WO2019107194A1 - プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法 - Google Patents

プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法 Download PDF

Info

Publication number
WO2019107194A1
WO2019107194A1 PCT/JP2018/042539 JP2018042539W WO2019107194A1 WO 2019107194 A1 WO2019107194 A1 WO 2019107194A1 JP 2018042539 W JP2018042539 W JP 2018042539W WO 2019107194 A1 WO2019107194 A1 WO 2019107194A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte layer
proton
hydrogen electrode
electrode
Prior art date
Application number
PCT/JP2018/042539
Other languages
English (en)
French (fr)
Inventor
孝浩 東野
陽平 野田
千尋 平岩
奈保 水原
光靖 小川
博匡 俵山
真嶋 正利
哲也 宇田
東麟 韓
崇之 大西
Original Assignee
国立大学法人京都大学
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 住友電気工業株式会社 filed Critical 国立大学法人京都大学
Priority to JP2019557154A priority Critical patent/JP7225113B2/ja
Priority to CN201880077113.8A priority patent/CN111418027B/zh
Priority to US16/767,747 priority patent/US11545690B2/en
Priority to EP18883724.9A priority patent/EP3719815A4/en
Publication of WO2019107194A1 publication Critical patent/WO2019107194A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/042Hydrogen or oxygen by electrolysis of water by electrolysis of steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • C25B13/07Diaphragms; Spacing elements characterised by the material based on inorganic materials based on ceramics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a proton conductor, a proton conductive cell structure, a steam electrolysis cell, and a method of manufacturing a hydrogen electrode-solid electrolyte layer composite.
  • a proton conductive metal oxide having a perovskite structure is a solid electrolyte applicable to PCFC (Protonic Ceramic Fuel Cells, proton conductive oxide fuel cell) using hydrogen ion (proton) as charge carrier It is known (patent document 1 and patent document 2).
  • the proton conductor of the present disclosure has a perovskite structure and is represented by the following formula (1): A x B 1-y M y O 3- ⁇ (1) Containing a metal oxide represented by The element A is at least one selected from the group consisting of Ba, Ca and Sr, The element B is at least one selected from the group consisting of Ce and Zr, The element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In and Sc, ⁇ is the amount of oxygen deficiency, and 0.95 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5.
  • a proton conducting cell structure of the present disclosure comprises an oxygen electrode, a hydrogen electrode, and the proton conductor of the present disclosure interposed between the oxygen electrode and the hydrogen electrode.
  • the steam electrolysis cell of the present disclosure comprises the proton conducting cell structure of the present disclosure.
  • a method of producing a hydrogen electrode-solid electrolyte layer complex of the present disclosure is A first step of obtaining a cell precursor in which a porous first solid electrolyte layer and a dense second solid electrolyte layer are integrated; And b) providing a nickel component in the pores of the first solid electrolyte layer,
  • Each of the first solid electrolyte layer and the second solid electrolyte layer has a perovskite structure, and the following formula (1): A x B 1-y M y O 3- ⁇ (1) Containing a metal oxide represented by The element A is at least one selected from the group consisting of Ba, Ca and Sr, The element B is at least one selected from the group consisting of Ce and Zr, The element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In and Sc, ⁇ is the amount of oxygen deficiency, and 0.95 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5.
  • FIG. 7 shows an Arrhenius plot of a proton conductor according to an embodiment of the present disclosure. It is a figure which shows the relationship of the atmospheric temperature and ion transport number in the proton conductor which concerns on one Embodiment of this indication. It is a figure which shows the relationship of the ratio ( RNi ) of Ni contained in the proton conductor which concerns on one Embodiment of this indication, and the total conductivity in 600 degreeC in hydrogen atmosphere.
  • FIG. 6 is a view showing the relationship between Y concentration and R Ni in a solid electrolyte layer included in a hydrogen electrode-solid electrolyte layer complex according to an embodiment of the present disclosure.
  • the cell structure is formed by co-sintering the hydrogen electrode and the solid electrolyte layer.
  • the proton conductivity of the metal oxide decreases. Since Ni diffused into the proton conductive metal oxide also reduces the ion transport number, leak current may increase. Therefore, when using a cell structure for a steam electrolysis cell, electrolysis efficiency falls easily.
  • the proton conductive metal oxide is yttrium-doped barium zirconate
  • sintering is usually performed at a temperature of 1600 ° C. or more in consideration of low sinterability. At that time, the loss of Ba by evaporation may cause a decrease in ion transport number and proton conductivity.
  • the proton conductor according to the present disclosure When the proton conductor according to the present disclosure is applied to a steam electrolysis cell and / or a fuel cell, a high ion transport number is obtained, and current efficiency is improved. Further, according to the method of manufacturing a hydrogen electrode-solid electrolyte layer complex according to the present disclosure, a proton conductive cell structure excellent in current efficiency can be formed.
  • the present invention relates to a proton conductor having a perovskite structure and containing a metal oxide represented by the formula (1): A x B 1 -yM y O 3- ⁇ .
  • the element A is at least one selected from the group consisting of Ba, Ca and Sr
  • the element B is at least one selected from the group consisting of Ce and Zr
  • the element M is Y, Yb
  • the above equation (1) satisfies 0.95 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 0.5
  • is the amount of oxygen deficiency.
  • the proton conductor preferably has an ion transport number of 0.8 or more in a humidified oxygen atmosphere at 600 ° C.
  • the humidified oxygen atmosphere may be a mixed gas atmosphere of water vapor and oxygen, and the water vapor partial pressure 0.05 atm (5.0 ⁇ 10 3 Pa) and the oxygen partial pressure 0.95 atm (9.5 ⁇ 10 4 Pa) If it is the atmosphere of) it is good.
  • the element A may contain Ba
  • the element B may contain Zr
  • the element M may contain Y.
  • Another embodiment of the present disclosure relates to a proton conducting cell structure including an oxygen electrode, a hydrogen electrode, and the above-described proton conductor interposed between the oxygen electrode and the hydrogen electrode.
  • the hydrogen electrode may contain an element X which is different from any of the element A, the element B and the element M.
  • the element X is preferably an element which does not react with the proton conductor at a temperature of 1500 ° C. or more and lowers the activity of Ni. This can suppress the diffusion of Ni into the proton conductor. In addition, it is possible to prevent the formation of byproducts (for example, BaY 2 NiO 5 ) of the proton conductor and nickel.
  • the element X should just be an element which can form the compound containing Ni, for example.
  • the activity of Ni can be reduced by forming a compound containing Ni.
  • the element X preferably contains at least Mg. This is because Mg has a large effect of suppressing the diffusion of Ni into the proton conductor. Of the elements X, 90 atomic% or more is more preferably Mg.
  • the ratio of Ni: R Ni is preferably 1.0 atomic% or less.
  • Another embodiment of the present disclosure relates to a steam electrolysis cell provided with the above-mentioned proton conduction type cell structure.
  • Another embodiment of the present disclosure includes the steps of obtaining a cell precursor in which a porous first solid electrolyte layer and a dense second solid electrolyte layer are integrated, and a first solid electrolyte layer Applying a nickel component (metal Ni or nickel compound) in the pores of the first solid electrolyte layer and the second solid electrolyte layer each having a perovskite structure, and ):
  • a x B 1-y M y O 3- ⁇ containing metal oxide, element A is at least one selected from the group consisting of Ba, Ca and Sr, and element B is Ce And Zr, and at least one element selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In and Sc; And 0.95 ⁇ x ⁇ 1, 0 ⁇ ⁇ satisfy 0.5, hydrogen electrode - a method of manufacturing a solid electrolyte layer complex.
  • the diffusion of Ni into the solid electrolyte layer can be suppressed.
  • the hydrogen electrode-solid electrolyte layer composite obtained by this method is applied to a steam electrolysis cell and / or a fuel cell, high current efficiency is exhibited.
  • the ion transport number in the humidified oxygen atmosphere at 600 ° C. of the second solid electrolyte layer is preferably 0.8 or more. According to the method of producing a hydrogen electrode-solid electrolyte layer complex, it is easy to make the ion transport number of the second solid electrolyte layer 0.8 or more.
  • the step of obtaining a cell precursor comprises: a first paste layer containing a raw material of the first solid electrolyte layer and a pore former; and a second solid electrolyte layer And the step of obtaining a paste laminate by laminating the second paste layer not containing the pore forming material, and firing the paste laminate at 400.degree. C. to 1000.degree.
  • the step of applying the nickel component (metal Ni or nickel compound) in the pores is carried out after the nickel compound solution is contained in the pores, C. to 600.degree. C. may be included.
  • the proton conductor is a metal oxide having a perovskite structure (ABO 3 phase), and its composition is represented by the above formula (1).
  • the A site contains the element A
  • the B site contains the element B (not indicative of boron).
  • Part of the B site is substituted with the element M from the viewpoint of securing high proton conductivity.
  • the ratio x of the element A to the total of the element B and the element M is preferably 0.95 ⁇ x ⁇ 1, and 0.98 ⁇ x ⁇ 1 from the viewpoint of securing high proton conductivity and ion transport number. It is more preferable that In addition, when x does not exceed 1, precipitation of the element A is suppressed, and corrosion of the proton conductor due to the action of water can be suppressed. From the viewpoint of securing proton conductivity, y is preferably 0 ⁇ y ⁇ 0.5, and more preferably 0.1 ⁇ y ⁇ 0.3.
  • the element A is at least one selected from the group consisting of Ba (barium), Ca (calcium) and Sr (strontium).
  • element A preferably contains Ba in that excellent proton conductivity can be obtained, and the ratio of Ba to element A is preferably 50 atomic% or more, and 80 atomic% or more. Is more preferred. More preferably, the element A is composed of only Ba.
  • the element B is at least one selected from the group consisting of Ce (cerium) and Zr (zirconium). Among them, from the viewpoint of durability, the element B preferably contains Zr, and the ratio of Zr to the element B is preferably 50 atomic% or more, and more preferably 80 atomic% or more. More preferably, the element B is composed of only Zr.
  • the element M is selected from the group consisting of Y (yttrium), Yb (ytterbium), Er (erbium), Ho (holmium), Tm (thulium), Gd (gadolinium), In (indium) and Sc (scandium) At least one kind.
  • the element M is a dopant, which causes oxygen defects, and the metal oxide having a perovskite structure exhibits proton conductivity.
  • the oxygen deficiency amount ⁇ can be determined according to the amount of the element M, and for example, 0 ⁇ ⁇ ⁇ 0.15.
  • the ratio of each element in the metal oxide can be determined, for example, using wavelength dispersive X-ray spectroscopy (hereinafter referred to as WDX) using an electron probe microanalyzer.
