CN110205100B - 氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法 - Google Patents

氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法 Download PDF

Info

Publication number
CN110205100B
CN110205100B CN201910410115.0A CN201910410115A CN110205100B CN 110205100 B CN110205100 B CN 110205100B CN 201910410115 A CN201910410115 A CN 201910410115A CN 110205100 B CN110205100 B CN 110205100B
Authority
CN
China
Prior art keywords
rgo
mixed
aerogel
composite material
paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910410115.0A
Other languages
English (en)
Other versions
CN110205100A (zh
Inventor
张东
任婉婉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201910410115.0A priority Critical patent/CN110205100B/zh
Publication of CN110205100A publication Critical patent/CN110205100A/zh
Application granted granted Critical
Publication of CN110205100B publication Critical patent/CN110205100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法,将氧化石墨烯溶液与膨胀石墨混合形成均匀的分散液,分散液经过反应,制备成具有三维(3D)结构的rGO/EG混合水凝胶;将rGO/EG混合水凝胶在冻干机中冷冻获得rGO/EG混合气凝胶;将石蜡熔化后浸渍到rGO/EG混合气凝胶中,待石蜡凝固后,得到rGO/EG混合气凝胶相变复合材料。与现有技术相比,本发明制备得到的相变复合材料具有优良的导热性能、较高的储热性、结构稳定性。

Description

氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法
技术领域
本发明涉及储能以及能源转变技术领域,具体涉及一种基于还原氧化石墨烯/膨胀石墨混合气凝胶相变复合材料及其制备方法。
背景技术
能源问题是21世纪人类面临的重大问题,人类生产生活的每个方面都离不开能源。同时,随着世界经济的快速发展,人类对能源的需求越来越高。而地球上的能源是有限的,所以蓄热节能材料对能源的合理利用和节约就显得越来越有实际意义。热能存储系统的出现,不仅有利于减少对化石燃料的依赖,而且有助于能源的高效和良性地使用。在该系统里,热能可以以显热和潜热的方式进行存储。相比于显热存储,潜热存储所需要的材料相对体积更小。因此潜热储能受到了更多的关注。潜热储热又称相变储热。相变材料在相变过程中能吸收和释放大量的相变潜热,被广泛应用于热能存储和温度控制领域。按物质属性的不同,相变材料可分为无机相变材料和有机相变材料。有机相变材料具有高相变潜热、过冷度小、无相分离等优点,得到广泛的应用,但有机相变材料存在热导率小和易泄漏等问题。如今已经提出了不同的解决方案来克服这些问题。
针对相变材料的热导率低的问题,最为广泛的解决方法为增加热导材料。例如金属粉末、碳材料或者无机非金属材料。但是,引入大量的热导材料和功能性填料必然会降低有机相变材料的储能密度。为了降低热导材料质量分数,使用一些低密度,高导热率的纳米级材料,如石墨烯泡沫。另外,制备三维导热网络结构,将相变材料浸入到导热网络中,亦可以有效的提高相变材料的导热性能。针对相变材料泄露问题,目前解决办法多为制备相变材料微胶囊。微胶囊将相变材料封装,防止相变材料的泄露。张东等利用氧化石墨烯作为囊壁,将石蜡相变材料稳定的包覆在微胶囊复合材料中。将相变材料以微胶囊的形式与热导率高的多孔材料复合,对相变材料进一步封装同时也可达到提高相变材料热导率的目的。但是该种做法目前仍然存在不少技术问题,首先,制备工艺的复杂性以及微胶囊壳壁脆弱性会导致相变过程可能会发生泄露。其次,其他材料微胶囊壳壁材料多为有机高分子材料,对环保不友好等等。都限制微胶囊相变复合材料的发展。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法。
本发明的目的可以通过以下技术方案来实现:
氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,包括:
将氧化石墨烯溶液与膨胀石墨混合形成均匀的分散液,分散液经过反应,制备成具有三维(3D)结构的rGO/EG混合水凝胶;
将rGO/EG混合水凝胶在冻干机中冷冻获得rGO/EG混合气凝胶;
将石蜡熔化后浸渍到rGO/EG混合气凝胶中,待石蜡凝固后,得到rGO/EG混合气凝胶相变复合材料。
根据改进的Hummers方法,通过氧化天然石墨粉末制备氧化石墨烯(GO)。
所述氧化石墨烯与膨胀石墨的质量比为4:1-1:4,优选采用4:1、3:2、2:3和1:4。
所述分散液置于高温反应釜中,在150-200℃真空干燥箱中,保持15-20h,获得rGO/EG混合水凝胶。
所述rGO/EG混合水凝胶在冻干机中控制温度为-70℃~0℃冻干处理40-60h。
上述真空干燥温度、冻干温度、时间等工艺参数对制备得到三维(3D)结构的rGO/EG混合水凝胶以及三维(3D)结构的rGO/EG混合气凝胶有重要的影响。首先,分散液在高温反应釜中,获得rGO/EG混合水凝胶。高温反应过程主要是GO之间交联发生化学反应的过程。研究表明GO发生化学反应的最合理温度为150-200℃,若不控制高温反应时间,则GO交联反应不完全,还原度不能达到制备完整的rGO/EG混合水凝胶。其次,rGO/EG混合水凝胶中大量的水分占据很大的质量,必须把水分去除,正是水分去除后留下的空间提供了rGO/EG混合气凝胶的三位多空结构。本发明采用真空升华的方法将水分去除,只有将冻干温度以及冻干时间设定特定的范围才能充分去除水分,从而形成所需的均匀多孔结构。
将石蜡置于70-100℃水浴锅中完全熔化。
将rGO/EG混合气凝胶切成厚度为2~8cm的圆饼,放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。
利用该方法制备得到的氧化石墨烯/膨胀石墨气凝胶相变复合材料,具有3D网络显微结构,该结构对于改善热性能是极其重要的。在3D网络显微结构中,rGO片层之间的EG颗粒可以减少或消除内部接触热阻。rGO/EG混合气凝胶相变复合材料具有较高导热率(0.69W·m-1·K-1),与纯石蜡相比增加了250%。EG颗粒中的孔以及rGO的显微片层,具有巨大的孔隙空间和表面积,可以大量吸收石蜡,使得rGO/EG混合气凝胶相变复合材料中的石蜡含量大大提高,石蜡含量约为90%-98%。此外,GO结构中的含氧官能团促进了石蜡的非均相结晶,这增加了石蜡的相变潜热。rGO/EG混合气凝胶相变复合材料中石蜡的潜热随着GO的质量比而增加。因此rGO/EG混合气凝胶相变复合材料的潜热得以大大提高。3D网络结构使得rGO/EG气凝胶成为稳定的骨架,即使在石蜡含量很高并且潜热很大的情况下,仍然保持复合相变材料的形状稳定性。因此,本发明制备的rGO/EG气凝胶复合相变材料具有优良的导热性能、较高的储热性、结构稳定性。
本发明制备的氧化石墨烯/膨胀石墨气凝胶相变复合材料具有制备工艺简单、有效防止相变材料泄露以及等绿色环保优点,有望用于建筑、能源储存等方面。
附图说明
图1为rGO/EG混合水凝胶的形貌图;
图2为rGO/EG混合气凝胶的形貌图;
图3为rGO/EG混合气凝胶相变复合材料的形貌图;
图4为rGO/EG混合气凝胶SEM图;
图5为rGO/EG混合气凝胶相变复合材料的SEM图;
图6为石蜡,rGO/EG气凝胶和rGO/EG混合气凝胶相变复合材料的红外光谱图;
图7为纯石蜡与rGO/EG混合气凝胶相变复合材料的导热率图;
图8为rGO/EG混合气凝胶相变复合材料的热网络红外图与表面温度分布图;
图9为石蜡和rGO/EG混合气凝胶相变复合材料的形状稳定性图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,包括:
根据改进的Hummers方法,通过氧化天然石墨粉末制备氧化石墨烯(GO),将氧化石墨烯溶液与膨胀石墨的质量比为4:1-1:4混合形成均匀的分散液,分散液置于高温反应釜中,在150-200℃真空干燥箱中,保持15-20h,制备成具有三维(3D)结构的rGO/EG混合水凝胶;
将rGO/EG混合水凝胶在冻干机中,控制温度为-70℃~0℃冻干处理40-60h,冷冻获得rGO/EG混合气凝胶;
将石蜡置于70-100℃水浴锅中完全熔化,将rGO/EG混合气凝胶切成厚度为2~8cm的圆饼,放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。
以下是更加详细的实施案例,通过以下实施案例进一步说明本发明的技术方案以及所能够获得的技术效果。
实施例1
称取40mL浓度为8mg·mL-1的GO溶液于烧杯中,搅拌30min。
称取0.48g的EG于GO溶液中,搅拌30min,形成均匀分散液。
将GO/EG分散液转移到聚四氟乙烯衬底的高温反应釜中,将反应釜置于180℃真空干燥箱中,保持18h,获得rGO/EG混合水凝胶(如图1)。
将rGO/EG混合水凝胶置于冻干机中,冻干48h,获得rGO/EG混合气凝胶(如图2)。
将rGO/EG混合气凝胶切成厚度为3cm左右的小圆饼,将过量石蜡置于90℃水浴锅中完全熔化。把切好的圆饼状rGO/EG混合气凝胶放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料(如图3)。
实施例2
称取40mL浓度为10mg·mL-1的GO溶液于烧杯中,搅拌30min。
称取0.6g的EG于GO溶液中,搅拌30min,形成均匀分散液。
将GO/EG分散液转移到聚四氟乙烯衬底的高温反应釜中,将反应釜置于180℃真空干燥箱中,保持18h,获得rGO/EG混合水凝胶。
将rGO/EG混合水凝胶置于冻干机中,冻干48h,获得rGO/EG混合气凝胶。扫描电镜观察的显微形貌如图4所示。图4可以看出EG均匀分散在气凝胶中,气凝胶中的rGO呈现出弯曲的片层状。EG附着在rGO片上,EG中的开放孔和rGO片的高活性表面使石蜡易于吸附在rGO/EG混合气凝胶中。另外,由EG和rGO片层桥接形成3D互连的结构,形成3D导热通路,可以极大提高混合气凝胶相变复合材料的热导率。
将rGO/EG混合气凝胶切成厚度为3cm左右的小圆饼,将过量石蜡置于90℃水浴锅中完全熔化。把切好的圆饼状rGO/EG混合气凝胶放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。扫描电镜观察的显微形貌如图5所示。图5可以看出rGO/EG气凝胶完全由石蜡包裹,这使得石墨烯片的粗糙表面和尖锐边缘以及EG的孔平滑。石蜡吸附在rGO/EG气凝胶的表面和内部结构中,但rGO/EG气凝胶仍然可以保持其结构。
实施例3
称取40mL浓度为10mg·mL-1的GO溶液于烧杯中,搅拌30min。
称取1.6g的EG于GO溶液中,搅拌30min,形成均匀分散液。
将GO/EG分散液转移到聚四氟乙烯衬底的高温反应釜中,将反应釜置于180℃真空干燥箱中,保持18h,获得rGO/EG混合水凝胶。
将rGO/EG混合水凝胶置于冻干机中,冻干48h,获得rGO/EG混合气凝胶。
将rGO/EG混合气凝胶切成厚度为3cm左右的小圆饼,将过量石蜡置于90℃水浴锅中完全熔化。把切好的圆饼状rGO/EG混合气凝胶放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。傅里叶红外仪测试的rGO/EG混合气凝胶、纯石蜡和rGO/EG混合气凝胶相变复合材料化学结构如图6所示。图6可以看出石蜡的主要吸收峰分别位于1467cm-1和721cm-1,对应着-CH2和-CH3基团的振动。在rGO/EG混合气凝胶相变复合材料中观察到石蜡和rGO/EG气凝胶的红外光谱图中的主峰,且没有显著的峰位移,表明石蜡和rGO/EG气凝胶之间没有化学键合。
实施例4
称取40mL浓度为12mg·mL-1的GO溶液于烧杯中,搅拌30min。
称取1.92g的EG于GO溶液中,搅拌30min,形成均匀分散液。
将GO/EG分散液转移到聚四氟乙烯衬底的高温反应釜中,将反应釜置于180℃真空干燥箱中,保持18h,获得rGO/EG混合水凝胶。
将rGO/EG混合水凝胶置于冻干机中,冻干48h,获得rGO/EG混合气凝胶。
将rGO/EG混合气凝胶切成厚度为3cm左右的小圆饼,将过量石蜡置于90℃水浴锅中完全熔化。把切好的圆饼状rGO/EG混合气凝胶放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。测得的纯石蜡与rGO/EG混合气凝胶相变复合材料的导热率如图7。图7结果表明rGO/EG混合气凝胶相变复合材料的导热率增加,纯石蜡的热导率为0.2W·m-1·K-1,复合相变材料的热导率为0.69W·m-1·K-1,约为纯石蜡的3.5倍。利用红外热像仪观察的rGO/EG混合气凝胶相变复合材料热网络图和表面温度分布图如图8所示。红外图像8清楚地显示了复合复合材料的导热网络。图像中的不同颜色(图8A)表示复合相变在加热时表面上的温度分布。图8B中表示温度变化曲线,异质温度分布归因于复合相变材料的网络化导热路径。对纯石蜡与rGO/EG混合气凝胶相变复合材料进行泄露检测,结果如图9所示。从图9可以看出,温度加热至51℃时,纯石蜡表现出明显的液体渗漏,而rGO/EG混合气凝胶相变复合材料中石蜡的质量比为94%,仍然保持完整,没有任何渗漏。随着温度进一步升高到63℃,纯石蜡完全熔化成液体。而rGO/EG混合气凝胶相变复合材料的表面似乎仅具有一点湿润。因此,rGO/EG气凝胶比例很小、石蜡含很高的情况下,rGO/EG混合气凝胶相变复合材料中的三维网络结构和孔隙依然可防止熔融石蜡扩散。rGO/EG气凝胶赋予了混合气凝胶相变复合材料良好的形状稳定性。
实施例5
氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,包括:
根据改进的Hummers方法,通过氧化天然石墨粉末制备氧化石墨烯(GO);
将氧化石墨烯溶液与膨胀石墨的质量比为4:1混合形成均匀的分散液,分散液置于高温反应釜中,在150℃真空干燥箱中,保持20h,制备成具有三维(3D)结构的rGO/EG混合水凝胶;
将rGO/EG混合水凝胶在冻干机中,控制温度为-70℃冻干处理40h,冷冻获得rGO/EG混合气凝胶;
将石蜡置于70℃水浴锅中完全熔化,将rGO/EG混合气凝胶切成厚度为2cm的圆饼,放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。
实施例6
氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,包括:
根据改进的Hummers方法,通过氧化天然石墨粉末制备氧化石墨烯(GO);
将氧化石墨烯溶液与膨胀石墨的质量比为3:2混合形成均匀的分散液,分散液置于高温反应釜中,在160℃真空干燥箱中,保持18h,制备成具有三维(3D)结构的rGO/EG混合水凝胶;
将rGO/EG混合水凝胶在冻干机中,控制温度为-50℃冻干处理50h,冷冻获得rGO/EG混合气凝胶;
将石蜡置于80℃水浴锅中完全熔化,将rGO/EG混合气凝胶切成厚度为6cm的圆饼,放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。
实施例7
氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,包括:
根据改进的Hummers方法,通过氧化天然石墨粉末制备氧化石墨烯(GO);
将氧化石墨烯溶液与膨胀石墨的质量比为2:3混合形成均匀的分散液,分散液置于高温反应釜中,在180℃真空干燥箱中,保持18h,制备成具有三维(3D)结构的rGO/EG混合水凝胶;
将rGO/EG混合水凝胶在冻干机中,控制温度为-20℃冻干处理50h,冷冻获得rGO/EG混合气凝胶;
将石蜡置于80℃水浴锅中完全熔化,将rGO/EG混合气凝胶切成厚度为8cm的圆饼,放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。
实施例8
氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,包括:
根据改进的Hummers方法,通过氧化天然石墨粉末制备氧化石墨烯(GO);
将氧化石墨烯溶液与膨胀石墨的质量比为1:4混合形成均匀的分散液,分散液置于高温反应釜中,在200℃真空干燥箱中,保持15h,制备成具有三维(3D)结构的rGO/EG混合水凝胶;
将rGO/EG混合水凝胶在冻干机中,控制温度为0℃冻干处理60h,冷冻获得rGO/EG混合气凝胶;
将石蜡置于100℃水浴锅中完全熔化,将rGO/EG混合气凝胶切成厚度为3cm的圆饼,放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (7)

1.氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,其特征在于,该方法包括:
将氧化石墨烯溶液与膨胀石墨混合形成均匀的分散液,分散液经过反应制备成具有三维(3D)结构的rGO/EG混合水凝胶;所述的反应温度为150-200℃,时间为15-20h;
将rGO/EG混合水凝胶在冻干机中冷冻获得rGO/EG混合气凝胶;所述的冷冻温度为-70~0℃,时间为40-60h;
将石蜡熔化后浸渍到rGO/EG混合气凝胶中,待石蜡凝固后,得到rGO/EG混合气凝胶相变复合材料。
2.根据权利要求1所述的氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,其特征在于,所述氧化石墨烯与膨胀石墨的质量比为4:1-1:4。
3.根据权利要求1所述的氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,其特征在于,所述分散液置于高温反应釜中,在150-200℃真空干燥箱中,保持15-20h,获得rGO/EG混合水凝胶。
4.根据权利要求1所述的氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,其特征在于,所述rGO/EG混合水凝胶在冻干机中控制温度为-70℃~0℃冻干处理40-60h。
5.根据权利要求1所述的氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,其特征在于,将石蜡置于70-100℃水浴锅中完全熔化。
6.根据权利要求1或5所述的氧化石墨烯/膨胀石墨气凝胶相变复合材料的制备方法,其特征在于,将rGO/EG混合气凝胶切成厚度为2~8cm的圆饼,放入完全熔化的石蜡中,rGO/EG混合气凝胶迅速吸附石蜡,待石蜡吸附至饱和,取出,自然冷却,获得rGO/EG混合气凝胶相变复合材料。
7.如权利要求1-6中任一项方法制备得到的氧化石墨烯/膨胀石墨气凝胶相变复合材料。
CN201910410115.0A 2019-05-16 2019-05-16 氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法 Active CN110205100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910410115.0A CN110205100B (zh) 2019-05-16 2019-05-16 氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910410115.0A CN110205100B (zh) 2019-05-16 2019-05-16 氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110205100A CN110205100A (zh) 2019-09-06
CN110205100B true CN110205100B (zh) 2021-02-02

Family

ID=67787311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910410115.0A Active CN110205100B (zh) 2019-05-16 2019-05-16 氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110205100B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872489A (zh) * 2019-12-03 2020-03-10 张立强 相变热熔胶及其制备方法
CN111072318B (zh) * 2019-12-22 2021-09-03 同济大学 一种具有取向导热特性的石墨烯气凝胶相变复合材料及其制备方法
CN111849423A (zh) * 2020-07-29 2020-10-30 同济大学 一种离子交联的混杂石墨烯气凝胶相变复合材料及其制备
CN111799529B (zh) * 2020-09-10 2021-01-29 北京航空航天大学 一种基于高热导率相变材料的电池热管理系统及管理方法
CN116463146A (zh) * 2022-01-12 2023-07-21 中昊晨光化工研究院有限公司 一种聚合物生产用石蜡循环装置系统和石蜡循环工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502060B (zh) * 2013-11-29 2015-10-01 Nat Inst Chung Shan Science & Technology Composite nano - graphite thermal phase change material
CN104745149B (zh) * 2015-03-05 2018-02-09 北京科技大学 一种含碳材料金属有机骨架基复合相变材料的制备方法
CN105016731B (zh) * 2015-07-09 2017-03-08 天津大学 一种膨胀石墨和石墨烯复合材料及制备方法
CN105505330B (zh) * 2016-01-25 2019-02-22 浙江碳谷上希材料科技有限公司 一种基于石墨烯的三维相变材料及其制备方法
WO2017173176A1 (en) * 2016-04-01 2017-10-05 Entropy Solutions Llc Microencapsulated composite phase change materials
CN106634855A (zh) * 2016-10-28 2017-05-10 同济大学 一种混杂石墨烯凝胶/相变导热复合材料的制备方法
CN108048045B (zh) * 2017-11-28 2021-02-26 大连理工大学 一种导热增强有机复合定形相变材料及其制备方法
CN108285778B (zh) * 2018-01-25 2020-08-11 广东工业大学 一种高导热性能石蜡复合相变材料及其制备方法

Also Published As

Publication number Publication date
CN110205100A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN110205100B (zh) 氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法
CN109385254B (zh) 一种石墨烯弹性聚合物相变复合材料及其制备方法
Li et al. Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer
Mehrali et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite
Wang et al. Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries
Zhu et al. Lightweight mesoporous carbon fibers with interconnected graphitic walls for supports of form-stable phase change materials with enhanced thermal conductivity
CN107311152B (zh) 石墨烯气凝胶、其制备方法及应用
WO2020253094A1 (zh) 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
US11661347B2 (en) Preparation of graphene oxide aerogel beads and applications thereof
CN111072318B (zh) 一种具有取向导热特性的石墨烯气凝胶相变复合材料及其制备方法
CN110217774B (zh) 一种淀粉基中空碳微球材料及其制备方法和储热应用
CN106634855A (zh) 一种混杂石墨烯凝胶/相变导热复合材料的制备方法
CN105293452A (zh) 三维结构氮化硼及其制备方法和应用
US9855541B2 (en) Method for fabricating three-dimensional network structure material
CN107706000B (zh) 花球状氧化镍/聚吡咯/石墨烯复合材料及其制备方法
CN113403039B (zh) 一种多功能相变储能复合材料及其制备方法
Feng et al. Aligned channel Gelatin@ nanoGraphite aerogel supported form-stable phase change materials for solar-thermal energy conversion and storage
CN109929518A (zh) 一种氧化石墨烯气凝胶热化学储热复合材料及其制备方法
CN107469789A (zh) 一种放射状多级孔结构的石墨烯/氢氧化镍/聚合物复合微球及其制备方法和应用
Wang et al. Scaphium scaphigerum/graphene hybrid aerogel for composite phase change material with high phase change enthalpy and high thermal conductivity for energy storage
CN113150746A (zh) 一种氮化硼/豌豆粉双导热基碳气凝胶及其制备方法和应用
CN111849423A (zh) 一种离子交联的混杂石墨烯气凝胶相变复合材料及其制备
Huang et al. High enthalpy efficiency lignin-polyimide porous hybrid aerogel composite phase change material with flame retardancy for superior solar-to-thermal energy conversion and storage
Weng et al. Intrinsically lighting absorptive PANI/MXene aerogel encapsulated PEG to construct PCMs with efficient photothermal energy storage and stable reusability
Lu et al. Preparation and characterization of an expanded perlite/paraffin/graphene oxide composite with enhanced thermal conductivity and leakage-bearing properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant