WO2019098035A1 - 光検出素子およびその製造方法 - Google Patents

光検出素子およびその製造方法 Download PDF

Info

Publication number
WO2019098035A1
WO2019098035A1 PCT/JP2018/040660 JP2018040660W WO2019098035A1 WO 2019098035 A1 WO2019098035 A1 WO 2019098035A1 JP 2018040660 W JP2018040660 W JP 2018040660W WO 2019098035 A1 WO2019098035 A1 WO 2019098035A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type
substrate
conductivity type
detection element
Prior art date
Application number
PCT/JP2018/040660
Other languages
English (en)
French (fr)
Inventor
悠介 大竹
壽史 若野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201880004653.3A priority Critical patent/CN110050348B/zh
Priority to DE112018005850.6T priority patent/DE112018005850T5/de
Priority to US16/463,760 priority patent/US11264420B2/en
Priority to JP2019527577A priority patent/JP7242527B2/ja
Priority to EP18878386.4A priority patent/EP3553824B1/en
Priority to KR1020237042986A priority patent/KR20230170996A/ko
Priority to KR1020197015124A priority patent/KR102615816B1/ko
Publication of WO2019098035A1 publication Critical patent/WO2019098035A1/ja
Priority to US17/579,391 priority patent/US11791359B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors

Definitions

  • the present technology relates to a light detection element and a method of manufacturing the same, and more particularly to a light detection element capable of reducing a pixel size and a method of manufacturing the same.
  • an avalanche photodiode which is a high speed and high sensitivity photodiode utilizing an electron avalanche generated when a reverse bias voltage is applied to a PN junction, has a high electric field region formed in a planar direction.
  • a guard ring is provided in the lateral direction of the high electric field region (see, for example, Patent Documents 1 and 2).
  • the present technology has been made in view of such a situation, and is to be able to reduce the pixel size.
  • the light detection element includes a plurality of pixels arranged in a matrix, and the pixel is a first semiconductor layer of a first conductivity type formed in an outer peripheral portion near a pixel boundary; And a second semiconductor layer of a second conductivity type opposite to the first conductivity type formed inside the first semiconductor layer in a plan view, and when the reverse bias voltage is applied, the first semiconductor layer And the second semiconductor layer is formed in the depth direction of the substrate.
  • a plurality of pixels arranged in a matrix are provided, and the pixels include a first semiconductor layer of a first conductivity type formed on an outer peripheral portion near a pixel boundary, and a plane And a second semiconductor layer of a second conductivity type opposite to the first conductivity type formed inside of the first semiconductor layer in view, and when the reverse bias voltage is applied, the first semiconductor layer And the second semiconductor layer are formed in the depth direction of the substrate.
  • a first semiconductor layer of a first conductivity type is formed on an outer peripheral portion in the vicinity of the boundary of pixels arranged in a matrix.
  • a second semiconductor layer of a second conductivity type opposite to the first conductivity type is formed inside the semiconductor layer, and formed of the first semiconductor layer and the second semiconductor layer when a reverse bias voltage is applied.
  • the high electric field region to be formed is formed to be formed in the depth direction of the substrate.
  • a first semiconductor layer of a first conductivity type is formed on the outer periphery near the boundary of the pixels arranged in a matrix, and in a plan view, inside the first semiconductor layer A second semiconductor layer of a second conductivity type opposite to the first conductivity type is formed, and a high electric field region formed of the first semiconductor layer and the second semiconductor layer when a reverse bias voltage is applied is , And in the depth direction of the substrate.
  • the light detection element may be an independent device or a module incorporated in another device.
  • the pixel size can be reduced.
  • FIG. 19 is a cross-sectional view showing a configuration example in which the characteristic configuration of the ninth embodiment is added to the photodiode array of FIG. 18
  • FIG. 20 is a cross-sectional view showing a configuration example in which the characteristic configuration of the ninth embodiment is added to the photodiode array of FIG. 19
  • FIG. 25 is a cross-sectional view showing a configuration example in which the characteristic configuration of the eleventh embodiment is added to the photodiode array of FIG. 24.
  • First embodiment (example of basic configuration of light detection element) 2.
  • Second Embodiment (Structural Example Including Separation Unit) 3.
  • Third Embodiment (Structural Example of Back-illuminated Type Including Separation Unit) 4.
  • Fourth embodiment (example of configuration including low concentration N-type semiconductor layer inside) 5.
  • Fifth Embodiment (Structural Example Including STI on Substrate Surface) 6.
  • Sixth embodiment (example in which the anode and the cathode are diagonally separated) 7.
  • Seventh embodiment (example of configuration in which STI and anode and cathode are arranged diagonally) 8. Eighth embodiment (example of configuration including low concentration N-type semiconductor layer in adjacent vertical direction) 9. Ninth embodiment (example of configuration including low concentration P-type semiconductor layer in adjacent vertical direction) 10. Tenth embodiment (configuration example in which the N-type semiconductor layer has a potential gradient) 11. Eleventh embodiment (configuration example including a high electric field region in a part in the depth direction) 12. Twelfth embodiment (example of configuration including OCL for each pixel) 13. Thirteenth embodiment (configuration example including a plurality of OCLs in one pixel) 14. Fourteenth embodiment (configuration example including one OCL in a plurality of pixels) 15.
  • Fifteenth embodiment (example of configuration for sharing signals of adjacent pixels) 16. Sixteenth embodiment (example of configuration for gate control of signal) 17.
  • First production method (production method formed by ion implantation) 18.
  • Second production method (production method formed by ion implantation and solid phase diffusion) 19.
  • Third manufacturing method (a manufacturing method formed by high concentration substrate and solid phase diffusion) 20.
  • Fourth production method (production method formed by two solid phase diffusions) 21.
  • Fifth production method production method formed by single solid phase diffusion) 22.
  • Sixth manufacturing method (a manufacturing method of forming a trench from the surface and implanting ions) 23.
  • Seventh manufacturing method (a manufacturing method of forming a trench from the back surface and implanting ions) 24. Summary
  • FIG. 1 shows a configuration example of a first embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 1 A of FIG. 1 is a plan view of a semiconductor substrate (semiconductor layer) of the photodiode array 1, and B of FIG. 1 is a cross-sectional view of the semiconductor substrate of the photodiode array 1.
  • 1A is a plan view of the lower surface in the cross-sectional view of FIG. 1B corresponding to the front surface side of the semiconductor substrate, and FIG. 1B is a cross-sectional view taken along line XX of FIG.
  • the photodiode array 1 of FIG. 1 is configured by arranging the pixels 10 in a 3 ⁇ 3 matrix, and in each pixel 10, an avalanche photodiode (hereinafter referred to as APD) is formed.
  • APD avalanche photodiode
  • the dashed line in A of FIG. 1 indicates the boundary of each pixel 10.
  • the photodiode array 1 of FIG. 1 is composed of 3 ⁇ 3 nine pixels, the number of arrays in the row direction and the column direction and the total number of pixels are not limited to this and are arbitrary.
  • Each pixel 10 of the photodiode array 1 includes a first semiconductor layer 21 of the first conductivity type and a second semiconductor layer 22 of the second conductivity type.
  • the first semiconductor layer 21 of the first conductivity type is formed in the outer peripheral portion in the vicinity of the boundary including the pixel boundary.
  • a second semiconductor layer 22 of the second conductivity type which is a conductivity type opposite to the first conductivity type is formed.
  • both P type and N type can be taken.
  • the first conductivity type is P type
  • the second conductivity type is N type
  • the first conductivity type is N type
  • the second conductivity type is P-type.
  • the first conductivity type is P-type and the second conductivity type is N-type is described, and in order to facilitate understanding, the first semiconductor layer 21 is a P + -type first semiconductor layer 21, a second semiconductor
  • the layer 22 is described by adding a conductivity type and an impurity concentration like the N + -type second semiconductor layer 22. The same applies to the other semiconductor layers described later.
  • the impurity concentration is described as “P ++", “P +”, “P”, “P-” in the case of P type, and the impurity concentration of "P ++" is the highest, “P ++", “P +” ",” “P", “P-” indicate that the impurity concentration is low.
  • the impurity concentration of "N ++" is the highest, and “N ++", “N +", "N”, “N-”, and the impurity concentration of "N ++" is the highest, and “N ++", “N +", " The order of N “and” N- "represents that the impurity concentration is low.
  • a contact 23 (hereinafter referred to as the cathode contact 23) that becomes a cathode when applying a reverse bias voltage is It is formed of a high concentration N type diffusion layer (N ++).
  • a contact 24 (hereinafter referred to as the anode contact 24) serving as an anode when applying a reverse bias voltage is provided at the boundary of the pixel 10 on the surface of the substrate, with a high concentration P-type diffusion layer (P ++) It is formed of
  • the anode contact 24 is formed in a lattice along the boundary of the pixel 10 and is not separated into pixel units, whereas the cathode contact 23 is a pixel. It is formed in pixel units at the center of 10.
  • the photoelectrically converted light signal is output from the cathode contact 23.
  • a high electric field region 25 where avalanche multiplication occurs is shown in FIG. 1B. As such, they are formed in the depth direction of the semiconductor substrate. Since the N + -type second semiconductor layer 22 is formed longitudinally long in the P + -type first semiconductor layer 21 in cross section, the high electric field region 25 is formed on the long side of the rectangle.
  • the photons incident in the pixel are photoelectrically converted in the N + -type second semiconductor layer 22 to be holes (carriers), and the holes move in the lateral direction and are multiplied in the high electric field region 25.
  • the high electric field area 25 is formed longitudinally in the depth direction of the semiconductor substrate, a sufficiently high electric field area can be secured in the substrate depth direction even when the planar size of the pixel is reduced. Further, since the high electric field region 25 is formed in the vertical direction, it is possible to avoid the breakdown of the edge without forming the guard ring in the horizontal direction. Therefore, according to the structure of the photodiode array 1 of FIG. 1, it is possible to reduce the pixel size while securing a sufficiently high electric field region without requiring a guard ring.
  • the N + -type second semiconductor layer 22 is formed to be vertically long, the distance from arrival of photons to multiplication is a movement in a direction parallel to the short side of the rectangular N + -type second semiconductor layer 22. , Become shorter. This can improve the jitter characteristics.
  • the surface on which light is incident can be either the front surface or the back surface of the semiconductor substrate, the back surface irradiation type in which the light incident surface is the back surface side of the semiconductor substrate
  • a fixed charge film 28 at the back surface interface to suppress the generation of dark current at the back surface interface.
  • the fixed charge film 28 can be formed of, for example, a film of HfO2, Al2O3 or the like.
  • FIG. 3 shows a configuration example of a second embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 3A is a plan view of the semiconductor substrate of the photodiode array 1
  • FIG. 3B is a cross-sectional view of the semiconductor substrate of the photodiode array 1.
  • the relationship between the front and back of the semiconductor substrate in the plan view and the cross-sectional view of FIG. 3 is the same as that of the first embodiment.
  • FIG. 3 the parts corresponding to the first embodiment shown in FIG. 1 are given the same reference numerals, and the description of those parts is appropriately omitted, and the second embodiment corresponds to the first embodiment. The differences from the form will be described.
  • an insulating film 41 such as a silicon oxide film (SiO.sub.2) is formed at the boundary of the pixel 10.
  • a separate portion 43 made of a metal film 42 such as tungsten (W), aluminum (Al) or copper (Cu) is newly formed.
  • the separation unit 43 insulates between adjacent pixels.
  • the high electric field region 25 is formed adjacent to the separation portion 43.
  • the dark current generated at the interface between the insulating film 41 and the semiconductor substrate is concerned by forming the separating portion 43 on the semiconductor substrate, the forming of the separating portion 43 in the P + -type first semiconductor layer 21 makes it possible. Dark current due to the interface can be suppressed. Further, the provision of the separation unit 43 at the pixel boundary can also suppress the occurrence of crosstalk.
  • DCR dark count rate
  • the separating portion 43 may be formed only of the insulating film 41 by omitting the metal film 42. However, by providing the metal film 42 inside the insulating film 41, the light shielding property can be improved. In addition, when a voltage of the same potential as that of the anode is applied to the metal film 42, the dark current generated at the interface with the P + -type first semiconductor layer 21 can be further suppressed.
  • the light incident surface may be either the front surface or the back surface of the semiconductor substrate.
  • the back side illumination type it is preferable to form the fixed charge film 28 at the back side interface of the semiconductor substrate as in FIG.
  • the cross-sectional shape of the separation portion 43 may be a tapered shape in which the area of the flat region on the back surface side is different from that on the front surface side.
  • FIG. 4 shows an example of forming the isolation portion 43 in the case where the trench for embedding the insulating film 41 and the metal film 42 is formed from the front surface side.
  • the sectional shape of the isolation portion 43 is from the back surface side It becomes the taper shape of the bottom spread which a plane area area becomes large, so that it goes to the surface side.
  • the sectional shape of the separating portion 43 is a flat region from the back surface side to the surface side It becomes a tapered shape of the lower part which becomes smaller in area.
  • FIG. 5 shows a configuration example of a third embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 5A is a plan view of the semiconductor substrate of the photodiode array 1
  • FIG. 5B is a cross-sectional view of the semiconductor substrate of the photodiode array 1.
  • the relationship between the front and back of the semiconductor substrate in the plan view and the cross-sectional view of FIG. 5 is similar to that of the first embodiment.
  • FIG. 5 the parts corresponding to those of the second embodiment shown in FIG. 3 are given the same reference numerals, and the description of those parts will be omitted as appropriate, and the third embodiment is a second embodiment. The differences from the form will be described.
  • the photodiode array 1 shown in FIG. 5 has a structure in which the photodiode array 1 according to the second embodiment shown in FIG. A membrane 29 is newly added.
  • the fixed charge film 29 is formed at the back surface side interface of the semiconductor substrate, and can suppress dark current generated at the back surface side interface.
  • the fixed charge film 29 is formed between the P + -type first semiconductor layer 21 and the insulating film 41 in the portion where the separation portion 43 is present, and occurs at the interface between the separation portion 43 and the P + -type first semiconductor layer 21. Control dark current.
  • the cross-sectional shape of the separation portion 43 may be tapered as in the second embodiment.
  • the sectional shape of the separation portion 43 is tapered, since the trench for embedding the insulating film 41 and the metal film 42 is formed from the back surface side, as shown in FIG.
  • FIG. 7 shows a configuration example of a fourth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 7A is a plan view of the semiconductor substrate of the photodiode array 1
  • FIG. 7B is a cross-sectional view of the semiconductor substrate of the photodiode array 1.
  • the plan view of FIG. 7A is a plan view taken along the line YY of FIG. 7B.
  • FIG. 7B shows a configuration example of the back surface irradiation type.
  • the N + -type second semiconductor layer 22 connected to the cathode contact 23 is formed of a uniform high-concentration N-type impurity region in the region.
  • the N-type (N-) third layer having a lower concentration than the N-type second semiconductor layer 22 connected to the cathode contact 23 is formed.
  • a semiconductor layer 61 (hereinafter referred to as an N ⁇ type third semiconductor layer 61) is formed. As shown in FIG. 7A, the N ⁇ type third semiconductor layer 61 is formed in the central portion of the pixel 10 inside the high concentration N + type second semiconductor layer 22 in plan view.
  • the other configuration of the fourth embodiment of FIG. 7 is the same as the configuration of the back surface irradiation type of the first embodiment shown in FIG.
  • the low concentration N-type third semiconductor layer 61 is disposed in the central portion of the pixel in a plan view, and the concentration is high in the direction in which the PN junction is disposed.
  • the electric charge generated by photoelectric conversion of incident light is efficiently transferred to the high concentration N + -type second semiconductor layer 22 by the potential gradient formed in the planar direction.
  • the structure in which the N-type impurity region connected to the cathode contact 23 is constituted by the high concentration N + -type second semiconductor layer 22 and the N ⁇ -type third semiconductor layer 61 inside thereof is described above.
  • the present invention can also be applied to the second and third embodiments described above.
  • FIG. 8 is a cross-sectional view showing a configuration example in which the characteristic configuration of the fourth embodiment is added to the photodiode array 1 of the second embodiment having the separation portion 43 shown in FIG.
  • an N ⁇ type third semiconductor layer 61 is added to the inside of the N + type second semiconductor layer 22 of the photodiode array 1 shown in FIG.
  • FIG. 9 is a cross-sectional view showing a configuration example in which the characteristic configuration of the fourth embodiment is added to the photodiode array 1 of the second embodiment having the tapered separation portion 43 shown in FIG.
  • an N ⁇ type third semiconductor layer 61 is added to the inside of the N + type second semiconductor layer 22 of the photodiode array 1 shown in FIG.
  • FIGS. 8 and 9 show an example of the back side illumination type, and the fixed charge film 28 is also formed on the back side interface.
  • FIG. 10 is a cross-sectional view showing a configuration example in which the characteristic configuration of the fourth embodiment is added to the photodiode array 1 of the third embodiment having the fixed charge film 29 shown in FIG.
  • an N ⁇ type third semiconductor layer 61 is added to the inside of the N + type second semiconductor layer 22 of the photodiode array 1 shown in FIG.
  • FIG. 11 is a cross-sectional view showing a configuration example in which the characteristic configuration of the fourth embodiment is added to the photodiode array 1 of the third embodiment having the tapered separation portion 43 shown in FIG.
  • an N ⁇ type third semiconductor layer 61 is added to the inside of the N + type second semiconductor layer 22 of the photodiode array 1 shown in FIG.
  • the charge generated by the photoelectric conversion of incident light is efficiently taken into the high concentration N + -type second semiconductor layer 22 by the potential gradient formed in the planar direction. it can.
  • FIG. 12 shows a configuration example of a fifth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 12A is a plan view of the semiconductor substrate of the photodiode array 1
  • FIG. 12B is a cross-sectional view of the semiconductor substrate of the photodiode array 1.
  • the relationship between the front and back of the semiconductor substrate in the plan view and the cross-sectional view of FIG. 12 is similar to that of the first embodiment.
  • STI Shallow Trench Isolation
  • the STI 63 electrically isolates the anode contact 24 connected to the P + -type first semiconductor layer 21 and the cathode contact 23 connected to the N + -type second semiconductor layer 22. Further, the STI 63 prevents the interface between the P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 forming the high electric field region 25 from coming into contact with the surface of the semiconductor substrate. Thereby, it is possible to suppress that the dark current generated on the surface of the semiconductor substrate is multiplied.
  • the N + -type second semiconductor layer 22 is disposed between the cathode contact 23 and the STI 63 on the substrate surface.
  • the cathode contact 23 and the anode contact 24 on the substrate surface may be formed so that the N + -type second semiconductor layer 22 is not exposed to the substrate surface.
  • FIG. 13 shows a configuration example of a sixth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 13A is a plan view of the semiconductor substrate of the photodiode array 1
  • FIG. 13B is a cross-sectional view of the semiconductor substrate of the photodiode array 1.
  • 13A is a plan view of the lower surface in the cross-sectional view of FIG. 13B corresponding to the front surface side of the semiconductor substrate
  • FIG. 13B is a cross-sectional view taken along the line ZZ of A of FIG.
  • the anode contact 24 is adjacent to each of the separation portions 43 on both sides formed at the pixel boundary.
  • the anode contact 24 is formed adjacent to only one of the separation portions 43 on both sides. Then, the cathode contact 23 is shifted not to the central portion of the pixel 10 but to the separation portion 43 side where the anode contact 24 is not formed.