  • Cerium Specific examples of metal oxides having a perovskite structure, barium zirconate yttrium doped [Ba x Zr 1-y Y y O 3- ⁇ (hereinafter, referred to as BZY)], yttrium-doped barium [Ba x Ce 1-y Y y O 3- ⁇ (BCY)], yttrium-doped barium zirconate / cerate mixed oxide of barium [Ba x Zr 1-y- z Ce z Y y O 3- ⁇ (BZCY)] and the like.
  • BZY barium zirconate yttrium doped
  • BCY yttrium-doped barium
  • BZCY barium zirconate / cerate mixed oxide of barium
  • the inventors examined a water vapor electrolysis cell using BZY for the solid electrolyte and a mixture of BZY and NiO for the hydrogen electrode, and in the cell manufactured by the conventional co-sintering method, the diffusion of Ni into BZY It is revealed that the ion transport number is lowered by this, and the actual current efficiency is lower than the current efficiency estimated from the physical value of BZY. Furthermore, we sought the necessary conditions for a putron conductor with high ion transport number and high current efficiency. As a result, new findings were obtained that the ion transport number in the humidified oxygen atmosphere decreases as the amount of deficiency of element A (particularly Ba) in the compound of the above formula (1) increases. In the steam electrolysis cell, it is important to secure the ion transport number in the humidified oxygen atmosphere of the solid electrolyte layer.
  • the proton conductor according to the present disclosure can ensure a high ion transport number even in a humidified oxygen atmosphere.
  • the ion transport number is the ratio of the amount of electricity carried by anions and cations to the total amount of electricity carried by electrons, holes, cations, and anions when current is applied to the electrolyte.
  • the ion transport number is 1.
  • the ion transport number indicates what percentage of the total electricity flowed by the protons and oxide ions.
  • the proton conducting cell structure 1 includes an oxygen electrode 2, a hydrogen electrode 3, and a solid electrolyte layer (proton conductor) 4 having proton conductivity and interposed between the oxygen electrode 2 and the hydrogen electrode 3. .
  • the solid electrolyte layer 4 is sandwiched between the oxygen electrode 2 and the hydrogen electrode 3, and one main surface of the solid electrolyte layer 4 is in contact with the hydrogen electrode 3, The main surface of the contact with the oxygen electrode 2.
  • the hydrogen electrode 3 and the solid electrolyte layer 4 are integrated by firing to form a composite 5 of the hydrogen electrode 3 and the solid electrolyte layer 4.
  • the thickness of the solid electrolyte layer is, for example, 1 ⁇ m to 100 ⁇ m, preferably 3 ⁇ m to 20 ⁇ m. When the thickness of the solid electrolyte layer is in such a range, it is preferable in that the resistance of the solid electrolyte layer can be suppressed to a low level.
  • the shape of the cell structure is not limited to this.
  • it may be in the form of a cylinder which is rounded with the hydrogen electrode 3 inside so as to have a hollow.
  • the thickness of the hydrogen electrode 3 is larger than that of the oxygen electrode 2, and the hydrogen electrode 3 functions as a support for supporting the solid electrolyte layer 4 (as a result, the proton conductive cell structure 1).
  • the thickness of the hydrogen electrode 3 is not necessarily required to be larger than that of the oxygen electrode 2.
  • the thickness of the hydrogen electrode 3 and the thickness of the oxygen electrode 2 may be approximately the same.
  • R Ni is preferably 1.2 atomic% or less, more preferably 0.8 atomic% or less, 0.5 The atomic% or less is more preferable.
  • R Ni is a ratio of Ni to the amount of all cations excluding oxygen contained in the solid electrolyte layer 4. As described above, by suppressing the diffusion of Ni into the solid electrolyte layer 4, it is possible to prevent the decrease in conductivity.
  • R Ni can be determined by evaluating the elemental distribution state (depth profile) using WDX. For example, when a normal to the main surface of the solid electrolyte layer 4 is drawn through a certain point of the solid electrolyte layer 4, the solid electrolyte layer 4 and the oxygen are on the normal from the boundary between the hydrogen electrode 3 and the solid electrolyte layer 4 The boundary with pole 2 is evaluated at 1 ⁇ m intervals. Thereafter, R Ni may be determined by averaging all measurement points. However, the point judged not to be a proton conductor by the quantity of element A and element B is excluded.
  • the oxygen electrode 2 has a porous structure capable of adsorbing, dissociating and ionizing oxygen molecules.
  • a reaction reaction of oxygen
  • the oxide ion is generated by dissociation of the oxidant (oxygen) introduced from the oxidant channel.
  • a known material used as a cathode of a fuel cell can be used.
  • compounds containing lanthanum and having a perovskite structure (ferrite, manganite, and / or cobaltite and the like) are preferable, and among these compounds, those further containing strontium are more preferable.
  • lanthanum strontium cobalt ferrite La 1-x Sr x Fe 1-y Co y O 3- ⁇ , 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1
  • LSM La 1-x Sr x MnO 3- ⁇ , 0 ⁇ x ⁇ 1
  • LSC La 1-x Sr x CoO 3- ⁇ , include 0 ⁇ x ⁇ 1),.
  • indicates the amount of oxygen deficiency.
  • the oxygen electrode 2 can be formed, for example, by sintering the above-mentioned material.
  • the oxygen electrode 2 may contain a catalyst such as Pt from the viewpoint of promoting the reaction between protons and oxide ions.
  • the oxygen electrode 2 can be formed by mixing and sintering the catalyst and the above-mentioned material.
  • a binder, an additive, and / or a dispersion medium may be used together with the material of the oxygen electrode 2 described above.
  • the thickness of the oxygen electrode 2 is not particularly limited, but may be about 5 ⁇ m to 40 ⁇ m.
  • the hydrogen electrode 3 has a porous structure.
  • a fuel such as hydrogen is oxidized, and a reaction of releasing protons and electrons (oxidation reaction of fuel) is performed.
  • a material used as an anode of a fuel cell can be used.
  • a composite of nickel or a nickel compound (such as nickel oxide), which is a catalyst component, and a proton conductor can be mentioned.
  • the nickel compound is reduced during use of the cell to form Ni.
  • the compound of the above formula (1) is used as the proton conductor.
  • the hydrogen electrode 3 can be formed, for example, by mixing and sintering a NiO powder and a powder of a proton conductor.
  • the thickness of the hydrogen electrode 3 can be appropriately determined, for example, from 10 ⁇ m to 2 mm, and may be 10 ⁇ m to 100 ⁇ m.
  • the thickness of the hydrogen electrode 3 may be increased to function as a support for supporting the solid electrolyte layer 4. In this case, the thickness of the hydrogen electrode 3 can be appropriately selected, for example, from the range of 100 ⁇ m to 2 mm.
  • the hydrogen electrode 3 when a composite formed by mixing and co-sintering a NiO powder and a BZY powder of a proton conductor, for example, is used as the hydrogen electrode 3, Ni is easily diffused in the BZY.
  • the conductivity and the ion transport number of the cell are reduced.
  • the hydrogen electrode 3 does not react with the BZY powder of the proton conductor at a temperature of 1500 ° C. or more, and contains the element X that reduces the activity of Ni. Is preferred.
  • the element X should just be an element which can form the compound containing Ni, for example.
  • the element X preferably contains at least Mg, more preferably 90 atomic% or more of the element X is Mg, and still more preferably 99 atomic% or more of the element X or the total amount of Mg.
  • the ratio of Ni: R Ni can be easily made 1.0 atomic% or less, and further 0.5 atomic% or less.
  • the hydrogen electrode 3 should just generate
  • the ratio of Mg to the total of Mg and Ni may be, for example, 30 to 70 atomic percent, preferably 40 to 50 atomic percent, from the viewpoint of securing the amount of Ni. .
  • the hydrogen electrode 3 When a gas containing a gas such as ammonia, methane, propane or the like is introduced into the hydrogen electrode 3, the hydrogen electrode 3 causes a decomposition reaction of these gases to generate hydrogen. That is, the proton conducting cell structure 1 has gas decomposition performance, and the proton conducting cell structure 1 can also be used for a gas decomposition apparatus.
  • a gas containing a gas such as ammonia, methane, propane or the like
  • the hydrogen electrode 3 may contain a catalyst having a function of decomposing the gas.
  • the catalyst having a function of decomposing a gas such as ammonia include compounds containing at least one catalyst component selected from the group consisting of Fe, Co, Ti, Mo, W, Mn, Ru and Cu.
  • the steam electrolysis cell should just contain the above-mentioned proton conduction type cell structure 1, and a well-known thing can be adopted for other composition. Moreover, a steam electrolysis cell can be manufactured by a well-known method except using said proton-conduction type cell structure 1. As shown in FIG.
  • the ion transport number in the humidified oxygen atmosphere is preferably higher, and it is preferable to include the solid electrolyte layer 4 which is at least 0.8 or more. As a result, it is possible to suppress the electronic leakage current in the steam electrolysis cell and to improve the efficiency of the steam electrolysis.
  • a method of producing a hydrogen electrode-solid electrolyte layer composite comprising: obtaining a cell precursor in which a porous first solid electrolyte layer and a dense second solid electrolyte layer are integrated; It has 1 process and the 2nd process of providing a nickel component (metal Ni or a nickel compound) in the pore of a 1st solid electrolyte layer.
  • the first solid electrolyte layer and the second solid electrolyte layer each have a perovskite-type structure, and include the metal oxide represented by the above formula (1).
  • a second paste layer containing a raw material of a first solid electrolyte layer and a raw material of a second solid electrolyte layer and a first paste layer containing a raw material of a porous material (for example, carbon) and a raw material of a second solid electrolyte layer It is preferable to have the steps of: laminating and forming a paste laminate; and baking the paste laminate to remove at least a part of the pore-forming material.
  • the firing temperature is preferably 400 ° C. to 1000 ° C., and more preferably 400 ° C. to 800 ° C.
  • the fired product of the laminate is then fired in an oxygen atmosphere at a high temperature of, for example, about 1500 to 1650 ° C.
  • the powder obtained by mixing the first solid electrolyte and the pore former and the second solid electrolyte are pressure-molded together, and then the pressure-molded compact is heat-treated to form the pore-forming material. You may burn it off.
  • a nickel component (metal Ni or nickel compound) is applied in the pores of the first solid electrolyte layer.
  • the sintered body obtained in the first step is charged into a nickel nitrate aqueous solution, and the nickel nitrate aqueous solution is impregnated into the pores of the first solid electrolyte layer of the sintered body under reduced pressure. Thereafter, heat treatment is performed to convert nickel nitrate into nickel oxide.
  • the nickel component metal Ni or nickel compound
  • the impregnation of the aqueous solution of nickel nitrate and the heat treatment are preferably repeated several times.
  • metal Ni or NiO may be directly attached to the first solid electrolyte layer by vacuum deposition or the like.
  • the sintered body may be plated or electrolessly plated in a liquid in which metal Ni nanoparticles are suspended.
  • Example 1 (1) and Preparation of barium carbonate metal oxide m1 ⁇ m3 (Ba x Zr 1 -y Y y O 3- ⁇ ), and zirconium oxide, and yttrium oxide, the value ratio x of Ba is shown in Table 1, Y
  • the mixture was placed in a ball mill and mixed for 24 hours in such a molar ratio that the ratio y of Y was 0.200, to obtain a mixture.
  • the resulting mixture was calcined at 1000 ° C. for 10 hours.
  • the temporarily fired mixture was treated with a ball mill for 10 hours, uniaxially molded, and then fired at 1300 ° C. for 10 hours in an air atmosphere.
  • the fired sample was ground in a mortar and treated in a ball mill for 10 hours.
  • the obtained powder was uniaxially molded again, fired at 1300 ° C. for 10 hours, and treated with a ball mill for 10 hours to obtain metal oxides m1 to m3.
  • the sample electrodes were produced by forming Pt electrodes by sputtering on both sides of each of the sintered bodies S1 to S3.
  • the obtained conductivity ⁇ is represented by ⁇ ion + ⁇ ele .
  • ⁇ ion ion conductivity
  • ⁇ ele hole conductivity
  • a (pO 2 ) 1 ⁇ 4 A (pO 2 ) 1 ⁇ 4 .
  • the ion transport number is ⁇ ion / ( ⁇ ion + ⁇ ele ), and the ion transport number in a humidified oxygen atmosphere was calculated using the value obtained from the fitting.
  • the ion transport number measurement in humidified oxygen atmosphere was similarly performed at 600 degreeC and 500 degreeC.
  • the measurement results of the ion transport number are shown in FIG. It can be seen that, at any temperature, the ion transport number tends to decrease as the amount of defect of Ba increases.
  • Example 2 The metal oxide m1 was mixed with NiO such that the ratio (R Ni ) of Ni to the total of Ba, Zr and Y in the metal oxide m1 was 2.1 atomic%.
  • the obtained mixed powder was uniaxially molded, and then sintered in an oxygen atmosphere at 1500 ° C. for 10 hours to obtain a sintered body (hereinafter, referred to as sample BZY-Ni).
  • the ion conductivity is considered to be different between a hydrogen atmosphere and an oxygen atmosphere. This is because the state of Ni in the solid solution is different between a hydrogen atmosphere and an oxygen atmosphere. Therefore, it is difficult to obtain the ion transport number assuming that the measurement result of ion conductivity in a hydrogen atmosphere is the ion conductivity in an oxygen atmosphere as performed in the first embodiment. Therefore, for the sample BZY-Ni, the ion transport number was determined by the electromotive force measurement method. In addition, for comparison, the measurement was similarly performed on the sample S1 not containing Ni.
  • the calculation of the ion transport number by the electromotive force measurement method is as follows. Pt is sputtered on both sides of the sintered body to produce an electrode (I) and an electrode (II).
  • the partial pressure of water vapor in the gas on the electrode (I) side is P H2O (I)
  • the partial pressure of hydrogen is P H2 (I)
  • the partial pressure of oxygen is P O2 (I).
  • the partial pressure of water vapor in the gas on the electrode (II) side is PH2O (II)
  • the partial pressure of hydrogen is PH2 (II)
  • the partial pressure of oxygen is PO2 (II).
  • the electromotive force V cell is generated when the gas partial pressure of each electrode is different.
  • the electromotive force V cell is represented by the following formula (2) or formula (3).
  • t H + indicates the transport number of protons
  • t O 2- indicates the transport number of oxide ions
  • R indicates the gas constant
  • F indicates the Faraday constant
  • T indicates the temperature (K).
  • Equation (2) In the case of measuring the ion transport number (t H + + t O 2 ⁇ ) under a humidified hydrogen atmosphere, equation (2) is used.
  • the water vapor partial pressure PH2O (I) and PH2 O (II) of both electrodes were 0.03.
  • Hydrogen partial pressure P H2 of one electrode side (I) was fixed to 0.97, the other a hydrogen partial pressure P H2 of the electrode side (II) 0.29,0.39,0.49,0.58
  • the electromotive force V mea at each hydrogen partial pressure was measured at 0.68 and 0.78.
  • the measured electromotive force was plotted in a graph of horizontal axis log [P H2 (II)], vertical axis V.
  • Formula (3) When measuring the ion transport number under humidified oxygen atmosphere, Formula (3) is used.
  • the water vapor partial pressure PH2O (I) and PH2 O (II) of both electrodes were 0.03.
  • the oxygen partial pressure P O2 (II) on one electrode side is fixed to 0.97, and the oxygen partial pressure P O2 (I) on the other electrode side is 0.29, 0.39, 0.49, 0.58
  • the electromotive force V mea at each oxygen partial pressure was set to 0.68 and 0.78.
  • the measured electromotive force was plotted in the graph of the horizontal axis log [ PO2 (I)], the vertical axis V.
  • the ion transport number was calculated from the slope when the plot was linearly approximated, and was corrected as described above.
  • the measurement results of the ion transport number are shown in FIG.
  • the ion transport number under a humidified oxygen atmosphere tends to decrease as the temperature rises. This tendency is greater in the sample BZY-Ni (symbol ⁇ in FIG. 4), which is a solid solution including Ni, as compared to the sample S1 (symbol ⁇ in FIG. 4) that does not include Ni. Therefore, the ion transport number of the sample BZY-Ni is lower than the ion transport number of the sample S1. Therefore, when the sample BZY-Ni is applied to a medium temperature steam electrolytic cell, it is desirable to reduce the amount of Ni contained in BZY as much as possible.
  • FIG. 4 also shows the results of measurement of the ion transport number under a humidified hydrogen atmosphere.
  • the symbol ⁇ in FIG. 4 is the result of the sample S1 not containing Ni
  • the symbol ⁇ in FIG. 4 is the result of the sample BZY-Ni which is a solid solution containing Ni. It can be seen that under the humidified hydrogen atmosphere, the ion transport number hardly changes.
  • Example 3 The metal oxide m1 and the metal oxide m1 so that the ratio (R Ni ) of Ni to the total of Ba, Zr and Y in the metal oxide m1 is 0.4 atomic%, 0.6 atomic%, and 1.3 atomic%.
  • R Ni the ratio of Ni to the total of Ba, Zr and Y in the metal oxide m1
  • NiO the ratio of Ni to the total of Ba, Zr and Y in the metal oxide m1
  • NiO NiO
  • a sintered body was obtained by heat treatment at 1500 ° C. for 10 hours in an oxygen atmosphere.
  • a sample electrode was produced by forming Pt electrodes on both sides of the sintered body by sputtering.
  • the sample electrode after Pt sputtering was attached to a holder for measurement, placed in an electric furnace, and heated. AC impedance measurement while supplying hydrogen humidified so that the water vapor partial pressure is 0.05 atm (5 ⁇ 10 3 Pa) and the hydrogen partial pressure is 0.95 atm (9.5 ⁇ 10 4 Pa) at 600 ° C.
  • the conductivity was determined by The total conductivity in the obtained hydrogen atmosphere is shown in FIG.
  • the total conductivity in hydrogen atmosphere was calculated
  • the water vapor electrolysis efficiency is estimated from the total conductivity as follows.
  • the electrolysis efficiency is assumed to be current efficiency (total current used for electrolysis / total current including leakage current).
  • total current used for electrolysis / total current including leakage current there are many parameters (electrolyte thickness, electrode gas composition, electrode catalyst performance, current density, etc.) other than the conductivity of the electrolyte, the reduction of the ion conductivity is surely the electrolytic efficiency It leads to decline.
  • the electrolytic efficiency when electrolyzed at a current density of 0.3 A / cm 2 is an electrolyte conductivity of 0. It decreases from 90.9% at 018 S / cm (Ni free) to 87.5% at 0.005 S / cm.
  • Electrolyte thickness 20 ⁇ m
  • Hydrogen electrode Water vapor partial pressure 0.05 atm (5 ⁇ 10 3 Pa), hydrogen partial pressure 0.95 atm (9.5 ⁇ 10 4 Pa)
  • Oxygen electrode oxygen partial pressure 0.01 atm (1 ⁇ 10 3 Pa), water vapor partial pressure 0.99 atm (9.9 ⁇ 10 4 Pa) (assuming humidified water vapor supply)
  • Hall conductivity 0.0044 S / cm in a humidified oxygen atmosphere (water vapor partial pressure 0.05 atm (5 ⁇ 10 3 Pa), oxygen partial pressure 0.95 atm (9.5 ⁇ 10 4 Pa))
  • Electrode reaction resistance 0.1? Cm 2 (actual value 0.15Omucm 2 in the hydrogen electrode, 0.5 ⁇ cm 2 at the oxygen electrode)
  • Example 4 (1) Preparation of Solid Solution of MgO and NiO Magnesium oxide and nickel oxide were each put in a ball mill at a molar ratio of 1: 1 and mixed for 24 hours to obtain a mixture. The resulting mixture was treated in a ball mill for 10 hours, uniaxially molded, and fired at 1300 ° C. for 10 hours in the air. The fired sample was ground in a mortar and treated in a ball mill for 10 hours to obtain a solid solution of MgO and NiO (hereinafter referred to as a NiO / MgO solid solution).
  • a NiO / MgO solid solution a solid solution of MgO and NiO
  • NiO / MgO solid solution is a single phase of MgO / NiO solid solution, only single phase cubic (space group: Fm-3m)
  • XRD pattern is detected by X-ray diffraction (XRD: X-ray Diffraction) measurement. That was confirmed.
  • XRD measurement X'pert Pro manufactured by Panalytical is used, X-ray is CuK ⁇ ray (tube voltage 45 kV, tube current 40 mA), concentration method, 2 ⁇ scanning range 5-90 degree, 0.017 degree / step, 10.16 sec / Step.
  • NiO / MgO solid solution and metal oxide m1 were used as materials for hydrogen electrode. After mixing with a NiO / MgO solid solution, metal oxide m1, and an appropriate amount of 2-propanol in a ball mill, the powder for a hydrogen electrode was prepared by drying. The NiO / MgO solid solution and the metal oxide m1 were mixed at a weight ratio of 1: 1. The amounts of the binder and the additive were 10 parts by mass and 0.5 parts by mass, respectively, with respect to 100 parts by mass in total of the NiO / MgO solid solution and the metal oxide m1.
  • the metal oxide m1 was used as a material for solid electrolyte layer.
  • the metal oxide m1, ethyl cellulose (binder), and an appropriate amount of ⁇ -terpineol were mixed to prepare a paste for a solid electrolyte.
  • the amount of the binder was 4 parts by mass with respect to 100 parts by mass of the metal oxide m1.
  • the hydrogen electrode-solid electrolyte layer composites A and B were each embedded in an epoxy resin, and then cross-sectioning was performed by polishing, and then cross-section processing was performed using IB-19510 CP manufactured by JEOL.
  • carbon coating was performed using CADE-E manufactured by Meiwa Pfosis, this was set in JXA-8530F manufactured by Nippon Denshi, and WDX was performed.
  • WDX measured 14 points at 1 ⁇ m intervals in the thickness direction from the surface of the solid electrolyte layer. At this time, the acceleration voltage was 15 kV and the irradiation current was 50 nA. Then, R Ni was determined by averaging all the measurement points. However, it excluded about the point which 1 atomic% or more produced difference from the value of the next measurement point.
  • Y concentration and R Ni in the solid electrolyte layer of the hydrogen electrode-solid electrolyte layer composites A and B is shown in FIG.
  • the Y concentration is the ratio (atomic%) of Y to the total amount of the element A, the element B, and the element M in BZY.
  • BZY 20 BaZr 0.8 Y 0.2 O 3- ⁇
  • the following three different preparations are made for preparation of hydrogen electrode-solid electrolyte layer composites A and B. Each was performed according to the conditions.
  • the relationship between the plot shown in FIG. 6 and the preparation conditions is as follows.
  • Symbols ⁇ and ⁇ The powder for a hydrogen electrode was uniaxially molded at 392 MPa to obtain disk-like pellets (diameter 11 mm), and then heat-treated at 1000 ° C. for 10 hours in the air.
  • the above-mentioned paste for solid electrolyte was applied to one principal surface of the obtained disk-shaped pellet by spin coating to form a coated film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Conductive Materials (AREA)

Abstract

プロトン伝導体は、ペロブスカイト型構造を有し、かつ式(1):AxB1-yMyO3-δで表される金属酸化物を含み、元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種であり、元素Bは、CeおよびZrよりなる群から選択される少なくとも一種であり、元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種であり、δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす。

Description

プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法
 本開示は、プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法に関する。
 本出願は、2017年11月29日出願の日本出願第2017-229685号、及び、2018年2月22日出願の日本出願第2018-030074号に基づく優先権を主張し、これらの日本出願に記載された全ての記載内容を援用するものである。
電荷のキャリアとして水素イオン(プロトン)を用いるPCFC(Protonic Ceramic Fuel Cells、プロトン伝導性酸化物型燃料電池)に適用できる固体電解質として、ペロブスカイト型構造(Perovskite structure)を有するプロトン伝導性金属酸化物が知られている(特許文献1および特許文献2)。
特開2001-307546号公報 特開2007-197315号公報
 本開示のプロトン伝導体は、ペロブスカイト型構造を有し、かつ下記式(1):
 A1-y3-δ     (1)
で表される金属酸化物を含み、
 元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種であり、
 元素Bは、CeおよびZrよりなる群から選択される少なくとも一種であり、
 元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種であり、
 δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす。
 本開示のプロトン伝導型セル構造体は、酸素極と、水素極と、前記酸素極および前記水素極の間に介在する本開示のプロトン伝導体と、を備える。
 本開示の水蒸気電解セルは、本開示のプロトン伝導型セル構造体を備える。
 本開示の水素極-固体電解質層複合体の製造方法は、
 多孔質な第1固体電解質層と、緻密な第2固体電解質層と、が一体化されたセル前駆体を得る第1工程と、
 前記第1固体電解質層の細孔内に、ニッケル成分を付与する第2工程と、を有し、
 前記第1固体電解質層および前記第2固体電解質層が、それぞれペロブスカイト型構造を有し、かつ下記式(1):
 A1-y3-δ     (1)
で表される金属酸化物を含み、
 元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種であり、
 元素Bは、CeおよびZrよりなる群から選択される少なくとも一種であり、
 元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種であり、
 δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす。
本開示の一実施形態に係るプロトン伝導型セル構造体を模式的に示す断面図である。 本開示の一実施形態に係るプロトン伝導体におけるBa欠損量とイオン輸率との関係を示す図である。 本開示の一実施形態に係るプロトン伝導体におけるアレニウスプロットを示す図である。 本開示の一実施形態に係るプロトン伝導体における雰囲気温度とイオン輸率との関係を示す図である。 本開示の一実施形態に係るプロトン伝導体に含まれるNiの割合(RNi)と水素雰囲気中での600℃での全伝導度との関係を示す図である。 本開示の一実施形態に係る水素極-固体電解質層複合体が具備する固体電解質層におけるY濃度とRNiとの関係を示す図である。
[発明が解決しようとする課題]
 イットリア安定化ジルコニア(YSZ)を固体電解質層に用いたセル構造体では、NiOと固体電解質とを混合した水素極を薄膜化された固体電解質層の支持体とする構成が検討されている。プロトン伝導性金属酸化物でも上記構成により固体電解質層を薄膜化することは可能である。
 しかし、上記セル構造体は、水素極と固体電解質層との共焼結により形成される。共焼結の際、水素極のNiがプロトン伝導性金属酸化物中に拡散すると、金属酸化物のプロトン伝導性が低下する。プロトン伝導性金属酸化物中に拡散したNiは、イオン輸率も低下させるため、リーク電流が増加し得る。よって、セル構造体を水蒸気電解セルに使用する際には電解効率が低下しやすい。
 また、プロトン伝導性金属酸化物が、イットリウムをドープしたジルコン酸バリウムである場合、焼結性が低いことを考慮して、通常1600℃以上の温度で焼結が行われる。その際、Baが蒸発により欠損することで、イオン輸率とプロトン伝導度の低下を引き起こすことがある。
[発明の効果]
 本開示に係るプロトン伝導体を水蒸気電解セルおよび/または燃料電池に適用すると、高いイオン輸率が得られ、電流効率が向上する。また、本開示に係る水素極-固体電解質層複合体の製造方法によれば、電流効率に優れたプロトン伝導型セル構造体を形成することができる。
[発明の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
 (1)本開示の一実施形態は、
 ペロブスカイト型構造を有し、かつ式(1):A1-y3-δで表される金属酸化物を含むプロトン伝導体に関する。ここで、元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種であり、元素Bは、CeおよびZrよりなる群から選択される少なくとも一種であり、元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種である。上記式(1)は、0.95≦x≦1および0<y≦0.5を満たし、δは酸素欠損量である。
 このような構成を有するプロトン伝導体を水蒸気電解セルおよび/または燃料電池に適用すると、高いプロトン伝導性と高いイオン輸率とを確保できるため、高い電流効率を発揮することができる。
 (2)上記プロトン伝導体は、600℃の加湿酸素雰囲気中におけるイオン輸率が0.8以上であることが好ましい。
 イオン輸率がこのような範囲であれば、該プロトン伝導体を水蒸気電解セルおよび/または燃料電池に適用した場合、より高い電流効率を発揮することができる。ここで、加湿酸素雰囲気は、水蒸気と酸素の混合ガス雰囲気であればよく、水蒸気分圧0.05atm(5.0×10Pa)、酸素分圧0.95atm(9.5×10Pa)の雰囲気であればよい。
 (3)上記式(1)は、0.98≦x≦1を満たすことが好ましい。
 xがこのような範囲では、より高いプロトン伝導性とイオン輸率を確保し得る。
 (4)元素AはBaを含み、元素BはZrを含み、元素MはYを含んでもよい。これにより、セル構造体の耐久性を向上させることができる。
 (5)本開示の他の一実施形態は、酸素極と、水素極と、酸素極および水素極の間に介在する上記プロトン伝導体とを備えるプロトン伝導型セル構造体に関する。
 この構成を有するプロトン伝導型セル構造体を燃料電池および/または水蒸気電解セルに適用すると、高い電流効率が発揮される。
 (6)上記プロトン伝導型セル構造体が具備するプロトン伝導体において、元素A、元素Bおよび元素Mの総量に対するNiの割合:RNi(Ni Cation Ratio)は、1.2原子%以下であることが好ましい。
 これにより、上記セル構造体による水蒸気電解セルおよび/または燃料電池の電流効率が向上する。
 (7)上記水素極は、元素A、元素Bおよび元素Mのいずれとも異なる元素Xを含んでもよい。元素Xは、1500℃以上の温度でプロトン伝導体と反応せず、かつNiの活量を低下させる元素であることが好ましい。
 これにより、上記プロトン伝導体中にNiが拡散するのを抑制することができる。また、プロトン伝導体とニッケルとの副生成物(例えば、BaYNiO)が生成するのを防ぐことができる。
 (8)元素Xは、例えば、Niを含む化合物を形成し得る元素であればよい。
 Niを含む化合物を形成することでNiの活量を低減することができる。
 (9)元素Xは、少なくともMgを含むことが好ましい。
 Mgはプロトン伝導体中にNiが拡散するのを抑制する作用が大きいからである。元素Xのうち、90原子%以上がMgであることがより好ましい。
 (10)上記Niの割合:RNiは1.0原子%以下が好ましい。
 これにより、上記セル構造体を具備する水蒸気電解セルおよび/または燃料電池の電流効率が顕著に向上する。
 (11)本開示の他の一実施形態は、上記プロトン伝導型セル構造体を備える水蒸気電解セルに関する。
 (12)本開示の他の一実施形態は、多孔質な第1固体電解質層と、緻密な第2固体電解質層と、が一体化されたセル前駆体を得る工程と、第1固体電解質層の細孔内に、ニッケル成分(金属Niまたはニッケル化合物)を付与する工程と、を有し、第1固体電解質層および第2固体電解質層が、それぞれペロブスカイト型構造を有し、かつ式(1):A1-y3-δで表される金属酸化物を含み、元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種であり、元素Bは、CeおよびZrよりなる群から選択される少なくとも一種であり、元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種であり、δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす、水素極-固体電解質層複合体の製造方法に関する。
 この方法によれば、固体電解質層へのNiの拡散を抑制することができる。この方法で得られる水素極-固体電解質層複合体を水蒸気電解セルおよび/または燃料電池に適用すると、高い電流効率が発揮される。
 (13)上記第2固体電解質層の600℃における加湿酸素雰囲気中におけるイオン輸率は0.8以上であることが好ましい。上記水素極-固体電解質層複合体の製造方法によれば、第2固体電解質層のイオン輸率を0.8以上とすることが容易である。
 (14)上記水素極-固体電解質層複合体の製造方法において、セル前駆体を得る工程は、第1固体電解質層の原料と造孔材とを含む第1ペースト層と、第2固体電解質層の原料を含み、造孔材を含まない第2ペースト層とを積層して、ペースト積層体を得る工程と、ペースト積層体を400℃~1000℃で焼成する工程とを含み得る。
 (15)上記水素極-固体電解質層複合体の製造方法において、細孔内にニッケル成分(金属Niまたはニッケル化合物)を付与する工程は、細孔内にニッケル化合物溶液を含有させた後、200℃~600℃で焼成することを含んでもよい。
[実施形態の詳細]
 本開示の実施形態の具体例を、適宜図面を参照しつつ以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
[プロトン伝導体]
 プロトン伝導体は、ペロブスカイト型構造(ABO相)を有する金属酸化物であり、その組成は上記式(1)で表される。Aサイトには、元素Aが入り、Bサイトには、元素B(ホウ素を示すものではない)が入る。Bサイトの一部は、高いプロトン伝導性を確保する観点から、元素Mで置換されている。
 元素Bおよび元素Mの合計に対する元素Aの比率xは、高いプロトン伝導性とイオン輸率を確保する観点から、0.95≦x≦1であることが好ましく、0.98≦x≦1であることがより好ましい。また、xが1を越えないことで、元素Aの析出が抑制され、水分の作用によりプロトン伝導体が腐食することを抑制できる。yは、プロトン伝導性を確保する観点から、0<y≦0.5であることが好ましく、0.1<y≦0.3がより好ましい。
 元素Aは、Ba(バリウム)、Ca(カルシウム)およびSr(ストロンチウム)よりなる群から選択される少なくとも一種である。なかでも、優れたプロトン伝導性が得られる点で、元素AはBaを含むことが好ましく、元素Aに占めるBaの比率は、50原子%以上であることが好ましく、80原子%以上であることがより好ましい。元素AはBaのみで構成されることが更に好ましい。
 元素Bは、Ce(セリウム)およびZr(ジルコニウム)よりなる群から選択される少なくとも一種である。なかでも、耐久性の観点から、元素BはZrを含むことが好ましく、元素Bに占めるZrの比率は、50原子%以上であることが好ましく、80原子%以上であることがより好ましい。元素BはZrのみで構成されることが更に好ましい。
 元素Mは、Y(イットリウム)、Yb(イッテルビウム)、Er(エルビウム)、Ho(ホルミウム)、Tm(ツリウム)、Gd(ガドリニウム)、In(インジウム)およびSc(スカンジウム)よりなる群から選択される少なくとも一種である。元素Mはドーパントであって、これにより酸素欠陥が生じ、ペロブスカイト型構造を有する金属酸化物はプロトン伝導性を発現する。
 上記式(1)において、酸素欠損量δは、元素Mの量に応じて決定でき、例えば、0≦δ≦0.15である。金属酸化物における各元素の比率は、例えば、電子プローブマイクロアナライザを使用した波長分散型X線分析 (Wavelength Dispersive X-ray spectroscopy、以下、WDXと称する)を用いて求めることができる。
 ペロブスカイト型構造を有する金属酸化物の具体例としては、イットリウムがドープされたジルコン酸バリウム[BaZr1-y3-δ(以下、BZYと称する)]、イットリウムがドープされたセリウム酸バリウム[BaCe1-y3-δ(BCY)]、イットリウムがドープされたジルコン酸バリウム/セリウム酸バリウムの混合酸化物[BaZr1-y-zCe3-δ(BZCY)]などが挙げられる。
 発明者らは、固体電解質にBZYを用い、水素極にBZYとNiOの混合体を用いた水蒸気電解セルを検討する中、従来の共焼結法で作製したセルではBZY中へのNiの拡散によりイオン輸率が低下し、BZYの物性値から試算される電流効率よりも実際の電流効率は低いということを明らかにした。さらに、高いイオン輸率を確保し、高い電流効率を有するプトロン伝導体に必要な条件を探求した。その結果、上記式(1)の化合物における元素A(特にBa)の欠損量の増大に伴って加湿酸素雰囲気中におけるイオン輸率が低下するという新たな知見を得た。水蒸気電解セルにおいては、固体電解質層の加湿酸素雰囲気中におけるイオン輸率を確保することが重要である。
 本開示に係るプロトン伝導体は、加湿酸素雰囲気中においても高いイオン輸率を確保できる。イオン輸率とは、電解質に電流を流した際に、電子、ホール、陽イオン、陰イオンによって運ばれる全電気量のうち、陰イオンと陽イオンによって運ばれる電気量の割合である。なお、運ばれる全電気量が陰イオンと陽イオンによって運ばれる電気量と等しい場合にはイオン輸率が1となる。例えばBZYの場合は、プロトンと酸化物イオンとホールとがキャリアとして存在することから、イオン輸率は、プロトンと酸化物イオンによって流れた電気が全体の何割であるのかを示す。
[プロトン伝導型セル構造体]
 本開示の一実施形態に係るセル構造体の断面模式図を図1に示す。プロトン伝導型セル構造体1は、酸素極2と、水素極3と、酸素極2および水素極3の間に介在し、プロトン伝導性を備える固体電解質層(プロトン伝導体)4と、を備える。プロトン伝導型セル構造体1において、固体電解質層4は、酸素極2と水素極3との間に挟持されており、固体電解質層4の一方の主面は、水素極3に接触し、他方の主面は酸素極2と接触している。水素極3および固体電解質層4は、焼成により一体化されて、水素極3と固体電解質層4との複合体5を形成している。固体電解質層の厚みは、例えば、1μm~100μm、好ましくは3μm~20μmである。固体電解質層の厚みがこのような範囲である場合、固体電解質層の抵抗が低く抑えられる点で好ましい。
 図示例では、積層型のセル構造体を示しているが、セル構造体の形状はこれに限定されない。例えば、中空を有するように、水素極3を内側にして丸めた円筒形状であってもよい。また、水素極3の厚みは、酸素極2よりも大きくなっており、水素極3が固体電解質層4(ひいてはプロトン伝導型セル構造体1)を支持する支持体として機能している。ただし、水素極3の厚みを、必ずしも酸素極2よりも大きくする必要はなく、例えば、水素極3の厚みと酸素極2の厚みとは同程度であってもよい。
 固体電解質層4において、元素A、元素Bおよび元素Mの総量に対するNiの割合:RNiは、1.2原子%以下であることが好ましく、0.8原子%以下がより好ましく、0.5原子%以下がさらに好ましい。RNiは、固体電解質層4に含まれる酸素を除く全てのカチオン量に対するNiの割合である。このように、固体電解質層4へのNiの拡散を抑制することで、伝導度の低下を防ぐことができる。
 RNiは、WDXを用いて、元素分布状態(デプスプロファイル)を評価することによって求めることができる。例えば、固体電解質層4のある一点を通る、固体電解質層4の主面に対する法線を引いたとき、法線上にある、水素極3と固体電解質層4との境界から固体電解質層4と酸素極2との境界までを、1μm間隔で評価する。その後、全ての測定点を平均化することによって、RNiを求めればよい。ただし、元素A、元素Bの量によって、プロトン伝導体でないと判断される点は除外する。
[酸素極]
 酸素極2は、例えば、燃料電池の場合、酸素分子を吸着し、解離させてイオン化することができる多孔質の構造を有している。酸素極2では、固体電解質層4を介して伝導されたプロトンと、酸化物イオンとの反応(酸素の還元反応)が生じている。酸化物イオンは、酸化剤流路から導入された酸化剤(酸素)が解離することにより生成する。
 酸素極2の材料としては、例えば、燃料電池のカソードとして用いられる公知の材料を用いることができる。なかでも、ランタンを含み、かつ、ペロブスカイト構造を有する化合物(フェライト、マンガナイト、および/またはコバルタイトなど)が好ましく、これらの化合物のうち、さらにストロンチウムを含むものがより好ましい。具体的には、ランタンストロンチウムコバルトフェライト(LSCF:La1-xSrFe1-yCo3-δ、0<x<1、0<y<1)、ランタンストロンチウムマンガナイト(LSM:La1-xSrMnO3-δ、0<x<1)、ランタンストロンチウムコバルタイト(LSC:La1-xSrCoO3-δ、0<x<1)等が挙げられる。ここでも、δは酸素欠損量を示す。
 酸素極2は、例えば、上記材料を焼結することにより形成することができる。プロトンと酸化物イオンとの反応を促進させる観点から、酸素極2は、Pt等の触媒を含んでいてもよい。触媒を含む場合、酸素極2は、触媒と上記材料とを混合して、焼結することにより形成することができる。必要に応じて、上記の酸素極2の材料とともに、バインダ、添加剤および/または分散媒などを用いてもよい。酸素極2の厚みは、特に限定されないが、5μm~40μm程度であればよい。
[水素極]
 水素極3は、多孔質の構造を有している。水素極3では、例えば、燃料電池の場合、水素などの燃料が酸化され、プロトンと電子とを放出する反応(燃料の酸化反応)が行われる。
 水素極3の材料としては、例えば、燃料電池のアノードとして用いられる材料を用いることができる。具体的には、触媒成分であるニッケルもしくはニッケル化合物(酸化ニッケル等)と、プロトン伝導体との複合物等が挙げられる。なお、ニッケル化合物は、セルの使用中に還元され、Niを生成する。プロトン伝導体には、上記式(1)の化合物を用いる。これにより、水素極3と固体電解質層4に含まれる金属元素の実質的な相互拡散が抑制されるため、抵抗が高くなり難い。
 水素極3は、例えば、NiO粉末とプロトン伝導体の粉末等とを混合して焼結することにより形成することができる。水素極3の厚みは、例えば、10μm~2mmから適宜決定でき、10μm~100μmであってもよい。水素極3の厚みを大きくして、固体電解質層4を支持する支持体として機能させてもよい。この場合、水素極3の厚みは、例えば、100μm~2mmの範囲から適宜選択できる。
 ここで、水素極3として、例えば、NiO粉末とプロトン伝導体のBZY粉末とを混合して共焼結することにより形成された複合物を用いる場合、BZY中にNiが拡散しやすい。このような水素極3をプロトン伝導型セルに使用すると、セルの伝導度およびイオン輸率が低下する。セルの伝導度およびイオン輸率を低下させないためには、水素極3が、1500℃以上の温度においてプロトン伝導体のBZY粉末と反応せず、かつ、Niの活量を低下させる元素Xを含むことが好ましい。
 元素Xは、例えば、Niを含む化合物を形成し得る元素であればよい。元素Xは、少なくともMgを含むことが好ましく、元素Xの90原子%以上がMgであることがより好ましく、元素Xの99原子%以上もしくは全量がMgであることが更に好ましい。これにより、Niの割合:RNiを容易に1.0原子%以下、更には0.5原子%以下とすることができる。
 具体的には、例えばMgOとNiOとを混合し、空気中で熱処理して得られる固溶体を水素極3に用いることができる。なお、水素極3は、還元によりNiを生成するものであればよい。MgOとNiOの固溶体を用いる場合、MgとNiとの合計に占めるMgの割合は、Ni量を確保する観点から言えば、例えば30~70原子%であればよく、40~50原子%が好ましい。
 水素極3に、アンモニア、メタン、プロパン等の気体を含むガスを導入すると、水素極3では、これらの気体の分解反応が起こり、水素が発生する。つまり、プロトン伝導型セル構造体1は、ガス分解性能を備えており、このプロトン伝導型セル構造体1をガス分解装置に用いることも可能である。
 例えば、アンモニアの分解により発生した水素は、水素極3によって酸化され、プロトンが生成する。生成したプロトンは、固体電解質層4を通って、酸素極2に移動する。一方、アンモニアの分解により同時に生成したNは、排気ガスとして排出される。水素極3には、上記ガスを分解する機能を有する触媒を含ませてもよい。アンモニア等のガスを分解する機能を有する触媒としては、Fe、Co、Ti、Mo、W、Mn、RuおよびCuよりなる群から選択される少なくとも1種の触媒成分を含む化合物が挙げられる。
[水蒸気電解セル]
 水蒸気電解セルは、上記のプロトン伝導型セル構造体1を含んでいればよく、その他の構成は、公知のものが採用できる。また、水蒸気電解セルは、上記のプロトン伝導型セル構造体1を用いる以外は、公知の方法で製造できる。
 水蒸気電解セルに用いる場合には、加湿酸素雰囲気中のイオン輸率はより高いことが好ましく、少なくとも0.8以上である固体電解質層4を備えることが好ましい。これにより、水蒸気電解セルにおいて電子性の漏れ電流を抑制し、水蒸気電解の効率を向上させることができる。
 本開示に係るプロトン伝導体を水蒸気電解セルに適用する場合、イオン輸率がより高いことが好ましい理由を以下に説明する。
 例えば、BZYの場合は、プロトンと酸化物イオンとホールとがキャリアとして存在しており、ホール伝導が存在すると、漏れ電流が流れる。漏れ電流は電解に関係なく流れてしまうため、電流効率が低くなる。ここで、漏れ電流をj、セルの電圧をV、電解質中のホール伝導に対する抵抗値をRとすると、j=V/Rという関係が成り立つ。燃料電池として発電を行うときには、Vは小さくなり、Rは大きくなるため、jは小さくなる。一方、水蒸気電解セルの場合には、Vは大きくなり、Rは小さくなるため、jは大きくなる。したがって、水蒸気電解セルの場合、燃料電池の場合と比べて漏れ電流jが大きくなる傾向がある。漏れ電流を抑えて電解の効率を良好にするためには、イオン輸率をできるだけ高くすることが望まれる。
[水素極-固体電解質層複合体の製造方法]
 本開示の一実施形態に係る水素極-固体電解質層複合体の製造方法は、多孔質な第1固体電解質層と、緻密な第2固体電解質層とが一体化されたセル前駆体を得る第1工程と、第1固体電解質層の細孔内に、ニッケル成分(金属Niまたはニッケル化合物)を付与する第2工程と、を有する。
 第1固体電解質層および第2固体電解質層は、それぞれペロブスカイト型構造を有し、かつ上記式(1)で表される金属酸化物を含む。このような製造方法を用いることにより、第2固体電解質層に拡散するニッケル成分(金属Niまたはニッケル化合物)を制御することが可能となり、ニッケル成分(金属Niまたはニッケル化合物)の固溶に起因するプロトン伝導型セル構造体の伝導度の低下を抑えることができる。
[第1工程]
 第1工程では、第1固体電解質層の原料と造孔材(例えば、カーボン)とを含む第1ペースト層と、第2固体電解質層の原料を含み、造孔材を含まない第2ペースト層と、を積層して、ペースト積層体を得る工程と、ペースト積層体を焼成し、造孔材の少なくとも一部を除去する工程とを有することが好ましい。焼成温度については、400℃~1000℃が好ましく、400℃~800℃がより好ましい。積層体の焼成物は、その後、過剰のBZY粉末に埋めた状態で、例えば1500~1650℃程度(好ましくは1550~1650℃)の高温にて酸素雰囲気で焼成する。この焼成により、多孔質な第1固体電解質層と緻密な第2固体電解質層の二層が一体化した焼結体を得ることができる。なお、第1固体電解質と造孔材を混合した粉末と、第2固体電解質とを、共に加圧成型し、次に、この加圧成型された成型体を熱処理することにより、造孔材を焼き飛ばしてもよい。
[第2工程]
 第2工程では、第1固体電解質層の細孔内に、ニッケル成分(金属Niまたはニッケル化合物)を付与する。例えば、硝酸ニッケル水溶液に第1工程で得られた焼結体を投入し、減圧下において、焼結体の第1固体電解質層の細孔内に硝酸ニッケル水溶液を含浸する。その後、熱処理を行うことにより、硝酸ニッケルを酸化ニッケルに変換する。このようにすることで、第1固体電解質層の細孔内に、ニッケル成分(金属Niまたはニッケル化合物)を付与することができる。細孔内に硝酸ニッケル水溶液を含浸させた後、200℃~600℃の温度で焼成することが好ましく、300℃~500℃の温度で焼成することがより好ましい。この焼成温度であれば、ニッケルが第2固体電解質層に拡散することがほとんどなく、Ni含有量が低い第2固体電解質層を得ることができる。硝酸ニッケル水溶液の含浸と、熱処理については、数回繰り返すことが好ましい。
 第1固体電解質層の細孔内にニッケル成分(金属Niまたはニッケル化合物)を付与する手法として、第1固体電解質層に対して、金属NiやNiOを真空蒸着等により直接付着させてもよい。また、金属Niナノ粒子を懸濁させた液中で上記焼結体にめっき、または無電解めっきを施してもよい。
 以下、実施例に基づき、本開示をより具体的に説明するが、以下の実施例は本開示を限定するものではない。
[実施例1]
(1)金属酸化物m1~m3(BaZr1-y3-δ)の作製
 炭酸バリウムと、酸化ジルコニウムと、酸化イットリウムとを、Baの比率xが表1に示す値、Yの比率yが0.200になるようなモル比で、それぞれボールミルに入れて24時間混合し、混合物を得た。得られた混合物を、1000℃で10時間の仮焼成を行った。仮焼成された混合物をボールミルで10時間処理して、一軸成形した後、大気雰囲気において、1300℃で10時間焼成した。焼成した試料を乳鉢で粉砕した後、ボールミルで10時間処理した。得られた粉末に対して、再度、一軸成形した後、1300℃、10時間の焼成を行い、ボールミルで10時間処理することによって金属酸化物m1~m3を得た。
(2)焼結体およびサンプル電極の作製
 金属酸化物m1~m3を一軸成形してそれぞれのペレットを得た後、これをBZYと炭酸バリウムとの混合粉末[BZY:BaCO=100:1(質量比)]に埋めて、酸素雰囲気中、1600℃で、24時間の熱処理をすることにより焼結させ、ペロブスカイト型構造を有する各金属酸化物m1~m3の焼結体S1~S3を作製した。各焼結体S1~S3の両面にスパッタによりPt電極を形成することによりサンプル電極を作製した。
Figure JPOXMLDOC01-appb-T000001
(3)イオン輸率の測定
 Ptスパッタ後のサンプル電極を測定用のホルダーに取り付け、電気炉に入れ、700℃まで昇温した。水蒸気分圧が0.05atm(5×10Pa)、酸素分圧が0.95atm(9.5×10Pa)となるように加湿した酸素を供給しながら、交流インピーダンス測定により伝導度を求めた。交流インピーダンス測定には、Solartron1260(Solartron Analytical社製)を使用した。その後、ArにOを20%混合したガス[水蒸気分圧0.05atm(5×10Pa)、酸素分圧0.19atm(1.9×10Pa)、アルゴン分圧0.76atm(7.6×10Pa)]、ArにHを5%混合したガス[水蒸気分圧0.05atm(5×10Pa)、水素分圧0.0475atm(4.75×10Pa)、アルゴン分圧0.9025atm(9.025×10Pa)]、ArにHを10%混合したガス[水蒸気分圧0.05atm、水素分圧0.095atm(9.5×10Pa)、アルゴン分圧0.855分圧(8.55×10Pa)]、ArにHを50%混合したガス[水蒸気分圧0.05atm(5×10Pa)、水素分圧0.475atm(4.75×10Pa)、アルゴン分圧0.475atm(4.75×10Pa)]、およびH雰囲気[水蒸気分圧0.05atm(5×10Pa)、水素分圧0.95atm(9.5×10Pa)]においても、それぞれ伝導度を求めた。
 得られた伝導度σはσion+σeleで表される。このとき、σion(イオン伝導度)は一定である。σele(ホール伝導度)は酸素分圧pOの1/4乗に比例するため、A(pO1/4と表される。
 ここで、ある雰囲気で伝導度を測定した場合、その雰囲気での全伝導度しか求めることができない。つまり、ホール伝導度σeleは雰囲気によって変化するため、雰囲気による変化を見る必要がある。そこで、酸素雰囲気中のホール伝導度を確認するために、雰囲気を変えて、その変化を見ることにした。
 具体的には、σ=σion+A(pO1/4の式で伝導度をフィッティングし、σionとσeleを求めた。イオン輸率はσion/(σionele)であり、フィッティングから得られた値を用い、加湿酸素雰囲気におけるイオン輸率を算出した。なお、加湿酸素雰囲気におけるイオン輸率測定は、600℃、500℃でも同様にして行った。
 イオン輸率の測定結果を図2に示す。イオン輸率は、いずれの温度でも、Baの欠損量の増大に伴って低下する傾向があることがわかる。
(4)イオン伝導度の測定
 Ptスパッタ後のS1~S3について、水蒸気分圧が0.05atm(5×10Pa)、水素分圧が0.95atm(9.5×10Pa)の加湿水素雰囲気中において600℃から100℃まで温度を変えながら伝導度を測定することにより、イオン伝導度の温度依存性を確認した。
 イオン伝導度の測定結果(アレニウスプロット)を図3に示す。なお、図3に示す各プロットと各焼結体との関係は、それぞれ以下のとおりである。
 S1:化学量論組成(BaZr0.80.23-δ
 S2:Ba欠損量0.02(Ba0.98Zr0.80.23-δ
 S3:Ba欠損量0.05(Ba0.95Zr0.80.23-δ
イオン伝導度は、加湿水素雰囲気の温度低下に伴って低下した。イオン伝導度は、いずれの温度でも、Baの欠損量の増大に伴って低下する傾向があることがわかる。
[実施例2]
 金属酸化物m1中のBa、ZrおよびYの合計に対するNiの割合(RNi)が2.1原子%となるように、金属酸化物m1にNiOを混合した。得られた混合粉末を一軸成形した後、酸素雰囲気中、1500℃で10時間焼成して焼結体(以下、試料BZY-Niと称する)を得た。
 試料BZY-NiのようにNiがBZY中に固溶している場合、水素雰囲気と酸素雰囲気ではイオン伝導度が異なると考えられる。これは、水素雰囲気と酸素雰囲気では固溶体中のNiの状態が異なるためである。そのため、実施例1で行ったように水素雰囲気中でのイオン伝導度の測定結果を酸素雰囲気中でのイオン伝導度と仮定し、イオン輸率を求めることは困難である。そこで、試料BZY-Niについては、起電力測定法によりイオン輸率を求めた。また、比較のため、Niを含まない試料S1についても同様に測定を行った。
 起電力測定法によるイオン輸率の算出は以下のとおりである。
 焼結体の両側にPtをスパッタし、電極(I)及び電極(II)を作製する。電極(I)側のガスにおける水蒸気分圧をPH2O(I)、水素分圧をPH2(I)、酸素分圧をPO2(I)とする。電極(II)側のガスにおける水蒸気分圧をPH2O(II)、水素分圧をPH2(II)、酸素分圧をPO2(II)とする。
 プロトンおよび酸化物イオンが電荷のキャリアとなり得るため、各電極のガス分圧が異なると起電力Vcellが生じる。起電力Vcellは、下記式(2)もしくは式(3)で表される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここで、t はプロトンの輸率、t 2-は酸化物イオンの輸率、Rは気体定数、Fはファラデー定数、Tは温度(K)を示している。
 加湿水素雰囲気下におけるイオン輸率(t ++t 2-)を測定する場合には、式(2)を使用する。両電極の水蒸気分圧PH2O(I)、PH2O(II)は0.03とした。一方の電極側の水素分圧PH2(I)を0.97に固定し、他方の電極側の水素分圧PH2(II)を0.29、0.39、0.49、0.58、0.68、0.78とし、各水素分圧での起電力Vmeaを測定した。測定された起電力を横軸log[PH2(II)]、縦軸Vのグラフにプロットした。プロットを直線近似したときの傾きと、イオン輸率(t ++t 2-)が1であるときの傾きから、イオン輸率を算出した。このとき、電極の過電圧の影響を受けるため、下記式(4)で補正を行った。式(4)において、Vcellは式(2)に(t ++t 2-)=1を代入したときに得られる値である。
Figure JPOXMLDOC01-appb-M000004
 加湿酸素雰囲気下におけるイオン輸率を測定する場合には、式(3)を使用する。両電極の水蒸気分圧PH2O(I)、PH2O(II)は0.03とした。一方の電極側の酸素分圧PO2(II)を0.97に固定し、他方の電極側の酸素分圧PO2(I)を0.29、0.39、0.49、0.58、0.68、0.78とし、各酸素分圧での起電力Vmeaを測定した。測定された起電力を横軸log[PO2(I)]、縦軸Vのグラフにプロットした。プロットを直線近似したときの傾きからイオン輸率を算出し、上記と同様に補正した。
 イオン輸率の測定結果を図4に示す。加湿酸素雰囲気下におけるイオン輸率は、温度の上昇に伴って低下する傾向がある。この傾向は、Niを含まない試料S1(図4の符号●)と比較して、Niを含む固溶体である試料BZY-Ni(図4の符号▲)において大きい。そのため、試料BZY-Niのイオン輸率は、試料S1のイオン輸率よりも低くなる。したがって、試料BZY-Niを中温域の水蒸気電解セルに適用する場合には、BZYに含まれるNi量を可能な限り小さくすることが望ましい。なお、図4には、加湿水素雰囲気下におけるイオン輸率について測定した結果も示した。図4の符号〇は、Niを含まない試料S1の結果であり、図4の符号△は、Niを含む固溶体である試料BZY-Niの結果である。加湿水素雰囲気下では、イオン輸率がほとんど変化しないことがわかる。
[実施例3]
 金属酸化物m1中のBa、ZrおよびYの合計に対するNiの割合(RNi)が0.4原子%、0.6原子%、1.3原子%となるように、それぞれ金属酸化物m1とNiOとを混合した。得られた混合粉末を一軸成形した後、酸素雰囲気中で1500℃、10時間の熱処理を行うことで、焼結体を得た。焼結体の両面にスパッタによりPt電極を形成することによりサンプル電極を作製した。
 Ptスパッタ後のサンプル電極を測定用のホルダーに取り付け、電気炉に入れ昇温した。600℃において、水蒸気分圧が0.05atm(5×10Pa)、水素分圧が0.95atm(9.5×10Pa)となるように加湿した水素を供給しながら、交流インピーダンス測定により伝導度を求めた。得られた水素雰囲気中の全伝導度を図5に示す。なお、実施例1で作製した焼結体S1及び実施例2で作製した試料BZY-Niについても、サンプル電極を作製した後、水素雰囲気中の全伝導度を求め、合わせて図5に示した。
 図5より、RNiが増大するに伴い、全伝導度が低下することがわかる。プロトン伝導型セル構造体を水蒸気電解セルに適用する場合には、固体電解質層の抵抗を抑え、少なくとも全伝導度を0.005S/cm以上にすることが求められる。
 ここで、プロトン伝導型セル構造体を有する水蒸気電解セルにおいて、全伝導度から水蒸気電解効率を試算すると、以下のようになる。
 まず、電解効率は電流効率(電解に用いられる正味の電流/漏れ電流を含む全電流)と仮定する。ここで、電解効率に影響するパラメーターは電解質の伝導度以外に多数(電解質厚み、電極のガス組成、電極の触媒性能、電流密度等)存在するが、イオン伝導度の低下は確実に電解効率の低下に繋がる。
 具体的には、例えば、電解質がBZYの水蒸気電解セルにおけるポテンシャルとして理想に近い以下のパラメーターで試算すると、0.3A/cmの電流密度で電解したときの電解効率は、電解質伝導度0.018S/cm(Niフリー)において90.9%から、0.005S/cmにおいて87.5%に低下する。
(試算パラメーター)
電解質厚み:20μm
水素極:水蒸気分圧0.05atm(5×10Pa)、水素分圧0.95atm(9.5×10Pa)
酸素極:酸素分圧0.01atm(1×10Pa)、水蒸気分圧0.99atm(9.9×10Pa) (加湿水蒸気供給を想定)
ホール伝導度:加湿酸素雰囲気(水蒸気分圧0.05atm(5×10Pa)、酸素分圧0.95atm(9.5×10Pa))下で0.0044S/cm
電極反応抵抗:0.1Ωcm(実績値は水素極で0.15Ωcm、酸素極で0.5Ωcm)
 したがって、プロトン伝導型セル構造体を有する水蒸気電解セルにおいて、全伝導度を0.005S/cm以上にすることで、水蒸気電解として良好な効率(具体的には、水蒸気電解効率85%以上)を得ることができると推認される。図5の結果によれば、RNiの低下に伴って全伝導度が増加する傾向にあり、RNiが1.2原子%以下であれば全伝導度が0.005S/cm以上となることがわかる。
[実施例4]
(1)MgOとNiOの固溶体の調製
 酸化マグネシウムと酸化ニッケルとを1:1のモル比率でそれぞれボールミルに入れて24時間混合し、混合物を得た。得られた混合物をボールミルで10時間処理して、一軸成形した後、大気雰囲気において、1300℃で10時間焼成した。焼成した試料を乳鉢で粉砕した後、ボールミルで10時間処理することによってMgOとNiOの固溶体(以下、NiO/MgO固溶体と称する)を得た。なお、NiO/MgO固溶体はX線回折(XRD:X-ray Diffraction)測定により、単相の立方晶(空間群:Fm-3m)XRDパターンのみが検出され、MgO/NiO固溶体の単相であることが確認された。XRD測定には、Panalytical製X’pert Proを使用し、X線はCuKα線(管電圧45kV、管電流40mA)とし、集中法、2θ走査範囲5-90degree、0.017degree/step、10.16sec/stepとした。
(2)水素極用粉末の調製
 水素極用材料として、NiO/MgO固溶体および金属酸化物m1を使用した。NiO/MgO固溶体、金属酸化物m1、および適量の2-プロパノールとともに、ボールミルで混合した後、乾燥させることで水素極用粉末を調製した。なお、NiO/MgO固溶体と金属酸化物m1は1:1の重量比で混合した。また、バインダおよび添加剤の量は、NiO/MgO固溶体および金属酸化物m1の合計100質量部に対して、それぞれ、10質量部および0.5質量部とした。
(3)固体電解質用ペーストの調製
 固体電解質層用材料として、上記金属酸化物m1を用いた。金属酸化物m1と、エチルセルロース(バインダ)と、適量のαテルピネオールとを混合して、固体電解質用ペーストを調製した。バインダの量は、金属酸化物m1の100質量部に対して、4質量部とした。
(4)水素極-固体電解質層複合体Aの作製
 上記水素極用粉末を、392MPaの圧力で一軸成形して、円盤状のペレット(直径11mm)を得た後、これを大気中、1000℃で、10時間の熱処理を行った。得られた円盤状のペレットの一方の主面に、上記固体電解質用ペーストをスピンコートにより塗布して、塗膜を形成した。塗膜が形成されたペレットを、600℃で1時間加熱することにより脱バインダ処理を行った。次いで、得られたペレットを酸素雰囲気中にて1600℃で10時間、本焼成し、水素極-固体電解質層複合体Aを得た。走査型電子顕微鏡(SEM)により観察したところ、水素極の厚みは約1.4mmであり、固体電解質層の厚みは20μmであった。
(5)水素極-固体電解質層複合体Bの作製
 比較のために、酸化マグネシウムを用いずに酸化ニッケルのみを用いて水素極用ペーストを調製したこと以外、水素極-固体電解質層複合体Aと同様の方法で、水素極-固体電解質層複合体Bを作製した。
 次に、水素極-固体電解質層複合体Aが具備する固体電解質層中のRNiおよび水素極-固体電解質層複合体Bが具備する固体電解質中のRNiを、それぞれ測定した。まず水素極-固体電解質層複合体AおよびBをそれぞれエポキシ樹脂に埋めた後、研磨によって断面出しを行い、続いて日本電子製IB-19510CPを用いて断面加工を行った。これを、メイワフォーシス製CADE-Eを用いてカーボンコートを行った後、日本電子製JXA-8530Fにセットし、WDXを行った。WDXは、固体電解質層を表面から厚さ方向に、1μm間隔で14点の測定を行った。この時の、加速電圧は15kV、照射電流は50nAとした。その後、全ての測定点を平均化することによって、RNiを求めた。ただし、隣の測定点の値よりも1原子%以上差が生じた点に関しては除外した。
 水素極-固体電解質層複合体AおよびBが具備する固体電解質層におけるY濃度とRNiとの関係を図6に示す。ここで、Y濃度とは、BZY中の元素A、元素B、元素Mの総量に対するYの割合(原子%)である。なお、水素極-固体電解質層複合体A、Bの調製について、化学量論組成のBZY20(BaZr0.80.23-δ)を得るために、以下に示す異なる3種の調製条件によりそれぞれ行った。図6に示すプロットと調製条件との関係は以下のとおりである。
 符号□および符号■:水素極用粉末を、392MPaで一軸成形して、円盤状のペレット(直径11mm)を得た後、これを大気中、1000℃で、10時間の熱処理を行った。得られた円盤状のペレットの一方の主面に、上記固体電解質用ペーストをスピンコートにより塗布して、塗膜を形成した。塗膜が形成されたペレットを、600℃で1時間程度加熱することにより脱バインダ処理を行った。これをBZYと炭酸バリウムとの混合粉末[BZY:BaCO=100:1(質量比)]に埋めて、酸素雰囲気中、1600℃で、10時間の熱処理を行う。
 符号△および符号▲:脱バインダ処理後のペレットをBZYと炭酸バリウムとの混合粉末[BZY:BaCO=100:1(質量比)]に載置すること以外、上記符号□の場合と同様の方法で熱処理を行う。
 符号〇および符号●:脱バインダ処理後のペレットをそのまま露出した状態にすること以外、上記符号□の場合と同様の方法で熱処理を行う。
 図6において、Y濃度が10原子%の場合、化学量論組成のBZY20(BaZr0.80.23-δ)が調製されているとみなす。
 図6より、固体電解質層中のY濃度が増加するに伴い、YとNiとを含む副生成物(例えば、BaYNiO)が生成されやすくなるため、RNiが増加する傾向があることがわかる。ただし、水素極-固体電解質層複合体Aと水素極-固体電解質層複合体Bとを比較すると、RNiが同じ場合では、複合体AのY濃度は複合体Bのほぼ倍である。この結果は、複合体Aの固体電解質層では、複合体BのそれよりもNiの拡散が進行しにくいことを示している。
 1:セル構造体
 2:酸素極
 3:水素極
 4:固体電解質層
 5:電解質層-電極接合体

Claims (15)

  1.  ペロブスカイト型構造を有し、かつ下記式(1):
     A1-y3-δ     (1)
    で表される金属酸化物を含み、
     元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種であり、
     元素Bは、CeおよびZrよりなる群から選択される少なくとも一種であり、
     元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種であり、
     δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす、プロトン伝導体。
  2.  600℃の加湿酸素雰囲気中におけるイオン輸率が0.8以上である、請求項1に記載のプロトン伝導体。
  3.  前記式(1)が、0.98≦x≦1を満たす、請求項1または請求項2に記載のプロトン伝導体。
  4.  前記元素AがBaを含み、
     前記元素BがZrを含み、
     前記元素MがYを含む、請求項1~請求項3のいずれか1項に記載のプロトン伝導体。
  5.  酸素極と、水素極と、前記酸素極および前記水素極の間に介在する請求項1~請求項4のいずれか1項に記載のプロトン伝導体と、を備えるプロトン伝導型セル構造体。
  6.  前記水素極がニッケルを含み、
     前記プロトン伝導体に含まれる前記元素A、前記元素Bおよび前記元素Mの総量に対する、前記プロトン伝導体に含まれるNiの割合:RNiが、1.2原子%以下である、請求項5に記載のプロトン伝導型セル構造体。
  7.  前記水素極が、前記元素A、前記元素Bおよび前記元素Mのいずれとも異なる元素Xを更に含み、
     前記元素Xは、1500℃以上の温度で前記プロトン伝導体と反応せず、かつNiの活量を低下させる、請求項6に記載のプロトン伝導型セル構造体。
  8.  前記元素Xは、Niを含む化合物を形成し得る、請求項7に記載のプロトン伝導型セル構造体。
  9.  前記元素Xは、少なくともMgを含む、請求項7または請求項8に記載のプロトン伝導型セル構造体。
  10.  前記Niの割合:RNiが1.0原子%以下である、請求項6~請求項9のいずれか1項に記載のプロトン伝導型セル構造体。
  11.  請求項5~請求項10のいずれか1項に記載のプロトン伝導型セル構造体を備える、水蒸気電解セル。
  12.  多孔質な第1固体電解質層と、緻密な第2固体電解質層と、が一体化されたセル前駆体を得る第1工程と、
     前記第1固体電解質層の細孔内に、ニッケル成分を付与する第2工程と、を有し、
     前記第1固体電解質層および前記第2固体電解質層が、それぞれペロブスカイト型構造を有し、かつ下記式(1):
     A1-y3-δ     (1)
    で表される金属酸化物を含み、
     元素Aは、Ba、CaおよびSrよりなる群から選択される少なくとも一種であり、
     元素Bは、CeおよびZrよりなる群から選択される少なくとも一種であり、
     元素Mは、Y、Yb、Er、Ho、Tm、Gd、InおよびScよりなる群から選択される少なくとも一種であり、
     δは酸素欠損量であり、0.95≦x≦1、0<y≦0.5を満たす、水素極-固体電解質層複合体の製造方法。
  13.  前記第2固体電解質層の600℃における加湿酸素雰囲気中におけるイオン輸率が、0.8以上である、請求項12に記載の水素極-固体電解質層複合体の製造方法。
  14.  前記第1工程が、前記第1固体電解質層の原料と造孔材とを含む第1ペースト層と、前記第2固体電解質層の原料を含み、前記造孔材を含まない第2ペースト層と、を積層して、ペースト積層体を得る工程と、
     前記ペースト積層体を400℃~1000℃で焼成する工程と、を有する、請求項12または請求項13に記載の水素極-固体電解質層複合体の製造方法。
  15.  前記第2工程が、前記細孔内にニッケル化合物溶液を含有させた後、200℃~600℃で焼成することを含む、請求項12~請求項14のいずれか1項に記載の水素極-固体電解質層複合体の製造方法。
PCT/JP2018/042539 2017-11-29 2018-11-16 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法 WO2019107194A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019557154A JP7225113B2 (ja) 2017-11-29 2018-11-16 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法
CN201880077113.8A CN111418027B (zh) 2017-11-29 2018-11-16 质子导体、质子传导型电池结构体、水蒸气电解池以及氢电极-固体电解质层复合体的制造方法
US16/767,747 US11545690B2 (en) 2017-11-29 2018-11-16 Proton conductor, proton-conducting cell structure, water vapor electrolysis cell, and method for producing hydrogen electrode-solid electrolyte layer complex
EP18883724.9A EP3719815A4 (en) 2017-11-29 2018-11-16 PROTON CONDUCTOR, PROTON CONDUCTIVE CELL STRUCTURE, WATER VAPOR ELECTROLYSIS CELL AND HYDROGEN SOLID ELECTRODE ELECTROLYTE LAYER COMPLEX PRODUCTION METHOD

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017229685 2017-11-29
JP2017-229685 2017-11-29
JP2018030074 2018-02-22
JP2018-030074 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019107194A1 true WO2019107194A1 (ja) 2019-06-06

Family

ID=66664873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042539 WO2019107194A1 (ja) 2017-11-29 2018-11-16 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法

Country Status (5)

Country Link
US (1) US11545690B2 (ja)
EP (1) EP3719815A4 (ja)
JP (1) JP7225113B2 (ja)
CN (1) CN111418027B (ja)
WO (1) WO2019107194A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261935A1 (ja) * 2019-06-28 2020-12-30 住友電気工業株式会社 燃料極-固体電解質層複合体、燃料極-固体電解質層複合部材、燃料電池、および、燃料電池の製造方法
WO2021140817A1 (ja) * 2020-01-07 2021-07-15 パナソニックIpマネジメント株式会社 電解質膜、膜電極接合体、電気化学セル、電解質膜の製造方法
WO2021256221A1 (ja) * 2020-06-18 2021-12-23 住友電気工業株式会社 プロトン伝導型セル構造体、プロトン伝導体、電気化学デバイス、及びプロトン伝導体の製造方法
WO2021262410A1 (en) * 2020-06-23 2021-12-30 Phillips 66 Company Proton-conducting electrolytes for reversible solid oxide cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107875B2 (ja) * 2019-03-11 2022-07-27 住友電気工業株式会社 燃料極-固体電解質層複合体の製造方法
CN114744214A (zh) * 2022-02-21 2022-07-12 南京工业大学 一种三重传导性的钙钛矿氧化物、制备方法及用途

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307546A (ja) 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd イオン伝導体
JP2007197315A (ja) 1999-02-17 2007-08-09 Matsushita Electric Ind Co Ltd 混合イオン伝導体およびこれを用いたデバイス
JP2010080304A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 電気化学セル水素極材料の製造方法
JP2014013694A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 電解質複合部材、電解質/電極複合部材、及び電解質複合部材の製造方法
JP2014060028A (ja) * 2012-09-18 2014-04-03 Toyota Motor Corp 固体酸化物型燃料電池
JP2014072115A (ja) * 2012-10-01 2014-04-21 Toyota Motor Corp 燃料電池の製造方法
WO2015008407A1 (ja) * 2013-07-16 2015-01-22 パナソニックIpマネジメント株式会社 プロトン伝導体
JP2015147997A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 水蒸気電解装置
JP2016071930A (ja) * 2014-09-26 2016-05-09 アイシン精機株式会社 固体酸化物型燃料電池セルの製造方法
WO2016157566A1 (ja) * 2015-03-30 2016-10-06 住友電気工業株式会社 プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池
JP2017041308A (ja) * 2015-08-17 2017-02-23 住友電気工業株式会社 セル構造体の製造方法
WO2017104806A1 (ja) * 2015-12-18 2017-06-22 住友電気工業株式会社 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置
JP2018030074A (ja) 2016-08-23 2018-03-01 オルガノ株式会社 ポリアミド系逆浸透膜、およびそのポリアミド系逆浸透膜の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621034B2 (ja) 1988-05-24 1994-03-23 三菱マテリアル株式会社 銅アルコキシドの製法とこれを用いた超伝導粉末の製法
JPH06196181A (ja) 1992-12-25 1994-07-15 Sanyo Electric Co Ltd 平板型固体電解質燃料電池
US6099985A (en) * 1997-07-03 2000-08-08 Gas Research Institute SOFC anode for enhanced performance stability and method for manufacturing same
US6517693B2 (en) * 2000-02-14 2003-02-11 Matsushita Electric Industrial Co., Ltd. Ion conductor
ES2487365T3 (es) * 2004-03-26 2014-08-20 The University Court Of The University Of St. Andrews Electrólisis de vapor
CN101771149A (zh) * 2008-12-29 2010-07-07 中国科学院大连化学物理研究所 镁改性的镍基固体氧化物燃料电池复合阳极及制备和应用
JP5454782B2 (ja) 2010-01-22 2014-03-26 哲也 宇田 固体電解質の表面に形成された電極、ならびにこれを備える燃料電池、水素発生装置および水素選択透過装置
JP2012043774A (ja) 2010-07-21 2012-03-01 Ngk Insulators Ltd 電極材料及びそれを含む固体酸化物型燃料電池セル
CN102569823A (zh) * 2010-12-14 2012-07-11 中国科学院大连化学物理研究所 镁和稀土元素共改性的固体氧化物燃料电池镍基复合阳极
JP5520210B2 (ja) 2010-12-27 2014-06-11 Agcセイミケミカル株式会社 固体酸化物型燃料電池用空気極材料粉末及びその製造方法
CN102651477A (zh) * 2011-02-25 2012-08-29 中国科学院大连化学物理研究所 一种固体氧化物燃料电池镍基复合阳极材料及其应用
JP5936897B2 (ja) 2012-03-28 2016-06-22 住友電気工業株式会社 固体電解質、固体電解質の製造方法、固体電解質積層体及び固体電解質積層体の製造方法及び燃料電池
JP6024373B2 (ja) 2012-10-12 2016-11-16 住友電気工業株式会社 燃料電池およびその操業方法
JP6191090B2 (ja) 2013-08-27 2017-09-06 住友電気工業株式会社 燃料極用電極材料、固体電解質−電極積層体、固体電解質−電極積層体の製造方法及び燃料電池
WO2015114684A1 (ja) 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 プロトン伝導体

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197315A (ja) 1999-02-17 2007-08-09 Matsushita Electric Ind Co Ltd 混合イオン伝導体およびこれを用いたデバイス
JP2001307546A (ja) 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd イオン伝導体
JP2010080304A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 電気化学セル水素極材料の製造方法
JP2014013694A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 電解質複合部材、電解質/電極複合部材、及び電解質複合部材の製造方法
JP2014060028A (ja) * 2012-09-18 2014-04-03 Toyota Motor Corp 固体酸化物型燃料電池
JP2014072115A (ja) * 2012-10-01 2014-04-21 Toyota Motor Corp 燃料電池の製造方法
WO2015008407A1 (ja) * 2013-07-16 2015-01-22 パナソニックIpマネジメント株式会社 プロトン伝導体
JP2015147997A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 水蒸気電解装置
JP2016071930A (ja) * 2014-09-26 2016-05-09 アイシン精機株式会社 固体酸化物型燃料電池セルの製造方法
WO2016157566A1 (ja) * 2015-03-30 2016-10-06 住友電気工業株式会社 プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池
JP2017041308A (ja) * 2015-08-17 2017-02-23 住友電気工業株式会社 セル構造体の製造方法
WO2017104806A1 (ja) * 2015-12-18 2017-06-22 住友電気工業株式会社 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置
JP2018030074A (ja) 2016-08-23 2018-03-01 オルガノ株式会社 ポリアミド系逆浸透膜、およびそのポリアミド系逆浸透膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719815A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261935A1 (ja) * 2019-06-28 2020-12-30 住友電気工業株式会社 燃料極-固体電解質層複合体、燃料極-固体電解質層複合部材、燃料電池、および、燃料電池の製造方法
WO2021140817A1 (ja) * 2020-01-07 2021-07-15 パナソニックIpマネジメント株式会社 電解質膜、膜電極接合体、電気化学セル、電解質膜の製造方法
WO2021256221A1 (ja) * 2020-06-18 2021-12-23 住友電気工業株式会社 プロトン伝導型セル構造体、プロトン伝導体、電気化学デバイス、及びプロトン伝導体の製造方法
WO2021262410A1 (en) * 2020-06-23 2021-12-30 Phillips 66 Company Proton-conducting electrolytes for reversible solid oxide cells
US11495818B2 (en) 2020-06-23 2022-11-08 Phillips 66 Company Proton-conducting electrolytes for reversible solid oxide cells
KR20230018527A (ko) * 2020-06-23 2023-02-07 필립스 66 컴퍼니 가역성 고체 산화물 전지를 위한 양성자-전도성 전해질
KR102575165B1 (ko) 2020-06-23 2023-09-07 필립스 66 컴퍼니 가역성 고체 산화물 전지를 위한 양성자-전도성 전해질

Also Published As

Publication number Publication date
JP7225113B2 (ja) 2023-02-20
EP3719815A1 (en) 2020-10-07
US20210005916A1 (en) 2021-01-07
EP3719815A4 (en) 2022-01-26
CN111418027A (zh) 2020-07-14
US11545690B2 (en) 2023-01-03
CN111418027B (zh) 2021-10-29
JPWO2019107194A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
CN111418027B (zh) 质子导体、质子传导型电池结构体、水蒸气电解池以及氢电极-固体电解质层复合体的制造方法
Laguna-Bercero et al. Improved stability of reversible solid oxide cells with a nickelate-based oxygen electrode
KR101699091B1 (ko) 저온 고체 산화물형 연료전지(sofc)에 사용되는 개선된 물질 및 설계
Savaniu et al. Reduction studies and evaluation of surface modified A-site deficient La-doped SrTiO 3 as anode material for IT-SOFCs
CN107112564B (zh) 电池结构体及其制造方法以及燃料电池
KR101549443B1 (ko) 이중층 페로브스카이트 구조를 가지는 대칭형 고체 산화물 연료전지의 제조방법
KR20190131744A (ko) 용출 및 치환된 전이원소를 가지는 촉매체를 포함하는 전극 소재의 제조 방법 및 이를 이용하여 제조한 전극 소재를 포함하는 고체 산화물 연료전지, 금속공기전지 및 고체 산화물 수전해 셀
JP5415994B2 (ja) 固体電解質形燃料電池セル
Lee et al. Ceria interlayer-free Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ–Sc0. 1Zr0. 9O1. 95 composite cathode on zirconia based electrolyte for intermediate temperature solid oxide fuel cells
KR20120140476A (ko) 고체산화물 연료전지용 소재, 상기 소재를 포함하는 캐소드 및 상기 소재를 포함하는 고체산화물 연료전지
KR101642427B1 (ko) 고체 산화물 연료전지용 애노드 소재의 제조방법
KR101611254B1 (ko) 고체 산화물 연료전지의 에노드 소재의 제조 방법
KR20150097620A (ko) 고체산화물 연료전지 층의 분말 혼합물
KR101330173B1 (ko) 고체 산화물 연료전지용 캐소드와 그 제조 방법 및 이 캐소드를 포함하는 연료전지
KR101905953B1 (ko) 삼중층 페로브스카이트 공기극 촉매 및 이를 구비하는 전기화학소자
Ju et al. New buffer layer material La (Pr) CrO3 for intermediate temperature solid oxide fuel cell using LaGaO3-based electrolyte film
JP2004303712A (ja) 固体酸化物形燃料電池
KR102186600B1 (ko) 고체산화물 연료전지용 고체 전해질, 고체산화물 연료전지 및 이를 제조하는 방법
KR101615694B1 (ko) 고체 산화물 연료전지용 애노드 소재의 제조방법
KR101927306B1 (ko) 산화물 입자, 이를 포함하는 전극 및 상기 전극을 포함하는 연료전지
JP7114555B2 (ja) 水蒸気電解用電極
KR102463568B1 (ko) 공기극 활물질 및 이를 포함하는 전기화학 소자
KR102330590B1 (ko) 공기극 활물질 및 이를 포함하는 전기화학 소자
KR102091454B1 (ko) 고체 산화물 연료전지용 캐소드 소재, 그를 포함하는 고체 산화물 연료전지
WO2023195245A1 (ja) 電気化学セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018883724

Country of ref document: EP

Effective date: 20200629