したヨー角を減らすための車両の反発力を演算する。ヨー角に応じた反発力演算部37の詳細については後述する。
横位置に応じた反発力演算部38は、ヨー角と曲率と車速と前方注視点での白線までの距離とに基づき、横位置F/B制御において外乱により発生した横位置変化を減らすための車両の反発力を演算する。横位置に応じた反発力演算部38の詳細については後述する。
加算器32dは、ヨー角に応じた反発力と横位置に応じた反発力とを加算し、横方向反発力を演算する。
目標ヨーモーメント演算部32eは、横方向反発力、ホイールベース(車軸間距離)、後輪軸重および前輪軸重に基づいて目標ヨーモーメントを演算する。具体的には、横方向反発力に対し、車両重量(前輪軸重+後輪軸重)に対する後輪軸重の割合と、ホイールベースとを乗じた値を目標ヨーモーメントとする。
目標ヨー加速度演算部32fは、目標ヨーモーメントにヨー慣性モーメント係数を乗じて目標ヨー加速度を演算する。
目標ヨーレイト演算部32gは、目標ヨー加速度に車頭時間を乗じて目標ヨーレイトを演算する。
指令転舵角演算部32hは、目標ヨーレイトφ*、ホイールベースWHEEL_BASE、車速Vおよび車両の特性速度vChに基づき、下記の式を参照して外乱抑制指令転舵角δst *を演算する。ここで、車両の特性速度Vchとは、既知の"アッカーマン方程式"の中のパラメータであり、車両のセルフステアリング特性を表すものである。
δst * = (φ*×WHEEL_BASE×(1+(V/vCh)2)×180)/(V×M_PI)
なお、M_PIは所定の係数である。
リミッタ処理部32iは、外乱抑制指令転舵角δst *の最大値および変化率の上限を制限する。最大値は、コンベンショナルな操舵装置(操舵部と転舵部とが機械的に接続された)において、ステアリングホイール6の操舵角が中立位置付近の遊びの角度範囲(例えば、左右3°)にあるときの当該遊びの範囲に対応する前輪5FL,5FRの転舵角範囲(例えば、左右0.2°)とする。
図5は、ヨー角に応じた反発力演算部37の制御ブロック図である。
上下限リミッタ37aは、ヨー角に上下限リミッタ処理を施す。上下限リミッタは、ヨー角が正の値の場合(白線と自車進行方向の延長線とが交差するときのヨー角を正とする。)には、外乱を抑制可能な所定値以上、かつ、車両が振動的となる値およびドライバの操舵によって発生する値未満の値(例えば、1°)とし、ヨー角が負の場合には0とする。
ヨー角F/Bゲイン乗算部37bは、リミッタ処理後のヨー角にヨー角F/Bゲインを乗じる。ヨー角F/Bゲインは、制御量不足を回避しつつ応答性を確保できる所定値以上、かつ、車両が振動的になる値およびドライバが操舵角と転舵角との中立ずれを感じる値未満とする。
車速補正ゲイン乗算部37cは、車速に車速補正ゲインを乗じる。車速補正ゲインは、0〜70km/hの範囲で最大値をとり、70〜130km/hの範囲で徐々に減少し、130km/h以上の範囲で最小値(0)となる特性とする。
曲率補正ゲイン乗算部37dは、曲率に曲率補正ゲインを乗じる。曲率補正ゲインは、曲率が大きいほど小さくなる特性とし、上限および下限(0)を設定する。
乗算器37eは、ヨー角F/Bゲイン乗算部37b、車速補正ゲイン乗算部37cおよび曲率補正ゲイン乗算部37dの各出力を乗じてヨー角に応じた反発力を求める。
図6は、横位置に応じた反発力演算部38の制御ブロック図である。
減算器38aは、あらかじめ設定された横位置閾値(例えば、90cm)から前方注視点先での白線までの距離を減じて横位置偏差を求める。
上下限リミッタ38bは、横位置偏差に上下限リミッタ処理を施す。上下限リミッタは、横位置偏差が正の値の場合には所定の正の値をとり、横位置偏差が負の値の場合には0とする。
距離補正ゲイン乗算部38cは、前方注視点先での白線までの距離に距離補正ゲインを乗じる。距離補正ゲインは、白線までの距離が所定値以下である場合は最大値をとり、所定値を超える場合は距離が長くなるほど小さくなる特性とし、下限を設定する。
横位置F/Bゲイン乗算部38dは、距離補正ゲイン乗算部38cによる補正後の白線までの距離に横位置F/Bゲインを乗じる。横位置F/Bゲインは、制御量不足を回避しつつ応答性を確保できる所定値以上、かつ、車両が振動的になる値およびドライバが中立ずれを感じる値未満とし、さらに、ヨー角F/Bゲイン乗算部37bのヨー角F/Bゲインよりも小さな値に設定する。
車速補正ゲイン乗算部38eは、車速に車速補正ゲインを乗じる。車速補正ゲインは、0〜70km/hの範囲で最大値をとり、70〜130km/hの範囲で徐々に減少し、130km/h以上の範囲で最小値(0)となる特性とする。
曲率補正ゲイン乗算部38fは、曲率に曲率補正ゲインを乗じる。曲率補正ゲインは、曲率が大きいほど小さくなる特性とし、上限および下限(0)を設定する。
乗算器38gは、横位置F/Bゲイン乗算部38d、車速補正ゲイン乗算部38eおよび曲率補正ゲイン乗算部38fの各出力を乗じて横位置に応じた反発力を求める。
[スタビリティ制御作用]
実施例1では、スタビリティ制御として、外乱により発生したヨー角を減少させるヨー角F/B制御と、外乱により発生したヨー角の積分値である横位置変化を減少させる横位置F/B制御を実施する。ヨー角F/B制御は、ヨー角が発生した場合、横位置にかかわらず実施し、横位置F/B制御は、白線までの距離が所定の横位置閾値(90cm)以下となった場合に実施する。すなわち、走行車線中央付近は横位置F/B制御の不感帯となる。両F/B制御の制御領域を図7に示す。φはヨー角である。
図8は、高速道路の直線路を走行中の車両が単発的な横風を受けた場合のヨー角変化を示すタイムチャートであり、車両は走行車線の中央付近を走行しているものとする。車両が単発的な横風を受けてヨー角が発生すると、ヨー角F/B制御では、ヨー角に応じた反発力を演算し、当該反発力を得るための外乱抑制指令転舵角を求め、操舵角と車速とに基づくSBW指令転舵角を補正する。
車両を走行車線に沿って走行させる場合、特に直線路では、白線の方向と自車進行方向とは一致しているため、ヨー角はゼロとなる。つまり、実施例1のヨー角F/B制御では、発生したヨー角を外乱によるものとみなし、ヨー角を減少させることにより、特に直進時において外乱に対する車両の安定性向上を図ることができ、ドライバの修正操舵量を低減できる。
従来、横風等の外乱による車両挙動への影響を抑制するものとして、コンベンショナルな操舵装置では、外乱抑制のための転舵トルクを操舵系に付与するものが知られており、SBWシステムでは、外乱抑制のための転舵を促す操舵反力成分をステアリングホイールに付与するものが知られている。ところが、これら従来の操舵装置では、操舵反力の変動が生じるため、ドライバに違和感を与えてしまう。
これに対し、実施例1のヨー角F/B制御を含むスタビリティ制御では、ステアリングホイール6と前輪5L,5Rとが機械的に切り離されたSBWシステムの特徴である、ステアリングホイール6と前輪5L,5Rとを互いに独立して制御可能な点に着目し、操舵角と車速とに応じたSBW指令転舵角とヨー角に応じた外乱抑制指令転舵角とを加算した指令転舵角に基づいて前輪5L,5Rの転舵角を制御する一方、操舵角と車速とに基づいてタイヤ横力を推定し、推定したタイヤ横力と車速とに応じた指令操舵反力に基づいて操舵反力を制御する。
すなわち、外乱抑制分の転舵角を直接前輪5L,5Rに与えるため、外乱抑制のための転舵を促す操舵反力成分の付与が不要となる。さらに、操舵角から推定したタイヤ横力に応じた操舵反力を付与することで、外乱抑制のための転舵によって生じるタイヤ横力の変動が操舵反力に反映されないため、ドライバに与える違和感を軽減できる。従来のSBWシステムでは、センサにより検出したラック軸力や転舵角からタイヤ横力を推定し、推定したタイヤ横力に応じた操舵反力を付与している。このため、外乱抑制のための転舵によって生じるタイヤ横力の変動が操舵反力に必ず反映されてしまい、ドライバの違和感となる。実施例1では、ドライバの操舵によって生じたタイヤ横力のみが操舵反力に反映され、外乱抑制のための転舵によって操舵反力が変動しないため、ドライバに与える違和感を軽減できる。
ここで、外乱抑制分の転舵角を直接前輪5L,5Rに与える場合、操舵角と転舵角との中立ずれが問題となるが、実施例1では、外乱抑制指令転舵角を、コンベンショナルな操舵装置において、ステアリングホイール6が操舵角中立位置付近の遊びの角度範囲(左右3°)にあるときの当該遊びの範囲に対応する前輪5FL,5FRの転舵角範囲(左右0.2°)に設定している。外乱によるヨー角の発生は、旋回時よりも直進時に顕著であり、直進時、操舵角は操舵角中立位置付近に位置している。つまり、ヨー角F/B制御による転舵角の補正は、操舵角中立位置付近で実施されることはほとんどであるため、外乱抑制指令転舵角の付与に伴う操舵角と転舵角との中立ずれ量をステアリングの遊びの範囲に抑えることで、中立ずれに伴う違和感を抑制できる。
また、外乱抑制指令転舵角を左右0.2°の範囲に制限しているため、スタビリティ制御中であってもドライバは操舵入力によって車両の進行方向を所望の方向に変化させることができる。つまり、ドライバの操舵入力によって生じる転舵角の変化量に対し、外乱抑制指令転舵角による転舵角の補正量が微小であるため、ドライバの操舵を妨げることなく外乱に対する車両の安定性向上を実現できる。
従来、車両の横方向運動を制御するものとして、車両の走行車線逸脱傾向が検出されると車両に逸脱を回避するヨーモーメントを付与する車線逸脱防止制御や、車両が走行車線の中央付近を走行するよう車両にヨーモーメントを付与するレーンキープ制御が公知である。ところが、車線逸脱防止制御では、制御介入の閾値を持った制御であり、走行車線の中央付近では制御が作動しないため、外乱に対する車両の安定性を確保できない。また、ドライバが車両を走行車線の端に寄せたい場合でも閾値によって制御介入がなされるため、ドライバに煩わしさを与えてしまう。一方、レーンキープ制御では、目標位置(目標ライン)を持った制御であり、外乱に対する車両の安定性を確保できるものの、目標ラインから外れたラインを走行させることはできない。加えて、ドライバがステアリングホイールの把持力を小さくすると手放し状態との判定により制御が解除されるため、ドライバは常にステアリングホイールを一定以上の力で把持しておく必要が有り、ドライバの操舵負荷が大きい。
これに対し、実施例1のヨー角F/B制御は、制御介入の閾値を持たないため、シームレスな制御により常に外乱に対する安定性を確保できる。さらに、目標位置を持たないため、ドライバは車両を好きなラインで走行させることができる。加えて、ステアリングホイール6を軽く持っている場合でも制御が解除されることはないため、ドライバの操舵負荷を小さくできる。
図9は、高速道路の直線路を走行中の車両が連続的な横風を受けた場合に横位置F/B制御を実施しないときのヨー角変化および横位置変化を示すタイムチャートであり、車両は走行車線の中央付近を走行しているものとする。車両が連続的な横風を受けてヨー角が発生すると、ヨー角F/B制御によってヨー角は低減されるものの、車両は連続的な外乱を受けて横流れしている。ヨー角F/B制御は、ヨー角を減少させるものであって、ヨー角ゼロの場合は転舵角の補正を行わないため、外乱により発生したヨー角の積分値である横位置変化を直接的に減少させることはできないからである。なお、ヨー角に応じた反発力を大きな値とすることで、横位置変化を間接的に抑制する(ヨー角の積分値の増加を抑制する)ことは可能であるが、外乱抑制指令転舵角の最大値はドライバに違和感を与えないよう、左右0.2°に制限されていることから、ヨー角F/B制御のみで車両の横流れを効果的に抑制することは難しい。さらに、ヨー角に応じた反発力を求めるためのヨー角F/Bゲインは、ドライバがヨー角変化に気付く前にヨー角を収束させる必要が有るため、出来るだけ大きな値としているのに対し、そのままでは車両が振動的となるため、ヨー角F/Bゲインに乗じるヨー角を上下限リミッタ37aによって上限(1°)以下に制限している。すなわち、ヨー角に応じた反発力は実際のヨー角よりも小さなヨー角に対応した反発力であるため、この点からもヨー角F/B制御のみで車両の横流れを効果的に抑制するのは困難であることがわかる。
そこで、実施例1のスタビリティ制御では、横位置F/B制御を導入し、定常的な外乱によって車両が横流れするのを抑制している。図10は、高速道路の直線路を走行中の車両が連続的な横風を受けた場合に横位置F/B制御を実施したときのヨー角変化および横位置変化を示すタイムチャートであり、横位置F/B制御では、走行車線中央付近を走行中の車両が連続的な横風を受けて横流れし、白線までの距離が横位置閾値以下になると、横位置変化(≒ヨー角積分値)に応じた反発力を演算する。外乱抑制指令転舵角演算部32では、横位置に応じた反発力とヨー角に応じた反発力とを加算した横方向反発力に基づく外乱抑制指令転舵角を演算し、SBW指令転舵角を補正する。すなわち、横位置F/B制御では、横位置に応じた外乱抑制指令転舵角によってSBW指令転舵角を補正するため、定常的な外乱による横位置変化を直接的に減少させることが可能であり、車両の横流れを抑制できる。言い換えると、ヨー角F/B制御を行う車両の走行位置を、横位置F/B制御の不感帯である走行車線中央付近に戻すことができる。
以上のように、実施例1のスタビリティ制御は、過渡的な外乱によるヨー角変化をヨー角F/B制御により減少させ、定常的な外乱によるヨー角積分値(横位置変化)を横位置F/B制御により減少させることで、過渡的および定常的な外乱に対する車両の安定性を共に向上できる。
さらに、実施例1のスタビリティ制御は、制御(外乱抑制指令転舵角の付与)によって生じる車両挙動をドライバに気付かれない程度、かつ、ドライバの操舵によって発生する車両挙動変化を妨げない程度に制限し、かつ、制御によって生じるセルフアライニングトルクの変化を操舵反力に反映させないため、ドライバにスタビリティ制御中であることを意識させることなく実施可能である。これにより、あたかも外乱に対する安定性に優れた車体諸元を持つ車両の振る舞いを模擬できる。
なお、横位置F/B制御において横位置に応じた反発力を求めるための横位置F/Bゲインは、ヨー角F/Bゲインよりも小さな値に設定している。上述したように、ヨー角F/B制御は、過渡的な外乱によるヨー角の変化をドライバが感じる前にヨー角を収束させる必要上、高応答性が求められるのに対し、横位置F/B制御は、横位置変化が増加するのを止めることが求められること、およびヨー角積分値の蓄積によって横位置が変化するのに時間が掛かることから、ヨー角F/B制御ほどの応答性は必要としていないからである。加えて、仮に横位置F/Bゲインを大きくすると、外乱の大小によって制御量が大きく変動し、ドライバに違和感を与えるからである。
[操舵反力トルク演算部]
図11は、操舵反力トルク演算部34の制御ブロック図である。
曲率演算部34aは、前方注視点での白線の曲率を演算する。
第1操舵反力トルク演算部34bは、横力と車速とに基づき、第1操舵反力トルク特性マップを参照してタイヤ横力に応じた第1操舵反力トルクを演算する。第1操舵反力トルク特性は、タイヤ横力が大きいほど大きな操舵反力トルクとなり、タイヤ横力増加時よりもタイヤ横力減少時の操舵反力トルクが小さくなる特性、すなわち、タイヤ横力増加時とタイヤ横力減少時とのヒステリシスを持たせた特性を有する。また、第1操舵反力トルク特性は、タイヤ横力が小さいときは大きいときよりもタイヤ横力の変化量に対する操舵反力トルクの変化量が大きく、かつ、車速が高いほど操舵反力トルクが小さくなる特性を有する。ある車速における第1操舵反力トルク特性を図12(a)に示す。
第2操舵反力トルク演算部34cは、横力と車速とに基づき、第2操舵反力トルク特性マップを参照してタイヤ横力に応じた第2操舵反力トルクを演算する。第2操舵反力トルク特性は、第1操舵反力トルク特性と同様であるが、第1操舵反力トルク特性よりもタイヤ横力に対する操舵反力トルクが小さい点、および第1操舵反力トルク特性よりもタイヤ横力増減時の操舵反力トルクの差(ヒステリシス)が大きい(操保舵比が大きい)点で相違する。図12(a)と同一車速における第2操舵反力トルク特性を図12(b)に示す。
第3操舵反力トルク演算部34dは、第1操舵反力トルクと第2操舵反力トルクとに曲率による重み付けを行い、加算器20aへ出力する最終的な操舵反力トルクを演算する。第3操舵反力トルク演算部34dは、曲率演算部34aにより演算された曲率が大きいほど、第1操舵反力トルクよりも第2操舵反力トルクの重み付けを大きくして操舵反力トルクを演算する。具体的には、第1操舵反力トルクをTa、第2操舵反力トルクをTbとしたとき、最終的な操舵反力トルクT*を以下の式から求める。
T* = K×Ta + (1-K)Tb
ここで、K(0≦K≦1)は曲率に応じたブレンド比であり、曲率が大きいほど小さな値を取る。
すなわち、第3操舵反力トルク演算部34dは、第1操舵反力トルク特性と第2操舵反力トルク特性とを曲率に応じたブレンド比(K:1-K)で合成した操舵反力トルク特性に基づいて操舵反力トルクを求める際、曲率が大きいほど第2操舵反力トルク特性のブレンド比(1-K)を大きくして操舵反力トルクを演算している。
リミッタ処理部34eは、第3操舵反力トルク演算部34dにより演算された操舵反力トルクの最大値および変化率の上限を制限する。例えば、最大値は1,000N、変化率の上限は600N/sとする。
[曲率に応じた反力特性変更制御作用]
曲率に応じた反力特性変更制御は、白線の曲率が大きいほど第1操舵反力トルクよりも第2操舵反力トルクの重み付けを大きくする。これにより、セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力トルク特性は、白線の曲率が大きくなるほど、セルフアライニングトルクに対する操舵反力トルクが小さく、かつ、セルフアライニングトルク増減時の操舵反力トルクの差である操保舵比が大きくなるように変更される。
従来の操舵制御装置では、カーブの曲率が大きいほどセルフアライニングトルクに対する操舵反力トルクのゲインを小さくしている。このとき、ステアリングホイールの操舵角とドライバの操舵トルクとの関係は、図13に破線で示すような特性となる。すなわち、操舵角の絶対値が大きいほど操舵トルクの絶対値は大きくなり、操舵角の絶対値が小さいときは大きいときよりも操舵角の変化量に対する操舵トルクの変化量が大きくなる。
