WO2017130882A1 - 光送信機およびその制御方法 - Google Patents

光送信機およびその制御方法 Download PDF

Info

Publication number
WO2017130882A1
WO2017130882A1 PCT/JP2017/002057 JP2017002057W WO2017130882A1 WO 2017130882 A1 WO2017130882 A1 WO 2017130882A1 JP 2017002057 W JP2017002057 W JP 2017002057W WO 2017130882 A1 WO2017130882 A1 WO 2017130882A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
control unit
bias
optical transmitter
signal
Prior art date
Application number
PCT/JP2017/002057
Other languages
English (en)
French (fr)
Inventor
裕太 五江渕
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2017130882A1 publication Critical patent/WO2017130882A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/075Monitoring an optical transmission system using a supervisory signal using a pilot tone

Definitions

  • Patent Document 1 An example of an optical transmitter capable of realizing a plurality of multilevel modulation schemes corresponding to such an adaptive modulation scheme is described in Patent Document 1.
  • the related optical transmitter described in Patent Document 1 modulates light from a light source using a data series that is an electrical signal, and generates an optical transmission signal.
  • the related optical transmitter includes a mapping unit, a D / A (Digital / Analog) converter, an optical modulator, and a bias control unit.
  • An object of the present invention is to solve the above-described problem that an optical transmitter corresponding to an adaptive modulation scheme changes the characteristics of the optical transmitter when the modulation scheme is changed, and an optimum operation cannot be obtained.
  • An object is to provide an optical transmitter and a control method thereof.
  • Each setting value at the time of performing is stored for each of the plurality of modulation schemes, and the system control unit, based on the setting value corresponding to one modulation scheme among the plurality of modulation schemes, the light source, the bias control unit, the data Generator And controls the driver control unit, respectively.
  • FIG. 1 is a block diagram showing a configuration of an optical transmitter 100 according to the first embodiment of the present invention.
  • the light source 110 outputs a continuous wave laser beam.
  • the light modulation unit 120 modulates the laser light based on the drive signal and outputs an optical signal.
  • the bias controller 130 controls the DC bias of the light modulator 120.
  • the data generation unit 140 generates a data signal to be transmitted.
  • the driver unit 150 generates a drive signal from the data signal and supplies the drive signal to the light modulation unit 120. Then, the driver control unit 160 controls the operation of the driver unit 150.
  • the system control unit 170 includes a set value storage unit 171.
  • the setting value storage unit 171 stores respective setting values when the light source 110, the bias control unit 130, the data generation unit 140, and the driver control unit 160 perform the optimum operation in any one of a plurality of modulation methods. Stored for each of a plurality of modulation methods. Then, the system control unit 170 controls the light source 110, the bias control unit 130, the data generation unit 140, and the driver control unit 160 based on a setting value corresponding to one modulation method among a plurality of modulation methods.
  • the setting value storage unit 171 stores the setting value when the optimum operation is performed in each modulation method for each of the plurality of modulation methods, and the system control unit 170 performs predetermined modulation. Each component is controlled based on a setting value corresponding to the method. Therefore, according to the optical transmitter 100 of the present embodiment, it is possible to obtain an optical transmitter that operates under optimum conditions even when the modulation method is changed in the optical transmitter that supports the adaptive modulation method. .
  • the set value of the light source 110 can be set to a value at which a light output is obtained when the optimum operation is performed with the one modulation method described above.
  • the setting value of the data generation unit 140 can be a value that designates the above-described one modulation method and filter processing.
  • the set value of the driver control unit 160 can be a value that can obtain the waveform of the drive signal when performing the optimum operation with the one modulation method described above.
  • the bias controller 130 also superimposes a pilot signal on the DC bias of the optical modulator 120, extracts a pilot signal component that is a signal component of the pilot signal from the optical signal, and controls the DC bias based on the pilot signal component. It can be set as the structure to do. At this time, the set value of the bias control unit 130 can be a value from which the amplitude of the pilot signal and the pilot signal component when the optimum operation is performed with the one modulation method described above can be obtained.
  • each of the above-described light source, bias control unit, data generation unit, and driver control unit when performing the optimum operation with any one of a plurality of modulation methods. are stored for each of a plurality of modulation schemes. And based on the setting value corresponding to one modulation system among a plurality of modulation systems, the above-mentioned light source, bias control unit, data generation unit, and driver control unit are controlled.
  • the light source and bias control unit described above can be controlled respectively.
  • FIG. 2 is a block diagram showing a configuration of an optical transmitter 200 according to the second embodiment of the present invention.
  • the same components as those of the optical transmitter 100 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof may be omitted.
  • the system control unit 170 includes a set value storage unit 171.
  • the system control unit 170 can be configured using a digital signal processor (Digital Signal Processor: DSP) or the like.
  • DSP Digital Signal Processor
  • the first bias controller 231 supplies the optical modulator 220 with a DC bias on which the pilot signal is superimposed.
  • the second bias control unit 232 extracts a pilot signal component that is a signal component of the pilot signal from the monitor signal output from the photodiode 280. Then, the first bias control unit 231 controls the DC bias based on this pilot signal component.
  • the second bias control unit 232 can be configured to include a pilot signal demodulation circuit.
  • FIG. 3 shows the optical response characteristics of the optical modulator constituting the optical modulator 220 together with the drive signal and the pilot signal.
  • the optical modulator is used for multi-level modulation such as quadrature phase shift keying (QPSK).
  • QPSK quadrature phase shift keying
  • the vertical axis of the optical response characteristic in FIG. 3 is the optical output intensity
  • the horizontal axis is the applied voltage (bias voltage) of the optical modulator.
  • the light output intensity also changes as the applied voltage changes.
  • a point in the figure indicates a point (PEAK point) at which the light output intensity is maximum.
  • Point B is a point (QUADRATURE point) at which the light output intensity is halved from the maximum value.
  • a point C indicates a point (NULL point) at which the light output intensity is minimized.
  • the first bias controller 231 superimposes a low-frequency pilot signal S on the bias voltage in order to control the bias voltage of the optical modulator.
  • the second bias control unit 232 extracts a pilot signal component by demodulating the monitor signal output from the photodiode 280 included in the light modulation unit 220.
  • the system control unit 170 feeds back the pilot signal component to the first bias control unit 231.
  • Such bias control of the optical modulator is called automatic bias control (ABC).
  • the amplitude and phase of the pilot signal change according to the amplitude of the data signal. That is, when the voltage (half wavelength voltage) for changing the phase of the optical modulator by ⁇ is V ⁇ , when the amplitude of the data signal is 2 ⁇ V ⁇ (S1 in the figure), the demodulated pilot signal (dither signal) The amplitude (D1 in the figure) is minimized and the frequency is doubled. When the amplitude of the data signal is between 2 ⁇ V ⁇ and V ⁇ (S2 in the figure), the demodulated pilot signal has an amplitude of D2 in the figure.
  • the amplitude of the demodulated pilot signal is as indicated by D3 and D4 in the figure.
  • the amplitude of the demodulated pilot signal is equivalent to D2 in the figure.
  • the phase of the amplitude of the demodulated pilot signal changes before and after the amplitude of the data signal is around V ⁇ .
  • the optical transmitter 200 according to the present embodiment is configured to operate with a set value that provides an optimum waveform in each modulation scheme. Therefore, the optical transmitter 200 according to the present embodiment can operate under optimum conditions even when the modulation scheme is changed.
  • the system control unit 170 sets the optimum setting value in the modulation scheme to be set in each component unit. That is, the system control unit 170 sets the optimum setting values in the modulation scheme to be set in the light source 110, the first bias control unit 231, the second bias control unit 232, the data generation unit 140, and the driver control unit 160. To do.
  • the system control unit 170 records the setting value (parameter) after optimization at the first activation in each case of a plurality of modulation schemes in the setting value storage unit 171.
  • the setting values recorded in the setting value storage unit 171 will be described below.
  • the set value of the light source 110 is a value (parameter) that provides an optical output when performing an optimal operation with a predetermined modulation method, for example, a drive current value.
  • the set value of the first bias control unit 231 is a value (parameter) that optimizes the amplitude of the pilot signal to be superimposed in a predetermined modulation method.
  • the set value of the second bias control unit 232 is, for example, the gain of the control circuit when the monitor signal output from the photodiode 280 is demodulated to obtain a pilot signal having an optimum waveform in a predetermined modulation method.
  • the setting values of the first bias control unit 231 and the second bias control unit 232 are set as described above with reference to FIG. This is because the amplitude of the pilot signal obtained by demodulation differs depending on the individual difference between the two.
  • the setting value is set to obtain the optimum waveform. Therefore, it is possible to avoid the case where it is difficult to demodulate the pilot signal or the time until the control is stabilized greatly depending on the modulation method. As a result, it is possible to prevent performance degradation of the optical transmitter due to the change of the modulation method.
  • the set value of the data generation unit 140 is a value (parameter) that specifies a predetermined modulation method and filter processing. Specifically, for example, one of the modulation schemes such as BPSK (Binary Phase Shift Keying), QPSK, 8QAM (Quadrature Amplitude Modulation), and 16 QAM is selected by this set value. In addition, selection as to whether or not band narrowing is performed, specifically, for example, whether or not a Nyquist filter is used is selected according to a set value.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Amplitude Modulation
  • 8QAM Quadrature Amplitude Modulation
  • the set value of the driver control unit 160 is a value (parameter) from which the waveform of the drive signal of the light modulation unit 220 can be obtained when optimal operation is performed with a predetermined modulation method. Specifically, it is a parameter for adjusting the amplification factor of the driver / amplifier, the cross point of the drive signal waveform, the overshoot, the undershoot, and the like.
  • the system controller 170 sets a set value (parameter) after optimization.
  • the operations of the light source 110, the first bias control unit 231, the second bias control unit 232, the data generation unit 140, and the driver control unit 160 can be optimized for each modulation method.
  • the system control unit 170 notifies each block constituting the optical transmitter 200 of the change of the modulation scheme (step S11).
  • a desired modulation scheme to be newly set is designated by a user or the like, for example.
  • the system control unit 170 performs the optimum setting process for each block described below after performing the above-described change notification.
  • the system control unit 170 reads the setting value stored in the setting value storage unit 171 and stored in the data generation unit 140 corresponding to the desired modulation method. Then, according to this set value, a modulation system (format) is set, and whether or not a Nyquist filter is used is determined. Thereby, the data generation unit 140 is optimally set for a desired modulation method (step S12).
  • the system control unit 170 reads the setting value of the driver control unit 160 corresponding to the desired modulation method stored in the setting value storage unit 171. Then, parameters are set so as to obtain an optimum driver output waveform according to this set value. Thus, the driver control unit 160 is optimally set for a desired modulation method (step S13).
  • the system control unit 170 reads the setting value of the first bias control unit 231 corresponding to the desired modulation method stored in the setting value storage unit 171. Then, according to this set value, the amplitude of the pilot signal to be superimposed and the gain of the bias control circuit are set so as to be optimal for the desired modulation format. Thereby, the first bias control unit 231 is optimally set for the desired modulation method (step S14).
  • the system control unit 170 reads the setting value of the second bias control unit 232 corresponding to the desired modulation method stored in the setting value storage unit 171. Then, according to this set value, the gain of the control circuit that demodulates the pilot signal is set so as to be optimal for the desired modulation format. As a result, the second bias controller 232 is optimally set for the desired modulation method (step S15).
  • the system control unit 170 reads the setting value of the light source 110 corresponding to the desired modulation method, which is stored in the setting value storage unit 171. Then, according to the set value, the light output of the light source 110 is set to be optimum for a desired modulation format. Thereby, the light source 110 is optimally set with respect to a desired modulation system (step S16).
  • step S17 the optimization setting of each block of the optical transmitter 200 for changing to the desired modulation method is completed.
  • step S12 to step S16 is not restricted to the order mentioned above, It is possible to process in arbitrary orders.
  • the data generation unit 140 outputs a data signal corresponding to a desired modulation method based on the set value (step S21).
  • the driver unit 150 outputs a drive signal for the light modulation unit 220 corresponding to a desired modulation method based on the control of the driver control unit 160 set in step S13 described above (step S22).
  • the light source 110 outputs a laser beam having an optical output corresponding to a desired modulation method based on the set value (step S23).
  • the first bias control unit 231 and the second bias control unit 232 start bias control of the light modulation unit 220 corresponding to a desired modulation method based on the above set value (step S24).
  • the optical transmitter 200 and the control method thereof according to the present embodiment even if the modulation method is changed in the optical transmitter corresponding to the adaptive modulation method, the light operating under the optimum conditions A transmitter can be obtained.
  • the pilot signal reception sensitivity can be improved by the driver control unit 160 optimized for each modulation method. Further, by optimizing the amplitude of the superimposed pilot signal and the gain of the bias control circuit in the first bias controller 231, the pilot signal reception sensitivity is improved, the bias control time of the optical modulator 220 is shortened, and the bias control is stabilized. It becomes possible to ensure the sex. Also, by optimizing the gain of the control circuit that demodulates the pilot signal in the second bias control unit 232, it becomes possible to shorten the bias control time of the optical modulation unit 220 and to ensure the stability of the bias control. . Furthermore, by optimizing the light output of the light source 110, it is possible to construct a WDM system that realizes the transmission capacity and transmission distance intended by the user.
  • the optical transmitter 200 of the present embodiment since the entire configuration of the optical transmitter is optimized, the characteristics of the optical transmitter can be improved.
  • the optical transmitter 200 according to the present embodiment is compatible with the adaptive modulation system, it is possible to realize optimum WDM communication according to the transmission distance and transmission capacity with a single optical transmitter. Therefore, it becomes possible to reduce the cost of the WDM system.
  • Optical transmitter 100, 200 Optical transmitter 110 Light source 120, 220 Optical modulation unit 130 Bias control unit 140 Data generation unit 150 Driver unit 160 Driver control unit 170 System control unit 171 Setting value storage unit 231 First bias control unit 232 Second bias Control unit 280 Photodiode