  • the anode contact 24 When viewed in the plan view of A of FIG. 13, the anode contact 24 is disposed in contact with the separation portion 43 at one corner (upper left in A of FIG. 13) of the rectangular pixel 10, and the cathode contact 23 is N + From the central portion (pixel central portion) of the second semiconductor layer 22, the anode contact 24 is shifted to a position closer to an angle diagonal to the angle at which the anode contact 24 is disposed.
  • the cathode contact 23 and the anode contact 24 are provided.
  • the contact 24 can be spaced apart. Thereby, it is avoided that the electric field becomes higher than the high electric field region 25 by the cathode contact 23 and the anode contact 24, which are N-type and P-type high concentration layers, approaching each other on the surface side of the semiconductor substrate. Be able to suppress unintended breakdowns.
  • FIG. 14 shows a configuration example of a seventh embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 14A is a plan view of the semiconductor substrate of the photodiode array 1
  • FIG. 14B is a cross-sectional view of the semiconductor substrate of the photodiode array 1.
  • a of FIG. 14 is a plan view of the lower surface in the cross-sectional view of B of FIG. 14 corresponding to the front side of the semiconductor substrate, and B of FIG. 14 is a cross-sectional view of FIG.
  • the seventh embodiment of FIG. 14 is a form provided with the characteristic configuration of both the fifth embodiment of FIG. 12 and the sixth embodiment of FIG.
  • the STI 63 is provided as in the fifth embodiment of FIG.
  • the STI 63 electrically isolates, on the surface side of the semiconductor substrate, an anode contact 24 connected to the P + -type first semiconductor layer 21 and a cathode contact 23 connected to the N + -type second semiconductor layer 22.
  • the cathode contact 23 and the anode contact 24 are arranged diagonally in the plane area of the rectangular pixel 10. .
  • FIG. 15 shows a configuration example of an eighth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 15A is a plan view of the semiconductor substrate of the photodiode array 1
  • FIG. 15B is a cross-sectional view of the semiconductor substrate of the photodiode array 1.
  • FIG. 15A is a plan view of the lower surface in the cross-sectional view of FIG. 15B corresponding to the front surface side of the semiconductor substrate
  • FIG. 15B is a cross-sectional view of FIG.
  • FIG. 15B the fixed charge film 28 for dark current suppression is formed at the interface on the back surface side of the semiconductor substrate, and FIG. 15 shows a configuration example of the back surface irradiation type.
  • an N.sup. + Type second semiconductor layer is formed between the N.sup. + Type second semiconductor layer 22 and the surface of the semiconductor substrate.
  • An N-type fourth semiconductor layer 71 (hereinafter referred to as an N ⁇ -type fourth semiconductor layer 71) having an impurity concentration lower than that of the semiconductor layer 22 is formed.
  • an N-type fifth semiconductor layer 72 (hereinafter referred to as an N-type fifth semiconductor layer) having an impurity concentration lower than that of the N + second semiconductor layer 22 between the N + second semiconductor layer 22 and the back surface of the semiconductor substrate 72) is formed.
  • the impurity concentration of the N ⁇ -type fourth semiconductor layer 71 and the N ⁇ -type fifth semiconductor layer 72 may be lower than that of the N + -type second semiconductor layer 22 and does not have to be the same concentration.
  • the N--type fourth semiconductor layer 71 is formed in a concentric rectangular shape between the N + -type second semiconductor layer 22 and the P + -type first semiconductor layer 21 in the planar direction, as shown in A of FIG. ing.
  • the N ⁇ type fifth semiconductor layer 72 is formed in the same planar region as the N + type second semiconductor layer 22 in contact.
  • the other configuration of the eighth embodiment of FIG. 15 is the same as the configuration of the back surface irradiation type of the first embodiment shown in FIG.
  • a high electric field region 25 is formed by forming an N ⁇ type fourth semiconductor layer 71 having an impurity concentration lower than that of the N + type second semiconductor layer 22 between the N + type second semiconductor layer 22 and the surface of the semiconductor substrate. It is avoided that the interface between the P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 contacts the surface of the semiconductor substrate. Thereby, it is possible to suppress that the dark current generated on the surface of the semiconductor substrate is multiplied.
  • a high electric field region 25 is formed by forming an N ⁇ -type fifth semiconductor layer 72 having a lower impurity concentration than the N + -type second semiconductor layer 22 between the N + -type second semiconductor layer 22 and the back surface of the semiconductor substrate. It is avoided that the interface between the P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 contacts the back surface of the semiconductor substrate. Thereby, it is possible to suppress that the dark current generated on the back surface of the semiconductor substrate is multiplied.
  • the structure in which the N ⁇ type fourth semiconductor layer 71 and the N ⁇ type fifth semiconductor layer 72 are disposed adjacent to each other in the substrate depth direction of the N + type second semiconductor layer 22 in this way is the other embodiment described above. It can be applied to the form of
  • FIG. 16 is a cross-sectional view showing a configuration example in which the characteristic configuration of the eighth embodiment is added to the photodiode array 1 of the second embodiment having the separation portion 43 shown in FIG.
  • the length in the substrate depth direction of the N + -type second semiconductor layer 22 forming the high electric field region 25 of the photodiode array 1 shown in FIG. 3 becomes short, and the substrate surface of the N + -type second semiconductor layer 22 N-type fourth semiconductor layer 71 and N-type fifth semiconductor layer 72 are added adjacent to the side and the back side.
  • FIG. 17 is a cross-sectional view showing a configuration example in which the characteristic configuration of the eighth embodiment is added to the photodiode array 1 of the third embodiment having the fixed charge film 29 shown in FIG.
  • the length in the substrate depth direction of the N + -type second semiconductor layer 22 forming the high electric field region 25 of the photodiode array 1 shown in FIG. 5 is shortened, and the substrate surface of the N + -type second semiconductor layer 22 is N-type fourth semiconductor layer 71 and N-type fifth semiconductor layer 72 are added adjacent to the side and the back side.
  • FIG. 18 shows the eighth embodiment of the photodiode array 1 according to the fourth embodiment shown in FIG. 9 and having the tapered separating portion 43 and the low concentration N-type third semiconductor layer 61 in the central portion of the pixel. It is sectional drawing which shows the structural example which added the characteristic structure of the form of this.
  • the length in the substrate depth direction of the N + -type second semiconductor layer 22 forming the high electric field region 25 of the photodiode array 1 shown in FIG. 9 is shortened, and the substrate surface of the N + -type second semiconductor layer 22 is N-type fourth semiconductor layer 71 and N-type fifth semiconductor layer 72 are added adjacent to the side and the back side.
  • FIG. 19 shows an eighth embodiment of the photodiode array 1 of the fourth embodiment having the tapered separating portion 43 shown in FIG. 11 and the low concentration N ⁇ -type third semiconductor layer 61 in the central portion of the pixel. It is sectional drawing which shows the structural example which added the characteristic structure of the form.
  • the length in the substrate depth direction of the N + -type second semiconductor layer 22 forming the high electric field region 25 of the photodiode array 1 shown in FIG. 11 becomes short, and the substrate surface of the N + -type second semiconductor layer 22 N-type fourth semiconductor layer 71 and N-type fifth semiconductor layer 72 are added adjacent to the side and the back side.
  • providing the N-type fourth semiconductor layer 71 and the N-type fifth semiconductor layer 72 multiplies the dark current generated on the front and back surfaces of the semiconductor substrate. Can be suppressed.
  • FIG. 20 shows a configuration example of a ninth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • the ninth embodiment will be described in comparison with the eighth embodiment shown in FIG. 15 to FIG.
  • the photodiode array 1 according to the ninth embodiment shown in FIG. 20 is formed adjacent to the substrate front side and the substrate back side of the N + -type second semiconductor layer 22 in the eighth embodiment shown in FIG.
  • P-type sixth semiconductor layer 81 (hereinafter referred to as P--type) in the region of the N--type fourth semiconductor layer 71 and the N--type fifth semiconductor layer 72 which has a lower impurity concentration than the P + -type first semiconductor layer 21
  • a sixth semiconductor layer 81) and a seventh semiconductor layer 82 (hereinafter referred to as a P-type seventh semiconductor layer 82) are formed.
  • a low concentration N-type (N-type) eighth semiconductor layer 83 (hereinafter referred to as an N--type eighth semiconductor layer 83) is interposed between the P-type sixth semiconductor layer 81 and the N + -type second semiconductor layer 22. Is inserted at a thin film thickness, but the N ⁇ type eighth semiconductor layer 83 may be replaced with a P ⁇ type sixth semiconductor layer 81.
  • a low concentration N-type (N-type) ninth semiconductor layer 84 (hereinafter referred to as the N-type ninth semiconductor layer 84) is formed on the inner side in the planar direction of the P-type seventh semiconductor layer 82.
  • the N ⁇ type ninth semiconductor layer 84 may be replaced with a P ⁇ type seventh semiconductor layer 82.
  • the photodiode array 1 according to the ninth embodiment shown in FIG. 21 corresponds to the configuration example of the eighth embodiment shown in FIG.
  • the N ⁇ type eighth semiconductor layer 83 and the N ⁇ type ninth semiconductor layer 84 are formed adjacent to the substrate front surface side and the back surface side of the N + type second semiconductor layer 22 of FIG.
  • the photodiode array 1 according to the ninth embodiment shown in FIG. 22 corresponds to the configuration example of the eighth embodiment shown in FIG.
  • the N ⁇ type fourth semiconductor layer 71 and the N ⁇ type fifth semiconductor layer 72 formed adjacent to the substrate front surface side and the back surface side of the N + type second semiconductor layer 22 of FIG. 17 are P ⁇ in FIG.
  • the N ⁇ type eighth semiconductor layer 83 and the N ⁇ type ninth semiconductor layer 84 are P ⁇ in FIG.
  • the photodiode array 1 according to the ninth embodiment shown in FIG. 23 corresponds to the configuration example of the eighth embodiment shown in FIG.
  • the N ⁇ type fourth semiconductor layer 71 and the N ⁇ type fifth semiconductor layer 72 formed adjacent to the substrate surface side and the back side of the N + type second semiconductor layer 22 of FIG. 18 are P ⁇ in FIG.
  • the N ⁇ type ninth semiconductor layer 84 is illustrated as an N ⁇ type third semiconductor layer 61 of the same type and concentration.
  • the photodiode array 1 according to the ninth embodiment shown in FIG. 24 corresponds to the configuration example of the eighth embodiment shown in FIG.
  • the N ⁇ type fourth semiconductor layer 71 formed adjacent to the substrate surface side of the N + type second semiconductor layer 22 of FIG. 19 is replaced with the P ⁇ type sixth semiconductor layer 81 in FIG.
  • the N ⁇ type eighth semiconductor layer 83 and the ⁇ type ninth semiconductor layer 84 may be replaced with the P ⁇ type sixth semiconductor layer 81 and the P ⁇ type seventh semiconductor layer 82, respectively.
  • the points are the same as in FIG. 21 to FIG. 23.
  • the P ⁇ -type sixth embodiment has a lower impurity concentration than the N + -type second semiconductor layer 22 between the N + -type second semiconductor layer 22 and the surface of the semiconductor substrate.
  • a high electric field region 25 is formed by forming a P--type seventh semiconductor layer 82 having a lower impurity concentration than the N + -type second semiconductor layer 22 between the N + -type second semiconductor layer 22 and the back surface of the semiconductor substrate. It is avoided that the interface between the P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 contacts the back surface of the semiconductor substrate. Thereby, it is possible to suppress that the dark current generated on the back surface of the semiconductor substrate is multiplied.
  • FIG. 25 shows a configuration example of a tenth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 25A is a plan view of the semiconductor substrate of the photodiode array 1
  • FIG. 25B is a cross-sectional view of the semiconductor substrate of the photodiode array 1.
  • FIG. 25A is a plan view of the lower surface in the cross-sectional view of FIG. 25B corresponding to the front surface side of the semiconductor substrate
  • FIG. 25B is a cross-sectional view taken along line XX of FIG.
  • the tenth embodiment shown in FIG. 25 is different from the ninth embodiment shown in FIG. 21 in the concentration distribution in the region of the N + -type second semiconductor layer 22.
  • the impurity concentration in the region of the N + -type second semiconductor layer 22 is uniformly formed.
  • the impurity concentration becomes higher from the rear surface of the substrate to the front surface of the substrate, and becomes the impurity concentration of the cathode contact 23 on the front surface of the substrate. . Further, in the plane direction orthogonal to the substrate depth direction, the impurity concentration becomes higher from the pixel center toward the pixel boundary, and the interface between the P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 In the above, the concentration is high enough to form the high electric field region 25.
  • the charge multiplied in the high electric field region 25 can be efficiently collected to the cathode contact 23.
  • FIG. 26 shows a configuration example of an eleventh embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • the eleventh embodiment will be described in comparison with the ninth embodiment shown in FIG. 20 to FIG.
  • the P formed in the ninth embodiment shown in FIG. 20 is formed adjacent to the back surface side of the N + -type second semiconductor layer 22.
  • the ⁇ type seventh semiconductor layer 82 and the N ⁇ type ninth semiconductor layer 84 are replaced with a low concentration N type (N ⁇ type) tenth semiconductor layer 91 (hereinafter referred to as the N ⁇ type tenth semiconductor layer 91). It is done.
  • the N ⁇ type tenth semiconductor layer 91 is formed thicker in the substrate depth direction than the P ⁇ type seventh semiconductor layer 82 and the N ⁇ type ninth semiconductor layer 84 in FIG.
  • the length of the electric field area 25 in the substrate depth direction is short.
  • the length of the high electric field region 25 in the substrate depth direction is formed short, and the high electric field region 25 is formed by separating the high electric field region 25 from the substrate front surface and the substrate rear surface.
  • the interface between the two semiconductor layers 22 is prevented from being in contact with the front and back surfaces of the semiconductor substrate. Thereby, it is possible to suppress that the dark current generated on the front surface and the back surface of the semiconductor substrate is multiplied.
  • the photodiode array 1 according to the eleventh embodiment shown in FIG. 27 corresponds to the configuration example of the ninth embodiment shown in FIG.
  • the P ⁇ type seventh semiconductor layer 82 and the N ⁇ type ninth semiconductor layer 84 which are formed adjacent to the back surface side of the N + type second semiconductor layer 22 in FIG. 21 are shown in FIG.
  • the semiconductor layer 91 is replaced.
  • the separation portion 43 formed at the boundary of the pixel 10 is formed from the substrate surface side to correspond to the length of the high electric field region 25 in the substrate depth direction.
  • the photodiode array 1 according to the eleventh embodiment shown in FIG. 28 corresponds to the configuration example of the ninth embodiment shown in FIG.
  • the separation portion 43 formed at the boundary of the pixel 10 in FIG. 22 is formed from the back surface side of the substrate to correspond to the length of the high electric field region 25 in the substrate depth direction.
  • the photodiode array 1 according to the eleventh embodiment shown in FIG. 29 corresponds to the configuration example of the ninth embodiment shown in FIG.
  • the N ⁇ type third semiconductor layer 61 and the P ⁇ type seventh semiconductor layer 82 formed adjacent to the back surface side of the N + type second semiconductor layer 22 in FIG. 23 are the N ⁇ type tenth semiconductor layer in FIG.
  • the semiconductor layer 91 is replaced.
  • the separation portion 43 formed at the boundary of the pixel 10 is formed from the substrate surface side to correspond to the length of the high electric field region 25 in the substrate depth direction.
  • the photodiode array 1 according to the eleventh embodiment shown in FIG. 30 corresponds to the configuration example of the ninth embodiment shown in FIG.
  • the N ⁇ type fifth semiconductor layer 72 formed adjacent to the back surface side of the N + type second semiconductor layer 22 in FIG. 23 is replaced with the P ⁇ type seventh semiconductor layer 82 in FIG.
  • the separation portion 43 formed at the boundary of the pixel 10 is formed from the back surface side of the substrate to correspond to the length of the high electric field region 25 in the substrate depth direction.
  • the length of the high electric field region 25 in the substrate depth direction is made short, and the high electric field region 25 is formed by separating from the substrate front and the substrate back. It is avoided that the interface between the P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 is in contact with the front and back surfaces of the semiconductor substrate. Thereby, it is possible to suppress that the dark current generated on the front surface and the back surface of the semiconductor substrate is multiplied. Since the DCR can be improved as the area of the high electric field region 25 becomes smaller, the DCR can be improved.
  • Twelfth embodiment The twelfth to fifteenth embodiments described with reference to FIGS. 31 to 38 illustrate configuration examples in which OCL (On Chip Lenz) is added to the light incident surface side.
  • OCL On Chip Lenz
  • FIGS. 31 to 38 the configuration in the semiconductor substrate will be described using an example in which the configuration of the ninth embodiment shown in FIG. 21 is adopted, but the configurations of other embodiments can also be adopted.
  • FIG. 31 shows a configuration example of a twelfth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • 31A is a plan view of the surface side of the semiconductor substrate of the photodiode array 1, and B in FIG. 31 is a cross-sectional view taken along the line XX in A of FIG.
  • the OCL 101 is formed in units of one pixel on the surface side of the semiconductor substrate on which the wiring layer 102 is formed. Therefore, the photodiode array 1 of FIG. 31 is an example of a surface irradiation type in which the light incident surface is the surface of the semiconductor substrate. In the plan view of FIG. 31A, the wiring layer 102 is not shown.
  • incident light can be efficiently taken into the high electric field region 25 and sensitivity can be improved.
  • FIG. 32 shows a configuration example of the photodiode array 1 according to the twelfth embodiment in the case of the back side illumination type.
  • the OCL 101 when the light incident surface is the back surface of the semiconductor substrate, the OCL 101 is formed in units of one pixel on the top surface of the fixed charge film 28 on the back surface.
  • An inter-pixel light shielding film 103 using a metal material such as tungsten (W), aluminum (Al) or copper (Cu) is also provided on the pixel boundary of the back surface of the semiconductor substrate.
  • the wiring layer 102 does not exist on the optical path, so vignetting of light by the wiring layer 102 can be suppressed, and the sensitivity is further improved. be able to.
  • FIG. 33 shows a configuration example of a thirteenth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 33A is a plan view of the OCL superimposed on the plan view of the surface side of the semiconductor substrate of the photodiode array 1, and FIG. 33B is a cross-sectional view taken along line XX in A of FIG.
  • the thirteenth embodiment shown in FIG. 33 is an example of the back side illumination type in which the light incident surface is the back side of the semiconductor substrate, and the configuration of the OCL is the same as the twelfth embodiment of the back side illumination type shown in FIG. It is different.
  • one OCL 101 is formed for one pixel, whereas in the thirteenth embodiment of FIG. 33, 2 ⁇ 2 for one pixel.
  • Four OCLs 111 (2 rows and 2 columns) are formed.
  • incident light can be collected in the high electric field area 25 formed in the vicinity of the pixel boundary. That is, since incident light can be efficiently taken into the high electric field area 25, sensitivity can be improved.
  • FIG. 33 shows an example in which four OCLs 111 are arranged for one pixel, the number and arrangement of the OCLs 111 arranged for one pixel are not limited to this, and are arbitrary.
  • FIG. 34 shows a configuration example of a fourteenth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • 34A is a diagram in which OCL is superimposed on the plan view of the surface side of the semiconductor substrate of the photodiode array 1, and B in FIG. 34 is a cross-sectional view taken along line XX of A in FIG.
  • the fourteenth embodiment shown in FIG. 34 is an example of the back irradiation type in which the light incident surface is the back surface of the semiconductor substrate, and the twelfth embodiment of the back irradiation type shown in FIG. 32 has the configuration of the OCL. It is different.
  • one OCL 101 is formed for one pixel, while in the fourteenth embodiment shown in FIG. One OCL 121 is formed.
  • the area of the high electric field region 25 can be increased, and the light utilization efficiency can be improved.
  • the metal film 42 is formed in the lower separation portion 43 of one OCL 121. It is preferable not to embed. 34 and 35 differ only in whether or not the metal film 42 is provided in the lower separation portion 43 of one OCL 121.
  • the metal film 42 is embedded in the 2 ⁇ 2 rectangular separation portion 43 surrounding the outer periphery of the OCL 121.
