WO2019104987A1 - 一种导热增强有机复合定形相变材料及其制备方法 - Google Patents

一种导热增强有机复合定形相变材料及其制备方法 Download PDF

Info

Publication number
WO2019104987A1
WO2019104987A1 PCT/CN2018/090184 CN2018090184W WO2019104987A1 WO 2019104987 A1 WO2019104987 A1 WO 2019104987A1 CN 2018090184 W CN2018090184 W CN 2018090184W WO 2019104987 A1 WO2019104987 A1 WO 2019104987A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
change material
ion
organic composite
acid
Prior art date
Application number
PCT/CN2018/090184
Other languages
English (en)
French (fr)
Inventor
唐炳涛
樊晓乔
张宇昂
吕荣文
张淑芬
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/619,070 priority Critical patent/US11479701B2/en
Publication of WO2019104987A1 publication Critical patent/WO2019104987A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the invention relates to a thermally conductive enhanced organic composite shaped phase change material and a preparation method thereof, and belongs to the technical field of new materials.
  • Phase change material is the energy storage and release that requires the absorption or release of a large amount of heat when a material undergoes a phase change. It has the advantages of high heat storage density, small equipment volume, high thermal efficiency, and constant heat absorption and release. . It has good application prospects in solar energy utilization, industrial waste heat recovery and power load regulation. Organic solid-liquid phase change materials are favored by researchers because of their shortness of subcooling and phase separation, less corrosiveness of materials, relatively stable performance, and low toxicity. However, there are still many shortcomings in this type of materials. In addition to the problem of severe leakage, the small thermal conductivity results in poor heat transfer performance and low heat storage utilization in practical applications, thereby limiting its application.
  • the present invention provides a new class of thermally conductive reinforced organic composite shaped phase change materials and a preparation method thereof.
  • the heat-conducting enhanced organic composite shaped phase change material prepared by the invention has significantly improved thermal conductivity, and has large phase change enthalpy and excellent setting effect, and no liquid leakage during the working process.
  • the synthesis process of such materials is simple, can be used in practical applications, and has broad application prospects.
  • thermally conductive enhanced organic composite shaped phase change material consisting of a coordination crosslinked network polymer, an organic solid liquid phase change material and a thermal conductivity enhancer, wherein, by mass percentage,
  • Coordination crosslinked network polymer 1 ⁇ 50%
  • Organic solid phase change material 40 ⁇ 98.9%
  • Thermal conductivity enhancer 0.1 to 10%
  • the coordination crosslinked network polymer is formed by complexation of a polymer compound and a metal ion.
  • the coordination crosslinked network polymer is formed by complexation of a polymer compound and a metal ion.
  • the polymer compound is polyacrylic acid and its sodium, potassium or ammonium salt; polymaleic acid and its sodium, potassium or ammonium salt; carboxymethyl cellulose and its sodium, potassium or ammonium salt; sodium alginate , potassium or ammonium salt; carboxymethyl starch and its sodium, potassium or ammonium salt; polyvinyl alcohol; polyvinylpyrrolidone; polyvinyl pyridine; acrylic acid-maleic acid copolymer and its sodium, potassium or ammonium salt; Acrylic acid copolymer and sodium, potassium or ammonium salt thereof; methacrylic acid-maleic acid copolymer and sodium, potassium or ammonium salt thereof; the above polymer has a molecular weight of 1,000 to 9,000,000.
  • polyacrylic acid and its sodium, potassium or ammonium salt as an example, it means that the polymer compound may be polyacrylic acid, sodium polyacrylate, potassium polyacrylate or ammonium polyacrylate, and other similar expressions have the same meaning, Let me repeat.
  • the metal ion is calcium ion, magnesium ion, divalent iron ion, ferric ion, zinc ion, aluminum ion, divalent copper ion, barium ion, trivalent chromium ion, cobalt ion or silver ion.
  • the metal ion is provided by a metal ion compound, which is calcium ion, magnesium ion, divalent iron ion, ferric ion, zinc ion, aluminum ion, divalent copper ion, strontium ion, three A chloride, an oxide, a nitrate, a sulfate, or an acetate of a chromium ion, a cobalt ion, or a silver ion.
  • a metal ion compound which is calcium ion, magnesium ion, divalent iron ion, ferric ion, zinc ion, aluminum ion, divalent copper ion, strontium ion, three A chloride, an oxide, a nitrate, a sulfate, or an acetate of a chromium ion, a cobalt ion, or a silver ion.
  • the mass ratio of the metal ion compound to the polymer compound is from 1:100 to 30:100.
  • the organic solid phase change material is at least one of paraffin wax, fatty acid, fatty alcohol, polyethylene glycol, and fatty acid ester.
  • the paraffin wax is a paraffin wax having a melting point of 8 to 60 ° C;
  • the fatty acid is one of a sunflower acid, a dodecanoic acid, a tetradecanoic acid, a pentadecanoic acid, a palmitic acid, and a stearic acid.
  • the fatty alcohol is one, two or three of dodecyl alcohol, tetradecanol, cetyl alcohol, stearyl alcohol;
  • the polyethylene glycol is a polymer having a molecular weight of 200 to 20,000 Ethylene glycol;
  • the oil and fat is erythritol tetrastearate, erythritol tetrapalmitate, galactitol hexadepal palmitate, galactitol hexaearic acid, glyceryl tristearate, One, two or three of glyceryl tripalmitate, glyceryl myristate, butyl stearate, soybean oil, corn oil, peanut oil, rapeseed oil, olive oil, castor oil.
  • the heat conduction enhancer is graphene, graphene oxide, single arm carbon nanotube, multi-wall carbon nanotube, boron nitride, carbon black, expanded graphite, nano silver, nano copper, nano gold, One, two or three of aluminum, aluminum oxide, cerium oxide, magnesium oxide, zinc oxide, aluminum nitride, and tantalum nitride.
  • the invention also provides a preparation method of the above organic composite shaped phase change material, comprising the following steps:
  • the polymer compound is mixed with a solvent to prepare a homogeneous solution (mass fraction: 1% to 20%), and an organic solid phase change material and a heat conduction enhancer are added to the above polymer solution, and stirred at 20 to 80 ° C. ⁇ 10h, a metal ion compound solution capable of providing the metal ion was added, and dried under vacuum for 24 hours to obtain an organic composite shaped phase change material.
  • a homogeneous solution mass fraction: 1% to 20%
  • an organic solid phase change material and a heat conduction enhancer are added to the above polymer solution, and stirred at 20 to 80 ° C. ⁇ 10h, a metal ion compound solution capable of providing the metal ion was added, and dried under vacuum for 24 hours to obtain an organic composite shaped phase change material.
  • the metal ion compound is calcium ion, magnesium ion, divalent iron ion, ferric ion, zinc ion, aluminum ion, divalent copper ion, barium ion, trivalent chromium ion, cobalt ion or
  • the chloride, oxide, nitrate, sulfate, and acetate of silver ions have a mass ratio of 1:100 to 30:100.
  • the solvent is one or both of water, benzene, toluene, DMF, DMSO, tetrahydrofuran, methanol, ethanol, acetone.
  • the concentration of the metal ion compound solution is 0.05 mol/L.
  • the heat conduction enhancer is added to the reaction system in the form of a dispersion of a heat conduction enhancer, and preferably the concentration of the solute in the dispersion is 0.3 to 3 mg/g.
  • the invention has the advantages that the invention provides a novel heat-conducting and reinforced organic composite shaped phase change material, the material has obvious thermal conductivity, large phase change enthalpy value, excellent setting effect, no liquid leakage during operation phenomenon.
  • the material has simple synthesis process and convenient application, and has broad application prospects in the field of thermal energy storage and management.
  • Example 1 is an infrared spectrum of the thermally conductive enhanced organic composite shaped phase change material of Example 1, wherein: a, pure polyethylene glycol, b, thermally conductive enhanced organic composite shaped phase change material.
  • Example 2 is a DSC curve of the thermally conductive enhanced organic composite shaped phase change material of Example 1.
  • Example 3 is a photograph showing the effect of the heat-conductive reinforced organic composite shaped phase change material in Example 1.
  • Example 4 is a temperature rise curve of the thermally conductive reinforced organic composite shaped phase change material and the blank material to which no heat conduction enhancer is added in Example 1.
  • test methods described in the following examples are conventional methods unless otherwise specified; the reagents and materials are commercially available unless otherwise specified.
  • Example 1 is an infrared spectrum of the thermally conductive enhanced organic composite shaped phase change material of Example 1, wherein: a, pure polyethylene glycol, b, thermally conductive enhanced organic composite shaped phase change material. It can be seen from the figure that the CO peak appearing at 1026 cm -1 is attributed to the CO-Ca-OC structure formed by the coordination and cross-linking of sodium alginate and Ca ion when the infrared peak of the composite material is compared with polyethylene glycol. The coordination of sodium alginate with calcium ions. The DSC curve of the obtained thermally conductive enhanced organic composite shaped phase change material is shown in FIG.
  • the pure polyethylene glycol phase transition enthalpy value is 203.0 J/g, and the phase transition enthalpy value of the obtained material reaches 133.3 J/g, which still has a high phase transition enthalpy value.
  • the thermally conductive reinforced composite shaped phase change material and polyethylene glycol 6000 were placed on a heating table. At 65 ° C, the polyethylene glycol began to melt, and at 95 ° C, it was completely liquid, and the blank material without the thermal conductivity enhancer was added. The appearance of the thermally conductive reinforced composite shaped phase change material did not change significantly, and the shape was stable and there was no liquid leakage (Fig. 3). It is indicated that the prepared thermally conductive reinforced composite shaped phase change material has a good setting effect.
  • Example 4 is a temperature rise curve of the thermally conductive reinforced organic composite shaped phase change material and the blank material without the thermal conductivity enhancer in Example 1. It can be seen that the blank material not added with graphene needs to be heated to 70 ° C for 400 seconds, and graphite is added. The thermal conductivity-enhancing organic composite shaped phase change material of the ene only takes 280 seconds, and the thermal conductivity is remarkably improved.
  • the measurement results show that the prepared thermally conductive enhanced organic composite shaped phase change material has a good setting effect.
  • Magnesium chloride, ferrous chloride, ferric chloride, zinc sulfate, aluminum nitrate, copper sulfate, barium chloride, silver nitrate, and chromium acetate are used as coordination metal ion compounds to obtain corresponding thermally conductive organic composite shaped phase change materials.
  • the conditions are the same as in the first embodiment.
  • the measurement results show that the prepared thermally conductive enhanced organic composite shaped phase change material has a good setting effect.
  • the dodecanoic acid, palmitic acid and stearic acid were respectively used as organic solid-liquid phase change materials to obtain corresponding thermally conductive enhanced organic composite shaped phase change materials, and other conditions were consistent with those in Example 1.
  • the measurement results show that the prepared thermally conductive enhanced organic composite shaped phase change material has a good setting effect.
  • the dodecyl alcohol, the tetradecyl alcohol, the hexadecanol and the octadecyl alcohol were respectively used as the organic solid phase change material to obtain the corresponding thermally conductive enhanced organic composite shaped phase change material, and other conditions were consistent with those in the first embodiment.
  • the measurement results show that the prepared thermally conductive enhanced organic composite shaped phase change material has a good setting effect.
  • Graphene oxide, single-armed carbon nanotubes, multi-walled carbon nanotubes, boron nitride, carbon black, expanded graphite, nano-silver, nano-copper, nano-gold, aluminum, aluminum oxide, cerium oxide, magnesium oxide, zinc oxide, Aluminum nitride and tantalum nitride were respectively used as heat conduction enhancers to obtain corresponding heat conductive enhanced organic composite shaped phase change materials, and other conditions were consistent with Example 1.
  • the measurement results show that the prepared thermally conductive enhanced organic composite shaped phase change material has a good setting effect.
  • the mass fraction of the thermal conductivity enhancer was changed to 0.5%, 2%, 5%, 8% and 10%, respectively, and the corresponding thermally conductive enhanced organic composite shaped phase change material was obtained, and other conditions were consistent with Example 1.
  • the measurement results show that the prepared thermally conductive enhanced organic composite shaped phase change material has a good setting effect.
  • Vinyl pyridine is used as a coordination polymer
  • zinc sulfate is used as a coordination metal ion compound
  • 35°C phase-change paraffin is used as a solid-liquid phase change material
  • the mass ratio of vinyl pyridine to phase change paraffin is 8:92
  • benzene and toluene are mixed.
  • the solvent and the mass fraction of vinyl pyridine in the polymer solution were 5%, and the corresponding thermally conductive organic composite shaped phase change material was obtained.
  • Other conditions were consistent with Example 1.
  • the measurement results show that the prepared thermally conductive enhanced organic composite shaped phase change material has a good setting effect.
  • thermally conductive enhanced organic composite shaped phase change material Taking erythritol tetrapalmitate, galactitol hexastearic acid, glyceryl myristate, butyl stearate, corn oil, peanut oil, rapeseed oil and castor oil as solid-liquid phase change materials, correspondingly The thermally conductive enhanced organic composite shaped phase change material, the other conditions are in accordance with Example 54. The measurement results show that the prepared thermally conductive enhanced organic composite shaped phase change material has a good setting effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种导热增强有机复合定形相变材料及其制备方法,其属于新材料技术领域。一种导热增强有机复合定形相变材料,其特征在于:所述复合定形相变材料由配位交联网络高分子、有机固液相变材料和导热增强剂组成,其中,按质量百分比,配位交联网络高分子:1~50%,有机固液相变材料:40~98.9%,导热增强剂:0.1~10%,其中,配位交联网络高分子由高分子化合物与金属离子配位络合而成。本发明合成工艺简单,应用方便,该材料相变焓值大,具有优异的定形效果,运行期间不会发生液体漏液现象。该材料合成工艺简单,应用方便,在热能存储与管理领域具有广阔的应用前景。

Description

一种导热增强有机复合定形相变材料及其制备方法 技术领域
本发明涉及一种导热增强有机复合定形相变材料及其制备方法,其属于新材料技术领域。
背景技术
相变材料(PCM)是利用物质发生相变时需要吸收或放出大量热量的性质来进行能量存储与释放的,具有贮热密度高、设备体积小、热效率高以及吸放热为恒温过程等优点。在太阳能利用、工业余热回收、电力负荷调节等方面都具有良好的应用前景。有机固液相变材料由于具有不易出现过冷现象和相分离、材料的腐蚀性较小、性能比较稳定、毒性较小等优点受到研究者的青睐,但同时该类材料还有不少不足,除去严重漏液问题以外,小的导热系数致使其在实际应用中传热性能差、蓄热量利用率低,从而限制其应用。
为了提高有机材料热量储存和释放效率,扩大其应用范围,必须对导热增强有机复合定形相变材料进行研究。
发明内容
为解决现有技术中存在的问题,本发明提供一类新的导热增强有机复合定形相变材料及其制备方法。本发明制备的导热增强有机复合定形相变材料导热性能显著提高,且具有较大的相变焓值以及优异的定形效果,工作过程无液体泄漏。此类材料合成工艺简单,可用于实际应用,具有广阔的应用前景。
本发明的技术方案如下:
一种导热增强有机复合定形相变材料,该材料由配位交联网络高分子、有机固液相变材料和导热增强剂组成,其中,按质量百分比,
配位交联网络高分子:1~50%
有机固液相变材料:40~98.9%
导热增强剂:0.1~10%,
其中,配位交联网络高分子由高分子化合物与金属离子配位络合而成。
在上述技术方案中,所述的配位交联网络高分子由高分子化合物与金属离子配位络合而成。
优选地,所述高分子化合物为聚丙烯酸及其钠、钾或铵盐;聚马来酸及其钠、 钾或铵盐;羧甲基纤维素及其钠、钾或铵盐;海藻酸钠、钾或铵盐;羧甲基淀粉及其钠、钾或铵盐;聚乙烯醇;聚乙烯吡咯烷酮;聚乙烯吡啶;丙烯酸-马来酸共聚物及其钠、钾或铵盐;丙烯酸-甲基丙烯酸共聚物及其钠、钾或铵盐;甲基丙烯酸-马来酸共聚物及其钠、钾或铵盐;上述高分子的分子量为1000~9000000。
上文中,以“聚丙烯酸及其钠、钾或铵盐”为例,其指高分子化合物可为聚丙烯酸、聚丙烯酸钠、聚丙烯酸钾或聚丙烯酸铵,其他类似表达均有相同含义,不再赘述。
优选地,所述金属离子为钙离子、镁离子、二价铁离子、三价铁离子、锌离子、铝离子、二价铜离子、钡离子、三价铬离子、钴离子或银离子。
进一步地,所述金属离子由金属离子化合物提供,所述金属离子化合物为钙离子、镁离子、二价铁离子、三价铁离子、锌离子、铝离子、二价铜离子、钡离子、三价铬离子、钴离子或银离子的氯化物、氧化物、硝酸化物、硫酸化物、醋酸化物。
更进一步地,所述金属离子化合物与高分子化合物的质量比为1∶100~30∶100。
在上述技术方案中,所述的有机固液相变材料为石蜡、脂肪酸、脂肪醇、聚乙二醇、脂肪酸酯中的至少一种。
在上述技术方案中,所述的石蜡为熔点在8~60℃的石蜡;所述脂肪酸为葵酸、十二酸、十四酸、十五酸、棕榈酸、硬脂酸中的一种、两种或三种;所述脂肪醇为十二醇、十四醇、十六醇、十八醇中的一种、两种或三种;所述聚乙二醇为分子量200~20000的聚乙二醇;所述油脂为赤藻糖醇四硬脂酸酯、赤藻糖醇四棕榈酸酯、半乳糖醇六棕榈酸酯、半乳糖醇六硬脂酸、三硬脂酸甘油酯、三棕榈酸甘油酯、三豆蔻酸甘油酯、硬脂酸丁酯、大豆油、玉米油、花生油、菜籽油、橄榄油、蓖麻油中的一种、两种或三种。
在上述技术方案中,所述导热增强剂为石墨烯、氧化石墨烯、单臂碳纳米管、多壁碳纳米管、氮化硼、炭黑、膨胀石墨、纳米银、纳米铜、纳米金、铝、氧化铝、氧化铋、氧化镁、氧化锌、氮化铝、氮化铋中的1种,2种或三种。
本发明还提供上述有机复合定形相变材料的制备方法,包括如下步骤:
将高分子化合物与溶剂混合制备成均匀的溶液(质量分数为1%~20%),将有机固液相变材料和导热增强剂加入到上述高分子溶液中,在20~80℃下搅拌1~10h,加入能够提供所述金属离子的金属离子化合物溶液,真空干燥24h,得到有机 复合定形相变材料。
在上述技术方案中,所述金属离子化合物为钙离子、镁离子、二价铁离子、三价铁离子、锌离子、铝离子、二价铜离子、钡离子、三价铬离子、钴离子或银离子的氯化物、氧化物、硝酸化物、硫酸化物、醋酸化物,其与高分子的质量比为1∶100~30∶100。
优选地,所述溶剂为水、苯、甲苯、DMF、DMSO、四氢呋喃、甲醇、乙醇、丙酮中的一种或两种。
优选地,所述金属离子化合物溶液的浓度为0.05mol/L。
进一步地,所述导热增强剂以导热增强剂的分散液的形式加入反应体系中,优选分散液中溶质的浓度为0.3~3mg/g。
本发明的有益效果:本发明提供了一种新型的导热增强有机复合定形相变材料,该材料导热性能显著提高,相变焓值大,具有优异的定形效果,运行期间不会发生液体漏液现象。该材料合成工艺简单,应用方便,在热能存储与管理领域具有广阔的应用前景。
附图说明
图1为实施例1中导热增强有机复合定形相变材料的红外光谱图,其中:a、纯聚乙二醇,b、导热增强有机复合定形相变材料。
图2为实施例1中导热增强有机复合定形相变材料的DSC曲线。
图3为实施例1中导热增强有机复合定形相变材料的定形效果照片。
图4为实施例1中导热增强有机复合定形相变材料和未添加导热增强剂的空白材料的升温曲线。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1
(1)取0.3158g海藻酸钠于三口烧瓶中,加入20mL水,70℃下搅拌20min,得到海藻酸钠溶液;
(2)再加入6g的PEG-6000(海藻酸钠与聚乙二醇质量比为5∶95)和石墨烯水分散液(含石墨烯0.0064g,材料中导热增强剂石墨烯的质量分数为1%),继续搅 拌60min,滴加氯化钙溶液(0.05mol/L)至形成凝胶,得到复合海藻酸钙凝胶;
(3)40℃真空干燥24h,得到有机复合定形相变材料。
图1为实施例1中导热增强有机复合定形相变材料的红外光谱图,其中:a、纯聚乙二醇,b、导热增强有机复合定形相变材料。从图中可以看到,复合材料的红外峰与聚乙二醇比较,在1026cm -1出现的C-O峰归属于海藻酸钠与Ca离子配位交联后形成的C-O-Ca-O-C结构,证明了海藻酸钠与钙离子的配位。所得导热增强有机复合定形相变材料的DSC曲线,如图2。纯聚乙二醇相变焓值为203.0J/g,所得的材料的相变焓值达到133.3J/g,依然具有较高的相变焓值。将导热增强复合定形相变材料和聚乙二醇6000放置在加热台上,在65℃时聚乙二醇已经开始熔化,95℃时已经完全变成液态,而未添加导热增强剂的空白材料和导热增强复合定形相变材料外观均无明显变化,能够保持形状稳定,没有漏液现象(图3)。说明制备的导热增强复合定形相变材料具有良好的定形效果。图4为实施例1中导热增强有机复合定形相变材料和未添加导热增强剂的空白材料的升温曲线,可以看到未加入石墨烯的空白材料升温至70℃需要400秒,而添加了石墨烯的导热增强有机复合定形相变材料仅需要280秒,导热性能显著提高。
实施例2-4
将海藻酸钠和聚乙二醇(Mn=6000)的质量比分别改为50∶50,25∶75,10∶90,得到相应的有机复合定形相变材料,其他条件与实施例1一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。
实施例5-9
将聚丙烯酸钠、聚马来酸钾、聚乙烯吡啶、羧甲基纤维素、聚乙烯醇作为需要配位的高分子材料,得到相应的导热增强有机复合定形相变材料,其他条件与实施例1一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。
实施例10-18
将氯化镁、氯化亚铁、氯化铁、硫酸锌、硝酸铝、硫酸铜、氯化钡、硝酸银、醋酸铬作为配位金属离子化合物,得到相应的导热增强有机复合定形相变材料,其他条件与实施例1一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。
实施例19-21
将十二酸、棕榈酸、硬脂酸分别作为有机固液相变材料,得到相应的导热增强有机复合定形相变材料,其他条件与实施例1一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。
实施例22-25
将十二醇、十四醇、十六醇、十八醇分别作为有机固液相变材料,得到相应的导热增强有机复合定形相变材料,其他条件与实施例1一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。
实施例26-31
将赤藻糖醇四硬脂酸酯、半乳糖醇六棕榈酸酯、三硬脂酸甘油酯、三棕榈酸甘油酯、大豆油、橄榄油分别作为有机固液相变材料,DMF和水混合作为溶剂,制备的高分子溶液质量分数为1%,得到相应的导热增强有机复合定形相变材料,其他条件与实施例1一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。
实施例32-47
将氧化石墨烯、单臂碳纳米管、多壁碳纳米管、氮化硼、炭黑、膨胀石墨、纳米银、纳米铜、纳米金、铝、氧化铝、氧化铋、氧化镁、氧化锌、氮化铝、氮化铋分别作为导热增强剂,得到相应的导热增强有机复合定形相变材料,其他条件与实施例1一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。
实施例48-53
将导热增强剂的质量分数分别改为0.5%,2%,5%,8%和10%,得到相应的导热增强有机复合定形相变材料,其他条件与实施例1一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。
实施例54
将乙烯基吡啶作为配位高分子,硫酸锌作为配位金属离子化合物,35℃相变石蜡作为固液相变材料,乙烯基吡啶与相变石蜡质量比为8∶92,苯和甲苯混合作为溶剂,乙烯基吡啶在高分子溶液的质量分数为5%,得到相应的导热增强有机复合定形相变材料,其他条件与实施例1一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。
实施例55-62
将赤藻糖醇四棕榈酸酯、半乳糖醇六硬脂酸、三豆蔻酸甘油酯、硬脂酸丁酯、玉米油、花生油、菜籽油、蓖麻油作为固液相变材料,得到相应的导热增强有机复合定形相变材料,其他条件与实施例54一致。测定结果显示,制备得到的导热增强有机复合定形相变材料具有良好的定形效果。

Claims (10)

  1. 一种导热增强有机复合定形相变材料,其特征在于:所述复合定形相变材料由配位交联网络高分子、有机固液相变材料和导热增强剂组成,其中,按质量百分比,
    配位交联网络高分子:1~50%
    有机固液相变材料:40~98.9%
    导热增强剂:0.1~10%,
    其中,配位交联网络高分子由高分子化合物与金属离子配位络合而成。
  2. 根据权利要求1所述有机复合定形相变材料,其特征在于:所述高分子化合物为聚丙烯酸及其钠、钾或铵盐;聚马来酸及其钠、钾或铵盐;羧甲基纤维素及其钠、钾或铵盐;海藻酸钠、钾或铵盐;羧甲基淀粉及其钠、钾或铵盐;聚乙烯醇;聚乙烯吡咯烷酮;聚乙烯吡啶;丙烯酸-马来酸共聚物及其钠、钾或铵盐;丙烯酸-甲基丙烯酸共聚物及其钠、钾或铵盐;甲基丙烯酸-马来酸共聚物及其钠、钾或铵盐;上述高分子化合物的分子量为1000~9000000。
  3. 根据权利要求1所述有机复合定形相变材料,其特征在于:所述金属离子为钙离子、镁离子、二价铁离子、三价铁离子、锌离子、铝离子、二价铜离子、钡离子、三价铬离子、钴离子或银离子。
  4. 根据权利要求3所述有机复合定形相变材料,其特征在于:所述金属离子由金属离子化合物提供,所述金属离子化合物为钙离子、镁离子、二价铁离子、三价铁离子、锌离子、铝离子、二价铜离子、钡离子、三价铬离子、钴离子或银离子的氯化物、氧化物、硝酸化物、硫酸化物、醋酸化物,所述金属离子化合物与高分子化合物的质量比为1∶100~30∶100。
  5. 根据权利要求1所述有机复合定形相变材料,其特征在于:所述有机固液相变材料为石蜡、脂肪酸、脂肪醇、聚乙二醇、脂肪酸酯中的至少一种。
  6. 根据权利要求5所述有机复合定形相变材料,其特征在于所述石蜡为熔点在8~60℃的石蜡;所述脂肪酸为葵酸、十二酸、十四酸、十五酸、棕榈酸、硬脂酸中的一种、两种或三种;所述脂肪醇为十二醇、十四醇、十六醇、十八醇中的一种、两种或三种;所述聚乙二醇为分子量200~20000的聚乙二醇;所述油脂为赤藻糖醇四硬脂酸酯、赤藻糖醇四棕榈酸酯、半乳糖醇六棕榈酸酯、半乳糖醇六硬脂酸、三硬脂酸甘油酯、三棕榈酸甘油酯、三豆蔻酸甘油酯、硬脂酸丁酯、大豆油、玉米油、花生油、菜籽油、橄榄油、蓖麻油中的一种、两 种或三种。
  7. 根据权利要求1所述的有机复合定形相变材料,其特征在于,所述导热增强剂为石墨烯、氧化石墨烯、单臂碳纳米管、多壁碳纳米管、氮化硼、炭黑、膨胀石墨、纳米银、纳米铜、纳米金、铝、氧化铝、氧化铋、氧化镁、氧化锌、氮化铝、氮化铋中的1种,2种或三种。
  8. 权利要求1~7任一项所述的有机复合定形相变材料的制备方法,其特征在于:所述方法包括以下步骤:
    将高分子化合物与溶剂混合制备成均匀的溶液,其质量分数为1%~20%,将有机固液相变材料和导热增强剂加入到上述高分子溶液中,在20~80℃下搅拌1~10h,加入能够提供所述金属离子的金属离子化合物溶液,真空干燥24h,得到有机复合定形相变材料。
  9. 根据权利要求8所述的有机复合定形相变材料的制备方法,其特征在于:所述金属离子化合物为权利要求4所述金属离子的氯化物、氧化物、硝酸化物、硫酸化物、醋酸化物,其与高分子化合物的质量比为1∶100~30∶100。
  10. 根据权利要求8所述的有机复合定形相变材料的制备方法,其特征在于:所述溶剂为水、苯、甲苯、DMF、DMSO、四氢呋喃、甲醇、乙醇、丙酮中的一种或两种。
PCT/CN2018/090184 2017-11-28 2018-06-07 一种导热增强有机复合定形相变材料及其制备方法 WO2019104987A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/619,070 US11479701B2 (en) 2017-11-28 2018-06-07 Thermal conduction enhanced organic composite shape-stabilized phase change material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711215584.4 2017-11-28
CN201711215584 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019104987A1 true WO2019104987A1 (zh) 2019-06-06

Family

ID=62133538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090184 WO2019104987A1 (zh) 2017-11-28 2018-06-07 一种导热增强有机复合定形相变材料及其制备方法

Country Status (3)

Country Link
US (1) US11479701B2 (zh)
CN (1) CN108048045B (zh)
WO (1) WO2019104987A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964486A (zh) * 2019-11-05 2020-04-07 南通大学 烷基胺功能化石墨烯/石蜡定形相变材料及其制备方法
CN113292864A (zh) * 2021-06-16 2021-08-24 辽宁东科新材料有限公司 一种石墨烯橡胶防护蜡
CN113372809A (zh) * 2021-04-23 2021-09-10 浙江工商大学 一种智能保温涂料及其制备和应用
CN113403038A (zh) * 2021-06-15 2021-09-17 山东理工大学 基于秸秆废弃物的复合相变储能材料的制备方法
CN113684006A (zh) * 2021-07-29 2021-11-23 东南大学 固液两相金属-高分子导热相变复合材料的制备方法
CN115322471A (zh) * 2022-07-28 2022-11-11 江苏中利集团股份有限公司 一种液冷电缆用高导热冷却管材料及其制备方法
CN115678499A (zh) * 2022-10-28 2023-02-03 北京理工大学 一种柔性可附形热管理/电磁屏蔽复合材料及其制备方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350018A (zh) * 2016-07-29 2017-01-25 上海应用技术学院 一种具有热敷功能的无水微波加热储能微胶囊及制备方法
CN108102613A (zh) * 2017-11-28 2018-06-01 大连理工大学 一种防霉变有机复合定形相变材料及其制备方法
CN108822803A (zh) * 2018-05-22 2018-11-16 北京科技大学 一种33-35℃的有机-无机复合定形相变材料及制备方法
CN108531140B (zh) * 2018-05-31 2020-02-14 华中科技大学 一种石蜡基定型相变板的制备方法
CN108754661A (zh) * 2018-07-13 2018-11-06 桂林电子科技大学 一种复合相变纳米纤维材料及其制备方法
CN109253510A (zh) * 2018-08-03 2019-01-22 西安交通大学 一种空气能窗式冷风机
CN109021932A (zh) * 2018-08-30 2018-12-18 桂林电子科技大学 氧化石墨烯/银粒子复合强化的石蜡型相变储能材料及其制备方法
CN109282195B (zh) * 2018-10-24 2021-07-23 明朔(北京)电子科技有限公司 一种照明散热器及应用其的照明组件
CN109370535A (zh) * 2018-11-22 2019-02-22 同济大学 一种淀粉膨胀石墨相变复合材料及其制备方法
CN109700072B (zh) * 2018-12-24 2020-08-28 中国科学技术大学 一种可调控卷烟滤嘴温度的生物降解型复合滤嘴材料及其制备方法
CN109679588B (zh) * 2018-12-26 2021-04-27 中科院广州化学有限公司南雄材料生产基地 一种可控溶胶凝胶法制备聚乙二醇相变导热复合材料的方法和应用
CN110157384A (zh) * 2019-04-30 2019-08-23 国电南瑞科技股份有限公司 一种高导热抗氧化复合相变储热材料及其制备方法
CN110205100B (zh) * 2019-05-16 2021-02-02 同济大学 氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法
CN112094625A (zh) * 2019-06-17 2020-12-18 中国科学院深圳先进技术研究院 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
CN110698597B (zh) * 2019-10-14 2022-07-12 天津工业大学 一种gn@纤维素基固-固相变材料及其制备方法和应用
CN111423857A (zh) * 2020-03-02 2020-07-17 南通大学 马来酸酐共聚物/脂肪酸交联的固-固相变材料及制备方法
CN111269698A (zh) * 2020-03-02 2020-06-12 南通大学 丙烯酸类聚合物/脂肪酸交联的固-固相变材料及制备方法
CN111718573B (zh) * 2020-07-09 2022-10-11 江苏省特种设备安全监督检验研究院 一种石墨烯共混改性相变发泡保温材料及制备方法
CN112778979B (zh) * 2021-01-07 2021-10-26 华中科技大学 一种高导热聚合物定型复合相变材料及其制备方法
CN115678244A (zh) * 2021-03-19 2023-02-03 上海万泽精密铸造有限公司 碳纤维聚乙二醇相变复合材料的制备方法
CN113174238B (zh) * 2021-04-13 2021-11-16 深圳市康吸科技有限公司 一种快速降低电子烟烟气温度的复合相变材料及其制备方法、电子烟
CN113462290B (zh) * 2021-05-29 2022-08-19 山东交通学院 路用低冰点涂层材料及其制备方法
CN113292863A (zh) * 2021-06-09 2021-08-24 中国人民解放军国防科技大学 一种瞬态复合材料及其制备方法、应用
WO2023012992A1 (ja) * 2021-08-05 2023-02-09 パナソニックホールディングス株式会社 蓄冷材およびクーラーボックス
CN113880997B (zh) * 2021-08-20 2022-05-17 华南农业大学 一种热塑性聚乙二醇基相变储能材料及其制备方法和应用
CN114032077B (zh) * 2021-12-02 2024-07-23 郑州轻工业大学 一种新型绿色长效燃料电池防冻冷却液及其制备方法
CN114686179A (zh) * 2021-12-27 2022-07-01 江苏金合能源科技有限公司 一种半定型复合有机相变材料及其制备方法
CN114685088A (zh) * 2022-03-31 2022-07-01 北京工业大学 一种道路用复合相变微胶囊制备方法
CN114685087B (zh) * 2022-03-31 2022-11-25 北京工业大学 一种沥青路面用双相变自调温材料及使用方法
CN114774084B (zh) * 2022-04-02 2024-08-06 广东工业大学 一种光热定型相变储能复合材料及其制备方法
CN114940889B (zh) * 2022-05-25 2023-04-14 大连理工大学 一种具有温敏导电特性的复合相变储能材料及其制备方法与应用
CN115637136A (zh) * 2022-08-24 2023-01-24 深圳市欧普特工业材料有限公司 一种高导热定型相变材料及其制备方法
CN115433530A (zh) * 2022-09-06 2022-12-06 广东嘉拓新能源科技有限公司 一种粘贴式柔性电池散热片及其制备方法和电池模组
CN115678512B (zh) * 2022-10-12 2024-04-05 西北农林科技大学 一种适用于喜温作物加温的cmc相变水凝胶及其制备方法
CN116119955B (zh) * 2023-02-08 2024-07-30 哈尔滨工业大学 一种面向建筑的相变储能微球的制备方法
CN118344847A (zh) * 2024-01-23 2024-07-16 中国科学院青岛生物能源与过程研究所 一种脂肪酸/十六醇复合相变材料及其制备方法
CN118580840B (zh) * 2024-08-06 2024-10-25 西安理工大学 导热增强防泄漏聚乙二醇复合相变材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470917A (en) * 1982-02-23 1984-09-11 Allied Colloids Limited Thermal energy storage compositions
CN101724381A (zh) * 2009-12-22 2010-06-09 中国科学技术大学 一种高导热性定形相变储能材料及其制备方法
CN104910868A (zh) * 2015-05-07 2015-09-16 大连理工大学 有机定形相变储能材料及其制备方法
CN105289436A (zh) * 2015-10-15 2016-02-03 顺德职业技术学院 无机杂化纳米相变储能胶囊的制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10303334A1 (de) * 2003-01-29 2004-08-12 Cognis Deutschland Gmbh & Co. Kg Zusammensetzung zur kontrollierten Temperierung durch Phasenwechsel, deren Herstellung und Verwendung
JP2010523308A (ja) * 2007-04-05 2010-07-15 ビーエーエスエフ ソシエタス・ヨーロピア 有機金属骨格材料を含む混合物並びに潜熱蓄熱装置
CN101050354A (zh) * 2007-05-11 2007-10-10 华南理工大学 相变储能微囊及其制备方法与装置
EP2731911A4 (en) * 2011-07-12 2016-03-02 Univ Michigan State POROUS SOL-GELE AND METHOD AND STRUCTURES THEREFOR
CN103752239B (zh) * 2014-02-11 2016-04-20 北京科技大学 一种金属有机骨架包覆相变材料微胶囊的制备方法
CN103756646B (zh) * 2014-02-11 2017-01-04 北京科技大学 一种金属有机骨架基复合相变材料的制备方法
EP3122335B1 (en) * 2014-03-26 2022-02-16 Cold Chain Technologies, LLC Method of preparing a gel comprising a phase-change material
CN104178845B (zh) * 2014-08-14 2016-05-18 青岛大学 一种碳基纳米粒子海藻酸钠多功能高性能复合纤维及其制备方法
WO2016070012A1 (en) * 2014-10-30 2016-05-06 Henry Company, Llc Phase-change materials from wax-based colloidal dispersions and their process of making
CN104371827B (zh) * 2014-11-10 2017-07-25 天津工业大学 一种大胶囊组装物及其制备方法
US10059865B2 (en) * 2014-12-11 2018-08-28 Henry Company, Llc Phase-change materials from wax-based colloidal dispersions and their process of making
CN104745149B (zh) * 2015-03-05 2018-02-09 北京科技大学 一种含碳材料金属有机骨架基复合相变材料的制备方法
CN104710965A (zh) * 2015-04-02 2015-06-17 北京科技大学 一种多级孔道碳基复合相变材料的制备方法
CN104893673A (zh) * 2015-05-25 2015-09-09 北京科技大学 一种超分子凝胶基复合相变材料的制备方法
CN105670569B (zh) * 2016-01-06 2018-08-24 山西大学 一种相变复合微胶囊水凝胶及其物理退热贴
US10221323B2 (en) * 2016-07-11 2019-03-05 Microtek Laboratories, Inc. Microcapsules having dual reagents separated by the capsule wall and methods for making same
CN106957634B (zh) * 2017-03-03 2020-04-28 北京科技大学 一种石墨烯介孔碳基复合相变材料的制备方法
WO2018166465A1 (zh) * 2017-03-15 2018-09-20 大连理工大学 一种喷墨打印制备大面积结构生色图案的方法及基于结构色变化的防伪方法
CN107267124B (zh) * 2017-07-03 2020-05-15 中山大学 一种含Ni/Fe双金属的MOFs含氮石墨化碳材料
JP7117739B2 (ja) * 2017-09-01 2022-08-15 シャープ株式会社 吸湿材
CN109852349B (zh) * 2018-12-09 2020-07-14 大连理工大学 一种光-热能量转换和热能存储定形相变复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470917A (en) * 1982-02-23 1984-09-11 Allied Colloids Limited Thermal energy storage compositions
CN101724381A (zh) * 2009-12-22 2010-06-09 中国科学技术大学 一种高导热性定形相变储能材料及其制备方法
CN104910868A (zh) * 2015-05-07 2015-09-16 大连理工大学 有机定形相变储能材料及其制备方法
CN105289436A (zh) * 2015-10-15 2016-02-03 顺德职业技术学院 无机杂化纳米相变储能胶囊的制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964486A (zh) * 2019-11-05 2020-04-07 南通大学 烷基胺功能化石墨烯/石蜡定形相变材料及其制备方法
CN113372809A (zh) * 2021-04-23 2021-09-10 浙江工商大学 一种智能保温涂料及其制备和应用
CN113403038A (zh) * 2021-06-15 2021-09-17 山东理工大学 基于秸秆废弃物的复合相变储能材料的制备方法
WO2022262305A1 (zh) * 2021-06-15 2022-12-22 山东理工大学 基于秸秆废弃物的复合相变储能材料的制备方法
CN113292864A (zh) * 2021-06-16 2021-08-24 辽宁东科新材料有限公司 一种石墨烯橡胶防护蜡
CN113292864B (zh) * 2021-06-16 2022-03-29 辽宁东科新材料有限公司 一种石墨烯橡胶防护蜡
CN113684006A (zh) * 2021-07-29 2021-11-23 东南大学 固液两相金属-高分子导热相变复合材料的制备方法
CN115322471A (zh) * 2022-07-28 2022-11-11 江苏中利集团股份有限公司 一种液冷电缆用高导热冷却管材料及其制备方法
CN115322471B (zh) * 2022-07-28 2023-12-01 江苏中利集团股份有限公司 一种液冷电缆用高导热冷却管材料及其制备方法
CN115678499A (zh) * 2022-10-28 2023-02-03 北京理工大学 一种柔性可附形热管理/电磁屏蔽复合材料及其制备方法

Also Published As

Publication number Publication date
CN108048045A (zh) 2018-05-18
US20200095489A1 (en) 2020-03-26
CN108048045B (zh) 2021-02-26
US11479701B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2019104987A1 (zh) 一种导热增强有机复合定形相变材料及其制备方法
Liu et al. Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest
CN108102614B (zh) 一种有机复合定形相变材料及其制备方法
Zeng et al. Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials
Zeng et al. Myristic acid/polyaniline composites as form stable phase change materials for thermal energy storage
Mao et al. Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material
Bing et al. Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion
Ao et al. Stearic acid/expanded graphite composite phase change material with high thermal conductivity for thermal energy storage
CN101805591A (zh) 一种无机水合盐膨胀石墨复合相变储热材料及制备方法
CN108997977A (zh) 一种导热增强有机相变储能材料及其制备方法
CN112574718B (zh) 一种中低温用水合盐/改性膨胀石墨定型相变蓄热材料及其制备方法
CN110066642B (zh) 相变温度89±7℃的相变储能材料及其制备方法
Hekimoğlu et al. Activated carbon/expanded graphite hybrid structure for development of nonadecane based composite PCM with excellent shape stability, enhanced thermal conductivity and heat charging-discharging performance
CN104845592A (zh) 一种高导热中温定形相变材料及其制备方法
CN114410279B (zh) 一种金属有机骨架衍生碳基光热相变储能材料及其制备方法和应用
Wang et al. An experimental study in full spectra of solar-driven magnesium nitrate hexahydrate/graphene composite phase change materials for solar thermal storage applications
CN106190041B (zh) 一种3d多孔碳骨架基复合相变材料的制备方法
CN103146351B (zh) 一种高导热定形相变材料及其制备方法
CN104559936A (zh) 一种中温用相变蓄热材料及其制备方法
CN109722215A (zh) 一种吸热灌封胶及其电池
CN104893672A (zh) 高密度聚乙烯/石蜡复合相变材料及其制备方法
CN108997975A (zh) 一种导热增强MOFs相变储能材料及其制备方法
CN108531139B (zh) 一种成型烧结碳为载体的定形相变材料及其制备方法
CN114231256B (zh) 一种磁性高石墨化碳基光热复合相变材料及其应用
Ao et al. Design of a stearic acid/boron nitride/expanded graphite multifiller synergistic composite phase change material for thermal energy storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884010

Country of ref document: EP

Kind code of ref document: A1