WO2019116446A1 - 光通信装置、制御方法、及び制御プログラム - Google Patents

光通信装置、制御方法、及び制御プログラム Download PDF

Info

Publication number
WO2019116446A1
WO2019116446A1 PCT/JP2017/044553 JP2017044553W WO2019116446A1 WO 2019116446 A1 WO2019116446 A1 WO 2019116446A1 JP 2017044553 W JP2017044553 W JP 2017044553W WO 2019116446 A1 WO2019116446 A1 WO 2019116446A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation mode
signal
unit
optical communication
communication device
Prior art date
Application number
PCT/JP2017/044553
Other languages
English (en)
French (fr)
Inventor
弘之 小谷野
大浦 崇靖
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/758,470 priority Critical patent/US11233576B2/en
Priority to JP2019559446A priority patent/JP6865856B2/ja
Priority to EP17934526.9A priority patent/EP3726749B1/en
Priority to CN201780097443.9A priority patent/CN111434055B/zh
Priority to PCT/JP2017/044553 priority patent/WO2019116446A1/ja
Publication of WO2019116446A1 publication Critical patent/WO2019116446A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation

Definitions

  • the present invention relates to an optical communication device, a control method, and a control program.
  • optical communication systems high-speed data communication and large-capacity data communication services are required.
  • transmission speeds are increasing to 40 Gbps, 100 Gbps, 200 Gbps, and 400 Gbps.
  • Optical transceivers capable of supporting a plurality of transmission rates are expected.
  • the transmission rate or the modulation scheme may be expressed as an operation mode.
  • the operation mode can be changed by externally controlling the operation mode of the optical transceiver having a plurality of operation modes.
  • an external device is connected to an optical transceiver.
  • the control mode of the optical transceiver is changed by the control of the external device.
  • an external device can make the operating modes of the two optical transceivers the same.
  • an external device is connected to each of two optical transceivers.
  • Each of the two optical transceivers is set to the same operation mode by control of the external device.
  • the two optical transceivers can normally transmit and receive data by setting the same operation mode.
  • a state in which data can be normally transmitted and received is referred to as a connection established state.
  • Patent Document 1 a technique for synchronizing transmission rates has been proposed (see, for example, Patent Document 1).
  • two optical transceivers transmit and receive a test signal indicating transmission rates to each other.
  • the optical transceiver receiving the test signal is different from the optical transceiver that is the transmission source of the test signal when the transmission rate indicated by the test signal is different from the transmission rate initially set (that is, the transmission rate is not synchronized).
  • the optical transceiver that receives the test signal repeats transmitting the test signal until the transmission rate is synchronized.
  • An object of the present invention is to put an optical communication apparatus into a connection establishment state in a short time.
  • An optical communication device communicating with a first optical communication apparatus receives an optical signal transmitted from the first optical communication apparatus, and converts the optical signal into a digital electrical signal based on a clock signal.
  • a clock switching unit that switches an oscillator that oscillates the clock signal; an operation mode of the first optical communication device detected from the digital electrical signal; and an oscillator that oscillates the clock signal;
  • an operation mode control unit that instructs the clock switching unit to switch to an oscillator that oscillates a clock signal of a frequency based on an operation mode.
  • the optical communication apparatus can be brought into the connection establishment state in a short time.
  • FIG. 1 is a diagram showing an optical communication system of a first embodiment.
  • FIG. 2 is a diagram showing the main hardware configuration of the optical transceiver of the first embodiment.
  • FIG. 2 is a functional block diagram showing the configuration of the optical transceiver of the first embodiment.
  • FIG. 7 is a diagram showing an operation mode table of the first embodiment.
  • FIG. 7 is a diagram for explaining transmission processing of the first embodiment.
  • FIG. 7 is a diagram for explaining reception processing of the first embodiment.
  • 5 is a flowchart showing transmission processing before a connection establishment state according to the first embodiment. It is a flowchart (the 1) which shows the reception process before the connection establishment state of Embodiment 1.
  • FIG. It is a flowchart (the 2) which shows the reception process before the connection establishment state of Embodiment 1.
  • FIG. FIG. 7 is a functional block diagram showing a configuration of an optical transceiver of a second embodiment.
  • FIG. 8 is a diagram for explaining reception processing of the second embodiment.
  • FIG. 18 is a diagram for explaining transmission processing of the third embodiment.
  • FIG. 18 is a diagram for explaining reception processing of the third embodiment. It is a figure explaining the case where the different operation mode table of Embodiment 3 is stored.
  • FIG. 16 is a flowchart showing transmission processing before a connection establishment state according to Embodiment 3.
  • FIG. It is a flowchart (the 1) which shows the reception process before the connection establishment state of Embodiment 3.
  • FIG. It is a flowchart (the 2) which shows the reception process before the connection establishment state of Embodiment 3.
  • FIG. 1 is a diagram showing the optical communication system of the first embodiment.
  • the optical communication system includes an optical transceiver 100 and an optical transceiver 200.
  • the optical transceiver 100 and the optical transceiver 200 transmit and receive optical signals via the transmission line 300.
  • the optical transceiver may be expressed as an optical communication device.
  • the optical transceiver 100 is included in a first WDM (Wavelength Division Multiplexing) optical transmission apparatus.
  • the optical transceiver 200 is included in the second WDM optical transmission apparatus. Then, the first WDM optical transmission apparatus and the second WDM optical transmission apparatus transmit and receive an optical signal.
  • the optical transceiver 100 or the optical transceiver 200 is also referred to as a first optical communication device.
  • FIG. 2 is a diagram showing the main hardware configuration of the optical transceiver of the first embodiment.
  • the optical transceiver 100 includes a processor 101, a volatile storage device 102, and a non-volatile storage device 103.
  • the processor 101 controls the entire optical transceiver 100.
  • the processor 101 is a central processing unit (CPU), a digital signal processor (DSP), or a field programmable gate array (FPGA).
  • the processor 101 may be a multiprocessor that executes a plurality of processes in parallel.
  • Optical transceiver 100 may be implemented by processing circuitry, or may be implemented by software, firmware, or a combination thereof.
  • Volatile storage 102 is a main storage of optical transceiver 100.
  • the volatile storage device 102 is a random access memory (RAM).
  • the non-volatile storage device 103 is an auxiliary storage device of the optical transceiver 100.
  • the non-volatile storage device 103 is a solid state drive (SSD) or the like.
  • the optical transceiver 200 has the same hardware as the optical transceiver 100.
  • FIG. 3 is a functional block diagram showing the configuration of the optical transceiver of the first embodiment.
  • the optical transceiver 100 includes an electrical interface 110, a digital signal processing unit 120, a transmission function unit 130, a reception function unit 140, a storage unit 150, an operation mode control unit 160, and a low speed signal generation unit 170.
  • a part or all of the digital signal processing unit 120, the transmission function unit 130, the reception function unit 140, the operation mode control unit 160, and the low speed signal generation unit 170 may be implemented by the processor 101. Further, some or all of the digital signal processing unit 120, the transmission function unit 130, the reception function unit 140, the operation mode control unit 160, and the low speed signal generation unit 170 are implemented as modules of a program to be executed by the processor 101, for example. May be The program is stored in the volatile storage device 102 or the non-volatile storage device 103. The storage unit 150 is mounted as a storage area secured in the volatile storage device 102 or the non-volatile storage device 103.
  • the electrical interface 110 sends and receives client signals.
  • the electrical interface 110 transmits and receives client signals to and from a client apparatus included in the first WDM optical transmission apparatus.
  • the digital signal processor 120 performs digital signal processing on a client signal which is a data signal.
  • the transmission function unit 130 converts an electrical signal into an optical signal.
  • the reception function unit 140 converts an optical signal into an electrical signal.
  • the storage unit 150 stores information on the operation mode.
  • the operation mode will be described in detail later.
  • the operation mode control unit 160 controls the operation mode of the optical transceiver 100.
  • the low speed signal generation unit 170 generates a signal notifying of the operation mode.
  • the optical transceiver 200 has the same functional blocks as the optical transceiver 100.
  • FIG. 4 is a diagram showing an operation mode table according to the first embodiment.
  • the operation mode table 151 is stored in the storage unit 150.
  • the operation mode table 151 has no. (Ie, item number), items of baud rate, modulation scheme, and operation mode communication signal.
  • No. Item indicates an identifier. No. The item of No. The lower the number of, the higher the priority.
  • the item of baud rate indicates the baud rate.
  • the item of modulation scheme indicates a modulation scheme.
  • the item of the operation mode communication signal indicates an identifier corresponding to the operation mode.
  • the operation mode is a baud rate and a modulation method. Also, the operation mode may be considered as a baud rate.
  • the storage unit of the optical transceiver 200 stores the same operation mode table as the operation mode table 151.
  • the optical transceiver 100 and the optical transceiver 200 are devices capable of coping with a plurality of operation modes.
  • the storage unit 150 of the optical transceiver 100 and the storage unit of the optical transceiver 200 store a preset operation mode.
  • the optical transceiver 100 transmits the operation mode stored in the storage unit 150 to the optical transceiver 200 when the optical transceiver 100 is powered on and activated (ie, when the optical transceiver 100 is activated).
  • the optical transceiver 200 transmits the operation mode stored in the storage unit of the optical transceiver 200 to the optical transceiver 100 when the optical transceiver 200 is powered on and activated (that is, when the optical transceiver 200 is activated). Do. That is, the optical transceiver 100 and the optical transceiver 200 mutually transmit and receive an operation mode. Then, the optical transceiver 100 and the optical transceiver 200 synchronize the operation mode. How to synchronize will be described in detail later.
  • FIG. 5 describes the transmission process performed by the optical transceiver 200
  • the transmission process performed by the optical transceiver 100 is the same.
  • FIG. 5 is a diagram for explaining transmission processing according to the first embodiment.
  • the optical transceiver 200 includes a digital signal processing unit 220, a transmission function unit 230, a storage unit 250, an operation mode control unit 260, and a low speed signal generation unit 270.
  • the functions of the digital signal processing unit 220, the transmission function unit 230, the operation mode control unit 260, and the low speed signal generation unit 270 are the same as those of the digital signal processing unit 120, the transmission function unit 130, the operation mode control unit 160, and the low speed signal generation unit 170. Is the same as the
  • the transmission function unit 230 includes a D (Digital) / A (Analog) conversion unit 231, an amplifier 232, and a light modulation unit 233.
  • the transmission function unit 130 also has a D / A conversion unit, an amplifier, and an optical modulation unit.
  • the digital signal processor 220 receives the client signal A1.
  • the digital signal processing unit 220 adds FEC (Forward Error Correction) to the client signal A1.
  • the digital signal processing unit 220 transmits the client signal A2 to which the FEC is added to the D / A conversion unit 231.
  • the D / A conversion unit 231 converts the client signal A2 which is a digital electric signal into an analog electric signal A3.
  • the amplifier 232 amplifies the analog electrical signal A3.
  • the amplifier 232 transmits the amplified analog electrical signal A4 to the light modulator 233.
  • the light modulation unit 233 converts the analog electrical signal A4 into a light signal.
  • the light modulation unit 233 transmits the light signal to the light transceiver 100.
  • the light modulation unit 233 can modulate the light signal.
  • the light modulation unit 233 modulates the intensity of the light signal using OOK (On Off Keying).
  • the light modulation unit 233 may transmit to the optical transceiver 100 an intensity modulated optical signal obtained by modulating the intensity of the optical signal.
  • the transmission function unit 230 transmits, to the optical transceiver 100, information indicating the operation mode stored in the storage unit 250. It will be described in detail.
  • the storage unit 250 stores an operation mode B1 set in advance.
  • the operation mode control unit 260 acquires the operation mode B1 from the storage unit 250 when the optical transceiver 200 is activated.
  • the operation mode control unit 260 transmits the operation mode B1 to the low speed signal generation unit 270.
  • the low-speed signal generation unit 270 notifies the operation mode of the frequency of kHz similar to the frequency of the dither signal (for example, “a frequency of several kHz” or “predetermined frequency in the kHz order”) based on the operation mode B1. Generate a signal B2.
  • the low speed signal generation unit 270 outputs the operation mode notification signal B2 to a DC (Direct Current) bias port of the light modulation unit 233.
  • the light modulator 233 generates an intensity modulated light signal C1 of the frequency of kHz including the operation mode notification signal B2.
  • the intensity modulated optical signal C1 is an optical signal modulated using OOK.
  • the light modulation unit 233 transmits the intensity modulated light signal C1 to the light transceiver 100.
  • the degree of modulation of the low frequency signal needs to be suppressed to about several percent.
  • the degree of modulation since the low frequency signal is not superimposed on the client signal, there is no restriction on the degree of modulation.
  • FIG. 6 describes the reception process performed by the optical transceiver 100
  • the reception process performed by the optical transceiver 200 is the same.
  • FIG. 6 is a diagram for explaining the reception process of the first embodiment.
  • the reception function unit 140 includes a conversion unit 141, a data storage function unit 142, a clock switching unit 143, and oscillators 144a, 144b, and 144c.
  • the light modulation unit 133 is included in the transmission function unit 130.
  • the converter 141 includes a receiver 141a and an A / D converter 141b.
  • the oscillator 144a is a device that oscillates a clock signal having a frequency of x1 [kHz].
  • the oscillator 144a is also referred to as a first oscillator.
  • the frequency of x1 [kHz] is also referred to as the first numerical frequency of kHz.
  • the frequency of x1 [kHz] may be expressed as a frequency in kHz.
  • the frequency of x 1 [kHz], or the frequency of the first number of kHz, is a frequency within the range of 1 to 1000 [kHz].
  • the frequency of the operation mode notification signal B2 at kHz, the frequency of the intensity modulated optical signal C1 at kHz, and the frequency of x1 [kHz] are the same.
  • the oscillator 144 b is a device that oscillates a clock signal having a frequency of x2 [GHz].
  • the oscillator 144c is a device that oscillates a clock signal having a frequency of xn (n is an integer of 3 or more) [GHz].
  • the frequencies x1 to xn are different from one another.
  • the reception function unit included in the optical transceiver 200 also includes a conversion unit, a data storage function unit, a clock switching unit, and an oscillator.
  • the conversion unit included in the optical transceiver 200 includes a reception unit and an A / D conversion unit.
  • the receiving unit 141a converts the light signal or the intensity modulated light signal into an analog electrical signal.
  • the A / D conversion unit 141 b converts an analog electrical signal into a digital electrical signal.
  • the data storage function unit 142 holds a digital electrical signal.
  • the data storage function unit 142 transmits the digital electric signal D1 to the digital signal processing unit 120.
  • the clock switching unit 143 switches to an oscillator that oscillates a clock signal of a frequency based on the operation mode. Specifically, the clock switching unit 143 selects an oscillator that oscillates a clock signal of a frequency based on the operation mode from among the oscillators 144a, 144b, and 144c. The clock switching unit 143 switches to the selected oscillator. Thereby, the frequency of the clock signal is changed.
  • the digital signal processing unit 120 performs FEC decoding on the digital electrical signal D1 to extract a client signal D2. The digital signal processing unit 120 transmits the client signal D2 to the electrical interface 110.
  • the conversion unit 141 receives the intensity modulated optical signal C1 transmitted from the optical transceiver 200, and converts the intensity modulated optical signal C1 into a digital electrical signal E2 based on the clock signal.
  • the function of the conversion unit 141 will be described in detail using the reception unit 141a and the A / D conversion unit 141b.
  • the receiving unit 141a receives the intensity modulated optical signal C1 having a frequency of kHz from the optical transceiver 200. Therefore, the clock switching unit 143 switches to the oscillator 144a and activates the oscillator 144a.
  • the oscillator 144a outputs a clock signal of x1 [kHz] to the A / D conversion unit 141b.
  • the clock switching unit 143 always starts the oscillator 144a before the connection establishment state.
  • the receiving unit 141a converts the intensity modulated optical signal C1 including the operation mode notification signal B2 into an analog electrical signal E1.
  • the A / D conversion unit 141 b converts the analog electrical signal E1 into a digital electrical signal E2 including an operation mode notification signal B2.
  • the A / D conversion unit 141 b transmits the digital electrical signal E 2 to the data storage function unit 142.
  • the data storage function unit 142 holds the digital electrical signal E2.
  • the data storage function unit 142 transmits the digital electric signal E2 to the operation mode control unit 160.
  • the operation mode control unit 160 detects an operation mode B1 of the optical transceiver 200 from the digital electrical signal E2. Specifically, the operation mode control unit 160 detects the operation mode B1 based on the operation mode notification signal B2 with reference to the operation mode table 151. For example, if the operation mode notification signal B2 indicates "00", the operation mode control unit 160 determines that the operation mode B1 has a baud rate of "32 Gbaud" and a modulation scheme of "QPSK (Quadrature Phase Shift Keying)". To detect.
  • the operation mode B1 is set to a first operation mode.
  • the operation mode control unit 160 instructs the clock switching unit 143 to switch to an oscillator that oscillates a clock signal of a frequency based on the first operation mode of the optical transceiver 200. It will be described in detail.
  • the operation mode control unit 160 compares the operation mode preset in the storage unit 150 with the first operation mode. An operation mode to be compared with the first operation mode is referred to as a second operation mode. When the first operation mode and the second operation mode match, the operation mode control unit 160 transmits the information F1 to the clock switching unit 143.
  • the information F1 is a baud rate.
  • the baud rate is the same as the baud rates indicated by the first operation mode and the second operation mode.
  • the clock switching unit 143 selects an oscillator that oscillates a clock signal of a frequency based on the information F1 from the oscillators 144a, 144b, and 144c.
  • the clock switching unit 143 switches to the selected oscillator. For example, the clock switching unit 143 switches from the oscillator 144a to the oscillator 144b.
  • the oscillator selected by the clock switching unit 143 outputs the clock signal to the A / D conversion unit 141 b.
  • the operation mode control unit 160 transmits the information F2 to the digital signal processing unit 120 when the first operation mode and the second operation mode match.
  • the information F2 is a modulation method.
  • the modulation scheme is the same as the modulation scheme indicated by the first operation mode and the second operation mode.
  • the digital signal processing unit 120 changes the drive mode based on the information F2.
  • the operation mode control unit 160 transmits the information F2 to the light modulation unit 133 when the first operation mode and the second operation mode match.
  • the light modulation unit 133 changes the modulation scheme based on the information F2. For example, the light modulation unit 133 changes to QPSK or QAM (Quadrature Amplitude Modulation).
  • QPSK Quadrature Amplitude Modulation
  • QAM Quadrature Amplitude Modulation
  • the optical transceiver 100 receives an optical signal in a state where the operation modes of the optical transceiver 100 and the optical transceiver 200 are different from each other, the following occurs. If the baud rate is different, clock synchronization can not be obtained. If the modulation method is different, an error occurs in digital signal processing. However, in the first embodiment, clock synchronization can be secured by using the same frequency of kHz on the side transmitting the intensity modulated optical signal C1 and the side receiving the intensity modulated optical signal C1. Then, the operation mode control unit 160 can detect the operation mode notification signal B2 from the intensity modulated light signal C1.
  • FIG. 7 is a flowchart showing transmission processing before the connection establishment state according to the first embodiment. Although FIG. 7 describes the transmission processing performed by the optical transceiver 200, the transmission processing performed by the optical transceiver 100 is the same. In FIG. 7, processing starts when the optical transceiver 200 is activated.
  • the operation mode control unit 260 acquires the operation mode B1 from the storage unit 250.
  • the operation mode control unit 260 transmits the operation mode B1 to the low speed signal generation unit 270.
  • the low speed signal generation unit 270 receives the operation mode B1 from the operation mode control unit 260.
  • the low speed signal generation unit 270 generates an operation mode notification signal B2 of a frequency of kHz based on the operation mode B1.
  • the light modulation unit 233 generates an intensity modulated light signal C1 including the operation mode notification signal B2.
  • the light modulation unit 233 transmits the intensity modulated light signal C1 to the light transceiver 100.
  • FIG. 8 is a flowchart (part 1) of the reception process before the connection establishment state according to the first embodiment. 8 and 9 describe the reception process performed by the optical transceiver 100, but the reception process performed by the optical transceiver 200 is the same. In FIG. 8, when the reception unit 141a receives the intensity modulated optical signal C1, the process starts.
  • Step S21 The receiving unit 141a converts the intensity-modulated optical signal C1 including the operation mode notification signal B2 into an analog electrical signal E1.
  • Step S22 The A / D conversion unit 141b converts the analog electrical signal E1 into a digital electrical signal E2.
  • Step S23 The data storage function unit 142 holds the digital electric signal E2.
  • the data storage function unit 142 transmits the digital electric signal E2 to the operation mode control unit 160.
  • Step S24 The operation mode control unit 160 detects an operation mode notification signal B2 from the digital electric signal E2.
  • the operation mode control unit 160 refers to the operation mode table 151.
  • Operation mode control unit 160 detects a first operation mode based on operation mode notification signal B2.
  • Step S25 The operation mode control unit 160 determines whether the first operation mode matches the second operation mode. That is, the operation mode control unit 160 determines whether or not the baud rate and modulation scheme of the first operation mode match the baud rate and modulation scheme of the second operation mode. If the first operation mode matches the second operation mode (Yes in step S25), the operation mode control unit 160 advances the process to step S26. If the first operation mode and the second operation mode do not match (No in step S25), the operation mode control unit 160 advances the process to step S31.
  • Operation mode control unit 160 transmits information F1 to clock switching unit 143.
  • the clock switching unit 143 selects an oscillator that oscillates a clock signal of a frequency based on the information F1 from the oscillators 144a, 144b, and 144c.
  • the clock switching unit 143 switches the oscillator 144 a to the selected oscillator.
  • the oscillator selected by the clock switching unit 143 outputs the clock signal to the A / D conversion unit 141 b.
  • the operation mode control unit 160 transmits the information F2 to the digital signal processing unit 120.
  • the digital signal processing unit 120 changes the drive mode based on the information F2.
  • the operation mode control unit 160 transmits the information F2 to the light modulation unit 133.
  • the light modulation unit 133 changes the modulation scheme based on the information F2.
  • the operation mode control unit 160 notifies the client device that data communication is possible via the electrical interface 110.
  • the digital signal processor 120 receives the client signal from the client device via the electrical interface 110.
  • the digital signal processor 120 performs digital signal processing on the client signal.
  • the transmission function unit 130 converts the electrical signal into an optical signal.
  • the transmission function unit 130 transmits an optical signal to the optical transceiver 200. That is, the transmission function unit 130 transmits the data converted to the optical signal (ie, the client signal) to the optical transceiver 200.
  • the data communication is started by the operations of the digital signal processing unit 120 and the transmission function unit 130.
  • FIG. 9 is a flowchart (part 2) of the reception process before the connection establishment state according to the first embodiment.
  • Step S31 The operation mode control unit 160 determines whether the baud rate of the first operation mode matches the baud rate of the second operation mode. If the baud rate in the first operation mode matches the baud rate in the second operation mode (Yes in step S31), the operation mode control unit 160 advances the process to step S32. If the baud rate in the first operation mode and the baud rate in the second operation mode do not match (No in step S31), the operation mode control unit 160 advances the process to step S34.
  • Step S32 The operation mode control unit 160 determines whether the modulation scheme in the second operation mode is a modulation scheme having a lower priority than the modulation scheme in the first operation mode. For example, the modulation scheme of the first operation mode is “No. And 9 The modulation method of the second operation mode is No. And 10 Operation mode control unit 160 determines that the modulation scheme in the second operation mode is a modulation scheme having a lower priority than the modulation scheme in the first operation mode. If the condition is satisfied (Yes in step S32), the operation mode control unit 160 advances the process to step S33. If the condition is not satisfied (No in step S32), the operation mode control unit 160 ends the process.
  • Step S33 The operation mode control unit 160 changes the modulation scheme of the second operation mode to the modulation scheme of the first operation mode. Then, operation mode control unit 160 advances the process to step S36.
  • Step S34 The operation mode control unit 160 determines whether the baud rate of the second operation mode is larger than the baud rate of the first operation mode. If the baud rate of the second operation mode is larger than the baud rate of the first operation mode (Yes in step S34), operation mode control unit 160 advances the process to step S35. If the baud rate of the second operation mode is smaller than the baud rate of the first operation mode (No in step S34), the operation mode control unit 160 ends the process. Thus, when the baud rate of the second operation mode is smaller than the baud rate of the first operation mode, the operation mode control unit 160 changes the baud rate of the second operation mode to the baud rate of the first operation mode Control not to.
  • Step S35 The operation mode control unit 160 changes the baud rate of the second operation mode to the baud rate of the first operation mode. In addition, the operation mode control unit 160 changes the baud rate to a smaller one, because an error may increase in, for example, a QAM signal with a high degree of multi-degree according to the characteristics of the transmission path 300.
  • the operation mode control unit 160 stores the changed operation mode in the storage unit 150. In addition, the operation mode control unit 160 may hold the changed operation mode in the operation mode control unit 160.
  • Step S36 The low speed signal generation unit 170 generates an operation mode notification signal of a frequency of kHz based on the changed operation mode.
  • Step S37 The light modulation unit 133 generates an intensity modulated light signal including the operation mode notification signal.
  • the light modulation unit 133 transmits the intensity modulated light signal to the light transceiver 200.
  • Step S38 The operation mode control unit 160 notifies the client device that data communication is possible via the electrical interface 110.
  • the digital signal processor 120 receives the client signal from the client device via the electrical interface 110.
  • the digital signal processor 120 performs digital signal processing on the client signal.
  • the transmission function unit 130 converts the electrical signal into an optical signal.
  • the transmission function unit 130 transmits an optical signal to the optical transceiver 200. That is, the transmission function unit 130 transmits the data converted to the optical signal (ie, the client signal) to the optical transceiver 200.
  • the data communication is started by the operations of the digital signal processing unit 120 and the transmission function unit 130.
  • the baud rate of the operation mode (hereinafter referred to as the operation mode of the optical transceiver 100) stored in the storage unit 150 of the optical transceiver 100 is stored in the storage unit 250 of the optical transceiver 200 (hereinafter referred to as the operation of the optical transceiver 200)
  • the modulation scheme in the operation mode of the optical transceiver 100 and the modulation scheme in the operation mode of the optical transceiver 200 are the same.
  • the optical transceiver 100 When the optical transceiver 100 is activated, the optical transceiver 100 transmits an intensity modulated optical signal including an operation mode notification signal to the optical transceiver 200 (steps S11 and S12).
  • the optical transceiver 200 receives the intensity modulated optical signal from the optical transceiver 100.
  • the optical transceiver 200 determines that the operation modes do not match (No in step S25).
  • the optical transceiver 200 does not change the operation mode of the optical transceiver 200 (No in step S34).
  • the optical transceiver 200 When the optical transceiver 200 is activated, the optical transceiver 200 transmits an intensity modulated optical signal including an operation mode notification signal to the optical transceiver 100 (steps S11 and 12).
  • the optical transceiver 100 receives the intensity modulated optical signal from the optical transceiver 200.
  • the optical transceiver 100 determines that the operation modes do not match (No in step S25).
  • the optical transceiver 100 changes the operating mode of the optical transceiver 100 to the operating mode of the optical transceiver 200 (step S35).
  • the optical transceiver 100 and the optical transceiver 200 are in the same operation mode. That is, the optical transceiver 100 and the optical transceiver 200 are in the connection established state.
  • the optical transceiver 100 transmits to the optical transceiver 200 an intensity modulated optical signal including an operation mode notification signal based on the changed operation mode (steps S36 and S37).
  • the optical transceiver 100 transmits the optical signal whose client signal is converted to the optical transceiver 200 (step S38).
  • the optical transceiver 200 receives the intensity modulated optical signal from the optical transceiver 100.
  • the optical transceiver 200 determines that the operating mode of the optical transceiver 100 matches the operating mode of the optical transceiver 200 (Yes in step S25).
  • the optical transceiver 200 controls the clock switching unit, the digital signal processing unit, and the optical modulation unit 233, which the optical transceiver 200 has, based on the operation mode of the optical transceiver 200 (step S26).
  • the optical transceiver 200 transmits the optical signal in which the client signal is converted to the optical transceiver 100 (step S27).
  • the optical transceiver 100 changes the operation mode of the optical transceiver 100 to the operation mode of the optical transceiver 200 in step S35.
  • the optical transceiver 100 and the optical transceiver 200 are in the same operation mode. That is, the optical transceiver 100 and the optical transceiver 200 do not have to transmit and receive information on operating modes including different baud rates many times until the same operating mode is reached.
  • the optical transceiver 100 can be in a connection establishment state in a short time.
  • the baud rate of the optical transceiver 100 in the operation mode is smaller than the baud rate of the optical transceiver 200 in the operation mode.
  • the modulation scheme in the operation mode of the optical transceiver 100 and the modulation scheme in the operation mode of the optical transceiver 200 are the same.
  • the optical transceiver 200 When the optical transceiver 200 is activated, the optical transceiver 200 transmits an intensity modulated optical signal including an operation mode notification signal to the optical transceiver 100 (steps S11 and 12).
  • the optical transceiver 100 receives the intensity modulated optical signal from the optical transceiver 200.
  • the optical transceiver 100 determines that the operation modes do not match (No in step S25).
  • the optical transceiver 100 does not change the operation mode of the optical transceiver 100 (No in step S34).
  • the optical transceiver 100 When the optical transceiver 100 is activated, the optical transceiver 100 transmits an intensity modulated optical signal including an operation mode notification signal to the optical transceiver 200 (steps S11 and S12).
  • the optical transceiver 200 receives the intensity modulated optical signal from the optical transceiver 100.
  • the optical transceiver 200 determines that the operation modes do not match (No in step S25).
  • the optical transceiver 200 changes the operating mode of the optical transceiver 200 to the operating mode of the optical transceiver 100 (step S35).
  • the optical transceiver 100 and the optical transceiver 200 are in the same operation mode. That is, the optical transceiver 100 and the optical transceiver 200 are in the connection established state.
  • the optical transceiver 200 transmits to the optical transceiver 100 an intensity modulated optical signal including an operation mode notification signal based on the changed operation mode (steps S36 and S37).
  • the optical transceiver 200 transmits the optical signal in which the client signal is converted to the optical transceiver 100 (step S38).
  • the optical transceiver 100 receives the intensity modulated optical signal from the optical transceiver 200.
  • the optical transceiver 100 determines that the operating mode of the optical transceiver 100 matches the operating mode of the optical transceiver 200 (Yes in step S25).
  • the optical transceiver 100 controls the clock switching unit 143, the digital signal processing unit 120, and the light modulation unit 133 based on the operation mode of the optical transceiver 100 (step S26).
  • the optical transceiver 100 transmits the optical signal obtained by converting the client signal to the optical transceiver 200 (step S27).
  • the optical transceiver 100 does not change the operation mode of the optical transceiver 100 in the case of No at step S34 described above.
  • the operation modes of the optical transceiver 100 and the optical transceiver 200 become the same. Therefore, according to the first embodiment, the connection can be established in a short time.
  • the baud rate and the modulation method are defined as the operation mode.
  • the transmission rate and the modulation scheme may be defined as the operation mode
  • the transmission rate may be defined as the operation mode.
  • the operation mode table 151 has items of a transmission rate, a modulation scheme, and an operation mode notification signal.
  • the operation mode control unit 160 determines whether the transmission rate in the second operation mode is higher than the transmission rate in the first operation mode.
  • the operation mode control unit 160 sets the transmission rate in the second operation mode to the first operation mode. Change to the transmission rate.
  • the operation mode control unit 160 transmits the information F1 to the clock switching unit 143.
  • the information F1 includes the transmission rate.
  • the clock switching unit 143 selects an oscillator that oscillates a clock signal of a frequency based on the information F1 from the oscillators 144a, 144b, and 144c.
  • the clock switching unit 143 switches the oscillator 144 a to the selected oscillator.
  • the oscillator selected by the clock switching unit 143 outputs the clock signal to the A / D conversion unit 141 b.
  • the second embodiment will be described.
  • matters different from the first embodiment will be mainly described, and description of the common matters will be omitted.
  • the first embodiment has described the case where the oscillator is switched to the oscillator 144a in order to receive the intensity modulated optical signal.
  • the A / D converter 141 b often has an 8-bit resolution. Therefore, when the A / D conversion unit 141 b converts the analog electrical signal E1 into the digital electrical signal E2, the data amount of the digital electrical signal E2 increases. The large amount of data increases the processing time of the operation mode control unit 160. Therefore, in the second embodiment, a method using a PD (Photodiode) for low-speed signal reception and a low resolution A / D conversion unit, which will be described later, will be described.
  • PD Photodiode
  • FIG. 10 is a functional block diagram showing the configuration of the optical transceiver of the second embodiment.
  • the optical transceiver 100 a includes a coupler 180 and a low speed signal receiver 190.
  • the optical transceiver 200 has the same functional blocks as the optical transceiver 100a.
  • the configuration of FIG. 10 which is the same as or corresponds to the configuration shown in FIG. 3 is given the same reference numeral as that shown in FIG. Embodiment 2 refers to FIG. 1 to FIG.
  • the functions of the coupler 180 and the low-speed signal receiver 190 will be described in detail later.
  • FIG. 11 is a diagram for explaining reception processing of the second embodiment.
  • the reception function unit 140a differs from the reception function unit 140 in that the oscillator 144a is not present. Further, the data storage function unit 142 a does not transmit the digital electrical signal E 2 to the operation mode control unit 160.
  • the configuration of FIG. 11 which is the same as or corresponds to the configuration shown in FIG. 6 is given the same reference numeral as that shown in FIG.
  • the coupler 180 transmits the intensity modulated optical signal C1 to the low speed signal receiver 190. Further, the coupler 180 may control so as not to transmit the intensity modulated optical signal C1 to the reception function unit 140a.
  • the A / D converter 141 b is also referred to as a first A / D converter.
  • the low-speed signal reception unit 190 includes a PD 191, an oscillator 192, and an A / D conversion unit 193.
  • the PD 191 receives the intensity modulated optical signal C1 including the operation mode notification signal.
  • the PD 191 converts the intensity modulated optical signal C1 into an analog electrical signal G1.
  • the oscillator 192 outputs a clock signal of x1 [kHz] to the A / D converter 193.
  • the A / D converter 193 converts the analog electrical signal G1 into a digital electrical signal G2.
  • the resolution of the A / D conversion unit 193 is smaller than the resolution of the A / D conversion unit 141 b.
  • the resolution of the A / D conversion unit 193 may be at least 1 bit. That is, the A / D conversion unit 193 only needs to be able to transmit information of at least 1 bit in one modulation / demodulation.
  • the A / D conversion unit 193 transmits the digital electric signal G2 to the operation mode control unit 160.
  • the digital electrical signal G2 includes an operation mode notification signal.
  • the A / D converter 193 is also referred to as a second A / D converter.
  • the resolution of the second A / D conversion unit is also referred to as a second resolution.
  • the resolution of the A / D conversion unit 193 is lower than the resolution of the A / D conversion unit 141 b. Therefore, the data amount of the digital electrical signal G2 is smaller than that when the A / D converter 141b converts the analog electrical signal G1 into a digital electrical signal. The reduction of the data amount can shorten the processing time of the operation mode control unit 160.
  • the third embodiment will be described.
  • matters different from the first embodiment will be mainly described, and description of the common matters will be omitted.
  • the first embodiment shows the case where the optical transceiver 100 and the optical transceiver 200 store the same operation mode table.
  • the third embodiment the case where each of two optical transceivers stores different operation mode tables will be described.
  • the third embodiment refers to FIGS.
  • FIG. 12 is a diagram for explaining transmission processing of the third embodiment.
  • the optical transceiver 200a includes an operation mode control unit 260a and a low speed signal generation unit 270a.
  • the optical transceiver 100b described later has the same functional blocks as the optical transceiver 200a.
  • the configuration of FIG. 12 which is the same as or corresponds to the configuration shown in FIG. 5 is given the same reference numeral as that shown in FIG.
  • the functions of the operation mode control unit 260a and the low speed signal generation unit 270a will be described in detail later.
  • FIG. 13 is a diagram for explaining reception processing of the third embodiment.
  • the optical transceiver 100 b includes an operation mode control unit 160 a.
  • the optical transceiver 200a has the same functional blocks as the optical transceiver 100b.
  • the configuration of FIG. 13 which is the same as or corresponds to the configuration shown in FIG. 6 is given the same reference numeral as that shown in FIG. The functions of the operation mode control unit 160a will be described in detail later.
  • FIG. 14 is a diagram for explaining the case where different operation mode tables of the third embodiment are stored.
  • the optical transceiver 100 b stores an operation mode table 152.
  • the operation mode table 152 is stored in the storage unit 150.
  • no. A baud rate, modulation scheme, and operation mode notification signal corresponding to m (m is a positive integer) are registered.
  • the optical transceiver 200 a stores an operation mode table 251.
  • the operation mode table 251 is stored in the storage unit 250.
  • the operation mode table 152 is a newer version number than the operation mode table 251.
  • the operation mode to be newly added to the operation mode table is registered in the lowermost row of the operation mode table.
  • the operation mode table of the new version is updated to the operation mode table of the old version.
  • the operation mode control unit 160 a displays No. Delete the information of 5 or more operation modes.
  • the operation mode table 153 includes No. The state in which the information of five or more operation modes is deleted is shown. As a result, the operation mode tables stored in the optical transceiver 100b and the optical transceiver 200a become the same.
  • FIG. 15 is a flowchart showing transmission processing before the connection establishment state according to the third embodiment.
  • FIG. 15 describes the transmission process performed by the optical transceiver 200a, the transmission process performed by the optical transceiver 100b is the same.
  • processing starts when the optical transceiver 200a is activated. Further, the process of FIG. 15 will be described with reference to FIG.
  • the operation mode control unit 260a acquires the version number of the operation mode table stored in the storage unit 250 and information on the operation mode table.
  • the information on the operation mode table is the number of operation modes registered in the operation mode table (that is, the number registered in the item of No.).
  • the operation mode control unit 260 a acquires the operation mode from the storage unit 250.
  • the operation mode control unit 260a transmits the information B11 including the version number of the operation mode table, the information on the operation mode table, and the operation mode to the low speed signal generation unit 270a.
  • the low speed signal generation unit 270a receives the information B11 from the operation mode control unit 260a.
  • the low-speed signal generation unit 270a generates an electrical signal B12 having a frequency of kHz including the operation mode notification signal based on the operation mode, information on the operation mode table, and the version number of the operation mode table.
  • the light modulation unit 233 generates an intensity modulated light signal C2 including the electric signal B12.
  • the light modulation unit 233 transmits the intensity modulated light signal C2 to the light transceiver 100b.
  • the optical transceiver 100b and the optical transceiver 200a mutually transmit the intensity modulated optical signal C2 including the version number of the operation mode table, the information on the operation mode table, and the operation mode notification signal.
  • FIG. 16 is a flowchart (part 1) of the reception process before the connection establishment state according to the third embodiment. 16 and 17 describe the reception processing performed by the optical transceiver 100b, but the reception processing performed by the optical transceiver 200a is the same. In FIG. 16, processing starts when the receiving unit 141a receives the intensity modulated optical signal C2. The process of FIG. 16 will be described with reference to FIG.
  • Step S51 The receiving unit 141a converts the intensity modulated optical signal C2 into an analog electrical signal E11.
  • the A / D conversion unit 141b converts the analog electrical signal E11 into a digital electrical signal E12.
  • Step S53 The data storage function unit 142 holds the digital electric signal E12.
  • the data storage function unit 142 transmits the digital electric signal E12 to the operation mode control unit 160a.
  • Step S54 The operation mode control unit 160a detects the version number of the operation mode table stored in the storage unit 250 from the digital electrical signal E12.
  • Step S55 Operation mode control unit 160a detects the version number of the operation mode table stored in storage unit 150. Operation mode control unit 160a determines whether the version number is newer than the version number detected in step S54. If the condition is satisfied (Yes in step S55), the operation mode control unit 160a advances the process to step S56. If the condition is not satisfied (NO in step S55), operation mode control unit 160a advances the process to step S61.
  • Step S56 The operation mode control unit 160a updates the operation mode table stored in the storage unit 150 to the operation mode table of the version number detected in step S54. That is, the operation mode control unit 160a updates the operation mode table stored in the storage unit 150 to the operation mode table of the old version number. Specifically, the operation mode control unit 160a detects information related to the operation mode table from the digital electrical signal E12. The operation mode control unit 160a identifies the number of operation modes registered in the operation mode table stored in the storage unit 250 (that is, the number registered in the No. item) from the information on the operation mode table. Do. Operation mode control unit 160 a updates the operation mode table stored in storage unit 150 based on the number of operation modes registered in the operation mode table stored in storage unit 250.
  • the operation mode tables of the optical transceiver 100b and the optical transceiver 200a become the same.
  • operation mode control unit 160 a stores the operation mode in storage unit 150.
  • the set value of the operation mode of the existing operation mode table is maintained, and the operation mode table stored in the storage unit 150 is updated.
  • operation mode control unit 160 a stores the operation stored in storage unit 150.
  • the mode table is updated to the operation mode table stored in the storage unit 250. Then, the operation mode control unit 160a newly selects an operation mode from the updated operation mode table.
  • Step S57 The operation mode control unit 160a acquires the version number of the operation mode table stored in the storage unit 150 and information on the operation mode table.
  • the operation mode control unit 160 a acquires the operation mode from the storage unit 150.
  • the operation mode control unit 160a transmits information including the version number of the operation mode table, information on the operation mode table, and the operation mode to the low speed signal generation unit 170.
  • Step S58 The low-speed signal generation unit 170 generates an electrical signal of a frequency of kHz including the operation mode notification signal based on the operation mode, information on the operation mode table, and the version number of the operation mode table.
  • Step S59 The light modulation unit 133 generates an intensity modulated light signal including an electrical signal.
  • the light modulation unit 133 transmits the intensity modulated light signal to the optical transceiver 200a. Then, the light modulation unit 133 proceeds with the process to step S62.
  • FIG. 17 is a flowchart (part 2) of the reception process before the connection establishment state according to the third embodiment.
  • the operation mode control unit 160a detects an operation mode notification signal from the digital electrical signal E12. Operation mode control unit 160a determines whether or not the first operation mode based on the operation mode notification signal can be detected from the operation mode table stored in storage unit 150. If it can be detected (Yes in step S61), the operation mode control unit 160a advances the process to step S62. If it can not be detected (No in step S61), the operation mode control unit 160a ends the process.
  • Step S62 The operation mode control unit 160a determines whether the first operation mode and the second operation mode match. If the first operation mode and the second operation mode match (Yes in step S62), the operation mode control unit 160a advances the process to step S63. If the first operation mode and the second operation mode do not match (No in step S62), the operation mode control unit 160a advances the process to step S65.
  • Operation mode control unit 160a transmits information F1 to clock switching unit 143.
  • the clock switching unit 143 selects an oscillator that oscillates a clock signal of a frequency based on the information F1 from the oscillators 144a, 144b, and 144c.
  • the clock switching unit 143 switches the oscillator 144 a to the selected oscillator.
  • the oscillator selected by the clock switching unit 143 outputs the clock signal to the A / D conversion unit 141 b.
  • Operation mode control unit 160a transmits information F2 to digital signal processing unit 120.
  • the digital signal processing unit 120 changes the drive mode based on the information F2.
  • the operation mode control unit 160 a transmits the information F 2 to the light modulation unit 133.
  • the light modulation unit 133 changes the modulation scheme based on the information F2.
  • the operation mode control unit 160a notifies the client device that data communication is possible via the electrical interface 110.
  • the digital signal processor 120 receives the client signal from the client device via the electrical interface 110.
  • the digital signal processor 120 performs digital signal processing on the client signal.
  • the transmission function unit 130 converts the electrical signal into an optical signal.
  • the transmission function unit 130 transmits an optical signal to the optical transceiver 200. That is, the transmission function unit 130 transmits the data converted to the optical signal (ie, the client signal) to the optical transceiver 200.
  • the data communication is started by the operations of the digital signal processing unit 120 and the transmission function unit 130.
  • Step S65 The operation mode control unit 160a determines whether the baud rate in the first operation mode matches the baud rate in the second operation mode. If the baud rate in the first operation mode matches the baud rate in the second operation mode (Yes in step S65), the operation mode control unit 160a advances the process to step S66. If the baud rate in the first operation mode and the baud rate in the second operation mode do not match (No in step S65), the operation mode control unit 160a advances the process to step S68.
  • Step S66 The operation mode control unit 160a determines whether the modulation scheme in the second operation mode is a modulation scheme having a lower priority than the modulation scheme in the first operation mode. If the condition is satisfied (Yes in step S66), the operation mode control unit 160a advances the process to step S67. When the condition is not satisfied (No in step S66), the operation mode control unit 160a ends the process.
  • Step S67 The operation mode control unit 160a changes the modulation scheme of the second operation mode to the modulation scheme of the first operation mode. Then, operation mode control unit 160a advances the process to step S70.
  • Step S68 The operation mode control unit 160a determines whether the baud rate of the second operation mode is larger than the baud rate of the first operation mode. If the baud rate of the second operation mode is larger than the baud rate of the first operation mode (Yes in step S68), the operation mode control unit 160a advances the process to step S69. If the baud rate of the second operation mode is smaller than the baud rate of the first operation mode (No in step S68), the operation mode control unit 160a ends the process.
  • Step S69 The operation mode control unit 160a changes the baud rate of the second operation mode to the baud rate of the first operation mode.
  • Operation mode control unit 160 a stores the changed operation mode in storage unit 150.
  • the operation mode control unit 160a may hold the changed operation mode in the operation mode control unit 160a.
  • Step S70 The low speed signal generation unit 170 generates an operation mode notification signal of the frequency of kHz based on the changed operation mode.
  • the light modulation unit 133 generates an intensity modulated light signal including the operation mode notification signal.
  • the light modulation unit 133 transmits the intensity modulated light signal to the light transceiver 200a.
  • the operation mode control unit 160a notifies the client device that data communication is possible via the electrical interface 110.
  • the digital signal processor 120 receives the client signal from the client device via the electrical interface 110.
  • the digital signal processor 120 performs digital signal processing on the client signal.
  • the transmission function unit 130 converts the electrical signal into an optical signal.
  • the transmission function unit 130 transmits an optical signal to the optical transceiver 200. That is, the transmission function unit 130 transmits the data converted to the optical signal (ie, the client signal) to the optical transceiver 200.
  • the data communication is started by the operations of the digital signal processing unit 120 and the transmission function unit 130.
  • the connection mode is established by synchronizing the operation mode.
  • Optical transceiver (optical communication device), 110 electrical interface, 120 digital signal processing unit, 130 transmission function unit, 133 light modulation unit, 140, 140a reception function unit, 141 conversion unit, 141a reception unit, 141b A / D conversion unit, 142, 142a data storage function unit, 143 clock switching unit, 144a, 144b, 144c oscillator, 150 storage unit, 160, 160a operation mode control unit, 170 low speed signal generation unit, 180 coupler, 190 low speed signal reception , 191 PD, 192 oscillator, 193 A / D conversion unit, 200, 200 a, 200 b optical transceiver, 220 digital signal processing unit, 230 transmission function unit, 231 D / A conversion unit 232 amplifier, 233 the light modulation unit, 250 storage unit, 260,260A operation mode control unit, 270,270A low-speed signal generating unit, 300 transmission path

Abstract

光通信装置は、第1の光通信装置から送信された光信号を受信し、クロック信号に基づいて光信号をデジタル電気信号に変換する変換部(141)と、クロック信号を発振する発振器(144a)を切り替えるクロック切替部(143)と、デジタル電気信号から第1の光通信装置の動作モードを検出し、クロック信号を発振する発振器(144a)から、第1の光通信装置の動作モードに基づく周波数のクロック信号を発振する発振器に切り替えるようにクロック切替部(143)に指示する動作モード制御部(160)と、を有する。

Description

光通信装置、制御方法、及び制御プログラム
 本発明は、光通信装置、制御方法、及び制御プログラムに関する。
 近年、光通信システムでは、高速なデータ通信及び大容量のデータ通信サービスが求められている。光通信システムでは、40Gbps、100Gbps、200Gbps、400Gbpsへと伝送速度が高速化している。複数の伝送速度に対応できる光トランシーバが期待されている。伝送速度又は変調方式を動作モードと表現する場合がある。
 光通信システムでは、複数の動作モードを有する光トランシーバに対して外部から動作モードを制御することで、動作モードを変更できる。例えば、光通信システムでは、光トランシーバに外部装置を接続する。光トランシーバは、外部装置の制御によって、動作モードが変更される。また、外部装置が、2つの光トランシーバの動作モードを同じにすることができる。例えば、光通信システムでは、2つの光トランシーバのそれぞれに外部装置を接続する。2つの光トランシーバのそれぞれは、外部装置の制御によって、同じ動作モードに設定される。2つの光トランシーバは、同じ動作モードが設定されることで、正常にデータの送受信が可能な状態になる。正常にデータの送受信が可能な状態をコネクション確立状態と表現する。
 秘匿性の高い通信が求められる光通信システムでは、外部から動作モードを制御する方法を用いずにシステムを構築する必要がある。このように、光トランシーバに対して外部から動作モードを制御できなくなる場合、2つの光トランシーバに同じ動作モードを設定して、コネクション確立状態にすることは、困難である。
 ここで、伝送速度を同期する技術が提案されている(例えば、特許文献1を参照)。例えば、特許文献1では、2つの光トランシーバが互いに伝送速度を示す試験用信号を送受信する。試験用信号を受信した光トランシーバは、試験用信号が示す伝送速度と初期設定した伝送速度とが異なる場合(すなわち、伝送速度が同期しない場合)、試験用信号の送信元の光トランシーバに、異なる伝送速度を示す試験用信号を送信する。このように、試験用信号を受信する光トランシーバは、伝送速度が同期するまで、試験用信号を送信することを繰り返す。
特開2005-229298号公報
 上記技術は、伝送速度などの動作モードの数が増えた場合、伝送速度が同期するまで光トランシーバによる試験用信号の送信が繰り返され、光トランシーバが試験用信号を送信する回数が増えるため、コネクション確立状態になるまで時間が長くなる。
 本発明の目的は、光通信装置を短い時間でコネクション確立状態にすることである。
 本発明の一態様に係る光通信装置が提供される。第1の光通信装置と通信する光通信装置は、前記第1の光通信装置から送信された光信号を受信し、クロック信号に基づいて前記光信号をデジタル電気信号に変換する変換部と、前記クロック信号を発振する発振器を切り替えるクロック切替部と、前記デジタル電気信号から前記第1の光通信装置の動作モードを検出し、前記クロック信号を発振する発振器から、前記第1の光通信装置の動作モードに基づく周波数のクロック信号を発振する発振器に切り替えるように前記クロック切替部に指示する動作モード制御部と、を有する。
 本発明によれば、光通信装置を短い時間でコネクション確立状態にすることができる。
実施の形態1の光通信システムを示す図である。 実施の形態1の光トランシーバが有する主なハードウェア構成を示す図である。 実施の形態1の光トランシーバの構成を示す機能ブロック図である。 実施の形態1の動作モードテーブルを示す図である。 実施の形態1の送信処理を説明する図である。 実施の形態1の受信処理を説明する図である。 実施の形態1のコネクション確立状態前の送信処理を示すフローチャートである。 実施の形態1のコネクション確立状態前の受信処理を示すフローチャート(その1)である。 実施の形態1のコネクション確立状態前の受信処理を示すフローチャート(その2)である。 実施の形態2の光トランシーバの構成を示す機能ブロック図である。 実施の形態2の受信処理を説明する図である。 実施の形態3の送信処理を説明する図である。 実施の形態3の受信処理を説明する図である。 実施の形態3の異なる動作モードテーブルを格納している場合を説明する図である。 実施の形態3のコネクション確立状態前の送信処理を示すフローチャートである。 実施の形態3のコネクション確立状態前の受信処理を示すフローチャート(その1)である。 実施の形態3のコネクション確立状態前の受信処理を示すフローチャート(その2)である。
 以下、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、本発明の範囲内で変更が可能である。
実施の形態1.
 図1は、実施の形態1の光通信システムを示す図である。光通信システムは、光トランシーバ100と光トランシーバ200とを含む。光トランシーバ100と光トランシーバ200は、伝送路300を介して光信号を送受信する。また、光トランシーバを光通信装置と表現してもよい。
 例えば、光トランシーバ100は、第1のWDM(Wavelength Division Multiplexing)光伝送装置に含まれる。光トランシーバ200は、第2のWDM光伝送装置に含まれる。そして、第1のWDM光伝送装置と第2のWDM光伝送装置は、光信号を送受信する。
 なお、光トランシーバ100又は光トランシーバ200は、第1の光通信装置とも言う。
 次に、光トランシーバ100の主なハードウェア構成について説明する。
 図2は、実施の形態1の光トランシーバが有する主なハードウェア構成を示す図である。光トランシーバ100は、プロセッサ101、揮発性記憶装置102、及び不揮発性記憶装置103を有する。
 プロセッサ101は、光トランシーバ100全体を制御する。例えば、プロセッサ101は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、又はFPGA(Field Programmable Gate Array)などである。プロセッサ101は、複数の処理を並列に実行するマルチプロセッサであってもよい。光トランシーバ100は、処理回路によって実装されてもよく、又は、ソフトウェア、ファームウェア若しくはそれらの組み合わせによって実装されてもよい。
 揮発性記憶装置102は、光トランシーバ100の主記憶装置である。例えば、揮発性記憶装置102は、RAM(Random Access Memory)である。不揮発性記憶装置103は、光トランシーバ100の補助記憶装置である。例えば、不揮発性記憶装置103は、SSD(Solid State Drive)などである。
 光トランシーバ200は、光トランシーバ100と同様のハードウェアを有する。
 図3は、実施の形態1の光トランシーバの構成を示す機能ブロック図である。光トランシーバ100は、電気インタフェース110、デジタル信号処理部120、送信機能部130、受信機能部140、記憶部150、動作モード制御部160、及び低速信号生成部170を有する。
 デジタル信号処理部120、送信機能部130、受信機能部140、動作モード制御部160、及び低速信号生成部170の一部又は全部は、プロセッサ101によって実装してもよい。また、デジタル信号処理部120、送信機能部130、受信機能部140、動作モード制御部160、及び低速信号生成部170の一部又は全部は、例えば、プロセッサ101が実行するプログラムのモジュールとして実装してもよい。当該プログラムは、揮発性記憶装置102又は不揮発性記憶装置103に格納される。
 記憶部150は、揮発性記憶装置102又は不揮発性記憶装置103に確保した記憶領域として実装される。
 電気インタフェース110は、クライアント信号を送受信する。例えば、電気インタフェース110は、第1のWDM光伝送装置に含まれるクライアント装置との間でクライアント信号を送受信する。
 デジタル信号処理部120は、データ信号であるクライアント信号にデジタル信号処理を実行する。送信機能部130は、電気信号を光信号に変換する。受信機能部140は、光信号を電気信号に変換する。
 記憶部150は、動作モードに関する情報を記憶する。動作モードについては、後で詳細に説明する。動作モード制御部160は、光トランシーバ100の動作モードを制御する。低速信号生成部170は、動作モードを通知する信号を生成する。
 光トランシーバ200は、光トランシーバ100と同様の機能ブロックを有する。
 次に、記憶部150が記憶する情報について説明する。
 図4は、実施の形態1の動作モードテーブルを示す図である。動作モードテーブル151は、記憶部150に格納される。動作モードテーブル151は、No.(すなわち、項番)、ボーレート、変調方式、及び動作モード通信信号の項目を有する。
 No.の項目は、識別子を示す。なお、No.の項目は、No.の数が小さいほど優先順位が高いものとする。ボーレートの項目は、ボーレートを示す。変調方式の項目は、変調方式を示す。動作モード通信信号の項目は、動作モードに対応する識別子を示す。ここで、動作モードとは、ボーレート及び変調方式である。また、動作モードとは、ボーレートと考えてもよい。
 また、光トランシーバ200が有する記憶部は、動作モードテーブル151と同じ動作モードテーブルを記憶する。
 なお、光トランシーバ100と光トランシーバ200は、複数の動作モードに対応できる装置である。
 ここで、光トランシーバ100が有する記憶部150と光トランシーバ200が有する記憶部は、予め設定された動作モードを記憶する。光トランシーバ100は、光トランシーバ100の電源がONにされて起動したとき(すなわち、光トランシーバ100が起動したとき)、記憶部150に格納されている動作モードを光トランシーバ200に送信する。光トランシーバ200は、光トランシーバ200の電源がONにされて起動したとき(すなわち、光トランシーバ200が起動したとき)、光トランシーバ200が有する記憶部に格納されている動作モードを光トランシーバ100に送信する。すなわち、光トランシーバ100と光トランシーバ200とは、互いに動作モードを送受信する。そして、光トランシーバ100と光トランシーバ200とは、動作モードを同期させる。どのように同期させるかについては、後で詳細に説明する。
 次に、光トランシーバが実行する送信処理について説明する。図5では、光トランシーバ200が実行する送信処理について説明するが、光トランシーバ100が実行する送信処理も同様である。
 図5は、実施の形態1の送信処理を説明する図である。光トランシーバ200は、デジタル信号処理部220、送信機能部230、記憶部250、動作モード制御部260、及び低速信号生成部270を有する。デジタル信号処理部220、送信機能部230、動作モード制御部260、及び低速信号生成部270の機能は、デジタル信号処理部120、送信機能部130、動作モード制御部160、及び低速信号生成部170の機能と同じである。
 送信機能部230は、D(Digital)/A(Analog)変換部231、増幅器232、及び光変調部233を有する。なお、送信機能部130も同様に、D/A変換部、増幅器、及び光変調部を有する。
 はじめに、コネクション確立状態になった後に、光トランシーバ200が実行する送信処理を説明する。
 デジタル信号処理部220は、クライアント信号A1を受信する。デジタル信号処理部220は、クライアント信号A1にFEC(Forward Error Correction)を付加する。デジタル信号処理部220は、FECが付加されたクライアント信号A2をD/A変換部231に送信する。
 D/A変換部231は、デジタル電気信号であるクライアント信号A2をアナログ電気信号A3に変換する。増幅器232は、アナログ電気信号A3を増幅する。増幅器232は、増幅したアナログ電気信号A4を光変調部233に送信する。光変調部233は、アナログ電気信号A4を光信号に変換する。光変調部233は、光トランシーバ100に光信号を送信する。また、光変調部233は、光信号を変調することができる。例えば、光変調部233は、OOK(On Off Keying)を用いて光信号の強度を変調する。光変調部233は、光信号の強度を変調した強度変調光信号を光トランシーバ100に送信してもよい。
 次に、コネクション確立状態前の光トランシーバ200が実行する送信処理を説明する。送信機能部230は、記憶部250が格納している動作モードを示す情報を光トランシーバ100に送信する。詳細に説明する。
 記憶部250は、予め設定された動作モードB1を記憶する。動作モード制御部260は、光トランシーバ200が起動したとき、記憶部250から動作モードB1を取得する。動作モード制御部260は、動作モードB1を低速信号生成部270に送信する。
 低速信号生成部270は、動作モードB1に基づいて、ディザ信号の周波数と同程度のkHzの周波数(例えば、「数kHzの周波数」又は「kHzオーダーの予め決められた周波数」)の動作モード通知信号B2を生成する。低速信号生成部270は、動作モード通知信号B2を光変調部233のDC(Direct Current)バイアスポートに出力する。光変調部233は、動作モード通知信号B2を含んだkHzの周波数の強度変調光信号C1を生成する。強度変調光信号C1は、OOKを用いて変調された光信号である。光変調部233は、強度変調光信号C1を光トランシーバ100に送信する。
 データ信号であるクライアント信号に低周波信号を重畳する場合、低周波数信号の変調度は、数%程度に抑える必要がある。実施の形態1では、クライアント信号に低周波信号を重畳しないため、変調度に関する制約はない。
 次に、光トランシーバが実行する受信処理について説明する。図6では、光トランシーバ100が実行する受信処理について説明するが、光トランシーバ200が実行する受信処理も同様である。
 図6は、実施の形態1の受信処理を説明する図である。受信機能部140は、変換部141、データ蓄積機能部142、クロック切替部143、及び発振器144a,144b,144cを有する。また、光変調部133は、送信機能部130に含まれる。
 変換部141は、受信部141a及びA/D変換部141bを含む。発振器144aは、x1[kHz]の周波数のクロック信号を発振する装置である。また、発振器144aは、第1の発振器とも言う。x1[kHz]の周波数は、第1の数値のkHzの周波数とも言う。x1[kHz]の周波数は、kHz単位の周波数と表現してもよい。x1[kHz]の周波数、又は第1の数値のkHzの周波数は、1~1000[kHz]の範囲内の周波数である。なお、動作モード通知信号B2のkHzの周波数、強度変調光信号C1のkHzの周波数、x1[kHz]の周波数は、同じである。発振器144bは、x2[GHz]の周波数のクロック信号を発振する装置である。発振器144cは、xn(nは3以上の整数)[GHz]の周波数のクロック信号を発振する装置である。周波数x1~xnは、互いに異なる周波数である。
 なお、光トランシーバ200が有する受信機能部も同様に、変換部、データ蓄積機能部、クロック切替部、及び発振器を有する。また、光トランシーバ200が有する変換部は、受信部及びA/D変換部を含む。
 はじめに、コネクション確立状態になった後に、光トランシーバ100が実行する受信処理を説明する。
 受信部141aは、光信号又は強度変調光信号をアナログ電気信号に変換する。A/D変換部141bは、アナログ電気信号をデジタル電気信号に変換する。データ蓄積機能部142は、デジタル電気信号を保持する。データ蓄積機能部142は、デジタル電気信号D1をデジタル信号処理部120に送信する。
 クロック切替部143は、動作モードに基づく周波数のクロック信号を発振する発振器に切り替える。詳細には、クロック切替部143は、動作モードに基づく周波数のクロック信号を発振する発振器を発振器144a,144b,144cの中から選択する。クロック切替部143は、選択した発振器に切り替える。これにより、クロック信号の周波数は、変更される。
 デジタル信号処理部120は、デジタル電気信号D1に対してFEC復号を行い、クライアント信号D2を抽出する。デジタル信号処理部120は、電気インタフェース110にクライアント信号D2を送信する。
 次に、コネクション確立状態前の光トランシーバ100が実行する受信処理を説明する。
 変換部141は、光トランシーバ200から送信された強度変調光信号C1を受信し、クロック信号に基づいて強度変調光信号C1をデジタル電気信号E2に変換する。変換部141の機能を、受信部141aとA/D変換部141bを用いて詳細に説明する。
 受信部141aは、周波数がkHzの強度変調光信号C1を光トランシーバ200から受信する。そのため、クロック切替部143は、発振器144aに切り替えて、発振器144aを起動させる。発振器144aは、x1[kHz]のクロック信号をA/D変換部141bに出力する。このように、クロック切替部143は、コネクション確立状態前の場合、常に発振器144aを起動させる。
 受信部141aは、動作モード通知信号B2を含む強度変調光信号C1をアナログ電気信号E1に変換する。A/D変換部141bは、アナログ電気信号E1を、動作モード通知信号B2を含むデジタル電気信号E2に変換する。A/D変換部141bは、デジタル電気信号E2をデータ蓄積機能部142に送信する。
 データ蓄積機能部142は、デジタル電気信号E2を保持する。データ蓄積機能部142は、デジタル電気信号E2を動作モード制御部160に送信する。
 動作モード制御部160は、デジタル電気信号E2から光トランシーバ200の動作モードB1を検出する。詳細には、動作モード制御部160は、動作モードテーブル151を参照し、動作モード通知信号B2に基づいて、動作モードB1を検出する。例えば、動作モード制御部160は、動作モード通知信号B2が“00”を示している場合、ボーレートが“32Gbaud”、変調方式が“QPSK(Quadrature Phase Shift Keying)”の動作モードB1であることを検出する。動作モードB1を第1の動作モードとする。
 動作モード制御部160は、光トランシーバ200の第1の動作モードに基づく周波数のクロック信号を発振する発振器に切り替えるようにクロック切替部143に指示する。詳細に説明する。動作モード制御部160は、記憶部150に予め設定された動作モードと第1の動作モードとを比較する。第1の動作モードと比較される動作モードを第2の動作モードとする。
 動作モード制御部160は、第1の動作モードと第2の動作モードとが一致する場合、情報F1をクロック切替部143に送信する。情報F1は、ボーレートである。当該ボーレートは、第1の動作モードと第2の動作モードが示すボーレートと同じである。クロック切替部143は、情報F1に基づく周波数のクロック信号を発振する発振器を発振器144a,144b,144cの中から選択する。クロック切替部143は、選択した発振器に切り替える。例えば、クロック切替部143は、発振器144aから発振器144bに切り替える。クロック切替部143に選択された発振器は、クロック信号をA/D変換部141bに出力する。
 動作モード制御部160は、第1の動作モードと第2の動作モードとが一致する場合、情報F2をデジタル信号処理部120に送信する。情報F2は、変調方式である。当該変調方式は、第1の動作モードと第2の動作モードが示す変調方式と同じである。デジタル信号処理部120は、情報F2に基づいて、駆動モードを変更する。
 動作モード制御部160は、第1の動作モードと第2の動作モードとが一致する場合、情報F2を光変調部133に送信する。光変調部133は、情報F2に基づいて、変調方式を変更する。例えば、光変調部133は、QPSK又はQAM(Quadrature Amplitude Modulation)に変更する。
 これにより、光トランシーバ100と光トランシーバ200は、動作モードが一致するため、コネクション確立状態になる。
 第1の動作モードと第2の動作モードとが一致しない場合については、後で詳細に説明する。
 ここで、例えば、光トランシーバ100と光トランシーバ200の動作モードが互いに異なる状態で、光トランシーバ100が光信号を受信した場合、次のようなことが発生する。ボーレートが異なる場合は、クロック同期が取れない。変調方式が異なる場合は、デジタル信号処理でエラーが発生する。しかし、実施の形態1では、強度変調光信号C1を送信する側と強度変調光信号C1を受信する側で同じkHzの周波数を用いることで、クロック同期を確保できる。そして、動作モード制御部160は、強度変調光信号C1から動作モード通知信号B2を検出できる。
 図7は、実施の形態1のコネクション確立状態前の送信処理を示すフローチャートである。図7では、光トランシーバ200が実行する送信処理について説明するが、光トランシーバ100が実行する送信処理も同様である。図7は、光トランシーバ200が起動したとき、処理が開始する。
 (ステップS11)動作モード制御部260は、記憶部250から動作モードB1を取得する。動作モード制御部260は、動作モードB1を低速信号生成部270に送信する。
 低速信号生成部270は、動作モード制御部260から動作モードB1を受信する。低速信号生成部270は、動作モードB1に基づいて、kHzの周波数の動作モード通知信号B2を生成する。
 (ステップS12)光変調部233は、動作モード通知信号B2を含んだ強度変調光信号C1を生成する。光変調部233は、強度変調光信号C1を光トランシーバ100に送信する。
 図8は、実施の形態1のコネクション確立状態前の受信処理を示すフローチャート(その1)である。図8,9では、光トランシーバ100が実行する受信処理について説明するが、光トランシーバ200が実行する受信処理も同様である。図8は、受信部141aが強度変調光信号C1を受信したとき、処理が開始する。
 (ステップS21)受信部141aは、動作モード通知信号B2を含む強度変調光信号C1をアナログ電気信号E1に変換する。
 (ステップS22)A/D変換部141bは、アナログ電気信号E1をデジタル電気信号E2に変換する。
 (ステップS23)データ蓄積機能部142は、デジタル電気信号E2を保持する。データ蓄積機能部142は、デジタル電気信号E2を動作モード制御部160に送信する。
 (ステップS24)動作モード制御部160は、デジタル電気信号E2から動作モード通知信号B2を検出する。動作モード制御部160は、動作モードテーブル151を参照する。動作モード制御部160は、動作モード通知信号B2に基づいて、第1の動作モードを検出する。
 (ステップS25)動作モード制御部160は、第1の動作モードと第2の動作モードとが一致するか否かを判定する。すなわち、動作モード制御部160は、第1の動作モードのボーレート及び変調方式と、第2の動作モードのボーレート及び変調方式とが一致するか否かを判定する。
 第1の動作モードと第2の動作モードとが一致する場合(ステップS25でYes)、動作モード制御部160は、処理をステップS26に進める。第1の動作モードと第2の動作モードとが一致しない場合(ステップS25でNo)、動作モード制御部160は、処理をステップS31に進める。
 (ステップS26)動作モード制御部160は、情報F1をクロック切替部143に送信する。クロック切替部143は、情報F1に基づく周波数のクロック信号を発振する発振器を発振器144a,144b,144cの中から選択する。クロック切替部143は、発振器144aから選択した発振器に切り替える。クロック切替部143に選択された発振器は、クロック信号をA/D変換部141bに出力する。
 動作モード制御部160は、情報F2をデジタル信号処理部120に送信する。デジタル信号処理部120は、情報F2に基づいて、駆動モードを変更する。
 動作モード制御部160は、光変調部133に情報F2を送信する。光変調部133は、情報F2に基づいて、変調方式を変更する。
 (ステップS27)動作モード制御部160は、電気インタフェース110を介してデータ通信が可能なことをクライアント装置に通知する。デジタル信号処理部120は、電気インタフェース110を介してクライアント信号をクライアント装置から受信する。デジタル信号処理部120は、クライアント信号に対してデジタル信号処理を実行する。実行後、送信機能部130は、電気信号を光信号に変換する。送信機能部130は、光信号を光トランシーバ200に送信する。すなわち、送信機能部130は、光信号に変換されたデータ(すなわち、クライアント信号)を光トランシーバ200に送信する。このように、デジタル信号処理部120、送信機能部130の動作により、データ通信が開始される。
 図9は、実施の形態1のコネクション確立状態前の受信処理を示すフローチャート(その2)である。
 (ステップS31)動作モード制御部160は、第1の動作モードのボーレートと第2の動作モードのボーレートとが一致するか否かを判定する。第1の動作モードのボーレートと第2の動作モードのボーレートとが一致する場合(ステップS31でYes)、動作モード制御部160は、処理をステップS32に進める。第1の動作モードのボーレートと第2の動作モードのボーレートとが一致しない場合(ステップS31でNo)、動作モード制御部160は、処理をステップS34に進める。
 (ステップS32)動作モード制御部160は、第2の動作モードの変調方式の方が第1の動作モードの変調方式よりも優先順位の低い変調方式であるか否かを判定する。例えば、第1の動作モードの変調方式が動作モードテーブル151のNo.9とする。第2の動作モードの変調方式が動作モードテーブル151のNo.10とする。動作モード制御部160は、第2の動作モードの変調方式の方が第1の動作モードの変調方式よりも優先順位の低い変調方式であると判定する。
 条件を満たす場合(ステップS32でYes)、動作モード制御部160は、処理をステップS33に進める。条件を満たさない場合(ステップS32でNo)、動作モード制御部160は、処理を終了する。
 (ステップS33)動作モード制御部160は、第2の動作モードの変調方式を第1の動作モードの変調方式に変更する。そして、動作モード制御部160は、処理をステップS36に進める。
 (ステップS34)動作モード制御部160は、第2の動作モードのボーレートの方が第1の動作モードのボーレートよりも大きいか否かを判定する。第2の動作モードのボーレートの方が第1の動作モードのボーレートよりも大きい場合(ステップS34でYes)、動作モード制御部160は、処理をステップS35に進める。第2の動作モードのボーレートの方が第1の動作モードのボーレートよりも小さい場合(ステップS34でNo)、動作モード制御部160は、処理を終了する。このように、動作モード制御部160は、第2の動作モードのボーレートの方が第1の動作モードのボーレートよりも小さい場合、第2の動作モードのボーレートを第1の動作モードのボーレートに変更しないように制御する。
 (ステップS35)動作モード制御部160は、第2の動作モードのボーレートを第1の動作モードのボーレートに変更する。また、動作モード制御部160は、伝送路300の特性により、例えば、高多値度のQAM信号等ではエラーが増加する可能性があるため、ボーレートが小さい方に変更する。
 動作モード制御部160は、変更後の動作モードを記憶部150に格納する。また、動作モード制御部160は、変更後の動作モードを動作モード制御部160で保持していてもよい。
 (ステップS36)低速信号生成部170は、変更後の動作モードに基づいて、kHzの周波数の動作モード通知信号を生成する。
 (ステップS37)光変調部133は、動作モード通知信号を含んだ強度変調光信号を生成する。光変調部133は、強度変調光信号を光トランシーバ200に送信する。
 (ステップS38)動作モード制御部160は、電気インタフェース110を介してデータ通信が可能なことをクライアント装置に通知する。デジタル信号処理部120は、電気インタフェース110を介してクライアント信号をクライアント装置から受信する。デジタル信号処理部120は、クライアント信号に対してデジタル信号処理を実行する。実行後、送信機能部130は、電気信号を光信号に変換する。送信機能部130は、光信号を光トランシーバ200に送信する。すなわち、送信機能部130は、光信号に変換されたデータ(すなわち、クライアント信号)を光トランシーバ200に送信する。このように、デジタル信号処理部120、送信機能部130の動作により、データ通信が開始される。
 次に、具体例を示して、コネクション確立状態前の送受信処理を簡単に説明する。
 光トランシーバ100の記憶部150に記憶されている動作モード(以下、光トランシーバ100の動作モード)のボーレートが、光トランシーバ200の記憶部250に記憶されている動作モード(以下、光トランシーバ200の動作モード)のボーレートよりも大きい場合を説明する。なお、光トランシーバ100の動作モードの変調方式と光トランシーバ200の動作モードの変調方式は、同じものとする。
 光トランシーバ100は、光トランシーバ100が起動したときに、動作モード通知信号を含む強度変調光信号を光トランシーバ200に送信する(ステップS11,12)。光トランシーバ200は、光トランシーバ100から強度変調光信号を受信する。光トランシーバ200は、動作モードが一致しないと判定する(ステップS25でNo)。光トランシーバ200は、光トランシーバ200の動作モードを変更しない(ステップS34でNo)。
 光トランシーバ200は、光トランシーバ200が起動したときに、動作モード通知信号を含む強度変調光信号を光トランシーバ100に送信する(ステップS11,12)。光トランシーバ100は、光トランシーバ200から強度変調光信号を受信する。光トランシーバ100は、動作モードが一致しないと判定する(ステップS25でNo)。光トランシーバ100は、光トランシーバ100の動作モードを光トランシーバ200の動作モードに変更する(ステップS35)。これにより、光トランシーバ100と光トランシーバ200は、同じ動作モードになる。すなわち、光トランシーバ100と光トランシーバ200は、コネクション確立状態になる。光トランシーバ100は、変更後の動作モードに基づく動作モード通知信号を含む強度変調光信号を光トランシーバ200に送信する(ステップS36,37)。光トランシーバ100は、クライアント信号が変換された光信号を光トランシーバ200に送信する(ステップS38)。光トランシーバ200は、光トランシーバ100から強度変調光信号を受信する。光トランシーバ200は、光トランシーバ100の動作モードと光トランシーバ200の動作モードとが一致すると判定する(ステップS25でYes)。光トランシーバ200は、光トランシーバ200の動作モードに基づいて、光トランシーバ200が有するクロック切替部、デジタル信号処理部、及び光変調部233を制御する(ステップS26)。光トランシーバ200は、クライアント信号が変換された光信号を光トランシーバ100に送信する(ステップS27)。
 実施の形態1によれば、光トランシーバ100は、ステップS35で、光トランシーバ100の動作モードを光トランシーバ200の動作モードに変更する。これにより、光トランシーバ100と光トランシーバ200は、同じ動作モードになる。すなわち、光トランシーバ100と光トランシーバ200は、同じ動作モードになるまで何度も異なるボーレートを含む動作モードの情報の送受信を行わなくてよい。よって、光トランシーバ100は、短い時間でコネクション確立状態にすることができる。
 次に、光トランシーバ100の動作モードのボーレートが、光トランシーバ200の動作モードのボーレートよりも小さい場合を説明する。なお、光トランシーバ100の動作モードの変調方式と光トランシーバ200の動作モードの変調方式は、同じものとする。
 光トランシーバ200は、光トランシーバ200が起動したときに、動作モード通知信号を含む強度変調光信号を光トランシーバ100に送信する(ステップS11,12)。光トランシーバ100は、光トランシーバ200から強度変調光信号を受信する。光トランシーバ100は、動作モードが一致しないと判定する(ステップS25でNo)。光トランシーバ100は、光トランシーバ100の動作モードを変更しない(ステップS34でNo)。
 光トランシーバ100は、光トランシーバ100が起動したときに、動作モード通知信号を含む強度変調光信号を光トランシーバ200に送信する(ステップS11,12)。
光トランシーバ200は、光トランシーバ100から強度変調光信号を受信する。光トランシーバ200は、動作モードが一致しないと判定する(ステップS25でNo)。光トランシーバ200は、光トランシーバ200の動作モードを光トランシーバ100の動作モードに変更する(ステップS35)。これにより、光トランシーバ100と光トランシーバ200は、同じ動作モードになる。すなわち、光トランシーバ100と光トランシーバ200は、コネクション確立状態になる。光トランシーバ200は、変更後の動作モードに基づく動作モード通知信号を含む強度変調光信号を光トランシーバ100に送信する(ステップS36,37)。光トランシーバ200は、クライアント信号が変換された光信号を光トランシーバ100に送信する(ステップS38)。光トランシーバ100は、光トランシーバ200から強度変調光信号を受信する。光トランシーバ100は、光トランシーバ100の動作モードと光トランシーバ200の動作モードとが一致すると判定する(ステップS25でYes)。光トランシーバ100は、光トランシーバ100の動作モードに基づいて、クロック切替部143、デジタル信号処理部120、及び光変調部133を制御する(ステップS26)。光トランシーバ100は、クライアント信号が変換された光信号を光トランシーバ200に送信する(ステップS27)。
 光トランシーバ100は、上記のステップS34でNoの場合、光トランシーバ100の動作モードを変更しない。実施の形態1では、光トランシーバ100の動作モードを変更せずに、光トランシーバ200の動作モードのみを変更すれば、光トランシーバ100と光トランシーバ200の動作モードが同じになる。よって、実施の形態1は、短い時間でコネクション確立状態にすることができる。
 実施の形態1では、ボーレート及び変調方式を動作モードと定義した。しかし、伝送速度及び変調方式を動作モードと定義してもよいし、伝送速度を動作モードと定義してもよい。伝送速度及び変調方式を動作モードと定義した場合、動作モードテーブル151は、伝送速度、変調方式、及び動作モード通知信号の項目を有する。例えば、ステップS34で、動作モード制御部160は、第2の動作モードの伝送速度の方が第1の動作モードの伝送速度よりも大きいか否かを判定する。ステップS35で、第2の動作モードの伝送速度の方が第1の動作モードの伝送速度よりも大きい場合、動作モード制御部160は、第2の動作モードの伝送速度を第1の動作モードの伝送速度に変更する。また、ステップS26で、動作モード制御部160は、情報F1をクロック切替部143に送信する。情報F1には、伝送速度が含まれる。クロック切替部143は、情報F1に基づく周波数のクロック信号を発振する発振器を発振器144a,144b,144cの中から選択する。クロック切替部143は、発振器144aから選択した発振器に切り替える。クロック切替部143に選択された発振器は、クロック信号をA/D変換部141bに出力する。
実施の形態2.
 次に、実施の形態2を説明する。実施の形態2では、実施の形態1と相違する事項を主に説明し、共通する事項の説明を省略する。
 実施の形態1では、強度変調光信号を受信するため、発振器を発振器144aに切り替える場合を説明した。ところで、A/D変換部141bは、8bitの分解能を有している場合が多い。そのため、A/D変換部141bがアナログ電気信号E1をデジタル電気信号E2に変換したとき、デジタル電気信号E2のデータ量が多くなる。データ量が多いことは、動作モード制御部160の処理時間が長くなる。そこで、実施の形態2では、後述する低速信号受信用のPD(Photodiode)及び低分解能のA/D変換部を用いる方法を説明する。
 図10は、実施の形態2の光トランシーバの構成を示す機能ブロック図である。光トランシーバ100aは、カプラ180と低速信号受信部190を有する。光トランシーバ200は、光トランシーバ100aと同様の機能ブロックを有する。図3に示される構成と同じ、又は対応する図10の構成は、図3に示される符号と同じ符号を付している。実施の形態2は、図1から図6を参照する。
 カプラ180と低速信号受信部190の機能については、後で詳細に説明する。
 図11は、実施の形態2の受信処理を説明する図である。受信機能部140aは、発振器144aが存在しない点が受信機能部140と異なる。また、データ蓄積機能部142aは、デジタル電気信号E2を動作モード制御部160に送信しない。図6に示される構成と同じ、又は対応する図11の構成は、図6に示される符号と同じ符号を付している。
 カプラ180は、強度変調光信号C1を低速信号受信部190に送信する。また、カプラ180は、強度変調光信号C1を受信機能部140aに送信しないように制御してもよい。なお、A/D変換部141bは、第1のA/D変換部とも言う。また、第1のA/D変換部の分解能は、第1の分解能とも言う。
 低速信号受信部190は、PD191、発振器192及びA/D変換部193を有する。PD191は、動作モード通知信号を含む強度変調光信号C1を受信する。PD191は、強度変調光信号C1をアナログ電気信号G1に変換する。
 発振器192は、x1[kHz]のクロック信号をA/D変換部193に出力する。A/D変換部193は、アナログ電気信号G1をデジタル電気信号G2に変換する。A/D変換部193の分解能は、A/D変換部141bの分解能よりも小さい。例えば、A/D変換部193の分解能は、最低1bitでよい。すなわち、A/D変換部193は、1回の変調・復調で最低1bitの情報を伝送できればよい。A/D変換部193は、デジタル電気信号G2を動作モード制御部160に送信する。なお、デジタル電気信号G2は、動作モード通知信号を含む。
 なお、A/D変換部193は、第2のA/D変換部とも言う。また、第2のA/D変換部の分解能は、第2の分解能とも言う。
 実施の形態2では、A/D変換部193の分解能は、A/D変換部141bの分解能よりも低い。そのため、デジタル電気信号G2のデータ量は、A/D変換部141bがアナログ電気信号G1をデジタル電気信号に変換するときよりも減る。データ量が減少することは、動作モード制御部160の処理時間を短くできる。
実施の形態3.
 次に、実施の形態3を説明する。実施の形態3では、実施の形態1と相違する事項を主に説明し、共通する事項の説明を省略する。
 実施の形態1では、光トランシーバ100と光トランシーバ200が同じ動作モードテーブルを記憶している場合を示した。実施の形態3では、2つの光トランシーバのそれぞれが異なる動作モードテーブルを格納している場合を説明する。実施の形態3は、図1~3,5,6を参照する。
 図12は、実施の形態3の送信処理を説明する図である。光トランシーバ200aは、動作モード制御部260a及び低速信号生成部270aを有する。後述する光トランシーバ100bは、光トランシーバ200aと同様の機能ブロックを有する。図5に示される構成と同じ、又は対応する図12の構成は、図5に示される符号と同じ符号を付している。動作モード制御部260a及び低速信号生成部270aの機能については、後で詳細に説明する。
 図13は、実施の形態3の受信処理を説明する図である。光トランシーバ100bは、動作モード制御部160aを有する。光トランシーバ200aは、光トランシーバ100bと同様の機能ブロックを有する。図6に示される構成と同じ、又は対応する図13の構成は、図6に示される符号と同じ符号を付している。動作モード制御部160aの機能については、後で詳細に説明する。
 図14は、実施の形態3の異なる動作モードテーブルを格納している場合を説明する図である。
