WO2019111295A1 - 電界吸収型変調器、光半導体装置及び光モジュール - Google Patents

電界吸収型変調器、光半導体装置及び光モジュール Download PDF

Info

Publication number
WO2019111295A1
WO2019111295A1 PCT/JP2017/043469 JP2017043469W WO2019111295A1 WO 2019111295 A1 WO2019111295 A1 WO 2019111295A1 JP 2017043469 W JP2017043469 W JP 2017043469W WO 2019111295 A1 WO2019111295 A1 WO 2019111295A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical
laser
optical waveguide
semiconductor
Prior art date
Application number
PCT/JP2017/043469
Other languages
English (en)
French (fr)
Inventor
真也 奥田
崇 柳楽
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780097327.7A priority Critical patent/CN111418120B/zh
Priority to US16/755,378 priority patent/US11398713B2/en
Priority to PCT/JP2017/043469 priority patent/WO2019111295A1/ja
Priority to JP2019557720A priority patent/JP6827562B2/ja
Publication of WO2019111295A1 publication Critical patent/WO2019111295A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • the present invention relates to an electro-absorption modulator that has a small temperature dependency and can perform so-called uncooled operation.
  • InGaAsP or AlGaInAs is generally used for a light absorption layer that absorbs light (for example, Patent Document 1). These have a large change in band gap with respect to ambient temperature fluctuations. For this reason, in order to obtain desired characteristics, a Peltier cooler, which is a temperature control mechanism, is mounted to be used, for example, controlled to a constant temperature of about 50 ° C. to 60 ° C., or an electroabsorption modulator A mechanism for adjusting the bias voltage of
  • the oscillation wavelength of the semiconductor laser By appropriately designing the oscillation wavelength of the semiconductor laser, sufficient gain can be obtained and oscillation can be maintained even if the gain spectrum changes due to temperature fluctuation.
  • the band gap of the light absorption layer by appropriately designing the band gap of the light absorption layer, the light receiving element functions sufficiently even if the band gap changes due to temperature fluctuation. As described above, in the semiconductor laser and the light receiving element, the temperature dependence of the characteristics is small, and so-called uncooled operation which does not require temperature adjustment by the temperature adjustment mechanism is easy.
  • the absorption spectrum needs to be controlled on the order of several nm, and a temperature control mechanism or a bias voltage control mechanism is indispensable. Because of the increase in power consumption, complexity and cost, an electro-absorption modulator is also desired to be uncooled.
  • Patent Document 5 A semiconductor laser device in which the active layer is composed of a short period superlattice having a thin film of two types of III-V semiconductors or a mixed crystal thereof as a constitutional unit and the largest one of the thin films contains Bi is reported (E.g., Patent Document 5).
  • the semiconductor laser device of Patent Document 5 uses, for example, a short-period superlattice of (InAsBi) m (GaAs) n containing Bi in the direction of InAs having a large lattice constant among InAs and GaAs as an active layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-223787 (0031 Stage, FIG. 1)
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-221413 (0023 Stage, FIG. 1) JP-A-11-68238 (0006, 0007, FIG. 1)
  • Patent Document 1 a semiconductor mixed crystal of III-V group containing aluminum (Al) is used for the electron absorption modulation part EA of the optical waveguide device.
  • Al is a reactive material and is susceptible to oxidation and corrosion.
  • the modulator (electron absorption modulator EA) of Patent Document 1 needs to be strictly controlled so that oxygen is not contained in the gas piping or reaction chamber of the film forming apparatus during crystal growth, and contains Al. Growth conditions are severer and expensive compared to non-materials.
  • Al Since Al is particularly vulnerable to humidity, it is necessary to prevent the crystal end face from coming into direct contact with the open air, which increases the manufacturing cost and the storage cost. Also, Al has a common melting point with silicon (Si) at 530 ° C. For this reason, in silicon photonics, which is a technology system that simultaneously manufactures electronic integrated circuits and optical integrated circuits on Si, Al may partially partially penetrate deep into Si at high temperature in the chip manufacturing process, resulting in electronic integration A semiconductor device in which a circuit and an optical integrated circuit are formed brings about a reduction in reliability.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to obtain an electroabsorption modulator which has a small temperature dependency and is excellent in reliability.
  • the electro-absorption modulator of the present invention is an electro-absorption modulator that is formed on an InP substrate and modulates incident light by an applied voltage, and a part of incident light is generated by an electric field generated by the applied voltage.
  • a light absorbing layer is provided which absorbs light, and the light absorbing layer is made of a ternary or higher ternary III-V semiconductor mixed crystal containing no Al but containing Bi.
  • the electroabsorption modulator according to the present invention has a small temperature dependency and reliability because the light absorption layer does not contain Al and is composed of a ternary or higher Group III-V semiconductor mixed crystal containing Bi. It can be improved.
  • FIG. 1 is a perspective view showing an electro-absorption modulator according to Embodiment 1 of the present invention. It is principal part sectional drawing along the optical axis direction of FIG. It is a figure which shows the cross-section of the light absorption layer of FIG. It is a figure which shows the cross-section of the light absorption layer of the comparative example 1.
  • FIG. FIG. 7 is a perspective view showing an electro-absorption modulator according to Embodiment 2 of the present invention. It is principal part sectional drawing along the optical axis direction of FIG. It is a figure which shows the cross-section of the light absorption layer of FIG. It is a perspective view which shows the optical semiconductor device which concerns on Embodiment 3 of this invention.
  • FIG. 7 is a diagram showing an optical communication configuration of Comparative Example 2; It is a figure which shows the optical module concerning Embodiment 5 of this invention. It is a figure which shows the other optical module which concerns on Embodiment 5 of this invention. It is a figure which shows the optical module concerning Embodiment 6 of this invention. It is a figure which shows the other optical module which concerns on Embodiment 6 of this invention.
  • FIG. 1 is a perspective view showing an electro-absorption modulator according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view of an essential part along the optical axis direction of FIG. 1
  • FIG. 3 is a view showing a cross-sectional structure of the light absorption layer of FIG.
  • the cross-sectional view of FIG. 2 is a view cut along a broken line 35 parallel to an optical axis 31 which is an axis through which light travels.
  • the electroabsorption modulator 16 according to the first embodiment includes an n-type InP substrate 1, a semiconductor multilayer structure 2 provided on the upper surface (surface) of the InP substrate 1, and SiO 2 provided on the semiconductor multilayer structure 2.
  • n-side electrode 10 provided on the lower surface (rear surface) of the InP substrate 1, and a p-side electrode 11 connected to the semiconductor multilayer structure 2 at the opening 34 of the insulating film 9.
  • a ridge waveguide 41 is provided in the semiconductor multilayer structure 2.
  • the semiconductor multilayer structure 2 includes an n-type cladding layer (first cladding layer) 3 made of n-type InP sequentially stacked on an n-type InP substrate 1 and an optical waveguide layer of an i-type InGaAsP (first optical waveguide Layer) 4, light absorption layer 5 of i-type InGaAsBi, p-type optical waveguide layer (second optical waveguide layer) 6 made of p-type InGaAsP, p-type cladding layer (second clad layer) 7 made of p-type InP And p-type contact layer 8 made of p-type InGaAs.
  • the n-type light absorption layer 5 of InGaAsBi is lattice matched with the InP substrate 1.
  • the lattice matching means that the lattice mismatch rate is 0.5% or less.
  • the light absorbing layer 5 of i-type InGaAsBi has an InGaAsBi / InGaAsP multiple quantum well (MQW) structure in which quantum well layers 13 of InGaAsBi and barrier layers 14 of InGaAsP are alternately stacked. It is.
  • FIG. 3 shows an example of the light absorption layer 5 having the five quantum well layers 13 and the four barrier layers 14.
  • An insulating film 9 is provided on the surface of the p-type contact layer 8 of p-type InGaAs, which is the uppermost layer of the semiconductor multilayer structure 2.
  • the p-side electrode 11 made of Ti / Au or the like passes through the p-type contact layer 8 of p-type InGaAs on the top of the ridge waveguide 41 to form the p-type cladding layer 7 of p-type InP and the p-type optical waveguide of p-type InGaAsP. It is electrically connected to the layer 6.
  • An n-side electrode 10 made of AuGe / Au is connected to the back surface (lower surface) of the n-type InP substrate 1.
  • the wavelength of the incident light 33 is, for example, 1.55 ⁇ m, which is an optical communication wavelength band. Incident light 33 is incident from the end face side of FIG.
  • MOCVD metal organic chemical vapor deposition
  • the absorption layer 5, the p-type optical waveguide layer 6 of p-type InGaAsP, the p-type cladding layer 7 of p-type InP, and the p-type contact layer 8 of p-type InGaAs are epitaxially grown in order.
  • the light absorption layer 5 of i-type InGaAsBi epitaxially grows the quantum well layer 13 of InGaAsBi and the barrier layer 14 of InGaAsP alternately.
  • the insulating film 9 of SiO 2 is formed on the p-type contact layer 8 of p-type InGaAs by plasma CVD or the like.
  • An opening 34 is formed in the insulating film 9 in a region where the p-side electrode 11 is connected to the p-type contact layer 8 by combining the photolithography technology and the etching using hydrofluoric acid or the like.
  • a Ti / Au film is formed by electron beam (EB) evaporation, and an unnecessary portion of this film is lifted off together with the photoresist film to form the p-side electrode 11.
  • the bonding pad 12 connected to the p-side electrode 11 is simultaneously formed on the insulating film 9.
  • the lower surface of the n-type InP substrate 1 is polished to form the n-side electrode 10 on the lower surface of the n-type InP substrate 1.
  • the electro-absorption modulator 16 according to the present embodiment is manufactured by the above steps.
  • the basic operation of the electroabsorption modulator 16 according to the present embodiment will be described.
  • a reverse bias is applied from the outside to make the n-side electrode 10 positive and the p-side electrode 11 negative
  • the absorption spectrum of the light absorption layer 5 of the i-type InGaAsBi changes, and a light absorption phenomenon occurs.
  • Part of the incident light 33 incident from the end face side of the electroabsorption modulator 16 is absorbed by the light absorption layer 5 of i-type InGaAsBi according to the reverse bias voltage, and a pair of electrons and holes is generated.
  • the incident light 33 When almost all the incident light 33 is absorbed by the light absorption layer 5 by the light absorption phenomenon, the incident light 33 is extinguished, that is, substantially not emitted from the electroabsorption modulator 16.
  • the electroabsorption modulator 16 controls the emission and non-emission of the incident light 33, that is, modulates the incident light 33.
  • the electrons and the holes can be extracted to the outside as a current from the p-side electrode 11 and the n-side electrode 10. This current is called photocurrent.
  • the amount of light absorption in the electroabsorption modulator 16 differs depending on the value of the voltage applied to the light absorption layer 5 due to the external voltage applied between the p-side electrode 11 and the n-side electrode 10.
  • the incident light 33 is not emitted from the electroabsorption modulator 16, and a predetermined voltage of reverse bias is not applied to the electroabsorption modulator 16. Incident light 33 is emitted from the electroabsorption modulator 16.
  • FIG. 4 is a view showing a cross-sectional structure of the light absorption layer of Comparative Example 1.
  • the material of the light absorption layer 105 that is, the material of the quantum well layer 103 and the barrier layer 104 is i-type AlGaInAs.
  • the electroabsorption modulator it is necessary to exhibit a constant characteristic without being influenced by the temperature change of the external world.
  • the band gap changes and the absorption spectrum changes as the temperature of AlGaInAs changes, the characteristics of the electro-absorption modulator having the light absorption layer 105 of AlGaInAs change.
  • the electroabsorption modulator 16 according to the first embodiment suppresses the change in characteristics at low and high temperatures because the band gap of InGaAsBi of the light absorption layer 5 is constant with respect to the temperature change. Yes, it is possible to operate uncooled. Further, in the electroabsorption modulator 16 of the first embodiment, crystal growth of the light absorption layer 5 is easy because the light absorption layer 5 does not contain Al. In the electro-absorption modulator 16 of the first embodiment, the crystal of the light absorption layer 5 not containing Al does not undergo oxidation, so the generation of crystal defects in the light absorption layer 5 is suppressed and the deterioration of the reliability is prevented. be able to. Further, in the electroabsorption modulator 16 according to the first embodiment, InGaAsBi is lattice-matched with the n-type InP substrate 1, so that generation of crystal defects due to strain is also suppressed.
  • the quantum well layer 13 of the light absorption layer 5 may contain Bi, and a III-V group semiconductor other than InGaAsBi may be used.
  • a III-V group semiconductor other than InGaAsBi may be used.
  • InGaPBi-based mixed crystal, InGaAsPBi-based mixed crystal, or the like can be used.
  • the quantum well layer 13 is not limited to one layer, and these materials may be combined to form a multilayer.
  • the electro-absorption modulator 16 according to the first embodiment is an electro-absorption modulator that is formed on the InP substrate 1 and that modulates the incident light 33 by the applied voltage.
  • a light absorbing layer 5 is provided that absorbs part of the incident light 33 by the generated electric field.
  • the light absorption layer 5 of the electroabsorption modulator 16 according to the first embodiment is made of a ternary or higher ternary III-V semiconductor mixed crystal containing Bi and containing no Al.
  • the light absorption layer 5 is composed of a ternary or higher ternary III-V semiconductor mixed crystal containing no Al but containing Bi, so the temperature dependence is small. , Can improve the reliability.
  • the electroabsorption modulator 16 has a multiple quantum well structure in which the light absorption layer 5 is formed by alternately stacking the quantum well layers 13 and the barrier layers 14, and the quantum well layer 13 contains Al. It is composed of a ternary or more ternary III-V semiconductor mixed crystal containing Bi without containing
  • the quantum well layer 13 of the light absorption layer 5 does not contain Al but contains Bi
  • the barrier layer 14 of the light absorption layer 5 contains Al. Since the temperature dependency is small, the reliability can be improved.
  • FIG. 5 is a perspective view showing an electro-absorption modulator according to a second embodiment of the present invention.
  • 6 is a cross-sectional view of an essential part along the optical axis direction of FIG. 5, and
  • FIG. 7 is a view showing a cross-sectional structure of the light absorption layer of FIG.
  • the cross-sectional view of FIG. 6 is a view cut along a broken line 35 parallel to the optical axis 31 which is an axis through which light travels.
  • the electro-absorption modulator 16 of the second embodiment differs from the electro-absorption modulator 16 of the first embodiment in that the light absorption layer of the semiconductor multilayer structure 2 is a light absorption layer 45.
  • the light absorption layer 45 is an InGaAsBi / AlGaInAs multiple quantum well structure.
  • the light absorption layer 45 has an InGaAsBi / AlGaInAs multiple quantum well structure in which quantum well layers 13 of InGaAsBi and barrier layers 15 of AlGaInAs are alternately stacked, as shown in FIG.
  • the quantum well layer 13 is made of InGaAsBi
  • the barrier layer 15 is made of AlGaInAs.
  • the quantum well layer 13 of the light absorption layer 45 is InGaAsBi, so that the temperature dependence of the absorption spectrum of the modulator disappears as in the first embodiment, and the uncooled operation is performed. Is possible.
  • the electroabsorption modulator 16 according to the second embodiment can ensure stable operation even at high temperatures by setting the barrier layer 15 of the light absorption layer 45 to AlGaInAs having a large conduction band offset.
  • the quantum well layer 13 of the light absorption layer 45 does not contain Al, as long as it contains Bi, and III-V semiconductors other than InGaAsBi may be used.
  • III-V semiconductors other than InGaAsBi For example, InGaPBi-based mixed crystal, InGaAsPBi-based mixed crystal, or the like can be used.
  • the quantum well layer 13 is not limited to one layer, and these materials may be combined to form a multilayer.
  • the barrier layer 15 may contain Al, and III-V semiconductors other than AlGaInAs may be used.
  • AlGaInAsP-based mixed crystal can be used.
  • the barrier layer 15 is not limited to one layer, and these materials may be combined to form a multilayer.
  • the quantum well layer 13 of the light absorption layer 45 does not contain Al but contains Bi, and the barrier layer 15 of the light absorption layer 45 contains Al. Therefore, the temperature dependency is small and the reliability can be improved.
  • the barrier layer 15 of the light absorption layer 45 contains Al, the electroabsorption modulator 16 of the second embodiment is stable even at a higher temperature than the electroabsorption modulator 16 of the first embodiment. Operation can be secured.
  • the electro-absorption modulator 16 according to the second embodiment is an electro-absorption modulator that is formed on the InP substrate 1 and that modulates the incident light 33 by the applied voltage.
  • the light absorption layer 45 which absorbs a part of incident light 33 by the generated electric field is provided.
  • the light absorption layer 45 of the electroabsorption modulator 16 according to the second embodiment has a multiple quantum well structure in which quantum well layers 13 and barrier layers 15 are alternately stacked, and the quantum well layer 13 does not contain Al.
  • the barrier layer 15 is composed of an Al-containing ternary or more III-V semiconductor mixed crystal containing no Bi.
  • the quantum well layer 13 of the light absorption layer 45 does not contain Al but is composed of a ternary or higher Group III-V semiconductor mixed crystal containing Bi.
  • the temperature dependency is small, and the reliability can be improved.
  • FIG. 8 is a perspective view showing an optical semiconductor device according to the third embodiment of the present invention
  • FIG. 9 is a view showing a cross-sectional structure of the active layer of the semiconductor laser of FIG.
  • An optical semiconductor device 50 according to the third embodiment is an optical semiconductor device in which an electroabsorption modulator 16 and a distributed feedback (DFB) semiconductor laser 17 are integrated on an n-type InP substrate 1.
  • the electroabsorption modulator 16 is the same as the electroabsorption modulator 16 of the first embodiment or the electroabsorption modulator 16 of the second embodiment.
  • FIG. 8 shows an example of the light absorption layer 5 of Embodiment 1 as the light absorption layer of the electroabsorption modulator 16.
  • the semiconductor laser 17 has an active layer 18.
  • the semiconductor multilayer structure 2 from the n-type cladding layer 3 to the p-type contact layer 8 in the semiconductor laser 17 has a structure in which the light absorption layer 5 of the electroabsorption modulator 16 is replaced with the active layer 18.
  • the electroabsorption modulator 16 has a ridge waveguide 41, and the semiconductor laser 17 has a ridge waveguide 42.
  • the ridge waveguide 41 and the ridge waveguide 42 are continuous.
  • the broken line 36 b is a broken line parallel to the boundary of the surface and the boundary of the cross-sectional structure in the light absorption layer 5 and the active layer 18.
  • the broken line 36a indicates the end from which light is emitted, and the broken line 36c indicates the end from which light is incident.
  • the semiconductor laser 17 is in the range of broken line 36b to broken line 36c, and the electroabsorption modulator 16 is in the range of broken line 36a to broken line 36b.
  • the semiconductor laser 17 includes an n-type InP substrate 1, a semiconductor multilayer structure 2 provided on the upper surface (surface) of the InP substrate 1, an insulating film 9 made of SiO 2 provided on the semiconductor multilayer structure 2, and an InP substrate An n-side electrode 10 provided on the lower surface (rear surface) of the semiconductor laser 1 and a p-side electrode 11 connected to the semiconductor multilayer structure 2 are provided.
  • the semiconductor multilayer structure 2 includes an n-type cladding layer (first laser cladding layer) 3 made of n-type InP sequentially stacked on an n-type InP substrate 1 and an optical waveguide layer of i-type InGaAsP (first laser Optical waveguide layer) 4, active layer 18, p-type optical waveguide layer of p-type InGaAsP (second laser optical waveguide layer) 6, p-type cladding layer of p-type InP second laser cladding layer) 7, and p P-type contact layer 8 made of InGaAs.
  • first laser cladding layer made of n-type InP sequentially stacked on an n-type InP substrate 1 and an optical waveguide layer of i-type InGaAsP (first laser Optical waveguide layer) 4, active layer 18, p-type optical waveguide layer of p-type InGaAsP (second laser optical waveguide layer) 6, p-type cladding layer of p-type InP second laser cla
  • First laser cladding layer (n-type cladding layer 3) of the semiconductor laser 17, first laser optical waveguide layer (optical waveguide layer 4), active layer 18, second laser optical waveguide layer (p-type optical waveguide layer 6) And the second laser cladding layer (p-type cladding layer 7) are respectively the first cladding layer (n-type cladding layer 3) and the first optical waveguide layer (optical waveguide layer in the electroabsorption modulator 16). 4) It is connected to the light absorption layers 5 and 45, the second optical waveguide layer (p-type optical waveguide layer 6), and the second cladding layer (p-type cladding layer 7).
  • the active layer 18 of the semiconductor laser 17 has an InGaAsP / InGaAsP multiple quantum well structure in which quantum wells 19 of InGaAsP and barrier layers 20 of InGaAsP are alternately stacked.
  • the example of the light absorption layer 5 which has five quantum well layers 19 and four barrier layers 20 was shown.
  • the manufacturing process of the optical semiconductor device 50 of the third embodiment is the same as the manufacturing process of the electro-absorption modulator 16 described in the first embodiment. However, the light absorption layer 5 of the electroabsorption modulator 16 and the active layer 18 of the semiconductor laser 17 are not formed simultaneously but separately.
  • An optical semiconductor device in which such a modulator and a laser are integrated that is, the optical semiconductor device 50 of the third embodiment in which the electroabsorption modulator 16 and the semiconductor laser 17 are integrated, is implemented as the electroabsorption modulator 16.
  • the same effect as Embodiment 1 or Embodiment 2 can be obtained.
  • the difference ⁇ between the oscillation wavelength of the laser and the absorption wavelength of the modulator is on the order of several nm in order to obtain the desired light output, extinction ratio, transmission penalty etc. of the modulator. Accuracy is required. Therefore, in the optical semiconductor device 50 of the third embodiment, the oscillation wavelength of the semiconductor laser 17 is made to have temperature dependency by using a III-V group semiconductor not containing Bi for the active layer 18 of the semiconductor laser 17. On the other hand, by using the structure of Embodiment 1 or Embodiment 2 as the electro-absorption modulator 16, the absorption wavelength which is the wavelength of light absorbed by the electro-absorption modulator 16 does not have temperature dependency. .
  • the oscillation wavelength of the laser can be changed by changing the temperature while keeping the absorption wavelength of the electroabsorption modulator 16 constant. That is, in the optical semiconductor device 50 of the third embodiment, the oscillation wavelength of the laser can be compensated by changing the temperature while the absorption wavelength of the electroabsorption modulator 16 is constant. Furthermore, the optical semiconductor device 50 according to the third embodiment can compensate for the shift of ⁇ due to the fabrication error of the oscillation wavelength of the semiconductor laser 17 and the absorption wavelength of the electroabsorption modulator 16 by temperature modulation, and the fabrication is required. Accuracy is relaxed.
  • the active layer 18 of the semiconductor laser 17 is not required to contain Bi, and III-V semiconductors other than InGaAsP may be used.
  • III-V semiconductors other than InGaAsP may be used.
  • AlGaInAs-based mixed crystals can also be used.
  • each layer of the quantum well layer 19 and the barrier layer 20 is not limited to one layer, and these materials may be combined to form multiple layers.
  • FIG. 10 is a perspective view showing an optical semiconductor device according to the fourth embodiment of the present invention.
  • the optical semiconductor device 50 according to the fourth embodiment guides the two second semiconductor lasers 21a and 21b and the laser beams of different wavelengths emitted from the second semiconductor lasers 21a and 21b to the n-type InP substrate 1.
  • It is an optical semiconductor device in which a Y-type coupler 22 which is a coupler for coupling waveguides is integrated, and is a multi-wavelength integrated optical semiconductor device.
  • the second semiconductor lasers 21a and 21b are semiconductor lasers in which an electroabsorption modulator is integrated, and more specifically, the optical semiconductor device of the third embodiment in which the electroabsorption modulator 16 and the semiconductor laser 17 are integrated. 50.
  • the electroabsorption modulator 16 is the same as the electroabsorption modulator 16 of the first embodiment or the electroabsorption modulator 16 of the second embodiment.
  • the light absorption layer of the electroabsorption modulator 16 is an example of the light absorption layer 5 of the first embodiment.
  • the Y-type coupler 22 has a transparent waveguide layer 23.
  • the semiconductor multilayer structure 2 from the n-type cladding layer 3 to the p-type contact layer 8 in the Y-type coupler 22 has a structure in which the light absorption layer 5 of the electroabsorption modulator 16 is replaced by the transparent waveguide layer 23 .
  • the electroabsorption modulator 16 of the second semiconductor laser 21a has a ridge waveguide 41a
  • the electroabsorption modulator 16 of the second semiconductor laser 21b has a ridge waveguide 41b.
  • the Y coupler 22 has ridge waveguides 46a, 46b and 46c.
  • the ridge waveguide 41a and the ridge waveguide 46a are continuous, and the ridge waveguide 41b and the ridge waveguide 46b are continuous.
  • the ridge waveguide 46c is connected to the ridge waveguides 46a and 46b.
  • the broken line 36 e is a broken line parallel to the boundary of the surface and the boundary of the cross-sectional structure in the transparent waveguide layer 23 and the light absorption layer 5.
  • the broken line 36 f is a broken line parallel to the boundary of the surface and the boundary of the cross-sectional structure in the light absorption layer 5 and the active layer 18.
  • the broken line 36d indicates the end from which light is emitted, and the broken line 36g indicates the end from which light is incident.
  • the broken line 36g and the broken line 36d are described on the upper side (surface side) of the optical semiconductor device 50 on the left side in FIG. 10, and are described on the lower side (back side) of the optical semiconductor device 50 on the right side in FIG.
  • the broken line 36 g and the broken line 36 d are omitted except for the upper surface (front surface) and the right side surface of the optical semiconductor device 50.
  • the second semiconductor laser 21a is in the range from the broken line 36e to the broken line 36g and to the left of the broken line 36h.
  • the second semiconductor laser 21b is a region from the broken line 36e to the broken line 36g and from the broken line 36h to the right.
  • the semiconductor laser 17 is in the range from the broken line 36f to the broken line 36g in the second semiconductor laser 21a and the second semiconductor laser 21b.
  • the electroabsorption modulator 16 is in the range from the broken line 36 e to the broken line 36 f in the second semiconductor laser 21 a and the second semiconductor laser 21 b.
  • the Y-type coupler 22 ranges from the broken line 36 d to the broken line 36 e.
  • the Y-type coupler 22 includes an n-type InP substrate 1, a semiconductor multilayer structure 2 provided on the upper surface (surface) of the InP substrate 1, and an insulating film 9 made of SiO 2 provided on the semiconductor multilayer structure 2.
  • An n-side electrode 10 provided on the lower surface (rear surface) of the InP substrate 1 and a p-side electrode 11 connected to the semiconductor multilayer structure 2 are provided.
  • the semiconductor multilayer structure 2 includes an n-type cladding layer (first coupler cladding layer) 3 composed of n-type InP sequentially stacked on an n-type InP substrate 1 and an optical waveguide layer of i-type InGaAsP (first Coupler optical waveguide layer 4), transparent waveguide layer 23, p-type optical waveguide layer of p-type InGaAsP (second coupler optical waveguide layer) 6, p-type cladding layer consisting of p-type InP second coupler cladding Layer) 7 and a p-type contact layer 8 made of p-type InGaAs.
  • first coupler cladding layer composed of n-type InP sequentially stacked on an n-type InP substrate 1 and an optical waveguide layer of i-type InGaAsP (first Coupler optical waveguide layer 4), transparent waveguide layer 23, p-type optical waveguide layer of p-type InGaAsP (second coupler optical waveguide layer) 6, p-type
  • the (p-type optical waveguide layer 6) and the second coupler cladding layer (p-type cladding layer 7) are the first cladding layers (in the electro-absorption modulator 16 of the second semiconductor lasers 21a and 21b, respectively).
  • the manufacturing process of the optical semiconductor device 50 of the fourth embodiment is the same as the manufacturing process of the electro-absorption modulator 16 described in the first embodiment.
  • the light absorption layer 5 of the electroabsorption modulator 16, the active layer 18 of the semiconductor laser 17, and the transparent waveguide layer 23 of the Y-type coupler 22 are not formed simultaneously but separately.
  • FIG. 11 is a diagram showing an optical communication configuration of Comparative Example 2.
  • the lights 110a and 110b emitted from the plurality of semiconductor lasers 106a and 106b are collimated by the collimating lenses 107a and 107b, respectively, and are coupled to one optical fiber 109 by the condensing lens 108.
  • the configuration of Comparative Example 2 is used, miniaturization is difficult, and between the semiconductor lasers 106a and 106b, the collimator lenses 107a and 107b, the wavelength selection filter (not shown), and the condenser lens 108. This is disadvantageous in terms of operation cost because it requires a large number of optical adjustment operations.
  • the optical semiconductor device 50 (multi-wavelength integrated optical semiconductor device) of the fourth embodiment
  • a plurality of laser beams of different wavelengths are emitted from a plurality of semiconductor lasers 17 formed on the same substrate.
  • a coupler such as the coupler 22 can condense light on an external point.
  • the optical semiconductor device 50 according to the fourth embodiment can perform wavelength multiplexing without using a multiplexing device such as the collimating lenses 107a and 107b or the condensing lens 108.
  • the optical semiconductor device 50 according to the fourth embodiment can integrate a plurality of semiconductor lasers 17 on a single chip, so that small and high-density integration is possible.
  • a multi-wavelength integrated optical semiconductor device in which such a laser, a modulator, and a coupler are integrated that is, an optical semiconductor device according to the fourth embodiment in which the semiconductor laser 17, the electroabsorption modulator 16, and the Y-type coupler 22 are integrated.
  • the same effect as the third embodiment can be obtained by using the structure of the third embodiment as the second semiconductor lasers 21a and 21b.
  • the Y-type coupler 22 is used as a coupler that condenses laser beams of a plurality of different wavelengths and combines them into one waveguide.
  • Multi Mode Interference (MMI) or the like can be used.
  • MMI Multi Mode Interference
  • an example of the optical semiconductor device 50 in which two second semiconductor lasers 21a and 21b are integrated is described, but the number of integrated second semiconductor lasers 21a and 21b may be two or more. .
  • a four-wavelength integrated optical semiconductor device in which four second semiconductor lasers 21a (or 21b) are integrated can be used.
  • a ridge waveguide is employed as the structure of the electroabsorption modulator 16 and the semiconductor laser 17.
  • the buried structure of the stripe mesa structure in the electroabsorption modulator 16 and the semiconductor laser 17 may be a semi-insulator buried hetero (SI-BH) structure or a semi-insulating planar buried hetero (PN-). It is also possible to adopt the BH) structure.
  • the electroabsorption modulator 16 and the semiconductor laser 17 can also combine these structures.
  • a bulk structure, a quantum wire structure, a quantum dot structure, and a structure combining them are applied to the light absorption layer 5 of the electroabsorption modulator 16 and the active layer 18 of the semiconductor laser 17. It is also possible.
  • FIG. 12 is a view showing an optical module according to Embodiment 5 of the present invention.
  • the optical module 80 according to the fifth embodiment holds the optical semiconductor device 50, the chip carrier 25 on which the optical semiconductor device 50 is mounted, the stem 81 on which the chip carrier 25 is mounted, the lens 27, and the lens 27 and covers the surface side of the stem 81.
  • a lens holder 28 and a terminal 82 connected to the optical semiconductor device 50 are provided.
  • the lens holder 28 is disposed on the stem 81 so as to cover the optical semiconductor device 50 and the chip carrier 25.
  • the lens 27 and the lens holder 28 are shown in cross section.
  • the optical semiconductor device 50 is mounted by AuSn solder on a chip carrier 25 made of aluminum nitride (AlN) with a termination resistance of 50 ⁇ .
  • the chip carrier 25 has, for example, a plate shape.
  • the stem 81 is a cylindrical package base, and the material of the stem 81 is a metal such as a cold rolled steel plate (SPC).
  • SPC cold rolled steel plate
  • FIG. 13 is a view showing another optical module according to Embodiment 5 of the present invention.
  • the other optical module 80 shown in FIG. 13 includes an electro-absorption modulator 16, a semiconductor laser 17, a chip carrier 25 for mounting the electro-absorption modulator 16 and the semiconductor laser 17, a stem 81 for mounting the chip carrier 25, and a lens 27, a lens holder 28 for holding the lens 27 and covering the surface side of the stem 81, and a terminal 82 connected to the electroabsorption modulator 16 and the semiconductor laser 17.
  • the lens holder 28 is disposed on the stem 81 so as to cover the electroabsorption modulator 16, the semiconductor laser 17, and the chip carrier 25.
  • the same effects as those of the first and second embodiments can be obtained by using the structures of the first and second embodiments as the electro-absorption modulator 16 which is an optical device. .
  • the optical module 80 includes the stem 81, the chip carrier 25 mounted on the stem 81, and the optical device mounted on the chip carrier 25 (electroabsorption modulator 16, optical semiconductor device And a lens holder 28 disposed on the stem 81 so as to cover the optical device (electro-absorption modulator 16 and optical semiconductor device 50) and the chip carrier 25.
  • the optical device of the optical module 80 of the fifth embodiment is the electro-absorption modulator 16 of the first or second embodiment or the optical semiconductor device 50 of the third or fourth embodiment.
  • the light absorption layer 5 in the optical device does not contain Al, and a ternary or more Group III-V semiconductor containing Bi.
  • the quantum well layer 13 of the light absorption layer 45 is made of a mixed crystal, or is made of a ternary or more ternary III-V semiconductor mixed crystal containing Bi without containing Al.
  • the light absorption layer 5 of the optical device (the electroabsorption modulator 16, the optical semiconductor device 50) or the quantum well layer 13 of the light absorption layer 45 does not contain Al, but Bi. Since it is composed of the ternary or higher Group III-V semiconductor mixed crystal to be contained, its temperature dependency is small, and the reliability can be improved.
  • FIG. 14 is a view showing an optical module according to the sixth embodiment of the present invention.
  • the optical module 80 according to the sixth embodiment includes an optical semiconductor device 50, a chip carrier 25 on which the optical semiconductor device 50 is mounted, a temperature control mechanism 29 such as a Peltier cooler connected to the chip carrier 25, a temperature control mechanism 29, and a chip carrier 25.
  • a lens holder 28 for holding the lens 27 and the lens 27 and covering the surface side of the stem 81, and a terminal 82 connected to the optical semiconductor device 50 and the like.
  • the lens holder 28 is disposed on the stem 81 so as to cover the optical semiconductor device 50, the chip carrier 25, and the temperature control mechanism 29.
  • the lens 27 and the lens holder 28 are shown in cross section.
  • the optical semiconductor device 50 is mounted by AuSn solder on a chip carrier 25 made of aluminum nitride (AlN) with a termination resistance of 50 ⁇ .
  • the optical module 80 according to the sixth embodiment is different from the optical module 80 according to the fifth embodiment in that the optical module 80 according to the sixth embodiment includes the temperature control mechanism 29 and the chip carrier 25 is mounted on the temperature control mechanism 29.
  • the terminal 82 also has a terminal connected to the temperature control mechanism 29.
  • the optical module 80 by using the structures of the third and fourth embodiments as the optical semiconductor device 50 which is an optical device, the same effects as those of the third and fourth embodiments can be obtained. That is, the optical module 80 of the sixth embodiment can obtain the same effects as those of the third and fourth embodiments without performing the temperature adjustment of the optical semiconductor device 50 by the temperature control mechanism 29.
  • the temperature control mechanism 29 changes the temperature of the optical semiconductor device 50, so that the absorption wavelength of the electroabsorption modulator 16 is constant as described in the third embodiment.
  • the oscillation wavelength of the semiconductor laser 17 can be changed as it is.
  • the optical module 80 according to the sixth embodiment can compensate for the shift of ⁇ due to the fabrication error of the oscillation wavelength of the semiconductor laser 17 and the absorption wavelength of the electroabsorption modulator 16 by temperature modulation, and the required fabrication accuracy is relaxed. Be done.
  • FIG. 15 is a view showing another optical module according to Embodiment 6 of the present invention.
  • the other optical module 80 shown in FIG. 15 is a chip carrier 25 on which the electro-absorption modulator 16, the semiconductor laser 17, the electro-absorption modulator 16 and the semiconductor laser 17 are mounted, a peltier cooler connected to the chip carrier 25, etc.
  • Terminal 82 connected to the The lens holder 28 is disposed on the stem 81 so as to cover the electroabsorption modulator 16, the semiconductor laser 17, the chip carrier 25, and the temperature control mechanism 29.
  • the same effects as those of the first and second embodiments can be obtained by using the structures of the first and second embodiments as the electro-absorption modulator 16 which is an optical device. . That is, the optical module 80 of the sixth embodiment can obtain the same effects as those of the first and second embodiments without performing the temperature adjustment of the optical semiconductor device 50 by the temperature control mechanism 29.
  • Another optical module 80 of the sixth embodiment shown in FIG. 15 is a semiconductor laser 17 using the structure of the first and second embodiments as the electro-absorption modulator 16 which is an optical device, and which is an optical device.
  • the temperature control mechanism 29 varies the temperature of the electroabsorption modulator 16 and the semiconductor laser 17 as described in the third embodiment.
  • the oscillation wavelength of the semiconductor laser 17 can be changed while the absorption wavelength of the modulator 16 is constant.
  • the other optical module 80 according to the sixth embodiment can compensate for the shift of ⁇ due to the fabrication error of the oscillation wavelength of the semiconductor laser 17 and the absorption wavelength of the electroabsorption modulator 16 by temperature modulation, and the required fabrication accuracy Is relieved.
  • the optical module 80 is mounted on the stem 81, the temperature control mechanism 29 mounted on the stem 81, the chip carrier 25 mounted on the temperature control mechanism 29, and the chip carrier 25.
  • Optical device optical semiconductor device 50, single electroabsorption modulator 16, single semiconductor laser 17
  • lens 27 an optical device (optical semiconductor device 50, single electroabsorption modulator 16)
  • a lens holder 28 disposed on the stem so as to cover the chip carrier 25 and the temperature control mechanism 29.
  • the light absorption layer 5 in the optical device does not contain Al, and does not contain Bi, and is a ternary or higher III-V compound.
  • the quantum well layer 13 of the light absorption layer 45 is made of a ternary or more ternary III-V semiconductor mixed crystal containing Bi but not containing Al. Furthermore, the active layer 18 in the optical device (the semiconductor laser 17 of the optical semiconductor device 50, the single semiconductor laser 17) of the optical module 80 according to the fifth embodiment is formed of a ternary or more III-V semiconductor mixed crystal not containing Bi. Be done. In the optical module 80 according to the sixth embodiment, the light absorption layer 5 of the optical device or the quantum well layer 13 of the light absorption layer 45 does not contain Al, but is made of a ternary or higher Group III-V semiconductor mixed crystal containing Bi. Because of the configuration, the temperature dependency is small, and the reliability can be improved.
  • the absorption wavelength of the electro-absorption modulator 16 is changed by changing the temperature of the optical device (the electro-absorption modulator 16 and the optical semiconductor device 50) by the temperature control mechanism 29.
  • the oscillation wavelength of the semiconductor laser 17 can be changed with constant.
  • a coaxial semiconductor optical module as a CAN (can) package is adopted as the optical module 80.
  • a TOSA Transmitter Optical
  • a receptacle having a built-in isolator or a flexible substrate is provided. It is good also as SubAssembly).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

温度依存性が小さく、信頼性に優れた電界吸収型変調器を得ることを目的とする。 本発明の電界吸収型変調器(16)は、InP基板(1)に形成され、印加される電圧により入射光(33)を変調する電界吸収型変調器であって、印加される電圧により発生する電界により入射光(33)の一部を吸収する光吸収層(5)を備え、光吸収層(5)は、Alを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されることを特徴とする。

Description

電界吸収型変調器、光半導体装置及び光モジュール
 本発明は、温度依存性が小さく、いわゆるアンクールド動作が可能な電界吸収型変調器に関する発明である。
 従来の光通信に用いられるInP基板に形成された電界吸収型変調器では光を吸収する光吸収層にInGaAsPもしくはAlGaInAsが一般的に使用される(例えば、特許文献1)。これらは周囲の温度変動に対するバンドギャップの変化が大きい。このため、所望の特性を得るために温度調整機構であるペルチェクーラーを搭載して、例えば50℃から60℃程度の一定温度に制御して使用されるか、もしくは温度変動時に電界吸収型変調器のバイアス電圧を調節する機構が搭載される。
 電界吸収型変調器とは異なり、半導体レーザは発振波長を適切に設計することで、温度変動により利得スペクトルが変化しても、充分な利得が得られ発振が維持できる。また、受光素子は光吸収層のバンドギャップを適切に設計することで、温度変動によりバンドギャップが変化しても充分に機能する。このように、半導体レーザや受光素子では特性の温度依存性が小さく、温度調整機構による温度調整を必要としない、いわゆるアンクールド動作が容易である。
 一方、電界吸収型変調器は所望の特性を得るためには吸収スペクトルを数nmのオーダーで制御する必要があり、温度調整機構またはバイアス電圧調整機構が必要不可欠である。消費電力、複雑度、コストが増大するため、電界吸収型変調器もアンクールド動作が望まれる。
 ビスマス(Bi)を含むIII-V族の半導体混晶はBiの量とともにバンドギャップの温度変化が小さくなり、特にInGaAsBiは温度変化に対しバンドギャップ(0.6~1.5eV)が一定になることが報告されている(例えば、特許文献2)。InGaAsBiを用いて温度特性の向上を図った半導体レーザも報告されている(例えば、特許文献3、4)。
 活性層が2種類のIII-V族半導体又はその混晶の薄膜を構成単位とした短周期超格子からなり、その薄膜のうち格子定数の最も大きいものがBiを含む半導体レーザ素子が報告されている(例えば、特許文献5)。特許文献5の半導体レーザ素子は、例えば、InAsとGaAsのうち格子定数の大きいInAsの方にBiを含んだ(InAsBi)(GaAs)の短周期超格子を活性層に用いている。
特開2010-114295号公報(0074段、図3-14) 特開平9-8405号公報(0008段、図1、図3) 特開2000-223787号公報(0031段、図1) 特開2004-221413号公報(0023段、図1) 特開平11-68238号公報(0006段、0007段、図1)
 特許文献1では光導波路素子の電子吸収変調部EAにアルミニウム(Al)を含むIII-V族の半導体混晶が用いられている。Alは反応性に富んだ材料で酸化や腐食を起こしやすい。光吸収層の結晶成長時にAlが酸化すると異常成長が生じて多くの欠陥が発生する。このような変調器(電子吸収変調部EA)は、動作時にこの欠陥部分を基点として結晶の劣化が進行し、信頼性の低下をもたらす。このため、特許文献1の変調器(電子吸収変調部EA)は、結晶成長時は成膜装置のガス配管や反応室内に酸素が含まれないように厳密に制御する必要があり、Alを含まない材料と比較して成長条件が厳しく高コストとなる。
 Alは特に湿度に弱いため、結晶端面が直接外気と接触すること防ぐ必要があり、作製コスト及び保管コストが増大する。また、Alはシリコン(Si)と530℃で共通融点を持っている。このため、Si上に電子集積回路と光集積回路を同時に製作する技術体系であるシリコンフォトニクスにおいて、チップ製作工程の高温時にAlが部分的に深くSi中に溶け込みピットを作ることがあり、電子集積回路と光集積回路とが形成された半導体装置は信頼性の低下をもたらす。
 本発明は、上記のような問題点を解消するためになされたもので、その目的は温度依存性が小さく、信頼性に優れた電界吸収型変調器を得るものである。
 本発明の電界吸収型変調器は、InP基板に形成され、印加される電圧により入射光を変調する電界吸収型変調器であって、印加される電圧により発生する電界により入射光の一部を吸収する光吸収層を備え、光吸収層は、Alを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成される。
 本発明の電界吸収型変調器は、光吸収層がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されるので、温度依存性が小さく、信頼性を向上させることができる。
本発明の実施の形態1に係る電界吸収型変調器を示す斜視図である。 図1の光軸方向に沿った要部断面図である。 図2の光吸収層の断面構造を示す図である。 比較例1の光吸収層の断面構造を示す図である。 本発明の実施の形態2に係る電界吸収型変調器を示す斜視図である。 図5の光軸方向に沿った要部断面図である。 図6の光吸収層の断面構造を示す図である。 本発明の実施の形態3に係る光半導体装置を示す斜視図である。 図8の半導体レーザの活性層の断面構造を示す図である。 本発明の実施の形態4に係る光半導体装置を示す斜視図である。 比較例2の光通信構成を示す図である。 本発明の実施の形態5に係る光モジュールを示す図である。 本発明の実施の形態5に係る他の光モジュールを示す図である。 本発明の実施の形態6に係る光モジュールを示す図である。 本発明の実施の形態6に係る他の光モジュールを示す図である。
実施の形態1.
 図1は本発明の実施の形態1に係る電界吸収型変調器を示す斜視図である。図2は図1の光軸方向に沿った要部断面図であり、図3は図2の光吸収層の断面構造を示す図である。図2の断面図は、光が進行する軸である光軸31に平行な破線面35で切断した図である。実施の形態1の電界吸収型変調器16は、n型のInP基板1と、InP基板1の上面(表面)に設けられた半導体積層構造2と、半導体積層構造2に設けられたSiOからなる絶縁膜9と、InP基板1の下面(裏面)に設けられたn側電極10と、絶縁膜9の開口部34において半導体積層構造2に接続されたp側電極11とを備えている。図1に示すように半導体積層構造2にリッジ型導波路41が設けられている。半導体積層構造2は、n型のInP基板1の上に順に積層されたn型InPからなるn型クラッド層(第一のクラッド層)3、i型InGaAsPの光導波路層(第一の光導波路層)4、i型InGaAsBiの光吸収層5、p型InGaAsPからなるp型光導波路層(第二の光導波路層)6、p型InPからなるp型クラッド層(第二のクラッド層)7、及びp型InGaAsからなるp型コンタクト層8を有する。InGaAsBiのn型の光吸収層5はInP基板1と格子整合している。なお、ここでは、格子整合とは、格子不整合率が0.5%以下であることを意味するものとする。
 i型InGaAsBiの光吸収層5は、図3に示すように、InGaAsBiの量子井戸層13と、InGaAsPのバリア層14が交互に積層されたInGaAsBi/InGaAsP多重量子井戸(Multiple Quantum Well:MQW)構造である。図3では、5層の量子井戸層13と4層のバリア層14を有する光吸収層5の例を示した。絶縁膜9が、半導体積層構造2の最上層であるp型InGaAsのp型コンタクト層8の表面に設けられている。Ti/Au等からなるp側電極11がリッジ型導波路41の上部のp型InGaAsのp型コンタクト層8を介して、p型InPのp型クラッド層7及びp型InGaAsPのp型光導波路層6と電気的に接続されている。AuGe/Auからなるn側電極10がn型のInP基板1の裏面(下面)接続されている。ここで、入射光33の波長は例えば光通信波長帯である1.55μmである。入射光33は図1の端面側より入射する。
 続いて、本実施の形態にかかる電界吸収型変調器16の製造方法を簡単に説明する。まず、n型のInP基板1の上に、MOCVD(Metal organic chemical vapor deposition)法などを用いて、n型InPのn型クラッド層3、i型InGaAsPの光導波路層4、i型InGaAsBiの光吸収層5、p型InGaAsPのp型光導波路層6、p型InPのp型クラッド層7、及びp型InGaAsのp型コンタクト層8を順にエピタキシャル成長させる。i型InGaAsBiの光吸収層5は、InGaAsBiの量子井戸層13と、InGaAsPのバリア層14を交互にエピタキシャル成長させる。
 次に、p型InGaAsのp型コンタクト層8上にプラズマCVD法などによりSiOの絶縁膜9を形成する。フォトリソグラフィ技術とフッ酸などを用いたエッチングとを組み合わせて、p側電極11をp型コンタクト層8に接続する領域において絶縁膜9に開口部34を形成する。その後、電子ビーム(EB)蒸着によりTi/Au膜を形成し、この膜の不要部分をフォトレジスト膜と共にリフトオフしてp側電極11を形成する。この際に絶縁膜9上に、p側電極11に接続されたボンディングパッド12を同時に形成する。その後、n型のInP基板1の下面を研磨し、n型のInP基板1の下面にn側電極10を形成する。以上の工程により本実施の形態に係る電界吸収型変調器16が製造される。
 本実施の形態に係る電界吸収型変調器16の基本動作を説明する。外部からn側電極10がプラス、p側電極11がマイナスとなる逆バイアスが加えられるとi型InGaAsBiの光吸収層5の吸収スペクトルが変化し、光吸収現象が生じる。電界吸収型変調器16の端面側より入射された入射光33は、逆バイアスの電圧に応じてi型InGaAsBiの光吸収層5で一部が吸収され電子及びホールの対が発生する。殆ど全ての入射光33が光吸収現象により光吸収層5で吸収されると、入射光33は消光する、すなわち電界吸収型変調器16から実質的に出射されない。電界吸収型変調器16は、入射光33の出射及び非出射を制御する、すなわち入射光33を変調する。この電子とホールは、p側電極11及びn側電極10から電流として外部に取り出すことが可能である。この電流を光電流と呼ぶ。なお、電界吸収型変調器16における光吸収量は、p側電極11及びn側電極10間に印加された外部電圧に起因してその光吸収層5に印加された電圧の値によって異なる。電界吸収型変調器16に逆バイアスの所定電圧が印加された場合は入射光33が電界吸収型変調器16から出射されず、電界吸収型変調器16に逆バイアスの所定電圧が印加されない場合は入射光33が電界吸収型変調器16から出射される。
 本実施の形態の効果を比較例と比較して説明する。図4は比較例1の光吸収層の断面構造を示す図である。比較例1では光吸収層105の材料、すなわち量子井戸層103及びバリア層104の材料が、i型AlGaInAsである。電界吸収型変調器において、外界の温度変化に影響されず一定の特性を示すことが必要である。しかし、AlGaInAsは温度を変化させるとバンドギャップが変わり吸収スペクトルが変化するため、AlGaInAsの光吸収層105を有する電界吸収型変調器は、変調器の特性が変化してしまう。
 比較例1と異なり、本実施の形態1の電界吸収型変調器16は、光吸収層5のInGaAsBiのバンドギャップが温度変化に対し一定のため、低温及び高温での特性の変化を抑えることができ、アンクールド動作が可能である。また、本実施の形態1の電界吸収型変調器16は、光吸収層5がAlを含まないため、光吸収層5の結晶成長が容易である。本実施の形態1の電界吸収型変調器16は、Alを含まない光吸収層5は結晶の酸化が起こらないため、光吸収層5の結晶欠陥の発生が抑制され、信頼性の悪化を防ぐことができる。また、本実施の形態1の電界吸収型変調器16は、InGaAsBiはn型のInP基板1と格子整合しているため、歪による結晶欠陥の発生も抑制される。
 光吸収層5の量子井戸層13はBiが含まれていればよく、InGaAsBi以外のIII-V族半導体を用いてもよい。例えば、InGaPBi系混晶、InGaAsPBi系混晶等を用いることができる。また、量子井戸層13は1層に限らずこれらの材料を組み合わせて多層にしても良い。
 以上のように、実施の形態1の電界吸収型変調器16は、InP基板1に形成され、印加される電圧により入射光33を変調する電界吸収型変調器であって、印加される電圧により発生する電界により入射光33の一部を吸収する光吸収層5を備えている。実施の形態1の電界吸収型変調器16の光吸収層5は、Alを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成される。実施の形態1の電界吸収型変調器16は、光吸収層5がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されるので、温度依存性が小さく、信頼性を向上させることができる。
