WO2019054293A1 - 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法 - Google Patents

未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法 Download PDF

Info

Publication number
WO2019054293A1
WO2019054293A1 PCT/JP2018/033206 JP2018033206W WO2019054293A1 WO 2019054293 A1 WO2019054293 A1 WO 2019054293A1 JP 2018033206 W JP2018033206 W JP 2018033206W WO 2019054293 A1 WO2019054293 A1 WO 2019054293A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
rubber composition
uncrosslinked rubber
composition according
uncrosslinked
Prior art date
Application number
PCT/JP2018/033206
Other languages
English (en)
French (fr)
Inventor
裕明 安田
武広 浜村
隆男 伊東
Original Assignee
三菱電線工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65723634&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019054293(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱電線工業株式会社 filed Critical 三菱電線工業株式会社
Priority to SG11202002349YA priority Critical patent/SG11202002349YA/en
Priority to CN201880059589.9A priority patent/CN111094437B/zh
Priority to US16/647,457 priority patent/US20200277467A1/en
Priority to EP18856637.6A priority patent/EP3677642A4/en
Priority to EP22193385.6A priority patent/EP4116374A1/en
Priority to KR1020207009674A priority patent/KR102517714B1/ko
Publication of WO2019054293A1 publication Critical patent/WO2019054293A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1009Fluorinated polymers, e.g. PTFE

