JP6221416B2 - 操舵制御装置 - Google Patents

操舵制御装置 Download PDF

Info

Publication number
JP6221416B2
JP6221416B2 JP2013135728A JP2013135728A JP6221416B2 JP 6221416 B2 JP6221416 B2 JP 6221416B2 JP 2013135728 A JP2013135728 A JP 2013135728A JP 2013135728 A JP2013135728 A JP 2013135728A JP 6221416 B2 JP6221416 B2 JP 6221416B2
Authority
JP
Japan
Prior art keywords
steering
reaction force
lane
steering reaction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013135728A
Other languages
English (en)
Other versions
JP2015009645A (ja
Inventor
裕也 武田
裕也 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013135728A priority Critical patent/JP6221416B2/ja
Publication of JP2015009645A publication Critical patent/JP2015009645A/ja
Application granted granted Critical
Publication of JP6221416B2 publication Critical patent/JP6221416B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、操舵制御装置に関する。
特許文献1には、現在走行している走行車線における自車の横位置が車線中央から離れるほど車線中央に向かう方向の操舵反力を大きくする操舵制御装置において、ウインカー操作が検出された場合、白線から遠ざかる方向の操舵反力を抑制することで、車線変更時の操作性向上を図る技術が開示されている。
特開2001-48034号公報
しかしながら、上記従来技術にあっては、ウインカー操作が検出されない場合には操舵反力が抑制されないため、ドライバがウインカー操作を行わずに車線変更を行う際、自車が白線を跨いで隣接車線に移動するまでの間、すなわち、制御対象となる走行車線が隣接車線に移るまでの間、横位置に応じた過大な操舵反力が付与されることで、ドライバの操舵が妨げられるという問題があった。
本発明の目的は、ドライバの操舵の妨げとなる過大な操舵反力の付与を抑制できる操舵制御装置を提供することにある。
本発明では、ウインカー操作が検出されない状態で白線からの逸脱量が検出された場合、逸脱量が所定量以下であるときには、逸脱前に走行していた車線の中央位置からの横位置に応じた操舵反力制御量を減少補正する。
よって、本発明にあっては、自車が白線を跨いで隣接車線に移動するまでの間、ドライバの操舵の妨げとなる過大な操舵反力の付与を抑制できる。
実施例1の車両の操舵系を示すシステム図である。 転舵制御部19の制御ブロック図である。 操舵反力制御部20の制御ブロック図である。 外乱抑制指令転舵角演算部32の制御ブロック図である。 ヨー角に応じた反発力演算部37の制御ブロック図である。 横位置に応じた反発力演算部38の制御ブロック図である。 ヨー角F/B制御および横位置F/B制御の制御領域を示す図である。 高速道路の直線路を走行中の車両が単発的な横風を受けた場合のヨー角変化を示すタイムチャートである。 高速道路の直線路を走行中の車両が連続的な横風を受けた場合に横位置F/B制御を実施しないときのヨー角変化および横位置変化を示すタイムチャートである。 高速道路の直線路を走行中の車両が連続的な横風を受けた場合に横位置F/B制御を実施したときのヨー角変化および横位置変化を示すタイムチャートである。 横力オフセット部34の制御ブロック図である。 セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性がセルフアライニングトルクと同一方向へオフセットした状態を示す図である。 ステアリングホイールの操舵角とドライバの操舵トルクとの関係を示す特性図である。 セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性をセルフアライニングトルクと同一方向へオフセットすることにより、ステアリングホイールの操舵角とドライバの操舵トルクとの関係を示す特性が変化した状態を示す図である。 操舵反力トルクオフセット部36の制御ブロック図である。 逸脱余裕時間に応じた反力演算部39の制御ブロック図である。 横位置に応じた反力演算部40の制御ブロック図である。 車線逸脱時オフセット量設定部41の制御ブロック図である。 セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性が操舵反力トルクの絶対値が大きくなる方向へオフセットした状態を示す図である。 ステアリングホイールの操舵角とドライバの操舵トルクとの関係を示す特性図である。 セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性を操舵反力トルクの絶対値が大きくなる方向へオフセットすることにより、ステアリングホイールの操舵角とドライバの操舵トルクとの関係を示す特性が変化した状態を示す図である。 ウインカー信号がOFFの状態で車線逸脱した場合の横位置と逸脱防止操舵反力との関係を示す図(車両の横速度が低い場合)である。 ウインカー信号がOFFの状態で車線逸脱した場合の横位置と逸脱防止操舵反力との関係を示す図(車両の横速度が高い場合)である。
〔実施例1〕
[システム構成]
図1は、実施例1の車両の操舵系を示すシステム図である。
実施例1の操舵装置は、操舵部1、転舵部2、バックアップクラッチ3、SBWコントローラ4を主要な構成とし、ドライバの操舵入力を受ける操舵部1と、左右前輪(転舵輪)5FL,5FRを転舵する転舵部2とが機械的に切り離されたステアバイワイヤ(SBW)システムを採用している。
操舵部1は、ステアリングホイール6、コラムシャフト7、反力モータ8および操舵角センサ9を備える。
コラムシャフト7は、ステアリングホイール6と一体に回転する。
反力モータ8は、例えば、ブラシレスモータであり、出力軸がコラムシャフト7と同軸の同軸モータであり、SBWコントローラ4からの指令に応じて、コラムシャフト7に操舵反力トルクを出力する。
操舵角センサ9は、コラムシャフト7の絶対回転角、すなわち、ステアリングホイール6の操舵角を検出する。
転舵部2は、ピニオンシャフト11、ステアリングギア12、転舵モータ13、および転舵角センサ14を備える。
ステアリングギア12は、ラック&ピニオン式のステアリングギアであり、ピニオンシャフト11の回転に応じて前輪5L,5Rを転舵する。
転舵モータ13は、例えば、ブラシレスモータであり、出力軸が図外の減速機を介してラックギア15と接続され、SBWコントローラ4からの指令に応じて、ラック16に前輪5を転舵するための転舵トルクを出力する。
転舵角センサ14は、転舵モータ13の絶対回転角を検出する。ここで、転舵モータ13の回転角と前輪5の転舵角とは常に一意に定まる相関関係があるため、転舵モータ13の回転角から前輪5の転舵角を検出できる。以下では特に記載しない限り、前輪5の転舵角は転舵モータ13の回転角から算出されたものとする。
バックアップクラッチ3は、操舵部1のコラムシャフト7と転舵部2のピニオンシャフト11との間に設けられ、解放により操舵部1と転舵部2とを機械的に切り離し、締結により操舵部1と転舵部2とを機械的に接続する。
SBWコントローラ4には、上記操舵角センサ9および転舵角センサ14に加え、カメラ17により撮影された自車前方の走行路の映像および車速センサ18により検出された車速(車体速)が入力される。
SBWコントローラ4は、前輪5FL,5FRの転舵角を制御する転舵制御部19と、コラムシャフト7に付与する操舵反力トルクを制御する操舵反力制御部20と、映像処理部21とを有する。
転舵制御部19は、各入力情報に基づいて指令転舵角を生成し、生成した指令転舵角を電流ドライバ22へ出力する。
電流ドライバ22は、転舵角センサ14により検出される実転舵角を指令転舵角と一致させる角度フィードバックにより転舵モータ13への指令電流を制御する。
操舵反力制御部20は、各入力情報に基づいて指令操舵反力トルクを生成し、生成した指令操舵反力トルクを電流ドライバ23へ出力する。
電流ドライバ23は、反力モータ8の電流値から推定される実操舵反力トルクを指令操舵反力トルクと一致させるトルクフィードバックにより反力モータ8への指令電流を制御する。
映像処理部21は、カメラ17により撮影された自車前方の走行路の映像からエッジ抽出等の画像処理によって走行車線左右の白線(走行路区分線)を認識する。
加えて、SBWコントローラ4は、SBWシステムのフェール時、バックアップクラッチ3を締結して操舵部1と転舵部2とを機械的に連結し、ステアリングホイール6の操舵によるラック16の軸方向移動を可能とする。このとき、転舵モータ13のアシストトルクによりドライバの操舵力を補助する電動パワーステアリングシステム相当の制御を行ってもよい。
上記SBWシステムにおいて、各センサ、各コントローラ、各モータを複数設けた冗長系としてもよい。また、転舵制御部19と操舵反力制御部20を別体としてもよい。
実施例1では、ドライバの修正操舵量の低減および操舵負担の軽減を狙いとし、スタビリティ制御および修正操舵低減制御を実施する。
スタビリティ制御は、外乱(横風、路面凹凸、轍、路面カント等)に対する車両の安定性向上を目的とし、2つのフィードバック(F/B)制御を行う。
1.ヨー角F/B制御
白線と自車進行方向とのなす角度であるヨー角に応じて転舵角を補正し、外乱により発生したヨー角を減少させる。
2.横位置F/B制御
白線までの距離(横位置)に応じて転舵角を補正し、外乱により発生したヨー角の積分値である横位置変化を減少させる。
修正操舵低減制御は、ドライバの操舵入力に対する車両の安定性向上を目的とし、3つの反力オフセット制御を行う。
1.横位置に応じた反力オフセット制御
横位置に応じてセルフアライニングトルクに応じた操舵反力特性を操舵反力の絶対値が大きくなる方向へオフセットし、ドライバが操舵角中立位置をまたぐ修正操舵を行ったときに操舵トルクの符号が反転するのを抑制する。
2.逸脱余裕時間に応じた反力オフセット制御
逸脱余裕時間(白線への到達時間)に応じてセルフアライニングトルクに応じた操舵反力特性を操舵反力の絶対値が大きくなる方向へオフセットし、ドライバが操舵角中立位置をまたぐ修正操舵を行ったときに操舵トルクの符号が反転するのを抑制する。
3.曲率に応じた反力オフセット制御
白線の曲率に応じてセルフアライニングトルクに応じた操舵反力特性をセルフアライニングトルクと同一符号方向へオフセットし、旋回時におけるドライバの保舵力を低減すると共に保舵力変化に対する保舵角変化を抑制する。
[転舵制御部]
図2は、転舵制御部19の制御ブロック図である。
SBW指令転舵角演算部31は、操舵角と車速とに基づいてSBW指令転舵角を演算する。
外乱抑制指令転舵角演算部32は、車速と白線情報とに基づき、スタビリティ制御においてSBW指令転舵角を補正するための外乱抑制指令転舵角を演算する。外乱抑制指令転舵角演算部32の詳細については後述する。
加算器19aは、SBW指令転舵角と外乱抑制指令転舵角とを加算した値を最終的な指令転舵角として電流ドライバ22へ出力する。
[操舵反力制御部]
図3は、操舵反力制御部20の制御ブロック図である。
横力演算部33は、操舵角と車速とに基づき、あらかじめ実験等により求めたコンベンショナルな操舵装置における車速毎の操舵角とタイヤ横力との関係を表す操舵角−横力変換マップを参照してタイヤ横力を演算する。操舵角−横力変換マップは、操舵角が大きいほどタイヤ横力が大きく、かつ、操舵角が小さいときは大きいときよりも操舵角の変化量に対するタイヤ横力の変化量が大きく、かつ、車速が高いほどタイヤ横力が小さくなる特性を有する。
横力オフセット部34は、車速と白線情報とに基づき、曲率に応じた反力オフセット制御において操舵反力特性をオフセットするための横力オフセット量を演算する。横力オフセット部34の詳細については後述する。
減算器20aは、タイヤ横力から横力オフセット量を減算する。
SAT演算部35は、車速と横力オフセット量によるオフセット後のタイヤ横力とに基づき、あらかじめ実験等により求めたコンベンショナルな操舵装置におけるタイヤ横力と操舵反力トルクとの関係を表す横力−操舵反力トルク変換マップを参照してタイヤ横力によって発生する操舵反力トルクを演算する。タイヤ横力−操舵反力トルク変換マップは、タイヤ横力が大きいほど操舵反力トルクが大きく、タイヤ横力が小さいときは大きいときよりもタイヤ横力の変化量に対する操舵反力トルクの変化量が大きく、かつ、車速が高いほど操舵反力トルクが小さくなる特性を有する。この特性は、コンベンショナルな操舵装置において、路面反力によって発生する車輪が直進状態に戻ろうとするセルフアライニングトルクによってステアリングホイールに発生する反力を模擬したものである。
加算器20bは、操舵反力トルクとステアリング特性に応じた操舵反力トルク成分(ばね項、粘性項、慣性項)を加算する。ばね項は操舵角に比例する成分であり、操舵角に所定のゲインを乗じて算出する。粘性項は操舵角速度に比例する成分であり操舵角速度に所定のゲインを乗じて算出する。慣性項は操舵角加速度に比例する成分であり、操舵角加速度に所定のゲインを乗じて算出する。
操舵反力トルクオフセット部36は、車速と自車前方の走行路の映像とに基づき、横位置または逸脱余裕時間に応じた反力オフセット制御において操舵反力特性をオフセットするための操舵反力トルクオフセット量を演算する。操舵反力トルクオフセット部36の詳細については後述する。
加算器20cは、ステアリング特性に応じた操舵反力トルク成分を加算した後の操舵反力トルクと操舵トルクオフセット量とを加算した値を最終的な指令操舵反力トルクとして電流ドライバ23へ出力する。
[外乱抑制指令転舵角演算部]
図4は、外乱抑制指令転舵角演算部32の制御ブロック図である。
ヨー角演算部32aは、前方注視点での白線と自車進行方向とのなす角度であるヨー角を演算する。前方注視点でのヨー角は、所定時間(例えば、0.5秒)後の白線と自車進行方向とのなす角度とする。カメラ17により撮影された走行路の映像に基づいてヨー角を演算することで、簡単かつ高精度にヨー角を検出できる。
曲率演算部32bは、前方注視点での白線の曲率を演算する。
横位置演算部32cは、前方注視点先での白線までの距離を演算する。
ヨー角に応じた反発力演算部37は、ヨー角と曲率と車速とに基づき、ヨー角F/B制御において外乱により発生したヨー角を減らすための車両の反発力を演算する。ヨー角に応じた反発力演算部37の詳細については後述する。
横位置に応じた反発力演算部38は、ヨー角と曲率と車速と前方注視点での白線までの距離とウインカースイッチ43からのウインカー信号とに基づき、横位置F/B制御において外乱により発生した横位置変化を減らすための車両の反発力を演算する。横位置に応じた反発力演算部38の詳細については後述する。
加算器32dは、ヨー角に応じた反発力と横位置に応じた反発力とを加算し、横方向反発力を演算する。
目標ヨーモーメント演算部32eは、横方向反発力、ホイールベース(車軸間距離)、後輪軸重および前輪軸重に基づいて目標ヨーモーメントを演算する。具体的には、横方向反発力に対し、車両重量(前輪軸重+後輪軸重)に対する後輪軸重の割合と、ホイールベースとを乗じた値を目標ヨーモーメントとする。
目標ヨー加速度演算部32fは、目標ヨーモーメントにヨー慣性モーメント係数を乗じて目標ヨー加速度を演算する。
目標ヨーレイト演算部32gは、目標ヨー加速度に車頭時間を乗じて目標ヨーレイトを演算する。
指令転舵角演算部32hは、目標ヨーレイトφ*、ホイールベースWHEEL_BASE、車速Vおよび車両の特性速度vChに基づき、下記の式を参照して外乱抑制指令転舵角δst *を演算する。ここで、車両の特性速度Vchとは、既知の"アッカーマン方程式"の中のパラメータであり、車両のセルフステアリング特性を表すものである。
δst * = (φ*×WHEEL_BASE×(1+(V/vCh)2)×180)/(V×M_PI)
なお、M_PIは所定の係数である。
リミッタ処理部32iは、外乱抑制指令転舵角δst *の最大値および変化率の上限を制限する。最大値は、コンベンショナルな操舵装置(操舵部と転舵部とが機械的に接続された)において、ステアリングホイール6の操舵角が中立位置付近の遊びの角度範囲(例えば、左右3°)にあるときの当該遊びの範囲に対応する前輪5FL,5FRの転舵角範囲(例えば、左右0.2°)とする。また、リミッタ処理部32iは、ウインカー信号に応じて外乱抑制指令転舵角δst *の変化率を制限する。具体的には、ウインカー信号がOFFからONに切り替わったときの低下勾配絶対値よりもウインカー信号がONからOFFに切り替わったときの増加勾配絶対値を小さくする。
図5は、ヨー角に応じた反発力演算部37の制御ブロック図である。
上下限リミッタ37aは、ヨー角に上下限リミッタ処理を施す。上下限リミッタは、ヨー角が正の値の場合(白線と自車進行方向の延長線とが交差するときのヨー角を正とする。)には、外乱を抑制可能な所定値以上、かつ、車両が振動的となる値およびドライバの操舵によって発生する値未満の値(例えば、1°)とし、ヨー角が負の場合には0とする。
ヨー角F/Bゲイン乗算部37bは、リミッタ処理後のヨー角にヨー角F/Bゲインを乗じる。ヨー角F/Bゲインは、制御量不足を回避しつつ応答性を確保できる所定値以上、かつ、車両が振動的になる値およびドライバが操舵角と転舵角との中立ずれを感じる値未満とする。
車速補正ゲイン乗算部37cは、車速に車速補正ゲインを乗じる。車速補正ゲインは、0〜70km/hの範囲で最大値をとり、70〜130km/hの範囲で徐々に減少し、130km/h以上の範囲で最小値(0)となる特性とする。
曲率補正ゲイン乗算部37dは、曲率に曲率補正ゲインを乗じる。曲率補正ゲインは、曲率が大きいほど小さくなる特性とし、上限および下限(0)を設定する。
乗算器37eは、ヨー角F/Bゲイン乗算部37b、車速補正ゲイン乗算部37cおよび曲率補正ゲイン乗算部37dの各出力を乗じてヨー角に応じた反発力を求める。
図6は、横位置に応じた反発力演算部38の制御ブロック図である。
減算器38aは、あらかじめ設定された横位置閾値(例えば、90cm)から前方注視点先での白線までの距離を減じて横位置偏差を求める。
上下限リミッタ38bは、横位置偏差に上下限リミッタ処理を施す。上下限リミッタは、横位置偏差が正の値の場合には所定の正の値をとり、横位置偏差が負の値の場合には0とする。
距離補正ゲイン乗算部38cは、前方注視点先での白線までの距離に距離補正ゲインを乗じる。距離補正ゲインは、白線までの距離が所定値以下である場合は最大値をとり、所定値を超える場合は距離が長くなるほど小さくなる特性とし、下限を設定する。
横位置F/Bゲイン乗算部38dは、距離補正ゲイン乗算部38cによる補正後の白線までの距離に横位置F/Bゲインを乗じる。横位置F/Bゲインは、制御量不足を回避しつつ応答性を確保できる所定値以上、かつ、車両が振動的になる値およびドライバが中立ずれを感じる値未満とし、さらに、ヨー角F/Bゲイン演算部37bのヨー角F/Bゲインよりも小さな値に設定する。
車速補正ゲイン乗算部38eは、車速に車速補正ゲインを乗じる。車速補正ゲインは、0〜70km/hの範囲で最大値をとり、70〜130km/hの範囲で徐々に減少し、130km/h以上の範囲で最小値(0)となる特性とする。
曲率補正ゲイン乗算部38fは、曲率に曲率補正ゲインを乗じる。曲率補正ゲインは、曲率が大きいほど小さくなる特性とし、上限および下限(0)を設定する。
ウインカーゲイン算出部38gは、ウインカー信号がOFFの場合は1を出力し、ONの場合は1よりも小さな値(例えば、0.2)を出力する。
乗算器38hは、横位置F/Bゲイン乗算部38d、車速補正ゲイン乗算部38e、曲率補正ゲイン乗算部38fおよびウインカーゲイン算出部38gの各出力を乗じて横位置に応じた反発力を求める。
[スタビリティ制御作用]
実施例1では、スタビリティ制御として、外乱により発生したヨー角を減少させるヨー角F/B制御と、外乱により発生したヨー角の積分値である横位置変化を減少させる横位置F/B制御を実施する。ヨー角F/B制御は、ヨー角が発生した場合、横位置にかかわらず実施し、横位置F/B制御は、白線までの距離が所定の横位置閾値(90cm)以下となった場合に実施する。すなわち、走行車線中央付近は横位置F/B制御の不感帯となる。両F/B制御の制御領域を図7に示す。φはヨー角である。
図8は、高速道路の直線路を走行中の車両が単発的な横風を受けた場合のヨー角変化を示すタイムチャートであり、車両は走行車線の中央付近を走行しているものとする。車両が単発的な横風を受けてヨー角が発生すると、ヨー角F/B制御では、ヨー角に応じた反発力を演算し、当該反発力を得るための外乱抑制指令転舵角を求め、操舵角と車速とに基づくSBW指令転舵角を補正する。
車両を走行車線に沿って走行させる場合、特に直線路では、白線の方向と自車進行方向とは一致しているため、ヨー角はゼロとなる。つまり、実施例1のヨー角F/B制御では、発生したヨー角を外乱によるものとみなし、ヨー角を減少させることにより、特に直進時において外乱に対する車両の安定性向上を図ることができ、ドライバの修正操舵量を低減できる。
従来、横風等の外乱による車両挙動への影響を抑制するものとして、コンベンショナルな操舵装置では、外乱抑制のための転舵トルクを操舵系に付与するものが知られており、SBWシステムでは、外乱抑制のための転舵を促す操舵反力成分をステアリングホイールに付与するものが知られている。ところが、これら従来の操舵装置では、操舵反力の変動が生じるため、ドライバに違和感を与えてしまう。
これに対し、実施例1のヨー角F/B制御を含むスタビリティ制御では、ステアリングホイール6と前輪5L,5Rとが機械的に切り離されたSBWシステムの特徴である、ステアリングホイール6と前輪5L,5Rとを互いに独立して制御可能な点に着目し、操舵角と車速とに応じたSBW指令転舵角とヨー角に応じた外乱抑制指令転舵角とを加算した指令転舵角に基づいて前輪5L,5Rの転舵角を制御する一方、操舵角と車速とに基づいてタイヤ横力を推定し、推定したタイヤ横力と車速とに応じた指令操舵反力に基づいて操舵反力を制御する。
すなわち、外乱抑制分の転舵角を直接前輪5L,5Rに与えるため、外乱抑制のための転舵を促す操舵反力成分の付与が不要となる。さらに、操舵角から推定したタイヤ横力に応じた操舵反力を付与することで、外乱抑制のための転舵によって生じるタイヤ横力の変動が操舵反力に反映されないため、ドライバに与える違和感を軽減できる。従来のSBWシステムでは、センサにより検出したラック軸力や転舵角からタイヤ横力を推定し、推定したタイヤ横力に応じた操舵反力を付与している。このため、外乱抑制のための転舵によって生じるタイヤ横力の変動が操舵反力に必ず反映されてしまい、ドライバの違和感となる。実施例1では、ドライバの操舵によって生じたタイヤ横力のみが操舵反力に反映され、外乱抑制のための転舵によって操舵反力が変動しないため、ドライバに与える違和感を軽減できる。
ここで、外乱抑制分の転舵角を直接前輪5L,5Rに与える場合、操舵角と転舵角との中立ずれが問題となるが、実施例1では、外乱抑制指令転舵角を、コンベンショナルな操舵装置において、ステアリングホイール6が操舵角中立位置付近の遊びの角度範囲(左右3°)にあるときの当該遊びの範囲に対応する前輪5FL,5FRの転舵角範囲(左右0.2°)に設定している。外乱によるヨー角の発生は、旋回時よりも直進時に顕著であり、直進時、操舵角は操舵角中立位置付近に位置している。つまり、ヨー角F/B制御による転舵角の補正は、操舵角中立位置付近で実施されることはほとんどであるため、外乱抑制指令転舵角の付与に伴う操舵角と転舵角との中立ずれ量をステアリングの遊びの範囲に抑えることで、中立ずれに伴う違和感を抑制できる。
また、外乱抑制指令転舵角を左右0.2°の範囲に制限しているため、スタビリティ制御中であってもドライバは操舵入力によって車両の進行方向を所望の方向に変化させることができる。つまり、ドライバの操舵入力によって生じる転舵角の変化量に対し、外乱抑制指令転舵角による転舵角の補正量が微小であるため、ドライバの操舵を妨げることなく外乱に対する車両の安定性向上を実現できる。
従来、車両の横方向運動を制御するものとして、車両の走行車線逸脱傾向が検出されると車両に逸脱を回避するヨーモーメントを付与する車線逸脱防止制御や、車両が走行車線の中央付近を走行するよう車両にヨーモーメントを付与するレーンキープ制御が公知である。ところが、車線逸脱防止制御では、制御介入の閾値を持った制御であり、走行車線の中央付近では制御が作動しないため、外乱に対する車両の安定性を確保できない。また、ドライバが車両を走行車線の端に寄せたい場合でも閾値によって制御介入がなされるため、ドライバに煩わしさを与えてしまう。一方、レーンキープ制御では、目標位置(目標ライン)を持った制御であり、外乱に対する車両の安定性を確保できるものの、目標ラインから外れたラインを走行させることはできない。加えて、ドライバがステアリングホイールの把持力を小さくすると手放し状態との判定により制御が解除されるため、ドライバは常にステアリングホイールを一定以上の力で把持しておく必要が有り、ドライバの操舵負荷が大きい。
これに対し、実施例1のヨー角F/B制御は、制御介入の閾値を持たないため、シームレスな制御により常に外乱に対する安定性を確保できる。さらに、目標位置を持たないため、ドライバは車両を好きなラインで走行させることができる。加えて、ステアリングホイール6を軽く持っている場合でも制御が解除されることはないため、ドライバの操舵負荷を小さくできる。
図9は、高速道路の直線路を走行中の車両が連続的な横風を受けた場合に横位置F/B制御を実施しないときのヨー角変化および横位置変化を示すタイムチャートであり、車両は走行車線の中央付近を走行しているものとする。車両が連続的な横風を受けてヨー角が発生すると、ヨー角F/B制御によってヨー角は低減されるものの、車両は連続的な外乱を受けて横流れしている。ヨー角F/B制御は、ヨー角を減少させるものであって、ヨー角ゼロの場合は転舵角の補正を行わないため、外乱により発生したヨー角の積分値である横位置変化を直接的に減少させることはできないからである。なお、ヨー角に応じた反発力を大きな値とすることで、横位置変化を間接的に抑制する(ヨー角の積分値の増加を抑制する)ことは可能であるが、外乱抑制指令転舵角の最大値はドライバに違和感を与えないよう、左右0.2°に制限されていることから、ヨー角F/B制御のみで車両の横流れを効果的に抑制することは難しい。さらに、ヨー角に応じた反発力を求めるためのヨー角F/Bゲインは、ドライバがヨー角変化に気付く前にヨー角を収束させる必要が有るため、出来るだけ大きな値としているのに対し、そのままでは車両が振動的となるため、ヨー角F/Bゲインに乗じるヨー角を上下限リミッタ37aによって上限(1°)以下に制限している。すなわち、ヨー角に応じた反発力は実際のヨー角よりも小さなヨー角に対応した反発力であるため、この点からもヨー角F/B制御のみで車両の横流れを効果的に抑制するのは困難であることがわかる。
そこで、実施例1のスタビリティ制御では、横位置F/B制御を導入し、定常的な外乱によって車両が横流れするのを抑制している。図10は、高速道路の直線路を走行中の車両が連続的な横風を受けた場合に横位置F/B制御を実施したときのヨー角変化および横位置変化を示すタイムチャートであり、横位置F/B制御では、走行車線中央付近を走行中の車両が連続的な横風を受けて横流れし、白線までの距離が横位置閾値以下になると、横位置変化(≒ヨー角積分値)に応じた反発力を演算する。外乱抑制指令転舵角演算部32では、横位置に応じた反発力とヨー角に応じた反発力とを加算した横方向反発力に基づく外乱抑制指令転舵角を演算し、SBW指令転舵角を補正する。すなわち、横位置F/B制御では、横位置に応じた外乱抑制指令転舵角によってSBW指令転舵角を補正するため、定常的な外乱による横位置変化を直接的に減少させることが可能であり、車両の横流れを抑制できる。言い換えると、ヨー角F/B制御を行う車両の走行位置を、横位置F/B制御の不感帯である走行車線中央付近に戻すことができる。
以上のように、実施例1のスタビリティ制御は、過渡的な外乱によるヨー角変化をヨー角F/B制御により減少させ、定常的な外乱によるヨー角積分値(横位置変化)を横位置F/B制御により減少させることで、過渡的および定常的な外乱に対する車両の安定性を共に向上できる。
さらに、実施例1のスタビリティ制御は、制御(外乱抑制指令転舵角の付与)によって生じる車両挙動をドライバに気付かれない程度、かつ、ドライバの操舵によって発生する車両挙動変化を妨げない程度に制限し、かつ、制御によって生じるセルフアライニングトルクの変化を操舵反力に反映させないため、ドライバにスタビリティ制御中であることを意識させることなく実施可能である。これにより、あたかも外乱に対する安定性に優れた車体諸元を持つ車両の振る舞いを模擬できる。
なお、横位置F/B制御において横位置に応じた反発力を求めるための横位置F/Bゲインは、ヨー角F/Bゲインよりも小さな値に設定している。上述したように、ヨー角F/B制御は、過渡的な外乱によるヨー角の変化をドライバが感じる前にヨー角を収束させる必要上、高応答性が求められるのに対し、横位置F/B制御は、横位置変化が増加するのを止めることが求められること、およびヨー角積分値の蓄積によって横位置が変化するのに時間が掛かることから、ヨー角F/B制御ほどの応答性は必要としていないからである。加えて、仮に横位置F/Bゲインを大きくすると、外乱の大小によって制御量が大きく変動し、ドライバに違和感を与えるからである。
[横力オフセット部]
図11は、横力オフセット部34の制御ブロック図である。
曲率演算部34aは、前方注視点での白線の曲率を演算する。
上下限リミッタ34bは、車速に上下限リミッタ処理を施す。
SATゲイン演算部34cは、リミッタ処理後の車速に基づき、車速に応じたSATゲインを演算する。SATゲインは、車速が高いほど大きなゲインとなる特性とし、上限を設定する。
乗算器34dは、SATゲインに曲率を乗じて横力オフセット量を求める。
リミッタ処理部34eは、横力オフセット量の最大値および変化率の上限を制限する。例えば、最大値は1,000N、変化率の上限は600N/sとする。
[曲率に応じた反力オフセット制御作用]
曲率に応じた反力オフセット制御は、白線の曲率が大きいほど大きな横力オフセット量を求め、タイヤ横力から減算する。これにより、SAT演算部35で演算されるタイヤ横力に応じた操舵反力トルク、すなわち、セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性は、図12に示すように、白線の曲率が大きくなるほど、セルフアライニングトルクと同一符号方向へオフセットされる。なお、図12は右カーブの場合であり、左カーブの場合は図12と反対方向にオフセットされる。
従来、操舵部と転舵部とが機械的に切り離されたSBWシステムでは、コンベンショナルな操舵装置におけるセルフアライニングトルクに応じた操舵反力を模擬する操舵反力特性を設定し、当該操舵反力特性に基づいてステアリングホイールに操舵反力を付与しており、このとき、ステアリングホイールの操舵角とドライバの操舵トルクとの関係は、図13に示すような特性Aとなる。すなわち、操舵角の絶対値が大きいほど操舵トルクの絶対値は大きくなり、操舵角の絶対値が小さいときは大きいときよりも操舵角の変化量に対する操舵トルクの変化量が大きくなる。
ここで、旋回中にドライバが進路修正のために保舵トルクを変化させる場合を考える。図13において、ドライバが保舵トルクT1で操舵角θ1を保持した状態から、保舵トルクをT2まで減少させると、操舵角はθ2となり、操舵角の減少によって前輪5L,5Rの転舵角は小さくなる。このとき、上述したSBWシステムにおける操舵反力特性により、カーブの曲率が大きいほど保舵トルクの変化に対して操舵角は大きく変動する。つまり、カーブの曲率が大きいほど操舵トルクに対する車両の感度が高くなるため、進路修正が困難であるという問題があった。
これに対し、実施例1の曲率に応じた反力オフセット制御では、白線の曲率が大きいほどセルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性をセルフアライニングトルクと同一符号方向へオフセットすることで、操舵角と操舵トルクとの関係を表す特性は、図14に示すように操舵角と同一符号方向へオフセットされ、特性Aから特性Bへと変化する。これにより、白線の曲率が大きいほど保舵トルクの変化量に対する操舵角の変化量が小さくなるため、ドライバが保舵トルクをT4まで減少させ、保舵トルクの減少量ΔT3-4が図13に示した従来技術の減少量ΔT1-2と同一の場合であったとしても、操舵角の減少量Δθ1-4は従来技術の減少量Δθ1-2よりも小さくなる。つまり、カーブの曲率が大きいほど保舵トルクの変化に対する操舵角の変動を小さくでき、操舵トルクに対する車両の感度を低くできるため、車両の挙動変化を緩やかとなり、ドライバによる進路修正の容易化を図ることができる。また、操舵角θを維持するための保舵トルクT3(<T1)を従来技術よりも小さくできるため、旋回時におけるドライバの操舵負担を軽減できる。
従来、旋回時におけるドライバの操舵負担軽減を目的とし、白線の曲率が大きいほど操舵反力特性の傾きを小さくする技術は知られているが、当該従来技術では、曲率が大きいほど保舵トルクの変化に対する操舵角の変動が大きくなるため、操舵トルクに対する車両の感度が高くなってしまう。つまり、操舵反力特性を白線の曲率に応じてセルフアライニングトルクと同一方向へオフセットすることで、旋回時におけるドライバの操舵負担軽減と進路修正の容易化との両立を実現できる。
[操舵反力トルクオフセット部]
図15は、操舵反力トルクオフセット部36の制御ブロック図である。
ヨー角演算部36aは、前方注視点でのヨー角を演算する。カメラ17により撮影された走行路の映像に基づいてヨー角を演算することで、簡単かつ高精度にヨー角を検出できる。
横位置演算部36bは、前方注視点での左右白線に対する横位置および現在位置での左右白線に対する横位置をそれぞれ演算する。ここで、横位置演算部36bは、自車が白線から逸脱した際、逸脱量が所定量α(自車幅/2)以下である場合、すなわち、自車中心線が白線を超えていない場合は、逸脱前に走行していた走行車線の左右白線を対象とした横位置の演算を継続する。実施例1では、αを例えば90cmとする。一方、逸脱量がαを超えた場合、すなわち、自車中心線が白線を超えた場合は、現在走行している走行車線(逸脱前に走行していた走行車線の隣接車線)の左右白線を対象とした横位置の演算に切り替える。逸脱量は、車両の白線からのはみ出し量とし、現在位置での左右白線に対する横位置と自車幅とから求める。なお、逸脱とは、0<逸脱量≦αの状態とし、逸脱量>αとなったらレーンチェンジ(車線変更)と判定して逸脱量の演算を終了する。
逸脱余裕時間に応じた反力演算部39は、車速とヨー角と前方注視点での左右白線に対する横位置とウインカースイッチ43からのウインカー信号とに基づき、逸脱余裕時間に応じた反力を演算する。逸脱余裕時間に応じた反力演算部39の詳細については後述する。
横位置に応じた反力演算部40は、現在位置での左右白線に対する横位置とウインカースイッチ43からのウインカー信号とに基づき、横位置に応じた反力を演算する。横位置に応じた反力演算部40の詳細については後述する。
反力選択部36cは、逸脱余裕時間に応じた反力と横位置に応じた反力のうち絶対値が大きな方を操舵反力トルクオフセット量として選択する。
車線逸脱時オフセット量設定部41は、ウインカースイッチ43からのウインカー信号がOFFの状態で自車が白線から逸脱した場合、反力選択部36cからの操舵反力トルクオフセット量を補正して後段のリミッタ処理部36dへ出力し、それ以外の場合には反力選択部36cからの操舵反力トルクオフセット量をそのまま後段へ出力する。操舵反力トルクオフセット量の補正は、逸脱量がゼロになった場合、または、逸脱量が所定量αを超えた後、反力選択部36cからの操舵反力トルクオフセット量と補正後の操舵反力トルクオフセット量が一致した場合に終了する。車線逸脱時オフセット量設定部41の詳細については後述する。
リミッタ処理部36dは、車線逸脱時オフセット量設定部41から出力された操舵反力トルクオフセット量の最大値および変化率の上限を制限する。例えば、最大値は2Nm、変化率の上限は10Nm/sとする。また、リミッタ処理部36dは、ウインカースイッチ43からのウインカー信号に応じて操舵反力トルクオフセット量の変化率を制限する。具体的には、ウインカー信号がOFFからONに切り替わったときの低下勾配絶対値よりもウインカー信号がONからOFFに切り替わったときの増加勾配絶対値を小さくする。ここで、ウインカー信号がOFFからONに切り替わったときの操舵反力トルクオフセット量の低下勾配絶対値は、リミッタ処理部32iにおいてウインカー信号がOFFからONに切り替わったときの外乱抑制指令転舵角の低下勾配絶対値よりも大きな値とする。
図16は、逸脱余裕時間に応じた反力演算部39の制御ブロック図である。
乗算器39aは、ヨー角に車速を乗じて車両の横速度を求める。
除算器39bは、前方注視点での左白線に対する横位置を横速度で除して左白線に対する逸脱余裕時間を求める。
除算器39cは、前方注視点での右白線に対する横位置を横速度で除して右白線に対する逸脱余裕時間を求める。
逸脱余裕時間選択部39dは、左右白線に対する逸脱余裕時間のうち短い方を逸脱余裕時間として選択する。
逸脱余裕時間に応じた反力演算部39eは、逸脱余裕時間に基づき、逸脱余裕時間に応じた反力を演算する。逸脱余裕時間に応じた反力は、逸脱余裕時間に反比例(逸脱余裕時間の逆数に比例)し、3秒以上でほぼゼロとなる特性を有する。
ウインカーゲイン算出部39fは、ウインカー信号がOFFの場合は1を出力し、ONの場合は1よりも小さな値(例えば、0.2)を出力する。
乗算器39gは、逸脱余裕時間に応じた反力演算部39eとウインカーゲイン算出部39fの各出力を乗じて最終的な逸脱余裕時間に応じた反力を求める。
図17は、横位置に応じた反力演算部40の制御ブロック図である。
減算器40aは、あらかじめ設定された目標左横位置(例えば、90cm)から左車線に対する横位置を減じて左車線に対する横位置偏差を求める。
減算器40bは、あらかじめ設定された目標右横位置(例えば、90cm)から右車線に対する横位置を減じて右車線に対する横位置偏差を求める。
横位置偏差選択部40cは、左右車線に対する横位置偏差のうち大きな方を横位置偏差として選択する。
横位置偏差に応じた反力演算部40dは、横位置偏差に基づき、横位置に応じた反力を演算する。横位置に応じた反力は、横位置偏差が大きいほど大きくなる特性とし、上限を設定する。
ウインカーゲイン算出部40eは、ウインカー信号がOFFの場合は1を出力し、ONの場合は1よりも小さな値(例えば、0.2)を出力する。
乗算器40fは、横位置に応じた反力演算部40dとウインカーゲイン算出部40eの各出力を乗じて最終的な横位置に応じた反力を求める。
図18は、車線逸脱時オフセット量設定部41の制御ブロック図である。
逸脱量に応じた減少ゲイン演算部41aは、逸脱量に基づき、逸脱量に応じた減少ゲインk1を演算する。k1は、逸脱量が大きいほど大きくなる特性とする。
逸脱時間に応じた減少ゲイン演算部41bは、逸脱時間に基づき、逸脱時間に応じた減少ゲインk2を演算する。k2は、逸脱時間が長いほど大きくなる特性とする。
操舵角に応じた減少ゲイン演算部41cは、逸脱方向の操舵角に基づき、操舵角に応じた減少ゲインk3を演算する。k3は、操舵角が大きいほど大きくなる特性とする。
操舵角速度に応じた減少ゲイン演算部41dは、逸脱方向の操舵角速度に基づき、操舵角速度に応じた減少ゲインk4を演算する。k4は、操舵角速度が高いほど大きくなる特性とする。
操舵トルクに応じた減少ゲイン演算部41eは、逸脱方向の操舵トルクに基づき、操舵トルクに応じた減少ゲインk5を演算する。k5は、操舵トルクが大きいほど大きくなる特性する。
逸脱時オフセット量設定部41fは、反力選択部36cから出力された操舵反力トルクオフセット量から、5つの減少ゲインk1,k2,k3,k4,k5から求まる第1減少量(>0)を減算した値(操舵反力トルクオフセット量が負の値の場合には減少量を加算した値)を補正後の操舵反力トルクオフセット量として出力する。第1減少量は、所定値(>0)に各減少ゲインk1,k2,k3,k4,k5を乗じた値とする。
レーンチェンジオフセット量設定部41gは、ウインカー信号がONの場合、または、ウインカー信号がOFFの状態で逸脱量がα(自車幅/2)以下である場合、反力選択部36cから出力された操舵反力トルクオフセット量をそのまま後段のスイッチ41hへ出力する。一方、ウインカー信号がOFFの状態で逸脱量がαを超えた場合、すなわち、ドライバがウインカー操作をせずにレーンチェンジを行ったとみなされた場合には、操舵反力トルクオフセット量の減少量を固定する。具体的には、スイッチ41hから出力された操舵反力トルクオフセット量の前回値からあらかじめ設定された第2減少量(>0)を減算した値(操舵反力トルクオフセット量が負の値の場合には所定減少量を加算した値)を補正後の操舵反力トルクオフセット量として出力する。第2減少量は、ドライバに操舵反力抜けによる違和感を与えない大きさ、例えば、逸脱量が所定量αを超えてから約4〜5秒で操舵反力トルクオフセット量がゼロまで減少する程度の値とする。ここで、第2減少量による減少量の固定中に、補正後の操舵反力トルクオフセット量の方向が反転(符号が反転)した場合、第2減少量に代えて、第2減少量よりも小さな第3減少量を用いて操舵反力トルクオフセット量を固定する。
レーンチェンジオフセット量設定部41gは、反力選択部36cから出力された操舵反力トルクオフセット量とスイッチ41hから出力された操舵反力トルクオフセット量の前回値との差が第2減少量(または第3減少量)以下となった場合、減少量の固定を終了し、その後は反力選択部36cから出力された操舵反力トルクオフセット量をそのまま後段へ出力する。
スイッチ41hは、ウインカー信号と逸脱量をリンク運転選択指令として入力し、リンク運転選択指令が0(false)のときはレーンチェンジオフセット量設定部41gの出力を操舵反力トルクオフセット量として出力し、1(true)のときは逸脱時オフセット量設定部41fの出力を操舵反力トルクオフセット量として出力する。ここで、1(true)はウインカー信号OFF、かつ、0<逸脱量≦αの場合とし、それ以外の場合は0(false)とする。
[横位置に応じた反力オフセット制御作用]
横位置に応じた反力オフセット制御は、横位置に応じた反力を操舵反力トルクオフセット量として操舵反力トルクに加算する。これにより、セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性は、図19に示すように、白線までの距離が短くなるほど操舵反力トルクの絶対値が大きくなる方向へオフセットされる。なお、図19は右車線に近い場合であり、左車線に近い場合は図19と反対方向にオフセットされる。
ここで、従来の操舵反力制御において、ドライバの不意な右方向への切り増し操作により車両の走行位置が右側にずれ、その後ドライバが修正操舵によって走行位置を走行車線中央付近に戻す場合を考える。ドライバが不意な操作を行ったときの操舵角と操舵トルクを、図20の特性A上の点P1の位置とする。特性Aは、図13と同様、コンベンショナルな操舵装置を模擬した操舵反力特性を設定したときの操舵角と操舵トルクとの関係を表す特性とする。この状態から走行位置を走行車線中央付近に戻すためには、前輪を左に転舵させる必要が有るため、ドライバは操舵角中立位置への切り戻し操作に続けて、操舵角中立位置からの切り増し操作を行い、ステアリングホイールを狙った角度θ5に合わせる。このとき、上記従来技術では、操舵角中立位置(操舵角ゼロ点)と操舵トルク中立位置(操舵トルクゼロ点)とが一致しているため、操舵角中立位置までは操舵トルクを減少させ、操舵角中立位置を超えたら操舵トルクを増加させる必要がある。つまり、操舵角中立位置をまたぐ修正操舵を行う場合、操舵トルクの符号が反転し、ドライバが力をコントロールする方向が切り替わると共に、操舵トルク中立位置付近は他の操舵角領域と比較して操舵トルクの変化量に対する操舵角の変化量が著しく小さいため、ドライバの操舵負担が大きく、ステアリングホイールを狙った角度θ5にコントロールすることが困難である。これにより、車両の走行位置がオーバーシュートしやすくなることで、修正操舵量の増大を招くという問題があった。
これに対し、実施例1の横位置に応じた反力オフセット制御では、白線までの距離が短いほどセルフアライニングトルクに応じた操舵反力トルクを操舵反力トルクの絶対値が大きくなる方向へオフセットすることで、操舵角と操舵トルクとの関係を表す特性は、図21に示すように、操舵トルクの絶対値が大きくなる方向へオフセットされ、白線までの距離が短くなるに従い特性Aから特性Cへと連続的に変化する。このとき、操舵角を維持するためには、操舵トルクを増やす必要があり、操舵トルクが一定であれば、ステアリングホイール6が少しずつ操舵角中立位置に戻されるため(点P1→点P2)、ドライバの不意な切り増し操作によって車両の走行位置が右側にずれるのを抑制できる。一方、ドライバが操舵角を維持した場合、操舵角と操舵トルクは点P1から点P3へと移動する。この状態からドライバが修正操舵を行う場合、特性Cでは操舵トルク中立位置が操舵角中立位置よりも切り増し側へオフセットされているため、操舵角中立位置からの切り増し操作時において、操舵トルク中立位置に達するまでの間、操舵トルクの符号は反転しない。よって、ドライバは操舵トルクを減少させ、ステアリングホイール6が狙いの角度となったときにステアリングホイール6の回転を止めるだけで、前輪5L,5Rの転舵角をコントロールできる。つまり、実施例1の横位置に応じた反力オフセット制御は、ドライバが力をコントロールする方向が切り替わりにくいため、ドライバの修正操舵を容易化できる。この結果、車両の走行位置がオーバーシュートしにくくなるため、修正操舵量を低減できる。
従来、ドライバの不意な操作によって走行位置がずれるのを抑制することを目的とし、白線に近付くほど操舵反力を大きくする技術は知られているが、当該従来技術では、白線に近づくほどステアリングホイールを重くするだけであって、操舵反力特性における操舵トルク中立位置は常に操舵角中立位置と一致しているため、操舵角中立位置をまたぐ修正操舵では、操舵トルクの符号が反転し、ドライバの操舵負担は軽減されない。つまり、白線までの距離が短いほどセルフアライニングトルクに応じた操舵反力トルクを操舵反力トルクの絶対値が大きくなる方向へオフセットすることで、走行位置のずれ抑制とドライバの操舵負担軽減との両立を実現できる。
また、実施例1の横位置に応じた反力オフセット制御では、白線までの距離が短いほどオフセット量を大きくしているため、操舵トルク中立位置は、白線までの距離が短いほど操舵角中立位置からより離れた位置へオフセットされる。ドライバが車両の走行位置を走行車線中央付近まで戻す修正操舵を行う場合、白線に近いほど操舵角中立位置からの切り増し操作量を多くする必要がある。このとき、操舵角中立位置に対する操舵トルク中立位置のオフセット量が小さいと、ステアリングホイールが狙いの角度となる前に操舵トルクが中立位置を越えて操舵トルクの符号が反転する可能性がある。よって、白線までの距離が短いほどオフセット量を大きくすることで、操舵トルクが中立位置を越えるのを抑制できる。
実施例1の横位置に応じた反力オフセット制御において、横位置演算部36bは、自車が白線に到達したとき、現在位置での左右白線に対する横位置を入れ替える。横位置に応じた反力オフセット制御では、自車が走行車線中央付近から遠ざかるほど操舵反力を大きくすることで自車が走行車線中央付近に戻りやすくしている。つまり、ヨー角積分値(横位置変化)を外乱とみなし、車両をヨー角積分値が無くなる方向へ誘導するように操舵反力を制御している。このため、レーンチェンジが行われた場合、ヨー角積分値をリセットする必要がある。仮にヨー角積分値をリセットしない場合、レーンチェンジ後もレーンチェンジ前に走行していた走行車線中央付近に車両を戻すための操舵反力が作用し続けるため、ドライバの操作が阻害されるからである。なお、単に積分値をゼロとするのみでは、現在走行している走行車線中央付近に車両を誘導することができない。
そこで、実施例1では、自車が白線に到達した場合には、ドライバの意図的な操作とみなせるため、その場合は現在位置での左右白線に対する横位置を入れ替える、換言すると、ヨー角積分値の符号を反転させることにより、自車を誘導する位置をレーンチェンジ前に走行していた走行車線中央付近から現在走行している走行車線中央付近に切り替え、現在走行している走行車線中央付近に自車を誘導するための操舵反力を生成できる。このとき、レーンチェンジ前に走行していた走行車線の車線幅W1に対する現在走行している走行車線の車線幅W2の比率W2/W1を考慮するため、正確な横位置を設定でき、自車を走行車線中央付近に誘導するための最適なオフセット量を設定できる。
[逸脱余裕時間に応じた反力オフセット制御作用]
逸脱余裕時間に応じた反力オフセット制御は、逸脱余裕時間に応じた反力を操舵反力トルクオフセット量として操舵反力トルクに加算する。これにより、セルフアライニングトルクに応じた操舵反力トルクを表す操舵反力特性は、図19に示したように、逸脱余裕時間が短くなるほど操舵反力トルクの絶対値が大きくなる方向へオフセットされる。なお、図19は右車線に近い場合であり、左車線に近い場合は図19と反対方向にオフセットされる。
このため、操舵角と操舵トルクとの関係を表す特性は、図21に示したように、操舵トルクの絶対値が大きくなる方向へオフセットされ、逸脱余裕時間が短くなるに従い特性Aから特性Cへと連続的に変化する。このとき、操舵角を維持するためには、操舵トルクを増やす必要があり、操舵トルクが一定であれば、ステアリングホイール6が少しずつ操舵角中立位置に戻されるため(点P1→点P2)、ドライバの不意な切り増し操作によって車両の走行位置が右側にずれるのを抑制できる。一方、ドライバが操舵角を維持した場合、操舵角と操舵トルクは点P1から点P3へと移動する。この状態からドライバが修正操舵を行う場合、特性Cでは操舵トルク中立位置が操舵角中立位置よりも切り増し側へオフセットされているため、操舵角中立位置からの切り増し操作時において、操舵トルク中立位置に達するまでの間、操舵トルクの符号は反転しない。よって、ドライバは操舵トルクを減少させ、ステアリングホイール6が狙いの角度となったときにステアリングホイール6の回転を止めるだけで、前輪5L,5Rの転舵角をコントロールできる。つまり、実施例1の逸脱余裕時間に応じた反力オフセット制御は、ドライバが力をコントロールする方向が切り替わりにくいため、ドライバの修正操舵を容易化できる。この結果、車両の走行位置がオーバーシュートしにくくなるため、修正操舵量を低減できる。
また、実施例1の逸脱余裕時間に応じた反力オフセット制御では、逸脱余裕時間が短いほどオフセット量を大きくしているため、操舵トルク中立位置は、逸脱余裕時間が短いほど操舵角中立位置からより離れた位置へオフセットされる。ドライバが車両の走行位置を走行車線中央付近まで戻す修正操舵を行う場合、逸脱余裕時間が短いほど白線に近い可能性が高く、白線に近いほど操舵角中立位置からの切り増し操作量を多くする必要がある。このとき、操舵角中立位置に対する操舵トルク中立位置のオフセット量が小さいと、ステアリングホイールが狙いの角度となる前に操舵トルクが中立位置を越えて操舵トルクの符号が反転する可能性がある。よって、白線までの距離が短いほどオフセット量を大きくすることで、操舵トルクが中立位置を越えるのを抑制できる。
[横位置および逸脱余裕時間に応じた反力オフセット制御の併用効果]
操舵反力制御部20では、操舵反力トルクオフセット部36において、逸脱余裕時間に応じた反力と横位置に応じた反力のうち絶対値が大きな方を操舵反力トルクオフセット量として選択し、加算器20cにおいて、操舵反力トルクに操舵反力トルクオフセット量を加算する。これにより、逸脱余裕時間または横位置に応じて操舵反力特性が操舵反力トルクの絶対値が大きくなる方向へオフセットされる。
逸脱余裕時間に応じた反力オフセット制御では、自車と白線とが平行である場合、すなわち、ヨー角がゼロである場合、逸脱余裕時間に応じた反力はゼロである。このため、自車が白線に近い位置であっても、ヨー角が小さい場合には、僅かな反力しか出すことができない。これに対し、横位置に応じた反力オフセット制御では、白線までの距離に比例して反力(横位置に応じた反力)を生成するため、白線までの距離が短くなるほど大きな反力を出すことができ、自車を走行車線中央付近に戻しやすくすることができる。
一方、横位置に応じた反力オフセット制御では、自車が走行車線中央付近にある場合、横位置に応じた反力はゼロである。このため、走行車線中央付近であっても、ヨー角が大きく、さらに車速が高いとき場合には、短時間で白線まで到達するのに対し、操舵反力を応答良く増大させることが難しい。これに対し、逸脱余裕時間に応じた反力オフセット制御では、逸脱余裕時間に応じて反力(逸脱余裕時間に応じた反力)を生成すること、および当該反力は逸脱余裕時間が3秒以下になると急激に立ち上がる特性であることから、短時間で白線まで到達する場合であっても、操舵反力を応答良く増大させて車線逸脱を抑制できる。
よって、逸脱余裕時間に応じた反力オフセット制御と横位置に応じた反力オフセット制御を併用することにより、白線までの距離に応じて安定的な反力を付与しつつ、車線逸脱を効果的に抑制できる。このとき、逸脱余裕時間に応じた反力と横位置に応じた反力のうち絶対値が大きな方を用いることで、常に必要とされる最適な操舵反力を付与できる。
[ウインカー信号がONの状態でレーンチェンジした場合の制御量抑制作用]
ウインカーゲイン算出部39f,40eは、ウインカー信号がONになったとき、ウインカーゲインを小さくする。これにより、レーンチェンジを行う際には、逸脱余裕時間および横位置に応じた反力オフセット制御の操舵反力制御量である操舵反力トルクオフセット量が制限されることで、白線に近づいても操舵反力は急増しないため、ドライバはスムーズにレーンチェンジを行うことができる。仮に、レーンチェンジ中は上記各制御を停止する構成とした場合、レーンチェンジ後に再び制御が効き始めるまで時間を要するため、制御に遅れが生じるのに対し、実施例1では、操舵反力制御量を決めるゲイン(ウインカーゲイン)を下げるだけであり、制御は継続されるため、レーンチェンジ直後から適正な操舵反力制御量を得ることができる。また、ドライバがウインカースイッチをONした場合にはゲインを大きく下げる(1→0.2)ことで、レーンチェンジ開始時には操舵反力制御量が抑制されたことを操舵反力の低下によってドライバに気付かせることができ、節度感が得られる。なお、ウインカーゲイン算出部38gについても同様であり、横位置F/B制御は継続されるため、レーンチェンジ直後から適正な転舵制御量を得ることができると共に、レーンチェンジ開始時には転舵制御量が抑制されたことを外乱抑制指令転舵角の低下によってドライバに気付かせることができ、節度感が得られる。
リミッタ処理部36dは、ウインカー信号がOFFからONに切り替わったときの操舵反力トルクオフセット量の低下勾配絶対値よりもウインカー信号がONからOFFに切り替わったときの操舵反力トルクオフセット量の増加勾配絶対値を小さくする。つまり、レーンチェンジが開始された場合は操舵反力トルクオフセット量を早期にウインカーゲイン=0.2の値まで低下させ、レーンチェンジ後は操舵反力トルクオフセット量を徐々にウインカーゲイン=1の値まで復帰させる。上記のように、レーンチェンジの開始時に操舵反力をドライバに気付くレベルまで低下させるためには、操舵反力制御量を早期に低下させる必要がある。一方、レーンチェンジ後に操舵反力制御量を復帰させる際、操舵反力制御量を早期に増加させると、操舵反力が急増するため、ドライバに違和感を与えてしまう。そこで、操舵反力制御量の低下勾配絶対値よりも増加勾配絶対値を小さくすることで、操舵反力の急増を抑制でき、ドライバに与える違和感を軽減できる。なお、リミッタ処理部32iについても同様であり、転舵角の急変を抑制でき、ドライバに与える違和感を軽減できる。
リミッタ処理部32iは、ウインカー信号がOFFからONに切り替わったときの外乱抑制指令転舵角の低下勾配絶対値を、リミッタ処理部36dにおいてウインカー信号がOFFからONに切り替わったときの操舵反力トルクオフセット量の低下勾配絶対値よりも小さな値とする。操舵反力が急変しても車両挙動にはほとんど影響しないのに対し、外乱抑制指令転舵角が急変すると車両挙動に影響を与えるからである。また、外乱抑制指令転舵角を小さくするよりも操舵反力トルクオフセット量を小さくした方がドライバに直接伝わりやすいため、節度感の付与としては好ましい。よって、外乱抑制指令転舵角の低下勾配絶対値を操舵反力トルクオフセット量の低下勾配絶対値よりも小さくすることで、レーンチェンジ開始時の車両挙動の変動を抑制できる。
[ウインカー信号がOFFの状態でレーンチェンジした場合の違和感抑制作用]
横位置演算部36bは、自車が白線から逸脱した場合、逸脱量がα以下であるときには、逸脱前に走行していた走行車線を自車線として横位置を演算し、逸脱量がαを超えたときには、自車線を現在走行している走行車線に切り替えて横位置を演算する。このため、逸脱余裕時間に応じた反力演算部39および横位置に応じた反力演算部40では、逸脱量がα以下である場合には、逸脱前に走行していた走行車線の左右白線を対象とした逸脱余裕時間に応じた反力および横位置に応じた反力を演算し、逸脱量がαを超えた場合には、現在走行している走行車線の左右白線を対象とした逸脱余裕時間に応じた反力および横位置に応じた反力を演算する。よって、反力選択部36cにより選択された操舵反力トルクオフセット量は、逸脱量がα以下の場合は逸脱前に走行していた走行車線の左右白線を対象とした値となり、逸脱量がαを超えた場合は現在走行している走行車線の左右白線を対象とした値となる。
実施例1の車線逸脱時オフセット量設定部41では、ウインカー信号がOFFの状態で自車が車線逸脱した場合、逸脱量がα以下のときには逸脱前に走行していた走行車線を基に演算した操舵反力トルクオフセット量から第1減少量を減じて補正後の操舵反力トルクオフセット量とする。そして、逸脱量がαを超えると、補正後の操舵反力トルクオフセット量が現在走行している走行車線を基に演算した操舵反力トルクオフセット量と一致するまでの間、補正後の操舵反力トルクオフセット量の減少量を第2減少量に固定する。このとき、補正後の操舵反力トルクオフセット量の方向が反転した場合、減少量を第2減少量よりも小さな第3減少量に切り替える。
図22,23は、ウインカー信号がOFFの状態で車線逸脱した場合の横位置と逸脱防止操舵反力との関係を示す図であり、図22は車両の横速度が低い場合、図23は車両の横速度が高い場合である。逸脱防止操舵反力とは、操舵反力トルクオフセット量に応じてステアリングホイール6に付与される操舵反力であり、操舵反力トルクオフセット量と大きさおよび方向が等しい。なお、説明の便宜上、図22,23のシーンにおいて車速とヨー角は同一であるとみなす。
逸脱時オフセット量設定部41fは、逸脱量がα以下の場合、逸脱防止操舵反力を、逸脱前に走行していた走行車線に基づく横位置と逸脱防止操舵反力との関係を示す特性Dから求まる値に対し、第1減少量を減じた値とする。ドライバがウインカーを操作することなく白線を逸脱した場合、逸脱量が小さい状態(逸脱量≦α)では、脇見や居眠り等、ドライバの意図しない逸脱であるのか、レーンチェンジや緊急回避等、ドライバの意図した逸脱であるのか判断するのは難しい。このとき、特性Dに応じた逸脱防止操舵反力の付与を継続した場合、ドライバが意図して逸脱を行っているときには、ドライバの操舵を妨げてしまう。一方、逸脱防止操舵反力の付与を停止した場合、または、逸脱と同時に逸脱防止操舵反力の特性を特性Dから現在走行している走行車線に基づく横位置と逸脱防止操舵反力との関係を示す特性Eに切り替えた場合、ドライバの意図しない逸脱であるときには、逸脱前に走行していた走行車線に対する逸脱防止が機能しなくなってしまう。また、逸脱防止操舵反力の方向が反転して反力抜けが生じると共に、その後ドライバが逸脱を回避する操舵を行ったときに逸脱防止操舵反力の特性が特性Eから特性Dに切り替わる際にも操舵反力の急増が生じるため、ドライバに違和感を与える。
これに対し、実施例1では、特性Dに基づく逸脱防止操舵反力の演算を継続しつつ、逸脱防止操舵反力を特性Dから求まる値よりも第1減少量だけ減少させた値とすることにより、ドライバの操舵の妨げとなる過大な操舵反力の付与を抑制しつつ、走行車線からの逸脱抑制支援を最大限継続できる。つまり、ドライバの意図した逸脱、ドライバの意図しない逸脱の双方に対応できる。また、反力の抜けや急増が生じないため、ドライバに与える違和感を軽減でき、ドライバが逸脱を回避する操舵を行った場合には逸脱防止操舵反力の特性をスムーズに特性Dに戻すことができる。
逸脱時オフセット量設定部41fは、逸脱量が大きいほど第1減少量を大きくする。これにより、逸脱防止操舵反力は、逸脱量が大きいほど小さくなる。逸脱量が大きいほど、ドライバの意図する逸脱である可能性が高いため、逸脱量が大きいほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
逸脱時オフセット量設定部41fは、逸脱時間が長いほど第1減少量を大きくする。これにより、逸脱防止操舵反力は、逸脱時間が長いほど小さくなる。逸脱時間が長いほど、ドライバの意図する逸脱である可能性が高いため、逸脱時間が長いほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
逸脱時オフセット量設定部41fは、操舵角が大きいほど第1減少量を大きくする。これにより、逸脱防止操舵反力は、操舵角が大きいほど小さくなる。操舵角が大きいほど、ドライバの意図する逸脱である可能性が高いため、操舵角が大きいほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
逸脱時オフセット量設定部41fは、操舵角速度が高いほど第1減少量を大きくする。これにより、逸脱防止操舵反力は、操舵角速度が高いほど小さくなる。操舵角速度が高いほど、ドライバの意図する逸脱である可能性が高いため、操舵角速度が高いほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
逸脱時オフセット量設定部41fは、操舵トルクが大きいほど第1減少量を大きくする。これにより、逸脱防止操舵反力は、操舵トルクが大きいほど小さくなる。操舵トルクが大きいほど、ドライバの意図する逸脱である可能性が高いため、操舵トルクが大きいほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
レーンチェンジオフセット量設定部41gは、逸脱量がαを超えた場合、逸脱防止操舵反力の減少量をドライバに反力抜けによる違和感を与えない第2減少量に固定する。よって、逸脱防止操舵反力は、図22(a)のように車両の横速度が低い場合、図22(b)に示すように一定速度でゼロまで減少し、その後方向が反転して一定速度で増加し、特性Eへと移行する。一方、図23(a)のように車両の横速度が高い場合には、図23(b)に示すように一定速度で減少し、特性Eへと移行する。このように、逸脱防止操舵反力を一定の変化速度で減少させることで、簡単な制御でもって、逸脱防止操舵反力を現在走行している走行車線において必要な自車の横位置に応じた逸脱防止操舵反力へとスムーズに移行させることができる。
ここで、特許文献1に記載された発明では、レーンチェンジ時に逸脱防止操舵反力特性を特性Dから特性Eへと切り替えるため、操舵反力が急変してドライバに反力抜けの違和感を与えるのに対し、実施例1では、逸脱防止操舵反力の減少速度を制限し、反力抜けを感じさせない速度で減少させるため、ドライバに与える違和感を軽減できる。
レーンチェンジオフセット量設定部41gは、逸脱防止操舵反力の方向が反転した場合、操舵反力トルクオフセット量の減少量を第2減少量よりも小さな第3減少量に切り替える。操舵反力の方向が反転する場合には、同一である場合よりもドライバに反力変動が伝わりやすいため、逸脱防止操舵反力の方向が反転した場合には、逸脱防止操舵反力の変化速度をより小さくすることで、ドライバに与える違和感を軽減できる。
以上説明したように、実施例1にあっては以下に列挙する効果を奏する。
(1) 操舵部1に操舵反力を付与する反力モータ(操舵反力アクチュエータ)8と、現在走行している走行車線における自車の横位置が白線に近いほど当該白線から遠ざかる方向の操舵反力(逸脱防止操舵反力)が大きくなる操舵反力制御量(操舵反力トルクオフセット量)を演算する操舵反力トルクオフセット部(操舵反力制御量演算手段)36と、操舵反力制御量を反力モータ8に付与する電流ドライバ(操舵反力制御手段)23と、ウインカー操作を検出するウインカースイッチ(ウインカー操作検出手段)43と、白線からの逸脱量を検出する横位置演算部(逸脱量検出手段)36bと、ウインカー操作が検出されない状態で白線からの逸脱量が検出された場合、逸脱量が所定量α以下であるときには、横位置に応じた操舵反力制御量を減少補正する車線逸脱時オフセット量設定部(車線逸脱時操舵反力制御量演算手段)41と、を備えた。
これにより、自車が白線を跨いで(逸脱量が所定量αを超えて)隣接車線に移動するまでの間、ドライバの操舵の妨げとなる過大な操舵反力の付与を抑制できる。また、走行車線からの逸脱抑制支援を最大限継続できる。さらに、反力の急変が生じないため、ドライバに与える違和感を軽減できる。加えて、ドライバが逸脱を回避する操舵を行った場合には、横位置に応じた逸脱防止操舵反力の特性へとスムーズに復帰できる。
(2) 車線逸脱時オフセット量設定部41は、逸脱量が大きいほど横位置に応じた操舵反力制御量を小さくする。
逸脱量が大きいほど、ドライバの意図する逸脱である可能性が高いため、逸脱量が大きいほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
(3) 車線逸脱時オフセット量設定部41は、逸脱時間が長いほど横位置に応じた操舵反力制御量を小さくする。
逸脱時間が長いほど、ドライバの意図する逸脱である可能性が高いため、逸脱時間が長いほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
(4) 車線逸脱時オフセット量設定部41は、操舵角が大きいほど横位置に応じた操舵反力制御量を小さくする。
操舵角が大きいほど、ドライバの意図する逸脱である可能性が高いため、操舵角が大きいほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
(5) 車線逸脱時オフセット量設定部41は、操舵角速度が高いほど横位置に応じた操舵反力制御量を小さくする。
操舵角速度が高いほど、ドライバの意図する逸脱である可能性が高いため、操舵角速度が高いほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
(6) 車線逸脱時オフセット量設定部41は、操舵トルクが大きいほど横位置に応じた操舵反力制御量を小さくする。
操舵トルクが大きいほど、ドライバの意図する逸脱である可能性が高いため、操舵トルクが大きいほど逸脱防止操舵反力を小さくすることで、ドライバの操舵の妨げとなる過大な操舵反力の付与の抑制と、走行車線からの逸脱抑制支援の継続との両立を精度良く実現できる。
(7) 現在走行している走行車線における自車の横位置が車線中央から離れるほど車線中央に向かう方向の操舵反力(逸脱防止操舵反力)が大きくなる操舵反力制御量(操舵反力トルクオフセット量)を演算して反力モータ8に付与する際、ウインカー操作が検出されない状態で白線からの逸脱量が検出された場合、逸脱量が所定量α以下であるときには、横位置に応じた操舵反力制御量を減少補正する。
これにより、自車が白線を跨いで(逸脱量が所定量αを超えて)隣接車線に移動するまでの間、ドライバの操舵の妨げとなる過大な操舵反力の付与を抑制できる。また、走行車線からの逸脱抑制支援を最大限継続できる。さらに、反力の急変が生じないため、ドライバに与える違和感を軽減できる。加えて、ドライバが逸脱を回避する操舵を行った場合には、横位置に応じた逸脱防止操舵反力の特性へとスムーズに復帰できる。
(8) 白線からの逸脱量を検出する横位置演算部(センサ)36bと、現在走行している走行車線における自車の横位置が車線中央から離れるほど車線中央に向かう方向の操舵反力(逸脱防止操舵反力)が大きくなる操舵反力制御量(操舵反力トルクオフセット量)を演算して反力モータ8に付与する際、ウインカー操作が検出されない状態で白線からの逸脱量が検出された場合、逸脱量が所定量α以下であるときには、横位置に応じた操舵反力制御量を減少補正する操舵反力制御部(コントローラ)20と、を備えた。
これにより、自車が白線を跨いで(逸脱量が所定量αを超えて)隣接車線に移動するまでの間、ドライバの操舵の妨げとなる過大な操舵反力の付与を抑制できる。また、走行車線からの逸脱抑制支援を最大限継続できる。さらに、反力の急変が生じないため、ドライバに与える違和感を軽減できる。加えて、ドライバが逸脱を回避する操舵を行った場合には、横位置に応じた逸脱防止操舵反力の特性へとスムーズに復帰できる。
(他の実施例)
以上、本発明の操舵制御装置を実施する形態を、図面に基づく実施例により説明したが、本発明の具体的な構成は、実施例に示したものに限定されるものではなく、発明の要旨を変更しない程度の設計変更等があっても本発明に含まれる。
例えば、実施例1では、第1減少量を5つのパラメータ(逸脱量,逸脱時間,操舵角,操舵角速度,操舵トルク)から決める例を示したが、いずれか1つ、または複数を組み合わせて第1減少量を設定しても良い。
本発明は、操舵部と転舵部とが機械的に接続された操舵装置にも適用でき、実施例と同様の作用効果を得ることができる。
1 操舵部
2 転舵部
3 バックアップクラッチ
4 SBWコントローラ
5FL,5FR 左右前輪
6 ステアリングホイール
7 コラムシャフト
8 反力モータ
9 操舵角センサ
11 ピニオンシャフト
12 ステアリングギア
13 転舵モータ
14 転舵角センサ
15 ラックギア
16 ラック
17 カメラ
18 車速センサ
19 転舵制御部
19a 加算器
20 操舵反力制御部
20a 減算器
20b 加算器
20c 加算器
21 映像処理部
22 電流ドライバ
23 電流ドライバ
24 ナビゲーションシステム
25 EPSコントローラ
26 トルクセンサ
27 パワーステアリングモータ
28 アシストトルク制御部
28a 減算器
29 電流ドライバ
31 指令転舵角演算部
32 外乱抑制指令転舵角演算部
32a ヨー角演算部
32b 曲率演算部
32c 横位置演算部
32d 加算器
32e 目標ヨーモーメント演算部
32f 目標ヨー加速度演算部
32g 目標ヨーレイト演算部
32h 指令転舵角演算部
32i リミッタ処理部
33 横力演算部
34 横力オフセット部
34a 曲率演算部
34b 上下限リミッタ
34c SATゲイン演算部
34d 乗算器
34e リミッタ処理部
35 SAT演算部
36 操舵反力トルクオフセット部
36a ヨー角演算部
36b 横位置演算部
36c 反力選択部
36d リミッタ処理部
37 ヨー角に応じた反発力演算部
37a 上下限リミッタ
37b ヨー角F/Bゲイン乗算部
37c 車速補正ゲイン乗算部
37d 曲率補正ゲイン乗算部
37e 乗算器
38 横位置に応じた反発力演算部
38a 減算器
38b 上下限リミッタ
38c 距離補正ゲイン乗算部
38d 横位置F/Bゲイン乗算部
38e 車速補正ゲイン乗算部
38f 曲率補正ゲイン乗算部
38g ウインカーゲイン算出部
38h 乗算器
39 逸脱余裕時間に応じ反力演算部
39a 乗算器
39b 除算器
39c 除算器
39d 逸脱余裕時間選択部
39e 逸脱余裕時間に応じた反力演算部
39f ウインカーゲイン算出部
39g 乗算器
40 横位置に応じた反力演算部
40a 減算器
40b 減算器
40c 横位置偏差選択部
40d 横位置偏差に応じた反力演算部
40e ウインカーゲイン算出部
40f 乗算器
41 車線逸脱時オフセット量設定部
41a 逸脱量に応じた減少ゲイン演算部
41b 逸脱時間に応じた減少ゲイン演算部
41c 操舵角に応じた減少ゲイン演算部
41d 操舵角速度に応じた減少ゲイン演算部
41e 操舵トルクに応じた減少ゲイン演算部
41f 逸脱時オフセット量設定部
41g レーンチェンジオフセット量設定部
41h スイッチ
43 ウインカースイッチ

Claims (8)

  1. 操舵部に操舵反力を付与する操舵反力アクチュエータと、
    現在走行している走行車線における自車の横位置が車線中央から離れるほど車線中央に向かう方向の操舵反力が大きくなる操舵反力制御量を演算する操舵反力制御量演算手段と、
    前記操舵反力制御量を前記操舵反力アクチュエータに付与する操舵反力制御手段と、
    ウインカー操作を検出するウインカー操作検出手段と、
    白線からの逸脱量を検出する逸脱量検出手段と、
    ウインカー操作が検出されない状態で白線からの逸脱量が検出された場合、前記逸脱量が所定量以下であるときには、前記逸脱前に走行していた車線の中央位置からの横位置に応じた操舵反力制御量を減少補正する車線逸脱時操舵反力制御量演算手段と、
    を備えたことを特徴とする操舵制御装置。
  2. 請求項1に記載の操舵制御装置において、
    前記車線逸脱時操舵反力制御量演算手段は、前記逸脱量が大きいほど前記逸脱前に走行していた車線の中央位置からの横位置に応じた操舵反力制御量を小さくすることを特徴とする操舵制御装置。
  3. 請求項1または請求項2に記載の操舵制御装置において、
    前記車線逸脱時操舵反力制御量演算手段は、逸脱時間が長いほど前記逸脱前に走行していた車線の中央位置からの横位置に応じた操舵反力制御量を小さくすることを特徴とする操舵制御装置。
  4. 請求項1ないし請求項3のいずれか1項に記載の操舵制御装置において、
    前記車線逸脱時操舵反力制御量演算手段は、操舵角が大きいほど前記逸脱前に走行していた車線の中央位置からの横位置に応じた操舵反力制御量を小さくすることを特徴とする操舵制御装置。
  5. 請求項1ないし請求項4のいずれか1項に記載の操舵制御装置において、
    前記車線逸脱時操舵反力制御量演算手段は、操舵角速度が高いほど前記逸脱前に走行していた車線の中央位置からの横位置に応じた操舵反力制御量を小さくすることを特徴とする操舵制御装置。
  6. 請求項1ないし請求項5のいずれか1項に記載の操舵制御装置において、
    前記車線逸脱時操舵反力制御量演算手段は、操舵トルクが大きいほど前記逸脱前に走行していた車線の中央位置からの横位置に応じた操舵反力制御量を小さくすることを特徴とする操舵制御装置。
  7. 現在走行している走行車線における自車の横位置が車線中央から離れるほど車線中央に向かう方向の操舵反力が大きくなる操舵反力制御量を演算して操舵反力アクチュエータに付与する際、ウインカー操作が検出されない状態で白線からの逸脱量が検出された場合、前記逸脱量が所定量以下であるときには、前記逸脱前に走行していた車線の中央位置からの横位置に応じた操舵反力制御量を減少補正することを特徴とする操舵制御方法
  8. 白線からの逸脱量を検出するセンサと、
    現在走行している走行車線における自車の横位置が車線中央から離れるほど車線中央に向かう方向の操舵反力が大きくなる操舵反力制御量を演算して操舵反力アクチュエータに付与する際、ウインカー操作が検出されない状態で白線からの逸脱量が検出された場合、前記逸脱量が所定量以下であるときには、前記逸脱前に走行していた車線の中央位置からの横位置に応じた操舵反力制御量を減少補正するコントローラと、
    を備えたことを特徴とする操舵制御装置。
JP2013135728A 2013-06-28 2013-06-28 操舵制御装置 Active JP6221416B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135728A JP6221416B2 (ja) 2013-06-28 2013-06-28 操舵制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013135728A JP6221416B2 (ja) 2013-06-28 2013-06-28 操舵制御装置

Publications (2)

Publication Number Publication Date
JP2015009645A JP2015009645A (ja) 2015-01-19
JP6221416B2 true JP6221416B2 (ja) 2017-11-01

Family

ID=52303216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135728A Active JP6221416B2 (ja) 2013-06-28 2013-06-28 操舵制御装置

Country Status (1)

Country Link
JP (1) JP6221416B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186662B2 (ja) * 1997-09-18 2001-07-11 三菱自動車工業株式会社 車線逸脱防止装置
JP3738613B2 (ja) * 1999-08-10 2006-01-25 日産自動車株式会社 車線追従装置
JP2005162014A (ja) * 2003-12-03 2005-06-23 Nissan Motor Co Ltd 車線追従装置
JP2005162015A (ja) * 2003-12-03 2005-06-23 Nissan Motor Co Ltd 車線追従装置

Also Published As

Publication number Publication date
JP2015009645A (ja) 2015-01-19

Similar Documents

Publication Publication Date Title
JP5971417B2 (ja) 操舵制御装置
JP5892255B2 (ja) スタビリティ制御装置
JP6079784B2 (ja) 操舵制御装置
JP6119768B2 (ja) スタビリティ制御装置
JP5794394B2 (ja) 操舵制御装置
JP5794393B2 (ja) 操舵制御装置
JP6003997B2 (ja) スタビリティ制御装置
JP5979249B2 (ja) 操舵制御装置
JP5994860B2 (ja) 操舵制御装置
JP5994861B2 (ja) 操舵制御装置
JP5979238B2 (ja) 操舵制御装置
JP5794395B2 (ja) 操舵制御装置
JP6212987B2 (ja) 操舵制御装置
JP5971126B2 (ja) 操舵制御装置
JP2015009761A (ja) 操舵制御装置
JP5958257B2 (ja) 操舵制御装置
JP5971128B2 (ja) 操舵制御装置
JP5835499B2 (ja) 操舵制御装置
JP6221416B2 (ja) 操舵制御装置
JP5971127B2 (ja) 操舵制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6221416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151