  • the metal film 42 is omitted in the 2 ⁇ 2 rectangular inner separation portion 43 below the OCL 121. Thereby, vignetting of the light condensed by OCL121 can be suppressed.
  • FIG. 36 shows an example in which one OCL 121 is arranged for two pixels of 1 ⁇ 2 (one row and two columns).
  • the planar shape of one OCL 121 is substantially rectangular.
  • the metal film 42 is embedded in the 1 ⁇ 2 pixel rectangular separating portion 43 surrounding the outer periphery of one OCL 121, the metal film 42 is embedded in the 1 ⁇ 2 pixel rectangular separating portion 43 below the OCL 121. , The metal film 42 is omitted. Thereby, vignetting of the light condensed by OCL121 can be suppressed.
  • planar shape of the pixel 10 in the case of arranging one OCL 121 for a plurality of pixels may be a shape other than a square, for example, a rectangle or a circle.
  • FIG. 37 shows an example in which the planar shape of the pixel 10 is rectangular and one OCL 121 is arranged for two pixels of the rectangular pixel 10.
  • the planar shape of one OCL 121 is substantially square.
  • the metal film 42 is embedded in the 1 ⁇ 2 pixel rectangular separating portion 43 surrounding the outer periphery of one OCL 121, the metal film 42 is embedded in the 1 ⁇ 2 pixel rectangular separating portion 43 below the OCL 121. , The metal film 42 is omitted. Thereby, vignetting of the light condensed by OCL121 can be suppressed.
  • FIG. 38 shows a configuration example of a fifteenth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • FIG. 38A is a plan view of the surface of the semiconductor substrate of the photodiode array 1 with OCL superimposed thereon, and FIG. 38B is a cross-sectional view taken along the line XX in A of FIG.
  • the fourteenth embodiment shown in FIG. 38 is formed on the front side of the semiconductor substrate according to the twelfth embodiment shown in FIG. 32, which is a backside illumination type photodiode array 1 in which one OCL 101 is formed for each pixel.
  • the configuration in the wiring layer 102 is different.
  • the cathode contacts 23 are connected in units of 4 ⁇ 2 pixels so that an optical signal photoelectrically converted in 4 ⁇ 2 ⁇ 2 pixels is output as a signal of 1 pixel.
  • the anode contacts 24 are connected to each other.
  • FIG. 39 shows a configuration example of a sixteenth embodiment of a photodiode array as a light detection element to which the present technology is applied.
  • the sixteenth embodiment shown in FIG. 39 has a configuration in which a readout circuit region is added to the surface side of the semiconductor substrate in addition to the configuration of the eighth embodiment shown in FIG.
  • the N-type fourth semiconductor layer 71 in the eighth embodiment shown in FIG. 17 is expanded, and the inside of the N-type fourth semiconductor layer 71 is expanded.
  • a well 151 (hereinafter referred to as a P-type well 151) is formed with a low impurity concentration of the conductivity type (P-type) opposite to that of the N-type fourth semiconductor layer 71.
  • a transistor Tr1 formed of two source / drain regions 152 and a gate electrode 153 is formed.
  • One of the two source / drain regions 152 is connected to the cathode contact 23 on the right side in the figure. In the figure, the cathode contact 23 on the left side is connected to the transistor Tr1 of the P-type well 151 (not shown).
  • the readout circuit area including the plurality of transistors and the high electric field area 25 in the substrate depth direction compared with the configuration in which the readout circuit area and the high electric field area 25 are aligned in the planar direction, The area utilization efficiency can be enhanced and the pixel size can be reduced.
  • the readout circuit area may be shared by a plurality of pixels.
  • FIG. 40 shows a configuration example in the case where the readout circuit area is shared by a plurality of pixels.
  • FIG. 40A is a cross-sectional view of the semiconductor substrate of the photodiode array 1 in the case where the readout circuit area is shared by a plurality of pixels, and B in FIG. 40 is a photo when the readout circuit area is shared by a plurality of pixels
  • FIG. 2 is a plan view of the diode array 1;
  • the cross-sectional view of A of FIG. 40 corresponds to the portion indicated by the dashed dotted line of B of FIG.
  • one of the two source / drain regions 152 of the transistor Tr1 in FIG. 39 is replaced by the N.sup. + Type second semiconductor layer 22 and A pinning layer 171 for current suppression is formed.
  • the pinning layer 171 is formed of a P-type semiconductor layer having a conductivity type opposite to that of the N + -type second semiconductor layer 22.
  • the transistor Tr1 is disposed at the center of four pixels of 2 ⁇ 2 (2 rows and 2 columns), and is shared by four pixels. Further, anode contacts 24 are disposed at four corners of eight pixels of 4 ⁇ 2 (four rows and two columns), and contacts 172 for controlling the voltage of the P ⁇ -type well 151 are disposed at the central part of eight pixels of 4 ⁇ 2. For example, a predetermined voltage such as 0 V is supplied to the contact 172.
  • a plurality of control transistors Tr2 other than the signal read transistor Tr1 are disposed in the outer periphery of eight pixels of 4 ⁇ 2.
  • the area utilization efficiency can be further improved and the pixel size can be reduced by sharing the readout circuit area among a plurality of pixels. it can.
  • N + -type wells 211 are formed by performing ion implantation of N-type impurities such as phosphorus (P) a plurality of times in the depth direction of the semiconductor substrate.
  • ion implantation of a P-type impurity such as boron (B) is performed multiple times in the depth direction of the semiconductor substrate using the mask 212 patterned according to the formation region of the P + -type first semiconductor layer 21. , And the P + -type first semiconductor layer 21 are formed.
  • the region where the P + -type first semiconductor layer 21 is formed corresponds to, for example, the boundary of the pixel 10 and the outer peripheral portion in the vicinity thereof as shown in the plan view of FIG.
  • the region of the N + -type well 211 other than the formed P + -type first semiconductor layer 21 is the N + -type second semiconductor layer 22.
  • the high electric field region 25 can be formed in the depth direction of the semiconductor substrate.
  • the impurity concentration of the N + -type well 211 is preferably controlled to, for example, about 10 15 to 10 17 / cm 3 .
  • the impurity concentration of the P + -type first semiconductor layer 21 is preferably higher than the impurity concentration of the N + -type well 211.
  • P-type impurities are ion-implanted in the entire region of the back surface side interface, whereby the P + -type first semiconductor layer 21 is formed in the entire region of the back surface side interface.
  • the ion implantation of the P-type impurity may be performed only in the region of the N + -type second semiconductor layer 22 using a mask instead of the entire region on the back surface side interface.
  • FIG. 2 when the fixed charge film 28 for dark current suppression is formed on the back surface side interface, holes are accumulated in the fixed charge film 28.
  • the fixed charge film 28 may be additionally formed without setting the region to the P + -type first semiconductor layer 21.
  • the cathode contact 23 and the anode contact 24 are formed at the surface side interface of the semiconductor substrate.
  • the P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 can be formed.
  • Second manufacturing method> a second manufacturing method for forming the P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 on the semiconductor substrate of the photodiode array 1 will be described. This second manufacturing method can be applied to the case where the separation portion 43 is provided at the boundary of the pixel 10 as in the second embodiment of FIG.
  • N + -type wells 221 are formed by performing ion implantation of N-type impurities such as phosphorus (P) a plurality of times in the depth direction of the semiconductor substrate.
  • an oxide film 222 containing P-type ions is embedded in the substrate depth direction of the region corresponding to the boundary of the pixel 10 in the N + well 221 and the outer peripheral portion in the vicinity, and thermal diffusion causes the P + first
  • the semiconductor layer 21 is formed.
  • the region of the N + -type well 221 other than the formed P + -type first semiconductor layer 21 is the N + -type second semiconductor layer 22.
  • the high electric field region 25 can be formed in the depth direction of the semiconductor substrate.
  • the impurity concentration of the N + -type well 221 is preferably controlled to, for example, about 10 15 to 10 17 / cm 3 .
  • the impurity concentration of the P + -type first semiconductor layer 21 is preferably higher than the impurity concentration of the N + -type well 221.
  • the P + -type first semiconductor layer 21 formed by thermal diffusion may have a concentration difference in the lateral direction orthogonal to the substrate depth direction, within a range that does not affect carrier movement.
  • the P-type impurity is ion-implanted in the entire region of the back surface side interface or only in the region of the N + -type second semiconductor layer 22, and the P + type first semiconductor layer 21 is formed in the entire region of the back surface side interface.
  • the process of forming the entire region of the back surface side interface as the P + -type first semiconductor layer 21 is omitted, and the fixed charge film 28 is formed on the back surface interface. Then, the cathode contact 23 and the anode contact 24 are formed at the surface side interface of the semiconductor substrate.
  • the oxide film 222 is left as it is as the insulating film 41 which constitutes the separation portion 43.
  • the metal film 42 is provided on the inner side of the insulating film 41 as the separation portion 43, a part of the oxide film 222 as the insulating film 41 is opened to embed the metal material.
  • the N + -type well 221 is formed by performing ion implantation of an N-type impurity such as phosphorus (P) a plurality of times in the depth direction of the semiconductor substrate.
  • an N-type impurity such as phosphorus (P)
  • P phosphorus
  • the third manufacturing method instead of forming the N + -type well 221 in the semiconductor substrate, a high concentration N-type (N +) semiconductor substrate 231 is used.
  • the other methods are the same as the second manufacturing method described in FIG.
  • the impurity concentration of the N + -type semiconductor substrate 231 is preferably controlled to, for example, about 10 15 to 10 17 / cm 3 , and the impurity concentration of the P + -type first semiconductor layer 21 is an impurity of the N + -type semiconductor substrate 231 Concentrations higher than the concentration are preferred. In the P + -type first semiconductor layer 21 formed by thermal diffusion, a concentration difference occurs in the lateral direction orthogonal to the substrate depth direction within a range that does not affect the carrier movement.
  • the first oxide film 262 containing N-type ions is embedded in the substrate depth direction of the region corresponding to the boundary of the pixel 10 and the outer peripheral portion in the vicinity thereof.
  • the semiconductor layer 263 of the type is formed.
  • the first oxide film 262 including the formed N-type ions is removed, and a second oxide film 264 including the P-type ions is embedded in the removed portion, and the P + -type semiconductor is thermally diffused.
  • Layer 21 is formed.
  • the region of the N + -type semiconductor layer 263 other than the formed P + -type first semiconductor layer 21 is the N + -type second semiconductor layer 22.
  • the high electric field region 25 can be formed in the depth direction of the semiconductor substrate.
  • the impurity concentration of the N + -type second semiconductor layer 22 is preferably controlled to, for example, about 10 15 to 10 17 / cm 3.
  • the impurity concentration of the P + -type first semiconductor layer 21 is, for example, an N + -type second semiconductor layer 22.
  • a concentration higher than the impurity concentration of The P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 formed by thermal diffusion have a concentration difference in the lateral direction orthogonal to the depth direction of the substrate even within the range that does not affect carrier movement. Good.
  • the first oxide film 262 containing N-type ions is embedded in the substrate depth direction of the region corresponding to the boundary of the pixel 10 and the outer peripheral portion in the vicinity thereof.
  • a second oxide film 264 containing P-type ions is embedded in the substrate depth direction of the region corresponding to the boundary of the pixel 10 and the outer peripheral portion in the vicinity thereof.
  • the region where the second oxide film 264 containing P-type ions is embedded is a region different from the region where the first oxide film 262 containing N-type ions is embedded, and the first oxide film 262 containing N-type ions is Each of the embedded region and the region in which the second oxide film 264 including P-type ions is embedded corresponds to the region of the insulating film 41 of the separation portion 43.
  • the high electric field region 25 can be formed in the depth direction of the semiconductor substrate.
  • the impurity concentration of the N + -type second semiconductor layer 22 is preferably controlled to, for example, about 10 15 to 10 17 / cm 3, and the impurity concentration of the P + -type first semiconductor layer 21 is the impurity of the N + -type second semiconductor layer 22. Concentrations higher than the concentration are preferred.
  • the P + -type first semiconductor layer 21 and the N + -type second semiconductor layer 22 formed by thermal diffusion have a concentration difference in the lateral direction orthogonal to the depth direction of the substrate even within the range that does not affect carrier movement. Good.
  • This sixth manufacturing method is a manufacturing method in the case where the tapered separating portion 43 is formed by digging from the substrate surface side as in the fourth embodiment shown in FIG.
  • a trench 282 is formed by digging with a predetermined depth from the surface side of a low concentration N-type (N ⁇ ) semiconductor substrate 281.
  • the trench 282 is manufactured in a tapered shape in which the opening area on the surface side is wide and the opening area on the back side to be the bottom is narrow.
  • the N + -type second semiconductor layer 22 is formed on the side surface of the trench 282 by performing ion implantation of an N-type impurity such as phosphorus (P) from the side surface of the trench 282. Formed along.
  • N-type impurity such as phosphorus (P)
  • ion implantation of P-type impurities such as boron (B) is performed into the substrate shallower than the N + -type second semiconductor layer 22 from the side surface of the trench 282.
  • the P + -type first semiconductor layer 21 is formed.
  • the electric field can be more easily applied by shallow implantation by plasma doping.
  • the isolation portion 43 is formed by embedding the oxide film 41 inside the trench 282.
  • the metal film 42 is also provided as the separation portion 43, after the oxide film 41 is buried, a part of the oxide film 41 is opened and the metal film 42 is buried.
  • This seventh manufacturing method is a manufacturing method in the case where the tapered separating portion 43 is formed by digging from the back surface side of the substrate as in the ninth embodiment shown in FIG.
  • a cathode contact is made on the surface side of the low concentration N type (N ⁇ ) semiconductor substrate 301.
  • the anode contact 24, the P ⁇ -type sixth semiconductor layer 81 around the anode contact 24, etc. are formed first.
  • wiring layer 302 is formed on the substrate surface on which cathode contact 23 and anode contact 24 and the like are formed.
  • the upper and lower sides of the semiconductor substrate 301 are inverted, and a trench 311 is formed with a predetermined depth from the back surface side of the semiconductor substrate 301.
  • the N + -type second semiconductor layer 22 is formed by performing ion implantation of an N-type impurity such as phosphorus (P) from the side surface of the trench 311.
  • an N-type impurity such as phosphorus (P)
  • ions of a P-type impurity such as boron (B) are implanted into the substrate shallower than the N + -type second semiconductor layer 22 from the side surface of the trench 311.
  • the P + -type first semiconductor layer 21 is formed.
  • the electric field can be more easily applied by shallow implantation by plasma doping.
  • the fixed charge film 29 is formed on the side surface and the bottom surface of the trench 311 and the back surface interface of the semiconductor substrate 301 in which the trench 311 is not formed.
  • the fixed charge film 29 is, for example, a film of HfO2, Al2O3 or the like.
  • the oxide film 41 is embedded in the trench 311, and the isolation portion 43 is formed.
  • the metal film 42 is also provided as the separation portion 43, after the oxide film 41 is buried, a part of the oxide film 41 is opened and the metal film 42 is buried.
  • the photodiode array 1 having the tapered separation portion 43 formed from the back surface side of the substrate can be manufactured.
  • the photodiode array 1 includes the plurality of pixels 10 arranged in a matrix, and the first conductivity type (the first conductivity type (the For example, a P-type first semiconductor layer (P + -type first semiconductor layer 21) and a second conductivity type (for example, N) opposite to the first conductivity type formed inside the first semiconductor layer in plan view Electric field region 25 formed of the first semiconductor layer and the second semiconductor layer when the reverse bias voltage is applied. It is configured to be formed in the depth direction.
  • the first conductivity type the first conductivity type (the For example, a P-type first semiconductor layer (P + -type first semiconductor layer 21) and a second conductivity type (for example, N) opposite to the first conductivity type formed inside the first semiconductor layer in plan view Electric field region 25 formed of the first semiconductor layer and the second semiconductor layer when the reverse bias voltage is applied. It is configured to be formed in the depth direction.
  • the high electric field area 25 can be formed with a small area in the plane direction without providing a guard ring, so the pixel size can be reduced. it can.
  • the second semiconductor layer (N + -type second semiconductor layer 22) can be formed using any of the first to seventh manufacturing methods described above.
  • the photodiode array 1 in which APDs capable of forming high electric field regions 25 in the substrate depth direction (longitudinal direction) are arranged in a matrix may be used, for example, as light receiving elements of photon counters or TOF (Time of Flight) sensors. it can.
  • the present technology can also have the following configurations.
  • (1) Comprising a plurality of pixels arranged in a matrix,
  • the pixel is A first semiconductor layer of a first conductivity type formed on an outer peripheral portion near the pixel boundary; And a second semiconductor layer of a second conductivity type opposite to the first conductivity type formed inside the first semiconductor layer in a plan view.
  • a photodetection element wherein a high electric field region formed by the first semiconductor layer and the second semiconductor layer when a reverse bias voltage is applied is formed in a depth direction of a substrate.
  • the pixel boundary further includes a separation unit that insulates between adjacent pixels, The light detection element according to (1), wherein the high electric field region is configured to be formed adjacent to the separation unit.
  • the light detection element according to (1) or (2) further including: a third semiconductor layer of the second conductivity type having an impurity concentration lower than that of the second semiconductor layer inside the second semiconductor layer in plan view .
  • (6) The light detection element according to (5), wherein the fourth semiconductor layer is adjacent to the surface side of the substrate with respect to the second semiconductor layer and is the second conductivity type.
  • first semiconductor layer of a first conductivity type on an outer peripheral portion in the vicinity of a boundary of pixels arranged in a matrix; Forming a second semiconductor layer of a second conductivity type opposite to the first conductivity type inside the first semiconductor layer in plan view; A high electric field region formed by the first semiconductor layer and the second semiconductor layer when a reverse bias voltage is applied is formed in the depth direction of the substrate. .
  • the first semiconductor layer of the outer peripheral portion and the second semiconductor layer inside the outer peripheral portion are performed by performing ion implantation of the first conductive type in the outer peripheral portion in the vicinity of the boundary of the pixel in the second conductive type well. And forming the light-detecting element according to (14).
  • a first oxide film containing ions of the first conductivity type is embedded, and a second oxide film containing ions of the second conductivity type is embedded in a region different from the first oxide film, and the first oxide film is thermally diffused.
  • the first semiconductor layer and the second semiconductor layer are formed.
  • Method. (20) A trench which is dug to a predetermined depth of the substrate is formed at the boundary of the pixel of the substrate, and ion implantation of the first conductivity type and ion implantation of the second conductivity type are performed from the side surface of the trench.
  • Reference Signs List 1 photodiode array 10 pixels, 21 first semiconductor layer (P + first semiconductor layer), 22 second semiconductor layer (N + second semiconductor layer), 23 contact (cathode contact), 24 contact (anode contact), 25 high electric field region 28, 28 fixed charge film 41 oxide film 42 metal film 43 separation portion 61 third semiconductor layer (N- type third semiconductor layer) 71 fourth semiconductor layer (N- type fourth semiconductor layer) Semiconductor layer), 72 fifth semiconductor layer (N-type fifth semiconductor layer), 81 sixth semiconductor layer (P- type sixth semiconductor layer), 82 seventh semiconductor layer (P- type seventh semiconductor layer), 83 Eighth semiconductor layer (N-type ninth semiconductor layer), 91 tenth semiconductor layer (N-type tenth semiconductor layer), 151 well (P-type well), 153 gate electrode, 171 Layer, 172 contact, 211 well (N + well), 221 well (N + well), 222 oxide film, 231, 261 semiconductor substrate, 262 first oxide film, 263 semiconductor layer, 264 second oxide film, 281 semiconductor Substrate, 282, 311 Trench

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本技術は、画素サイズを小さくすることができるようにする光検出素子およびその製造方法に関する。 光検出素子は、マトリクス状に配置された複数の画素を備える。各画素は、画素の境界近傍の外周部に形成された第1導電型の第1半導体層と、平面視において第1半導体層の内側に形成された、第1導電型と反対の第2導電型の第2半導体層とを備え、逆バイアス電圧が印加されたときに第1半導体層と第2半導体層とで形成される高電界領域が、基板の深さ方向に形成されるように構成される。本技術は、例えば、フォトンカウンタ等に適用できる。

Description

光検出素子およびその製造方法
 本技術は、光検出素子およびその製造方法に関し、特に、画素サイズを小さくすることができるようにした光検出素子およびその製造方法に関する。
 PN接合に逆バイアス電圧を印加したときに生じる電子雪崩を利用した高速かつ高感度のフォトダイオードであるアバランシェフォトダイオード(以下、APDと称する。)は、一般に、高電界領域が平面方向に形成され、高電界領域の横方向にガードリングが設けられる(例えば、特許文献1、2参照)。
特開2015-41746号公報 特開2013-48278号公報
 しかしながら、平面方向に高電界領域を形成した構造では、画素サイズを小さくすることに限界がある。
 本技術は、このような状況に鑑みてなされたものであり、画素サイズを小さくすることができるようにするものである。
 本技術の第1の側面の光検出素子は、マトリクス状に配置された複数の画素を備え、前記画素は、画素境界近傍の外周部に形成された第1導電型の第1半導体層と、平面視において前記第1半導体層の内側に形成された、前記第1導電型と反対の第2導電型の第2半導体層とを備え、逆バイアス電圧が印加されたときに前記第1半導体層と前記第2半導体層とで形成される高電界領域が、基板の深さ方向に形成されるように構成された光検出素子である。
 本技術の第1の側面においては、マトリクス状に配置された複数の画素が設けられ、前記画素には、画素境界近傍の外周部に形成された第1導電型の第1半導体層と、平面視において前記第1半導体層の内側に形成された、前記第1導電型と反対の第2導電型の第2半導体層とが設けられ、逆バイアス電圧が印加されたときに前記第1半導体層と前記第2半導体層とで形成される高電界領域が、基板の深さ方向に形成されるように構成される。
 本技術の第2の側面の光検出素子の製造方法は、マトリクス状に配置される画素の境界近傍の外周部に、第1導電型の第1半導体層を形成し、平面視において前記第1半導体層の内側に、前記第1導電型と反対の第2導電型の第2半導体層を形成し、逆バイアス電圧が印加されたときに前記第1半導体層と前記第2半導体層とで形成される高電界領域が、基板の深さ方向に形成されるように構成される。
 本技術の第2の側面においては、マトリクス状に配置される画素の境界近傍の外周部に、第1導電型の第1半導体層が形成され、平面視において前記第1半導体層の内側に、前記第1導電型と反対の第2導電型の第2半導体層が形成され、逆バイアス電圧が印加されたときに前記第1半導体層と前記第2半導体層とで形成される高電界領域が、基板の深さ方向に形成されるように構成される。
 光検出素子は、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。
 本技術の第1および第2の側面によれば、画素サイズを小さくすることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用した光検出素子としてのフォトダイオードアレイの第1実施の形態の構成例を示す図である。 第1実施の形態において裏面照射型の場合の断面図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第2実施の形態の構成例を示す図である。 第2実施の形態においてテーパ形状の分離部を有する場合の断面図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第3実施の形態の構成例を示す図である。 第3実施の形態においてテーパ形状の分離部を有する場合の断面図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第4実施の形態の構成例を示す図である。 図3のフォトダイオードアレイに第4実施の形態の特徴的構成を追加した構成例を示す断面図である。 図4のフォトダイオードアレイに第4実施の形態の特徴的構成を追加した構成例を示す断面図である。 図5のフォトダイオードアレイに第4実施の形態の特徴的構成を追加した構成例を示す断面図である。 図6のフォトダイオードアレイに第4実施の形態の特徴的構成を追加した構成例を示す断面図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第5実施の形態の構成例を示す図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第6実施の形態の構成例を示す図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第7実施の形態の構成例を示す図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第8実施の形態の構成例を示す図である。 図3のフォトダイオードアレイに第8実施の形態の特徴的構成を追加した構成例を示す断面図である。 図5のフォトダイオードアレイに第8実施の形態の特徴的構成を追加した構成例を示す断面図である。 図9のフォトダイオードアレイに第8実施の形態の特徴的構成を追加した構成例を示す断面図である。 図11のフォトダイオードアレイに第8実施の形態の特徴的構成を追加した構成例を示す断面図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第9実施の形態の構成例を示す図である。 図16のフォトダイオードアレイに第9実施の形態の特徴的構成を追加した構成例を示す断面図である。 図17のフォトダイオードアレイに第9実施の形態の特徴的構成を追加した構成例を示す断面図である。 図18のフォトダイオードアレイに第9実施の形態の特徴的構成を追加した構成例を示す断面図である。 図19のフォトダイオードアレイに第9実施の形態の特徴的構成を追加した構成例を示す断面図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第10実施の形態の構成例を示す図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第11実施の形態の構成例を示す図である。 図21のフォトダイオードアレイに第11実施の形態の特徴的構成を追加した構成例を示す断面図である。 図22のフォトダイオードアレイに第11実施の形態の特徴的構成を追加した構成例を示す断面図である。 図23のフォトダイオードアレイに第11実施の形態の特徴的構成を追加した構成例を示す断面図である。 図24のフォトダイオードアレイに第11実施の形態の特徴的構成を追加した構成例を示す断面図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第12実施の形態の構成例を示す図である。 第12実施の形態において裏面照射型の場合の断面図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第13実施の形態の構成例を示す図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第14実施の形態の構成例を示す図である。 第14実施の形態のその他の構成例を示す図である。 第14実施の形態のその他の構成例を示す図である。 第14実施の形態のその他の構成例を示す図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第15実施の形態の構成例を示す図である。 本技術を適用した光検出素子としてのフォトダイオードアレイの第16実施の形態の構成例を示す図である。 読み出し回路領域が複数画素で共有される場合の構成例を示す図である。 第1の製造方法を説明する図である。 第2の製造方法を説明する図である。 第3の製造方法を説明する図である。 第4の製造方法を説明する図である。 第5の製造方法を説明する図である。 第6の製造方法を説明する図である。 第7の製造方法を説明する図である。 第7の製造方法を説明する図である。
 以下、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.第1実施の形態(光検出素子の基本構成例)
2.第2実施の形態(分離部を備える構成例)
3.第3実施の形態(分離部を備える裏面照射型の構成例)
4.第4実施の形態(内側に低濃度N型半導体層を備える構成例)
5.第5実施の形態(基板表面にSTIを備える構成例)
6.第6実施の形態(アノードおよびカソードを対角に離した構成例)
7.第7実施の形態(STIとアノードおよびカソードを対角に配置した構成例)
8.第8実施の形態(隣接縦方向に低濃度N型半導体層を備える構成例)
9.第9実施の形態(隣接縦方向に低濃度P型半導体層を備える構成例)
10.第10実施の形態(N型半導体層が電位勾配を有する構成例)
11.第11実施の形態(深さ方向の一部に高電界領域を備える構成例)
12.第12実施の形態(画素毎にOCLを備える構成例)
13.第13実施の形態(1画素に複数のOCLを備える構成例)
14.第14実施の形態(複数画素に1個のOCLを備える構成例)
15.第15実施の形態(隣接画素の信号を共有する構成例)
16.第16実施の形態(信号をゲート制御する構成例)
17.第1の製造方法(イオン注入で形成する製造方法)
18.第2の製造方法(イオン注入と固相拡散で形成する製造方法)
19.第3の製造方法(高濃度基板と固相拡散で形成する製造方法)
20.第4の製造方法(2回の固相拡散で形成する製造方法)
21.第5の製造方法(1回の固相拡散で形成する製造方法)
22.第6の製造方法(表面からトレンチ形成し、イオン注入する製造方法)
23.第7の製造方法(裏面からトレンチ形成し、イオン注入する製造方法)
24.まとめ
<1.第1実施の形態>
 図1は、本技術を適用した光検出素子としてのフォトダイオードアレイの第1実施の形態の構成例を示している。
 図1のAは、フォトダイオードアレイ1の半導体基板(半導体層)の平面図であり、図1のBは、フォトダイオードアレイ1の半導体基板の断面図である。図1のAは、半導体基板の表面側に相当する図1のBの断面図における下面の平面図であり、図1のBは、図1のAのX-X線における断面図である。
 図1のフォトダイオードアレイ1は、画素10が3x3のマトリクス状に配置されて構成され、各画素10には、アバランシェフォトダイオード(以下、APDと称する。)が形成されている。図1のAにおいて破線は、各画素10の境界を示している。
 なお、図1のフォトダイオードアレイ1は、3x3の9個の画素で構成されているが、行方向および列方向の配列数並びに画素の総数は、これに限定されず任意である。
 フォトダイオードアレイ1の各画素10は、第1導電型の第1半導体層21と、第2導電型の第2半導体層22を備える。
 より具体的には、図1のBに示されるように、各画素10において、画素境界を含む境界近傍の外周部に、第1導電型の第1半導体層21が形成され、第1導電型の第1半導体層21の内側に、第1導電型と反対の導電型である第2導電型の第2半導体層22が形成されている。
 第1導電型としては、P型およびN型のどちらも取ることができ、例えば、第1導電型をP型とすると、第2導電型はN型となり、第1導電型をN型とすると、第2導電型はP型となる。
 以下では、第1導電型をP型とし、第2導電型をN型とした場合について説明し、理解を容易にするため、第1半導体層21をP+型第1半導体層21、第2半導体層22をN+型第2半導体層22、のように、導電型と不純物濃度を付加して記述する。後述するその他の半導体層についても同様とする。
 なお、不純物濃度については、P型の場合、“P++”、“P+”、“P”、“P-”のように記述し、“P++”の不純物濃度が最も高く、“P++”、“P+”、“P”、“P-”の順で不純物濃度が低いことを表す。N型の場合についても同様に、“N++”、“N+”、“N”、“N-”のように記述し、“N++”の不純物濃度が最も高く、“N++”、“N+”、“N”、“N-”の順で不純物濃度が低いことを表す。
 図1のBの断面図の下面に相当する半導体基板の表面の、画素10の中央部には、逆バイアス電圧を印加する際のカソードとなるコンタクト23(以下、カソードコンタクト23という。)が、高濃度のN型の拡散層(N++)で形成されている。また、基板の表面の、画素10の境界部には、逆バイアス電圧を印加する際のアノードとなるコンタクト24(以下、アノードコンタクト24という。)が、高濃度のP型の拡散層(P++)で形成されている。
 図1のAに示されるように、アノードコンタクト24は、画素10の境界部に沿って格子状に形成されており、画素単位には分離されていないのに対して、カソードコンタクト23が、画素10の中央部に画素単位に形成されている。光電変換された光信号は、カソードコンタクト23から出力される。
 フォトダイオードアレイ1を構成する各画素10のアノードおよびカソードに、ブレークダウン電圧よりも高い逆バイアス電圧を印加すると、アバランシェ増倍が起こる領域である高電界領域25が、図1のBに示されるように、半導体基板の深さ方向に形成される。N+型第2半導体層22は、断面視において、P+型第1半導体層21内に縦長に形成されているので、高電界領域25が、長方形の長辺側に形成される。画素内に入射されたフォトンは、N+型第2半導体層22で光電変換されて正孔(キャリア)となり、正孔は、横方向に移動して高電界領域25で増倍される。
 高電界領域25が、半導体基板の深さ方向に縦長に形成されるので、画素の平面サイズが小さくなった場合でも、基板深さ方向に、十分な高電界領域を確保することができる。また、高電界領域25が縦方向に形成されることで、ガードリングを横方向に形成しなくても、エッジのブレークダウンを回避することが可能となる。したがって、図1のフォトダイオードアレイ1の構造によれば、ガードリングが不要で、十分な高電界領域を確保しつつ、画素サイズを小さくすることができる。
 また、N+型第2半導体層22が縦長に形成されているので、フォトンの到達から増倍されるまでの距離は、長方形のN+型第2半導体層22の短辺に平行な方向の移動となり、短くなる。これにより、ジッター特性を改善することができる。
 なお、図1のフォトダイオードアレイ1において、光が入射される面は、半導体基板の表面または裏面のどちらにすることもできるが、光の入射面を、半導体基板の裏面側とする裏面照射型の場合には、図2に示されるように、裏面界面における暗電流の発生を抑制するための固定電荷膜28を裏面側界面に形成することが好ましい。この固定電荷膜28は、例えば、HfO2、Al2O3等の膜で形成することができる。
<2.第2実施の形態>
 図3は、本技術を適用した光検出素子としてのフォトダイオードアレイの第2実施の形態の構成例を示している。
 図3のAは、フォトダイオードアレイ1の半導体基板の平面図であり、図3のBは、フォトダイオードアレイ1の半導体基板の断面図である。図3の平面図および断面図における半導体基板の表裏の関係は、第1実施の形態と同様とする。
 図3においては、図1に示した第1実施の形態と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、第2実施の形態が第1実施の形態と異なる部分について説明する。
 第2実施の形態では、図1に示した第1実施の形態と比較すると、図3のAおよびBに示されるように、画素10の境界に、シリコン酸化膜(SiO2)などの絶縁膜41と、タングステン(W)、アルミニウム(Al)又は銅(Cu)などの金属膜42とからなる分離部43が新たに形成されている。分離部43は、隣接する画素間を絶縁分離する。高電界領域25は、分離部43に隣接して形成される。
 分離部43を半導体基板に形成することで、絶縁膜41と半導体基板との界面に発生する暗電流が懸念されるが、分離部43をP+型第1半導体層21内に形成することで、界面に起因する暗電流を抑制することができる。また、分離部43を画素境界に設けたことにより、クロストークの発生も抑制することができる。
 したがって、画素境界に分離部43を設けたことにより、微細画素で問題となるクロストークと界面の暗電流に起因するダークカウントレート(以下、DCRと称する。)を低減することができる。
 分離部43は、金属膜42を省略して、絶縁膜41のみで形成してもよいが、絶縁膜41の内部に金属膜42を設けることで、遮光性を向上させることができる。また、金属膜42にアノードと同電位の電圧を印加すると、P+型第1半導体層21との界面で発生する暗電流をさらに抑制することができる。
 なお、図3のフォトダイオードアレイ1においても、光が入射される面は、半導体基板の表面または裏面のどちらでもよい。裏面照射型の場合には、図2と同じように、固定電荷膜28を半導体基板の裏面側界面に形成することが好ましい。
 また、分離部43の断面形状は、図4のように、裏面側と表面側の平面領域面積が異なるテーパ形状となっていてもよい。
 図4は、絶縁膜41および金属膜42を埋め込むためのトレンチを、表面側から形成した場合の分離部43の形成例を示しており、この場合、分離部43の断面形状は、裏面側から表面側に行くほど平面領域面積が大きくなる下広がりのテーパ形状となる。反対に、図示は省略するが、絶縁膜41および金属膜42を埋め込むためのトレンチを、裏面側から形成した場合には、分離部43の断面形状は、裏面側から表面側に行くほど平面領域面積が小さくなる下すぼみのテーパ形状となる。
<3.第3実施の形態>