Definitions

  • the present invention relates to an uncrosslinked rubber composition, a rubber product produced using it, and a method for producing the same.
  • Silicone rubber is known as a rubber component having high resistance to oxygen plasma but low resistance to fluorine plasma.
  • Vinylidene fluoride-based fluororubber (hereinafter referred to as “FKM”) is known as a rubber component having high resistance to fluorine plasma, but low resistance to oxygen plasma.
  • Tetrafluoroethylene-perfluorovinyl ether-based fluororubber (hereinafter referred to as “FFKM”) is known as an expensive rubber component as compared to silicone rubber and FKM, although both of oxygen plasma resistance and fluorine plasma resistance are high. ing. Therefore, it has been proposed to mix and use these rubber components.
  • Patent Document 1 discloses that a silicone rubber and an FFKM are mixed and used, and that an FKM and an FFKM are mixed and used.
  • Patent Document 2 discloses that FKM and FFKM are mixed and used.
  • Patent Document 3 discloses mixing and using silicone rubber and FKM.
  • Patent Documents 4 and 5 disclose that a reactive fluorine-based compound is added to FKM. Furthermore, in Patent Document 6, in addition to adding an excess cross-linking coagent to FKM and heating the FKM to crosslink with the cross-linking coagent, it is irradiated with radiation and further cross-linked with an excess cross-linking coagent, It is disclosed that the physical properties of rubber itself are improved by increasing the crosslink density accordingly.
  • the present invention provides a hydrogen-containing fluororubber, a thermal crosslinking agent for crosslinking the hydrogen-containing fluororubber when heated to a predetermined temperature, and a carbon-hydrogen group of the hydrogen-containing fluororubber when irradiated with radiation. It is an uncrosslinked rubber composition containing a hydrogen site protecting agent which bonds to a radical of carbon generated by breaking the bond.
  • the present invention is a rubber product produced using the uncrosslinked rubber composition of the present invention, wherein the hydrogen-containing fluororubber is crosslinked by the thermal crosslinking agent, and the carbon-hydrogen of the hydrogen-containing fluororubber is used. It is formed of a rubber composition in which the hydrogen site protecting agent is bonded to carbon after the bond is broken.
  • the present invention heats the non-crosslinked rubber composition of the present invention to a predetermined temperature to crosslink the hydrogen-containing fluororubber with the thermal crosslinking agent, and then irradiates radiation to carbon- of the hydrogen-containing fluororubber. It is a method for producing a rubber product in which the hydrogen site protecting agent is bonded to a radical of carbon generated by breaking a bond between hydrogen.
  • the non-crosslinked rubber composition according to the embodiment is a rubber product, particularly, for example, a sealing material such as an O-ring excellent in plasma resistance used in an apparatus using plasma such as a semiconductor etching apparatus or plasma CVD apparatus. And a hydrogen-containing fluoro rubber as a rubber component, a thermal crosslinking agent, and a hydrogen site protecting agent.
  • the “hydrogen-containing fluororubber” in the present application is a fluororubber containing carbon in which hydrogen is bonded to the main chain of a polymer.
  • the hydrogen-containing fluororubber preferably contains, for example, vinylidene fluoride (VDF), propylene (Pr), ethylene (E) or the like as a monomer.
  • the hydrogen-containing fluororubber for example, a polymer of vinylidene fluoride (VDF) (PVDF), a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP), vinylidene fluoride (VDF) and hexafluorocarbon Copolymer of propylene (HFP) and tetrafluoroethylene (TFE), copolymer of tetrafluoroethylene (TFE) and propylene (Pr) (FEP), vinylidene fluoride (VDF) and propylene (Pr) and tetra Copolymer with fluoroethylene (TFE), copolymer with ethylene (E) and tetrafluoroethylene (TFE) (ETFE), ethylene (E) with tetrafluoroethylene (TFE) and perfluoromethylvinylether (PMVE) Copolymer with vinylidene fluora Copolymers of
  • the thermal crosslinking agent is a compound that crosslinks the hydrogen-containing fluororubber when heated to a predetermined temperature.
  • examples of the thermal crosslinking agent include peroxides, polyols, polyamines, triazines and the like.
  • the thermal crosslinking agent preferably contains a peroxide of these, from the viewpoint that it is not necessary to use an acid acceptor that causes generation of particles in a plasma atmosphere.
  • the peroxide for example, 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butylperoxide Oxide, t-butylcumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (t-butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (t-butylperoxy) Hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3, benzoyl peroxide, t-butylperoxybenzene, t-butylperoxymaleic acid, t-butylperoxyisopropyl Carbonate, t-butylperoxybenzoate and the like can be mentioned.
  • the thermal crosslinking agent preferably contains one or more of these, and more preferably 2,5-dimethyl-2,5-di (t-butylperoxy) hexane.
  • the content (A) of the thermal crosslinking agent is preferably 0.5 parts by mass or more with respect to 100 parts by mass of the hydrogen-containing fluororubber from the viewpoint of promoting crosslinking sufficiently and obtaining good physical properties as a sealing material. It is 5 parts by mass or less, more preferably 0.5 parts by mass or more and 2.0 parts by mass or less.
  • the hydrogen site protecting agent is a compound which bonds to a radical of carbon which is generated by breaking a carbon-hydrogen bond of a hydrogen-containing fluororubber when irradiated with radiation.
  • the “hydrogen site” in the present application refers to a carbon-bonded portion in the main chain of the polymer constituting the hydrogen-containing fluororubber. Specifically, for example, a CH binding site in the VDF component.
  • the hydrogen site protecting agent is a compound of a perfluoro skeleton having an alkenyl group bonded to a carbon radical of hydrogen-containing fluororubber in the molecule, and / or an alkenyl group bonded to a carbon radical of hydrogen-containing fluororubber in the molecule It is preferable to include a compound having a siloxane skeleton having
  • alkenyl group a vinyl group, an allyl group, a butenyl group, pentenyl group, a hexenyl group, heptenyl group etc. are mentioned, for example.
  • the alkenyl group is preferably a vinyl group among them.
  • Examples of the compound having a perfluoro skeleton having an alkenyl group in the molecule include a compound having a perfluoropolyether structure, a compound having a perfluoroalkylene structure, and the like.
  • siloxane skeleton compound having an alkenyl group in the molecule examples include a polymer of methylvinylsiloxane, a polymer of dimethylsiloxane, a copolymer of dimethylsiloxane and methylvinylsiloxane, dimethylsiloxane, methylvinylsiloxane and methylphenyl Copolymers with siloxane and the like can be mentioned.
  • organopolysiloxanes containing alkenyl groups in the molecule which are liquid silicone rubbers of addition polymerization.
  • the compound of the perfluoro skeleton or the compound of the siloxane skeleton preferably has two or more alkenyl groups in the molecule. Two or more alkenyl groups may be the same or different. If the hydrogen site protecting agent has two or more alkenyl groups in the molecule, it can function as a crosslinking aid for crosslinking hydrogen-containing fluororubbers in addition to the protection of hydrogen sites.
  • the hydrogen site protecting agent preferably contains one or more of these, and more preferably contains a compound having a perfluoropolyether structure having an alkenyl group in the molecule, and the alkenyl group in the molecule is preferably 2 It is more preferable to include a compound having a perfluoropolyether structure having more than one.
  • the hydrogen site protective agent is preferably a one-pack liquid material.
  • the viscosity at 23 ° C. of the hydrogen site protecting agent is preferably 30 Pa ⁇ s or more and 100 Pa ⁇ s or less, more preferably 40 Pa ⁇ s or more and 70 Pa ⁇ s or less in the case of a compound having a perfluoro skeleton.
  • it is preferably 100 Pa ⁇ s or more and 150 Pa ⁇ s or less, more preferably 120 Pa ⁇ s or more and 140 Pa ⁇ s or less.
  • the content (B) of the hydrogen site protecting agent is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 5 parts by mass or more, with respect to 100 parts by mass of the hydrogen-containing fluororubber, from the viewpoint of enhancing plasma resistance. It is below a mass part.