 光トランシーバ100bは、動作モードテーブル152を記憶する。動作モードテーブル152は、記憶部150に格納されている。例えば、動作モードテーブル152には、No.m(mは正の整数)に対応するボーレート、変調方式、及び動作モード通知信号が登録されている。
 光トランシーバ200aは、動作モードテーブル251を記憶する。動作モードテーブル251は、記憶部250に格納されている。動作モードテーブル152は、動作モードテーブル251よりも新しい版数である。
 なお、動作モードテーブルに新たに追加される動作モードは、動作モードテーブルの最下行に登録される。
 実施の形態3では、2つの光トランシーバのそれぞれが異なる動作モードテーブルを格納している場合、新しい版数の動作モードテーブルを古い版数の動作モードテーブルに更新する。図14の例では、動作モード制御部160aは、動作モードテーブル152のNo.5以上の動作モードの情報を削除する。動作モードテーブル153は、No.5以上の動作モードの情報が削除された状態を示す。これにより、光トランシーバ100bと光トランシーバ200aが記憶する動作モードテーブルは、同じになる。
 図15は、実施の形態3のコネクション確立状態前の送信処理を示すフローチャートである。図15では、光トランシーバ200aが実行する送信処理について説明するが、光トランシーバ100bが実行する送信処理も同様である。図15は、光トランシーバ200aが起動したとき、処理が開始する。また、図12を参照しながら図15の処理を説明する。
 (ステップS41)動作モード制御部260aは、記憶部250に格納されている動作モードテーブルの版数と動作モードテーブルに関する情報とを取得する。動作モードテーブルに関する情報とは、動作モードテーブルに動作モードが登録されている数(すなわち、No.の項目に登録されている数)である。
 動作モード制御部260aは、記憶部250から動作モードを取得する。動作モード制御部260aは、動作モードテーブルの版数、動作モードテーブルに関する情報、及び動作モードを含む情報B11を低速信号生成部270aに送信する。
 (ステップS42)低速信号生成部270aは、動作モード制御部260aから情報B11を受信する。低速信号生成部270aは、動作モードに基づく動作モード通知信号、動作モードテーブルに関する情報、及び動作モードテーブルの版数を含むkHzの周波数の電気信号B12を生成する。
 (ステップS43)光変調部233は、電気信号B12を含んだ強度変調光信号C2を生成する。光変調部233は、強度変調光信号C2を光トランシーバ100bに送信する。
 このように、光トランシーバ100bと光トランシーバ200aは、互いに、動作モードテーブルの版数、動作モードテーブルに関する情報、及び動作モード通知信号を含んだ強度変調光信号C2を送信する。
 図16は、実施の形態3のコネクション確立状態前の受信処理を示すフローチャート(その1)である。図16,17では、光トランシーバ100bが実行する受信処理について説明するが、光トランシーバ200aが実行する受信処理も同様である。図16は、受信部141aが強度変調光信号C2を受信したとき、処理が開始する。また、図13を参照しながら図16の処理を説明する。
 (ステップS51)受信部141aは、強度変調光信号C2をアナログ電気信号E11に変換する。
 (ステップS52)A/D変換部141bは、アナログ電気信号E11をデジタル電気信号E12に変換する。
 (ステップS53)データ蓄積機能部142は、デジタル電気信号E12を保持する。データ蓄積機能部142は、デジタル電気信号E12を動作モード制御部160aに送信する。
 (ステップS54)動作モード制御部160aは、デジタル電気信号E12から記憶部250に格納されている動作モードテーブルの版数を検出する。
 (ステップS55)動作モード制御部160aは、記憶部150に格納されている動作モードテーブルの版数を検出する。動作モード制御部160aは、当該版数の方がステップS54で検出した版数よりも新しいか否かを判定する。条件を満たす場合(ステップS55でYes)、動作モード制御部160aは、処理をステップS56に進める。条件を満たさない場合(ステップS55でNo)、動作モード制御部160aは、処理をステップS61に進める。
 (ステップS56)動作モード制御部160aは、記憶部150に格納されている動作モードテーブルをステップS54で検出した版数の動作モードテーブルに更新する。すなわち、動作モード制御部160aは、記憶部150に格納されている動作モードテーブルを古い版数の動作モードテーブルに更新する。詳細には、動作モード制御部160aは、デジタル電気信号E12から動作モードテーブルに関する情報を検出する。動作モード制御部160aは、動作モードテーブルに関する情報から、記憶部250に格納されている動作モードテーブルに動作モードが登録されている数(すなわち、No.の項目に登録されている数)を特定する。動作モード制御部160aは、記憶部250に記憶されている動作モードテーブルに動作モードが登録されている数に基づいて、記憶部150に格納されている動作モードテーブルを更新する。これにより、光トランシーバ100bと光トランシーバ200aの動作モードテーブルは、同じになる。
 また、動作モード制御部160aは、記憶部250に格納されている動作モードテーブルに、記憶部150に格納されている動作モードテーブルの動作モードが含まれている場合、記憶部150に格納されている動作モードテーブルの動作モードの設定値を維持して、記憶部150に格納されている動作モードテーブルを更新する。動作モード制御部160aは、記憶部250に格納されている動作モードテーブルに、記憶部150に格納されている動作モードテーブルの動作モードが含まれていない場合、記憶部150に格納されている動作モードテーブルを記憶部250に格納されている動作モードテーブルに更新する。そして、動作モード制御部160aは、更新後の動作モードテーブルの中から新たに動作モードを選択する。
 (ステップS57)動作モード制御部160aは、記憶部150に格納されている動作モードテーブルの版数と動作モードテーブルに関する情報とを取得する。
 動作モード制御部160aは、記憶部150から動作モードを取得する。動作モード制御部160aは、動作モードテーブルの版数、動作モードテーブルに関する情報、及び動作モードを含む情報を低速信号生成部170に送信する。
 (ステップS58)低速信号生成部170は、動作モードに基づく動作モード通知信号、動作モードテーブルに関する情報、及び動作モードテーブルの版数を含むkHzの周波数の電気信号を生成する。
 (ステップS59)光変調部133は、電気信号を含んだ強度変調光信号を生成する。光変調部133は、強度変調光信号を光トランシーバ200a送信する。そして、光変調部133は、処理をステップS62に進める。
 図17は、実施の形態3のコネクション確立状態前の受信処理を示すフローチャート(その2)である。
 (ステップS61)動作モード制御部160aは、デジタル電気信号E12から動作モード通知信号を検出する。動作モード制御部160aは、動作モード通知信号に基づく第1の動作モードが記憶部150に格納されている動作モードテーブルから検出可能であるか否かを判定する。検出可能な場合(ステップS61でYes)、動作モード制御部160aは、処理をステップS62に進める。検出できない場合(ステップS61でNo)、動作モード制御部160aは、処理を終了する。
 (ステップS62)動作モード制御部160aは、第1の動作モードと第2の動作モードとが一致するか否かを判定する。第1の動作モードと第2の動作モードとが一致する場合(ステップS62でYes)、動作モード制御部160aは、処理をステップS63に進める。第1の動作モードと第2の動作モードとが一致しない場合(ステップS62でNo)、動作モード制御部160aは、処理をステップS65に進める。
 (ステップS63)動作モード制御部160aは、情報F1をクロック切替部143に送信する。クロック切替部143は、情報F1に基づく周波数のクロック信号を発振する発振器を発振器144a,144b,144cの中から選択する。クロック切替部143は、発振器144aから選択した発振器に切り替える。クロック切替部143に選択された発振器は、クロック信号をA/D変換部141bに出力する。
 動作モード制御部160aは、情報F2をデジタル信号処理部120に送信する。デジタル信号処理部120は、情報F2に基づいて、駆動モードを変更する。
 動作モード制御部160aは、光変調部133に情報F2を送信する。光変調部133は、情報F2に基づいて、変調方式を変更する。
 (ステップS64)動作モード制御部160aは、電気インタフェース110を介してデータ通信が可能なことをクライアント装置に通知する。デジタル信号処理部120は、電気インタフェース110を介してクライアント信号をクライアント装置から受信する。デジタル信号処理部120は、クライアント信号に対してデジタル信号処理を実行する。実行後、送信機能部130は、電気信号を光信号に変換する。送信機能部130は、光信号を光トランシーバ200に送信する。すなわち、送信機能部130は、光信号に変換されたデータ(すなわち、クライアント信号)を光トランシーバ200に送信する。このように、デジタル信号処理部120、送信機能部130の動作により、データ通信が開始される。
 (ステップS65)動作モード制御部160aは、第1の動作モードのボーレートと第2の動作モードのボーレートとが一致するか否かを判定する。第1の動作モードのボーレートと第2の動作モードのボーレートとが一致する場合(ステップS65でYes)、動作モード制御部160aは、処理をステップS66に進める。第1の動作モードのボーレートと第2の動作モードのボーレートとが一致しない場合(ステップS65でNo)、動作モード制御部160aは、処理をステップS68に進める。
 (ステップS66)動作モード制御部160aは、第2の動作モードの変調方式の方が第1の動作モードの変調方式よりも優先順位の低い変調方式であるか否かを判定する。条件を満たす場合(ステップS66でYes)、動作モード制御部160aは、処理をステップS67に進める。条件を満たさない場合(ステップS66でNo)、動作モード制御部160aは、処理を終了する。
 (ステップS67)動作モード制御部160aは、第2の動作モードの変調方式を第1の動作モードの変調方式に変更する。そして、動作モード制御部160aは、処理をステップS70に進める。
 (ステップS68)動作モード制御部160aは、第2の動作モードのボーレートの方が第1の動作モードのボーレートよりも大きいか否かを判定する。第2の動作モードのボーレートの方が第1の動作モードのボーレートよりも大きい場合(ステップS68でYes)、動作モード制御部160aは、処理をステップS69に進める。第2の動作モードのボーレートの方が第1の動作モードのボーレートよりも小さい場合(ステップS68でNo)、動作モード制御部160aは、処理を終了する。
 (ステップS69)動作モード制御部160aは、第2の動作モードのボーレートを第1の動作モードのボーレートに変更する。
 動作モード制御部160aは、変更後の動作モードを記憶部150に格納する。また、動作モード制御部160aは、変更後の動作モードを動作モード制御部160aで保持していてもよい。
 (ステップS70)低速信号生成部170は、変更後の動作モードに基づいて、kHzの周波数の動作モード通知信号を生成する。
 (ステップS71)光変調部133は、動作モード通知信号を含んだ強度変調光信号を生成する。光変調部133は、強度変調光信号を光トランシーバ200aに送信する。
 (ステップS72)動作モード制御部160aは、電気インタフェース110を介してデータ通信が可能なことをクライアント装置に通知する。デジタル信号処理部120は、電気インタフェース110を介してクライアント信号をクライアント装置から受信する。デジタル信号処理部120は、クライアント信号に対してデジタル信号処理を実行する。実行後、送信機能部130は、電気信号を光信号に変換する。送信機能部130は、光信号を光トランシーバ200に送信する。すなわち、送信機能部130は、光信号に変換されたデータ(すなわち、クライアント信号)を光トランシーバ200に送信する。このように、デジタル信号処理部120、送信機能部130の動作により、データ通信が開始される。
 実施の形態3によれば、光トランシーバ100bと光トランシーバ200aは、同じ動作モードテーブルの版数になった後、動作モードを同期させることで、コネクション確立状態になる。
 以上に説明した各実施の形態における特徴は、互いに適宜組み合わせることができる。
 100,100a,100b 光トランシーバ(光通信装置)、 110 電気インタフェース、 120 デジタル信号処理部、 130 送信機能部、 133 光変調部、 140,140a 受信機能部、 141 変換部、 141a 受信部、 141b A/D変換部、 142,142a データ蓄積機能部、 143 クロック切替部、 144a,144b,144c 発振器、 150 記憶部、 160,160a 動作モード制御部、 170 低速信号生成部、 180 カプラ、 190 低速信号受信部、 191 PD、 192 発振器、 193 A/D変換部、 200,200a,200b 光トランシーバ、 220 デジタル信号処理部、 230 送信機能部、 231 D/A変換部、 232 増幅器、 233 光変調部、 250 記憶部、 260,260a 動作モード制御部、 270,270a 低速信号生成部、 300 伝送路

Claims (11)

  1.  第1の光通信装置と通信する光通信装置であって、
     前記第1の光通信装置から送信された光信号を受信し、クロック信号に基づいて前記光信号をデジタル電気信号に変換する変換部と、
     前記クロック信号を発振する発振器を切り替えるクロック切替部と、
     前記デジタル電気信号から前記第1の光通信装置の動作モードを検出し、前記クロック信号を発振する発振器から、前記第1の光通信装置の動作モードに基づく周波数のクロック信号を発振する発振器に切り替えるように前記クロック切替部に指示する動作モード制御部と、
     を有する光通信装置。
  2.  予め設定された動作モードを記憶する記憶部をさらに有し、
     前記動作モード制御部は、前記記憶部に格納されている動作モードが示すボーレートが前記第1の光通信装置の動作モードが示すボーレートよりも大きいとき、前記記憶部に格納されている動作モードが示すボーレートを前記第1の光通信装置の動作モードが示すボーレートに変更し、前記クロック信号を発振する発振器から、変更後の動作モードが示すボーレートに基づく周波数のクロック信号を発振する発振器に切り替えるように前記クロック切替部に指示する、
     請求項1に記載の光通信装置。
  3.  前記動作モード制御部は、前記記憶部に格納されている動作モードが示すボーレートが前記第1の光通信装置の動作モードが示すボーレートよりも小さいとき、前記記憶部に格納されている動作モードが示すボーレートを前記第1の光通信装置の動作モードが示すボーレートに変更しないように制御する、
     請求項2に記載の光通信装置。
  4.  デジタル信号処理を実行するデジタル信号処理部と、
     前記光信号を変調する光変調部と、
     をさらに有し、
     前記動作モード制御部は、前記記憶部に格納されている動作モードが示す変調方式の優先順位が前記第1の光通信装置の動作モードが示す変調方式の優先順位よりも低いとき、前記記憶部に格納されている動作モードが示す変調方式を前記第1の光通信装置の動作モードが示す変調方式に変更し、変更後の変調方式を前記デジタル信号処理部と前記光変調部に送信し、
     前記デジタル信号処理部は、前記変更後の変調方式に基づいて駆動モードを変更し、
     前記光変調部は、前記変更後の変調方式に基づいて変調方式を変更する、
     請求項2又は3に記載の光通信装置。
  5.  前記記憶部が格納している動作モードを示す情報を前記第1の光通信装置に送信する送信機能部をさらに有する、
     請求項2から4のいずれか1項に記載の光通信装置。
  6.  第1の数値のkHzの周波数を発振する第1の発振器をさらに有し、
     前記クロック切替部は、前記変換部が前記光信号を前記デジタル電気信号に変換させるとき、前記第1の発振器に切り替え、
     前記第1の発振器は、前記第1の数値のkHzの周波数のクロック信号を前記変換部に発振する、
     請求項1から5のいずれか1項に記載の光通信装置。
  7.  前記変換部は、前記光信号が変換されたアナログ電気信号を前記デジタル電気信号に変換することが可能な第1のA/D変換部を有し、
     前記第1のA/D変換部は、第1の分解能を有し、
     前記第1の分解能よりも低い第2の分解能を有する第2のA/D変換部と、
     前記光信号をアナログ電気信号に変換するフォトダイオードと、
     前記変換部よりも先に前記光信号を受信するカプラと、
     をさらに有し、
     前記カプラは、前記光信号を受信したとき、前記光信号を前記フォトダイオードに送信し、
     前記第2のA/D変換部は、前記光信号が変換されたアナログ電気信号を前記フォトダイオードから受信し、受信したアナログ電気信号をデジタル電気信号に変換し、変換したデジタル電気信号を前記動作モード制御部に送信する、
     請求項1から6のいずれか1項に記載の光通信装置。
  8.  複数の動作モードを示す動作モードテーブルと動作モードテーブルの版数とを記憶する記憶部をさらに有し、
     前記動作モード制御部は、前記デジタル電気信号から前記第1の光通信装置が格納している動作モードテーブルに関する情報と前記第1の光通信装置が格納している動作モードテーブルの版数とを検出し、前記記憶部が格納している動作モードテーブルの版数が前記第1の光通信装置が格納している動作モードテーブルの版数よりも新しい場合、前記第1の光通信装置が格納している動作モードテーブルに関する情報に基づいて、前記記憶部が格納している動作モードテーブルを更新する、
     請求項1に記載の光通信装置。
  9.  前記記憶部が格納している動作モードテーブルの版数と動作モードテーブルに関する情報を前記第1の光通信装置に送信する送信機能部をさらに有する、
     請求項8に記載の光通信装置。
  10.  第1の光通信装置と通信する光通信装置が、
     前記第1の光通信装置から送信された光信号を受信し、
     クロック信号に基づいて前記光信号をデジタル電気信号に変換し、
     前記デジタル電気信号から前記第1の光通信装置の動作モードを検出し、
     前記クロック信号を発振する発振器から、前記第1の光通信装置の動作モードに基づく周波数のクロック信号を発振する発振器に切り替える、
     制御方法。
  11.  第1の光通信装置と通信する光通信装置に、
     前記第1の光通信装置から送信された光信号を受信し、
     クロック信号に基づいて前記光信号をデジタル電気信号に変換し、
     前記デジタル電気信号から前記第1の光通信装置の動作モードを検出し、
     前記クロック信号を発振する発振器から、前記第1の光通信装置の動作モードに基づく周波数のクロック信号を発振する発振器に切り替える、
     処理を実行させる制御プログラム。
PCT/JP2017/044553 2017-12-12 2017-12-12 光通信装置、制御方法、及び制御プログラム WO2019116446A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/758,470 US11233576B2 (en) 2017-12-12 2017-12-12 Optical communication device and control method
JP2019559446A JP6865856B2 (ja) 2017-12-12 2017-12-12 光通信装置、制御方法、及び制御プログラム
EP17934526.9A EP3726749B1 (en) 2017-12-12 2017-12-12 Optical communication device, control method, and control program
CN201780097443.9A CN111434055B (zh) 2017-12-12 2017-12-12 光通信装置、控制方法和记录介质
PCT/JP2017/044553 WO2019116446A1 (ja) 2017-12-12 2017-12-12 光通信装置、制御方法、及び制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044553 WO2019116446A1 (ja) 2017-12-12 2017-12-12 光通信装置、制御方法、及び制御プログラム

Publications (1)

Publication Number Publication Date
WO2019116446A1 true WO2019116446A1 (ja) 2019-06-20

Family

ID=66820067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044553 WO2019116446A1 (ja) 2017-12-12 2017-12-12 光通信装置、制御方法、及び制御プログラム

Country Status (5)

Country Link
US (1) US11233576B2 (ja)
EP (1) EP3726749B1 (ja)
JP (1) JP6865856B2 (ja)
CN (1) CN111434055B (ja)
WO (1) WO2019116446A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434055B (zh) * 2017-12-12 2023-02-28 三菱电机株式会社 光通信装置、控制方法和记录介质
US20220021463A1 (en) * 2020-07-15 2022-01-20 Xuefeng Tang Device and method for real-time calibration and compensation for transmitter power imbalance in a coherent transceiver
CN112601142B (zh) * 2021-03-01 2021-06-08 深圳市迅特通信技术股份有限公司 一种光模块接收端中oam信号的处理电路及光模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229298A (ja) 2004-02-12 2005-08-25 Nippon Telegr & Teleph Corp <Ntt> 光通信方法および光トランシーバ
JP2011015013A (ja) * 2009-06-30 2011-01-20 Fujitsu Ltd 信号処理装置、光受信装置、検出装置および波形歪補償方法
JP2013165407A (ja) * 2012-02-10 2013-08-22 Fujitsu Ltd 光パス確立方法及び光ノード装置
JP2015188165A (ja) * 2014-03-27 2015-10-29 日本電信電話株式会社 光送受信システムおよび光送受信方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2526617A1 (fr) * 1982-05-10 1983-11-10 Sintra Alcatel Sa Systeme de transmission synchrone de donnees a l'aide d'une porteuse modulee d'amplitude d'enveloppe constante
US5490209A (en) * 1994-02-09 1996-02-06 Harris Corporation Autobaud rate detection mechanism
KR970002949B1 (ko) * 1994-05-25 1997-03-13 삼성전자 주식회사 디지탈 통신시스템의 클럭발생방법 및 그 회로
KR19990010391A (ko) * 1997-07-16 1999-02-18 윤종용 휴대폰과 외부장치간의 데이터 전송률을 중재하는 장치 및 방법
US6081229A (en) * 1998-03-17 2000-06-27 Qualcomm Incorporated System and method for determining the position of a wireless CDMA transceiver
US6272452B1 (en) * 1998-04-02 2001-08-07 Ati Technologies, Inc. Universal asynchronous receiver transmitter (UART) emulation stage for modem communication
JP3825319B2 (ja) * 1999-08-20 2006-09-27 富士通株式会社 光通信システム、光受信器および波長変換器
KR100342567B1 (ko) * 1999-12-30 2002-07-04 윤종용 트랜스패런시를 확보한 광 교차-접속 장치
US7336729B2 (en) * 2001-03-01 2008-02-26 Broadcom Corporation Digital signal processing based de-serializer
US7664401B2 (en) * 2002-06-25 2010-02-16 Finisar Corporation Apparatus, system and methods for modifying operating characteristics of optoelectronic devices
US8009985B1 (en) 2003-05-13 2011-08-30 Ciena Corporation Traffic driven variable bandwidth optical transmission
US7751726B1 (en) * 2003-06-24 2010-07-06 Cisco Technology, Inc. Automatic selection of the performance monitoring based on client type
US8712243B2 (en) * 2004-12-17 2014-04-29 Alcatel Lucent Methods and apparatus for achieving multiple bit rates in passive optical networks
US7680232B2 (en) * 2005-01-21 2010-03-16 Altera Corporation Method and apparatus for multi-mode clock data recovery
US7761011B2 (en) * 2005-02-23 2010-07-20 Kg Technology Associates, Inc. Optical fiber communication link
JP4114687B2 (ja) * 2005-09-01 2008-07-09 沖電気工業株式会社 マルチレートクロック信号抽出方法及びマルチレートクロック信号抽出装置
US8462889B2 (en) * 2005-10-04 2013-06-11 Hypres, Inc. Oversampling digital receiver for radio-frequency signals
JP4289507B2 (ja) * 2006-11-08 2009-07-01 日本電波工業株式会社 シンセサイザモジュール
JP4973299B2 (ja) * 2007-01-19 2012-07-11 ソニー株式会社 光通信装置、光通信方法
US8175460B2 (en) * 2007-08-13 2012-05-08 Finisar Corporation Asymmetric scheduling of multiple analog inputs using a single A/D converter for fiber-optic transceivers
JP2009077009A (ja) * 2007-09-19 2009-04-09 Seiko Epson Corp 受信回路及び電子機器
US7921322B2 (en) * 2007-10-17 2011-04-05 Spansion Llc Optimize personalization conditions for electronic device transmission rates with increased transmitting frequency
JP5136236B2 (ja) * 2008-06-19 2013-02-06 富士通株式会社 光受信装置
JP5359179B2 (ja) * 2008-10-17 2013-12-04 富士通株式会社 光受信機及び光受信方法
US8098111B2 (en) * 2009-10-16 2012-01-17 Broadcom Corporation Reduced phase noise multi-band VCO
WO2011065163A1 (ja) * 2009-11-24 2011-06-03 日本電気株式会社 光受信装置および光受信制御方法
US8190944B2 (en) * 2009-12-11 2012-05-29 Ati Technologies Ulc Device configured to switch a clock speed for multiple links running at different clock speeds and method for switching the clock speed
ES2652640T3 (es) * 2010-02-23 2018-02-05 Panasonic Intellectual Property Management Co., Ltd. Transmisor/Receptor inalámbrico, dispositivo de comunicación inalámbrica y sistema de comunicación inalámbrica
JP5340475B2 (ja) * 2010-03-03 2013-11-13 三菱電機株式会社 通信制御装置および通信制御方法
JP5560867B2 (ja) * 2010-04-12 2014-07-30 富士通株式会社 データ受信回路
EP2469739A1 (en) * 2010-12-22 2012-06-27 ADVA AG Optical Networking A digital modulation method and device, especially an optical digital modulation method and device
US9337934B1 (en) * 2012-11-29 2016-05-10 Clariphy Communications, Inc. Coherent transceiver architecture
US20140321471A1 (en) * 2013-04-26 2014-10-30 Mediatek Inc. Switching fabric of network device that uses multiple store units and multiple fetch units operated at reduced clock speeds and related method thereof
US9584634B2 (en) * 2014-10-31 2017-02-28 Atmel Corporation Adaptive acknowledgment transmissions
TWI548194B (zh) * 2015-01-22 2016-09-01 Richtek Technology Corp A control circuit and a method for programming the output voltage of the power converter
US20160377711A1 (en) * 2015-06-26 2016-12-29 Delphi Technologies, Inc. Radar signal processing for automated vehicles
US9608647B1 (en) * 2015-09-25 2017-03-28 Maxlinear Asia Singapore Pte Ltd. System and method for voltage-controlled oscillator calibration
US10348437B2 (en) * 2015-11-18 2019-07-09 Luxtera, Inc. Method and system for cassette based wavelength division multiplexing
US9941957B2 (en) * 2016-01-07 2018-04-10 Luxtera, Inc. Method and system for connectionless integrated optical receiver and transmitter test
WO2017208803A1 (ja) * 2016-06-02 2017-12-07 三菱電機株式会社 光変調装置および光変調装置の制御方法
WO2018010816A1 (en) * 2016-07-15 2018-01-18 Huawei Technologies Co., Ltd. High capacity optical data transmission using intensity-modulation and direct-detection
US10205534B2 (en) * 2017-01-10 2019-02-12 Huawei Technologies Co., Ltd. Systems and methods for network signaling
US10917175B2 (en) * 2017-11-21 2021-02-09 Cable Television Laboratories, Inc. Systems and methods for full duplex coherent optics
CN111434055B (zh) * 2017-12-12 2023-02-28 三菱电机株式会社 光通信装置、控制方法和记录介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229298A (ja) 2004-02-12 2005-08-25 Nippon Telegr & Teleph Corp <Ntt> 光通信方法および光トランシーバ
JP2011015013A (ja) * 2009-06-30 2011-01-20 Fujitsu Ltd 信号処理装置、光受信装置、検出装置および波形歪補償方法
JP2013165407A (ja) * 2012-02-10 2013-08-22 Fujitsu Ltd 光パス確立方法及び光ノード装置
JP2015188165A (ja) * 2014-03-27 2015-10-29 日本電信電話株式会社 光送受信システムおよび光送受信方法

Also Published As

Publication number Publication date
CN111434055B (zh) 2023-02-28
US11233576B2 (en) 2022-01-25
US20200252135A1 (en) 2020-08-06
EP3726749B1 (en) 2023-10-25
JP6865856B2 (ja) 2021-04-28
EP3726749A1 (en) 2020-10-21
EP3726749A4 (en) 2020-12-30
JPWO2019116446A1 (ja) 2020-07-02
CN111434055A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
JP6354553B2 (ja) バイアス制御回路およびそれを含む光送信器
JP5845872B2 (ja) 光送信器
US9014572B2 (en) Optical transmitter, control method for the same, and optical transmission system
WO2019116446A1 (ja) 光通信装置、制御方法、及び制御プログラム
JP6620409B2 (ja) 光送信器、光伝送システム、及び光通信制御方法
JP6217152B2 (ja) 光送信器及び光送信器の制御方法
CN112887050B (zh) 插拔式光学模块、通信系统和插拔式光学模块的通信方法
JP6417996B2 (ja) 光送受信器および光送受信器の制御方法
JP5891768B2 (ja) 光変調装置及び光変調方法
JP2012257164A (ja) 半導体光変調器の駆動制御装置
JP2017188829A (ja) 光伝送装置、光変調器及びバイアス制御方法
JP5959340B2 (ja) 同期信号配信装置
US9960841B2 (en) Optical-transceiver control circuit, optical network system, and output control method of optical-transceiver
JP2015222944A (ja) 光変調器を較正するシステム及び方法
Xiao et al. High-speed IQ modulator based on injection-locked VCSEL array
CN115698803A (zh) 用于互连收发器的光调制器控制系统
JP2009232060A (ja) 光送信装置
JP2017005605A (ja) 光受信装置および光パス切替制御方法
JP6323193B2 (ja) 光送信装置および故障判断方法
JP5789119B2 (ja) 光出力モジュール
JP6334222B2 (ja) 送信装置、受信装置、光通信システム、送信方法および受信方法
CN116961766A (zh) 一种发射电路、光模块和通信设备
WO2017130882A1 (ja) 光送信機およびその制御方法
JP2019169892A (ja) 光通信装置、及びその制御方法
JP2018078377A (ja) 送信装置、受信装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559446

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017934526

Country of ref document: EP

Effective date: 20200713