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

アダプティブ変調方式に対応した光送信機において、変調方式を変更すると光送信機の特性が変化し、最適な動作が得られなくなるため、本発明の光送信機は、レーザ光を出力する光源と、レーザ光を駆動信号に基づいて変調して光信号を出力する光変調部と、光変調部の直流バイアスを制御するバイアス制御部と、送信されるデータ信号を生成するデータ生成部と、データ信号から駆動信号を生成し、駆動信号を光変調部に供給するドライバ部と、ドライバ部の動作を制御するドライバ制御部と、設定値記憶部を備えたシステム制御部、とを有し、設定値記憶部は、光源、バイアス制御部、データ生成部、およびドライバ制御部が、複数の変調方式のいずれかの変調方式で最適動作を行うときのそれぞれの設定値を、複数の変調方式ごとに記憶し、システム制御部は、複数の変調方式のうちの一の変調方式に対応した設定値に基づいて、光源、バイアス制御部、データ生成部、およびドライバ制御部をそれぞれ制御する。

Description

光送信機およびその制御方法
 本発明は、光送信機およびその制御方法に関し、特に、複数の変調方式に対応した光送信機およびその制御方法に関する。
 光ファイバ通信技術は、高速変調技術と波長多重化(Wavelength Division Multiplex:WDM)技術によって大容量化が図られてきた。近年はこれに加えて、デジタル信号処理技術の向上により、多値変調方式を利用することが可能になっている。さらに、柔軟なネットワークの構成を可能とするため、伝送容量や伝送距離に応じて適応的に変調方式を変更するアダプティブ変調方式に対応した光送信機が開発されている。
 このようなアダプティブ変調方式に対応し、複数の多値変調方式を実現することが可能な光送信器の一例が、特許文献1に記載されている。特許文献1に記載された関連する光送信器は、電気信号であるデータ系列を用いて、光源からの光を変調し、光送信信号を生成する。この関連する光送信器は、マッピング部、D/A(Digital/Analog)変換器、光変調器、およびバイアス制御部を有する。
 マッピング部は、変調の多値度を示す変調多値度情報に基づいて、データ系列をマッピングして、多値データに変換する。D/A変換器は、マッピング部から出力される多値データをアナログ信号に変換する。光変調器は、D/A変換器から出力されるアナログ信号に基づいて駆動され、光源からの光を変調する。そして、バイアス制御部は、変調多値度情報に基づいて、光変調器のDC(Direct Current)バイアス制御の制御極性を設定する。
 さらに、関連する光送信器は、D/A変換器と光変調器との間に電気増幅部を備えた構成としている。電気増幅部は、D/A変換器から出力されるアナログ信号を増幅して、光変調器に駆動信号として出力する。このとき、バイアス制御部は、変調多値度情報に応じて、電気増幅部の利得設定を調整して増幅率の制御を行うことにより、多値駆動信号の振幅設定を行う構成としている。
 このような構成としたことにより、関連する光送信器によれば、簡易な変調器構成で、複数の多値変調方式を安定に実現することができるとしている。
 また、関連技術としては、特許文献2に記載された技術がある。
国際公開第2014/041629号 特開2014-050009号公報
 上述したように、特許文献1に記載された関連する光送信器においては、変調多値度情報に基づいて、多値データに変換し、光変調器のDCバイアス制御の制御極性を設定し、また、多値駆動信号の振幅設定を行う構成としている。これにより、複数の多値変調方式を安定に実現することができるとしている。
 しかし、光変調器の損失(ロス)は変調方式によって異なるので、変調方式を変更すると、光変調器の光出力に相違が生じる。そのため、光送信機の光出力特性、および光変調器のモニタ信号によるバイアス制御特性など、光送信機としての特性が変化し、最適な動作が得られなくなる。
 このように、アダプティブ変調方式に対応した光送信機において、変調方式を変更すると光送信機の特性が変化し、最適な動作が得られなくなる、という問題があった。
 本発明の目的は、上述した課題である、アダプティブ変調方式に対応した光送信機において、変調方式を変更すると光送信機の特性が変化し、最適な動作が得られなくなる、という課題を解決する光送信機およびその制御方法を提供することにある。
 本発明の光送信機は、レーザ光を出力する光源と、レーザ光を駆動信号に基づいて変調して光信号を出力する光変調部と、光変調部の直流バイアスを制御するバイアス制御部と、送信されるデータ信号を生成するデータ生成部と、データ信号から駆動信号を生成し、駆動信号を光変調部に供給するドライバ部と、ドライバ部の動作を制御するドライバ制御部と、設定値記憶部を備えたシステム制御部、とを有し、設定値記憶部は、光源、バイアス制御部、データ生成部、およびドライバ制御部が、複数の変調方式のいずれかの変調方式で最適動作を行うときのそれぞれの設定値を、複数の変調方式ごとに記憶し、システム制御部は、複数の変調方式のうちの一の変調方式に対応した設定値に基づいて、光源、バイアス制御部、データ生成部、およびドライバ制御部をそれぞれ制御する。
 本発明の光送信機の制御方法は、レーザ光を出力する光源と、レーザ光を駆動信号に基づいて変調して光信号を出力する光変調部と、光変調部の直流バイアスを制御するバイアス制御部と、送信されるデータ信号を生成するデータ生成部と、データ信号から駆動信号を生成し、駆動信号を光変調部に供給するドライバ部と、ドライバ部の動作を制御するドライバ制御部、とを有する光送信機に対して、光源、バイアス制御部、データ生成部、およびドライバ制御部が、複数の変調方式のいずれかの変調方式で最適動作を行うときのそれぞれの設定値を、複数の変調方式ごとに記憶し、複数の変調方式のうちの一の変調方式に対応した設定値に基づいて、光源、バイアス制御部、データ生成部、およびドライバ制御部をそれぞれ制御する。
 本発明の光送信機およびその制御方法によれば、アダプティブ変調方式に対応した光送信機において、変調方式を変更した場合であっても、最適な条件で動作する光送信機を得ることができる。
本発明の第1の実施形態に係る光送信機の構成を示すブロック図である。 本発明の第2の実施形態に係る光送信機の構成を示すブロック図である。 本発明の第2の実施形態に係る光送信機が備えるバイアス制御部の動作を説明するための図である。 本発明の第2の実施形態に係る光送信機の制御方法を説明するためのフローチャートである。
 以下に、図面を参照しながら、本発明の実施形態について説明する。なお、図面中の矢印の向きは、一例を示すものであり、ブロック間の信号の向きを限定するものではない。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る光送信機100の構成を示すブロック図である。
 本実施形態による光送信機100は、光源110、光変調部120、バイアス制御部130、データ生成部140、ドライバ部150、ドライバ制御部160、およびシステム制御部170を有する。
 光源110は、連続波のレーザ光を出力する。光変調部120は、レーザ光を駆動信号に基づいて変調して光信号を出力する。バイアス制御部130は、光変調部120の直流バイアスを制御する。データ生成部140は、送信されるデータ信号を生成する。ドライバ部150は、データ信号から駆動信号を生成し、駆動信号を光変調部120に供給する。そして、ドライバ制御部160は、ドライバ部150の動作を制御する。
 システム制御部170は、設定値記憶部171を備える。設定値記憶部171は、光源110、バイアス制御部130、データ生成部140、およびドライバ制御部160が、複数の変調方式のいずれかの変調方式で最適動作を行うときのそれぞれの設定値を、複数の変調方式ごとに記憶する。そしてシステム制御部170は、複数の変調方式のうちの一の変調方式に対応した設定値に基づいて、光源110、バイアス制御部130、データ生成部140、およびドライバ制御部160をそれぞれ制御する。
 このように、本実施形態の光送信機100は、設定値記憶部171が各変調方式で最適動作を行うときの設定値を複数の変調方式ごとに記憶し、システム制御部170が所定の変調方式に対応した設定値に基づいて各構成部を制御する構成としている。そのため、本実施形態の光送信機100によれば、アダプティブ変調方式に対応した光送信機において、変調方式を変更した場合であっても、最適な条件で動作する光送信機を得ることができる。
 ここで、光源110の設定値は、上述した一の変調方式で最適動作を行うときの光出力が得られる値とすることができる。また、データ生成部140の設定値は、上述した一の変調方式およびフィルタ処理を指定する値とすることができる。そして、ドライバ制御部160の設定値は、上述した一の変調方式で最適動作を行うときの駆動信号の波形が得られる値とすることができる。
 また、バイアス制御部130は、光変調部120の直流バイアスにパイロット信号を重畳し、光信号からパイロット信号の信号成分であるパイロット信号成分を抽出し、このパイロット信号成分に基づいて直流バイアスを制御する構成とすることができる。このとき、バイアス制御部130の設定値は、上述した一の変調方式で最適動作を行うときのパイロット信号の振幅およびパイロット信号成分が得られる値とすることができる。
 次に、本実施形態による光送信機の制御方法について説明する。
 本実施形態の光送信機の制御方法は、光源、光変調部、バイアス制御部、データ生成部、ドライバ部、およびドライバ制御部を有する光送信機に対して制御を行う方法である。ここで、光源はレーザ光を出力する。光変調部は、レーザ光を駆動信号に基づいて変調して光信号を出力する。バイアス制御部は光変調部の直流バイアスを制御する。データ生成部は送信されるデータ信号を生成する。ドライバ部はデータ信号から駆動信号を生成し、駆動信号を光変調部に供給する。そして、ドライバ制御部はドライバ部の動作を制御する。
 本実施形態の光送信機の制御方法では、まず、上述した光源、バイアス制御部、データ生成部、およびドライバ制御部が、複数の変調方式のいずれかの変調方式で最適動作を行うときのそれぞれの設定値を、複数の変調方式ごとに記憶する。そして、複数の変調方式のうちの一の変調方式に対応した設定値に基づいて、上述した光源、バイアス制御部、データ生成部、およびドライバ制御部をそれぞれ制御する。
 ここで、上述した一の変調方式に替えて、複数の変調方式のうちの他の変調方式を採用する際に、他の変調方式に対応した設定値に基づいて、上述した光源、バイアス制御部、データ生成部、およびドライバ制御部をそれぞれ制御する構成とすることができる。
 上述したように、本実施形態の光送信機100およびその制御方法によれば、アダプティブ変調方式に対応した光送信機において、変調方式を変更した場合であっても、最適な条件で動作する光送信機を得ることができる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図2は、本発明の第2の実施形態に係る光送信機200の構成を示すブロック図である。第1の実施形態に係る光送信機100と同一の構成については同一の符号を付し、その詳細な説明は省略する場合がある。
 本実施形態による光送信機200は、光源110、光変調部220、バイアス制御部を構成する第1のバイアス制御部231および第2のバイアス制御部232、データ生成部140、ドライバ部150、ドライバ制御部160、およびシステム制御部170を有する。
 システム制御部170は設定値記憶部171を備える。システム制御部170は、デジタル・シグナル・プロセッサ(Digital Signal Processor:DSP)などを用いて構成することができる。
 本実施形態の光送信機200では、光変調部220がモニタ部としてのフォトダイオード280を備えた構成とした。フォトダイオード280は、光変調部220が出力する光信号の一部を受け付け、電気信号に変換してモニタ信号を生成し、このモニタ信号を第2のバイアス制御部232に出力する。
 第1のバイアス制御部231は、パイロット信号を重畳した直流バイアスを光変調部220に供給する。第2のバイアス制御部232は、フォトダイオード280が出力するモニタ信号からパイロット信号の信号成分であるパイロット信号成分を抽出する。そして、第1のバイアス制御部231が、このパイロット信号成分に基づいて直流バイアスを制御する。なお、第2のバイアス制御部232はパイロット信号の復調回路を備えた構成とすることができる。
 次に、図3を用いて、第1のバイアス制御部231および第2のバイアス制御部232の動作について説明する。
 図3に、光変調部220を構成する光変調器の光応答特性を駆動信号およびパイロット信号と共に示す。ここで光変調器は、4位相偏移変調(Quadrature Phase Shift Keying:QPSK)などの多値変調に用いられる。図3中の光応答特性の縦軸は光出力強度であり、横軸は光変調器の印加電圧(バイアス電圧)である。同図からわかるように、印加電圧が変化することにより、光出力強度も変化する。同図中のA点は、光出力強度が最大となる点(PEAK点)を示す。B点は、光出力強度が最大値から半分となる点(QUADRATURE点)である。そしてC点は、光出力強度が最小となる点(NULL点)を示している。
 第1のバイアス制御部231は、光変調器のバイアス電圧を制御するために、バイアス電圧に低周波数のパイロット信号Sを重畳する。第2のバイアス制御部232は、光変調部220が備えるフォトダイオード280が出力するモニタ信号を復調することによりパイロット信号成分を抽出する。システム制御部170は、このパイロット信号成分を第1のバイアス制御部231にフィードバックする。このような光変調器のバイアス制御は、自動バイアス制御(Automatic Bias Control:ABC)と呼ばれる。
 図3に示したように、データ信号の振幅に応じてパイロット信号の振幅および位相が変化する。すなわち、光変調器の位相をπ変化させる電圧(半波長電圧)をVπとすると、データ信号の振幅が2×Vπである場合(図中のS1)、復調されたパイロット信号(ディザ信号)の振幅(同図中のD1)は最小になり、周波数は2倍になる。データ信号の振幅が2×VπからVπの間である場合(図中のS2)、復調されたパイロット信号の振幅は同図中のD2のようになる。データ信号の振幅がVπである場合(図中のS3およびS4)、復調されたパイロット信号の振幅は同図中のD3およびD4のようになる。そして、データ信号の振幅がVπより小さい場合、復調されたパイロット信号の振幅は同図中のD2と同等になる。ただし、データ信号の振幅がVπの前後で、復調されたパイロット信号の振幅の位相は変化する。
 このように、光変調器では、データ信号の振幅に応じてパイロット信号の振幅および位相が変化するので、変調方式に応じて抽出されるパイロット信号の振幅および位相も変化することになる。ここで、本実施形態による光送信機200は、以下に詳細に説明するように、各変調方式において最適波形となる設定値で動作するように構成されている。そのため、本実施形態の光送信機200は、変調方式を変更した場合であっても、最適な条件で動作することが可能である。
 本実施形態の光送信機200においては、システム制御部170が、設定する変調方式における最適設定値を各構成部にそれぞれ設定する。すなわちシステム制御部170は、設定する変調方式におけるそれぞれの最適設定値を、光源110、第1のバイアス制御部231、第2のバイアス制御部232、データ生成部140、およびドライバ制御部160に設定する。
 システム制御部170は、複数の変調方式のそれぞれの場合において初回起動時に最適化を行った後の設定値(パラメータ)を、設定値記憶部171に記録する。設定値記憶部171に記録される設定値について以下に説明する。
 光源110の設定値は、所定の変調方式で最適動作を行うときの光出力が得られる値(パラメータ)、例えば駆動電流値である。
 第1のバイアス制御部231の設定値は、所定の変調方式において、重畳するパイロット信号の振幅が最適となる値(パラメータ)である。また、第2のバイアス制御部232の設定値は例えば、フォトダイオード280が出力するモニタ信号を復調して、所定の変調方式における最適波形のパイロット信号が得られるときの制御回路のゲインである。このように第1のバイアス制御部231および第2のバイアス制御部232の設定値を設定するのは、図3を用いて説明したように、変調方式の相違や光変調器の損失(ロス)の個体差などによって、復調して得られるパイロット信号の振幅が異なるからである。ここで、本実施形態の光送信機200では上述したように最適波形が得られる設定値としている。したがって、変調方式によって、パイロット信号の復調が困難になる場合や、制御が安定するまでの時間が大きく異なってしまう場合などを回避することができる。その結果、変調方式を変更したことによる光送信機の性能劣化を防止することができる。
 データ生成部140の設定値は、所定の変調方式およびフィルタ処理を指定する値(パラメータ)である。この設定値により、具体的には例えば、BPSK(Binary Phase Shift Keying)、QPSK、8QAM(Quadrature Amplitude Modulation)、および16QAMなどのいずれかの変調方式を選択する。また、帯域狭窄化を行うか否かの選択、具体的には例えばナイキスト・フィルタ(Nyquist Filter)の使用の有無を設定値により選択する。
 ドライバ制御部160の設定値は、所定の変調方式で最適動作を行うときの、光変調部220の駆動信号の波形が得られる値(パラメータ)である。具体的には例えば、ドライバ・ アンプの増幅率や、駆動信号波形のクロスポイント、オーバシュート、およびアンダーシュートなどを調整するパラメータである。
 上述したように、本実施形態の光送信機200においては、システム制御部170が最適化を行った後の設定値(パラメータ)を設定する。これにより、各変調方式に対して、光源110、第1のバイアス制御部231、第2のバイアス制御部232、データ生成部140、およびドライバ制御部160の動作を最適化することができる。その結果、アダプティブ変調方式に対応した光送信機において、変調方式を変更した場合であっても、最適な条件で動作する光送信機を得ることができる。
 次に、本実施形態の光送信機200の制御方法による変調方式の変更方法について、図4に示したフローチャートを用いて説明する。
 システム制御部170は、まず、光送信機200を構成する各ブロックに変調方式の変更を通知する(ステップS11)。ここで、新たに設定する所望の変調方式は例えばユーザ等によって指定される。
 システム制御部170は上述の変更通知を行った後に、以下に述べる各ブロックの最適設定処理を行う。
 システム制御部170は、設定値記憶部171に格納されている、所望の変調方式に対応したデータ生成部140の設定値を読み込む。そして、この設定値に従って、変調方式(フォーマット)を設定し、ナイキスト・フィルタ(Nyquist Filter)の使用の有無を決定する。これにより、所望の変調方式に対して、データ生成部140は最適に設定される(ステップS12)。
 システム制御部170は、設定値記憶部171に格納されている、所望の変調方式に対応したドライバ制御部160の設定値を読み込む。そして、この設定値に従って、最適なドライバ出力波形となるようにパラメータを設定する。これにより、所望の変調方式に対して、ドライバ制御部160は最適に設定される(ステップS13)。
 システム制御部170は、設定値記憶部171に格納されている、所望の変調方式に対応した第1のバイアス制御部231の設定値を読み込む。そして、この設定値に従って、重畳するパイロット信号の振幅およびバイアス制御回路のゲインが、所望の変調フォーマットに対して最適となるように設定する。これにより、所望の変調方式に対して、第1のバイアス制御部231は最適に設定される(ステップS14)。
 システム制御部170は、設定値記憶部171に格納されている、所望の変調方式に対応した第2のバイアス制御部232の設定値を読み込む。そして、この設定値に従って、パイロット信号を復調する制御回路のゲインが所望の変調フォーマットに対して最適となるように設定する。これにより、所望の変調方式に対して、第2のバイアス制御部232は最適に設定される(ステップS15)。
 システム制御部170は、設定値記憶部171に格納されている、所望の変調方式に対応した光源110の設定値を読み込む。そして、この設定値に従って、光源110の光出力が所望の変調フォーマットに対して最適となるように設定する。これにより、所望の変調方式に対して、光源110は最適に設定される(ステップS16)。
 以上の処理ステップにより、所望の変調方式に変更するための、光送信機200の各ブロックの最適化設定が完了する(ステップS17)。なお、ステップS12からステップS16までの処理は、上述した順番に限らず、任意の順番で処理することが可能である。
 続いて、データ生成部140は上述の設定値に基づいて、所望の変調方式に対応したデータ信号を出力する(ステップS21)。ドライバ部150は、上述のステップS13において設定されたドライバ制御部160の制御に基づいて、所望の変調方式に対応した光変調部220の駆動信号を出力する(ステップS22)。また、光源110は上述の設定値に基づいて、所望の変調方式に対応した光出力のレーザ光を出力する(ステップS23)。そして、第1のバイアス制御部231および第2のバイアス制御部232は上述の設定値に基づいて、所望の変調方式に対応した光変調部220のバイアス制御を開始する(ステップS24)。ステップS21からステップS24までの処理により、所望の変調方式に対応した光送信機200の各ブロックの動作変更が完了する(ステップS25)。
 以上の処理により、本実施形態の光送信機200の制御方法による変調方式の変更処理が終了する。
 上述したように、本実施形態の光送信機200およびその制御方法によれば、アダプティブ変調方式に対応した光送信機において、変調方式を変更した場合であっても、最適な条件で動作する光送信機を得ることができる。
 そして、各変調方式に最適化されたドライバ制御部160によって、パイロット信号の受信感度の向上を図ることができる。また、第1のバイアス制御部231における重畳パイロット信号の振幅およびバイアス制御回路のゲインの最適化によって、パイロット信号の受信感度の向上と共に、光変調部220のバイアス制御時間の短縮およびバイアス制御の安定性を確保することが可能になる。また、第2のバイアス制御部232における、パイロット信号を復調する制御回路のゲインの最適化によっても、光変調部220のバイアス制御時間の短縮およびバイアス制御の安定性を確保することが可能になる。さらに、光源110の光出力の最適化によって、ユーザが意図した伝送容量や伝送距離を実現するWDMシステムを構築することが可能になる。
 このように、本実施形態の光送信機200によれば、光送信機の構成の全体が最適化されるので、光送信機の特性を向上させることができる。
 さらに、本実施形態の光送信機200は、アダプティブ変調方式に対応しているので、一台の光送信機で伝送距離および伝送容量に応じた最適なWDM通信を実現することができる。そのため、WDMシステムのコストを低減することが可能になる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2016年1月28日に出願された日本出願特願2016-014004を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、200  光送信機
 110  光源
 120、220  光変調部
 130  バイアス制御部
 140  データ生成部
 150  ドライバ部
 160  ドライバ制御部
 170  システム制御部
 171  設定値記憶部
 231  第1のバイアス制御部
 232  第2のバイアス制御部
 280  フォトダイオード

Claims (10)

  1.  レーザ光を出力する光源と、
     前記レーザ光を駆動信号に基づいて変調して光信号を出力する光変調手段と、
     前記光変調手段の直流バイアスを制御するバイアス制御手段と、
     送信されるデータ信号を生成するデータ生成手段と、
     前記データ信号から前記駆動信号を生成し、前記駆動信号を前記光変調手段に供給するドライバ手段と、
     前記ドライバ手段の動作を制御するドライバ制御手段と、
     設定値記憶手段を備えたシステム制御手段、とを有し、
     前記設定値記憶手段は、前記光源、前記バイアス制御手段、前記データ生成手段、および前記ドライバ制御手段が、複数の変調方式のいずれかの変調方式で最適動作を行うときのそれぞれの設定値を、前記複数の変調方式ごとに記憶し、
     前記システム制御手段は、前記複数の変調方式のうちの一の変調方式に対応した前記設定値に基づいて、前記光源、前記バイアス制御手段、前記データ生成手段、および前記ドライバ制御手段をそれぞれ制御する
     光送信機。
  2.  請求項1に記載した光送信機において、
     前記バイアス制御手段は、前記直流バイアスにパイロット信号を重畳し、前記光信号から前記パイロット信号の信号成分であるパイロット信号成分を抽出し、前記パイロット信号成分に基づいて前記直流バイアスを制御する
     光送信機。
  3.  請求項2に記載した光送信機において、
     前記光信号の一部を受け付け、電気信号に変換してモニタ信号を生成し、前記モニタ信号を前記バイアス制御手段に出力するモニタ手段を備え、
     前記バイアス制御手段は、前記モニタ信号から前記パイロット信号成分を抽出する
     光送信機。
  4.  請求項2または3に記載した光送信機において、
     前記バイアス制御手段は、第1のバイアス制御手段と、第2のバイアス制御手段を備え、
      前記第1のバイアス制御手段は、パイロット信号を重畳した前記直流バイアスを前記光変調手段に供給し、
      前記第2のバイアス制御手段は、前記光信号から前記パイロット信号成分を抽出し、
     前記システム制御手段は、前記設定値に基づいて、前記第1のバイアス制御手段および前記第2のバイアス制御手段をそれぞれ制御する
     光送信機。
  5.  請求項2から4のいずれか一項に記載した光送信機において、
     前記光源の前記設定値は、前記一の変調方式で最適動作を行うときの光出力が得られる値であり、
     前記バイアス制御手段の前記設定値は、前記一の変調方式で最適動作を行うときの前記パイロット信号の振幅および前記パイロット信号成分が得られる値であり、
     前記データ生成手段の前記設定値は、前記一の変調方式およびフィルタ処理を指定する値であり、
     前記ドライバ制御手段の前記設定値は、前記一の変調方式で最適動作を行うときの前記駆動信号の波形が得られる値である
     光送信機。
  6.  レーザ光を出力する光源と、
     前記レーザ光を駆動信号に基づいて変調して光信号を出力する光変調手段と、
     前記光変調手段の直流バイアスを制御するバイアス制御手段と、
     送信されるデータ信号を生成するデータ生成手段と、
     前記データ信号から前記駆動信号を生成し、前記駆動信号を前記光変調手段に供給するドライバ手段と、
     前記ドライバ手段の動作を制御するドライバ制御手段、とを有する光送信機に対して、
     前記光源、前記バイアス制御手段、前記データ生成手段、および前記ドライバ制御手段が、複数の変調方式のいずれかの変調方式で最適動作を行うときのそれぞれの設定値を、前記複数の変調方式ごとに読み出し、
     前記複数の変調方式のうちの一の変調方式に対応した前記設定値に基づいて、前記光源、前記バイアス制御手段、前記データ生成手段、および前記ドライバ制御手段をそれぞれ制御する
     光送信機の制御方法。
  7.  請求項6に記載した光送信機の制御方法において、
     前記バイアス制御手段は、前記直流バイアスにパイロット信号を重畳し、前記光信号から前記パイロット信号の信号成分であるパイロット信号成分を抽出し、前記パイロット信号成分に基づいて前記直流バイアスを制御する
     光送信機の制御方法。
  8.  請求項7に記載した光送信機の制御方法において、
     前記バイアス制御手段は、パイロット信号を重畳した前記直流バイアスを前記光変調手段に供給する第1のバイアス制御手段と、前記光信号から前記パイロット信号成分を抽出する第2のバイアス制御手段を備え、
     前記設定値に基づいて、前記第1のバイアス制御手段および前記第2のバイアス制御手段をそれぞれ制御する
     光送信機の制御方法。
  9.  請求項7または8に記載した光送信機の制御方法において、
     前記光源の前記設定値は、前記一の変調方式で最適動作を行うときの光出力が得られる値であり、
     前記バイアス制御手段の前記設定値は、前記一の変調方式で最適動作を行うときの前記パイロット信号の振幅および前記パイロット信号成分が得られる値であり、
     前記データ生成手段の前記設定値は、前記一の変調方式およびフィルタ処理を指定する値であり、
     前記ドライバ制御手段の前記設定値は、前記一の変調方式で最適動作を行うときの前記駆動信号の波形が得られる値である
     光送信機の制御方法。
  10.  請求項6から9のいずれか一項に記載した光送信機の制御方法において、
     前記一の変調方式に替えて、前記複数の変調方式のうちの他の変調方式を採用する際に、前記他の変調方式に対応した前記設定値に基づいて、前記光源、前記バイアス制御手段、前記データ生成手段、および前記ドライバ制御手段をそれぞれ制御する
     光送信機の制御方法。
PCT/JP2017/002057 2016-01-28 2017-01-23 光送信機およびその制御方法 WO2017130882A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-014004 2016-01-28
JP2016014004 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017130882A1 true WO2017130882A1 (ja) 2017-08-03