 また、実施の形態1の電界吸収型変調器16は、光吸収層5が、量子井戸層13及びバリア層14が交互に積層された多重量子井戸構造であり、量子井戸層13がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成される。実施の形態1の電界吸収型変調器16は、光吸収層5の量子井戸層13にAlが含有されず、Biが含有されており、光吸収層5のバリア層14にAlが含有されていないので、温度依存性が小さく、信頼性を向上させることができる。
実施の形態2.
 図5は本発明の実施の形態2に係る電界吸収型変調器を示す斜視図である。図6は図5の光軸方向に沿った要部断面図であり、図7は図6の光吸収層の断面構造を示す図である。図6の断面図は、光が進行する軸である光軸31に平行な破線面35で切断した図である。実施の形態2の電界吸収型変調器16は、半導体積層構造2の光吸収層が光吸収層45である点で実施の形態1の電界吸収型変調器16と異なる。光吸収層45はInGaAsBi/AlGaInAs多重量子井戸構造である。
 光吸収層45は、図7に示すように、InGaAsBiの量子井戸層13と、AlGaInAsのバリア層15が交互に積層されたInGaAsBi/AlGaInAs多重量子井戸構造である。量子井戸層13がInGaAsBiで構成され、バリア層15がAlGaInAsで構成される。
 実施の形態2の電界吸収型変調器16は、光吸収層45の量子井戸層13をInGaAsBiとすることで、実施の形態1と同様に変調器の吸収スペクトルの温度依存性がなくなり、アンクールド動作が可能である。実施の形態2の電界吸収型変調器16は、光吸収層45のバリア層15を伝導帯オフセットの大きいAlGaInAsとすることで、高い温度でも安定した動作を確保できる。
 光吸収層45の量子井戸層13はAlを含有せず、Biを含有していればよく、InGaAsBi以外のIII-V族半導体を用いてもよい。例えば、InGaPBi系混晶、InGaAsPBi系混晶等を用いることができる。また、量子井戸層13は1層に限らずこれらの材料を組み合わせて多層にしても良い。バリア層15はAlを含有していれば良く、AlGaInAs以外のIII-V族半導体を用いてもよい。例えば、AlGaInAsP系混晶などを用いることができる。また、バリア層15は1層に限らずこれらの材料を組み合わせて多層にしても良い。
 実施の形態2の電界吸収型変調器16は、光吸収層45の量子井戸層13にAlが含有されず、Biが含有されており、光吸収層45のバリア層15にAlが含有されているので、温度依存性が小さく、信頼性を向上させることができる。また、実施の形態2の電界吸収型変調器16は、光吸収層45のバリア層15にAlが含有されているので、実施の形態1の電界吸収型変調器16よりも高い温度でも安定した動作を確保できる。
 以上のように、実施の形態2の電界吸収型変調器16は、InP基板1に形成され、印加される電圧により入射光33を変調する電界吸収型変調器であって、印加される電圧により発生する電界により入射光33の一部を吸収する光吸収層45を備えている。実施の形態2の電界吸収型変調器16の光吸収層45は、量子井戸層13及びバリア層15が交互に積層された多重量子井戸構造であり、量子井戸層13がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成され、バリア層15がBiを含有せず、Alを含有する3元以上のIII-V族半導体混晶により構成される。実施の形態2の電界吸収型変調器16は、光吸収層45の量子井戸層13がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されるので、温度依存性が小さく、信頼性を向上させることができる。
実施の形態3.
 図8は本発明の実施の形態3に係る光半導体装置を示す斜視図であり、図9は図8の半導体レーザの活性層の断面構造を示す図である。実施の形態3の光半導体装置50は、n型のInP基板1に電界吸収型変調器16と分布帰還型(Distributed Feedback:DFB)の半導体レーザ17が集積されている光半導体装置である。電界吸収型変調器16は、実施の形態1の電界吸収型変調器16又は実施の形態2の電界吸収型変調器16と同じである。なお、図8では、電界吸収型変調器16の光吸収層が実施の形態1の光吸収層5の例を示した。半導体レーザ17は活性層18を有する。半導体レーザ17におけるn型クラッド層3~p型コンタクト層8までの半導体積層構造2は、電界吸収型変調器16の光吸収層5が活性層18に代わった構造になっている。電界吸収型変調器16はリッジ型導波路41を有しており、半導体レーザ17はリッジ型導波路42を有している。リッジ型導波路41とリッジ型導波路42は連続している。破線36bは、光吸収層5と活性層18における、表面の境界と断面構造の境界に平行な破線である。破線36aは光が出射する側の端を示し、破線36cは光が入射する側の端を示している。半導体レーザ17は破線36bから破線36cの範囲であり、電界吸収型変調器16は破線36aから破線36bの範囲である。
 半導体レーザ17は、n型のInP基板1と、InP基板1の上面(表面)に設けられた半導体積層構造2と、半導体積層構造2に設けられたSiOからなる絶縁膜9と、InP基板1の下面(裏面)に設けられたn側電極10と、半導体積層構造2に接続されたp側電極11とを備えている。半導体積層構造2は、n型のInP基板1の上に順に積層されたn型InPからなるn型クラッド層(第一のレーザクラッド層)3、i型InGaAsPの光導波路層(第一のレーザ光導波路層)4、活性層18、p型InGaAsPのp型光導波路層(第二のレーザ光導波路層)6、p型InPからなるp型クラッド層第二のレーザクラッド層)7、及びp型InGaAsからなるp型コンタクト層8を有する。半導体レーザ17の第一のレーザクラッド層(n型クラッド層3)、第一のレーザ光導波路層(光導波路層4)、活性層18、第二のレーザ光導波路層(p型光導波路層6)、第二のレーザクラッド層(p型クラッド層7)は、それぞれ、電界吸収型変調器16における、第一のクラッド層(n型クラッド層3)、第一の光導波路層(光導波路層4)、光吸収層5、45、第二の光導波路層(p型光導波路層6)、第二のクラッド層(p型クラッド層7)に接続されている。
 半導体レーザ17の活性層18は、図9に示すように、InGaAsPの量子井戸層19と、InGaAsPのバリア層20が交互に積層されたInGaAsP/InGaAsP多重量子井戸構造である。図9では、5層の量子井戸層19と4層のバリア層20を有する光吸収層5の例を示した。実施の形態3の光半導体装置50の製造工程は、実施の形態1で説明した電界吸収型変調器16の製造工程と同様である。ただし、電界吸収型変調器16の光吸収層5と半導体レーザ17の活性層18は、同時に形成されず個別に形成される。
 このような変調器とレーザを集積化した光半導体装置、すなわち電界吸収型変調器16及び半導体レーザ17が集積化された実施の形態3の光半導体装置50は、電界吸収型変調器16として実施の形態1または実施の形態2の構造を用いることで、実施の形態1または実施の形態2と同様の効果を得ることができる。
 変調器及びレーザが集積化された光半導体装置において、所望の変調器の光出力、消光比、伝送ペナルティなどを得るために、レーザの発振波長と変調器の吸収波長の差分Δλは数nmオーダーの精度が要求される。このため実施の形態3の光半導体装置50は、半導体レーザ17の活性層18にBiを含まないIII-V族半導体を用いることで、半導体レーザ17の発振波長には温度依存性を持たせる。一方、電界吸収型変調器16として実施の形態1または実施の形態2の構造を用いることで、電界吸収型変調器16が吸収する光の波長である吸収波長には温度依存性を持たせない。したがって、実施の形態3の光半導体装置50では、温度を変動させることで電界吸収型変調器16の吸収波長は一定のまま、レーザの発振波長を変化させることができる。すなわち、実施の形態3の光半導体装置50は、温度を変動させることで電界吸収型変調器16の吸収波長は一定のまま、レーザの発振波長を補償することができる。さらに、実施の形態3の光半導体装置50は、半導体レーザ17の発振波長、電界吸収型変調器16の吸収波長の作製誤差によるΔλのズレを温度変調により補償することができ、要求される作製精度が緩和される。
 半導体レーザ17の活性層18はBiが含まれていなければよく、InGaAsP以外のIII-V族半導体を用いてもよい。例えば、AlGaInAs系混晶などを用いることもできる。また、量子井戸層19及びバリア層20の各層は1層に限らずこれらの材料を組み合わせて多層にしても良い。
実施の形態4.
 図10は、本発明の実施の形態4に係る光半導体装置を示す斜視図である。実施の形態4の光半導体装置50は、n型のInP基板1に2つの第二の半導体レーザ21a、21bと、第二の半導体レーザ21a、21bから出射される異なる波長のレーザ光を導く導波路を結合する結合器であるY型結合器22が集積されている光半導体装置であり、多波長集積光半導体装置である。第二の半導体レーザ21a、21bは、電界吸収型変調器が集積された半導体レーザであり、具体的には電界吸収型変調器16及び半導体レーザ17が集積された実施の形態3の光半導体装置50である。電界吸収型変調器16は、実施の形態1の電界吸収型変調器16又は実施の形態2の電界吸収型変調器16と同じである。なお、図10では、電界吸収型変調器16の光吸収層が実施の形態1の光吸収層5の例を示した。Y型結合器22は、透明導波路層23を有する。
 Y型結合器22におけるn型クラッド層3~p型コンタクト層8までの半導体積層構造2は、電界吸収型変調器16の光吸収層5が透明導波路層23に代わった構造になっている。第二の半導体レーザ21aの電界吸収型変調器16はリッジ型導波路41aを有しており、第二の半導体レーザ21bの電界吸収型変調器16はリッジ型導波路41bを有している。Y型結合器22は、リッジ型導波路46a、46b、46cを有している。リッジ型導波路41aとリッジ型導波路46aは連続しており、リッジ型導波路41bとリッジ型導波路46bは連続している。リッジ型導波路46cは、リッジ型導波路46a、46bと連結されている。破線36eは、透明導波路層23と光吸収層5における、表面の境界と断面構造の境界に平行な破線である。破線36fは、光吸収層5と活性層18における、表面の境界と断面構造の境界に平行な破線である。破線36dは光が出射する側の端を示し、破線36gは光が入射する側の端を示している。なお、破線36g及び破線36dは、図10における左側では光半導体装置50の上側(表面側)に記載し、図10における右側では光半導体装置50の下側(裏面側)に記載した。破線36g及び破線36dは、光半導体装置50の上面(表面)及び右側面以外では省略した。
 図10において、第二の半導体レーザ21aは、破線36eから破線36gの範囲で、かつ破線36hから左側の領域である。図10において、第二の半導体レーザ21bは、破線36eから破線36gの範囲で、かつ破線36hから右側の領域である。半導体レーザ17は、第二の半導体レーザ21a及び第二の半導体レーザ21bにおける其々の破線36fから破線36gの範囲である。電界吸収型変調器16は、第二の半導体レーザ21a及び第二の半導体レーザ21bにおける其々の破線36eから破線36fの範囲である。Y型結合器22は、破線36dから破線36eの範囲である。
 Y型結合器22は、n型のInP基板1と、InP基板1の上面(表面)に設けられた半導体積層構造2と、半導体積層構造2に設けられたSiOからなる絶縁膜9と、InP基板1の下面(裏面)に設けられたn側電極10と、半導体積層構造2に接続されたp側電極11とを備えている。半導体積層構造2は、n型のInP基板1の上に順に積層されたn型InPからなるn型クラッド層(第一の結合器クラッド層)3、i型InGaAsPの光導波路層(第一の結合器光導波路層)4、透明導波路層23、p型InGaAsPのp型光導波路層(第二の結合器光導波路層)6、p型InPからなるp型クラッド層第二の結合器クラッド層)7、及びp型InGaAsからなるp型コンタクト層8を有する。Y型結合器22の第一の結合器クラッド層(n型クラッド層3)、第一の結合器光導波路層(光導波路層4)、透明導波路層23、第二の結合器光導波路層(p型光導波路層6)、第二の結合器クラッド層(p型クラッド層7)は、それぞれ、第二の半導体レーザ21a、21bの電界吸収型変調器16における、第一のクラッド層(n型クラッド層3)、第一の光導波路層(光導波路層4)、光吸収層5、45、第二の光導波路層(p型光導波路層6)、第二のクラッド層(p型クラッド層7)に接続されている。実施の形態4の光半導体装置50の製造工程は、実施の形態1で説明した電界吸収型変調器16の製造工程と同様である。ただし、電界吸収型変調器16の光吸収層5、半導体レーザ17の活性層18、Y型結合器22の透明導波路層23は、同時に形成されず個別に形成される。
 本実施の形態の効果を比較例と比較して説明する。図11は比較例2の光通信構成を示す図である。比較例2では複数の半導体レーザ106a、106bから出射した光110a、110bがそれぞれコリメートレンズ107a、107bでコリメート光とされ、集光レンズ108において一本の光ファイバ109に結合される。このような比較例2の構成を用いた場合には、小型化が困難であり、また、半導体レーザ106a、106b、コリメートレンズ107a、107b、波長選択フィルタ(図示せず)、集光レンズ108間での多数の光学的な調整作業が必要となるため、作業コストの点で不利である。
 一方、本実施の形態4の光半導体装置50(多波長集積光半導体装置)は、複数の異なる波長のレーザ光が同一基板に形成された複数の半導体レーザ17から出射され、これらを例えばY型結合器22等の結合器により外部の一点へ集光させることができる。これにより、本実施の形態4の光半導体装置50は、コリメートレンズ107a、107b、または集光レンズ108などの合波デバイスを用いることなく波長多重が可能となる。本実施の形態4の光半導体装置50は、複数の半導体レーザ17をワンチップに集積することができるため、小型でかつ高密度な集積が可能である。
 このようなレーザ、変調器、結合器を集積した多波長集積光半導体装置、すなわち半導体レーザ17、電界吸収型変調器16、Y型結合器22が集積化された実施の形態4の光半導体装置50は、第二の半導体レーザ21a、21bとして、実施の形態3の構造を用いることで、実施の形態3と同様の効果を得ることができる。
 なお、実施の形態4では複数の異なる波長のレーザ光を集光して1つの導波路に結合する結合器としてY型結合器22を用いているが、これ以外にも多モード干渉導波路(Multi Mode Interference:MMI)などを用いることができる。また、実施の形態4では、第二の半導体レーザ21a、21bを2つ集積した光半導体装置50の例を示したが、集積する第二の半導体レーザ21a、21bの数は2つ以上でもよい。例えば、第二の半導体レーザ21a(又は21b)を4つ集積した4波長集積光半導体装置とすることもできる。
 なお、実施の形態1~4では、電界吸収型変調器16、半導体レーザ17の構造として、リッジ型導波路を採用したが、コア層をメサ型にパターニングしたハイメサ型導波路にすることも可能である。また、電界吸収型変調器16、半導体レーザ17におけるストライプメサ構造体の埋込構造に、半絶縁体埋込へテロ(SI-BH)構造や、半絶縁性プレーナ型埋込へテロ(PN-BH)構造を採用することも可能である。また、電界吸収型変調器16、半導体レーザ17は、これらの構造を組み合わせることも可能である。また、電界吸収型変調器16の光吸収層5及び半導体レーザ17の活性層18には、多重量子井戸構造以外に、バルク構造、量子細線構造、量子ドット構造、及びこれらを組み合わせた構造を適用することも可能である。
実施の形態5.
 図12は、本発明の実施の形態5に係る光モジュールを示す図である。実施の形態5の光モジュール80は、光半導体装置50、光半導体装置50を搭載するチップキャリア25、チップキャリア25を搭載するステム81、レンズ27、レンズ27を保持しステム81の表面側を覆うレンズフォルダ28、光半導体装置50に接続する端子82を備えている。レンズフォルダ28は、光半導体装置50、チップキャリア25を覆うようにステム81に配置されている。図12では、レンズ27、レンズフォルダ28は断面で示した。光半導体装置50が、50Ωの終端抵抗がついた窒化アルミニウム(AlN)製のチップキャリア25にAuSnはんだで搭載される。チップキャリア25は例えば板状である。ステム81は円筒形のパッケージ土台であり、ステム81の材料は冷間圧延鋼板(SPC)などの金属である。端子82は、ステム81に貫通または接続されている。
 このような光モジュール80において、光デバイスである光半導体装置50として、実施の形態3、4の構造を用いることで、実施の形態3、4と同様の効果を得ることができる。
 また、光モジュール80に実施の形態1、2の電界吸収型変調器16を搭載することもできる。図13は、本発明の実施の形態5に係る他の光モジュールを示す図である。図13に示した他の光モジュール80は、電界吸収型変調器16、半導体レーザ17、電界吸収型変調器16及び半導体レーザ17を搭載するチップキャリア25、チップキャリア25を搭載するステム81、レンズ27、レンズ27を保持しステム81の表面側を覆うレンズフォルダ28、電界吸収型変調器16及び半導体レーザ17に接続する端子82を備えている。レンズフォルダ28は、電界吸収型変調器16、半導体レーザ17、チップキャリア25を覆うようにステム81に配置されている。図13に示した光モジュール80において、光デバイスである電界吸収型変調器16として、実施の形態1、2の構造を用いることで、実施の形態1、2と同様の効果を得ることができる。
 以上のように、実施の形態5の光モジュール80は、ステム81と、ステム81に搭載されたチップキャリア25と、チップキャリア25に搭載された光デバイス(電界吸収型変調器16、光半導体装置50)と、レンズ27を保持し、光デバイス(電界吸収型変調器16、光半導体装置50)及びチップキャリア25を覆うようにステム81に配置されたレンズフォルダ28と、を備えている。実施の形態5の光モジュール80の光デバイスは、実施の形態1、2の電界吸収型変調器16又は、実施の形態3、4の光半導体装置50である。実施の形態5の光モジュール80は、光デバイス(電界吸収型変調器16、光半導体装置50)における光吸収層5がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されている、又は光吸収層45の量子井戸層13がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されている。実施の形態5の光モジュール80は、光デバイス(電界吸収型変調器16、光半導体装置50)の光吸収層5又は光吸収層45の量子井戸層13が、Alを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されるので、温度依存性が小さく、信頼性を向上させることができる。
実施の形態6.
 図14は、本発明の実施の形態6に係る光モジュールを示す図である。実施の形態6の光モジュール80は、光半導体装置50、光半導体装置50を搭載するチップキャリア25、チップキャリア25に接続されたペルチェクーラー等の温度制御機構29、温度制御機構29及びチップキャリア25を搭載するステム81、レンズ27、レンズ27を保持しステム81の表面側を覆うレンズフォルダ28、光半導体装置50等に接続する端子82を備えている。レンズフォルダ28は、光半導体装置50、チップキャリア25、温度制御機構29を覆うようにステム81に配置されている。図14では、レンズ27、レンズフォルダ28は断面で示した。光半導体装置50が、50Ωの終端抵抗がついた窒化アルミニウム(AlN)製のチップキャリア25にAuSnはんだで搭載される。実施の形態6の光モジュール80は、温度制御機構29を備え、チップキャリア25が温度制御機構29に搭載される点で、実施の形態5の光モジュール80と異なる。端子82には温度制御機構29に接続する端子もある。
 このような光モジュール80において、光デバイスである光半導体装置50として、実施の形態3、4の構造を用いることで、実施の形態3、4と同様の効果を得ることができる。すなわち、実施の形態6の光モジュール80は、温度制御機構29による光半導体装置50の温度調整を実行しなくても、実施の形態3、4と同様の効果を得ることができる。また、実施の形態6の光モジュール80は、温度制御機構29により光半導体装置50の温度を変動させることで、実施の形態3で説明したように、電界吸収型変調器16の吸収波長は一定のまま、半導体レーザ17の発振波長を変化させることができる。実施の形態6の光モジュール80は、半導体レーザ17の発振波長、電界吸収型変調器16の吸収波長の作製誤差によるΔλのズレを温度変調により補償することができ、要求される作製精度が緩和される。
 また、光モジュール80に実施の形態1、2の電界吸収型変調器16を搭載することもできる。図15は、本発明の実施の形態6に係る他の光モジュールを示す図である。図15に示した他の光モジュール80は、電界吸収型変調器16、半導体レーザ17、電界吸収型変調器16及び半導体レーザ17を搭載するチップキャリア25、チップキャリア25に接続されたペルチェクーラー等の温度制御機構29、温度制御機構29及びチップキャリア25を搭載するステム81、レンズ27、レンズ27を保持しステム81の表面側を覆うレンズフォルダ28、電界吸収型変調器16及び半導体レーザ17等に接続する端子82を備えている。レンズフォルダ28は、電界吸収型変調器16、半導体レーザ17、チップキャリア25、温度制御機構29を覆うようにステム81に配置されている。図13に示した光モジュール80において、光デバイスである電界吸収型変調器16として、実施の形態1、2の構造を用いることで、実施の形態1、2と同様の効果を得ることができる。すなわち、実施の形態6の光モジュール80は、温度制御機構29による光半導体装置50の温度調整を実行しなくても、実施の形態1、2と同様の効果を得ることができる。
 また、図15に示した実施の形態6の他の光モジュール80は、光デバイスである電界吸収型変調器16として、実施の形態1、2の構造を用い、かつ光デバイスである半導体レーザ17として実施の形態3、4のレーザ構造を用いる場合は、温度制御機構29により電界吸収型変調器16及び半導体レーザ17の温度を変動させることで、実施の形態3で説明したように、電界吸収型変調器16の吸収波長は一定のまま、半導体レーザ17の発振波長を変化させることができる。実施の形態6の他の光モジュール80は、半導体レーザ17の発振波長、電界吸収型変調器16の吸収波長の作製誤差によるΔλのズレを温度変調により補償することができ、要求される作製精度が緩和される。
 以上のように、実施の形態6の光モジュール80は、ステム81と、ステム81に搭載された温度制御機構29と、温度制御機構29に搭載されたチップキャリア25と、チップキャリア25に搭載された光デバイス(光半導体装置50、単体の電界吸収型変調器16、単体の半導体レーザ17)と、レンズ27を保持し、光デバイス(光半導体装置50、単体の電界吸収型変調器16、単体の半導体レーザ17)、チップキャリア25及び温度制御機構29を覆うようにステムに配置されたレンズフォルダ28と、を備えている。実施の形態5の光モジュール80は、光デバイス(光半導体装置50、単体の電界吸収型変調器16)における光吸収層5がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されている、又は光吸収層45の量子井戸層13がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成される。更に実施の形態5の光モジュール80の光デバイス(光半導体装置50の半導体レーザ17、単体の半導体レーザ17)における活性層18がBiを含有しない3元以上のIII-V族半導体混晶により構成される。実施の形態6の光モジュール80は、光デバイスの光吸収層5又は光吸収層45の量子井戸層13がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されるので、温度依存性が小さく、信頼性を向上させることができる。また、実施の形態6の光モジュール80は、温度制御機構29により光デバイス(電界吸収型変調器16、光半導体装置50)の温度を変動させることで、電界吸収型変調器16の吸収波長は一定のまま、半導体レーザ17の発振波長を変化させることができる。
 なお、実施の形態5及び実施の形態6では、光モジュール80として、CAN(カン)パッケージである同軸型半導体光モジュールを採用したが、アイソレータを内蔵したレセプタクルやフレキシブル基板を設けたTOSA(Transmitter Optical SubAssembly)等としても良い。
 なお、本発明は、矛盾のない範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 1…InP基板、3…n型クラッド層、6…p型光導波路層、7…p型クラッド層、13…量子井戸層、14…バリア層、15…バリア層、16…電界吸収型変調器、17…半導体レーザ、18…活性層、21a、21b…第二の半導体レーザ、22…Y型結合器、23…透明導波路層、25…チップキャリア、27…レンズ、28…レンズフォルダ、29…温度制御機構、33…入射光、45…光吸収層、50…光半導体装置、80…光モジュール、81…ステム

Claims (19)

  1.  InP基板に形成され、印加される電圧により入射光を変調する電界吸収型変調器であって、
    印加される前記電圧により発生する電界により前記入射光の一部を吸収する光吸収層を備え、
    前記光吸収層は、Alを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されることを特徴とする電界吸収型変調器。
  2.  前記光吸収層は、量子井戸層及びバリア層が交互に積層された多重量子井戸構造であり、前記量子井戸層がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成されることを特徴とする請求項1記載の電界吸収型変調器。
  3.  InP基板に形成され、印加される電圧により入射光を変調する電界吸収型変調器であって、
    印加される前記電圧により発生する電界により前記入射光の一部を吸収する光吸収層を備え、
    前記光吸収層は、量子井戸層及びバリア層が交互に積層された多重量子井戸構造であり、
    前記量子井戸層がAlを含有せず、Biを含有する3元以上のIII-V族半導体混晶により構成され、
    前記バリア層がBiを含有せず、Alを含有する3元以上のIII-V族半導体混晶により構成されることを特徴とする電界吸収型変調器。
  4.  前記光吸収層は、InGaAsBiにより構成されることを特徴とする請求項1記載の電界吸収型変調器。
  5.  前記量子井戸層は、InGaAsBiにより構成されることを特徴とする請求項2または3に記載の電界吸収型変調器。
  6.  前記光吸収層は、InGaPBiにより構成されることを特徴とする請求項1記載の電界吸収型変調器。
  7.  前記量子井戸層は、InGaPBiにより構成されることを特徴とする請求項2または3に記載の電界吸収型変調器。
  8.  前記光吸収層は、InGaAsPBiにより構成されることを特徴とする請求項1記載の電界吸収型変調器。
  9.  前記量子井戸層は、InGaAsPBiにより構成されることを特徴とする請求項2または3に記載の電界吸収型変調器。
  10.  前記InP基板の表面に形成された第一のクラッド層と、前記第一のクラッド層の表面に形成された第一の光導波路層と、前記第一の光導波路層の表面に形成された前記光吸収層と、前記光吸収層の表面に形成された第二の光導波路層と、前記第二の光導波路層の表面に形成された第二のクラッド層を備えたことを特徴とする請求項1から9のいずれか1項に記載の電界吸収型変調器。
  11.  請求項10記載の電界吸収型変調器と、前記電界吸収型変調器が形成された前記InP基板に形成された半導体レーザとを備え、
    前記半導体レーザは、
    前記InP基板の表面に形成された第一のレーザクラッド層と、前記第一のレーザクラッド層の表面に形成された第一のレーザ光導波路層と、前記第一のレーザ光導波路層の表面に形成された活性層と、前記活性層の表面に形成された第二のレーザ光導波路層と、前記第二のレーザ光導波路層の表面に形成された第二のレーザクラッド層を備え、
    前記第一のレーザクラッド層、前記第一のレーザ光導波路層、前記活性層、前記第二のレーザ光導波路層、前記第二のレーザクラッド層は、それぞれ、前記電界吸収型変調器における、前記第一のクラッド層、前記第一の光導波路層、前記光吸収層、前記第二の光導波路層、前記第二のクラッド層に接続されていることを特徴とする光半導体装置。
  12.  請求項1から9のいずれか1項に記載の電界吸収型変調器と、前記電界吸収型変調器が形成された前記InP基板に形成された半導体レーザとを備え、
    前記半導体レーザの活性層は、前記電界吸収型変調器の前記光吸収層に接続されていることを特徴とする光半導体装置。
  13.  請求項11または12に記載の光半導体装置を同一のInP基板に2つ以上集積されたことを特徴とする光半導体装置。
  14.  請求項12記載の光半導体装置である第二の半導体レーザが同一のInP基板に2つ以上集積され、
    前記第二の半導体レーザから出射された異なる波長のレーザ光を導く導波路を結合する結合器が前記同一のInP基板に集積されたことを特徴とする光半導体装置。
  15.  請求項11記載の光半導体装置である第二の半導体レーザが同一のInP基板に2つ以上集積され、
    前記第二の半導体レーザから出射された異なる波長のレーザ光を導く導波路を結合する結合器が前記同一のInP基板に集積されたことを特徴とする光半導体装置。
  16.  前記結合器は、
    前記InP基板の表面に形成された第一の結合器クラッド層と、前記第一の結合器クラッド層の表面に形成された第一の結合器光導波路層と、前記第一の結合器光導波路層の表面に形成された透明導波路層と、前記透明導波路層の表面に形成された第二の結合器光導波路層と、前記第二の結合器光導波路層の表面に形成された第二の結合器クラッド層を備え、
    前記第一の結合器クラッド層、前記第一の結合器光導波路層、前記透明導波路層、前記第二の結合器光導波路層、前記第二の結合器クラッド層は、それぞれ、前記第二の半導体レーザの前記電界吸収型変調器における、前記第一のクラッド層、前記第一の光導波路層、前記光吸収層、前記第二の光導波路層、前記第二のクラッド層に接続されていることを特徴とする請求項15記載の光半導体装置。
  17.  ステムと、前記ステムに搭載されたチップキャリアと、前記チップキャリアに搭載された光デバイスと、レンズを保持し、前記光デバイス及び前記チップキャリアを覆うように前記ステムに配置されたレンズフォルダと、を備え、
    前記光デバイスは、
    請求項1から10のいずれか1項に記載の電界吸収型変調器、または請求項11から16のいずれか1項に記載の光半導体装置であることを特徴とする光モジュール。
  18.  請求項17記載の光モジュールにおいて、
    ペルチェクーラーが搭載されていないことを特徴とする光モジュール。
  19.  ステムと、前記ステムに搭載された温度制御機構と、前記温度制御機構に搭載されたチップキャリアと、前記チップキャリアに搭載された光デバイスと、レンズを保持し、前記光デバイス、前記チップキャリア及び前記温度制御機構を覆うように前記ステムに配置されたレンズフォルダと、を備え、
    前記光デバイスは、
    請求項11から16のいずれか1項に記載の光半導体装置であり、かつ前記半導体レーザの活性層がBiを含有しない3元以上のIII-V族半導体混晶により構成されることを特徴とする光モジュール。
PCT/JP2017/043469 2017-12-04 2017-12-04 電界吸収型変調器、光半導体装置及び光モジュール WO2019111295A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780097327.7A CN111418120B (zh) 2017-12-04 2017-12-04 电场吸收型调制器、光半导体装置及光模块
US16/755,378 US11398713B2 (en) 2017-12-04 2017-12-04 Electro-absorption modulator, optical semiconductor device and optical module
PCT/JP2017/043469 WO2019111295A1 (ja) 2017-12-04 2017-12-04 電界吸収型変調器、光半導体装置及び光モジュール
JP2019557720A JP6827562B2 (ja) 2017-12-04 2017-12-04 電界吸収型変調器、光半導体装置及び光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043469 WO2019111295A1 (ja) 2017-12-04 2017-12-04 電界吸収型変調器、光半導体装置及び光モジュール

Publications (1)

Publication Number Publication Date
WO2019111295A1 true WO2019111295A1 (ja) 2019-06-13

Family

ID=66751341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043469 WO2019111295A1 (ja) 2017-12-04 2017-12-04 電界吸収型変調器、光半導体装置及び光モジュール

Country Status (4)

Country Link
US (1) US11398713B2 (ja)
JP (1) JP6827562B2 (ja)
CN (1) CN111418120B (ja)
WO (1) WO2019111295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989068B1 (ja) * 2021-05-13 2022-01-05 三菱電機株式会社 光半導体装置
JP7246591B1 (ja) * 2022-09-27 2023-03-27 三菱電機株式会社 光半導体装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11340400B2 (en) * 2019-03-06 2022-05-24 Massachusetts Institute Of Technology Hybrid integration for photonic integrated circuits
JP2022035660A (ja) * 2020-08-21 2022-03-04 住友電気工業株式会社 量子カスケードレーザ
CN114188823A (zh) * 2021-11-03 2022-03-15 江苏华兴激光科技有限公司 无制冷抗反射InP基量子点/量子阱耦合EML外延片的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098405A (ja) * 1995-06-16 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> 半導体混晶
JP2004221413A (ja) * 2003-01-16 2004-08-05 Fujitsu Ltd 分布帰還型半導体レーザ
JP2006165375A (ja) * 2004-12-09 2006-06-22 Nippon Telegr & Teleph Corp <Ntt> 半導体薄膜構造とその製造方法
JP2010114295A (ja) * 2008-11-07 2010-05-20 Fujitsu Ltd 光導波路素子の製造方法
JP2013165104A (ja) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp 半導体受光素子
US20150155420A1 (en) * 2013-12-03 2015-06-04 Arizona Board Of Regents On Behalf Of Arizona State University Optical device based on bismuth-containing iii-v compound multilayer semiconductors

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115335A (en) * 1990-06-29 1992-05-19 The United States Of America As Represented By The Secretary Of The Air Force Electrooptic fabry-perot pixels for phase-dominant spatial light modulators
JP3263949B2 (ja) * 1991-02-25 2002-03-11 日本電気株式会社 光集積回路の製造方法
CA2132043C (en) * 1993-09-17 1999-03-23 Toshihiko Ouchi Method and apparatus for frequency modulating a semiconductor laser, and an optical communication system using the same
JP3204485B2 (ja) * 1995-03-31 2001-09-04 キヤノン株式会社 光半導体装置及びその作製方法
KR100228396B1 (ko) * 1996-12-21 1999-11-01 정선종 선택성 식각층을 이용한 고 효율의 광변조기 집적 단일파장 레이저 소자 제작방법
JP3414992B2 (ja) * 1997-08-13 2003-06-09 日本電信電話株式会社 半導体光素子とその製造方法
DE59901985D1 (de) * 1998-05-26 2002-08-14 Infineon Technologies Ag Hochfrequenz-Lasermodul und Verfahren zur Herstellung desselben
JP3191784B2 (ja) * 1998-10-29 2001-07-23 日本電気株式会社 回折格子の製造方法及び半導体レーザの製造方法
US6501776B1 (en) * 1999-01-29 2002-12-31 Canon Kabushiki Kaisha Temperature-insensitive semiconductor laser
JP2000223787A (ja) 1999-01-29 2000-08-11 Canon Inc 半導体レーザー
JP2001068661A (ja) * 1999-08-27 2001-03-16 Canare Electric Co Ltd 量子波干渉層を有した半導体素子
SG93242A1 (en) * 2000-06-21 2002-12-17 Univ Singapore Multi-wavelength semiconductor lasers
JP2002246695A (ja) * 2001-02-13 2002-08-30 Canon Inc 多孔質基板を用いた半導体デバイスの作製法及び半導体デバイス
JP2002329937A (ja) * 2001-05-07 2002-11-15 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2003037329A (ja) * 2001-07-24 2003-02-07 Hitachi Cable Ltd 光送信器
GB2379795B (en) * 2001-09-13 2004-02-18 Univ Glasgow Method of manufacturing optical devices and related improvements
JP4330376B2 (ja) * 2002-10-22 2009-09-16 富士通株式会社 光半導体装置及びその駆動方法
JP2004273993A (ja) * 2003-03-12 2004-09-30 Hitachi Ltd 波長可変分布反射型半導体レーザ装置
JP4617636B2 (ja) * 2003-03-19 2011-01-26 住友電気工業株式会社 光モジュール
JP2004349485A (ja) * 2003-05-22 2004-12-09 Toyoda Gosei Co Ltd レーザダイオード素子
JP2006216862A (ja) * 2005-02-04 2006-08-17 Nec Corp 変調器集積面発光レーザ
JP2006310534A (ja) * 2005-04-28 2006-11-09 Nec Corp 半導体積層構造および半導体光素子
JP2007157749A (ja) * 2005-11-30 2007-06-21 Toshiba Corp 発光素子
JP4934344B2 (ja) * 2006-04-07 2012-05-16 日本オプネクスト株式会社 半導体光集積素子及び半導体光集積デバイス
US20080137178A1 (en) * 2006-12-06 2008-06-12 Yong Duck Chung Reflection-type optical modulator module
JP4998238B2 (ja) * 2007-12-07 2012-08-15 三菱電機株式会社 集積型半導体光素子
WO2009119172A1 (ja) * 2008-03-28 2009-10-01 日本電気株式会社 面発光レーザ
JP2010225991A (ja) * 2009-03-25 2010-10-07 Sumitomo Electric Device Innovations Inc 多波長レーザ装置
GB0911134D0 (en) * 2009-06-26 2009-08-12 Univ Surrey Optoelectronic devices
US8654807B2 (en) * 2010-11-18 2014-02-18 The Board Of Trustees Of The Leland Stanford Junior University Electrical devices formed using ternary semiconducting compounds
KR20120125057A (ko) * 2011-05-06 2012-11-14 한국전자통신연구원 파장가변 외부공진 레이저
US8687665B1 (en) * 2011-09-15 2014-04-01 Sandia Corporation Mutually injection locked lasers for enhanced frequency response
JP2013165164A (ja) 2012-02-10 2013-08-22 Taiyo Ink Mfg Ltd 配線回路、配線基板及び配線基板の製造方法
CN102955268B (zh) * 2012-10-29 2015-10-28 上海交通大学 基于金属纳米波导的表面等离子光学调制器
US8948227B2 (en) * 2013-01-11 2015-02-03 Source Photonics, Inc. Isolated modulator electrodes for low power consumption
US8976830B2 (en) * 2013-03-13 2015-03-10 Finisar Corporation Lasers with GaPSb barrier layers
CN103367520A (zh) * 2013-06-27 2013-10-23 中国科学院上海微系统与信息技术研究所 InP基截止波长大范围可调的晶格匹配InGaAsBi探测器结构及其制备
CN103401144B (zh) * 2013-08-13 2015-12-23 中国科学院苏州纳米技术与纳米仿生研究所 红外半导体激光器有源区、半导体激光器及其制作方法
US9625671B2 (en) * 2013-10-23 2017-04-18 Lasermax, Inc. Laser module and system
JP6325276B2 (ja) * 2014-02-18 2018-05-16 日本オクラロ株式会社 半導体光素子及び半導体光素子の製造方法
US9762027B2 (en) * 2014-04-30 2017-09-12 Finisar Corporation Beam steering modulated VCSEL
CN104538835A (zh) * 2014-12-09 2015-04-22 中国科学院上海技术物理研究所 一种线性吸收fm激光稳频系统及方法
US20170031118A1 (en) * 2015-07-31 2017-02-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Optoelectronic components housed in a to-can package
EP3407122B1 (en) * 2017-05-23 2021-07-14 Nokia Solutions and Networks Oy Method for manufacturing an electro-absorption modulator
US10461495B2 (en) * 2018-03-02 2019-10-29 Cisco Technology, Inc. Substrate technology for quantum dot lasers integrated on silicon
CN109449223B (zh) * 2018-10-26 2019-11-29 超晶科技(北京)有限公司 铟镓氮铋材料和使用该材料的激光器和探测器及制备方法
TWI742714B (zh) * 2019-06-11 2021-10-11 全新光電科技股份有限公司 半導體雷射二極體

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098405A (ja) * 1995-06-16 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> 半導体混晶
JP2004221413A (ja) * 2003-01-16 2004-08-05 Fujitsu Ltd 分布帰還型半導体レーザ
JP2006165375A (ja) * 2004-12-09 2006-06-22 Nippon Telegr & Teleph Corp <Ntt> 半導体薄膜構造とその製造方法
JP2010114295A (ja) * 2008-11-07 2010-05-20 Fujitsu Ltd 光導波路素子の製造方法
JP2013165104A (ja) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp 半導体受光素子
US20150155420A1 (en) * 2013-12-03 2015-06-04 Arizona Board Of Regents On Behalf Of Arizona State University Optical device based on bismuth-containing iii-v compound multilayer semiconductors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989068B1 (ja) * 2021-05-13 2022-01-05 三菱電機株式会社 光半導体装置
WO2022239208A1 (ja) * 2021-05-13 2022-11-17 三菱電機株式会社 光半導体装置
JP7246591B1 (ja) * 2022-09-27 2023-03-27 三菱電機株式会社 光半導体装置
WO2024069755A1 (ja) * 2022-09-27 2024-04-04 三菱電機株式会社 光半導体装置

Also Published As

Publication number Publication date
CN111418120A (zh) 2020-07-14
CN111418120B (zh) 2022-10-21
JPWO2019111295A1 (ja) 2020-09-10
US11398713B2 (en) 2022-07-26
US20210175682A1 (en) 2021-06-10
JP6827562B2 (ja) 2021-02-10

Similar Documents

Publication Publication Date Title
WO2019111295A1 (ja) 電界吸収型変調器、光半導体装置及び光モジュール
US5381434A (en) High-temperature, uncooled diode laser
US5912913A (en) Vertical cavity surface emitting laser, optical transmitter-receiver module using the laser, and parallel processing system using the laser
US6256331B1 (en) Semiconductor laser device, optical communication system using the same, and method for producing compound semiconductor
US8488918B2 (en) Semiconductor optical device, optical transmitter module, optical transceiver module, and optical transmission equipment
US7542201B2 (en) Semiconductor optical amplification device and optical integrated circuit
US5661741A (en) Semiconductor light emitting device, laser amplifier, and integrated light amplifier and wavelength variable filter
US7733933B2 (en) Wavelength tunable laser apparatus and wavelength control method
US7460576B2 (en) Semiconductor optical amplifier
US20130033743A1 (en) Opto-Electronic Device
JP5243901B2 (ja) 同軸型半導体光モジュール
CN105830292B (zh) 半导体激光器元件、半导体激光器模块、以及波长可变激光器组件
US8576472B2 (en) Optoelectronic device with controlled temperature dependence of the emission wavelength and method of making same
JP7246591B1 (ja) 光半導体装置
JP2006203100A (ja) 半導体レーザおよび光送信器モジュール
US20190165541A1 (en) Optical semiconductor integrated device, method of manufacturing optical semiconductor integrated device, and optical communication system
JP2002026461A (ja) 光半導体装置とその製造方法および光半導体装置を備えた光装置モジュール、光通信装置
JP2010114158A (ja) 電界吸収型光変調器集積レーザ素子の製造方法
US20220190560A1 (en) Gain medium structure for semiconductor optical amplifier with high saturation power
JP5550713B2 (ja) 同軸型半導体光モジュール
Yang et al. Lateral power-monitoring photodiode monolithically integrated into 1.3 μm GaInAsP laser
JP2012209583A (ja) レーザ素子及び光送信モジュール
JP2012109628A (ja) 電界吸収型光変調器集積レーザ素子
Luo et al. Compound-semiconductor-based optoelectronic devices for fiber telecommunications
JP2006080225A (ja) 自励発振型半導体レーザ、自励発振型半導体レーザの製造方法、光センサ装置、光伝送システム及び記録再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933978

Country of ref document: EP

Kind code of ref document: A1