  • the content (B) of the hydrogen site protective agent is preferably greater than the content (A) of the thermal crosslinking agent from the viewpoint of enhancing the plasma resistance.
  • the ratio (B / A) of the content (B) of the hydrogen site protecting agent to the content (A) of the thermal crosslinking agent is preferably 2.5 or more and 30 or less, more preferably 5 or more from the viewpoint of enhancing plasma resistance. .0 or more and 10 or less.
  • the uncrosslinked rubber composition according to the embodiment may further contain a crosslinking aid.
  • the crosslinking aid is a compound which bonds to the hydrogen-containing fluororubber so as to be interposed between molecules of the hydrogen-containing fluororubber when the hydrogen-containing fluororubber is crosslinked by the thermal crosslinking agent.
  • crosslinking assistants examples include triallyl cyanurate, trimethallyl isocyanurate, triallyl isocyanurate, triacrylic formal, triallyl trimellitate, N, N'-m-phenylene bismaleimide, dipropargyl terephthalate, diallyl.
  • the crosslinking coagent
  • the content (C) of the crosslinking assistant is preferably 1 to 10 parts by mass, more preferably 2 to 1 part by mass from the viewpoint of obtaining good physical properties as a sealing material with respect to 100 parts by mass of the hydrogen-containing fluororubber. It is 5 parts by mass or less.
  • the content (C) of the crosslinking assistant is preferably larger than the content (A) of the thermal crosslinking agent from the viewpoint of enhancing the plasma resistance.
  • the ratio (C / A) of the content (C) of the crosslinking aid to the content (A) of the thermal crosslinking agent is that the crosslinking aid is reacted without excess and deficiency to obtain good physical properties as a sealing material, Preferably it is 1.0 or more and less than 4.0, More preferably, it is 2.0 or more and 3.0 or less.
  • the non-crosslinked rubber composition may be a silicone rubber as a rubber component other than the hydrogen-containing fluororubber or a copolymer May contain a fluororubber which does not contain carbon bonded to hydrogen in the main chain of the polymer.
  • the uncrosslinked rubber composition according to the embodiment may contain a reinforcing material such as carbon black or silica, a plasticizer, a processing aid, a vulcanization accelerator, an antioxidant, etc. depending on the rubber product to be produced. .
  • the content of powdery inorganic fillers such as carbon black, silica, metal oxides, etc.
  • the amount is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and most preferably 0 parts by mass with respect to 100 parts by mass of the fluororubber.
  • the powdery organic filler can be expected to improve physical properties by crosslinking with a hydrogen-containing fluororubber at the time of irradiation with radiation described later.
  • the uncrosslinked rubber composition according to the embodiment can be manufactured using an open rubber kneader such as an open roll or a closed rubber kneader such as a kneader.
  • a predetermined amount of the non-crosslinked rubber composition according to the embodiment is filled in the cavity of the preheated mold, and then clamped, and in that state, a predetermined molding temperature and a predetermined The molding pressure is maintained for a predetermined molding time.
  • the uncrosslinked rubber composition according to the embodiment is molded into the shape of a cavity, and the hydrogen-containing fluorocarbon rubber is crosslinked by the thermal crosslinking agent to lose its plasticity.
  • This molding may be press molding or may be injection molding.
  • the molding temperature is, for example, 150 ° C. or more and 180 ° C. or less.
  • the molding pressure is, for example, 0.1 MPa or more and 25 MPa or less.
  • the molding time is, for example, 3 minutes or more and 20 minutes or less.
  • the mold is opened, the molded product is taken out from the inside and cooled, and then the molded product is irradiated with radiation.
  • radiation is applied to cut the carbon-hydrogen bond at the hydrogen site of the hydrogen-containing fluororubber to generate a carbon radical, and the hydrogen site protecting agent is bonded to the carbon radical.
  • radiation include ⁇ rays, ⁇ rays, ⁇ rays, electron beams, ions and the like.
  • the radiation it is preferable to use an electron beam or ⁇ ray among them.
  • the irradiation dose of radiation is preferably 10 kGy or more and 100 kGy or less, more preferably 30 kGy or more and 80 kGy or less, from the viewpoint of enhancing plasma resistance.
  • the hydrogen-containing fluororubber is crosslinked by the thermal crosslinking agent, and the hydrogen site protecting agent on carbon after the carbon-hydrogen bond of the hydrogen-containing fluororubber is cut A rubber product is obtained which is formed of a rubber composition in which
  • the hydrogen site of the hydrogen-containing fluororubber which is a portion with low plasma resistance, is broken in the carbon-hydrogen bond when it is irradiated with radiation.
  • the carbon site is protected by bonding the hydrogen site protecting agent to the carbon radical, so that a rubber product having excellent plasma resistance can be produced by using this carbon site.
  • the hydrogen site protecting agent reacts with the hydrogen-containing fluororubber, bleed out does not become a problem.
  • Rubber composition The rubber compositions of Examples 1 to 2 and Comparative Examples 1 to 3 below were prepared. Each configuration is also shown in Table 1.
  • Example 1 A peroxide containing a thermal crosslinking agent based on 100 parts by mass of the hydrogen-containing fluororubber contained in a hydrogen-containing fluororubber (made by Daiel G912 Daikin Industries, Ltd.) consisting of a copolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene 1.5 parts by mass of 2,2-dimethyl-2,5-di (t-butylperoxy) hexane (Perhexa 25B, manufactured by Nippon Oil and Fats Co., Ltd.) which is 10 parts by mass of a compound having a perfluoro group having a vinyl group (SIFEL 3590-N, manufactured by Shin-Etsu Chemical Co., Ltd., viscosity (23 ° C.): 50 Pa ⁇ s), and triallyl isocyanurate as a crosslinking assistant 4) An uncrosslinked rubber composition was prepared by blending and knead
  • the uncrosslinked rubber composition is press-formed at a molding temperature of 165 ° C., a molding pressure of 5 MPa, and a molding time of 15 minutes, and then heat treated at a heating temperature of 200 ° C. and a heating time of 4 hours to form a sheet-like rubber composition.
  • the sheet-like rubber composition was irradiated with ⁇ -rays of an irradiation dose of 30 kGy.
  • the sheet-like rubber composition irradiated with this ⁇ -ray was referred to as Example 1.
  • Example 2 As a hydrogen site protective agent, a compound having a vinyl group in its molecule (KE-1830, Shin-Etsu Chemical Co., Ltd., viscosity (23 ° C.): 130 Pa ⁇ s), which is a one-pack type liquid material
  • KE-1830 Shin-Etsu Chemical Co., Ltd., viscosity (23 ° C.): 130 Pa ⁇ s
  • Comparative Example 1 A sheet-like rubber composition produced in the same manner as Example 1 except that the hydrogen site protective agent was not blended was taken as Comparative Example 1.
  • Comparative Example 2 Same as Example 1 except that 20 parts by mass of silicone rubber (KE-941-U manufactured by Shin-Etsu Chemical Co., Ltd.) was blended with 100 parts by mass of hydrogen-containing fluororubber without blending hydrogen site protective agent. The sheet-like rubber composition produced was used as Comparative Example 2.
  • silicone rubber KE-941-U manufactured by Shin-Etsu Chemical Co., Ltd.
  • Comparative Example 3 Except that no hydrogen site protecting agent is blended, 20 parts by mass of a copolymer of tetrafluoroethylene and perfluorovinyl ether (FFKM: AFLASP Remium PM1100 manufactured by Asahi Glass Co., Ltd.) is blended with 100 parts by mass of hydrogen-containing fluororubber A sheet-like rubber composition produced in the same manner as in Example 1 was taken as Comparative Example 3.
  • FFKM tetrafluoroethylene and perfluorovinyl ether
  • ⁇ Tensile characteristics> A tensile test is performed based on JIS K6251 for each of Examples 1 to 2 and Comparative Examples 1 to 3, and 100% modulus (M 100 : tensile stress at 100% elongation), tensile strength (TB), and cutting The time elongation (EB) was measured.
  • Test results The test results are shown in Table 1.
  • the present invention is useful in the technical field of uncrosslinked rubber compositions as well as rubber products produced using them and the process for producing them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

未架橋ゴム組成物は、水素含有フッ素ゴムと、所定の温度に加熱されたときに前記水素含有フッ素ゴムを架橋させる熱架橋剤と、放射線が照射されたときに前記水素含有フッ素ゴムの炭素-水素間の結合が切断されて生じる炭素のラジカルに結合する水素サイト保護剤とを含有する。

Description

未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
 本発明は、未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法に関する。
 シリコーンゴムは、耐酸素プラズマ性は高いものの、耐フッ素プラズマ性がやや低いゴム成分として知られている。フッ化ビニリデン系フッ素ゴム(以下、「FKM」という。)は、耐フッ素プラズマ性は高いものの、耐酸素プラズマ性がやや低いゴム成分として知られている。テトラフルオロエチレン-パーフルオロビニルエーテル系フッ素ゴム(以下、「FFKM」という。)は、耐酸素プラズマ性及び耐フッ素プラズマ性のいずれも高いものの、シリコーンゴムやFKMと比較すると高価なゴム成分として知られている。そこで、これらのゴム成分を混合して用いることが提案されている。例えば、特許文献1には、シリコーンゴムとFFKMとを混合して用いること、及びFKMとFFKMとを混合して用いることが開示されている。特許文献2には、FKMとFFKMとを混合して用いることが開示されている。特許文献3には、シリコーンゴムとFKMとを混合して用いることが開示されている。
 また、耐プラズマ性を高める技術として、特許文献4及び5には、FKMに反応性フッ素系化合物を添加することが開示されている。さらに、特許文献6には、FKMに過剰な架橋助剤を添加し、FKMを加熱して架橋助剤により架橋させるのに加えて、放射線を照射して余剰の架橋助剤により更に架橋させ、それによって架橋密度を高めることによりゴム物性自体を向上させることが開示されている。
特許第4778782号公報 特許第4628814号公報 特開2001-348462号公報 特許第4675907号公報 特許第5189728号公報 特許第4381087号公報
 本発明は、水素含有フッ素ゴムと、所定の温度に加熱されたときに前記水素含有フッ素ゴムを架橋させる熱架橋剤と、放射線が照射されたときに前記水素含有フッ素ゴムの炭素-水素間の結合が切断されて生じる炭素のラジカルに結合する水素サイト保護剤とを含有する未架橋ゴム組成物である。
 本発明は、本発明の未架橋ゴム組成物を用いて製造されるゴム製品であって、前記水素含有フッ素ゴムが前記熱架橋剤により架橋するとともに、前記水素含有フッ素ゴムの炭素-水素間の結合が切断された後の炭素に前記水素サイト保護剤が結合したゴム組成物で形成されている。
 本発明は、本発明の未架橋ゴム組成物を、所定の温度に加熱して前記水素含有フッ素ゴムを前記熱架橋剤により架橋させた後、放射線を照射して前記水素含有フッ素ゴムの炭素-水素間の結合を切断して生じる炭素のラジカルに前記水素サイト保護剤を結合させるゴム製品の製造方法である。
 以下、実施形態について詳細に説明する。
 実施形態に係る未架橋ゴム組成物は、ゴム製品、特に、例えば半導体のエッチング装置やプラズマCVD装置のようなプラズマを使用する装置に使用される耐プラズマ性の優れるOリング等のシール材の製造に好適に用いられるものであって、ゴム成分の水素含有フッ素ゴムと熱架橋剤と水素サイト保護剤とを含有する。
 ここで、本出願における「水素含有フッ素ゴム」とは、高分子の主鎖に水素が結合した炭素が含まれたフッ素ゴムである。水素含有フッ素ゴムは、単量体として、例えば、ビニリデンフルオライド(VDF)、プロピレン(Pr)、エチレン(E)等を含むことが好ましい。
 水素含有フッ素ゴムとしては、例えば、ビニリデンフルオライド(VDF)の重合体(PVDF)、ビニリデンフルオライド(VDF)とヘキサフルオロプロピレン(HFP)との共重合体、ビニリデンフルオライド(VDF)とヘキサフルオロプロピレン(HFP)とテトラフルオロエチレン(TFE)との共重合体、テトラフルオロエチレン(TFE)とプロピレン(Pr)との共重合体(FEP)、ビニリデンフルオライド(VDF)とプロピレン(Pr)とテトラフルオロエチレン(TFE)との共重合体、エチレン(E)とテトラフルオロエチレン(TFE)との共重合体(ETFE)、エチレン(E)とテトラフルオロエチレン(TFE)とパーフルオロメチルビニルエーテル(PMVE)との共重合体、ビニリデンフルオライド(VDF)とテトラフルオロエチレン(TFE)とパーフルオロメチルビニルエーテル(PMVE)との共重合体、ビニリデンフルオライド(VDF)とパーフルオロメチルビニルエーテル(PMVE)との共重合体等が挙げられる。水素含有フッ素ゴムは、これらのうちの1種又は2種以上を含むことが好ましい。
 熱架橋剤は、所定の温度に加熱されたときに水素含有フッ素ゴムを架橋させる化合物である。熱架橋剤としては、例えば、パーオキサイド、ポリオール、ポリアミン、トリアジン等が挙げられる。熱架橋剤は、プラズマ雰囲気下でのパーティクルの発生の原因となる受酸剤を用いる必要がないという観点から、これらのうちのパーオキサイドを含むことが好ましい。パーオキサイドとしては、例えば、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゼン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエイト等が挙げられる。熱架橋剤は、これらのうちの1種又は2種以上を含むことが好ましく、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンを含むことがより好ましい。熱架橋剤の含有量(A)は、十分に架橋を進め、シール材として良好な物性を得るという観点から、水素含有フッ素ゴム100質量部に対して、好ましくは0.5質量部以上2.5質量部以下、より好ましくは0.5質量部以上2.0質量部以下である。
 水素サイト保護剤は、放射線が照射されたときに水素含有フッ素ゴムの炭素-水素間の結合が切断されて生じる炭素のラジカルに結合する化合物である。ここで、本出願における「水素サイト」とは、水素含有フッ素ゴムを構成する高分子の主鎖における水素が結合した炭素の部位をいう。具体的には、例えばVDF成分におけるC-H結合部位である。水素サイト保護剤は、分子内に水素含有フッ素ゴムの炭素のラジカルに結合するアルケニル基を有するパーフルオロ骨格の化合物、及び/又は、分子内に水素含有フッ素ゴムの炭素のラジカルに結合するアルケニル基を有するシロキサン骨格の化合物を含むことが好ましい。
 アルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等が挙げられる。アルケニル基は、これらのうちのビニル基が好ましい。
 分子内にアルケニル基を有するパーフルオロ骨格の化合物としては、例えば、パーフルオロポリエーテル構造の化合物、パーフルオロアルキレン構造の化合物等が挙げられる。
 分子内にアルケニル基を有するシロキサン骨格の化合物としては、例えば、メチルビニルシロキサンの重合体、ジメチルシロキサンの重合体、ジメチルシロキサンとメチルビニルシロキサンとの共重合体、ジメチルシロキサンとメチルビニルシロキサンとメチルフェニルシロキサンとの共重合体等が挙げられる。その他、付加重合の液状シリコーンゴムである分子中にアルケニル基を含有するオルガノポリシロキサンが挙げられる。
 これらのパーフルオロ骨格の化合物やシロキサン骨格の化合物は、分子内にアルケニル基を2個以上有することが好ましい。2個以上のアルケニル基は、同一であってもよく、また、異なっていてもよい。水素サイト保護剤が分子内にアルケニル基を2個以上有せば、水素サイトの保護に加え、水素含有フッ素ゴム間を架橋する架橋助剤としても機能することができる。
 水素サイト保護剤は、これらのうちの1種又は2種以上を含むことが好ましく、分子内にアルケニル基を有するパーフルオロポリエーテル構造の化合物を含むことがより好ましく、分子内にアルケニル基を2個以上有するパーフルオロポリエーテル構造の化合物を含むことが更に好ましい。
 水素サイト保護剤は、一液型の液状材料であることが好ましい。その場合、水素サイト保護剤の23℃における粘度は、パーフルオロ骨格の化合物の場合、好ましくは30Pa・s以上100Pa・s以下、より好ましくは40Pa・s以上70Pa・s以下であり、シロキサン骨格の化合物の場合、好ましくは100Pa・s以上150Pa・s以下、より好ましくは120Pa・s以上140Pa・s以下である。
 水素サイト保護剤の含有量(B)は、耐プラズマ性を高める観点から、水素含有フッ素ゴム100質量部に対して、好ましくは1質量部以上20質量部以下、より好ましくは5質量部以上15質量部以下である。水素サイト保護剤の含有量(B)は、耐プラズマ性を高める観点から、熱架橋剤の含有量(A)よりも多いことが好ましい。水素サイト保護剤の含有量(B)の熱架橋剤の含有量(A)に対する比(B/A)は、耐プラズマ性を高める観点から、好ましくは2.5以上30以下、より好ましくは5.0以上10以下である。
 実施形態に係る未架橋ゴム組成物は、架橋助剤を更に含有していてもよい。架橋助剤は、水素含有フッ素ゴムが熱架橋剤により架橋するときに、水素含有フッ素ゴムの分子間に介在するように水素含有フッ素ゴムと結合する化合物である。
 架橋助剤としては、例えば、トリアリルシアヌレート、トリメタリルイソシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、N,N’-m-フェニレンビスマレイミド、ジプロパギルテレフタレート、ジアリルフタレート、テトラアリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリアリルイソシアヌレート(1,3,5-トリス(2,3,3-トリフルオロ-2-プロペニル)-1,3,5-トリアジン-2,4,6-トリオン)、トリス(ジアリルアミン)-S-トリアジン、亜リン酸トリアリル、N,N-ジアリルアクリルアミド、1,6-ジビニルドデカフルオロヘキサン、ヘキサアリルホスホルアミド、N,N,N’,N’-テトラアリルフタルアミド、N,N,N’,N’-テトラアリルマロンアミド、トリビニルイソシアヌレート、2,4,6-トリビニルメチルトリシロキサン、トリ(5-ノルボルネン-2-メチレン)シアヌレート、トリアリルホスファイトなどが挙げられる。架橋助剤は、これらのうちの1種又は2種以上を含むことが好ましく、トリアリルイソシアヌレートを含むことがより好ましい。
 架橋助剤の含有量(C)は、水素含有フッ素ゴム100質量部に対して、シール材として良好な物性を得る観点から好ましくは1質量部以上10質量部以下、より好ましくは2質量部以上5質量部以下である。架橋助剤の含有量(C)は、耐プラズマ性を高める観点から、熱架橋剤の含有量(A)よりも多いことが好ましい。架橋助剤の含有量(C)の熱架橋剤の含有量(A)に対する比(C/A)は、架橋助剤を過不足なく反応させ、シール材として良好な物性を得るという観点から、好ましくは1.0以上4.0よりも小さく、より好ましくは2.0以上3.0以下である。
 実施形態に係る未架橋ゴム組成物は、水素含有フッ素ゴムの含有量よりも少なければ、水素含有フッ素ゴム以外のゴム成分であるシリコーンゴムやテトラフルオロエチレンとパープルオロビニルエーテルとの共重合体のように高分子の主鎖に水素が結合した炭素が含まれないフッ素ゴムを含有していてもよい。実施形態に係る未架橋ゴム組成物は、製造するゴム製品によっては、カーボンブラックやシリカなどの補強材、可塑剤、加工助剤、加硫促進剤、老化防止剤等を含有していてもよい。但し、プラズマ雰囲気下でのパーティクルの発生が問題となるようなゴム製品の製造に用いられる場合には、カーボンブラック、シリカ、金属酸化物等の粉状の無機充填剤の含有量は、水素含有フッ素ゴム100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下、最も好ましくは0質量部である。粉状の有機充填剤は、PVDFやETFEのような水素含有フッ素樹脂粉等の場合、後述の放射線の照射時に水素含有フッ素ゴムとの間の架橋による物性向上を期待することができる。
 実施形態に係る未架橋ゴム組成物は、オープンロールなどの開放式のゴム混練機、或いは、ニーダーなどの密閉式のゴム混練機を用いて製造することができる。
 次に、実施形態に係る未架橋ゴム組成物を用いたゴム製品の製造方法について説明する。
 ゴム製品の製造方法では、まず、実施形態に係る未架橋ゴム組成物の所定量を、予熱した金型のキャビティに充填し、次いで型締めした後、その状態で、所定の成形温度及び所定の成形圧力で所定の成形時間だけ保持する。このとき、実施形態に係る未架橋ゴム組成物がキャビティの形状に成形されるとともに、水素含有フッ素ゴムが熱架橋剤により架橋して可塑性を喪失する。この成形は、プレス成形であってもよく、また、射出成形であってもよい。成形温度は、例えば150℃以上180℃以下である。成形圧力は、例えば0.1MPa以上25MPa以下である。成形時間は、例えば3分以上20分以下である。
 そして、金型を型開きし、内部から成形品を取り出して冷却した後、成形品に対して放射線を照射する。このとき、放射線が照射されて水素含有フッ素ゴムの水素サイトの炭素-水素間の結合が切断されて炭素のラジカルを生じ、その炭素のラジカルに水素サイト保護剤が結合する。放射線としては、例えば、α線、β線、γ線、電子線、イオン等が挙げられる。放射線は、これらのうちの電子線又はγ線を用いることが好ましい。放射線の照射線量は、耐プラズマ性を高める観点から、好ましくは10kGy以上100kGy以下、より好ましくは30kGy以上80kGy以下である。
 以上により、実施形態に係る未架橋ゴム組成物から、水素含有フッ素ゴムが熱架橋剤により架橋するとともに、水素含有フッ素ゴムの炭素-水素間の結合が切断された後の炭素に水素サイト保護剤が結合したゴム組成物で形成されたゴム製品が得られる。
 以上の構成の実施形態に係る未架橋ゴム組成物によれば、耐プラズマ性の低い部位である水素含有フッ素ゴムの水素サイトが、放射線が照射されたときに炭素-水素間の結合が切断されて炭素のラジカルを生じ、その炭素のラジカルに水素サイト保護剤が結合することにより保護されるので、これを用いることにより耐プラズマ性の優れるゴム製品を製造することができる。また、水素サイト保護剤は、水素含有フッ素ゴムと反応するので、ブリードアウトが問題となることはない。
 (ゴム組成物)
 以下の実施例1~2及び比較例1~3のゴム組成物を調製した。それぞれの構成については表1にも示す。
 <実施例1>
 ビニリデンフルオライドとヘキサフルオロプロピレンとテトラフルオロエチレンとの共重合体からなる水素含有フッ素ゴム(ダイエルG912 ダイキン工業社製)に、この水素含有フッ素ゴム100質量部に対して、熱架橋剤のパーオキサイドである2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(パーヘキサ25B 日本油脂社製)1.5質量部、水素サイト保護剤の一液型の液状材料である分子内にビニル基を有するパーフルオロ骨格の化合物(SIFEL3590-N 信越化学工業社製、粘度(23℃)::50Pa・s)10質量部、及び架橋助剤のトリアリルイソシアヌレート(タイク 日本化成社製)4質量部を配合して混練した未架橋ゴム組成物を調製した。続いて、この未架橋ゴム組成物を、成形温度165℃、成形圧力5MPa、及び成形時間15分としてプレス成形した後、加熱温度200℃及び加熱時間4時間で熱処理してシート状のゴム組成物を得た。そして、このシート状のゴム組成物に対して、照射線量30kGyのγ線を照射した。このγ線を照射したシート状のゴム組成物を実施例1とした。
 <実施例2>
 水素サイト保護剤として、一液型の液状材料である分子内にビニル基を有するシロキサン骨格の化合物(KE-1830 信越化学工業社製、粘度(23℃):130Pa・s)を配合したことを除いて実施例1と同様にして作製したシート状のゴム組成物を実施例2とした。
 <比較例1>
 水素サイト保護剤を配合していないことを除いて実施例1と同様にして作製したシート状のゴム組成物を比較例1とした。
 <比較例2>
 水素サイト保護剤を配合せず、水素含有フッ素ゴム100質量部に対して、シリコーンゴム(KE-941-U 信越化学工業社製)を20質量部配合したことを除いて実施例1と同様にして作製したシート状のゴム組成物を比較例2とした。
 <比較例3>
 水素サイト保護剤を配合せず、水素含有フッ素ゴム100質量部に対して、テトラフルオロエチレンとパーフルオロビニルエーテルとの共重合体(FFKM:AFLASPremiumPM1100 旭硝子社製)を20質量部配合したことを除いて実施例1と同様にして作製したシート状のゴム組成物を比較例3とした。
Figure JPOXMLDOC01-appb-T000001
 (試験方法)
 <耐プラズマ性>
 実施例1~2及び比較例1~3のそれぞれについて、マイクロ波プラズマ発生機を用いて、伸張率10%として、Oプラズマ照射試験及びCFプラズマ照射試験を行い、質量減量、クラックの有無、及びパーティクルの発生の有無を調べた。試験では、反応ガスとしてO及びCFを用い、Oプラズマ照射試験では、それらの流量比を50:1とし、CFプラズマ照射試験では、それらの流量比を1:50とした。また、反応圧力を100Pa及びプラズマ照射時間を60分とした。
 <引張特性>
 実施例1~2及び比較例1~3のそれぞれについて、JIS K6251に基づいて引張試験を行い、100%モジュラス(M100:100%伸び時における引張応力)、引張強さ(TB)、及び切断時伸び(EB)を測定した。
 <圧縮永久ひずみ>
 実施例1~2及び比較例1~3のそれぞれについて、JIS K6262:2013に基づき、試験時間72時間及び試験温度200℃として圧縮永久ひずみの測定を行った。
 (試験結果)
 試験結果を表1に示す。
 表1によれば、水素サイト保護剤を用いた実施例1及び2は、Oプラズマ及びCFプラズマのいずれに対しても、優れた耐プラズマ性を有することが分かる。一方、水素サイト保護剤を用いていない比較例1~3は、Oプラズマに対して、パーティクルの発生は無いものの、質量減量が大きく(特に比較例1)、クラックが発生していることが分かる。また、CFプラズマに対しては、比較例1及び3は優れた耐プラズマ性を有するものの、比較例2は、パーティクルの発生は無いとしても、質量減量が大きく、クラックが発生していることが分かる。なお、引張特性及び圧縮永久ひずみについては、実施例1~2と比較例1~3との間での優劣は認められなかった。
 本発明は、未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法の技術分野について有用である。

Claims (17)

  1.  水素含有フッ素ゴムと、
     所定の温度に加熱されたときに前記水素含有フッ素ゴムを架橋させる熱架橋剤と、
     放射線が照射されたときに前記水素含有フッ素ゴムの炭素-水素間の結合が切断されて生じる炭素のラジカルに結合する水素サイト保護剤と、
    を含有する未架橋ゴム組成物。
  2.  請求項1に記載された未架橋ゴム組成物において、
     前記水素サイト保護剤は、分子内に前記炭素のラジカルに結合するアルケニル基を有するパーフルオロ骨格の化合物、及び/又は、分子内に前記炭素のラジカルに結合するアルケニル基を有するシロキサン骨格の化合物を含む未架橋ゴム組成物。
  3.  請求項2に記載された未架橋ゴム組成物において、
     前記水素サイト保護剤が、分子内にアルケニル基を2個以上有する未架橋ゴム組成物。
  4.  請求項2に記載された未架橋ゴム組成物において、
     前記アルケニル基がビニル基である未架橋ゴム組成物。
  5.  請求項1に記載された未架橋ゴム組成物において、
     前記水素サイト保護剤の含有量が、前記水素含有フッ素ゴム100質量部に対して1質量部以上20質量部以下である未架橋ゴム組成物。
  6.  請求項1に記載された未架橋ゴム組成物において、
     前記熱架橋剤がパーオキサイドを含む未架橋ゴム組成物。
  7.  請求項6に記載された未架橋ゴム組成物において、
     前記熱架橋剤が2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンを含む未架橋ゴム組成物。
  8.  請求項1に記載された未架橋ゴム組成物において、
     前記熱架橋剤の含有量が、前記水素含有フッ素ゴム100質量部に対して0.5質量部以上2.5質量部以下である未架橋ゴム組成物。
  9.  請求項1に記載された未架橋ゴム組成物において、
     前記水素サイト保護剤の含有量の前記熱架橋剤の含有量に対する比が2.5以上30以下である未架橋ゴム組成物。
  10.  請求項1に記載された未架橋ゴム組成物において、
     前記水素含有フッ素ゴムが前記熱架橋剤により架橋するときに、前記水素含有フッ素ゴムの分子間に介在するように前記水素含有フッ素ゴムと結合する架橋助剤を更に含有する未架橋ゴム組成物。
  11.  請求項10に記載された未架橋ゴム組成物において、
     前記架橋助剤がトリアリルイソシアヌレートを含む未架橋ゴム組成物。
  12.  請求項10に記載された未架橋ゴム組成物において、
     前記架橋助剤の含有量が、前記水素含有フッ素ゴム100質量部に対して1質量部以上10質量部以下である未架橋ゴム組成物。
  13.  請求項10に記載された未架橋ゴム組成物において、
     前記架橋助剤の含有量の前記熱架橋剤の含有量に対する比が4.0よりも小さい未架橋ゴム組成物。
  14.  請求項1に記載された未架橋ゴム組成物において、
     無機充填剤の含有量が、前記水素含有フッ素ゴム100質量部に対して5質量部以下である未架橋ゴム組成物。
  15.  請求項1に記載された未架橋ゴム組成物を用いて製造されるゴム製品であって、
     前記水素含有フッ素ゴムが前記熱架橋剤により架橋するとともに、前記水素含有フッ素ゴムの炭素-水素間の結合が切断された後の炭素に前記水素サイト保護剤が結合したゴム組成物で形成されているゴム製品。
  16.  請求項15に記載されたゴム製品において、
     前記ゴム製品がシール材であるゴム製品。
  17.  請求項1に記載された未架橋ゴム組成物を、所定の温度に加熱して前記水素含有フッ素ゴムを前記熱架橋剤により架橋させた後、放射線を照射して前記水素含有フッ素ゴムの炭素-水素間の結合を切断して生じる炭素のラジカルに前記水素サイト保護剤を結合させるゴム製品の製造方法。
PCT/JP2018/033206 2017-09-14 2018-09-07 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法 WO2019054293A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11202002349YA SG11202002349YA (en) 2017-09-14 2018-09-07 Uncrosslinked rubber composition and rubber product manufactured by using same and manufacturing method therefor
CN201880059589.9A CN111094437B (zh) 2017-09-14 2018-09-07 未交联橡胶组合物以及使用该未交联橡胶组合物制造的橡胶产品及其制造方法
US16/647,457 US20200277467A1 (en) 2017-09-14 2018-09-07 Uncrosslinked rubber composition and rubber product manufactured by using same and manufacturing method therefor
EP18856637.6A EP3677642A4 (en) 2017-09-14 2018-09-07 COMPOSITION OF NON-CROSS-LINKED RUBBER AND RUBBER PRODUCT MANUFACTURED THEREOF AND RELATED MANUFACTURING PROCESS
EP22193385.6A EP4116374A1 (en) 2017-09-14 2018-09-07 Method for manufacturing a rubber product
KR1020207009674A KR102517714B1 (ko) 2017-09-14 2018-09-07 시일재 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017176309A JP6620132B2 (ja) 2017-09-14 2017-09-14 シール材及びその製造方法
JP2017-176309 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019054293A1 true WO2019054293A1 (ja) 2019-03-21

Family

ID=65723634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033206 WO2019054293A1 (ja) 2017-09-14 2018-09-07 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法

Country Status (8)

Country Link
US (1) US20200277467A1 (ja)
EP (2) EP4116374A1 (ja)
JP (1) JP6620132B2 (ja)
KR (1) KR102517714B1 (ja)
CN (1) CN111094437B (ja)
SG (1) SG11202002349YA (ja)
TW (1) TWI761593B (ja)
WO (1) WO2019054293A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065057A1 (ja) * 2020-09-28 2022-03-31 株式会社バルカー エラストマー組成物、シール材およびシール材の製造方法
WO2022065056A1 (ja) * 2020-09-28 2022-03-31 株式会社バルカー エラストマー組成物、シール材およびシール材の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6918734B2 (ja) * 2018-03-29 2021-08-11 三菱電線工業株式会社 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
JP6788716B2 (ja) * 2019-09-19 2020-11-25 三菱電線工業株式会社 ゴム製品及びその製造方法
CN115605540A (zh) * 2020-05-14 2023-01-13 霓佳斯株式会社(Jp) 橡胶组合物、含氟弹性体和密封材料
CN111471186B (zh) * 2020-05-29 2023-01-24 中国工程物理研究院化工材料研究所 一种高性能共聚液态氟橡胶、制备方法及应用
JP7048713B1 (ja) * 2020-12-18 2022-04-05 三菱電線工業株式会社 フッ素ゴム組成物及びそれを用いて形成されたゴム成形品
JP7330230B2 (ja) * 2021-06-09 2023-08-21 三菱電線工業株式会社 シール材及びその製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255746A (ja) * 1991-02-06 1992-09-10 Asahi Glass Co Ltd 加硫性ゴム組成物
JPH0940712A (ja) * 1995-07-27 1997-02-10 Kin Yosha Kk パーオキシド架橋型フッ素ゴムの改質方法
WO1999065975A1 (fr) * 1998-06-17 1999-12-23 Daikin Industries, Ltd. Caoutchouc moule expose a un rayonnement ionisant et son procede de production
JP2000290430A (ja) * 1999-04-02 2000-10-17 Nippon Zeon Co Ltd 架橋性フッ素ゴム組成物、架橋物、ゴム積層体およびゴム積層体の製造方法
JP2001348462A (ja) 2000-06-09 2001-12-18 Nichias Corp 耐プラズマ性ゴム組成物及びプラズマ処理装置用ゴム材料
WO2006068099A1 (ja) * 2004-12-20 2006-06-29 Nippon Valqua Industries, Ltd. ゴム組成物、プラズマ処理装置用シール材
JP2006342241A (ja) * 2005-06-08 2006-12-21 Nippon Valqua Ind Ltd フッ素ゴムシール材
JP4381087B2 (ja) 2003-10-08 2009-12-09 日本バルカー工業株式会社 フッ素ゴムシール材の製造方法
JP4628814B2 (ja) 2005-02-15 2011-02-09 日本バルカー工業株式会社 半導体製造装置用シール材
WO2011040576A1 (ja) * 2009-10-01 2011-04-07 旭硝子株式会社 架橋性フッ素ゴム組成物および架橋ゴム物品
JP2011144285A (ja) * 2010-01-15 2011-07-28 Sumitomo Electric Ind Ltd ゴム組成物及びこれを被覆した絶縁電線
JP4778782B2 (ja) 2004-12-28 2011-09-21 ニチアス株式会社 シール材
WO2012073977A1 (ja) * 2010-11-30 2012-06-07 旭硝子株式会社 架橋性フッ素ゴム組成物および架橋ゴム物品
WO2015020004A1 (ja) * 2013-08-07 2015-02-12 旭硝子株式会社 架橋性含フッ素エラストマー組成物及びその架橋物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359950A (ja) * 1991-06-07 1992-12-14 Asahi Glass Co Ltd 加硫性ゴム組成物
CA2055103A1 (en) * 1990-11-16 1992-05-17 Isamu Kaneko Vulcanizable rubber composition
JPH07247396A (ja) * 1994-01-27 1995-09-26 Kin Yosha Kk 撥油性フッ素ゴム組成物
JP2003277599A (ja) * 2002-03-22 2003-10-02 Shin Etsu Chem Co Ltd 架橋性フッ素ゴム組成物及びその製造方法
JP2004131656A (ja) * 2002-10-11 2004-04-30 Asahi Glass Co Ltd 半導体装置用シール材
JP4844952B2 (ja) * 2004-09-02 2011-12-28 ニチアス株式会社 フッ素ゴム組成物、これを使用したゴム材料及びフッ素ゴム成形体の製造方法
JP2015010225A (ja) * 2013-07-02 2015-01-19 三菱電線工業株式会社 樹脂組成物およびシール部材
CN105849180B (zh) * 2013-12-27 2018-09-21 日本华尔卡工业株式会社 氟橡胶组合物、以及交联橡胶成型体和其制造方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255746A (ja) * 1991-02-06 1992-09-10 Asahi Glass Co Ltd 加硫性ゴム組成物
JPH0940712A (ja) * 1995-07-27 1997-02-10 Kin Yosha Kk パーオキシド架橋型フッ素ゴムの改質方法
WO1999065975A1 (fr) * 1998-06-17 1999-12-23 Daikin Industries, Ltd. Caoutchouc moule expose a un rayonnement ionisant et son procede de production
JP2000290430A (ja) * 1999-04-02 2000-10-17 Nippon Zeon Co Ltd 架橋性フッ素ゴム組成物、架橋物、ゴム積層体およびゴム積層体の製造方法
JP2001348462A (ja) 2000-06-09 2001-12-18 Nichias Corp 耐プラズマ性ゴム組成物及びプラズマ処理装置用ゴム材料
JP4381087B2 (ja) 2003-10-08 2009-12-09 日本バルカー工業株式会社 フッ素ゴムシール材の製造方法
JP4675907B2 (ja) 2004-12-20 2011-04-27 日本バルカー工業株式会社 ゴム組成物、プラズマ処理装置用シール材
WO2006068099A1 (ja) * 2004-12-20 2006-06-29 Nippon Valqua Industries, Ltd. ゴム組成物、プラズマ処理装置用シール材
JP4778782B2 (ja) 2004-12-28 2011-09-21 ニチアス株式会社 シール材
JP4628814B2 (ja) 2005-02-15 2011-02-09 日本バルカー工業株式会社 半導体製造装置用シール材
JP2006342241A (ja) * 2005-06-08 2006-12-21 Nippon Valqua Ind Ltd フッ素ゴムシール材
JP5189728B2 (ja) 2005-06-08 2013-04-24 日本バルカー工業株式会社 フッ素ゴムシール材
WO2011040576A1 (ja) * 2009-10-01 2011-04-07 旭硝子株式会社 架橋性フッ素ゴム組成物および架橋ゴム物品
JP2011144285A (ja) * 2010-01-15 2011-07-28 Sumitomo Electric Ind Ltd ゴム組成物及びこれを被覆した絶縁電線
WO2012073977A1 (ja) * 2010-11-30 2012-06-07 旭硝子株式会社 架橋性フッ素ゴム組成物および架橋ゴム物品
WO2015020004A1 (ja) * 2013-08-07 2015-02-12 旭硝子株式会社 架橋性含フッ素エラストマー組成物及びその架橋物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677642A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065057A1 (ja) * 2020-09-28 2022-03-31 株式会社バルカー エラストマー組成物、シール材およびシール材の製造方法
WO2022065056A1 (ja) * 2020-09-28 2022-03-31 株式会社バルカー エラストマー組成物、シール材およびシール材の製造方法

Also Published As

Publication number Publication date
TWI761593B (zh) 2022-04-21
JP2019052226A (ja) 2019-04-04
EP3677642A1 (en) 2020-07-08
EP4116374A1 (en) 2023-01-11
KR20200049835A (ko) 2020-05-08
EP3677642A4 (en) 2020-10-21
KR102517714B1 (ko) 2023-04-03
CN111094437A (zh) 2020-05-01
TW201920434A (zh) 2019-06-01
CN111094437B (zh) 2022-05-13
SG11202002349YA (en) 2020-04-29
US20200277467A1 (en) 2020-09-03
JP6620132B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6620132B2 (ja) シール材及びその製造方法
JP6134391B2 (ja) シール材及びその製造方法
JP6788716B2 (ja) ゴム製品及びその製造方法
JP6924215B2 (ja) シール材及びその製造方法
EP2927276A1 (en) Fluororubber composition and crosslinked rubber article using same
JP2021105179A (ja) 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
JP2020070326A (ja) 未架橋フッ素ゴム組成物及びそれを用いて製造されるゴム製品
JP2017214556A (ja) パーフルオロエラストマー組成物及びシール材
WO2019088100A1 (ja) 放熱材料用含フッ素エラストマー組成物及びシート
EP3303464A1 (en) Fluoroelastomer composition
US20230174763A1 (en) Elastomer composition and sealing material comprising same
JP4381087B2 (ja) フッ素ゴムシール材の製造方法
JP2024055119A (ja) シール材及びその製造方法
JP2015067659A (ja) 架橋性含フッ素エラストマー組成物及び架橋ゴム物品
JP7048713B1 (ja) フッ素ゴム組成物及びそれを用いて形成されたゴム成形品
JP7155286B2 (ja) エラストマー組成物及びシール材
EP3650498A1 (en) Fluorine-containing elastic copolymer composition and crosslinked rubber article
KR20240036505A (ko) 미가교 플루오로고무 조성물 그리고 이를 사용하여 제조되는 실링재 및 그 제조방법
CN116368187A (zh) 弹性体组合物、密封材料及密封材料的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207009674

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018856637

Country of ref document: EP

Effective date: 20200331