ここで、旋回中にドライバが保舵トルクを一定に保つ場合を考える。図13において、ドライバが保舵トルクT1で操舵角θ1を維持し、車両を定常旋回させている状態から、保舵トルクT1を維持できずに保舵トルクをT2まで減少させると、操舵角はθ2となり、操舵角の減少(θ12)によって前輪の転舵角は小さくなる。このとき、上述したSBWシステムにおける操舵反力特性により、カーブの曲率が大きいほど保舵トルクの変化に対して操舵角は大きく変動する。つまり、カーブの曲率が大きいほど操舵トルクに対する車両の感度が高くなるため、車両の安定性が低下する。つまり、ドライバは車両をカーブに沿って走行させることが困難となる。
これに対し、実施例1の曲率に応じた反力特性変更制御では、白線の曲率が大きくなるほど、セルフアライニングトルクに対する操舵反力トルクが小さく、かつ、操保舵比が大きくなるように、第1操舵反力トルク特性と第2操舵反力トルク特性をブレンドし、操舵反力トルク特性を変更することで、操舵角と操舵トルクとの関係を表す特性は、図13に実線で示すような特性となる。これにより、ドライバが保舵トルクT1で操舵角θ1を維持し、車両を定常旋回させている状態から、保舵トルクT1を維持できずに保舵トルクをT3まで減少させた場合であっても、操舵角はθ1のままであるため、定常旋回状態を維持でき、車両の安定性を確保できる。つまり、実施例1の曲率に応じた反力特性変更制御では、カーブの曲率が大きいほど操舵反力トルク特性の傾きを寝かせることでドライバの保舵トルクを低減できると同時に、カーブの曲率が大きいほど操保舵比を大きくすることで操舵トルクの変化に対する操舵角の変動を抑制でき、操舵トルクに対する車両の感度を低くできる。すなわち、旋回中の保舵トルク低減と車両の安定性向上との両立を実現できる。
また、曲率が小さくなるほど、セルフアライニングトルクに対する操舵反力トルクが大きく、かつ、操保舵比が小さくなるように操舵反力トルク特性を変更するため、直進路や緩やかなカーブでは、操舵トルクに対する車両の感度を高めて応答性の良い操舵特性を実現できる。
[操舵反力トルクオフセット部]
図14は、操舵反力トルクオフセット部36の制御ブロック図である。
ヨー角演算部36aは、前方注視点でのヨー角を演算する。カメラ17により撮影された走行路の映像に基づいてヨー角を演算することで、簡単かつ高精度にヨー角を検出できる。
横位置演算部36bは、前方注視点での左右白線に対する横位置および現在位置での左右白線に対する横位置をそれぞれ演算する。ここで、横位置演算部36bは、自車が白線を越えて隣の走行車線に移った場合、すなわち、レーンチェンジが行われた場合、現在位置での左右白線に対する横位置を入れ替える。つまり、白線到達前の左白線に対する横位置を白線到達後の右白線に対する横位置とし、白線到達前の右白線に対する横位置を白線到達後の左白線に対する横位置とする。なお、車線幅が異なる走行車線にレーンチェンジした場合には、レーンチェンジ後の走行車線の車線幅W2をレーンチェンジ前の走行車線の車線幅W1で除した値W2/W1を入れ替えた横位置に乗じて横位置を補正する。ここで、各走行車線の車線幅情報は、ナビゲーションシステム24から取得する。
逸脱余裕時間に応じた反力演算部39は、車速とヨー角と前方注視点での左右白線に対する横位置とに基づき、逸脱余裕時間に応じた反力を演算する。逸脱余裕時間に応じた反力演算部39の詳細については後述する。
横位置に応じた反力演算部40は、現在位置での左右白線に対する横位置に基づき、横位置に応じた反力を演算する。横位置に応じた反力演算部40の詳細については後述する。
反力選択部36cは、逸脱余裕時間に応じた反力と横位置に応じた反力のうち絶対値が大きな方を操舵反力トルクオフセット量として選択する。
リミッタ処理部36dは、操舵反力トルクオフセット量の最大値および変化率の上限を制限する。例えば、最大値は2Nm、変化率の上限は10Nm/sとする。
図15は、逸脱余裕時間に応じた反力演算部39の制御ブロック図である。
乗算器39aは、ヨー角に車速を乗じて車両の横速度を求める。
除算器39bは、前方注視点での左白線に対する横位置を横速度で除して左白線に対する逸脱余裕時間を求める。
除算器39cは、前方注視点での右白線に対する横位置を横速度で除して右白線に対する逸脱余裕時間を求める。
逸脱余裕時間選択部39dは、左右白線に対する逸脱余裕時間のうち短い方を逸脱余裕時間として選択する。
逸脱余裕時間に応じた反力演算部39eは、逸脱余裕時間に基づき、逸脱余裕時間に応じた反力を演算する。逸脱余裕時間に応じた反力は、逸脱余裕時間に反比例(逸脱余裕時間の逆数に比例)し、3秒以上でほぼゼロとなる特性を有する。
図16は、横位置に応じた反力演算部40の制御ブロック図である。
減算器40aは、あらかじめ設定された目標左横位置(例えば、90cm)から左車線に対する横位置を減じて左車線に対する横位置偏差を求める。
減算器40bは、あらかじめ設定された目標右横位置(例えば、90cm)から右車線に対する横位置を減じて右車線に対する横位置偏差を求める。
横位置偏差選択部40cは、左右車線に対する横位置偏差のうち大きな方を横位置偏差として選択する。
横位置偏差に応じた反力演算部40dは、横位置偏差に基づき、横位置に応じた反力を演算する。横位置に応じた反力は、横位置偏差が大きいほど大きくなる特性とし、上限を設定する。
[横位置に応じた反力オフセット制御作用]
横位置に応じた反力オフセット制御は、横位置に応じた反力を操舵反力トルクオフセット量として操舵反力トルクに加算する。これにより、セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性は、図17に示すように、白線までの距離が短くなるほど操舵反力トルクの絶対値が大きくなる方向へオフセットされる。なお、図17は右車線に近い場合であり、左車線に近い場合は図17と反対方向にオフセットされる。