Family

ID=59397897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002057 WO2017130882A1 (ja) 2016-01-28 2017-01-23 光送信機およびその制御方法

Country Status (1)

Country Link
WO (1) WO2017130882A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104838A1 (ja) * 2010-02-25 2011-09-01 三菱電機株式会社 光送信器
WO2014041629A1 (ja) * 2012-09-12 2014-03-20 三菱電機株式会社 光送信器およびdcバイアス制御方法
JP2014192819A (ja) * 2013-03-28 2014-10-06 Nec Corp 光送信装置、光送信方法、及び光送信プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104838A1 (ja) * 2010-02-25 2011-09-01 三菱電機株式会社 光送信器
WO2014041629A1 (ja) * 2012-09-12 2014-03-20 三菱電機株式会社 光送信器およびdcバイアス制御方法
JP2014192819A (ja) * 2013-03-28 2014-10-06 Nec Corp 光送信装置、光送信方法、及び光送信プログラム

Similar Documents

Publication Publication Date Title
JP6288296B2 (ja) 光送信器およびその制御方法
EP2530855B1 (en) Optical transmitter, control method for the same, and optical transmission system
JP5984161B2 (ja) 光送信器およびdcバイアス制御方法
US8879925B2 (en) Optical transmitter and optical transmission method
CN103248432B (zh) 光发射器和用于控制光调制器的偏置的方法
JP5924349B2 (ja) 光送信器および光変調器のバイアス制御方法
JP2011022479A (ja) 多値光送信器
CN103067091A (zh) 光发送器、光发送方法和光发送/接收系统
EP3068062A1 (en) Optical transmitter, optical transmission system and optical communication control method
JP6805687B2 (ja) 光モジュールおよび光変調器のバイアス制御方法
JP6614352B2 (ja) 送信器及びバイアス調整方法
JP2010166376A (ja) 光送信器
JP5891768B2 (ja) 光変調装置及び光変調方法
JP5289428B2 (ja) デジタル信号処理光送信装置
JP2008158391A (ja) 光送信器および光送信制御方法
JP6642584B2 (ja) 光変調器、光送信器および光変調方法
WO2017130882A1 (ja) 光送信機およびその制御方法
JP6992787B2 (ja) 光変調回路、光送信機および光変調方法
US20230291481A1 (en) Communication apparatus, communication system, communication method, and non-transitory computer readable medium
WO2008141512A1 (en) System and method for m-ary phase-shifting keying modulation
JP2021076651A (ja) 光送信装置およびバイアス制御方法
JP2016206280A (ja) マッハツェンダ型光変調器の駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP