WO2016157566A1 - プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池 - Google Patents

プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池 Download PDF

Info

Publication number
WO2016157566A1
WO2016157566A1 PCT/JP2015/073879 JP2015073879W WO2016157566A1 WO 2016157566 A1 WO2016157566 A1 WO 2016157566A1 JP 2015073879 W JP2015073879 W JP 2015073879W WO 2016157566 A1 WO2016157566 A1 WO 2016157566A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte layer
solid electrolyte
proton conductor
fuel
anode
Prior art date
Application number
PCT/JP2015/073879
Other languages
English (en)
French (fr)
Inventor
孝浩 東野
陽平 野田
千尋 平岩
奈保 水原
博匡 俵山
竹内 久雄
真嶋 正利
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2017509141A priority Critical patent/JP6601488B2/ja
Priority to CN201580077101.1A priority patent/CN107406332B/zh
Priority to KR1020177023775A priority patent/KR20170132140A/ko
Priority to US15/553,237 priority patent/US20180037508A1/en
Priority to EP15887708.4A priority patent/EP3279987B1/en
Publication of WO2016157566A1 publication Critical patent/WO2016157566A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to improvements in proton conductors, in particular solid electrolyte layers in fuel cells.
  • the fuel cell includes a cell structure including a cathode and an anode and a solid electrolyte layer interposed therebetween, an oxidant flow path for supplying an oxidant to the cathode, and a fuel flow for supplying fuel to the anode.
  • Perovskite oxides that exhibit proton conductivity such as BaCe 0.8 Y 0.2 O 2.9 (BCY) and BaZr 0.8 Y 0.2 O 2.9 (BZY) are highly conductive at intermediate temperatures. And is expected as a solid electrolyte for medium temperature fuel cells.
  • BCY or BZY as a solid electrolyte layer is difficult to obtain sufficient durability.
  • Patent Document 1 has insufficient moisture resistance, and a large amount of barium hydroxide and barium carbonate is generated by corrosion. Since these products inhibit the power generation reaction, the performance of the solid electrolyte is reduced when the amount of the product is increased.
  • An object of the present invention is to improve moisture resistance in a proton conductor useful for a solid electrolyte layer of a fuel cell.
  • One aspect of the present invention has a perovskite structure and has the following formula (1): Ba x Zr y Ce z M 1- (y + z) O 3- ⁇ (However, the element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, and Sc, and 0.85 ⁇ x ⁇ 0.98, 0.70 ⁇ y + z ⁇ 1. 0.00, ratio y / z is 0.5 / 0.5 to 1/0, and ⁇ is oxygen deficiency)
  • Another aspect of the invention includes a cathode, An anode, A solid electrolyte layer interposed between the cathode and the anode and having proton conductivity,
  • the solid electrolyte layer includes a proton conductor;
  • the proton conductor has a perovskite structure and has the following formula (1): Ba x Zr y Ce z M 1- (y + z) O 3- ⁇ (However, the element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, and Sc, and 0.85 ⁇ x ⁇ 0.98, 0.70 ⁇ y + z ⁇ 1. 0.00, ratio y / z is 0.5 / 0.5 to 1/0, and ⁇ is oxygen deficiency) It is related with the cell structure represented by these.
  • Still another aspect of the present invention includes the cell structure described above,
  • the present invention relates to a fuel cell having an oxidant flow path for supplying an oxidant to the cathode and a fuel flow path for supplying fuel to the anode.
  • Another aspect of the present invention has a perovskite structure and has the following formula (1): Ba x Zr y Ce z M 1- (y + z) O 3- ⁇ (However, the element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, and Sc, and 0.85 ⁇ x ⁇ 0.98, 0.70 ⁇ y + z ⁇ 1. 0.00, ratio y / z is 0.5 / 0.5 to 1/0, and ⁇ is oxygen deficiency) It is related with the proton conductor represented by these.
  • a solid electrolyte layer for a fuel cell according to an embodiment of the present invention has (1) a perovskite structure and has the following formula (1): Ba x Zr y Ce z M 1- (y + z) O 3- ⁇ (However, the element M is at least selected from the group consisting of yttrium (Y), ytterbium (Yb), erbium (Er), holmium (Ho), thulium (Tm), gadolinium (Gd), and scandium (Sc).
  • Another embodiment of the present invention relates to a cell structure including a cathode, an anode, and a solid electrolyte layer interposed between the cathode and the anode and having proton conductivity.
  • the solid electrolyte layer includes a proton conductor, and the proton conductor has a perovskite structure and is represented by the above formula (1).
  • a fuel cell according to an embodiment of the present invention includes the cell structure described above, an oxidant channel for supplying an oxidant to the cathode, and a fuel channel for supplying fuel to the anode.
  • a proton conductor according to an embodiment of the present invention has a perovskite structure and is represented by the above formula (1).
  • the proton conductor containing Ba has low moisture resistance, and Ba is likely to precipitate in the presence of moisture.
  • Ba is precipitated, by-products such as Ba (OH) 2 and BaCO 3 are generated to cause corrosion.
  • Ba (OH) 2 and BaCO 3 are generated to cause corrosion.
  • the efficiency of the battery reaction itself is reduced, and the ratio of the phase of Ba x Zr y Ce z M 1- (y + z) is reduced.
  • the performance of the electrolyte layer is reduced.
  • the Ba ratio x is in the above range, the precipitation of Ba is suppressed, so the generation of Ba (OH) 2 and BaCO 3 (particularly Ba (OH) 2 ) is suppressed,
  • the phase ratio of Ba x Zr y Ce z M 1- (y + z) can be increased. Therefore, the moisture resistance of the solid electrolyte layer can be improved. And durability can be improved by using a solid electrolyte layer with high moisture resistance for the cell structure of a fuel cell. Moreover, since it is easy to ensure high proton conductivity, a high output can be maintained.
  • (5) x satisfies 0.85 ⁇ x ⁇ 0.96.
  • moisture resistance can be further enhanced while ensuring high proton conductivity.
  • the element M is preferably at least one selected from the group consisting of Y and Yb. Such an element M is advantageous from the viewpoint of easily ensuring high proton conductivity.
  • the ratio x1 of Ba at a position of 0.25 T from one surface of the solid electrolyte layer and 0.25 T from the other surface of the solid electrolyte layer satisfies x1> x2, and the other surface is brought into contact with the cathode of the fuel cell.
  • the Ba ratio is smaller in the cathode side region than in the anode side region, and high moisture resistance is obtained. Therefore, even if water is generated by proton oxidation at the cathode of the fuel cell, corrosion of the solid electrolyte layer can be more effectively suppressed.
  • region of the anode side of a solid electrolyte layer since the ratio of Ba can be enlarged, high proton conductivity is securable.
  • the ratio of elements in the solid electrolyte layer can be determined by evaluating the element distribution state (depth profile) using energy dispersive X-ray spectroscopy (EDX: EnergyEDispersive X-ray Spectroscope). For example, the ratio of the proton conductor elements constituting the solid electrolyte layer is measured by EDX at an arbitrary plurality of points (for example, five points) in the cross section in the thickness direction of the solid electrolyte, and the solid electrolyte layer is averaged. An average ratio of elements in (specifically, proton conductor) can be obtained.
  • EDX EnergyEDispersive X-ray Spectroscope
  • the Ba ratio x1 at a position of 0.25T from one surface of the solid electrolyte layer and the Ba ratio x2 at a position of 0.25T from the other surface are obtained by using an electron beam microanalyzer (EPMA: Electron Probe MicroAnalyzer).
  • EPMA Electron Probe MicroAnalyzer
  • the thickness T is divided into four equal parts, and the concentration of Ba is measured by EPMA at a position inside 0.25T from one main surface of the solid electrolyte layer and a position inside 0.25T from the other main surface.
  • the Ba ratios x1 and x2 can be obtained.
  • the ratio y / z of Zr to Ce is preferably 0.5 / 0.5 to 0.9 / 0.1.
  • the ratio y / z is in such a range, it is possible to form a solid electrolyte layer that has high durability and can obtain high power generation performance when used in a fuel cell.
  • the proton conductor has a perovskite structure (ABO 3 ) and is represented by the above formula (1).
  • Ba enters the A site of the compound of the formula (1), and Zr and Ce enter the B site.
  • Part of the B site is substituted with an element M (dopant) other than Zr and Ce, and high proton conductivity can be ensured.
  • the ratio x of Ba to the total of elements (Zr, Ce and element M) entering the B site is in the range of 0.85 ⁇ x ⁇ 0.98, thereby suppressing the precipitation of Ba.
  • x is preferably 0.85 ⁇ x ⁇ 0.97, and more preferably 0.85 ⁇ x ⁇ 0.96.
  • the lower limit of x may be 0.85, preferably 0.87 or 0.88.
  • the sum of the ratio y of Zr to the elements entering the B site and the ratio z of Ce: y + z is 0.70 ⁇ y + z ⁇ 1.0, preferably 0.70 ⁇ y + z ⁇ 0.95, more preferably 0. .75 ⁇ y + z ⁇ 0.90 or 0.75 ⁇ y + z ⁇ 0.85.
  • y + z is in such a range, it is easy to ensure high proton conductivity.
  • the ratio y / z is 0.5 / 0.5 to 1/0, preferably 0.5 / 0.5 to 0.9 / 0.1, and more preferably 0.6 / 0.4. To 0.9 / 0.1 or 0.7 / 0.3 to 0.9 / 0.1.
  • the ratio y / z is in such a range, high moisture resistance is easily obtained, and durability of the solid electrolyte layer is easily improved. In addition, when used in a fuel cell, high power generation performance is easily obtained.
  • the proton conductor contains the element M
  • high proton conductivity is obtained.
  • the elements M Y and / or Yb are preferable from the viewpoint of easily ensuring high proton conductivity.
  • the ratio of Y and Yb to the element M is preferably 50 atomic% or more, and more preferably 80 atomic% or more in total of Y and Yb.
  • the element M may be composed only of Y and / or Yb.
  • the oxygen deficiency ⁇ can be determined according to the amount of the element M, for example, 0 ⁇ ⁇ ⁇ 0.15.
  • the solid electrolyte layer includes the above proton conductor.
  • the solid electrolyte layer may contain components other than the compound of the above formula (1), but the content thereof is preferably small from the viewpoint of easily ensuring high moisture resistance and proton conductivity.
  • 50% by mass or more or 70% by mass or more of the solid electrolyte layer is preferably the compound of the formula (1), and the average composition of the entire solid electrolyte layer may be the composition of the formula (1).
  • the component other than the compound of the formula (1) is not particularly limited, and examples of the solid electrolyte include known compounds (including compounds having no proton conductivity).
  • the thickness of the solid electrolyte layer is, for example, 1 ⁇ m to 50 ⁇ m, preferably 3 ⁇ m to 20 ⁇ m. When the thickness of the solid electrolyte layer is in such a range, it is preferable in that the resistance of the solid electrolyte layer can be kept low.
  • the solid electrolyte layer forms a cell structure with the cathode and anode and can be incorporated into the fuel cell.