ここで、従来の操舵反力制御において、ドライバの不意な右方向への切り増し操作により車両の走行位置が右側にずれ、その後ドライバが修正操舵によって走行位置を走行車線中央付近に戻す場合を考える。ドライバが不意な操作を行ったときの操舵角と操舵トルクを、図18の特性A上の点P1の位置とする。特性Aは、コンベンショナルな操舵装置を模擬した操舵反力特性を設定したときの操舵角と操舵トルクとの関係を表す特性とする。この状態から走行位置を走行車線中央付近に戻すためには、前輪を左に転舵させる必要が有るため、ドライバは操舵角中立位置への切り戻し操作に続けて、操舵角中立位置からの切り増し操作を行い、ステアリングホイールを狙った角度θ5に合わせる。このとき、上記従来技術では、操舵角中立位置(操舵角ゼロ点)と操舵トルク中立位置(操舵トルクゼロ点)とが一致しているため、操舵角中立位置までは操舵トルクを減少させ、操舵角中立位置を超えたら操舵トルクを増加させる必要がある。つまり、操舵角中立位置をまたぐ修正操舵を行う場合、操舵トルクの符号が反転し、ドライバが力をコントロールする方向が切り替わると共に、操舵トルク中立位置付近は他の操舵角領域と比較して操舵トルクの変化量に対する操舵角の変化量が著しく小さいため、ドライバの操舵負担が大きく、ステアリングホイールを狙った角度θ5にコントロールすることが困難である。これにより、車両の走行位置がオーバーシュートしやすくなることで、修正操舵量の増大を招くという問題があった。
これに対し、実施例1の横位置に応じた反力オフセット制御では、白線までの距離が短いほどセルフアライニングトルクに応じた操舵反力トルクを操舵反力トルクの絶対値が大きくなる方向へオフセットすることで、操舵角と操舵トルクとの関係を表す特性は、図19に示すように、操舵トルクの絶対値が大きくなる方向へオフセットされ、白線までの距離が短くなるに従い特性Aから特性Cへと連続的に変化する。このとき、操舵角を維持するためには、操舵トルクを増やす必要があり、操舵トルクが一定であれば、ステアリングホイール6が少しずつ操舵角中立位置に戻されるため(点P1→点P2)、ドライバの不意な切り増し操作によって車両の走行位置が右側にずれるのを抑制できる。一方、ドライバが操舵角を維持した場合、操舵角と操舵トルクは点P1から点P3へと移動する。この状態からドライバが修正操舵を行う場合、特性Cでは操舵トルク中立位置が操舵角中立位置よりも切り増し側へオフセットされているため、操舵角中立位置からの切り増し操作時において、操舵トルク中立位置に達するまでの間、操舵トルクの符号は反転しない。よって、ドライバは操舵トルクを減少させ、ステアリングホイール6が狙いの角度となったときにステアリングホイール6の回転を止めるだけで、前輪5L,5Rの転舵角をコントロールできる。つまり、実施例1の横位置に応じた反力オフセット制御は、ドライバが力をコントロールする方向が切り替わりにくいため、ドライバの修正操舵を容易化できる。この結果、車両の走行位置がオーバーシュートしにくくなるため、修正操舵量を低減できる。
従来、ドライバの不意な操作によって走行位置がずれるのを抑制することを目的とし、白線に近付くほど操舵反力を大きくする技術は知られているが、当該従来技術では、白線に近づくほどステアリングホイールを重くするだけであって、操舵反力特性における操舵トルク中立位置は常に操舵角中立位置と一致しているため、操舵角中立位置をまたぐ修正操舵では、操舵トルクの符号が反転し、ドライバの操舵負担は軽減されない。つまり、白線までの距離が短いほどセルフアライニングトルクに応じた操舵反力トルクを操舵反力トルクの絶対値が大きくなる方向へオフセットすることで、走行位置のずれ抑制とドライバの操舵負担軽減との両立を実現できる。
また、実施例1の横位置に応じた反力オフセット制御では、白線までの距離が短いほどオフセット量を大きくしているため、操舵トルク中立位置は、白線までの距離が短いほど操舵角中立位置からより離れた位置へオフセットされる。ドライバが車両の走行位置を走行車線中央付近まで戻す修正操舵を行う場合、白線に近いほど操舵角中立位置からの切り増し操作量を多くする必要がある。このとき、操舵角中立位置に対する操舵トルク中立位置のオフセット量が小さいと、ステアリングホイールが狙いの角度となる前に操舵トルクが中立位置を越えて操舵トルクの符号が反転する可能性がある。よって、白線までの距離が短いほどオフセット量を大きくすることで、操舵トルクが中立位置を越えるのを抑制できる。
実施例1の横位置に応じた反力オフセット制御において、横位置演算部36bは、自車が白線に到達したとき、現在位置での左右白線に対する横位置を入れ替える。横位置に応じた反力オフセット制御では、自車が走行車線中央付近から遠ざかるほど操舵反力を大きくすることで自車が走行車線中央付近に戻りやすくしている。つまり、ヨー角積分値(横位置変化)を外乱とみなし、車両をヨー角積分値が無くなる方向へ誘導するように操舵反力を制御している。このため、レーンチェンジが行われた場合、ヨー角積分値をリセットする必要がある。仮にヨー角積分値をリセットしない場合、レーンチェンジ後もレーンチェンジ前の走行車線中央付近に車両を戻すための操舵反力が作用し続けるため、ドライバの操作が阻害されるからである。なお、単に積分値をゼロとするのみでは、レーンチェンジ後の走行車線中央付近に車両を誘導することができない。
そこで、実施例1では、自車が白線に到達した場合には、ドライバの意図的な操作とみなせるため、その場合は現在位置での左右白線に対する横位置を入れ替える、換言すると、ヨー角積分値の符号を反転させることにより、自車を誘導する位置をレーンチェンジ前の走行車線中央付近からレーンチェンジ後の走行車線中央付近に切り替え、レーンチェンジ後の走行車線中央付近に自車を誘導するための操舵反力を生成できる。このとき、レーンチェンジ前の走行車線の車線幅W1に対するレーンチェンジ後の走行車線の車線幅W2の比率W2/W1を考慮するため、正確な横位置を設定でき、自車を走行車線中央付近に誘導するための最適なオフセット量を設定できる。
[逸脱余裕時間に応じた反力オフセット制御作用]
逸脱余裕時間に応じた反力オフセット制御は、逸脱余裕時間に応じた反力を操舵反力トルクオフセット量として操舵反力トルクに加算する。これにより、セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性は、図17に示したように、逸脱余裕時間が短くなるほど操舵反力トルクの絶対値が大きくなる方向へオフセットされる。なお、図17は右車線に近い場合であり、左車線に近い場合は図17と反対方向にオフセットされる。
このため、操舵角と操舵トルクとの関係を表す特性は、図19に示したように、操舵トルクの絶対値が大きくなる方向へオフセットされ、逸脱余裕時間が短くなるに従い特性Aから特性Cへと連続的に変化する。このとき、操舵角を維持するためには、操舵トルクを増やす必要があり、操舵トルクが一定であれば、ステアリングホイール6が少しずつ操舵角中立位置に戻されるため(点P1→点P2)、ドライバの不意な切り増し操作によって車両の走行位置が右側にずれるのを抑制できる。一方、ドライバが操舵角を維持した場合、操舵角と操舵トルクは点P1から点P3へと移動する。この状態からドライバが修正操舵を行う場合、特性Cでは操舵トルク中立位置が操舵角中立位置よりも切り増し側へオフセットされているため、操舵角中立位置からの切り増し操作時において、操舵トルク中立位置に達するまでの間、操舵トルクの符号は反転しない。よって、ドライバは操舵トルクを減少させ、ステアリングホイール6が狙いの角度となったときにステアリングホイール6の回転を止めるだけで、前輪5L,5Rの転舵角をコントロールできる。つまり、実施例1の逸脱余裕時間に応じた反力オフセット制御は、ドライバが力をコントロールする方向が切り替わりにくいため、ドライバの修正操舵を容易化できる。この結果、車両の走行位置がオーバーシュートしにくくなるため、修正操舵量を低減できる。
また、実施例1の逸脱余裕時間に応じた反力オフセット制御では、逸脱余裕時間が短いほどオフセット量を大きくしているため、操舵トルク中立位置は、逸脱余裕時間が短いほど操舵角中立位置からより離れた位置へオフセットされる。ドライバが車両の走行位置を走行車線中央付近まで戻す修正操舵を行う場合、逸脱余裕時間が短いほど白線に近い可能性が高く、白線に近いほど操舵角中立位置からの切り増し操作量を多くする必要がある。このとき、操舵角中立位置に対する操舵トルク中立位置のオフセット量が小さいと、ステアリングホイールが狙いの角度となる前に操舵トルクが中立位置を越えて操舵トルクの符号が反転する可能性がある。よって、白線までの距離が短いほどオフセット量を大きくすることで、操舵トルクが中立位置を越えるのを抑制できる。
[横位置および逸脱余裕時間に応じた反力オフセット制御の併用効果]
操舵反力制御部20では、操舵反力トルクオフセット部36において、逸脱余裕時間に応じた反力と横位置に応じた反力のうち絶対値が大きな方を操舵反力トルクオフセット量として選択し、加算器20bにおいて、操舵反力トルクに操舵反力トルクオフセット量を加算する。これにより、逸脱余裕時間または横位置に応じて操舵反力特性が操舵反力トルクの絶対値が大きくなる方向へオフセットされる。
逸脱余裕時間に応じた反力オフセット制御では、自車と白線とが平行である場合、すなわち、ヨー角がゼロである場合、逸脱余裕時間に応じた反力はゼロである。このため、自車が白線に近い位置であっても、ヨー角が小さい場合には、僅かな反力しか出すことができない。これに対し、横位置に応じた反力オフセット制御では、白線までの距離に比例して反力(横位置に応じた反力)を生成するため、白線までの距離が短くなるほど大きな反力を出すことができ、自車を走行車線中央付近に戻しやすくすることができる。
一方、横位置に応じた反力オフセット制御では、自車が走行車線中央付近にある場合、横位置に応じた反力はゼロである。このため、走行車線中央付近であっても、ヨー角が大きく、さらに車速が高いとき場合には、短時間で白線まで到達するのに対し、操舵反力を応答良く増大させることが難しい。これに対し、逸脱余裕時間に応じた反力オフセット制御では、逸脱余裕時間に応じて反力(逸脱余裕時間に応じた反力)を生成すること、および当該反力は逸脱余裕時間が3秒以下になると急激に立ち上がる特性であることから、短時間で白線まで到達する場合であっても、操舵反力を応答良く増大させて車線逸脱を抑制できる。
よって、逸脱余裕時間に応じた反力オフセット制御と横位置に応じた反力オフセット制御を併用することにより、白線までの距離に応じて安定的な反力を付与しつつ、車線逸脱を効果的に抑制できる。このとき、逸脱余裕時間に応じた反力と横位置に応じた反力のうち絶対値が大きな方を用いることで、常に必要とされる最適な操舵反力を付与できる。
以上説明したように、実施例1にあっては以下に列挙する効果を奏する。
(1) セルフアライニングトルクが大きいほど大きな操舵反力トルクとなり、セルフアライニングトルク増加時よりもセルフアライニングトルク減少時の操舵反力トルクが小さくなる操舵反力トルク特性に基づいて操舵部1に操舵反力トルクを付与する操舵反力制御部(操舵反力制御手段)20と、道路の曲率を検出する曲率演算部34a(曲率検出手段)と、を備え、操舵反力制御部20は、検出された曲率が大きいほど、セルフアライニングトルクに対する操舵反力トルクが小さく、かつ、セルフアライニングトルク増減時の操舵反力トルクの差が大きくなるように操舵反力トルク特性を変更する。
これにより、旋回中の保舵トルク低減と車両の安定性向上とを両立できる。
(2) 操舵反力制御部20は、所定の第1操舵反力トルク特性に基づいてセルフアライニングトルクに対する第1操舵反力トルクを演算する第1操舵反力トルク演算部34bと、第1操舵反力トルク特性よりもセルフアライニングトルクに対する操舵反力トルクが小さく、かつ、セルフアライニングトルク増減時の操舵反力トルクの差が大きな第2操舵反力トルク特性に基づいてセルフアライニングトルクに対する第2操舵反力トルクを演算する第2操舵反力トルク演算部34cと、第1操舵反力トルクと第2操舵反力トルクとの重み付けにより操舵部1に付与する操舵反力トルクを演算する第3操舵反力トルク演算部34dと、を有し、第3操舵反力トルク演算部34dは、検出された曲率が大きいほど、第1操舵反力トルクよりも第2操舵反力トルクの重み付けを大きくする。
これにより、簡単な構成でもって、検出された曲率が大きいほど、セルフアライニングトルクに対する操舵反力トルクが小さく、かつ、セルフアライニングトルク増減時の操舵反力トルクの差が大きくなるように操舵反力トルク特性を変更できる。
(3) セルフアライニングトルクが大きいほど大きな操舵反力トルクとなり、セルフアライニングトルク増加時よりもセルフアライニングトルク減少時の操舵反力トルクが小さくなる操舵反力トルク特性に基づいて操舵部1に操舵反力トルクを付与する際、道路の曲率が大きいほど、セルフアライニングトルクに対する操舵反力トルクが小さく、かつ、セルフアライニングトルク増減時の操舵反力トルクの差が大きくなるように操舵反力トルク特性を変更する。
これにより、旋回中の保舵トルク低減と車両の安定性向上とを両立できる。
(4) 道路の曲率を検出する曲率演算部(センサ)34aと、セルフアライニングトルクが大きいほど大きな操舵反力トルクとなり、セルフアライニングトルク増加時よりもセルフアライニングトルク減少時の操舵反力トルクが小さくなる操舵反力トルク特性に基づいて操舵部1に操舵反力トルクを付与する際、検出された曲率が大きいほど、セルフアライニングトルクに対する操舵反力トルクが小さく、かつ、セルフアライニングトルク増減時の操舵反力トルクの差が大きくなるように操舵反力トルク特性を変更する操舵反力制御部(コントローラ)20と、を備えた。
これにより、旋回中の保舵トルク低減と車両の安定性向上とを両立できる。
(他の実施例)
以上、本発明の操舵制御装置を実施する形態を、図面に基づく実施例により説明したが、本発明の具体的な構成は、実施例に示したものに限定されるものではなく、発明の要旨を変更しない程度の設計変更等があっても本発明に含まれる。
実施例1では、操舵力が重く、かつ、操保舵比が小さな第1操舵反力トルク特性と、操舵力が軽く、かつ、操保舵比が大きな第2操舵反力トルク特性とを曲率に応じたブレンド比でブレンドする例を示したが、図3において、タイヤ横力から1つの操舵反力トルク特性を用いて操舵反力トルクを求め、操舵反力トルクに加算するステアリング特性に応じた操舵反力トルク成分(ばね項、粘性項、慣性項)を、曲率やタイヤ横力の増減方向に応じて調整する構成としても良い。つまり、曲率が大きいほどステアリング特性に応じた操舵反力トルク成分を小さくし、かつ、タイヤ横力減少時におけるステアリング特性に応じた操舵反力トルク成分を、タイヤ横力増加時におけるステアリング特性に応じた操舵反力トルク成分よりも小さくすることで、実施例1と同様の作用効果を得ることができる。
1 操舵部
2 転舵部
3 バックアップクラッチ
4 SBWコントローラ
5 前輪
6 ステアリングホイール
7 コラムシャフト
8 反力モータ
9 操舵角センサ
11 ピニオンシャフト
12 ステアリングギア
13 転舵モータ
14 転舵角センサ
15 ラックギア
16 ラック
17 カメラ
18 車速センサ
19 転舵制御部
19a 加算器
20 操舵反力制御部
20a 加算器
20b 加算器
21 映像処理部
22 電流ドライバ
23 電流ドライバ
24 ナビゲーションシステム
31 SBW指令転舵角演算部
32 外乱抑制指令転舵角演算部
32a ヨー角演算部
32b 曲率演算部
32c 横位置演算部
32d 加算器
32e 目標ヨーモーメント演算部
32f 目標ヨー加速度演算部
32g 目標ヨーレイト演算部
32h 指令転舵角演算部
32i リミッタ処理部
33 横力演算部
34 操舵反力トルク演算部
34a 曲率演算部
34b 第1操舵反力トルク演算部
34c 第2操舵反力トルク演算部
34d 第3操舵反力トルク演算部
34e リミッタ処理部
36 操舵反力トルクオフセット部
36a ヨー角演算部
36b 横位置演算部
36c 反力選択部
36d リミッタ処理部
37 ヨー角に応じた反発力演算部
37a 上下限リミッタ
37b ヨー角F/Bゲイン乗算部
37c 車速補正ゲイン乗算部
37d 曲率補正ゲイン乗算部
37e 乗算器
38 横位置に応じた反発力演算部
38a 減算器
38b 上下限リミッタ
38c 距離補正ゲイン乗算部
38d 横位置F/Bゲイン乗算部
38e 車速補正ゲイン乗算部
38f 曲率補正ゲイン乗算部
38g 乗算器
39 逸脱余裕時間に応じた反力演算部
39a 乗算器
39b 除算器
39c 除算器
39d 逸脱余裕時間選択部
39e 逸脱余裕時間に応じた反力演算部
40 横位置に応じた反力演算部
40a 減算器
40b 減算器
40c 横位置偏差選択部
40d 横位置偏差に応じた反力演算部

Claims (4)

  1. セルフアライニングトルクが大きいほど大きな操舵反力となり、セルフアライニングトルク増加時よりもセルフアライニングトルク減少時の操舵反力が小さくなる操舵反力特性に基づいて操舵部に操舵反力を付与する操舵反力制御手段と、
    道路の曲率を検出する曲率検出手段と、
    を備え、
    前記操舵反力制御手段は、前記検出された曲率が大きいほど、セルフアライニングトルクに対する操舵反力が小さく、かつ、セルフアライニングトルク増減時の操舵反力の差が大きくなるように前記操舵反力特性を変更することを特徴とする操舵制御装置。
  2. 請求項1に記載の操舵制御装置において、
    前記操舵反力制御手段は、
    所定の第1操舵反力特性に基づいてセルフアライニングトルクに対する第1操舵反力を演算する第1操舵反力トルク演算部と、
    前記第1操舵反力特性よりもセルフアライニングトルクに対する操舵反力が小さく、かつ、セルフアライニングトルク増減時の操舵反力の差が大きな第2操舵反力特性に基づいてセルフアライニングトルクに対する第2操舵反力を演算する第2操舵反力トルク演算部と、
    前記第1操舵反力と前記第2操舵反力との重み付けにより前記操舵部に付与する操舵反力を演算する第3操舵反力トルク演算部と、
    を有し、
    前記第3操舵反力トルク演算部は、前記検出された曲率が大きいほど、前記第1操舵反力よりも前記第2操舵反力の重み付けを大きくすることを特徴とする操舵制御装置。
  3. セルフアライニングトルクが大きいほど大きな操舵反力となり、セルフアライニングトルク増加時よりもセルフアライニングトルク減少時の操舵反力が小さくなる操舵反力特性に基づいて操舵部に操舵反力を付与する際、道路の曲率が大きいほど、セルフアライニングトルクに対する操舵反力が小さく、かつ、セルフアライニングトルク増減時の操舵反力の差が大きくなるように前記操舵反力特性を変更することを特徴とする操舵制御装置。
  4. 道路の曲率を検出するセンサと、
    セルフアライニングトルクが大きいほど大きな操舵反力となり、セルフアライニングトルク増加時よりもセルフアライニングトルク減少時の操舵反力が小さくなる操舵反力特性に基づいて操舵部に操舵反力を付与する際、前記検出された曲率が大きいほど、セルフアライニングトルクに対する操舵反力が小さく、かつ、セルフアライニングトルク増減時の操舵反力の差が大きくなるように前記操舵反力特性を変更するコントローラと、
    を備えたことを特徴とする操舵制御装置。
JP2013138705A 2013-07-02 2013-07-02 操舵制御装置 Pending JP2015009761A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138705A JP2015009761A (ja) 2013-07-02 2013-07-02 操舵制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138705A JP2015009761A (ja) 2013-07-02 2013-07-02 操舵制御装置

Publications (1)

Publication Number Publication Date
JP2015009761A true JP2015009761A (ja) 2015-01-19

Family

ID=52303290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138705A Pending JP2015009761A (ja) 2013-07-02 2013-07-02 操舵制御装置

Country Status (1)

Country Link
JP (1) JP2015009761A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162902A1 (ja) * 2015-04-09 2016-10-13 日産自動車株式会社 車線維持支援装置
JP2017065273A (ja) * 2015-09-28 2017-04-06 トヨタ自動車株式会社 車両の運転支援装置
JP2017065295A (ja) * 2015-09-28 2017-04-06 トヨタ自動車株式会社 車線維持支援装置
CN106872084A (zh) * 2017-02-15 2017-06-20 清华大学 一种汽车行驶时单轮自回正力矩测量装置和方法
WO2019116453A1 (ja) * 2017-12-12 2019-06-20 日産自動車株式会社 車両のステアリング制御方法および車両のステアリング制御装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162902A1 (ja) * 2015-04-09 2016-10-13 日産自動車株式会社 車線維持支援装置
JPWO2016162902A1 (ja) * 2015-04-09 2017-10-19 日産自動車株式会社 車線維持支援装置
US10065639B2 (en) 2015-04-09 2018-09-04 Nissan Motor Co., Ltd. Lane keeping assist device
JP2017065273A (ja) * 2015-09-28 2017-04-06 トヨタ自動車株式会社 車両の運転支援装置
JP2017065295A (ja) * 2015-09-28 2017-04-06 トヨタ自動車株式会社 車線維持支援装置
CN106985811A (zh) * 2015-09-28 2017-07-28 丰田自动车株式会社 车辆的驾驶辅助装置
CN106985811B (zh) * 2015-09-28 2018-09-04 丰田自动车株式会社 车辆的驾驶辅助装置
CN106872084A (zh) * 2017-02-15 2017-06-20 清华大学 一种汽车行驶时单轮自回正力矩测量装置和方法
CN106872084B (zh) * 2017-02-15 2019-03-22 清华大学 一种汽车行驶时单轮自回正力矩测量装置和方法
WO2019116453A1 (ja) * 2017-12-12 2019-06-20 日産自動車株式会社 車両のステアリング制御方法および車両のステアリング制御装置
JPWO2019116453A1 (ja) * 2017-12-12 2020-04-16 日産自動車株式会社 車両のステアリング制御方法および車両のステアリング制御装置
US10829153B1 (en) 2017-12-12 2020-11-10 Nissan Motor Co., Ltd. Vehicle steering control method and vehicle steering control device

Similar Documents

Publication Publication Date Title
JP5794394B2 (ja) 操舵制御装置
JP5892255B2 (ja) スタビリティ制御装置
JP6003997B2 (ja) スタビリティ制御装置
JP5794393B2 (ja) 操舵制御装置
JP6119768B2 (ja) スタビリティ制御装置
JP5994860B2 (ja) 操舵制御装置
JP5979238B2 (ja) 操舵制御装置
WO2014054623A1 (ja) 操舵制御装置
JP5979249B2 (ja) 操舵制御装置
WO2014208248A1 (ja) 操舵制御装置
WO2014054626A1 (ja) 操舵制御装置
WO2014054476A1 (ja) 操舵制御装置
JP5794395B2 (ja) 操舵制御装置
JP5971126B2 (ja) 操舵制御装置
JP6212987B2 (ja) 操舵制御装置
JP2015009761A (ja) 操舵制御装置
JP5958257B2 (ja) 操舵制御装置
JP5971128B2 (ja) 操舵制御装置
JP2014073742A (ja) 操舵制御装置
JP5835499B2 (ja) 操舵制御装置
JP5971127B2 (ja) 操舵制御装置
JP6221416B2 (ja) 操舵制御装置