 図5は、本技術を適用した光検出素子としてのフォトダイオードアレイの第3実施の形態の構成例を示している。
 図5のAは、フォトダイオードアレイ1の半導体基板の平面図であり、図5のBは、フォトダイオードアレイ1の半導体基板の断面図である。図5の平面図および断面図における半導体基板の表裏の関係は、第1実施の形態と同様とする。
 図5においては、図3に示した第2実施の形態と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、第3実施の形態が第2実施の形態と異なる部分について説明する。
 図5に示されるフォトダイオードアレイ1は、図3に示した第2実施の形態に係るフォトダイオードアレイ1を、裏面照射型に特化した構造であり、図3の構成に対して、固定電荷膜29が、新たに追加されている。
 固定電荷膜29は、半導体基板の裏面側界面に形成され、裏面側界面で発生する暗電流を抑制することができる。分離部43がある部分では、固定電荷膜29は、P+型第1半導体層21と絶縁膜41との間に形成されており、分離部43とP+型第1半導体層21との界面で発生する暗電流を抑制する。
 分離部43の断面形状は、第2実施の形態と同様にテーパ形状となっていてもよい。分離部43の断面形状をテーパ形状とする場合には、絶縁膜41および金属膜42を埋め込むためのトレンチを、裏面側から形成するため、図6のように、下すぼみのテーパ形状となる。
<4.第4実施の形態>
 図7は、本技術を適用した光検出素子としてのフォトダイオードアレイの第4実施の形態の構成例を示している。
 図7のAは、フォトダイオードアレイ1の半導体基板の平面図であり、図7のBは、フォトダイオードアレイ1の半導体基板の断面図である。図7のAの平面図は、図7のBのY-Y線における平面図である。
 図7のBに示される断面図では、半導体基板の裏面界面に、暗電流抑制のための固定電荷膜28が形成されており、図7は、裏面照射型の構成例を示している。
 図2に示した第1実施の形態の裏面照射型の構成では、カソードコンタクト23に接続されるN+型第2半導体層22が、領域内で均一かつ高濃度なN型不純物領域で形成されていた。
 これに対して、図7に示される第4実施の形態では、カソードコンタクト23に接続されるN+型第2半導体層22の内側に、それよりも低濃度のN型(N-)の第3半導体層61(以下、N-型第3半導体層61という。)が形成されている。N-型第3半導体層61は、図7のAに示されるように、平面視において、高濃度なN+型第2半導体層22の内側で、画素10の中央部に形成されている。
 図7の第4実施の形態のその他の構成は、図2に示した第1実施の形態の裏面照射型の構成と同様であるので、説明を省略する。
 第4実施の形態のように、平面視において画素中央部に低濃度のN-型第3半導体層61を配置し、その外側、換言すれば、PN接合が配置される方向に、高濃度なN+型第2半導体層22を配置することにより、平面方向に形成される電位勾配(ポテンシャル勾配)によって、入射光の光電変換によって発生した電荷を、高濃度なN+型第2半導体層22に効率的に取り込むことができる。
 なお、このように、カソードコンタクト23に接続されるN型不純物領域を、高濃度なN+型第2半導体層22と、その内側のN-型第3半導体層61とで構成する構造は、上述した第2および第3実施の形態にも適用することができる。
 図8は、図3に示した分離部43を有する第2実施の形態のフォトダイオードアレイ1に、第4実施の形態の特徴的構成を追加した構成例を示す断面図である。
 図8では、図3に示したフォトダイオードアレイ1のN+型第2半導体層22の内側に、N-型第3半導体層61が追加されている。
 図9は、図4に示したテーパ形状の分離部43を有する第2実施の形態のフォトダイオードアレイ1に、第4実施の形態の特徴的構成を追加した構成例を示す断面図である。
 図9では、図3に示したフォトダイオードアレイ1のN+型第2半導体層22の内側に、N-型第3半導体層61が追加されている。なお、図8および図9は、裏面照射型の例であり、裏面側界面に固定電荷膜28も形成されている。
 図10は、図5に示した固定電荷膜29を有する第3実施の形態のフォトダイオードアレイ1に、第4実施の形態の特徴的構成を追加した構成例を示す断面図である。
 図10では、図5に示したフォトダイオードアレイ1のN+型第2半導体層22の内側に、N-型第3半導体層61が追加されている。
 図11は、図6に示したテーパ形状の分離部43を有する第3実施の形態のフォトダイオードアレイ1に、第4実施の形態の特徴的構成を追加した構成例を示す断面図である。
 図11では、図6に示したフォトダイオードアレイ1のN+型第2半導体層22の内側に、N-型第3半導体層61が追加されている。
 図8乃至図11のいずれの構成においても、平面方向に形成される電位勾配により、入射光の光電変換によって発生した電荷を、高濃度なN+型第2半導体層22に効率的に取り込むことができる。
 なお、図8乃至図11は、いずれも、裏面照射型の例であるが、表面照射型に適用することも勿論可能である。
<5.第5実施の形態>
 図12は、本技術を適用した光検出素子としてのフォトダイオードアレイの第5実施の形態の構成例を示している。
 図12のAは、フォトダイオードアレイ1の半導体基板の平面図であり、図12のBは、フォトダイオードアレイ1の半導体基板の断面図である。図12の平面図および断面図における半導体基板の表裏の関係は、第1実施の形態と同様とする。
 図12においては、上述した第1乃至第4実施の形態と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分について説明する。
 図12のBの断面図を、図8に示した第4実施の形態の断面図と比較すると、第5実施の形態では、半導体基板の表面側に、STI(Shallow Trench Isolation)63が新たに追加されている。STI63は、P+型第1半導体層21に接続されるアノードコンタクト24と、N+型第2半導体層22に接続されるカソードコンタクト23とを電気的に分離する。また、STI63は、高電界領域25を形成するP+型第1半導体層21とN+型第2半導体層22の界面が、半導体基板の表面に接することを回避する。これにより、半導体基板の表面で発生する暗電流が増倍されることを抑制することができる。
 なお、図12に示した構成例では、基板表面のカソードコンタクト23とSTI63の間に、N+型第2半導体層22が配置されているが、基板表面のカソードコンタクト23とアノードコンタクト24の間を、すべてSTI63で形成して、N+型第2半導体層22が基板表面に露出されない構成としてもよい。
<6.第6実施の形態>
 図13は、本技術を適用した光検出素子としてのフォトダイオードアレイの第6実施の形態の構成例を示している。
 図13のAは、フォトダイオードアレイ1の半導体基板の平面図であり、図13のBは、フォトダイオードアレイ1の半導体基板の断面図である。図13のAは、半導体基板の表面側に相当する図13のBの断面図における下面の平面図であり、図13のBは、図13のAのZ-Z線における断面図である。
 図13においては、上述した第1乃至第5実施の形態と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分について説明する。
 図13のBの断面図を、図8に示した第4実施の形態の断面図と比較すると、図8では、アノードコンタクト24が、画素境界に形成された両側の分離部43それぞれに隣接して形成されているのに対して、図13では、アノードコンタクト24が、両側の分離部43の一方のみに隣接して形成されている。そして、カソードコンタクト23が、画素10の中央部ではなく、アノードコンタクト24が形成されていない方の分離部43側にシフトして配置されている。
 図13のAの平面図で見ると、アノードコンタクト24は、矩形の画素10の1つの角(図13のAにおいて左上)の分離部43に接して配置されており、カソードコンタクト23は、N+型第2半導体層22の中央部(画素中央部)より、アノードコンタクト24が配置されている角と対角にある角に近い位置にシフトして配置されている。
 このように、第6実施の形態では、カソードコンタクト23とアノードコンタクト24を、矩形の画素10の平面領域内の対角方向に配置することで、画素内の可能な範囲でカソードコンタクト23とアノードコンタクト24の距離を離すことができる。これにより、半導体基板の表面側において、N型とP型の高濃度層であるカソードコンタクト23とアノードコンタクト24が接近することによって、高電界領域25よりも電界が高くなることを回避することができ、意図しないブレークダウンを抑制することができる。
<7.第7実施の形態>
 図14は、本技術を適用した光検出素子としてのフォトダイオードアレイの第7実施の形態の構成例を示している。
 図14のAは、フォトダイオードアレイ1の半導体基板の平面図であり、図14のBは、フォトダイオードアレイ1の半導体基板の断面図である。図14のAは、半導体基板の表面側に相当する図14のBの断面図における下面の平面図であり、図14のBは、図14のAのZ-Z線における断面図である。
 図14においては、上述した第1乃至第6実施の形態と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分について説明する。
 図14の第7実施の形態は、図12の第5実施の形態と、図13の第6実施の形態の両方の特徴的構成を備える形態である。
 即ち、図14の第7実施の形態では、図12の第5実施の形態と同様に、STI63が設けられている。STI63は、半導体基板の表面側に、P+型第1半導体層21に接続されるアノードコンタクト24と、N+型第2半導体層22に接続されるカソードコンタクト23とを電気的に分離する。また、図14の第7実施の形態では、図13の第6実施の形態と同様に、カソードコンタクト23とアノードコンタクト24が、矩形の画素10の平面領域内の対角方向に配置されている。
 これにより、半導体基板の表面で発生する暗電流が増倍されることを抑制することができる。また、半導体基板の表面側において、カソードコンタクト23とアノードコンタクト24が接近することによって、高電界領域25よりも電界が高くなることを回避することができ、意図しないブレークダウンを抑制することができる。
<8.第8実施の形態>
 図15は、本技術を適用した光検出素子としてのフォトダイオードアレイの第8実施の形態の構成例を示している。
 図15のAは、フォトダイオードアレイ1の半導体基板の平面図であり、図15のBは、フォトダイオードアレイ1の半導体基板の断面図である。図15のAは、半導体基板の表面側に相当する図15のBの断面図における下面の平面図であり、図15のBは、図15のAのX-X線における断面図である。
 図15のBに示される断面図では、半導体基板の裏面側界面に、暗電流抑制のための固定電荷膜28が形成されており、図15は、裏面照射型の構成例を示している。
 図15に示される第8実施の形態では、図2に示した第1実施の形態の構成と比較して、N+型第2半導体層22と半導体基板の表面との間に、N+型第2半導体層22よりも不純物濃度の低いN型の第4半導体層71(以下、N-型第4半導体層71という。)が形成されている。また、N+型第2半導体層22と半導体基板の裏面との間に、N+型第2半導体層22よりも不純物濃度の低いN型の第5半導体層72(以下、N-型第5半導体層72という。)が形成されている。N-型第4半導体層71とN-型第5半導体層72の不純物濃度は、N+型第2半導体層22よりも低ければよく、同じ濃度である必要はない。
 N-型第4半導体層71は、平面方向においては、図15のAに示されるように、N+型第2半導体層22とP+型第1半導体層21の間に、同心矩形状に形成されている。N-型第5半導体層72は、接するN+型第2半導体層22と同じ平面領域に形成されている。
 図15の第8実施の形態のその他の構成は、図2に示した第1実施の形態の裏面照射型の構成と同様であるので、説明を省略する。
 N+型第2半導体層22と半導体基板の表面との間に、N+型第2半導体層22よりも不純物濃度が低いN-型第4半導体層71を形成することにより、高電界領域25を形成するP+型第1半導体層21とN+型第2半導体層22の界面が、半導体基板の表面に接することを回避する。これにより、半導体基板の表面で発生する暗電流が増倍されることを抑制することができる。
 N+型第2半導体層22と半導体基板の裏面との間に、N+型第2半導体層22よりも不純物濃度が低いN-型第5半導体層72を形成することにより、高電界領域25を形成するP+型第1半導体層21とN+型第2半導体層22の界面が、半導体基板の裏面に接することを回避する。これにより、半導体基板の裏面で発生する暗電流が増倍されることを抑制することができる。
 なお、このように、N+型第2半導体層22の基板深さ方向に隣接してN-型第4半導体層71およびN-型第5半導体層72を配置する構造は、上述したその他の実施の形態にも適用することができる。
 図16は、図3に示した分離部43を有する第2実施の形態のフォトダイオードアレイ1に、第8実施の形態の特徴的構成を追加した構成例を示す断面図である。
 図16では、図3に示したフォトダイオードアレイ1の高電界領域25を形成するN+型第2半導体層22の基板深さ方向の長さが短くなり、N+型第2半導体層22の基板表面側と裏面側に隣接して、N-型第4半導体層71およびN-型第5半導体層72が追加されている。
 図17は、図5に示した固定電荷膜29を有する第3実施の形態のフォトダイオードアレイ1に、第8実施の形態の特徴的構成を追加した構成例を示す断面図である。
 図17では、図5に示したフォトダイオードアレイ1の高電界領域25を形成するN+型第2半導体層22の基板深さ方向の長さが短くなり、N+型第2半導体層22の基板表面側と裏面側に隣接して、N-型第4半導体層71およびN-型第5半導体層72が追加されている。
 図18は、図9に示した、テーパ形状の分離部43と、画素中央部に低濃度のN-型第3半導体層61を有する第4実施の形態のフォトダイオードアレイ1に、第8実施の形態の特徴的構成を追加した構成例を示す断面図である。
 図18では、図9に示したフォトダイオードアレイ1の高電界領域25を形成するN+型第2半導体層22の基板深さ方向の長さが短くなり、N+型第2半導体層22の基板表面側と裏面側に隣接して、N-型第4半導体層71およびN-型第5半導体層72が追加されている。
 図19は、図11に示したテーパ形状の分離部43と、画素中央部に低濃度のN-型第3半導体層61を有する第4実施の形態のフォトダイオードアレイ1に、第8実施の形態の特徴的構成を追加した構成例を示す断面図である。
 図19では、図11に示したフォトダイオードアレイ1の高電界領域25を形成するN+型第2半導体層22の基板深さ方向の長さが短くなり、N+型第2半導体層22の基板表面側と裏面側に隣接して、N-型第4半導体層71およびN-型第5半導体層72が追加されている。
 図16乃至図19のいずれの構成においても、N-型第4半導体層71およびN-型第5半導体層72を設けることにより、半導体基板の表面および裏面で発生する暗電流が増倍されることを抑制することができる。
<9.第9実施の形態>
 図20は、本技術を適用した光検出素子としてのフォトダイオードアレイの第9実施の形態の構成例を示している。
 第9実施の形態については、図15乃至図19で示した第8実施の形態と比較して、説明する。
 図20に示される第9実施の形態に係るフォトダイオードアレイ1では、図15に示した第8実施の形態においてN+型第2半導体層22の基板表面側と基板裏面側に隣接して形成されていたN-型第4半導体層71およびN-型第5半導体層72の領域に、P+型第1半導体層21よりも不純物濃度の低いP型の第6半導体層81(以下、P-型第6半導体層81という。)および第7半導体層82(以下、P-型第7半導体層82という。)が形成されている。
 なお、P-型第6半導体層81とN+型第2半導体層22との間に、低濃度のN型(N-型)の第8半導体層83(以下、N-型第8半導体層83という。)が薄い膜厚で挿入されているが、このN-型第8半導体層83は、P-型第6半導体層81に置き換えてもよい。
 また、P-型第7半導体層82の平面方向内側に、低濃度のN型(N-型)の第9半導体層84(以下、N-型第9半導体層84という。)が形成されているが、このN-型第9半導体層84は、P-型第7半導体層82に置き換えてもよい。
 図21に示される第9実施の形態に係るフォトダイオードアレイ1は、図16に示した第8実施の形態の構成例に対応する。図16のN+型第2半導体層22の基板表面側と裏面側に隣接して形成されていたN-型第4半導体層71およびN-型第5半導体層72が、図21では、P-型第6半導体層81およびP-型第7半導体層82と、N-型第8半導体層83およびN-型第9半導体層84に置き換えられている。
 図22に示される第9実施の形態に係るフォトダイオードアレイ1は、図17に示した第8実施の形態の構成例に対応する。図17のN+型第2半導体層22の基板表面側と裏面側に隣接して形成されていたN-型第4半導体層71およびN-型第5半導体層72が、図22では、P-型第6半導体層81およびP-型第7半導体層82と、N-型第8半導体層83およびN-型第9半導体層84に置き換えられている。
 図23に示される第9実施の形態に係るフォトダイオードアレイ1は、図18に示した第8実施の形態の構成例に対応する。図18のN+型第2半導体層22の基板表面側と裏面側に隣接して形成されていたN-型第4半導体層71およびN-型第5半導体層72が、図23では、P-型第6半導体層81およびP-型第7半導体層82と、N-型第8半導体層83およびN-型第9半導体層84に置き換えられている。なお、図23において、N-型第9半導体層84は、同型および同濃度のN-型第3半導体層61として図示されている。
 図24に示される第9実施の形態に係るフォトダイオードアレイ1は、図19に示した第8実施の形態の構成例に対応する。図19のN+型第2半導体層22の基板表面側に隣接して形成されていたN-型第4半導体層71が、図24では、P-型第6半導体層81に置き換えられている。
 なお、図21乃至図23において、N-型第8半導体層83および-型第9半導体層84をそれぞれ、P-型第6半導体層81およびP-型第7半導体層82に置き換えてもよい点は、図20と同様である。
 図21乃至図24の第9実施の形態によれば、N+型第2半導体層22と半導体基板の表面との間に、N+型第2半導体層22よりも不純物濃度が低いP-型第6半導体層81を形成することにより、高電界領域25を形成するP+型第1半導体層21とN+型第2半導体層22の界面が、半導体基板の表面に接することを回避する。これにより、半導体基板の表面で発生する暗電流が増倍されることを抑制することができる。
 N+型第2半導体層22と半導体基板の裏面との間に、N+型第2半導体層22よりも不純物濃度が低いP-型第7半導体層82を形成することにより、高電界領域25を形成するP+型第1半導体層21とN+型第2半導体層22の界面が、半導体基板の裏面に接することを回避する。これにより、半導体基板の裏面で発生する暗電流が増倍されることを抑制することができる。
<10.第10実施の形態>
 図25は、本技術を適用した光検出素子としてのフォトダイオードアレイの第10実施の形態の構成例を示している。
 図25のAは、フォトダイオードアレイ1の半導体基板の平面図であり、図25のBは、フォトダイオードアレイ1の半導体基板の断面図である。図25のAは、半導体基板の表面側に相当する図25のBの断面図における下面の平面図であり、図25のBは、図25のAのX-X線における断面図である。
 図25に示される第10実施の形態は、図21に示した第9実施の形態と比較して、N+型第2半導体層22の領域内の濃度分布が異なる。
 具体的には、図21に示した第9実施の形態では、N+型第2半導体層22の領域内の不純物濃度が、均一に形成されていた。
 これに対して、図25の第10実施の形態では、基板深さ方向に対しては、基板裏面から基板表面に向かって不純物濃度が濃くなり、基板表面において、カソードコンタクト23の不純物濃度となる。また、基板深さ方向に直交する平面方向に対しては、画素中央部から、画素境界に向かって不純物濃度が濃くなり、P+型第1半導体層21とN+型第2半導体層22との界面においては、高電界領域25を形成するのに十分な高濃度となっている。
 平面方向に電位勾配を形成することにより、図7等で示した第4実施の形態と同様に、入射光の光電変換によって発生した電荷を、高電界領域25に効率的に取り込むことができる。
 また、基板深さ方向に電位勾配を形成することにより、高電界領域25で増倍された電荷を、カソードコンタクト23に効率的に収集することができる。
<11.第11実施の形態>
 図26は、本技術を適用した光検出素子としてのフォトダイオードアレイの第11実施の形態の構成例を示している。
 第11実施の形態については、図20乃至図24で示した第9実施の形態と比較して、説明する。
 図26に示される第11実施の形態に係るフォトダイオードアレイ1では、図20に示した第9実施の形態において、N+型第2半導体層22の基板裏面側に隣接して形成されていたP-型第7半導体層82およびN-型第9半導体層84が、低濃度のN型(N-型)の第10半導体層91(以下、N-型第10半導体層91という。)に置き換えられている。N-型第10半導体層91は、図20のP-型第7半導体層82およびN-型第9半導体層84よりも、基板深さ方向の厚みが厚く形成されており、その分、高電界領域25の基板深さ方向の領域長さが短く形成されている。
 このように、高電界領域25の基板深さ方向の領域長さを短く形成し、基板表面および基板裏面から離すことにより、高電界領域25を形成するP+型第1半導体層21とN+型第2半導体層22の界面が、半導体基板の表面および裏面に接することを回避する。これにより、半導体基板の表面および裏面で発生する暗電流が増倍されることを抑制することができる。
 図27に示される第11実施の形態に係るフォトダイオードアレイ1は、図21に示した第9実施の形態の構成例に対応する。図21においてN+型第2半導体層22の基板裏面側に隣接して形成されていたP-型第7半導体層82およびN-型第9半導体層84が、図27では、N-型第10半導体層91に置き換えられている。また、画素10の境界に形成されている分離部43が、基板表面側から、高電界領域25の基板深さ方向の領域長さに対応して形成されている。
 図28に示される第11実施の形態に係るフォトダイオードアレイ1は、図22に示した第9実施の形態の構成例に対応する。図22において画素10の境界に形成されている分離部43が、図28では、基板裏面側から、高電界領域25の基板深さ方向の領域長さに対応して形成されている。
 図29に示される第11実施の形態に係るフォトダイオードアレイ1は、図23に示した第9実施の形態の構成例に対応する。図23においてN+型第2半導体層22の基板裏面側に隣接して形成されていたN-型第3半導体層61およびP-型第7半導体層82が、図29では、N-型第10半導体層91に置き換えられている。また、画素10の境界に形成されている分離部43が、基板表面側から、高電界領域25の基板深さ方向の領域長さに対応して形成されている。
 図30に示される第11実施の形態に係るフォトダイオードアレイ1は、図24に示した第9実施の形態の構成例に対応する。図23においてN+型第2半導体層22の基板裏面側に隣接して形成されていたN-型第5半導体層72が、図30では、P-型第7半導体層82に置き換えられている。また、画素10の境界に形成されている分離部43が、基板裏面側から、高電界領域25の基板深さ方向の領域長さに対応して形成されている。
 図26乃至図30の第11実施の形態によれば、高電界領域25の基板深さ方向の領域長さを短く形成し、基板表面および基板裏面から離すことにより、高電界領域25を形成するP+型第1半導体層21とN+型第2半導体層22の界面が、半導体基板の表面および裏面に接することを回避する。これにより、半導体基板の表面および裏面で発生する暗電流が増倍されることを抑制することができる。高電界領域25の領域面積が小さくなるほど、DCRが改善することができるので、DCRを向上させることができる。
<12.第12実施の形態>
 図31乃至図38で説明する第12乃至第15実施の形態は、光の入射面側にOCL(On Chip Lenz)を追加した構成例を示している。図31乃至図38において、半導体基板内の構成については、図21に示した第9実施の形態の構成を採用した例で説明するが、その他の実施の形態の構成も採用可能である。
 図31は、本技術を適用した光検出素子としてのフォトダイオードアレイの第12実施の形態の構成例を示している。
 図31のAは、フォトダイオードアレイ1の半導体基板の表面側の平面図であり、図31のBは、図31のAのX-X線における断面図である。
 図31の第12実施の形態では、配線層102が形成された半導体基板の表面側に、OCL101が、1画素単位に形成されている。したがって、図31のフォトダイオードアレイ1は、光の入射面が半導体基板の表面である表面照射型の例である。なお、図31のAの平面図では、配線層102の図示は省略されている。
 このように、光の入射面側に、OCL101を形成することで、入射光を、高電界領域25に効率的に取り込むことができ、感度を向上させることができる。
 図32は、裏面照射型とした場合の第12実施の形態に係るフォトダイオードアレイ1の構成例を示している。
 第12実施の形態において、光の入射面を半導体基板の裏面とした場合、裏面の固定電荷膜28の上面に、OCL101が、1画素単位に形成される。半導体基板裏面の画素境界には、タングステン(W)、アルミニウム(Al)又は銅(Cu)などの金属材料を用いた画素間遮光膜103も設けられている。
 光の入射面が半導体基板の裏面である裏面照射型とした場合には、光路上に配線層102が存在しないので、配線層102による光のケラレを抑制することができ、さらに感度を向上させることができる。
<13.第13実施の形態>
 図33は、本技術を適用した光検出素子としてのフォトダイオードアレイの第13実施の形態の構成例を示している。
 図33のAは、フォトダイオードアレイ1の半導体基板の表面側の平面図にOCLを重ねた図であり、図33のBは、図33のAのX-X線における断面図である。
 図33の第13実施の形態は、光の入射面が半導体基板の裏面である裏面照射型の例であり、図32に示した裏面照射型の第12実施の形態とは、OCLの構成が異なる。
 具体的には、図32の第12実施の形態では、1画素に対して1個のOCL101が形成されていたのに対して、図33の第13実施の形態では、1画素に対して2x2(2行2列)の4個のOCL111が形成されている。
 このように、1画素に対して複数のOCL111を形成する構成とすることで、入射光を、画素境界の近傍に形成される高電界領域25に集めることができる。すなわち、入射光を高電界領域25に効率的に取り込むことができるので、感度を向上させることができる。
 なお、図33は、1画素に対して4個のOCL111を配置した例であるが、1画素に対して配置するOCL111の個数および配列はこれに限られず、任意である。
<14.第14実施の形態>
 図34は、本技術を適用した光検出素子としてのフォトダイオードアレイの第14実施の形態の構成例を示している。
 図34のAは、フォトダイオードアレイ1の半導体基板の表面側の平面図にOCLを重ねた図であり、図34のBは、図34のAのX-X線における断面図である。
 図34の第14実施の形態は、光の入射面が半導体基板の裏面である裏面照射型の例であり、図32に示した裏面照射型の第12実施の形態とは、OCLの構成が異なる。
 具体的には、図32の第12実施の形態では、1画素に対して1個のOCL101が形成されていたのに対して、図34の第14実施の形態では、2x2の4画素に対して1個のOCL121が形成されている。
 このように、複数画素に対して1個のOCL121を形成する構成とすることで、高電界領域25の面積を増やすことができ、光の利用効率を向上させることができる。
 なお、フォトダイオードアレイ1を、複数画素に対して1個のOCL121を形成する構成とした場合、図35に示されるように、1個のOCL121の下方の分離部43には、金属膜42を埋め込まないことが好ましい。図34と図35は、1個のOCL121の下方の分離部43に金属膜42を有するか否かのみが異なる。2x2の4画素に対して1個のOCL121が形成される配置の場合、図34のAに示されるように、OCL121の外周を囲む2x2の矩形の分離部43には、金属膜42が埋め込まれているが、OCL121下方となる2x2の矩形の内側の分離部43には、金属膜42が省略されている。これにより、OCL121で集光された光のケラレを抑制することができる。
 図34および図35は、2x2の4画素に対して1個のOCL121を配置した例であるが、1個のOCL121を配置する画素10の個数および配列はこれに限られず、任意である。
 例えば、図36は、1x2(1行2列)の2画素に対して1個のOCL121を配置した例を示している。この場合、1個のOCL121の平面形状が略長方形となる。
 図36においても、1個のOCL121の外周を囲む1x2画素の矩形の分離部43には、金属膜42が埋め込まれているが、OCL121下方となる1x2画素の矩形の内側の分離部43には、金属膜42が省略されている。これにより、OCL121で集光された光のケラレを抑制することができる。
 また、複数画素に対して1個のOCL121を配置する場合の画素10の平面形状も、正方形以外の形状、例えば、長方形や円形でもよい。
 図37は、画素10の平面形状が長方形であり、長方形の画素10の2画素に対して1個のOCL121を配置した例を示している。この場合、1個のOCL121の平面形状が略正方形となる。
 図37においても、1個のOCL121の外周を囲む1x2画素の矩形の分離部43には、金属膜42が埋め込まれているが、OCL121下方となる1x2画素の矩形の内側の分離部43には、金属膜42が省略されている。これにより、OCL121で集光された光のケラレを抑制することができる。
<15.第15実施の形態>
 図38は、本技術を適用した光検出素子としてのフォトダイオードアレイの第15実施の形態の構成例を示している。
 図38のAは、フォトダイオードアレイ1の半導体基板の表面側の平面図にOCLを重ねた図であり、図38のBは、図38のAのX-X線における断面図である。
 図38の第14実施の形態は、1画素毎に1個のOCL101が形成された裏面照射型のフォトダイオードアレイ1である図32の第12実施の形態と、半導体基板の表面側に形成された配線層102内の構成が異なる。
 具体的には、図38の配線層102では、2x2の4画素で光電変換された光信号が、1画素の信号として出力されるように、2x2の4画素単位で、カソードコンタクト23どうしが接続されるとともに、アノードコンタクト24どうしが接続されている。
 このように、隣接する複数画素で1つの信号出力とすることで、高感度化を図ることができる。
<16.第16実施の形態>
 図39は、本技術を適用した光検出素子としてのフォトダイオードアレイの第16実施の形態の構成例を示している。
 図39に示される第16実施の形態は、図17に示した第8実施の形態の構成に、読み出し回路領域を、半導体基板の表面側に追加した構成である。
 具体的には、図39の第16実施の形態では、図17に示した第8実施の形態おけるN-型第4半導体層71が拡張されており、そのN-型第4半導体層71内に、N-型第4半導体層71と反対の導電型(P型)の低い不純物濃度で、ウェル151(以下、P-型ウェル151という。)が形成されている。P-型ウェル151には、2個のソース・ドレイン領域152とゲート電極153とからなるトランジスタTr1が形成されている。2個のソース・ドレイン領域152の一方は、図中、右側のカソードコンタクト23と接続されている。図中、左側のカソードコンタクト23は、不図示のP-型ウェル151のトランジスタTr1と接続されている。
 このように、複数のトランジスタからなる読み出し回路領域と高電界領域25を、基板深さ方向に縦積みすることにより、読み出し回路領域と高電界領域25を平面方向に並べた構成と比較して、面積利用効率を高め、画素サイズを小さくすることができる。
 読み出し回路領域は、複数画素で共有されてもよい。
 図40は、読み出し回路領域が複数画素で共有される場合の構成例を示している。
 図40のAは、読み出し回路領域が複数画素で共有される場合のフォトダイオードアレイ1の半導体基板の断面図であり、図40のBは、読み出し回路領域が複数画素で共有される場合のフォトダイオードアレイ1の平面図である。図40のAの断面図は、図40のBの1点鎖線で示される部分に相当する。
 図40のAに示されるように、図39におけるトランジスタTr1の2個のソース・ドレイン領域152の一方が、N+型第2半導体層22に置き換えられ、N+型第2半導体層22の上面に暗電流抑制のためのピニング層171が形成されている。ピニング層171は、N+型第2半導体層22と反対の導電型であるP型の半導体層で形成される。トランジスタTr1のゲート電極153に供給される電圧を制御することによって、N+型第2半導体層22に対する信号の蓄積と読み出しが切り替えられる。
 図40のBに示されるように、トランジスタTr1は、2x2(2行2列)の4画素の中央部に配置され、4画素で共有される。また、4x2(4行2列)の8画素の四隅に、アノードコンタクト24が配置され、4x2の8画素の中央部に、P-型ウェル151の電圧を制御するコンタクト172が配置される。コンタクト172には、例えば、0V等の所定の電圧が供給される。4x2の8画素の外周部には、信号読み出し用のトランジスタTr1以外の複数の制御用トランジスタTr2が配置される。
 このように、読み出し回路領域と高電界領域25を基板深さ方向に縦積みする構成において、読み出し回路領域を複数画素で共有することで、さらに面積利用効率を高め、画素サイズを小さくすることができる。
<17.第1の製造方法>
 次に、図41を参照して、フォトダイオードアレイ1の半導体基板に、P+型第1半導体層21およびN+型第2半導体層22を形成する第1の製造方法について説明する。この第1の製造方法は、例えば、図1および図2に示した第1実施の形態に適用することができる。
 初めに、リン(P)等のN型不純物のイオン注入を半導体基板の深さ方向に複数回行うことにより、N+型のウェル211(以下、N+型ウェル211という。)が形成される。
 次に、P+型第1半導体層21の形成領域に合わせてパターニングされたマスク212を用いて、ボロン(B)等のP型不純物のイオン注入を半導体基板の深さ方向に複数回行うことにより、P+型第1半導体層21が形成される。P+型第1半導体層21が形成される領域は、例えば、図1のAの平面図のように、画素10の境界およびその近傍の外周部に相当する。形成されたP+型第1半導体層21以外のN+型ウェル211の領域が、N+型第2半導体層22となる。以上により、半導体基板の深さ方向に高電界領域25を形成することができる。
 半導体基板の深さ方向にイオン注入を複数回行うことにより、N+型ウェル211およびP+型第1半導体層21を形成する方法では、図41において濃淡で示されるように、N+型ウェル211およびP+型第1半導体層21の各領域において深さ方向に濃度差が発生するが、N+型ウェル211の不純物濃度は、例えば1015乃至1017/cm3程度に制御されることが好ましい。また、P+型第1半導体層21の不純物濃度としては、N+型ウェル211の不純物濃度よりも高い濃度が好ましい。
 その後、裏面側界面の全領域にP型不純物がイオン注入されることにより、裏面側界面の全領域にP+型第1半導体層21が形成される。なお、P型不純物のイオン注入は、裏面側界面の全領域ではなく、マスクを用いて、N+型第2半導体層22の領域のみでもよい。あるいはまた、図2に示したように、裏面側界面に暗電流抑制のための固定電荷膜28を形成する場合には、固定電荷膜28に正孔が蓄積されるため、裏面側界面の全領域をP+型第1半導体層21とせずに、固定電荷膜28を追加形成してもよい。
 次に、半導体基板の表面側界面に、カソードコンタクト23およびアノードコンタクト24が形成される。
 以上のようにして、P+型第1半導体層21およびN+型第2半導体層22を形成することができる。
<18.第2の製造方法>
 次に、図42を参照して、フォトダイオードアレイ1の半導体基板に、P+型第1半導体層21およびN+型第2半導体層22を形成する第2の製造方法について説明する。この第2の製造方法は、図3の第2実施の形態のように、画素10の境界に、分離部43を設ける場合に適用できる。
 初めに、リン(P)等のN型不純物のイオン注入を半導体基板の深さ方向に複数回行うことにより、N+型のウェル221(以下、N+型ウェル221という。)が形成される。
 次に、N+型ウェル221内の画素10の境界およびその近傍の外周部に相当する領域の基板深さ方向に、P型のイオンを含む酸化膜222が埋め込まれ、熱拡散によってP+型第1半導体層21が形成される。形成されたP+型第1半導体層21以外のN+型ウェル221の領域が、N+型第2半導体層22となる。以上により、半導体基板の深さ方向に高電界領域25を形成することができる。
 N+型ウェル221の不純物濃度は、例えば1015乃至1017/cm3程度に制御されることが好ましい。また、P+型第1半導体層21の不純物濃度としては、N+型ウェル221の不純物濃度よりも高い濃度が好ましい。熱拡散によって形成されたP+型第1半導体層21は、基板深さ方向に直交する横方向に、キャリア移動に影響のない範囲内で濃度差が発生してもよい。
 その後の工程は、図41を参照して説明した第1の製造方法と同様である。
 すなわち、裏面側界面の全領域、または、N+型第2半導体層22の領域のみに、P型不純物がイオン注入され、裏面側界面の全領域にP+型第1半導体層21が形成される。あるいはまた、裏面側界面の全領域をP+型第1半導体層21とする工程は省略されて、裏面界面に固定電荷膜28が形成される。そして、半導体基板の表面側界面に、カソードコンタクト23およびアノードコンタクト24が形成される。
 酸化膜222は、分離部43を構成する絶縁膜41としてそのまま残される。分離部43として絶縁膜41の内側に金属膜42を設ける場合には、さらに、絶縁膜41としての酸化膜222の一部を開口して、金属材料が埋め込まれる。
<19.第3の製造方法>
 次に、図43を参照して、フォトダイオードアレイ1の半導体基板に、P+型第1半導体層21およびN+型第2半導体層22を形成する第3の製造方法について説明する。この第3の製造方法も、画素10の境界に、分離部43を設ける場合の製造方法である。
 図42で説明した第2の製造方法では、最初に、リン(P)等のN型不純物のイオン注入を半導体基板の深さ方向に複数回行うことにより、N+型ウェル221を形成した。第3の製造方法では、半導体基板にN+型ウェル221を形成する代わりに、高濃度のN型(N+)の半導体基板231が用いられる。それ以外の方法は、図41で説明した第2の製造方法と同様である。
 N+型の半導体基板231の不純物濃度は、例えば1015乃至1017/cm3程度に制御されることが好ましく、P+型第1半導体層21の不純物濃度としては、N+型の半導体基板231の不純物濃度よりも高い濃度が好ましい。熱拡散によって形成されたP+型第1半導体層21は、基板深さ方向に直交する横方向に、キャリア移動に影響のない範囲内で濃度差が発生する。
 その後の工程は、図41で説明した第1の製造方法と同様である。
<20.第4の製造方法>
 次に、図44を参照して、フォトダイオードアレイ1の半導体基板に、P+型第1半導体層21およびN+型第2半導体層22を形成する第4の製造方法について説明する。この第4の製造方法も、画素10の境界に、分離部43を設ける場合の製造方法である。
 初めに、半導体基板261に対して、画素10の境界およびその近傍の外周部に相当する領域の基板深さ方向に、N型のイオンを含む第1酸化膜262が埋め込まれ、熱拡散によってN+型の半導体層263が形成される。
 次に、形成されたN型のイオンを含む第1酸化膜262が除去され、その除去された部分に、P型のイオンを含む第2酸化膜264が埋め込まれ、熱拡散によってP+型の半導体層21が形成される。形成されたP+型第1半導体層21以外のN+型の半導体層263の領域が、N+型第2半導体層22となる。以上により、半導体基板の深さ方向に高電界領域25を形成することができる。
 N+型第2半導体層22の不純物濃度は、例えば1015乃至1017/cm3程度に制御されることが好ましく、P+型第1半導体層21の不純物濃度としては、N+型第2半導体層22の不純物濃度よりも高い濃度が好ましい。熱拡散によって形成されたP+型第1半導体層21およびN+型第2半導体層22は、基板深さ方向に直交する横方向に、キャリア移動に影響のない範囲内で濃度差が発生してもよい。
 その後の工程は、図41で説明した第1の製造方法と同様である。
<21.第5の製造方法>
 次に、図45を参照して、フォトダイオードアレイ1の半導体基板に、P+型第1半導体層21およびN+型第2半導体層22を形成する第5の製造方法について説明する。この第5の製造方法も、画素10の境界に、分離部43を設ける場合の製造方法である。
 初めに、半導体基板261に対して、画素10の境界およびその近傍の外周部に相当する領域の基板深さ方向に、N型のイオンを含む第1酸化膜262が埋め込まれる。
 次に、半導体基板261に対して、画素10の境界およびその近傍の外周部に相当する領域の基板深さ方向に、P型のイオンを含む第2酸化膜264が埋め込まれる。P型のイオンを含む第2酸化膜264が埋め込まれる領域は、N型のイオンを含む第1酸化膜262を埋め込んだ領域と異なる領域であり、N型のイオンを含む第1酸化膜262が埋め込まれた領域と、P型のイオンを含む第2酸化膜264が埋め込まれた領域のそれぞれが、分離部43の絶縁膜41の領域に対応する。
 次に、熱拡散を行うことにより、P+型の半導体層21とN+型第2半導体層22が形成される。以上により、半導体基板の深さ方向に高電界領域25を形成することができる。
 N+型第2半導体層22の不純物濃度は、好ましくは例えば1015乃至1017/cm3程度に制御され、P+型第1半導体層21の不純物濃度としては、N+型第2半導体層22の不純物濃度よりも高い濃度が好ましい。熱拡散によって形成されたP+型第1半導体層21およびN+型第2半導体層22は、基板深さ方向に直交する横方向に、キャリア移動に影響のない範囲内で濃度差が発生してもよい。
 その後の工程は、図41で説明した第1の製造方法と同様である。
<22.第6の製造方法>
 次に、図46を参照して、フォトダイオードアレイ1の半導体基板に、P+型第1半導体層21およびN+型第2半導体層22を形成する第6の製造方法について説明する。この第6の製造方法は、図9に示した第4実施の形態のように、テーパ形状の分離部43を基板表面側から掘り込んで形成する場合の製造方法である。
 初めに、図46のAに示されるように、低濃度のN型(N-)の半導体基板281の表面側から所定の深さで掘り込むことにより、トレンチ282が形成される。トレンチ282は、表面側の開口面積が広く、底部となる裏面側の開口面積が狭いテーパ形状で作製される。
 次に、図46のBに示されるように、トレンチ282の側面から、リン(P)等のN型不純物のイオン注入を行うことにより、N+型第2半導体層22が、トレンチ282の側面に沿って形成される。
 次に、図46のCに示されるように、トレンチ282の側面から、N+型第2半導体層22よりも浅い基板内に、ボロン(B)等のP型不純物のイオン注入を行うことにより、P+型第1半導体層21が形成される。イオン注入には、例えば、プラズマドーピングによって浅く打ち込むことで、電界をより付けやすくすることができる。
 次に、図46のDに示されるように、トレンチ282の内部に、酸化膜41を埋め込むことにより、分離部43が形成される。分離部43として金属膜42も設ける場合には、酸化膜41を埋め込んだ後に、酸化膜41の一部を開口して、金属膜42が埋め込まれる。
 その後の工程は、図41で説明した第1の製造方法と同様である。
<23.第7の製造方法>
 次に、図47および図48を参照して、フォトダイオードアレイ1の半導体基板に、P+型第1半導体層21およびN+型第2半導体層22を形成する第7の製造方法について説明する。この第7の製造方法は、図24に示した第9実施の形態のように、テーパ形状の分離部43を基板裏面側から掘り込んで形成する場合の製造方法である。
 テーパ形状の分離部43を基板裏面側から掘り込んで形成する場合、例えば、図47のAに示されるように、低濃度のN型(N-)の半導体基板301の表面側に、カソードコンタクト23、アノードコンタクト24、アノードコンタクト24の周囲のP-型第6半導体層81などが、最初に形成される。その後、カソードコンタクト23およびアノードコンタクト24等が形成された基板表面上に、配線層302が形成される。
 配線層302を形成した後、図47のBに示されるように、半導体基板301の上下が反転され、半導体基板301の裏面側から、所定の深さでトレンチ311が形成される。
 次に、図47のCに示されるように、トレンチ311の側面から、リン(P)等のN型不純物のイオン注入を行うことにより、N+型第2半導体層22が形成される。
 次に、図48のAに示されるように、トレンチ311の側面から、N+型第2半導体層22よりも浅い基板内に、ボロン(B)等のP型不純物のイオン注入を行うことにより、P+型第1半導体層21が形成される。イオン注入には、例えば、プラズマドーピングによって浅く打ち込むことで、電界をより付けやすくすることができる。
 次に、図48のBに示されるように、トレンチ311の側面および底面と、トレンチ311が形成されていない半導体基板301の裏面界面に、固定電荷膜29が形成される。この固定電荷膜29は、例えば、HfO2、Al2O3等の膜とされる。
 次に、図48のCに示されるように、トレンチ311の内部に、酸化膜41が埋め込まれ、分離部43が形成される。分離部43として金属膜42も設ける場合には、酸化膜41を埋め込んだ後に、酸化膜41の一部を開口して、金属膜42が埋め込まれる。
 以上のようにして、基板裏面側から形成したテーパ形状の分離部43を有するフォトダイオードアレイ1を製造することができる。
<24.まとめ>
 以上説明したように、第1乃至第16実施の形態に係るフォトダイオードアレイ1は、マトリクス状に配置された複数の画素10を備え、画素境界近傍の外周部に形成された第1導電型(例えば、P型)の第1半導体層(P+型第1半導体層21)と、平面視において第1半導体層の内側に形成された、第1導電型と反対の第2導電型(例えば、N型)の第2半導体層(N+型第2半導体層22)とを備え、逆バイアス電圧が印加されたときに第1半導体層と第2半導体層とで形成される高電界領域25が基板の深さ方向に形成されるように構成される。
 基板深さ方向(縦方向)に高電界領域25を形成するため、ガードリングを設けずに、平面方向に小面積で高電界領域25を形成することができるので、画素サイズを小さくすることができる。
 さらに、フォトダイオードアレイ1において、画素境界に分離部43を形成した場合には、電気的及び光学的なクロストークを低減することができる。
 高電界領域25が基板の深さ方向に形成される第1導電型(例えば、P型)の第1半導体層(P+型第1半導体層21)と、第2導電型(例えば、N型)の第2半導体層(N+型第2半導体層22)は、上述した第1乃至第7の製造方法のいずれかを用いて形成することができる。
 基板深さ方向(縦方向)に高電界領域25を形成可能なAPDをマトリクス状に配置したフォトダイオードアレイ1は、例えば、フォトンカウンタや、TOF(Time of Flight)センサの受光素子に用いることができる。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、上述した複数の実施の形態の全てまたは一部を組み合わせた形態を採用することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 マトリクス状に配置された複数の画素を備え、
 前記画素は、
  画素境界近傍の外周部に形成された第1導電型の第1半導体層と、
  平面視において前記第1半導体層の内側に形成された、前記第1導電型と反対の第2導電型の第2半導体層と
 を備え、
 逆バイアス電圧が印加されたときに前記第1半導体層と前記第2半導体層とで形成される高電界領域が、基板の深さ方向に形成されるように構成された
 光検出素子。
(2)
 画素境界に、隣接する画素間を絶縁分離する分離部をさらに備え、
 前記高電界領域は、前記分離部に隣接して形成されるように構成された
 前記(1)に記載の光検出素子。
(3)
 平面視において前記第2半導体層の内側に、前記第2半導体層よりも不純物濃度が低い前記第2導電型の第3半導体層をさらに備える
 前記(1)または(2)に記載の光検出素子。
(4)
 前記第2半導体層は、前記基板の表面に向かって不純物濃度が濃くなる電位勾配を有する
 前記(1)乃至(3)のいずれかに記載の光検出素子。
(5)
 前記第2半導体層の前記基板の深さ方向に隣接して、不純物濃度が低い前記第1導電型または前記第2導電型の第4半導体層をさらに備える
 前記(1)乃至(4)のいずれかに記載の光検出素子。
(6)
 前記第4半導体層は、前記第2半導体層に対して前記基板の表面側に隣接し、前記第2導電型である
 前記(5)に記載の光検出素子。
(7)
 前記第4半導体層は、前記第2半導体層に対して前記基板の裏面側に隣接し、前記第2導電型である
 前記(5)または(6)に記載の光検出素子。
(8)
 前記第4半導体層は、前記第2半導体層に対して前記基板の表面側に隣接し、前記第1導電型である
 前記(5)に記載の光検出素子。
(9)
 前記第4半導体層は、前記第2半導体層に対して前記基板の裏面側に隣接し、前記第1導電型である
 前記(5)または(8)に記載の光検出素子。
(10)
 前記基板の表面に形成された前記第1導電型のウェル内に、読み出し回路をさらに備える
 前記(1)乃至(9)のいずれかに記載の光検出素子。
(11)
 前記読み出し回路は、複数の画素で共有される
 前記(10)に記載の光検出素子。
(12)
 前記第2半導体層に隣接し、かつ、前記基板の表面に、前記第1導電型の第5半導体層をさらに備える
 前記(10)または(11)に記載の光検出素子。
(13)
 前記読み出し回路は、ゲート電極を制御することによって、信号の蓄積と読み出しを切り替える
 前記(10)乃至(12)のいずれかに記載の光検出素子。
(14)
 マトリクス状に配置される画素の境界近傍の外周部に、第1導電型の第1半導体層を形成し、
 平面視において前記第1半導体層の内側に、前記第1導電型と反対の第2導電型の第2半導体層を形成し、
 逆バイアス電圧が印加されたときに前記第1半導体層と前記第2半導体層とで形成される高電界領域が、基板の深さ方向に形成されるように構成された
 光検出素子の製造方法。
(15)
 前記第2導電型のウェル内の前記画素の境界近傍の外周部に、第1導電型のイオン注入を行うことによって、前記外周部の前記第1半導体層と、その内側の前記第2半導体層とを形成する
 前記(14)に記載の光検出素子の製造方法。
(16)
 前記第2導電型のウェルは、前記基板にイオン注入を行うことによって形成される
 前記(15)に記載の光検出素子の製造方法。
(17)
 前記第2導電型のウェルとして、前記第2導電型の前記基板が用いられる
 前記(15)に記載の光検出素子の製造方法。
(18)
 前記第2導電型のイオンを含んだ第1酸化膜を埋め込み、熱拡散によって前記第2半導体層を形成した後、前記第1酸化膜を除去して、その除去された部分に、前記第1導電型のイオンを含んだ第2酸化膜を埋め込み、熱拡散によって前記第1半導体層を形成することによって、前記外周部の前記第1半導体層と、その内側の前記第2半導体層とを形成する
 前記(15)に記載の光検出素子の製造方法。
(19)
 前記第1導電型のイオンを含んだ第1酸化膜を埋め込み、前記第2導電型のイオンを含んだ第2酸化膜を前記第1酸化膜とは別の領域に埋め込み、熱拡散によって前記第1半導体層と前記第2半導体層を形成することによって、前記外周部の前記第1半導体層と、その内側の前記第2半導体層とを形成する
 前記(15)に記載の光検出素子の製造方法。
(20)
 前記基板の前記画素の境界に、前記基板の所定の深さまで掘り込んだトレンチを形成し、前記トレンチの側面から前記第1導電型のイオン注入と前記第2導電型のイオン注入を行うことで、前記外周部の前記第1半導体層と、その内側の前記第2半導体層とを形成する
 前記(15)に記載の光検出素子の製造方法。
 1 フォトダイオードアレイ, 10 画素, 21 第1半導体層(P+型第1半導体層), 22 第2半導体層(N+型第2半導体層), 23 コンタクト(カソードコンタクト), 24 コンタクト(アノードコンタクト), 25 高電界領域, 28,29 固定電荷膜, 41 酸化膜, 42 金属膜, 43 分離部, 61 第3半導体層(N-型第3半導体層), 71 第4半導体層(N-型第4半導体層), 72 第5半導体層(N-型第5半導体層), 81 第6半導体層(P-型第6半導体層), 82 第7半導体層(P-型第7半導体層), 83 第8半導体層(N-型第9半導体層), 91 第10半導体層(N-型第10半導体層), 151 ウェル(P-型ウェル), 153 ゲート電極, 171 ピニング層, 172 コンタクト, 211 ウェル(N+型ウェル), 221 ウェル(N+型ウェル), 222 酸化膜, 231,261 半導体基板, 262 第1酸化膜, 263 半導体層, 264 第2酸化膜, 281 半導体基板, 282,311 トレンチ

Claims (20)

  1.  マトリクス状に配置された複数の画素を備え、
     前記画素は、
      画素境界近傍の外周部に形成された第1導電型の第1半導体層と、
      平面視において前記第1半導体層の内側に形成された、前記第1導電型と反対の第2導電型の第2半導体層と
     を備え、
     逆バイアス電圧が印加されたときに前記第1半導体層と前記第2半導体層とで形成される高電界領域が、基板の深さ方向に形成されるように構成された
     光検出素子。
  2.  画素境界に、隣接する画素間を絶縁分離する分離部をさらに備え、
     前記高電界領域は、前記分離部に隣接して形成されるように構成された
     請求項1に記載の光検出素子。
  3.  平面視において前記第2半導体層の内側に、前記第2半導体層よりも不純物濃度が低い前記第2導電型の第3半導体層をさらに備える
     請求項1に記載の光検出素子。
  4.  前記第2半導体層は、前記基板の表面に向かって不純物濃度が濃くなる電位勾配を有する
     請求項1に記載の光検出素子。
  5.  前記第2半導体層の前記基板の深さ方向に隣接して、不純物濃度が低い前記第1導電型または前記第2導電型の第4半導体層をさらに備える
     請求項1に記載の光検出素子。
  6.  前記第4半導体層は、前記第2半導体層に対して前記基板の表面側に隣接し、前記第2導電型である
     請求項5に記載の光検出素子。
  7.  前記第4半導体層は、前記第2半導体層に対して前記基板の裏面側に隣接し、前記第2導電型である
     請求項5に記載の光検出素子。
  8.  前記第4半導体層は、前記第2半導体層に対して前記基板の表面側に隣接し、前記第1導電型である
     請求項5に記載の光検出素子。
  9.  前記第4半導体層は、前記第2半導体層に対して前記基板の裏面側に隣接し、前記第1導電型である
     請求項5に記載の光検出素子。
  10.  前記基板の表面に形成された前記第1導電型のウェル内に、読み出し回路をさらに備える
     請求項1に記載の光検出素子。
  11.  前記読み出し回路は、複数の画素で共有される
     請求項10に記載の光検出素子。
  12.  前記第2半導体層に隣接し、かつ、前記基板の表面に、前記第1導電型の第5半導体層をさらに備える
     請求項10に記載の光検出素子。
  13.  前記読み出し回路は、ゲート電極を制御することによって、信号の蓄積と読み出しを切り替える
     請求項12に記載の光検出素子。
  14.  マトリクス状に配置される画素の境界近傍の外周部に、第1導電型の第1半導体層を形成し、
     平面視において前記第1半導体層の内側に、前記第1導電型と反対の第2導電型の第2半導体層を形成し、
     逆バイアス電圧が印加されたときに前記第1半導体層と前記第2半導体層とで形成される高電界領域が、基板の深さ方向に形成されるように構成された
     光検出素子の製造方法。
  15.  前記第2導電型のウェル内の前記画素の境界近傍の外周部に、第1導電型のイオン注入を行うことによって、前記外周部の前記第1半導体層と、その内側の前記第2半導体層とを形成する
     請求項14に記載の光検出素子の製造方法。
  16.  前記第2導電型のウェルは、前記基板にイオン注入を行うことによって形成される
     請求項15に記載の光検出素子の製造方法。
  17.  前記第2導電型のウェルとして、前記第2導電型の前記基板が用いられる
     請求項15に記載の光検出素子の製造方法。
  18.  前記第2導電型のイオンを含んだ第1酸化膜を埋め込み、熱拡散によって前記第2半導体層を形成した後、前記第1酸化膜を除去して、その除去された部分に、前記第1導電型のイオンを含んだ第2酸化膜を埋め込み、熱拡散によって前記第1半導体層を形成することによって、前記外周部の前記第1半導体層と、その内側の前記第2半導体層とを形成する
     請求項14に記載の光検出素子の製造方法。
  19.  前記第1導電型のイオンを含んだ第1酸化膜を埋め込み、前記第2導電型のイオンを含んだ第2酸化膜を前記第1酸化膜とは別の領域に埋め込み、熱拡散によって前記第1半導体層と前記第2半導体層を形成することによって、前記外周部の前記第1半導体層と、その内側の前記第2半導体層とを形成する
     請求項14に記載の光検出素子の製造方法。
  20.  前記基板の前記画素の境界に、前記基板の所定の深さまで掘り込んだトレンチを形成し、前記トレンチの側面から前記第1導電型のイオン注入と前記第2導電型のイオン注入を行うことで、前記外周部の前記第1半導体層と、その内側の前記第2半導体層とを形成する
     請求項14に記載の光検出素子の製造方法。
PCT/JP2018/040660 2017-11-15 2018-11-01 光検出素子およびその製造方法 WO2019098035A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201880004653.3A CN110050348B (zh) 2017-11-15 2018-11-01 光检测元件及其制造方法
DE112018005850.6T DE112018005850T5 (de) 2017-11-15 2018-11-01 Lichtdetektionselement und herstellungsverfahren für selbiges
US16/463,760 US11264420B2 (en) 2017-11-15 2018-11-01 Light detecting element and method of manufacturing same
JP2019527577A JP7242527B2 (ja) 2017-11-15 2018-11-01 光検出素子およびその製造方法
EP18878386.4A EP3553824B1 (en) 2017-11-15 2018-11-01 Photodetection element and method for manufacturing same
KR1020237042986A KR20230170996A (ko) 2017-11-15 2018-11-01 광검출 소자 및 그 제조 방법
KR1020197015124A KR102615816B1 (ko) 2017-11-15 2018-11-01 광검출 소자 및 그 제조 방법
US17/579,391 US11791359B2 (en) 2017-11-15 2022-01-19 Light detecting element and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-219685 2017-11-15
JP2017219685 2017-11-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/463,760 A-371-Of-International US11264420B2 (en) 2017-11-15 2018-11-01 Light detecting element and method of manufacturing same
US17/579,391 Continuation US11791359B2 (en) 2017-11-15 2022-01-19 Light detecting element and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2019098035A1 true WO2019098035A1 (ja) 2019-05-23

Family

ID=66540222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040660 WO2019098035A1 (ja) 2017-11-15 2018-11-01 光検出素子およびその製造方法

Country Status (7)

Country Link
US (2) US11264420B2 (ja)
EP (1) EP3553824B1 (ja)
JP (1) JP7242527B2 (ja)
KR (2) KR102615816B1 (ja)
CN (1) CN110050348B (ja)
DE (1) DE112018005850T5 (ja)
WO (1) WO2019098035A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100528A1 (ja) * 2019-11-19 2021-05-27 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2021149349A1 (ja) * 2020-01-20 2021-07-29 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2021187096A1 (ja) * 2020-03-16 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 受光素子および測距システム
WO2022118602A1 (ja) * 2020-12-02 2022-06-09 ソニーセミコンダクタソリューションズ株式会社 受光素子、光検出装置及び測距システム
WO2023157496A1 (ja) * 2022-02-18 2023-08-24 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098035A1 (ja) 2017-11-15 2019-05-23 ソニーセミコンダクタソリューションズ株式会社 光検出素子およびその製造方法
US11508867B2 (en) * 2020-01-28 2022-11-22 Adaps Photonics Inc. Single photon avalanche diode device
US11621287B2 (en) * 2020-04-16 2023-04-04 Vanguard International Semiconductor Corporation Optical sensor device with reduced thickness and method for forming the same
CN112086524A (zh) * 2020-08-28 2020-12-15 北京智创芯源科技有限公司 一种红外探测装置及制备方法
US20230049751A1 (en) * 2021-08-13 2023-02-16 Texas Instruments Incorporated Photodiode integrated with circuit
CN114335230B (zh) * 2021-12-29 2024-03-15 上海集成电路研发中心有限公司 雪崩光电二极管及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179828A (ja) * 2004-12-24 2006-07-06 Hamamatsu Photonics Kk ホトダイオードアレイ
JP2010157665A (ja) * 2009-01-05 2010-07-15 Sony Corp 固体撮像素子、カメラ
JP2013048278A (ja) 2006-07-03 2013-03-07 Hamamatsu Photonics Kk フォトダイオードアレイ
JP2015041746A (ja) 2013-08-23 2015-03-02 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード
WO2017047422A1 (ja) * 2015-09-17 2017-03-23 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、電子機器、及び、固体撮像素子の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359293B1 (en) * 1999-08-17 2002-03-19 Agere Systems Guardian Corp. Integrated optoelectronic device with an avalanche photodetector and method of making the same using commercial CMOS processes
JP4595464B2 (ja) 2004-09-22 2010-12-08 ソニー株式会社 Cmos固体撮像素子の製造方法
JP4691990B2 (ja) * 2005-01-05 2011-06-01 ソニー株式会社 固体撮像装置及びその製造方法
IT1392366B1 (it) 2008-12-17 2012-02-28 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile, schiera di fotodiodi e relativo procedimento di fabbricazione
IT1393781B1 (it) * 2009-04-23 2012-05-08 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile ad effetto jfet, schiera di fotodiodi e relativo procedimento di fabbricazione
IT1399075B1 (it) * 2010-03-23 2013-04-05 St Microelectronics Srl Metodo di rilevazione di posizioni di fotoni che impingono su un fotodiodo a valanga geiger-mode, relativi fotodiodi a valanga geiger-mode e processo di fabbricazione
IT1399690B1 (it) * 2010-03-30 2013-04-26 St Microelectronics Srl Fotodiodo a valanga operante in modalita' geiger ad elevato rapporto segnale rumore e relativo procedimento di fabbricazione
JP2012049289A (ja) * 2010-08-26 2012-03-08 Sony Corp 固体撮像装置とその製造方法、並びに電子機器
GB201014843D0 (en) 2010-09-08 2010-10-20 Univ Edinburgh Single photon avalanche diode for CMOS circuits
JP5935237B2 (ja) * 2011-03-24 2016-06-15 ソニー株式会社 固体撮像装置および電子機器
TW201405792A (zh) * 2012-07-30 2014-02-01 Sony Corp 固體攝像裝置、固體攝像裝置之製造方法及電子機器
JP2014127519A (ja) * 2012-12-25 2014-07-07 Sony Corp 固体撮像素子、及び、電子機器
JP2015153772A (ja) * 2014-02-10 2015-08-24 株式会社東芝 固体撮像装置
JP2016015430A (ja) * 2014-07-03 2016-01-28 ソニー株式会社 固体撮像素子および電子機器
JP2016162917A (ja) * 2015-03-03 2016-09-05 ソニー株式会社 固体撮像素子および電子機器
EP3712945A3 (en) * 2016-09-23 2020-12-02 Apple Inc. Stacked backside illuminated spad array
EP3309847B1 (en) * 2016-10-13 2024-06-05 Canon Kabushiki Kaisha Photo-detection apparatus and photo-detection system
US10312275B2 (en) * 2017-04-25 2019-06-04 Semiconductor Components Industries, Llc Single-photon avalanche diode image sensor with photon counting and time-of-flight detection capabilities
WO2019098035A1 (ja) 2017-11-15 2019-05-23 ソニーセミコンダクタソリューションズ株式会社 光検出素子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179828A (ja) * 2004-12-24 2006-07-06 Hamamatsu Photonics Kk ホトダイオードアレイ
JP2013048278A (ja) 2006-07-03 2013-03-07 Hamamatsu Photonics Kk フォトダイオードアレイ
JP2010157665A (ja) * 2009-01-05 2010-07-15 Sony Corp 固体撮像素子、カメラ
JP2015041746A (ja) 2013-08-23 2015-03-02 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード
WO2017047422A1 (ja) * 2015-09-17 2017-03-23 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、電子機器、及び、固体撮像素子の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100528A1 (ja) * 2019-11-19 2021-05-27 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2021149349A1 (ja) * 2020-01-20 2021-07-29 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2021187096A1 (ja) * 2020-03-16 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 受光素子および測距システム
WO2022118602A1 (ja) * 2020-12-02 2022-06-09 ソニーセミコンダクタソリューションズ株式会社 受光素子、光検出装置及び測距システム
WO2023157496A1 (ja) * 2022-02-18 2023-08-24 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器

Also Published As

Publication number Publication date
KR20230170996A (ko) 2023-12-19
KR102615816B1 (ko) 2023-12-21
EP3553824A1 (en) 2019-10-16
KR20200083373A (ko) 2020-07-08
US20210183917A1 (en) 2021-06-17
US11791359B2 (en) 2023-10-17
DE112018005850T5 (de) 2020-08-13
CN110050348A (zh) 2019-07-23
US11264420B2 (en) 2022-03-01
EP3553824B1 (en) 2022-07-20
JPWO2019098035A1 (ja) 2020-10-01
JP7242527B2 (ja) 2023-03-20
CN110050348B (zh) 2024-05-14
EP3553824A4 (en) 2020-04-08
US20220149090A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2019098035A1 (ja) 光検出素子およびその製造方法
US8709852B2 (en) Image sensor with improved color crosstalk
US9806121B2 (en) Solid-state imaging device
US20160218138A1 (en) Solid-state image pickup device and method for manufacturing a solid-state image pickup device
EP1883969B1 (en) Isolation process and structure for cmos imagers
JP5455325B2 (ja) 多重ウェルcmosイメージセンサ及びその製造方法
JP2023182653A (ja) 光検出器
JP2000031525A (ja) イメ―ジセンサのピンドフォトダイオ―ド及びその製造方法
US10340304B2 (en) CMOS image sensor
US20110001207A1 (en) Solid state image sensor and manufacturing method thereof
US9923014B2 (en) Image sensor and method of manufacturing the same
JP6689936B2 (ja) 撮像装置の製造方法
KR20230032568A (ko) Spad 구조
KR102499854B1 (ko) 격리 구조물 및 이를 포함하는 이미지 센서
JP7199013B2 (ja) 光検出器
CN116799017A (zh) 具有防高光溢出结构的像素单元及图像传感器
JP2020161775A (ja) 光検出器
JP2002289827A (ja) 固体撮像装置およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019527577

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018878386

Country of ref document: EP

Effective date: 20190708