  • the solid electrolyte layer is sandwiched between the cathode and the anode, and one main surface of the solid electrolyte layer is in contact with the anode, and the other main surface is in contact with the cathode.
  • water is generated by oxidation of protons at the cathode, so that the region on the cathode side of the solid electrolyte layer is easily corroded by water generated at the cathode.
  • by forming at least the cathode side region of the solid electrolyte layer with the proton conductor of the above formula (1) corrosion of the solid electrolyte layer can be effectively suppressed.
  • the ratio of Ba in the solid electrolyte layer may change so as to increase from the cathode side toward the anode side. This change may be continuous or stepwise.
  • the change of Ba ratio should just be the extent which can be grasped
  • the Ba ratio x2 in this region can be a value selected from the range exemplified for x.
  • the Ba ratio x1 in the anode side region is not particularly limited as long as x1> x2.
  • x1 is preferably 0.98 ⁇ x1, and may be 0.98 ⁇ x1 ⁇ 1.10.
  • the difference between x1 and x2 is preferably 0.05 or more or 0.10 or more, for example.
  • the proton conductor of formula (1) can be produced by mixing and firing raw materials containing constituent elements in such a ratio that the ratio of Ba, Zr, Ce and element M is the composition of formula (1).
  • the firing temperature is, for example, 1200 ° C. to 1800 ° C., and preferably 1400 ° C. to 1700 ° C. Firing can be performed in an oxygen atmosphere such as in the air.
  • the raw material include oxides and carbonates.
  • the raw materials it is preferable to use barium oxide, barium carbonate, or the like as the Ba source.
  • Zirconium oxide is preferably used as the Zr source, and cerium oxide is preferably used as the Ce source.
  • oxides such as yttrium oxide and ytterbium oxide are preferably used.
  • Each raw material can be used individually by 1 type or in combination of 2 or more types.
  • a composite oxide may be used as a raw material.
  • a composite oxide containing Zr (or Zr and Ce) and an element M (such as Y) is mixed with barium oxide and / or barium carbonate, and calcined in the same manner as described above, thereby protons of the formula (1)
  • a conductor can also be obtained.
  • the solid electrolyte layer can be formed by firing a coating film of an electrolyte paste containing a proton conductor, a binder, and a dispersion medium (such as water and / or an organic solvent).
  • a coating film can be formed by apply
  • a binder removal treatment for removing the binder by heating may be performed prior to firing.
  • the firing may be a combination of temporary firing performed at a relatively low temperature and main firing performed at a temperature higher than the preliminary firing.
  • An electrolyte paste using a raw material may be used instead of the proton conductor, and the raw material may be converted into a proton conductor when the solid electrolyte layer is formed by firing.
  • binder known materials used for the solid electrolyte layer of the fuel cell, for example, cellulose derivatives such as ethyl cellulose (cellulose ether and the like), vinyl acetate resins (including saponified vinyl acetate resins such as polyvinyl alcohol) , Polymer binders such as acrylic resins; and / or waxes such as paraffin wax.
  • the amount of the binder may be, for example, 3 to 100 parts by mass with respect to 100 parts by mass of the proton conductor.
  • the temperature of temporary baking is 800 degreeC or more and less than 1200 degreeC, for example.
  • the firing temperature is, for example, 1200 ° C. to 1800 ° C. or 1400 ° C. to 1700 ° C.
  • the preliminary baking and the main baking may be performed in an air atmosphere, or may be performed in an oxygen gas atmosphere containing more oxygen than air.
  • the temperature of the soot removal binder treatment can be determined according to the type of the binder, and may be lower than the temperature of the temporary baking when the temporary baking is performed.
  • the temperature of the binder removal process may be 400 ° C. or higher and lower than 800 ° C., for example.
  • the binder removal treatment may be performed in an air atmosphere.
  • Solid electrolyte layers having different Ba ratios in the cathode side region and the anode side region can be produced by using a plurality of electrolyte pastes having different Ba ratios. More specifically, for example, the first electrolyte paste is applied to one main surface of the anode to form a first coating film, and the ratio of Ba is smaller than that of the first electrolyte paste on the surface of the first coating film.
  • a solid electrolyte layer can be formed by forming and baking a second coating film of the second electrolyte paste. Prior to the formation of the second coating film, the first coating film may be dried, or may be subjected to a binder removal process or a temporary baking. Not only when two types of electrolyte pastes having different Ba ratios are used, but also three or more types of electrolyte pastes may be used.
  • FIG. 1 A schematic cross-sectional view of a cell structure according to an embodiment of the present invention is shown in FIG.
  • the cell structure 1 includes a cathode 2, an anode 3, and a solid electrolyte layer 4 interposed therebetween.
  • the solid electrolyte layer 4 the above-described solid electrolyte layer is used.
  • the anode 3 and the solid electrolyte layer 4 are integrated to form an electrolyte layer-electrode assembly 5.
  • the thickness of the anode 3 is larger than that of the cathode 2, and the anode 3 functions as a support for supporting the solid electrolyte layer 4 (and thus the cell structure 1). Note that the thickness of the anode 3 is not necessarily larger than that of the cathode 2 without being limited to the illustrated example. For example, the thickness of the anode 3 and the thickness of the cathode 2 may be approximately the same.
  • the cathode has a porous structure that can adsorb oxygen molecules and dissociate them to ionize them.
  • a reaction oxygen reduction reaction
  • Oxide ions are generated when the oxidant (oxygen) introduced from the oxidant flow path is dissociated.
  • a known material used as a cathode of a fuel cell can be used.
  • compounds containing lanthanum and having a perovskite structure are preferred, and those containing strontium are more preferred.
  • lanthanum strontium cobalt ferrite La 1-x3 Sr x3 Fe 1-y1 Co y1 O 3- ⁇ , 0 ⁇ x3 ⁇ 1,0 ⁇ y1 ⁇ 1, ⁇ is the oxygen deficiency amount
  • Lanthanum strontium manganite LSM, La 1-x4 Sr x4 MnO 3- ⁇ , 0 ⁇ x4 ⁇ 1, ⁇ is oxygen deficiency
  • lanthanum strontium cobaltite LSC, La 1-x5 Sr x5 CoO 3- ⁇ , 0 ⁇ x5 ⁇ 1, ⁇ is an oxygen deficiency amount.
  • the amount of oxygen deficiency ⁇ may be 0 ⁇ ⁇ ⁇ 0.15.
  • the cathode can be formed, for example, by sintering the above materials. If necessary, a binder, an additive, and / or a dispersion medium may be used together with the above materials. From the viewpoint of promoting the reaction between protons and oxide ions, the cathode 2 may contain a catalyst such as Pt. When the catalyst is included, the cathode 2 can be formed by mixing the catalyst and the above materials and sintering. The thickness of the cathode 2 is not particularly limited, but may be about 5 ⁇ m to 40 ⁇ m.
  • the anode 4 has a porous structure.
  • a reaction fuel oxidation reaction
  • a fuel such as hydrogen introduced from a flow path to be described later is oxidized to release protons and electrons.
  • the material of the anode for example, a known material used as an anode of a fuel cell can be used. Specifically, nickel oxide (NiO) as a catalyst component and a proton conductor (yttrium oxide (Y 2 O 3 ), BCY, BZY, or a compound of the above formula (1) (hereinafter sometimes referred to as BZCY) Etc.) and the like.
  • NiO nickel oxide
  • Y 2 O 3 yttrium oxide
  • BCY BCY
  • BZY a proton conductor
  • BZCY a compound of the above formula (1)
  • the anode 4 containing such a composite oxide can be formed, for example, by mixing and sintering NiO powder and proton conductor powder.
  • the thickness of the anode can be appropriately determined from 10 ⁇ m to 2 mm, for example, and may be 10 ⁇ m to 100 ⁇ m.
  • the thickness of the anode may be increased to function as a support for supporting the solid electrolyte layer. In this case, the thickness of the anode can be appropriately selected from the range of 100 ⁇ m to 2 mm, for example.
  • the cell structure has gas decomposition performance, and this cell structure can be used in a gas decomposition apparatus.
  • a catalyst having a function of decomposing the gas may be included in the anode.
  • the catalyst having a function of decomposing gas such as ammonia include compounds containing at least one catalyst component selected from the group consisting of Fe, Co, Ti, Mo, W, Mn, Ru, and Cu.
  • FIG. 2 is a cross-sectional view schematically showing a fuel cell (solid oxide fuel cell) including the cell structure of FIG.
  • the fuel cell 10 includes a cell structure 1, a separator 22 in which an oxidant flow path 23 for supplying an oxidant to the cathode 2 of the cell structure 1 is formed, and a fuel flow for supplying fuel to the anode 3. And a separator 52 in which a channel 53 is formed.
  • the cell structure 1 is sandwiched between the cathode side separator 22 and the anode side separator 52.
  • the oxidant flow path 23 of the cathode side separator 22 is disposed to face the cathode 2 of the cell structure 1, and the fuel flow path 53 of the anode side separator 52 is disposed to face the anode 3.
  • the oxidant flow path 23 has an oxidant inlet into which the oxidant flows and an oxidant discharge port through which water generated by the reaction, unused oxidant, and the like are discharged (both not shown).
  • the oxidizing agent include a gas containing oxygen.
  • the fuel flow path 53 has a fuel gas inlet through which fuel gas flows, and a fuel gas outlet through which unused fuel, H 2 O, N 2 , CO 2 and the like generated by the reaction are discharged (all not shown). ).
  • the fuel gas include gas containing gas such as hydrogen, methane, ammonia, carbon monoxide.
  • the fuel cell 10 includes a cathode-side current collector 21 disposed between the cathode 2 and the cathode-side separator 22, and an anode-side current collector 51 disposed between the anode 3 and the anode-side separator 52. You may prepare.
  • the cathode-side current collector 21 functions to diffuse and supply the oxidant gas introduced from the oxidant flow path 23 to the cathode 2.
  • the anode current collector 51 functions to diffuse and supply the fuel gas introduced from the fuel flow path 53 to the anode 3. Therefore, each current collector is preferably a structure having sufficient air permeability. In the fuel cell 10, the current collectors 21 and 51 are not necessarily provided.
  • the fuel cell 10 includes a proton-conducting solid electrolyte, it can be operated at a medium temperature range of less than 700 ° C., preferably about 400 ° C. to 600 ° C.
  • a fuel cell When a fuel cell is configured by stacking a plurality of cell structures, for example, the cell structure 1, the cathode side separator 22, and the anode side separator 52 are stacked as a unit.
  • the plurality of cell structures 1 may be connected in series by, for example, a separator having gas channels (oxidant channels and fuel channels) on both surfaces.
  • the material for the heel separator examples include heat-resistant alloys such as stainless steel, nickel-base alloy, and chromium-base alloy in terms of proton conductivity and heat resistance. Of these, stainless steel is preferable because it is inexpensive. In a proton conductive solid oxide fuel cell (PCFC), since the operating temperature is about 400 ° C. to 600 ° C., stainless steel can be used as a separator material.
  • PCFC proton conductive solid oxide fuel cell
  • Examples of structures used for the cathode-side current collector and the anode-side current collector include metal porous bodies containing silver, silver alloy, nickel, nickel alloy, metal mesh, punching metal, expanded metal, and the like.
  • a metal porous body is preferable at the point of lightweight property or air permeability.
  • a porous metal body having a three-dimensional network structure is preferable.
  • the three-dimensional network structure refers to a structure in which rod-like or fibrous metals constituting a metal porous body are three-dimensionally connected to form a network.
  • a sponge-like structure or a nonwoven fabric-like structure can be mentioned.
  • the metal porous body can be formed, for example, by coating a resin porous body having continuous voids with the metal as described above. When the internal resin is removed after the metal coating process, a cavity is formed inside the skeleton of the metal porous body, and the metal becomes hollow.
  • a commercially available metal porous body having such a structure nickel “Celmet” manufactured by Sumitomo Electric Industries, Ltd. can be used.
  • the fuel cell can be manufactured by a known method except that the cell structure is used.
  • Example 1 (1) proton conductor Ba 0.892 Zr 0.800 Y 0.200 O 2.900 and synthesis of barium carbonate (a1), and zirconium oxide, and yttrium oxide, and Ba, and Zr, the ratio of Y was mixed in a ball mill at a molar ratio such that. The mixture was uniaxially molded to obtain pellets, and the above proton conductor (a1) was synthesized by firing at 1300 ° C. for 10 hours.
  • Electrolyte paste by mixing the proton conductor (a1) obtained in the above (1), ethyl cellulose (binder), a surfactant (polycarboxylic acid type surfactant), and an appropriate amount of butyl carbitol acetate. was prepared.
  • the electrolyte paste was applied to one main surface of the disk-shaped pellet by spin coating to form a coating film.
  • the amounts of the binder and the surfactant were 6 parts by mass and 0.5 parts by mass, respectively, with respect to 100 parts by mass of the proton conductor.
  • the pellet on which the coating film was formed was heated at 750 ° C. for 10 hours to remove the binder.
  • the obtained pellets were subjected to main firing by heating at 1400 ° C. for 10 hours.
  • an electrolyte layer-anode assembly in which a solid electrolyte layer was integrally formed on one main surface of the anode was obtained.
  • the thickness of the solid electrolyte layer in the obtained joined body was measured with a scanning electron microscope (SEM: Scanning Electron Microscope) and found to be 10 ⁇ m.
  • SEM Scanning Electron Microscope
  • the ratio of the elements was measured by EDX at any five points in the cross section in the thickness direction of the solid electrolyte layer, and the average composition of the entire solid electrolyte layer was Ba 0.892 Zr 0.800 Y 0.200. It confirmed that it was O2.900 .
  • a current collector was formed by applying a platinum paste to each surface of the cathode and anode of the cell structure obtained in (3) above and attaching a platinum mesh. Furthermore, a stainless steel cathode side separator having an oxidant channel is laminated on the cathode side current collector, and a stainless steel anode side separator having a fuel channel on the anode side current collector The fuel cell shown in FIG. 2 was manufactured.
  • (B) Proton conductivity A binder (polyvinyl alcohol) was added to the proton conductor powder and mixed for 10 minutes in a zirconia mortar. The amount of the binder was 0.15 parts by mass with respect to 100 parts by mass of the proton conductor. The obtained granulated material was uniaxially formed to form a disk-shaped pellet (diameter 20 mm). Further, the pellet was subjected to an isostatic pressing at 2 ton / cm 2 to increase the density of the compact. This pellet was subjected to binder removal treatment by heating at 750 ° C. for 10 hours. Next, the obtained pellets were subjected to main firing by heating at 1600 ° C. for 24 hours. The pellets were heated in a state where they were buried in the proton conductor powder.
  • a binder polyvinyl alcohol
  • the thickness of the pellet was 1 mm.
  • Samples were prepared by forming Pt electrodes on both sides of the pellet by sputtering. The resistance value of the sample was measured by an AC impedance method in a humidified hydrogen atmosphere, and the conductivity of the sample was calculated from the measured value. This conductivity was used as an index of proton conductivity.
  • Example 2 Except using proton conductor Ba 0.957 Zr 0.800 Y 0.200 O 2.900 (a2) in place of the proton conductor (a1), the same procedure as in Example 1, to prepare a cell structure A fuel cell was prepared.
  • the proton conductor (a2) was synthesized in the same manner as (1) of Example 1 except that the amount of barium carbonate was adjusted. Evaluation similar to Example 1 was performed using the obtained proton conductor and cell structure.
  • Comparative Example 1 Except using proton conductor Ba 0.980 Zr 0.800 Y 0.200 O 2.900 (b1) in place of the proton conductor (a1), the same procedure as in Example 1, to prepare a cell structure A fuel cell was prepared.
  • the proton conductor (b1) was synthesized in the same manner as (1) of Example 1 except that the amount of barium carbonate was adjusted. Evaluation similar to Example 1 was performed using the obtained proton conductor and cell structure.
  • Comparative Example 2 A cell structure was fabricated in the same manner as in Example 1 except that the proton conductor Ba 1.000 Zr 0.800 Y 0.200 O 2.900 (b2) was used instead of the proton conductor (a1). A fuel cell was prepared. The proton conductor (b2) was synthesized in the same manner as (1) of Example 1 except that the amount of barium carbonate was adjusted. Evaluation similar to Example 1 was performed using the obtained proton conductor and cell structure. Table 1 shows the results of Examples 1 and 2 and Comparative Examples 1 and 2. Examples 1 and 2 are A1 and A2, and Comparative Examples 1 and 2 are B1 and B2.
  • the content of Ba (OH) 2 after humidification is 0% by mass, and the content of BaCO 3
  • the content of the BZY phase is over 80% by mass.
  • the content of Ba (OH) 2 after humidification exceeds 35% by mass, and the content of the BZY phase is as low as nearly 30% by mass compared to the example.
  • the BaCO 3 content after humidification is more than twice that of the Example.
  • Example 3 Except using proton conductor Ba 0.945 Zr 0.700 Ce 0.100 Yb 0.200 O 2.900 (a3) instead of the proton conductor (a1), the same procedure as in Example 1, the cell structure The body was produced and the fuel cell was produced. Evaluation similar to Example 1 was performed using the obtained proton conductor and cell structure.
  • the proton conductor (a3) was synthesized by the following procedure. Barium carbonate, zirconium oxide, cerium oxide, and ytterbium oxide were mixed in a ball mill at a molar ratio such that the ratio of Ba, Zr, Ce, and Yb was the above formula. The mixture was uniaxially molded to obtain pellets, and the above proton conductor (a3) was synthesized by firing at 1300 ° C. for 10 hours.
  • Comparative Example 3 Except using proton conductor Ba 0.986 Zr 0.700 Ce 0.100 Yb 0.200 O 2.900 (b3) in place of the proton conductor (a1), the same procedure as in Example 1, the cell structure The body was produced and the fuel cell was produced. The proton conductor (b3) was synthesized in the same manner as in Example 3 except that the amount of barium carbonate was adjusted. Evaluation similar to Example 1 was performed using the obtained proton conductor and cell structure. The results of Example 3 (A3) and Comparative Example 3 (B3) are shown in Table 2.
  • Example 4 Except using proton conductor Ba 0.951 Zr 0.800 Yb 0.200 O 2.900 (a4) in place of the proton conductor (a1), the same procedure as in Example 1, to prepare a cell structure A fuel cell was prepared. Evaluation similar to Example 1 was performed using the obtained proton conductor and cell structure.
  • the proton conductor (a4) was synthesized by the following procedure. Barium carbonate, zirconium oxide, and ytterbium oxide were mixed in a ball mill at a molar ratio such that the ratio of Ba, Zr, and Yb was the above formula. The mixture was uniaxially molded to obtain pellets, and the above proton conductor (a4) was synthesized by firing at 1300 ° C. for 10 hours.
  • Comparative Example 4 A cell structure was fabricated in the same manner as in Example 1 except that the proton conductor Ba 0.985 Zr 0.800 Yb 0.200 O 2.900 (b4) was used instead of the proton conductor (a1). A fuel cell was prepared. The proton conductor (b4) was synthesized in the same manner as in Example 4 except that the amount of barium carbonate was adjusted. Evaluation similar to Example 1 was performed using the obtained proton conductor and cell structure. The results of Example 4 (A4) and Comparative Example 4 (B4) are shown in Table 3.
  • Example 5 (1) Production of Cell Structure and Fuel Cell
  • the electrolyte paste prepared in Comparative Example 2 (using proton conductor (b2)) was applied to one main surface of the disk-shaped pellet. It was applied to form a coating film. The pellet on which the coating film was formed was subjected to binder removal treatment by heating at 750 ° C. for 10 hours.
  • the electrolyte paste prepared in Example 1 (use of proton conductor (a1)) was applied to the surface of the coating film subjected to the binder removal treatment, and further the binder removal treatment was performed by heating at 750 ° C. for 10 hours.
  • the obtained pellets were calcined by heating at 1400 ° C. for 10 hours. In this way, an electrolyte layer-anode assembly in which a solid electrolyte layer was integrally formed on one main surface of the anode was obtained.
  • Example 5 Evaluation The cell structure obtained in (1) above was measured at 600 ° C. while changing the current density, and the maximum value of the output density was determined. The result was 312 mW / cm 2 . . In the evaluation of power generation performance, the anode side of the cell structure was exposed to a humidified hydrogen atmosphere, and the cathode side was exposed to an air atmosphere. Moreover, when the power density was evaluated similarly to the above using the cell structure obtained in Comparative Example 1, it was 344 mW / cm 2 . Thus, in Example 5, the high output equivalent to the comparative example 1 was obtained.
  • the solid electrolyte layer according to the embodiment of the present invention has excellent moisture resistance and high durability, it is suitable for application to a fuel cell (PCFC) or a cell structure thereof.
  • Cell structure 2 Cathode 3: Anode 4: Solid electrolyte layer 5: Electrolyte layer-electrode assembly 10: Fuel cell 21, 51: Current collector 22, 52: Separator 23: Fuel flow path 53: Oxidant flow Road

Abstract

固体電解質層は、ペロブスカイト型構造を有し、かつ下記式(1):BaZrCe1-(y+z)3-δ(ただし、元素Mは、Y、Yb、Er、Ho、Tm、Gd、およびScからなる群より選択される少なくとも一種であり、0.85≦x<0.98、0.70≦y+z<1.00、比y/zは0.5/0.5~1/0であり、δは酸素欠損量である)で表されるプロトン伝導体を含む。

Description

プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池
  本発明は、プロトン伝導体、特に、燃料電池における固体電解質層の改良に関する。
  燃料電池は、カソードおよびアノード、ならびにこれらの間に介在する固体電解質層を含むセル構造体と、カソードに酸化剤を供給するための酸化剤流路と、アノードに燃料を供給するための燃料流路とを有する。BaCe0.80.22.9(BCY)やBaZr0.80.22.9(BZY)などのプロトン伝導性を示すペロブスカイト型酸化物は、中温域で高い伝導性を示し、中温型燃料電池の固体電解質として期待されている。しかし、BCYやBZYを固体電解質層に用いた燃料電池は、十分な耐久性が得られ難い。
  特許文献1では、燃料電池の固体電解質として、BaZr1-x-yCe 3-t(0.98≦d≦1、0.01≦x≦0.5、0.01≦y≦0.3、t=(2+y-2d)/2、Mは三価の希土類元素など)で表されるペロブスカイト型酸化物の焼結体を用いることが提案されている。
特開2007-197315号公報
  特許文献1の固体電解質は、耐湿性が不十分であり、腐食により水酸化バリウムおよび炭酸バリウムが多く生成する。これらの生成物は発電反応を阻害するため、生成量が多くなると、固体電解質の性能を低下させる。
  本発明の目的は、燃料電池の固体電解質層に有用なプロトン伝導体において、耐湿性を向上することである。
  本発明の一局面は、ペロブスカイト型構造を有し、かつ下記式(1):
  BaZrCe1-(y+z)3-δ
(ただし、元素Mは、Y、Yb、Er、Ho、Tm、Gd、およびScからなる群より選択される少なくとも一種であり、0.85≦x<0.98、0.70≦y+z<1.00、比y/zは0.5/0.5~1/0であり、δは酸素欠損量である)
で表されるプロトン伝導体を含む、燃料電池用固体電解質層に関する。
  本発明の他の一局面は、カソードと、
  アノードと、
  前記カソードおよび前記アノードの間に介在し、プロトン伝導性を有する固体電解質層と、を備え、
  前記固体電解質層は、プロトン伝導体を含み、
  前記プロトン伝導体は、ペロブスカイト型構造を有し、かつ下記式(1):
  BaZrCe1-(y+z)3-δ
(ただし、元素Mは、Y、Yb、Er、Ho、Tm、Gd、およびScからなる群より選択される少なくとも一種であり、0.85≦x<0.98、0.70≦y+z<1.00、比y/zは0.5/0.5~1/0であり、δは酸素欠損量である)
で表される、セル構造体に関する。
  本発明のさらに他の一局面は、上記のセル構造体を備え、
  前記カソードに酸化剤を供給するための酸化剤流路、および、前記アノードに燃料を供給するための燃料流路を有する、燃料電池に関する。
  本発明の別の一局面は、ペロブスカイト型構造を有し、かつ下記式(1):
  BaZrCe1-(y+z)3-δ
(ただし、元素Mは、Y、Yb、Er、Ho、Tm、Gd、およびScからなる群より選択される少なくとも一種であり、0.85≦x<0.98、0.70≦y+z<1.00、比y/zは0.5/0.5~1/0であり、δは酸素欠損量である)
で表されるプロトン伝導体に関する。
  本発明によれば、燃料電池の固体電解質層において、優れた耐湿性を得ることができるプロトン伝導体を提供できる。
本発明の一実施形態に係るセル構造体を模式的に示す断面図である。 図1のセル構造体を含む燃料電池を模式的に示す断面図である。
[発明の実施形態の説明]
  最初に、本発明の実施形態の内容を列記して説明する。
  本発明の一実施形態に係る燃料電池用固体電解質層は、(1)ペロブスカイト型構造を有し、かつ下記式(1):
  BaZrCe1-(y+z)3-δ
(ただし、元素Mは、イットリウム(Y)、イッテルビウム(Yb)、エルビウム(Er)、ホルミウム(Ho)、ツリウム(Tm)、ガドリニウム(Gd)、およびスカンジウム(Sc)からなる群より選択される少なくとも一種であり、0.85≦x<0.98、0.70≦y+z<1.00、比y/zは0.5/0.5~1/0であり、δは酸素欠損量である)
で表されるプロトン伝導体を含む。
  (2)本発明の他の一実施形態は、カソードと、アノードと、カソードおよびアノードの間に介在し、プロトン伝導性を有する固体電解質層と、を備えるセル構造体に関する。
セル構造体において、固体電解質層は、プロトン伝導体を含み、プロトン伝導体は、ペロブスカイト型構造を有し、かつ上記式(1)で表される。
  (3)本発明の一実施形態に係る燃料電池は、上記のセル構造体を備え、カソードに酸化剤を供給するための酸化剤流路、および、アノードに燃料を供給するための燃料流路を有する。
  (4)本発明の一実施形態に係るプロトン伝導体は、ペロブスカイト型構造を有し、かつ上記式(1)で表される。
  Baを含むプロトン伝導体は、耐湿性が低く、水分の存在下ではBaが析出し易くなる。Baが析出すると、Ba(OH)やBaCOなどの副生物が生成することで腐食が進行する。このような副生物が生成すると、電池反応自体の効率が低下するとともに、BaZrCe1-(y+z)の相の比率が少なくなるため、プロトン伝導性が低下し、固体電解質層の性能が低下する。本実施形態では、Baの比率xが上記の範囲であることで、Baの析出が抑制されるため、Ba(OH)やBaCO(特に、Ba(OH))の生成が抑制され、BaZrCe1-(y+z)の相の比率を高めることができる。よって、固体電解質層の耐湿性を向上することができる。そして、耐湿性が高い固体電解質層を、燃料電池のセル構造体に用いることで、耐久性を向上することができる。
また、高いプロトン伝導性を確保し易いため、高い出力を維持することができる。
  (5)xは、0.85≦x≦0.96を充足することがより好ましい。xがこのような範囲では、高いプロトン伝導性を確保しながらも、耐湿性をさらに高めることができる。
  (6)0.75≦y+z≦0.90であることが好ましい。y+zがこのような範囲である場合、高いプロトン伝導性をさらに確保し易くなる。
  (7)元素Mは、YおよびYbからなる群より選択される少なくとも一種であることが好ましい。このような元素Mは、高いプロトン伝導性を確保し易い観点から有利である。
  (8)好ましい実施形態では、固体電解質層の厚みをTとするとき、固体電解質層の一方の表面から0.25Tの位置におけるBaの比率x1と、固体電解質層の他方の表面から0.25Tの位置におけるBaの比率x2とが、x1>x2を満たし、他方の表面を、燃料電池のカソードと接触させる。このような固体電解質層では、アノード側の領域よりもカソード側の領域においてBaの比率が小さく、高い耐湿性が得られる。そのため、燃料電池のカソードでプロトンの酸化により水が生成しても、固体電解質層の腐食をより効果的に抑制できる。また、固体電解質層のアノード側の領域では、Baの比率を大きくできるため、高いプロトン伝導性を確保することができる。
  固体電解質層の元素の比率は、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray Spectroscopy)を用いて、元素分布状態(デプスプロファイル)を評価することによって求めることができる。例えば、固体電解質の厚み方向の断面の任意の複数点(例えば、5点)について、固体電解質層を構成するプロトン伝導体の元素の比率をEDXで測定し、平均化することにより、固体電解質層(具体的には、プロトン伝導体)における元素の平均的な比率を求めることができる。
  また、固体電解質層の一方の表面から0.25Tの位置におけるBaの比率x1と、他方の表面から0.25Tの位置におけるBaの比率x2は、電子線マイクロアナライザ(EPMA:Electron Probe MicroAnalyser )を用いて測定することができる。例えば、固体電解質層のある一点を通る、固体電解質層の主面に対する法線を引いたとき、法線上にある、カソードと固体電解質層との境界から固体電解質層とアノードとの境界までを、固体電解質層の厚み(T)とする。この厚みTを4等分して、固体電解質層の一方の主面から0.25T内部の位置および他方の主面から0.25T内部の位置において、EPMAによりBaの濃度を測定する。同様の測定を、任意の複数点(例えば、5点)に対して行って、平均化することによって、Baの比率x1およびx2を求めることができる。
  (9)ZrとCeとの比y/zは、0.5/0.5~0.9/0.1であることが好ましい。比y/zがこのような範囲である場合、耐久性が高く、燃料電池に用いたときに高い発電性能が得られる固体電解質層を形成することができる。
[発明の実施形態の詳細]
  本発明の実施形態の具体例を、適宜図面を参照しつつ以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
[プロトン伝導体]
  プロトン伝導体は、ペロブスカイト型構造(Perovskite structure、ABO)を有し、かつ上記式(1)で表される。式(1)の化合物のAサイトにはBaが入り、Bサイトには、ZrおよびCeが入る。Bサイトの一部は、ZrおよびCe以外の元素M(ドーパント)で置換されており、高いプロトン伝導性を確保することができる。
  式(1)の化合物において、Bサイトに入る元素(Zr、Ceおよび元素M)の合計に対するBaの比率xを0.85≦x<0.98の範囲とすることで、Baの析出が抑制され、水分の作用によりプロトン伝導体が腐食することを抑制できる。また、高いプロトン伝導性を確保し易い。耐湿性をさらに高める観点からは、xは、0.85≦x≦0.97であることが好ましく、0.85≦x≦0.96であることがより好ましい。xの下限値は、0.85であればよく、好ましくは0.87または0.88であってもよい。
  Bサイトに入る元素に占めるZrの比率yおよびCeの比率zの合計:y+zは、0.70≦y+z<1.0であり、好ましくは0.70≦y+z≦0.95、さらに好ましくは0.75≦y+z≦0.90または0.75≦y+z≦0.85である。y+zがこのような範囲である場合、高いプロトン伝導性を確保し易い。
  比y/zは、0.5/0.5~1/0であり、好ましくは0.5/0.5~0.9/0.1であり、さらに好ましくは0.6/0.4~0.9/0.1または0.7/0.3~0.9/0.1である。比y/zがこのような範囲である場合、高い耐湿性が得られ易く、固体電解質層の耐久性を高め易い。また、燃料電池に用いた場合に高い発電性能も得られ易い。
  プロトン伝導体が元素Mを含むことで、高いプロトン伝導性が得られる。高いプロトン伝導性を確保し易い観点からは、元素Mのうち、Yおよび/またはYbが好ましい。プロトン伝導性の観点から、元素Mに占めるYおよびYbの比率は、YおよびYbの合計で、50原子%以上であることが好ましく、80原子%以上であることが好ましい。元素MをYおよび/またはYbのみで構成してもよい。
  式(1)の化合物において、酸素欠損量δは、元素Mの量に応じて決定でき、例えば、0≦δ≦0.15である。
[固体電解質層]
  固体電解質層は、上記のプロトン伝導体を含む。固体電解質層は、上記式(1)の化合物以外の成分を含み得るが、高い耐湿性およびプロトン伝導性を確保し易い観点から、その含有量は少ないことが好ましい。例えば、固体電解質層の50質量%以上または70質量%以上が、式(1)の化合物であることが好ましく、固体電解質層全体の平均的組成が式(1)の組成であってもよい。式(1)の化合物以外の成分としては特に限定されず、固体電解質として公知の化合物(プロトン伝導性を有さない化合物を含む)を挙げることができる。
  固体電解質層の厚みは、例えば、1μm~50μm、好ましくは3μm~20μmである。固体電解質層の厚みがこのような範囲である場合、固体電解質層の抵抗が低く抑えられる点で好ましい。
  固体電解質層は、カソードおよびアノードとともにセル構造体を形成し、燃料電池に組み込むことができる。セル構造体において、固体電解質層は、カソードとアノードとの間に挟持されており、固体電解質層の一方の主面は、アノードに接触し、他方の主面はカソードと接触している。燃料電池において、カソードではプロトンの酸化により水が発生するため、固体電解質層の特にカソード側の領域は、カソードで発生する水により腐食し易い。本発明の実施形態では、固体電解質層の少なくともカソード側の領域を上記式(1)のプロトン伝導体で形成することにより、固体電解質層の腐食を効果的に抑制することができる。
  このような固体電解質層では、固体電解質層の厚みをTとするとき、固体電解質層の一方の表面から0.25Tの位置におけるBaの比率x1と、他方の表面から0.25Tの位置におけるBaの比率x2とが、x1>x2を満たすことが好ましい。この他方の表面をカソードと接触させると、カソードで水が生成しても、固体電解質層のカソード側の領域の高い耐湿性を有効利用でき、固体電解質層の腐食を効果的に抑制できる。
  固体電解質層におけるBaの比率は、カソード側からアノード側に向かうに従って、大きくなるように変化していてもよい。この変化は、連続的であっても良いし、段階的であってもよい。Ba比率の変化は、固体電解質層における全体的な傾向として把握できる程度であればよい。
  カソード側の領域は、式(1)のプロトン伝導体で構成されるため、この領域におけるBa比率x2は、xについて例示した範囲から選択される値とすることができる。アノード側の領域におけるBa比率x1は、x1>x2である限り特に制限されない。x1は、0.98≦x1であることが好ましく、0.98≦x1≦1.10であってもよい。x1とx2との差は、例えば、0.05以上または0.10以上であることが好ましい。x1および/またはx1とx2との差がこのような範囲である場合、固体電解質層の腐食を抑制する効果がさらに高まるとともに、高いプロトン伝導性を確保し易い。
  式(1)のプロトン伝導体は、構成元素を含む原料を、Ba、Zr、Ceおよび元素Mの比率が式(1)の組成となるような割合で混合し、焼成することにより製造できる。焼成温度は、例えば、1200℃~1800℃であり、1400℃~1700℃であることが好ましい。焼成は、大気中などの酸素雰囲気下で行うことができる。原料としては、例えば、酸化物、炭酸塩などが挙げられる。原料のうち、Ba源としては、酸化バリウム、炭酸バリウムなどを用いることが好ましい。Zr源としては、酸化ジルコニウムを用いることが好ましく、Ce源としては、酸化セリウムを用いることが好ましい。元素M源としては、酸化イットリウム、酸化イッテルビウムなどの酸化物を用いることが好ましい。各原料は、一種を単独でまたは二種以上を組み合わせて使用できる。
  原料として複合酸化物を用いてもよい。例えば、Zr(またはZrおよびCe)と元素M(Yなど)とを含む複合酸化物と、酸化バリウムおよび/または炭酸バリウムとを混合し、上記と同様に焼成することにより式(1)のプロトン伝導体を得ることもできる。
  固体電解質層は、プロトン伝導体と、バインダと、分散媒(水および/または有機溶媒など)とを含む電解質ペーストの塗膜を焼成することにより形成できる。塗膜は、例えば、アノードやカソードの主面に電解質ペーストを塗布することにより形成できる。焼成に先立って、加熱によりバインダを除去する脱バインダ処理を行ってもよい。焼成は、比較的低温で行う仮焼成と、仮焼成よりも高い温度で行う本焼成とを組み合わせてもよい。プロトン伝導体に代えて原料を用いた電解質ペーストを用い、焼成により固体電解質層を形成する際に、原料をプロトン伝導体に変換させてもよい。
  バインダとしては、燃料電池の固体電解質層に使用される公知の材料、例えば、エチルセルロースなどのセルロース誘導体(セルロースエーテルなど)、酢酸ビニル系樹脂(ポリビニルアルコールなどの酢酸ビニル系樹脂のケン化物も含む)、アクリル樹脂などのポリマーバインダー;および/またはパラフィンワックスなどのワックスなどが挙げられる。バインダの量は、プロトン伝導体100質量部に対して、例えば、3質量部~100質量部であってもよい。
  仮焼成の温度は、例えば、800℃以上1200℃未満である。本焼成の温度は、例えば、1200℃~1800℃または1400℃~1700℃である。仮焼成および本焼成は、それぞれ、大気雰囲気下で行ってもよく、大気よりも多くの酸素を含む酸素ガス雰囲気下で行ってもよい。
  脱バインダ処理の温度は、バインダの種類に応じて決定でき、仮焼成を行う場合には、仮焼成の温度よりも低くてもよい。脱バインダ処理の温度は、例えば、400℃以上800℃未満であってもよい。脱バインダ処理は、大気雰囲気下で行ってもよい。
  カソード側領域とアノード側領域とでBaの比率が異なる固体電解質層は、Baの比率が異なる複数の電解質ペーストを用いることにより作製できる。より具体的には、例えば、アノードの一方の主面に、第1電解質ペーストを塗布して第1塗膜を形成し、第1塗膜の表面にBaの比率が第1電解質ペーストよりも小さい第2電解質ペーストの第2塗膜を形成し、焼成することにより固体電解質層を形成できる。第2塗膜の形成に先立って、第1塗膜を乾燥してもよく、脱バインダ処理や仮焼成などを行ってもよい。Baの比率が異なる2種類の電解質ペーストを用いる場合に限らず、3種類以上の電解質ペーストを用いてもよい。
[セル構造体]
  本発明の一実施形態に係るセル構造体の断面模式図を図1に示す。
  セル構造体1は、カソード2と、アノード3と、これらの間に介在する固体電解質層4とを含む。固体電解質層4としては上述の固体電解質層が使用される。図示例では、アノード3と固体電解質層4とは一体化され、電解質層-電極接合体5を形成している。
  アノード3の厚みは、カソード2よりも大きくなっており、アノード3が固体電解質層4(ひいてはセル構造体1)を支持する支持体として機能している。なお、図示例に限らず、アノード3の厚みを、必ずしもカソード2よりも大きくする必要はなく、例えば、アノード3の厚みとカソード2の厚みとは同程度であってもよい。
  (カソード)
  カソードは、酸素分子を吸着し、解離させてイオン化することができる多孔質の構造を有している。カソード2では、固体電解質層4を介して伝導されたプロトンと、酸化物イオンとの反応(酸素の還元反応)が生じている。酸化物イオンは、酸化剤流路から導入された酸化剤(酸素)が解離することにより生成する。
  カソードの材料としては、例えば、燃料電池のカソードとして用いられる公知の材料を用いることができる。なかでも、ランタンを含み、かつペロブスカイト構造を有する化合物(フェライト、マンガナイト、および/またはコバルタイトなど)が好ましく、これらの化合物のうち、さらにストロンチウムを含むものがより好ましい。具体的には、ランタンストロンチウムコバルトフェライト(LSCF、La1-x3Srx3Fe1-y1Coy13-δ、0<x3<1、0<y1<1、δは酸素欠損量である)、ランタンストロンチウムマンガナイト(LSM、La1-x4Srx4MnO3-δ、0<x4<1、δは酸素欠損量である)、ランタンストロンチウムコバルタイト(LSC、La1-x5Srx5CoO3-δ、0<x5≦1、δは酸素欠損量である)等が挙げられる。
  なお、これらのペロブスカイト型酸化物において、酸素欠損量δは、0≦δ≦0.15であってもよい。
  カソードは、例えば、上記の材料を焼結することにより形成することができる。必要に応じて、上記の材料とともに、バインダ、添加剤、および/または分散媒などを用いてもよい。
  プロトンと酸化物イオンとの反応を促進させる観点から、カソード2は、Pt等の触媒を含んでいても良い。触媒を含む場合、カソード2は、触媒と上記材料とを混合して、焼結することにより形成することができる。
  カソード2の厚みは、特に限定されないが、5μm~40μm程度であれば良い。
  (アノード)
  アノード4は、多孔質の構造を有している。アノード4では、後述する流路から導入される水素などの燃料を酸化して、プロトンと電子とを放出する反応(燃料の酸化反応)が行われる。
  アノードの材料としては、例えば、燃料電池のアノードとして用いられる公知の材料を用いることができる。具体的には、触媒成分である酸化ニッケル(NiO)と、プロトン伝導体(酸化イットリウム(Y)、BCY、BZYまたは上記式(1)の化合物(以下、BZCYと称す場合がある)など)との複合酸化物等が挙げられる。BZCYを用いると、アノード4と固体電解質層3に含まれる金属元素の実質的な相互拡散が抑制されるため、抵抗が高くなり難い。
  このような複合酸化物を含むアノード4は、例えば、NiO粉末とプロトン伝導体の粉末等とを混合して焼結することにより形成することができる。アノードの厚みは、例えば、10μm~2mmから適宜決定でき、10μm~100μmであってもよい。アノードの厚みを大きくして、固体電解質層を支持する支持体として機能させてもよい。この場合、アノードの厚みは、例えば、100μm~2mmの範囲から適宜選択できる。
  アノードに、分解して水素を生成するアンモニア、メタン、プロパン等の気体を含むガスを導入すると、アノードでは、これらの気体の分解反応が起こり、水素が発生する。つまり、セル構造体は、ガス分解性能を備えており、このセル構造体をガス分解装置に用いることが可能である。
  例えば、アンモニアの分解により発生した水素は、アノードによって酸化され、プロトンが生成する。生成したプロトンは、固体電解質層3を通って、カソード2に移動する。
一方、アンモニアの分解により同時に生成したNは、排気ガスとして後述する燃料ガス出口から排出される。アノードには、上記ガスを分解する機能を有する触媒を含ませてもよい。アンモニア等のガスを分解する機能を有する触媒としては、Fe、Co、Ti、Mo、W、Mn、RuおよびCuよりなる群から選択される少なくとも1種の触媒成分を含む化合物が挙げられる。
[燃料電池]
  図2は、図1のセル構造体を含む燃料電池(固体酸化物型燃料電池)を模式的に示す断面図である。
  燃料電池10は、セル構造体1と、セル構造体1のカソード2に酸化剤を供給するための酸化剤流路23が形成されたセパレータ22と、アノード3に燃料を供給するための燃料流路53が形成されたセパレータ52とを含む。燃料電池10において、セル構造体1は、カソード側セパレータ22と、アノード側セパレータ52との間に挟持されている。
カソード側セパレータ22の酸化剤流路23は、セル構造体1のカソード2に対向するように配置され、アノード側セパレータ52の燃料流路53は、アノード3に対向するように配置されている。
  酸化剤流路23は、酸化剤が流入する酸化剤入口と、反応で生成した水や未使用の酸化剤などを排出する酸化剤排出口を有する(いずれも図示せず)。酸化剤としては、例えば、酸素を含むガスが挙げられる。燃料流路53は、燃料ガスが流入する燃料ガス入口と、未使用の燃料、反応により生成するHO、N、CO等を排出する燃料ガス排出口を有する(いずれも図示せず)。燃料ガスとしては、水素、メタン、アンモニア、一酸化炭素等の気体を含むガスが例示される。
  燃料電池10は、カソード2とカソード側セパレータ22との間に配置されるカソード側集電体21と、アノード3とアノード側セパレータ52との間に配置されるアノード側集電体51とを、備えてもよい。カソード側集電体21は、集電機能に加え、酸化剤流路23から導入される酸化剤ガスをカソード2に拡散させて供給する機能を果たす。アノード側集電体51は、集電機能に加え、燃料流路53から導入される燃料ガスをアノード3に拡散させて供給する機能を果たす。そのため、各集電体は、十分な通気性を有する構造体であることが好ましい。燃料電池10において、集電体21および51は必ずしも設ける必要はない。
  燃料電池10は、プロトン伝導性の固体電解質を含むため、700℃未満、好ましくは、400℃~600℃程度の中温域で作動させることができる。
  (セパレータ)
  複数のセル構造体が積層されて、燃料電池が構成される場合には、例えば、セル構造体1と、カソード側セパレータ22と、アノード側セパレータ52とが、一単位として積層される。複数のセル構造体1は、例えば、両面にガス流路(酸化剤流路および燃料流路)を備えるセパレータにより、直列に接続されていてもよい。
  セパレータの材料としては、プロトン伝導性および耐熱性の点で、ステンレス鋼、ニッケル基合金、クロム基合金等の耐熱合金が例示できる。なかでも、安価である点で、ステンレス鋼が好ましい。プロトン伝導性固体酸化物型燃料電池(PCFC:Protomic  Ceramic  Fuel  Cell)では、動作温度が400℃~600℃程度であるため、ステンレス鋼をセパレータの材料として用いることができる。
  (集電体)
  カソード側集電体およびアノード側集電体に用いられる構造体としては、例えば、銀、銀合金、ニッケル、ニッケル合金等を含む金属多孔体、金属メッシュ、パンチングメタル、エキスパンドメタル等が挙げられる。なかでも、軽量性や通気性の点で、金属多孔体が好ましい。特に、三次元網目状の構造を有する金属多孔体が好ましい。三次元網目状の構造とは、金属多孔体を構成する棒状や繊維状の金属が相互に三次元的に繋がり合い、ネットワークを形成している構造を指す。例えば、スポンジ状の構造や不織布状の構造が挙げられる。
  金属多孔体は、例えば、連続空隙を有する樹脂製の多孔体を、前記のような金属で被覆することにより形成できる。金属被覆処理の後、内部の樹脂が除去されると、金属多孔体の骨格の内部に空洞が形成されて、中空となる。このような構造を有する市販の金属多孔体としては、住友電気工業(株)製のニッケルの「セルメット」等を用いることができる。
  燃料電池は、上記のセル構造体を用いる以外は、公知の方法により製造できる。
  以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
  実施例1
(1)プロトン伝導体Ba0.892Zr0.8000.2002.900(a1)の合成
  炭酸バリウムと、酸化ジルコニウムと、酸化イットリウムとを、Baと、Zrと、Yとの比率が上記式となるようなモル比でボールミルに入れて混合した。混合物を一軸成形してペレットを得、1300℃で10時間焼成することにより、上記のプロトン伝導体(a1)を合成した。
(2)電解質層-アノード接合体の作製
  上記(1)で得られたプロトン伝導体(a1)と、NiOとを、バインダ(ポリビニルアルコール)、界面活性剤(ポリカルボン酸型界面活性剤)、および適量のエタノールとともに、ボールミルで混合し、造粒した。このとき、プロトン伝導体とNiOとは体積比40:60で混合した。バインダおよび添加剤の量は、プロトン伝導体およびNiOの総量100質量部に対して、それぞれ、10質量部および0.5質量部とした。得られた造粒物を一軸成形することにより、円盤状のペレット(直径20mm)を形成し、1000℃で仮焼成した。
  上記(1)で得られたプロトン伝導体(a1)と、エチルセルロース(バインダ)と、界面活性剤(ポリカルボン酸型界面活性剤)と、適量のブチルカルビトールアセテートとを混合することにより電解質ペーストを調製した。電解質ペーストを円盤状のペレットの一方の主面にスピンコートにより塗布して、塗膜を形成した。バインダおよび界面活性剤の量は、プロトン伝導体100質量部に対して、それぞれ、6質量部および0.5質量部とした。
  塗膜が形成されたペレットを、750℃で10時間加熱することにより脱バインダ処理を行った。次いで、得られたペレットを、1400℃で10時間加熱することにより本焼成した。このようにして、アノードの一方の主面に固体電解質層が一体に形成された電解質層-アノード接合体を得た。得られた接合体における固体電解質層の厚みを走査型電子顕微鏡(SEM:Scanning  Electron  Microscope)により測定したところ、10μmであった。また、アノードおよび固体電解質層の合計厚みをノギスで計測したところ、約1.4mmであった。
(3)セル構造体の作製
  LSCF(La0.6Sr0.4Fe0.8Co0.23-δ(δ≒0.1))の粉末と界面活性剤(ポリカルボン酸型界面活性剤)と適量の溶媒(トルエンおよびイソプロパノール)とを含むカソード用ペーストを調製した。上記(2)で得られた接合体の固体電解質層の表面に、カソード用ペーストを塗布し、1000℃で2時間加熱することによりカソード(厚み10μm)を形成した。このようにしてセル構造体を形成した。
  セル構造体において、固体電解質層の厚み方向の断面の任意の5箇所について元素の比率をEDXにより測定し、固体電解質層全体の平均的な組成がBa0.892Zr0.8000.2002.900であることを確認した。
(4)燃料電池の作製
  上記(3)で得られたセル構造体のカソードおよびアノードのそれぞれの表面に、白金ペーストを塗布し、白金メッシュを取り付けることにより、集電体を形成した。さらに、カソード側の集電体の上に、酸化剤流路を有するステンレス鋼製のカソード側セパレータを積層し、アノード側集電体の上に、燃料流路を有するステンレス鋼製のアノード側セパレータを積層して、図2に示す燃料電池を製作した。
(3)評価
  得られたプロトン伝導体の粉末またはこの粉末から作製した焼結体ペレットを用いて、下記の手順で、耐湿性およびプロトン伝導性を評価した。
  (a)耐湿性
  プロトン伝導体の粉末を、相対湿度100%および温度100℃の条件で、100時間静置した。次いで、X線回折(XRD:X-ray  Diffraction)の参照強度比(RIR:Reference Intensity Ratio)法により、粉末を定量分析した。このようにして、加湿後のプロトン伝導体の組成を評価した。
  (b)プロトン伝導性
  プロトン伝導体の粉末にバインダ(ポリビニルアルコール)を加え、ジルコニア乳鉢にて10分間混合した。バインダの量は、プロトン伝導体100質量部に対して、0.15質量部とした。得られた造粒物を一軸成形することにより、円盤状のペレット(直径20mm)を形成した。さらにペレットに対し2トン/cm2での静水圧プレスを行い、成形体密度を上昇させた。このペレットを、750℃で10時間加熱することにより脱バインダ処理を行った。次いで、得られたペレットを、1600℃で24時間加熱することにより本焼成した。なお、ペレットの加熱は、プロトン伝導体の粉末中に埋めた状態で行った。
  得られたペレットの両面を研磨することにより、ペレットの厚さを1mmにした。ペレットの両面にスパッタによりPt電極を形成することによりサンプルを作製した。
  サンプルの抵抗値を、加湿水素雰囲気下で交流インピーダンス法により測定し、測定値から、サンプルの導電率を算出した。この導電率を、プロトン伝導性の指標とした。
  実施例2
  プロトン伝導体(a1)に代えてプロトン伝導体Ba0.957Zr0.8000.2002.900(a2)を用いる以外は、実施例1と同様にして、セル構造体を作製し、燃料電池を作製した。プロトン伝導体(a2)は、炭酸バリウムの量を調節した以外は、実施例1の(1)と同様にして合成した。
  得られたプロトン伝導体およびセル構造体を用いて、実施例1と同様の評価を行った。
  比較例1
  プロトン伝導体(a1)に代えてプロトン伝導体Ba0.980Zr0.8000.2002.900(b1)を用いる以外は、実施例1と同様にして、セル構造体を作製し、燃料電池を作製した。プロトン伝導体(b1)は、炭酸バリウムの量を調節した以外は、実施例1の(1)と同様にして合成した。
  得られたプロトン伝導体およびセル構造体を用いて、実施例1と同様の評価を行った。
  比較例2
  プロトン伝導体(a1)に代えてプロトン伝導体Ba1.000Zr0.8000.2002.900(b2)を用いる以外は、実施例1と同様にして、セル構造体を作製し、燃料電池を作製した。プロトン伝導体(b2)は、炭酸バリウムの量を調節した以外は、実施例1の(1)と同様にして合成した。
  得られたプロトン伝導体およびセル構造体を用いて、実施例1と同様の評価を行った。
  実施例1~2および比較例1~2の結果を表1に示す。実施例1および2がA1およびA2であり、比較例1および2がB1およびB2である。
Figure JPOXMLDOC01-appb-T000001
  表1に示されるように、Baの比率xが0.98未満である実施例のプロトン伝導体では、加湿後のBa(OH)の含有量は0質量%であり、BaCOの含有量も12質量%~16質量%程度と少なく、BZY相の含有量は80質量%を超えている。ところが、比較例2のプロトン伝導体では、加湿後のBa(OH)の含有量は35質量%を超え、BZY相の含有量は実施例に比べて、30質量%近くも少ない。また、比較例1のプロトン伝導体でも、加湿後のBaCO3の含有量は実施例の2倍より多くなっている。これらの結果から、実施例では比較例に比べて、加湿条件でもBaの析出が抑制され、その結果プロトン伝導体の腐食が抑制されたことが分かる。また、実施例でも比較的高いプロトン伝導性を確保できている。電解質膜の厚みをより小さくすれば、実施例のプロトン伝導体のプロトン伝導性をさらに高めることができ、実用上十分な性能を容易に確保することができる。
  実施例3
  プロトン伝導体(a1)に代えてプロトン伝導体Ba0.945Zr0.700Ce0.100Yb0.2002.900(a3)を用いる以外は、実施例1と同様にして、セル構造体を作製し、燃料電池を作製した。得られたプロトン伝導体およびセル構造体を用いて、実施例1と同様の評価を行った。
  なお、プロトン伝導体(a3)は、次の手順で合成した。
  炭酸バリウムと、酸化ジルコニウムと、酸化セリウムと、酸化イッテルビウムとを、Baと、Zrと、Ceと、Ybとの比率が上記式となるようなモル比でボールミルに入れて混合した。混合物を一軸成形してペレットを得、1300℃で10時間焼成することにより、上記のプロトン伝導体(a3)を合成した。
  比較例3
  プロトン伝導体(a1)に代えてプロトン伝導体Ba0.986Zr0.700Ce0.100Yb0.2002.900(b3)を用いる以外は、実施例1と同様にして、セル構造体を作製し、燃料電池を作製した。プロトン伝導体(b3)は、炭酸バリウムの量を調節した以外は、実施例3と同様にして合成した。
  得られたプロトン伝導体およびセル構造体を用いて、実施例1と同様の評価を行った。
  実施例3(A3)および比較例3(B3)の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
  表2に示されるように、元素MがYbの場合においてもBaの比率xが0.98未満である実施例のプロトン伝導体では、比較例よりも高い耐湿性を示した。
  実施例4
  プロトン伝導体(a1)に代えてプロトン伝導体Ba0.951Zr0.800Yb0.2002.900(a4)を用いる以外は、実施例1と同様にして、セル構造体を作製し、燃料電池を作製した。得られたプロトン伝導体およびセル構造体を用いて、実施例1と同様の評価を行った。
  なお、プロトン伝導体(a4)は、次の手順で合成した。
  炭酸バリウムと、酸化ジルコニウムと、酸化イッテルビウムとを、Baと、Zrと、Ybとの比率が上記式となるようなモル比でボールミルに入れて混合した。混合物を一軸成形してペレットを得、1300℃で10時間焼成することにより、上記のプロトン伝導体(a4)を合成した。
  比較例4
  プロトン伝導体(a1)に代えてプロトン伝導体Ba0.985Zr0.800Yb0.2002.900(b4)を用いる以外は、実施例1と同様にして、セル構造体を作製し、燃料電池を作製した。プロトン伝導体(b4)は、炭酸バリウムの量を調節した以外は、実施例4と同様にして合成した。
  得られたプロトン伝導体およびセル構造体を用いて、実施例1と同様の評価を行った。
  実施例4(A4)および比較例4(B4)の結果を表3に示す。
  表3に示されるように、元素MがYbの場合においてもBaの比率xが0.98未満である実施例のプロトン伝導体では、比較例よりも高い耐湿性を示した。
  実施例5
(1)セル構造体および燃料電池の作製
  実施例1の(2)において、比較例2で調製した電解質ペースト(プロトン伝導体(b2)を使用)を、円盤状のペレットの一方の主面に塗布して塗膜を形成した。塗膜が形成されたペレットを750℃で10時間加熱することにより脱バインダ処理した。次いで、脱バインダ処理した塗膜の表面に、実施例1で調製した電解質ペースト(プロトン伝導体(a1)使用)を塗布し、さらに750℃で10時間加熱することにより脱バインダ処理した。得られたペレットを、1400℃で10時間加熱することにより本焼成した。このようにして、アノードの一方の主面に固体電解質層が一体に形成された電解質層-アノード接合体を得た。
  得られた接合体における固体電解質層の厚み(T)をSEMにより測定したところ、10μmであった。また、アノードおよび固体電解質層の合計厚みをノギスで計測したところ、約1.4mmであった。
  固体電解質層とアノードとの界面から0.25Tの位置におけるBaの比x1、および固体電解質層の表面から0.25Tの位置におけるBaの比率x2を、それぞれ、EPMAにより測定した。その結果、x1は、1.000であり、x2は0.892であった。
  得られた接合体を用いる以外は実施例1と同様にしてセル構造体および燃料電池を作製した。
(2)評価
  上記(1)で得られたセル構造体を、600℃で、電流密度を変化させながら出力密度を測定し、出力密度の最大値を求めたところ、312mW/cmであった。なお、発電性能の評価の際、セル構造体のアノード側は加湿水素雰囲気に晒し、カソード側は大気雰囲気に晒した状態とした。また、比較例1で得られたセル構造体を用いて、上記と同様に、出力密度を評価したところ、344mW/cmであった。このように、実施例5では、比較例1に匹敵する高い出力が得られた。
  本発明の実施形態に係る固体電解質層は、耐湿性に優れ、耐久性が高いため、燃料電池(PCFC)またはそのセル構造体に適用するのに適している。
  1:セル構造体
  2:カソード
  3:アノード
  4:固体電解質層
  5:電解質層-電極接合体
  10:燃料電池
  21、51:集電体
  22、52:セパレータ
  23:燃料流路
  53:酸化剤流路
 

Claims (9)

  1.   ペロブスカイト型構造を有し、かつ下記式(1):
      BaZrCe1-(y+z)3-δ
    (ただし、元素Mは、Y、Yb、Er、Ho、Tm、Gd、およびScからなる群より選択される少なくとも一種であり、0.85≦x<0.98、0.70≦y+z<1.00、比y/zは0.5/0.5~1/0であり、δは酸素欠損量である)
    で表されるプロトン伝導体を含む、燃料電池用固体電解質層。
  2.   0.85≦x≦0.96である、請求項1に記載の燃料電池用固体電解質層。
  3.   0.75≦y+z≦0.90である、請求項1または請求項2に記載の燃料電池用固体電解質層。
  4.   前記元素Mは、YおよびYbからなる群より選択される少なくとも一種である、請求項1~請求項3のいずれか1項に記載の燃料電池用固体電解質層。
  5.   前記固体電解質層の厚みをTとするとき、
      前記固体電解質層の一方の表面から0.25Tの位置におけるBaの比率x1と、前記固体電解質層の他方の表面から0.25Tの位置におけるBaの比率x2とが、x1>x2を満たし、
      前記他方の表面を、燃料電池のカソードと接触させる、請求項1~請求項4のいずれか1項に記載の燃料電池用固体電解質層。
  6.   ZrとCeとの比y/zは、0.5/0.5~0.9/0.1である、請求項1~請求項5のいずれか1項に記載の燃料電池用固体電解質層。
  7.   カソードと、
      アノードと、
      前記カソードおよび前記アノードの間に介在し、プロトン伝導性を有する固体電解質層と、を備え、
      前記固体電解質層は、プロトン伝導体を含み、
      前記プロトン伝導体は、ペロブスカイト型構造を有し、かつ下記式(1):
      BaZrCe1-(y+z)3-δ
    (ただし、元素Mは、Y、Yb、Er、Ho、Tm、Gd、およびScからなる群より選択される少なくとも一種であり、0.85≦x<0.98、0.70≦y+z<1.00、比y/zは0.5/0.5~1/0であり、δは酸素欠損量である)
    で表される、セル構造体。
  8.   請求項7に記載のセル構造体を備え、
      前記カソードに酸化剤を供給するための酸化剤流路、および、前記アノードに燃料を供給するための燃料流路を有する、燃料電池。
  9.   ペロブスカイト型構造を有し、かつ下記式(1):
      BaZrCe1-(y+z)3-δ
    (ただし、元素Mは、Y、Yb、Er、Ho、Tm、Gd、およびScからなる群より選択される少なくとも一種であり、0.85≦x<0.98、0.70≦y+z<1.00、比y/zは0.5/0.5~1/0であり、δは酸素欠損量である)
    で表されるプロトン伝導体。
PCT/JP2015/073879 2015-03-30 2015-08-25 プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池 WO2016157566A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017509141A JP6601488B2 (ja) 2015-03-30 2015-08-25 プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池
CN201580077101.1A CN107406332B (zh) 2015-03-30 2015-08-25 质子导体、燃料电池用固体电解质层、电池结构体以及包括电池结构体的燃料电池
KR1020177023775A KR20170132140A (ko) 2015-03-30 2015-08-25 프로톤 전도체, 연료 전지용 고체 전해질층, 셀 구조체 및 그것을 구비하는 연료 전지
US15/553,237 US20180037508A1 (en) 2015-03-30 2015-08-25 Proton conductor, solid electrolyte layer for fuel cell, cell structure, and fuel cell including the same
EP15887708.4A EP3279987B1 (en) 2015-03-30 2015-08-25 Proton conductor, fuel-cell solid-electrolyte layer, cell structure, and fuel cell provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068668 2015-03-30
JP2015-068668 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016157566A1 true WO2016157566A1 (ja) 2016-10-06

Family

ID=57005738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073879 WO2016157566A1 (ja) 2015-03-30 2015-08-25 プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池

Country Status (6)

Country Link
US (1) US20180037508A1 (ja)
EP (1) EP3279987B1 (ja)
JP (1) JP6601488B2 (ja)
KR (1) KR20170132140A (ja)
CN (1) CN107406332B (ja)
WO (1) WO2016157566A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602136A (zh) * 2016-12-22 2017-04-26 中国矿业大学 一种锆酸钡基电解质材料体系及其制备方法
CN108123153A (zh) * 2016-11-25 2018-06-05 中国科学院大连化学物理研究所 一种质子型固体氧化物燃料电池及其制备方法
JP2018139183A (ja) * 2017-02-24 2018-09-06 住友電気工業株式会社 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
JP2018139182A (ja) * 2017-02-24 2018-09-06 住友電気工業株式会社 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
JP2019021578A (ja) * 2017-07-20 2019-02-07 東京瓦斯株式会社 燃料電池システム
JP2019042673A (ja) * 2017-09-01 2019-03-22 東京瓦斯株式会社 触媒組成物、水素製造装置、および、水素製造方法
WO2019107194A1 (ja) * 2017-11-29 2019-06-06 国立大学法人京都大学 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法
JPWO2018159584A1 (ja) * 2017-02-28 2020-01-09 国立研究開発法人産業技術総合研究所 プロトン伝導性電解質
JP2020017425A (ja) * 2018-07-26 2020-01-30 東京瓦斯株式会社 燃料電池および燃料電池の製造方法
WO2020218150A1 (ja) * 2019-04-23 2020-10-29 堺化学工業株式会社 イッテルビウム添加ジルコン酸バリウム粒子とその製造方法
WO2021256221A1 (ja) * 2020-06-18 2021-12-23 住友電気工業株式会社 プロトン伝導型セル構造体、プロトン伝導体、電気化学デバイス、及びプロトン伝導体の製造方法
JP7336702B2 (ja) 2018-10-18 2023-09-01 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370041A (zh) * 2015-12-18 2018-08-03 住友电气工业株式会社 质子导体、电池结构体、质子导体和电池结构体的制造方法、燃料电池以及水电解装置
US20210066728A1 (en) * 2018-03-06 2021-03-04 Sumitomo Electric Industries, Ltd. Cell structure
CN111801827B (zh) * 2018-03-06 2023-08-18 住友电气工业株式会社 电解质层-阳极复合部件以及电池结构体
CN109023411B (zh) * 2018-07-11 2020-09-18 中国科学院上海高等研究院 用于电解水的消除内短路的氧化铈基固体电池及其制备方法和用途
JP6773240B2 (ja) * 2018-08-30 2020-10-21 堺化学工業株式会社 固体酸化物形燃料電池用電解質材料とその前駆体の製造方法
JPWO2020217743A1 (ja) * 2019-04-26 2020-10-29
EP3960907A4 (en) * 2019-04-26 2022-06-15 Panasonic Intellectual Property Management Co., Ltd. MEMBRANE ELECTRODE, ELECTROCHEMICAL DEVICE AND ELECTROCHEMICAL SYSTEM ASSEMBLY
CN113149092B (zh) * 2021-03-10 2022-07-29 南京工业大学 一种b位掺杂的质子导体燃料电池的电解质材料、制备方法以及直接氨燃料电池中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197315A (ja) * 1999-02-17 2007-08-09 Matsushita Electric Ind Co Ltd 混合イオン伝導体およびこれを用いたデバイス
WO2015008407A1 (ja) * 2013-07-16 2015-01-22 パナソニックIpマネジメント株式会社 プロトン伝導体
JP2015046251A (ja) * 2013-08-27 2015-03-12 住友電気工業株式会社 燃料極用電極材料、固体電解質−電極積層体、固体電解質−電極積層体の製造方法及び燃料電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725965A (en) * 1995-04-25 1998-03-10 Gas Research Institute Stable high conductivity functionally gradient compositionally layered solid state electrolytes and membranes
CA2298850A1 (en) * 1999-02-17 2000-08-17 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
US20040058227A1 (en) * 2002-07-09 2004-03-25 Matsushita Electric Industrial Co., Ltd. Electrolyte membrane-electrode assembly for a fuel cell, fuel cell using the same and method of making the same
US7745063B2 (en) * 2004-04-27 2010-06-29 Panasonic Corporation Fuel cell stack
US7625653B2 (en) * 2005-03-15 2009-12-01 Panasonic Corporation Ionic conductor
CN100537470C (zh) * 2005-03-15 2009-09-09 松下电器产业株式会社 离子导体
CN103208634B (zh) * 2013-03-25 2016-04-27 北京科技大学 用于中低温质子传输固体氧化物燃料电池的复合阴极材料
CN103224394A (zh) * 2013-04-19 2013-07-31 天津大学 碳酸锂改性铈锆酸钡质子导体材料及其制备方法
US9437343B2 (en) * 2013-07-16 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Proton conductor
CN103531833A (zh) * 2013-10-22 2014-01-22 天津大学 碳酸锂/钇掺杂铈锆酸钡复相结构质子导体材料
WO2015114684A1 (ja) * 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 プロトン伝導体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197315A (ja) * 1999-02-17 2007-08-09 Matsushita Electric Ind Co Ltd 混合イオン伝導体およびこれを用いたデバイス
WO2015008407A1 (ja) * 2013-07-16 2015-01-22 パナソニックIpマネジメント株式会社 プロトン伝導体
JP2015046251A (ja) * 2013-08-27 2015-03-12 住友電気工業株式会社 燃料極用電極材料、固体電解質−電極積層体、固体電解質−電極積層体の製造方法及び燃料電池

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123153A (zh) * 2016-11-25 2018-06-05 中国科学院大连化学物理研究所 一种质子型固体氧化物燃料电池及其制备方法
CN106602136A (zh) * 2016-12-22 2017-04-26 中国矿业大学 一种锆酸钡基电解质材料体系及其制备方法
JP2018139183A (ja) * 2017-02-24 2018-09-06 住友電気工業株式会社 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
JP2018139182A (ja) * 2017-02-24 2018-09-06 住友電気工業株式会社 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
JP7021787B2 (ja) 2017-02-28 2022-02-17 国立研究開発法人産業技術総合研究所 プロトン伝導性電解質
JPWO2018159584A1 (ja) * 2017-02-28 2020-01-09 国立研究開発法人産業技術総合研究所 プロトン伝導性電解質
JP7029122B2 (ja) 2017-07-20 2022-03-03 東京瓦斯株式会社 燃料電池システム
JP2019021578A (ja) * 2017-07-20 2019-02-07 東京瓦斯株式会社 燃料電池システム
JP2019042673A (ja) * 2017-09-01 2019-03-22 東京瓦斯株式会社 触媒組成物、水素製造装置、および、水素製造方法
WO2019107194A1 (ja) * 2017-11-29 2019-06-06 国立大学法人京都大学 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法
US11545690B2 (en) 2017-11-29 2023-01-03 Kyoto University Proton conductor, proton-conducting cell structure, water vapor electrolysis cell, and method for producing hydrogen electrode-solid electrolyte layer complex
JPWO2019107194A1 (ja) * 2017-11-29 2020-12-17 国立大学法人京都大学 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極−固体電解質層複合体の製造方法
JP7225113B2 (ja) 2017-11-29 2023-02-20 国立大学法人京都大学 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法
JP2020017425A (ja) * 2018-07-26 2020-01-30 東京瓦斯株式会社 燃料電池および燃料電池の製造方法
JP7057731B2 (ja) 2018-07-26 2022-04-20 東京瓦斯株式会社 燃料電池および燃料電池の製造方法
JP7336702B2 (ja) 2018-10-18 2023-09-01 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
JP6787537B1 (ja) * 2019-04-23 2020-11-18 堺化学工業株式会社 イッテルビウム添加ジルコン酸バリウム粒子とその製造方法
WO2020218150A1 (ja) * 2019-04-23 2020-10-29 堺化学工業株式会社 イッテルビウム添加ジルコン酸バリウム粒子とその製造方法
WO2021256221A1 (ja) * 2020-06-18 2021-12-23 住友電気工業株式会社 プロトン伝導型セル構造体、プロトン伝導体、電気化学デバイス、及びプロトン伝導体の製造方法

Also Published As

Publication number Publication date
KR20170132140A (ko) 2017-12-01
CN107406332B (zh) 2020-11-03
EP3279987A4 (en) 2018-04-11
JPWO2016157566A1 (ja) 2018-02-15
CN107406332A (zh) 2017-11-28
JP6601488B2 (ja) 2019-11-06
EP3279987B1 (en) 2019-11-27
US20180037508A1 (en) 2018-02-08
EP3279987A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6601488B2 (ja) プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池
US10734665B2 (en) Method for producing cell structure
JP6658754B2 (ja) 固体酸化物形燃料電池、および電解質層−アノード接合体の製造方法
JP6398647B2 (ja) 固体酸化物型燃料電池用アノードの製造方法および燃料電池用電解質層−電極接合体の製造方法
CN101223656A (zh) 前体渗透和涂布方法
JP6642446B2 (ja) セル構造体、その製造方法、および、燃料電池
WO2017014069A1 (ja) 燃料電池用電解質層-アノード複合部材およびその製造方法
JP6370696B2 (ja) セル構造体、電解質膜−電極接合体、および、燃料電池
JP7016615B2 (ja) プロトン伝導体、固体電解質層、セル構造体、およびそれを備える水蒸気電解セルならびに燃料電池
WO2020004333A1 (ja) 固体酸化物形セル用電極及びそれを用いた固体酸化物形セル
KR102111859B1 (ko) 고체산화물 연료 전지 및 이를 포함하는 전지 모듈
JP7107875B2 (ja) 燃料極-固体電解質層複合体の製造方法
JP7114555B2 (ja) 水蒸気電解用電極
JP7243709B2 (ja) 燃料電池用電解質層-アノード複合部材、セル構造体および燃料電池、ならびに複合部材の製造方法
JP2015185246A (ja) アノード支持基板及びアノード支持型セル
JP7136185B2 (ja) セル構造体
WO2021256221A1 (ja) プロトン伝導型セル構造体、プロトン伝導体、電気化学デバイス、及びプロトン伝導体の製造方法
WO2020261935A1 (ja) 燃料極-固体電解質層複合体、燃料極-固体電解質層複合部材、燃料電池、および、燃料電池の製造方法
KR20200105173A (ko) 고체산화물 연료전지용 공기극, 이를 포함하는 고체산화물 연료 전지, 이를 포함하는 전지모듈 및 고체산화물 연료전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887708

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015887708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15553237

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177023775

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017509141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE