WO2019031613A1 - ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法 - Google Patents

ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法 Download PDF

Info

Publication number
WO2019031613A1
WO2019031613A1 PCT/JP2018/030142 JP2018030142W WO2019031613A1 WO 2019031613 A1 WO2019031613 A1 WO 2019031613A1 JP 2018030142 W JP2018030142 W JP 2018030142W WO 2019031613 A1 WO2019031613 A1 WO 2019031613A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
based resin
mass
degree
polyvinyl alcohol
Prior art date
Application number
PCT/JP2018/030142
Other languages
English (en)
French (fr)
Inventor
和俊 ▲辻▼
紀人 酒井
智也 藤田
隆裕 坂
千津子 風呂
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to CN201880051662.8A priority Critical patent/CN110997861B/zh
Priority to SG11202001095UA priority patent/SG11202001095UA/en
Priority to JP2018543180A priority patent/JP7326741B2/ja
Priority to EP18845246.0A priority patent/EP3666849A4/en
Publication of WO2019031613A1 publication Critical patent/WO2019031613A1/ja
Priority to US16/782,415 priority patent/US11597870B2/en
Priority to US18/090,917 priority patent/US20230147740A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/725Compositions containing polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping

Definitions

  • the present invention relates to a diverting agent and a method of closing a well crack using the same, and more particularly, to a diverting agent used at the time of construction of a drilling method using hydraulic fracturing and the diverting agent
  • the present invention relates to a method of closing a crack in a well using the
  • Hydraulic fracturing is widely used to extract oil and other underground resources by injecting high pressure water into the underground shale layer to create cracks.
  • a vertical hole of several thousand meters underground (vertical well) is drilled vertically with a drill, and a horizontal hole with a diameter of ten to several tens centimeters (horizontal well) is reached horizontally when reaching a shale layer.
  • Excavate By filling the vertical and horizontal wells with fluid and pressurizing the fluid, a crack (fracture) is generated from the well, and natural gas and oil (shale gas / oil) in the shale layer form such a crack. And so on, so it will be collected.
  • the generation of the crack increases the resource inflow cross section of the well, and the underground resources can be efficiently collected.
  • a pre-blasting called Perforation is performed in a horizontal well.
  • Such pre-blasting drills a hole from the well to the production layer.
  • the fractured fluid is injected into the well to cause the fluid to flow into the holes, and the load is applied to the holes so that the holes are cracked and the size is suitable for collecting resources. Will grow into
  • a part of the already generated crack is used with an additive called a diverting agent. It is temporarily closed. By temporarily closing a part of the crack with the diverting agent and pressurizing the fracturing fluid filled in the well in this state, the fluid may intrude into other cracks, thereby Cracks can grow large or new cracks can be generated.
  • the diverting agent Since the diverting agent is used to temporarily close the crack as described above, its shape can be maintained for a certain period of time, and it is hydrolyzed and lost when natural gas, petroleum, etc. are collected. Is used. For example, various techniques have been proposed that use hydrolyzable resins such as polyglycolic acid and polylactic acid as a diverting agent.
  • Patent Document 1 proposes a temporary digging agent for construction digging that contains highly biodegradable polyglycolic acid among biodegradable aliphatic polyester resins.
  • patent document 2 it consists of the particle
  • hydrolysable particles having a dispersed structure in which fine particles of highly biodegradable polyoxalate for adjusting the hydrolyzability of the polylactic acid are distributed in polylactic acid that is, hydrolysable particles having an average particle diameter (D 50 ) in the range of 300 to 1000 ⁇ m and a minor axis / major axis ratio of 0.8 or more have been proposed.
  • Patent Document 4 proposes polyoxalate particles having an average particle diameter (D 50 ) in the range of 300 to 1000 ⁇ m and having a minor axis / major axis ratio of 0.8 or more. ing.
  • diverting agents are used to temporarily close cracks in the shale layer.
  • the diverting agent needs to be maintained in shape immediately after addition to water.
  • the diverting agent is preferably removed.
  • a diverting agent that can partially dissolve in water and close cracks can be removed after a certain period of time (about 30 minutes to one week), but after a certain period of time, it can be dissolved and removed with water.
  • the temporary filler in Patent Document 1, the powder in Patent Document 2, the hydrolysable particles in Patent Document 3, and the polyoxalate particles in Patent Document 4 do not dissolve in water. Also, since the biodegradation rate is low at low temperatures, it takes a considerable amount of time to be removed.
  • the present invention has been made in view of the above-mentioned conventional situation, and it is a grade which is partially dissolved in water for a certain period of time (about 30 minutes to one week) and can close cracks, but a certain period of time has passed
  • the problem to be solved is to provide a diverting agent that can be dissolved and removed with water.
  • the present invention relates to the following ⁇ 1> to ⁇ 13>.
  • a diverting agent containing a polyvinyl alcohol resin ⁇ 2> The diverting agent according to ⁇ 1>, wherein the degree of saponification of the polyvinyl alcohol resin is 90 mol% or more.
  • the polyvinyl alcohol-based resin is charged in 4 g of the polyvinyl alcohol-based resin in 96 g of water at 40 ° C., and the dissolution rate when stirred for 180 minutes is 0.1 to 30% by mass, ⁇ 1> or Diverting agent described in ⁇ 2>.
  • ⁇ 4> The diverting agent according to any one of ⁇ 1> to ⁇ 3>, wherein the crystallinity of the polyvinyl alcohol resin is 25 to 60%.
  • the polyvinyl alcohol-based resin has a ratio of a dissolution ratio after 24 hours to a dissolution ratio after 1 hour of immersing 1 g of the polyvinyl alcohol resin in 100 g of water at 40 ° C. is 2.8 or more The diverting agent described in>.
  • ⁇ 6> The diverting agent according to ⁇ 5>, wherein a dissolution rate after 1 hour when 1 g of the polyvinyl alcohol resin is immersed in 100 g of water at 40 ° C. is less than 30% by mass.
  • ⁇ 7> The diverting agent according to ⁇ 5> or ⁇ 6>, having a dissolution rate of 30% by mass or more after 24 hours when 1 g of the polyvinyl alcohol-based resin is immersed in 100 g of water at 40 ° C.
  • ⁇ 8> The diverting agent according to any one of ⁇ 5> to ⁇ 7>, wherein the polyvinyl alcohol-based resin is a modified polyvinyl alcohol-based resin.
  • ⁇ 9> The diverting agent according to ⁇ 8>, wherein a modification ratio of the modified polyvinyl alcohol resin is 0.5 to 10 mol%.
  • ⁇ 10> The diverting agent according to ⁇ 1>, wherein the polyvinyl alcohol-based resin satisfies the following formula (A).
  • the mass (g) of the polyvinyl alcohol-based resin dried after swelling is the same as the definition in the formula (B).
  • a method for temporarily closing a crack generated in a well wherein the diverting agent according to any one of ⁇ 1> to ⁇ 12> is placed on the fluid flow in the well. A method of closing a crack that flows into the crack that you want to close.
  • a certain amount of time (about 30 minutes to one week) can be partially dissolved in water, and cracks can be closed. Can provide a diverting agent that can be dissolved away.
  • the shape can be maintained for about 1 hour after addition to water, and after about 24 hours
  • a diverting agent can be provided that has increased solubility in water.
  • (meth) allyl means allyl or methallyl
  • (meth) acrylic means acrylic or methacrylic
  • (meth) acrylate means acrylate or methacrylate.
  • “mass” is synonymous with "weight”.
  • the diverting agent of the present invention contains a polyvinyl alcohol (hereinafter sometimes referred to as PVA) based resin.
  • PVA polyvinyl alcohol
  • the diverting agent of the present invention becomes a water-soluble diverting agent by containing a PVA-based resin.
  • the diverting agent according to the present invention contains a PVA-based resin, so that even in a relatively low temperature range (for example, 30 ° C. to 60 ° C.), a part of the water is added to water for a fixed time (about 30 minutes to 1 week) It becomes a diverting agent that can dissolve and crack cracks, but can dissolve and remove with water after a certain period of time.
  • the diverting agent of the present invention When recovering oil, natural gas, etc., the diverting agent of the present invention is used to embolize cracks in the ground, but since the diverting agent of the present invention dissolves in water, it can be suspended for a long time. I will not stay there. Therefore, the diverting agent of the present invention is extremely useful to the environment with extremely low load on the environment.
  • the PVA-based resin used in the present invention preferably satisfies the following aspect (i). ⁇ Aspect (i): PVA-based resin having a dissolution rate of 0.1 to 30% by mass when 4 g of PVA-based resin is put in 96 g of water at 40 ° C. and stirred for 180 minutes>
  • the above dissolution rate is more preferably 1 to 20% by mass, and still more preferably 2 to 10% by mass. If the dissolution rate is too low, the diverting agent tends to remain even after the role of closing the crack in the well is finished, and if the dissolution rate is too high, the embolism period tends to be very short.
  • dissolution rate is as follows. (1) Charge 4 g of PVA-based resin to 96 g of water at 40 ° C. (2) Stir for 180 minutes while keeping the temperature of water at 40 ° C. (3) After stirring for 180 minutes, the residue that remains dissolved is filtered to measure the concentration of the aqueous solution from which the residue is removed.
  • the amount of residue is calculated from the concentration of the aqueous solution and the preparation amount of the PVA-based resin to determine the dissolution rate.
  • the crystallinity degree of the PVA-based resin used in the embodiment (i) is preferably 25 to 60%, more preferably 30 to 55%, still more preferably 35 to 50%, particularly preferably 40 to 50%. . If the degree of crystallization is too small, the sealing effect tends to decrease, and if the degree of crystallization is too large, the water solubility tends to decrease.
  • the degree of crystallization is calculated by measuring the heat of fusion ( ⁇ H) (J / g) of the melting point of the target PVA-based resin, using the following equation.
  • Crystallinity (%) ⁇ H / ⁇ H 0 ⁇ 100 (However, ⁇ H 0 is the heat of fusion 156.7 (J / g) of PVA-based resin having a degree of saponification of 100 mol%.)
  • the heat of fusion ( ⁇ H) (J / g) of the melting point of the PVA-based resin is measured using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the heat of fusion ( ⁇ H) is calculated by first using the temperature axis as the horizontal axis of the analysis chart, point A that is 5 ° C. higher than the temperature of the end point of the endothermic peak of the DSC curve, and 40 from the temperature of the endothermic peak of the DSC curve A point low at ° C. is taken as point B, and a straight line connecting these two points is taken as a baseline.
  • the heat of fusion ( ⁇ H) (J / g) is calculated from the area of the portion surrounded by the baseline and the endothermic peak.
  • the melting point of the PVA-based resin used in the embodiment (i) is usually 140 to 250 ° C., preferably 150 to 245 ° C., more preferably 160 to 240 ° C., still more preferably 170 to 235 ° C., particularly preferably 180 to 250 ° C. It is 230 ° C.
  • the melting point is a value measured by a differential scanning calorimeter (DSC) at a temperature elevation rate of 10 ° C./min.
  • core-shell particles refer to particles comprising a core portion and a shell portion provided on the surface thereof.
  • the saponification degree (measured according to JIS K 6726) of the PVA-based resin used in the embodiment (i) is usually 70 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more, 98 mol% % Or more is more preferable.
  • the degree of saponification of the PVA-based resin used in the embodiment (i) is high, the dissolution rate after 1 hour of the PVA-based resin can be reduced, and temporary by the diverting agent of the embodiment (i) in the cracks of the shale layer Embolization can be performed efficiently.
  • the degree of saponification of the PVA-based resin used in the embodiment (i) is high, the dispersibility of the PVA-based resin in water is good.
  • the degree of saponification of the PVA-based resin used in the embodiment (i) is too low, the water-solubility of the PVA-based resin tends to be low, and it tends to take time to be removed.
  • the saponification degree of the PVA-based resin used in the embodiment (i) is preferably 99.9 mol% or less, more preferably 99.8 mol% or less, and further 99.5 mol% or less preferable.
  • the average degree of polymerization of the PVA-based resin used in the embodiment (i) is usually 150 to 4000, preferably 200 to 3000.
  • the average polymerization degree of PVA-type resin is computed from the viscosity of 4 mass% aqueous solution in 20 degreeC measured based on JISK6726.
  • the PVA-based resin used in the aspect (i) may be unmodified PVA or modified PVA-based resin.
  • a copolymer-modified PVA-based resin is produced by copolymerizing a vinyl ester-based monomer such as vinyl acetate and another unsaturated monomer copolymerizable with the vinyl ester-based monomer, and then saponifying the product.
  • the post-modified PVA-based resin can be produced by reacting unmodified PVA with a modified monomer.
  • Examples of the above-mentioned other unsaturated monomers copolymerizable with the above-mentioned vinyl ester type monomers include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, etc .; acrylic acid, methacrylic Unsaturated acids such as acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, undecylenic acid or salts thereof, mono- or dialkyl esters thereof, etc. Nitriles such as acrylonitrile, methacrylonitrile, etc.
  • Diacetone acrylamide, acrylamide, methacryl Amides such as amides; olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid or salts thereof; alkyl vinyl ethers; N-acrylamidomethyl trimethyl ammonium chloride; allyl trimethyl ammonium N-vinyl pyrrolidone; vinyl chloride; vinylidene chloride; polyoxyalkylene (meth) allyl ether such as polyoxyethylene (meth) allyl ether, polyoxypropylene (meth) allyl ether; Polyoxyalkylene (meth) acrylates such as meta) acrylate and polyoxypropylene (meth) acrylate; polyoxyalkylene (meth) acrylamides such as polyoxyethylene (meth) acrylamide and polyoxypropylene (meth) acrylamide; 1- (Meth) acrylamido-1,1-d
  • PVA-type resin which has a primary hydroxyl group in a side chain as a copolymerization modified PVA-type resin is mentioned.
  • a PVA-based resin for example, a PVA-based resin having a 1,2-diol structure in a side chain, which is obtained by copolymerizing 3,4-diacetoxy-1-butene, vinyl ethylene carbonate, glycerin monoallyl ether etc. Copolymerization of hydroxymethylvinylidene diacetate such as 1,3-diacetoxy-2-methylenepropane, 1,3-dipropionyloxy-2-methylenepropane, 1,3-dibutyronyloxy-2-methylenepropane, etc.
  • the PVA-type resin which has a hydroxymethyl group in the side chain obtained by this can be mentioned.
  • the post-modified PVA-based resin can be produced by post-modifying unmodified PVA.
  • a method of such post-modification a method of acetoacetic acid esterification, acetalization, urethanization, etherification, phosphoric acid esterification, oxyalkylenization etc. of unmodified PVA can be mentioned.
  • a PVA-based resin having a 1,2-diol structure in a side chain is preferable in that the solubility is easily controlled.
  • the PVA-based resin used in the embodiment (i) is usually used in the form of pellets, powder and the like. Among them, from the viewpoint of embolic property, it is preferable to use in pellet form.
  • the average particle size is preferably 10 to 3000 ⁇ m, more preferably 50 to 2000 ⁇ m, and still more preferably 100 to 1000 ⁇ m.
  • this average particle diameter is a diameter which measures the volume distribution according to particle diameter by laser diffraction, and an integrated value (cumulative distribution) becomes 50%.
  • the average degree of polymerization is particularly preferably 200 to 1200, and more preferably 300 to 800. If the average degree of polymerization is too low, the water solubility tends to be too high, and the filling effect tends to decrease. If the average degree of polymerization is too high, the water solubility tends to be too low, and the time until it can be dissolved and removed tends to be too long.
  • a known method can be used to form the pellet-like shape, but it is extruded from an extruder into a strand, cooled and cut into a predetermined length, and a circle
  • the method of forming columnar pellets is efficient.
  • the size of the cylindrical pellet is usually 1 to 4 mm, preferably 2 to 3 mm, and 1 to 4 mm, preferably 2 to 3 mm in diameter.
  • the pellet-shaped PVA-based resin used in the embodiment (i) can be produced, for example, by a method of melting a powder of the PVA-based resin.
  • melt-kneading As a melting method, after mixing by a mixer such as a Henschel mixer or ribbon blender, a method of melt-kneading with a melt kneader such as a single-screw or twin-screw extruder, a roll, a Banbury mixer, a kneader, or a Brabender mixer is mentioned.
  • a melt kneader such as a single-screw or twin-screw extruder, a roll, a Banbury mixer, a kneader, or a Brabender mixer is mentioned.
  • the temperature at the time of melt-kneading can be suitably set in a temperature range which is equal to or higher than the melting point of the PVA-based resin and which does not cause heat deterioration, preferably 100 to 250 ° C., particularly preferably 160 to 220 ° C. .
  • the PVA-based resin used in the embodiment (i) is produced by heat treatment
  • the PVA-based resin obtained by a conventional method is, for example, 90 to 220 ° C., preferably 90 to 180 ° C., more preferably 100 to 160 ° C.
  • the PVA-based resin can be obtained by heat treatment for 10 to 600 minutes, preferably 20 to 400 minutes, more preferably 30 to 300 minutes.
  • the heat treatment can be performed by a known method, and can be performed by melt extrusion or the like in addition to the heat treatment using a heat treatment can or the like.
  • PVA-type resin used by aspect (ii) is PVA-type resin which satisfy
  • the PVA-based resin maintains its shape for about 1 hour after addition to water It tends to become a PVA-based resin whose solubility in water increases after about 24 hours.
  • the diverting agent of the embodiment (ii) containing the PVA-based resin can maintain its shape for a certain period of time, and can be dissolved in water when oil, natural gas, etc. are recovered.
  • the ratio of the dissolution rate after 24 hours to the dissolution rate after 1 hour is preferably 3.0 or more, more preferably 3.5 or more, from the viewpoint of further increasing the solubility in water after about 24 hours. .0 or more is particularly preferred. Further, the ratio of the dissolution rate after 24 hours to the dissolution rate after 1 hour is preferably 20 or less, more preferably 10 or less, because if the dissolution is too fast, the acting period of the filling effect becomes too short.
  • the dissolution rate (mass%) after 1 hour is 1 g of PVA resin immersed in 100 g of water at 40 ° C. and allowed to stand for 1 hour, then the mass of the PVA resin not dissolved remains. It can be calculated from the proportion (mass%). Specifically, the dissolution rate (mass%) after 1 hour can be calculated by the following method.
  • a 140 mL lidded glass vessel containing 100 g of water is placed in a thermostat and the water temperature is brought to 40.degree.
  • the long side of nylon 120 mesh (mesh size 125 ⁇ m, 10 cm ⁇ 7 cm) is folded in two and heat sealed at both ends to obtain a mesh bag (5 cm ⁇ 7 cm).
  • the solid fraction (% by mass) of the polyvinyl alcohol resin is calculated by drying the PVA resin at 105 ° C. for 3 hours and measuring the mass of the PVA resin before and after drying. can do.
  • the dissolution rate (mass%) after 24 hours changes the place where it is allowed to stand for 1 hour in the process of calculating the dissolution rate (mass%) after 1 hour to 24 hours.
  • the mass of the PVA-based resin remaining in the mesh bag can be calculated and calculated after 24 hours in the same manner except for the above.
  • the dissolution rate after 1 hour of PVA-type resin used by aspect (ii) 25 mass% or less is more preferable, and 20 mass% or less is more preferable.
  • the dissolution rate after 1 hour is less than 30% by mass, the shape of the PVA-based resin can be maintained for a certain period of time, and temporary occlusion by the diverting agent of aspect (ii) in the cracks of the shale layer is efficient Can be done.
  • the dissolution rate of the PVA-based resin used in the embodiment (ii) is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, because if the dissolution is too slow, the sealing period becomes too long. And 1% by mass or more is more preferable.
  • the diverting agent according to aspect (ii) can be efficiently removed when recovering oil, natural gas or the like.
  • the dissolution rate after 24 hours of the PVA-based resin used in the embodiment (ii) is preferably 99% by mass or less, more preferably 90% by mass or less, because the sealing period becomes too short if dissolution is too fast. % Or less is more preferable, and 70% by mass or less is particularly preferable.
  • the dissolution rate after 1 hour of the PVA-based resin can be reduced, and temporary obstruction by the diverting agent of aspect (ii) due to cracks in the shale layer Can be done efficiently.
  • the average degree of polymerization of the PVA-based resin is preferably 4000 or less, more preferably 3000 or less, and still more preferably 2500 or less, from the viewpoint of preventing the solubility after 24 hours from being too low.
  • the saponification degree (measured according to JIS K 6726) of the PVA-based resin used in the embodiment (ii) is usually 70 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more, 98 mol% or more is more preferable.
  • the upper limit of the degree of saponification is preferably 99.9 mol% or less, more preferably 99.8 mol% or less, and still more preferably 99.5 mol% or less, from the viewpoint of production efficiency.
  • the PVA-based resin used in the embodiment (ii) is produced by heat treatment
  • the PVA-based resin obtained by a conventional method is, for example, 90 to 220 ° C., preferably 90 to 180 ° C., more preferably 100 to
  • the PVA-based resin can be obtained by heat treatment at 160 ° C. for 10 to 600 minutes, preferably 20 to 400 minutes, more preferably 30 to 300 minutes.
  • the heat treatment can be performed by a known method, and can be performed by melt extrusion or the like in addition to the heat treatment using a heat treatment can or the like.
  • the PVA-based resin used in the embodiment (ii) may be unmodified PVA or modified PVA-based resin, and is preferably PVA-based resin having a 1,2-diol structure in the side chain.
  • the mass (g) of the polyvinyl alcohol-based resin dried after swelling is the mass (g) after drying the residual polyvinyl alcohol-based resin at 140 ° C. for 3 hours.
  • the elution rate (mass%) is a value calculated
  • the mass (g) of the polyvinyl alcohol-based resin dried after swelling is the same as the definition in Formula (B).
  • the solid fraction (% by mass) of the polyvinyl alcohol resin is calculated by drying the PVA resin at 105 ° C. for 3 hours and measuring the mass of the PVA resin before and after drying. be able to.
  • the value of the degree of swelling ⁇ dissolution rate (mass%) of the PVA-based resin used in aspect (iii) is 500 or less. Since the adhesion between the PVA-based resins is suppressed, the dispersibility of the diverting agent in the embodiment (iii) in water can be enhanced. Further, from the viewpoint of further enhancing the dispersibility, the value of swelling degree ⁇ dissolution rate (% by mass) is more preferably 0 to 500, still more preferably 1 to 480, and particularly preferably 2 to 400.
  • the degree of swelling of the PVA-based resin used in the aspect (iii) is preferably 30 or less, more preferably 20 or less, and still more preferably 10 or less. If the swelling degree of the PVA-based resin used in the aspect (iii) is 30 or less, the PVA-based resin can be prevented from being excessively enlarged by water, and the load on the pump for feeding water and the diverting agent of the aspect (iii) It can be reduced. In addition, the diverting agent according to mode (iii) can form an embolism also in the fine fractures of the shale layer. The lower limit of the degree of swelling is zero.
  • the elution rate of PVA-type resin used by aspect (iii) is preferable, as for the elution rate of PVA-type resin used by aspect (iii), 30 mass% or less is more preferable, and 10 mass% or less is more preferable.
  • the shape of the PVA-based resin can be maintained for a certain period of time as the elution rate of the PVA-based resin used in the aspect (iii) is 50% by mass or less, and the diverting agent according to the aspect (iii) at the fracture of the shale layer Temporary embolization can be performed efficiently.
  • the lower limit value of the dissolution rate is 0% by mass.
  • a method of adjusting the degree of saponification of the PVA-based resin As a method of adjusting the elution rate of the PVA-based resin used in the embodiment (iii), a method of adjusting the degree of saponification of the PVA-based resin, a method of adjusting the average degree of polymerization of the PVA-based resin, a modifying group to the PVA-based resin
  • transducing, the method of heat-processing to PVA-type resin, the method of making it a core-shell particle using PVA-type resin, etc. are mentioned.
  • the saponification degree (measured according to JIS K 6726) of the PVA-based resin used in the embodiment (iii) is usually 70 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more, 98 mol% or more is more preferable.
  • the upper limit of the degree of saponification is preferably 99.9 mol% or less, more preferably 99.8 mol% or less, and still more preferably 99.5 mol% or less, from the viewpoint of production efficiency.
  • the PVA-based resin used in the embodiment (iii) is produced by heat treatment
  • the PVA-based resin obtained by a conventional method is, for example, 90 to 220 ° C., preferably 90 to 180 ° C., more preferably 100 to
  • the PVA-based resin can be obtained by heat treatment at 160 ° C. for 10 to 600 minutes, preferably 20 to 400 minutes, more preferably 30 to 300 minutes.
  • the heat treatment can be performed by a known method, and can be performed by melt extrusion or the like in addition to the heat treatment using a heat treatment can or the like.
  • the PVA-based resin used in the embodiment (iii) may be unmodified PVA or modified PVA-based resin, and preferably unmodified PVA and PVA-based resin having an ethylene group.
  • the PVA-based resin used in the present invention is one having a vinyl alcohol structural unit corresponding to the degree of saponification and a vinyl acetate structural unit of the unsaponified part.
  • PVA-based resin used in the present invention in addition to unmodified PVA, various monomers are copolymerized at the time of production of vinyl ester-based resin, and modified PVA-based resin obtained by saponifying this is post-modified to unmodified PVA And various post-modified PVA resins introduced with various functional groups. Such modification can be performed within the range in which the water solubility of the PVA-based resin is not lost. Also, depending on the case, the modified PVA resin may be further post-modified.
  • Examples of the monomer used for copolymerization with the vinyl ester-based monomer at the time of producing the vinyl ester-based resin include, for example, olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, etc .; acrylic acid, methacrylic Unsaturated acids such as acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid or their salts, mono- or dialkyl esters thereof, etc. Nitriles such as acrylonitrile, methacrylonitrile, etc. Amides such as acrylamide, methacrylamide, etc.
  • Olefin sulfonic acid such as sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid or a salt thereof; alkyl vinyl ethers; N-acrylamidomethyl trimethyl ammonium chloride; allyl trimethyl ammonium chloride; N-vinyl pyrrolidone; vinyl chloride; vinylidene chloride; polyoxyalkylene (meth) allyl ether such as polyoxyethylene (meth) allyl ether, polyoxypropylene (meth) allyl ether; polyoxyethylene (meth) acrylate And polyoxyalkylene (meth) acrylates such as polyoxypropylene (meth) acrylate; polyoxyalkylene (meth) acrylamides such as polyoxyethylene (meth) acrylamide and polyoxypropylene (meth) acrylamide; Meta) acrylamide-1, 1-dimethylpropyl) ester; polyoxyalkylene vinyl ether such as polyoxyethylene
  • modified PVA-based resin in which a functional group is introduced by post-reaction for example, one having an acetoacetyl group by reaction with diketene, one having a polyalkylene oxide group by reaction with ethylene oxide, epoxy compound etc. And those obtained by reacting an aldehyde compound having various functional groups with a PVA-based resin, and the like.
  • the PVA-based resin used in the present invention is preferably a modified PVA-based resin from the viewpoint of increasing the ratio of the dissolution rate after 24 hours to the dissolution rate after 1 hour, and has a modifying group that is hydrophilic Is more preferred.
  • the modification ratio in the modified PVA-based resin that is, structural units derived from various monomers in the copolymer, or functional groups introduced by post-reaction
  • the content is preferably 0.5 to 10 mol%, more preferably 0.7 to 8 mol%, from the viewpoint of increasing the ratio of the dissolution rate after 24 hours to the dissolution rate after 1 hour. Mol% is more preferred.
  • the modification ratio in the PVA-based resin used in the present invention can be determined from 1 H-NMR spectrum (solvent: DMSO-d 6 , internal standard: tetramethylsilane) of PVA-based resin having a saponification degree of 100 mol%. it can. Specifically, the modification ratio can be calculated from peak areas derived from hydroxyl group protons, methine protons and methylene protons in the modified group, methylene protons in the main chain, protons of hydroxyl groups linked to the main chain, and the like.
  • hydrophilic modifying group examples include an oxyalkylene group, a hydroxyl group-containing alkyl group, an amino group, an amino group-containing alkyl group, a thiol group, and a thiol group-containing alkyl group.
  • an oxyalkylene group and a hydroxyl group-containing alkyl group are preferably used from the viewpoint that the effects of the present invention can be significantly obtained.
  • Examples of the oxyalkylene group include an oxyethylene group and an oxyethylene-oxypropylene copolymer group, but in the case of the oxyethylene-oxypropylene copolymer group, the hydrophilicity is lowered when the oxypropylene component is increased.
  • An oxyethylene group is preferably used because of the tendency.
  • the hydroxyl group-containing alkyl group includes many carbon atoms depending on the number of carbon atoms in the alkyl group, the number of hydroxyl groups, the valence number of the hydroxyl group, the bonding mode, etc.
  • the carbon number of the alkyl group is usually 1 to 5, particularly 2 to 3 preferable.
  • the number of hydroxyl groups is usually 1 to 4, preferably 1 to 3, and their valence is preferably primary hydroxyl group.
  • a 1,2-diol group in which a primary hydroxyl group and a secondary hydroxyl group are bonded to adjacent carbon is particularly preferable.
  • the terminal of the oxyethylene group is usually a hydroxyl group, the oxyethylene group is included in the hydroxyl group-containing functional group.
  • the PVA-based resin used in the present invention may be a mixture with another different PVA-based resin, and as such other PVA-based resins, those having different modifying group contents and those having different saponification degrees Those having different average polymerization degree, those having different copolymerization components, those having no modifying group, and the like can be mentioned.
  • the average value of the degree of saponification, the average degree of polymerization, and the degree of modification be within the ranges described above.
  • the PVA-based resin used in the present invention those obtained by copolymerizing various unsaturated monomers can be used as long as the object of the present invention is not impaired.
  • the introduction amount of such unsaturated monomers is not generally said, but is usually less than 10 mol%, and when the introduction amount is too large, the hydrophilicity tends to be impaired.
  • a PVA-based resin having an oxyethylene group which is preferably used as a modifying group in a side chain in the PVA-based resin used in the present invention (hereinafter sometimes referred to as an oxyethylene group-containing PVA-based resin) will be described in detail.
  • the oxyethylene group is represented by the following general formula (1).
  • n represents a positive integer, and n is usually 5 to 50, preferably 8 to 20.
  • n is an average value of the number of oxyethylene groups contained in the PVA-based resin.
  • R 1 and R 2 each represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • a C1-C3 alkyl group a methyl group, an ethyl group, n-propyl group, isopropyl group etc. are mentioned, for example,
  • the said alkyl group is a halogen group, a hydroxyl group, ester group, a carboxylic acid group as needed. And may have a substituent such as a sulfonic acid group.
  • a small amount of an oxyalkylene group other than the oxyethylene group for example, an oxypropylene group may be copolymerized.
  • the oxyethylene group-containing PVA resin is generally obtained by saponifying a modified polyvinyl ester resin obtained by copolymerizing a vinyl ester monomer and an unsaturated monomer having an oxyethylene group. it can.
  • an unsaturated monomer which has an oxyethylene group a various thing is mentioned, The following is typically illustrated.
  • ((Meth) acrylic ester type) It is represented by the following formula (2), and specific examples include polyoxyethylene (meth) acrylate.
  • Y is a hydrogen atom or a methyl group
  • n, R 1 and R 2 are as defined above.
  • ((Meth) acrylic acid amide type) It is represented by the following formula (3), and specifically, polyoxyethylene (meth) acrylamide and the like can be mentioned.
  • ((Meth) allyl ether type) It is represented by the following formula (4), and specifically, polyoxyethylene (meth) allyl ether and the like can be mentioned.
  • Vinyl ether type It is represented by the following formula (5), and specifically, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether and the like can be mentioned.
  • n, R 1 and R 2 are as defined above.
  • those of the (meth) allyl ether type represented by the formula (4) are suitably used from the viewpoint of copolymerization reaction ease, stability in the saponification step, etc. Ru.
  • vinyl ester monomers copolymerized with the above-mentioned monomers include vinyl formate, vinyl acetate, vinyl trifluoroacetate, vinyl propionate, vinyl butyrate, vinyl caprate, vinyl laurate, vinyl versatate, palmitate Although vinyl acid, vinyl stearate, vinyl pivalate and the like can be used alone or in combination, vinyl acetate is preferable industrially. There is no particular limitation on the copolymerization, and a known polymerization method is used.
  • a PVA-based resin having a 1,2-diol group preferably used as a modifying group in a side chain (hereinafter, may be referred to as a 1,2-diol group-containing PVA-based resin ).
  • the 1,2-diol group-containing PVA resin is a PVA resin having a 1,2-diol structural unit represented by the following general formula (6).
  • R 5 to R 10 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • X represents a single bond or a bond chain.
  • the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, etc. It may have a substituent such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group or a sulfonic acid group.
  • R 5 to R 10 are preferably all hydrogen atoms, but may be alkyl groups having 1 to 5 carbon atoms as long as the resin properties are not significantly impaired.
  • X is preferably a single bond from the viewpoint of thermal stability and stability under high temperature and acidic conditions, it may be a bond chain as long as the effects of the present invention are not impaired. .
  • the linking chain is not particularly limited, and, for example, a linear or branched alkylene group having 1 to 4 carbon atoms, a linear or branched alkenylene group having 1 to 4 carbon atoms, a linear chain having 1 to 4 carbon atoms -O-,-(CH, in addition to hydrocarbons such as linear or branched alkynylene group, phenylene group, and naphthylene group (these hydrocarbons may be substituted with halogen such as fluorine, chlorine, bromine and the like) 2 O) m -, - ( OCH 2) m -, - (CH 2 O) m CH 2 -, - CO -, - COCO -, - CO (CH 2) m CO -, - CO (C 6 H 4 ) CO -, - S -, - CS -, - SO -, - SO 2 -, - NR -, - CONR -, - NRCO -
  • an alkylene group having 1 to 4 carbon atoms particularly a methylene group, or -CH 2 OCH 2 -is preferable in view of viscosity stability and heat resistance during production.
  • the 1,2-diol group-containing PVA resin can be produced by a known production method. For example, it can be manufactured by the method described in JP-A-2002-284818, JP-A-2004-285143, and JP-A-2006-95825.
  • R 5 to R 10 and X are all the same as in the case of the general formula (6).
  • R 11 and R 12 are each independently a hydrogen atom or R 13 -CO- (wherein, R 13 is an alkyl group having 1 to 5 carbon atoms).
  • R 5 to R 10 and X are all the same as in the case of the general formula (6).
  • R 5 to R 10 and X are all the same as in the case of the general formula (6).
  • R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Further, specific examples of the alkyl group having 1 to 5 carbon atoms of R 13 to R 15 are the same as in the case of the general formula (6).
  • the method (i) is preferable in that it is excellent in copolymerization reactivity and industrial handling, and in particular, in the compound represented by the above general formula (7), R 5 to R 10 are a hydrogen atom , X is a single bond, R 11 and R 12 are R 13 -CO-, R 13 is an alkyl group having 1 to 5 carbon atoms 3,4-diacyloxy-1-butene are preferable, among which R 13 Preferably, 3,4-diacetoxy-1-butene is a methyl group.
  • the polymerization temperature 100 ° C. or higher, it is possible to obtain a polymer in which a 1,2-diol structure is introduced into the main chain of PVA-based resin at about 1.6 to 3.5 mol%.
  • the diverting agent of the present invention contains the above-mentioned PVA-based resin.
  • the content of the PVA-based resin is usually 50 to 100% by mass, preferably 80 to 100% by mass, and particularly preferably 90 to 100% by mass, based on the entire diverting agent. If the content is too small, the effects of the present invention tend to be difficult to obtain.
  • additives such as sand, iron, ceramic and other biodegradable resins can be blended in addition to the above-mentioned PVA-based resin.
  • the blending amount of such an additive is usually 50% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less, based on the entire diverting agent.
  • the shape of the diverting agent according to the present invention is usually cylindrical (pellet), spherical, powdery, etc., and preferably cylindrical or powdery in terms of improvement of the sealing effect and production, and when used It is preferable to use these mixtures as
  • the diameter is usually 0.5 to 4.0 mm, preferably 1.0 to 3.0 mm, particularly preferably 1.85 to 2.25 mm, and the thickness is usually 0. It is 5 to 4.0 mm, preferably 1.0 to 3.0 mm, particularly preferably 1.85 to 2.25 mm.
  • the average particle size is preferably 10 to 3000 ⁇ m, more preferably 50 to 2000 ⁇ m, and still more preferably 100 to 1000 ⁇ m.
  • the average particle diameter is a diameter at which the volume distribution by particle diameter is measured by laser diffraction and the integrated value (cumulative distribution) becomes 50%.
  • the diverting agent according to the present invention is new in drilling of oil, gas and the like by using a hydraulic fracturing method, by entering into a formed crack or fracture and temporarily closing the crack or fracture. It can form cracks and fissures.
  • the diverting agent of the present invention may be carried on the fluid flow in the well and flowed into the crack to be closed.
  • the diverting agent of the present invention is water-soluble and biodegradable, it is dissolved and removed quickly in water after use, and then biodegraded, so that the environmental load is small and very useful. .
  • the above solution is diluted with methanol to adjust the solid concentration to 55%, and the methanol solution is charged into a kneader, and a 2% methanol solution of sodium in sodium hydroxide is maintained while maintaining the solution temperature at 35 ° C.
  • Saponification was carried out by adding 6.3 mmol per 1 mol of vinyl acetate structural unit.
  • saponification precipitates as the saponification proceeds and becomes particulate, further add 6.0 millimoles of a 2% methanol solution in sodium hydroxide to 1 mol of vinyl acetate structural unit to saponify Did.
  • acetic acid for neutralization was added by 0.8 equivalent of sodium hydroxide, filtered off, thoroughly washed with methanol and dried in a hot air drier to obtain PVA 1-1.
  • the degree of saponification of the obtained PVA 1-1 was 99 mol% when analyzed by the alkali consumption required for the hydrolysis of the structural unit of the remaining vinyl acetate in the resin.
  • the average degree of polymerization of PVA 1-1 was 300 when analyzed according to JIS K6726.
  • the temperature is raised to 215 ° C in minutes, immediately lowered to -30 ° C at a temperature drop rate of 10 ° C / min, and the heat of fusion ( ⁇ H) at the melting point when the temperature is raised again to 230 ° C at a temperature rise rate of 10 ° C / min It was calculated to be 69.0 J / g, and the crystallinity was 44.0%.
  • the above solution is diluted with methanol to adjust the solid concentration to 55%, and the methanol solution is charged into a kneader, and a 2% methanol solution of sodium in sodium hydroxide is maintained while maintaining the solution temperature at 35 ° C.
  • Saponification was carried out by adding a ratio of 6.3 millimoles to the total amount of 1 mole of the vinyl acetate structural unit and the 3,4-diacetoxy-1-butene structural unit in the copolymer. As saponification proceeds and saponification precipitates and becomes particulate, a 2% methanol solution of sodium in sodium hydroxide is further added to a vinyl acetate structural unit and a 3,4-diacetoxy-1-butene structural unit.
  • the saponification was carried out by adding 6.0 mmol per 1 mol of total amount. Thereafter, acetic acid for neutralization is added with 0.8 equivalent of sodium hydroxide, separated by filtration, thoroughly washed with methanol, dried in a hot air dryer, and PVA 1-having a 1,2-diol structure in a side chain. I got three.
  • the saponification degree of PVA1-3 having a 1,2-diol structure in the side chain obtained is the amount of alkali consumption required for hydrolysis of the residual vinyl acetate and structural units of 3,4-diacetoxy-1-butene in the resin. It was 99 mol% when analyzed by.
  • the average degree of polymerization of PVA1-3 was 300 according to JIS K6726.
  • 1,2-diol structural unit represented by the above formula (6) is 1 H-NMR (300 MHz proton NMR, d 6 -DMSO solution, internal standard substance; tetramethylsilane, 50 ° C.) It was 1.0 mol%, when it computed from the integral value measured.
  • No. 1-4 No. No. 1-3 except that PVA1-3 was replaced with PVA1-4 (saponification degree 99 mol%, average polymerization degree 600, content of 1, 2 diol structure 1.0 mol%). The same evaluation as in 1-3 was performed.
  • No. 1-5 No. No. 1-3 except that PVA1-3 was changed to PVA1-5 (saponification degree 99 mol%, average polymerization degree 450, content of 1.0 diol structure, 1.0 mol%). The same evaluation as in 1-3 was performed.
  • No. 1-6 No. No. 1-3 except that PVA 1-3 was used as PVA 1-3 (saponification degree 99 mol%, average polymerization degree 500, ethylene group content 7.0 mol%). The same evaluation as in 1-3 was performed.
  • No. 1-7 No. No. 1-3 except that PVA 1-3 was changed to PVA 1-7 (saponification degree 99 mol%, average polymerization degree 600, content of 1, 2 diol structure 1.5 mol%). The same evaluation as in 1-3 was performed.
  • Test Example 2 The method for producing PVA 2-1 to PVA 2-16 used in Test Example 2 is as follows.
  • ⁇ Production of PVA 2-1> In a reaction vessel equipped with a reflux condenser, a dropping device and a stirrer, 20 parts of vinyl acetate (20% of the total is used for initial charging), 32.5 parts of methanol, and 3,4-diacetoxy-1-butene 0 Charge 40 parts (20% of the whole is used for initial charge), raise temperature under nitrogen stream while stirring, reach boiling point, add 0.093 parts of acetyl peroxide, start polymerization The
  • the solution is diluted with methanol to adjust the solid concentration to 50%, and the methanol solution is charged in a kneader, and a 2% methanol solution of sodium in sodium hydroxide is maintained while maintaining the solution temperature at 35 ° C.
  • Saponification was carried out by adding a ratio of 4.8 millimoles to a total of 1 mole of the vinyl acetate structural unit and the 3,4-diacetoxy-1-butene structural unit in the copolymer. As saponification proceeds and saponification precipitates and becomes particulate, a 2% methanol solution of sodium in sodium hydroxide is further added to a vinyl acetate structural unit and a 3,4-diacetoxy-1-butene structural unit.
  • Saponification was carried out by adding 7.5 millimoles to a total amount of 1 mole. Thereafter, acetic acid for neutralization is added by 0.8 equivalent of sodium hydroxide, separated by filtration, thoroughly washed with methanol and dried in a hot air dryer to contain a 1,2-diol structural unit in a side chain A modified PVA-based resin (PVA2-1) was obtained.
  • the degree of saponification of PVA 2-1 is 99 when the amount of alkali consumption required for hydrolysis of the structural units of residual vinyl acetate and 3,4-diacetoxy-1-butene in the resin is 99 according to JIS K 6726. It was mol%.
  • the average degree of polymerization of PVA 2-1 was 450 according to JIS K 6726.
  • the content (modification ratio) of the 1,2-diol structural unit represented by the above formula (6) in PVA 2-1 is 1 H-NMR (300 MHz proton NMR, d 6 -DMSO solution, internal standard substance; tetra It was 1.0 mol% when it computed from the integral value measured in methylsilane, 50 degreeC.
  • the average particle diameter of PVA 2-1 was 270 ⁇ m when measured by a laser diffraction type particle size distribution measuring apparatus “Mastersizer 3000” (manufactured by Spectris Co., Ltd.).
  • the degree of saponification, the average degree of polymerization, the modification ratio, and the average particle size were determined in the same manner as for PVA 2-1.
  • the saponification degree was 99 mol%
  • the average polymerization degree was 1200
  • the modification ratio was 3.0 mol%
  • the average particle size was 415 ⁇ m.
  • the degree of saponification, the average degree of polymerization, the modification ratio, and the average particle size were determined in the same manner as for PVA 2-1.
  • the degree of saponification was 99 mol%
  • the average degree of polymerization was 1800
  • the modification rate was 1.0 mol%
  • the average particle size was 410 ⁇ m.
  • the remaining monomer is removed from the solution of the polyoxyethylene group-containing vinyl acetate polymer obtained above, diluted with methanol to adjust the concentration to 40%, and charged in a kneader, keeping the solution temperature at 35 ° C.
  • Saponification was carried out by adding a 2% methanol solution of sodium hydroxide in an amount of 3.5 mmol per 1 mol unit of vinyl acetate in the copolymer. As saponification progressed, saponification precipitated and finally became particulate.
  • the produced resin was separated by filtration, thoroughly washed with methanol, and dried in a hot air drier to obtain an oxyethylene group-containing PVA-based resin (PVA2-4).
  • the degree of saponification, the average degree of polymerization, the modification ratio, and the average particle size were determined in the same manner as for PVA 2-1.
  • the saponification degree was 99 mol%
  • the average polymerization degree was 750
  • the modification ratio was 2.0 mol%
  • the average particle size was 287 ⁇ m.
  • the degree of saponification, the average degree of polymerization, the modification ratio, and the average particle size were determined in the same manner as for PVA 2-1.
  • the degree of saponification was 99 mol%
  • the average degree of polymerization was 450
  • the modification rate was 1.0 mol%
  • the average particle size was 270 ⁇ m.
  • core-shell particles of PVA 2-7 were obtained.
  • the average particle size was determined in the same manner as for PVA 2-1.
  • the average particle size was 183 ⁇ m.
  • PVA 2-8 a modified PVA-based resin containing a 1,2-diol structural unit in a side chain was obtained.
  • the degree of saponification, the average degree of polymerization, the modification ratio, and the average particle size were determined in the same manner as for PVA 2-1.
  • the saponification degree was 99 mol%
  • the average polymerization degree was 600
  • the modification ratio was 1.5 mol%
  • the average particle size was 594 ⁇ m.
  • PVA 2-9 a modified PVA-based resin containing an acetoacetyl group was obtained.
  • the degree of saponification, the average degree of polymerization, the modification ratio, and the average particle size were determined in the same manner as for PVA 2-1.
  • the degree of saponification was 99 mol%, the average degree of polymerization was 1100, the modification ratio was 5.5 mol%, and the average particle size was 245 ⁇ m.
  • PVA 2-10 A carboxylic acid-modified PVA-based resin was obtained as PVA 2-10.
  • the degree of saponification, the average degree of polymerization, the modification ratio, and the average particle size were determined in the same manner as for PVA 2-1.
  • the degree of saponification was 99 mol%
  • the average degree of polymerization was 1700
  • the modification rate was 2.0 mol%
  • the average particle size was 1100 ⁇ m.
  • PVA 2-11 a modified PVA-based resin containing a 1,2-diol structural unit in a side chain was obtained.
  • the degree of saponification, the average degree of polymerization, the modification ratio, and the average particle size were determined in the same manner as for PVA 2-1.
  • the degree of saponification was 99 mol%
  • the average degree of polymerization was 1200
  • the modification rate was 1.0 mol%
  • the average particle size was 215 ⁇ m.
  • PVA 2-12 a modified PVA-based resin containing a 1,2-diol structural unit in a side chain was obtained.
  • the degree of saponification, the average degree of polymerization, the modification ratio, and the average particle size were determined in the same manner as for PVA 2-1.
  • the degree of saponification was 92 mol%
  • the average degree of polymerization was 2,500
  • the modification ratio was 2.0 mol%
  • the average particle size was 600 ⁇ m.
  • the ratio of the dissolution ratio after 24 hours to the dissolution ratio after 1 hour was 3.0, which was determined by the dissolution ratio after 24 hours (mass%) / the dissolution ratio after 1 hour (mass%).
  • the dissolution ratio after 1 hour (mass%), the dissolution ratio after 24 hours (mass%) and the ratio of the dissolution ratio after 24 hours to the dissolution ratio after 1 hour are summarized in Table 2-1.
  • a diverting agent containing a PVA resin having a ratio of dissolution rate of 24 hours to dissolution rate of 1 hour or more is 2.8 or more has a tendency to maintain its shape for a certain period of time after being added to water, the shale layer It is easy to close the crack which was made temporarily, and it is easy to dissolve in water when recovering oil, natural gas, etc.
  • Test Example 3 The production methods of PVA3-1 to PVA3-6 used in Test Example 3 are as follows. ⁇ Production of PVA 3-1> 100 parts of vinyl acetate, 23 parts of methanol and 2 parts of 3,4-diacetoxy-1-butene are charged into a reaction can equipped with a reflux condenser, a dropping device, and a stirrer, and the temperature is adjusted under a nitrogen stream while stirring. After raising the temperature and reaching the boiling point, 0.014 parts of acetyl peroxide was charged to initiate polymerization.
  • the solution is diluted with methanol to adjust the solid concentration to 50%, and the methanol solution is charged into a kneader, and a 2% methanol solution of sodium in sodium hydroxide is maintained while maintaining the solution temperature at 35 ° C.
  • Saponification was carried out by adding a ratio of 4.1 mmol per 1 mol of the total amount of the vinyl acetate structural unit and the 3,4-diacetoxy-1-butene structural unit in the copolymer. As saponification proceeds and saponification precipitates and becomes particulate, a 2% methanol solution of sodium in sodium hydroxide is further added to a vinyl acetate structural unit and a 3,4-diacetoxy-1-butene structural unit.
  • Saponification was carried out by adding 7.5 millimoles to a total amount of 1 mole. After that, 1.0 equivalent of sodium hydroxide for neutralization acetic acid is added, it is separated by filtration, thoroughly washed with methanol and dried in a hot air drier to contain a 1,2-diol structural unit in the side chain. A modified PVA-based resin was obtained. The sieved product obtained by sieving the modified PVA-based resin with a 300 ⁇ m sieve was designated as PVA 3-1.
  • the degree of saponification of PVA 3-1 is 99 when the amount of alkali consumption required for hydrolysis of the structural units of residual vinyl acetate and 3,4-diacetoxy-1-butene in the resin is 99 according to JIS K 6726. It was mol%.
  • the content (modification ratio) of the 1,2-diol structural unit represented by the above formula (1) in PVA 3-1 is 1 H-NMR (300 MHz proton NMR, d 6 -DMSO solution, internal standard substance; tetra It was 1 mol% when it computed from the integral value measured in methylsilane, 50 degreeC.
  • the average particle diameter of PVA 3-1 was 410 ⁇ m when measured by a laser diffraction type particle size distribution measuring apparatus “Mastersizer 3000” (manufactured by Spectris Co., Ltd.).
  • the dissolution rate (% by mass) of PVA 3-1 was determined by the following formula (C) to be 29% by mass.
  • the solid fraction (% by mass) of the polyvinyl alcohol resin is calculated by drying the PVA resin at 105 ° C. for 3 hours and measuring the mass of the PVA resin before and after drying. can do.
  • the average particle size, the degree of swelling and the dissolution rate were determined in the same manner as for PVA 3-1.
  • the average particle size was 259 ⁇ m
  • the degree of swelling was 3
  • the elution rate was 8% by mass
  • the value of swelling degree ⁇ elution rate was 24.
  • the average particle size, the degree of swelling and the dissolution rate were determined in the same manner as for PVA 3-1.
  • the average particle size was 258 ⁇ m
  • the degree of swelling was 2
  • the elution rate was 8% by mass
  • the value of swelling degree ⁇ elution rate was 16.
  • the saponification degree, average polymerization degree, modification rate, average particle size, swelling degree and dissolution rate were determined in the same manner as for PVA 3-1.
  • the degree of saponification is 99 mol%
  • the average degree of polymerization is 1100
  • the modification rate is 1 mol%
  • the average particle size is 400 ⁇ m
  • the degree of swelling is 8
  • the elution rate is 20% by mass
  • the value of swelling degree ⁇ elution rate is 160.
  • PVA3-5 A modified PVA-based resin containing an ethylene group having a saponification degree of 99 mol% and an average polymerization degree of 500 was used as PVA 3-5.
  • the average particle size, the degree of swelling and the dissolution rate were determined in the same manner as for PVA 3-1.
  • the average particle size was 700 ⁇ m
  • the degree of swelling was 6
  • the elution rate was 2% by mass
  • the value of swelling degree ⁇ elution rate was 12.
  • the average particle size, the degree of swelling and the dissolution rate were determined in the same manner as for PVA 3-1.
  • the average particle size was 300 ⁇ m
  • the degree of swelling was 11
  • the elution rate was 82% by mass
  • the value of swelling degree ⁇ elution rate was 902.

Abstract

本発明は、水に徐々に溶解するダイバーティングエージェントを提供することを解決すべき課題としている。本発明は、ポリビニルアルコール系樹脂を含有する、ダイバーティングエージェント、及び該ダイバーティングエージェントを用いて亀裂を閉塞させる方法に関する。

Description

ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
 本発明は、ダイバーティングエージェント(Diverting Agent)及びこれを用いた坑井の亀裂の閉塞方法に関し、更に詳しくは、水圧破砕法を用いる掘削工法の施工時に用いられるダイバーティングエージェント、及び該ダイバーティングエージェントを用いた坑井の亀裂の閉塞方法に関する。
 石油やその他の地下資源の採取のために、地下の頁岩(シェール)層に高圧の水を注入して亀裂を生じさせる水圧破砕法が広く採用されている。水圧破砕法では、まず、ドリルで垂直に地下数千メートルの縦孔(垂直坑井)を掘削し、頁岩層に達したところで水平に直径十から数十センチメートルの横孔(水平坑井)を掘削する。垂直坑井と水平坑井内を流体で満たし、この流体を加圧することにより、坑井から亀裂(フラクチャ、fracture)を生成させ、かかる亀裂から頁岩層にある天然ガスや石油(シェールガス・オイル)等が流出してくるので、それを回収する。このような手法によれば、亀裂の生成により、坑井の資源流入断面が増大し、効率よく地下資源の採取を行うことができる。
 上記の水圧破砕法においては、流体加圧による亀裂の生成に先立って、水平坑井中でパーフォレーション(Perforation)と呼ばれる予備爆破が行われる。このような予備爆破により、坑井から生産層に穿孔を開ける。この後、この坑井内にフラクチュアリング流体を圧入することにより、これら穿孔に流体が流入し、これら穿孔に負荷が加えられることにより、これら穿孔に亀裂が生じ、資源の採取に好適な大きさの亀裂に成長していくこととなる。
 水圧破砕法では、既に生成している亀裂をより大きく成長させたり、さらに多くの亀裂を生成させたりするために、既に生成している亀裂の一部をダイバーティングエージェントと呼ばれる添加剤を用いて一時的に塞ぐことがなされる。亀裂の一部をダイバーティングエージェントで一時的に閉塞し、この状態で坑井内に充填されたフラクチュアリング流体を加圧することにより、他の亀裂内に流体が侵入していき、これにより、他の亀裂を大きく成長させるあるいは新たな亀裂を発生させることができる。
 ダイバーティングエージェントは、上記したように亀裂を一時的に閉塞するために用いられるものであるので、一定期間はその形状を維持でき、天然ガスや石油等を採取する際には加水分解して消失するものが使用される。例えば、ポリグリコール酸やポリ乳酸等の加水分解性樹脂をダイバーティングエージェントとして使用する技術が種々提案されている。
 特許文献1では、生分解性脂肪族ポリエステル系樹脂の中でも生分解性の高いポリグリコール酸を含有する構成掘削用一時目止め剤が提案されている。
 また、特許文献2では、生分解性樹脂であるポリ乳酸の粒子からなり、目開き500μmの篩にかけた際にパスしない粒子が50質量%以上、且つ、51度以上の安息角を有する粉体が提案されている。
 そして、特許文献3では、ポリ乳酸中に該ポリ乳酸の加水分解性を調整するための生分解性の高いポリオキサレートの微細粒子が分布している分散構造を有している加水分解性粒子であって、平均粒径(D50)が300~1000μmの範囲にあり、短径/長径比が0.8以上の真円度を有する加水分解性粒子が提案されている。
 そしてまた、特許文献4では、平均粒径(D50)が300~1000μmの範囲にあり、短径/長径比が0.8以上の真円度を有しているポリオキサレート粒子が提案されている。
国際公開第2015/072317号 日本国特開2016-56272号公報 日本国特開2016-147971号公報 日本国特開2016-147972号公報
 上記のように、ダイバーティングエージェントは、頁岩層にできた亀裂を一時的に閉塞するために用いられる。よって、ダイバーティングエージェントは、水に添加直後は形状が維持される必要がある。一方、石油や天然ガス等を回収する際には、ダイバーティングエージェントは、除去されていることが好ましい。
 すなわち、一定時間(30分~1週間程度)は水に一部溶解する程度であり、亀裂をふさぐことができるが、一定時間経過後は水で溶解除去できるダイバーティングエージェントが求められている。
 しかしながら、特許文献1に記載の一時目止め剤、特許文献2に記載の粉体、特許文献3に記載の加水分解性粒子及び特許文献4に記載のポリオキサレート粒子は、水に溶解せず、また、低温域では生分解速度が遅いため、除去されるまでにかなりの時間を要する。
 本発明は、上記従来の実情に鑑みてなされたものであって、一定時間(30分~1週間程度)は水に一部溶解する程度であり、亀裂をふさぐことができるが、一定時間経過後は水で溶解除去できるダイバーティングエージェントを提供することを解決すべき課題としている。
 本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、ポリビニルアルコール系樹脂をダイバーティングエージェントに含有させることで、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記<1>~<13>に関するものである。
<1>ポリビニルアルコール系樹脂を含有する、ダイバーティングエージェント。
<2>前記ポリビニルアルコール系樹脂のケン化度が90モル%以上である、<1>に記載のダイバーティングエージェント。
<3>前記ポリビニルアルコール系樹脂は、該ポリビニルアルコール系樹脂4gを40℃の水96g中に投入し、180分間撹拌した際の溶解率が0.1~30質量%である、<1>又は<2>に記載のダイバーティングエージェント。
<4>前記ポリビニルアルコール系樹脂の結晶化度が25~60%である、<1>~<3>のいずれか1つに記載のダイバーティングエージェント。
<5>前記ポリビニルアルコール系樹脂は、該ポリビニルアルコール系樹脂1gを40℃の水100gに浸漬した際の1時間後溶解率に対する24時間後溶解率の比が2.8以上である、<1>に記載のダイバーティングエージェント。
<6>前記ポリビニルアルコール系樹脂1gを40℃の水100gに浸漬した際の1時間後溶解率が30質量%未満である、<5>に記載のダイバーティングエージェント。
<7>前記ポリビニルアルコール系樹脂1gを40℃の水100gに浸漬した際の24時間後溶解率が30質量%以上である、<5>又は<6>に記載のダイバーティングエージェント。
<8>前記ポリビニルアルコール系樹脂が変性ポリビニルアルコール系樹脂である、<5>~<7>のいずれか1つに記載のダイバーティングエージェント。
<9>前記変性ポリビニルアルコール系樹脂の変性率が0.5~10モル%である、<8>に記載のダイバーティングエージェント。
<10>前記ポリビニルアルコール系樹脂は、下記式(A)を満たす、<1>に記載のダイバーティングエージェント。
 膨潤度×溶出率(質量%)≦500   (A)
(式(A)中、膨潤度とは、下記式(B)により求められる値であり、溶出率(質量%)とは、下記式(C)により求められる値である。)
Figure JPOXMLDOC01-appb-M000003
(式(B)中、膨潤後のポリビニルアルコール系樹脂の質量(g)とは、100gの水に1gのポリビニルアルコール系樹脂を投入し、23℃の恒温室中で1日静置後、ろ過により採取した残存ポリビニルアルコール系樹脂の質量(g)である。膨潤後に乾燥させたポリビニルアルコール系樹脂の質量(g)とは、前記残存ポリビニルアルコール系樹脂を140℃で3時間乾燥した後の質量(g)である。)
Figure JPOXMLDOC01-appb-M000004
(式(C)中、膨潤後に乾燥させたポリビニルアルコール系樹脂の質量(g)とは、式(B)における定義と同様である。)
<11>前記ポリビニルアルコール系樹脂の前記溶出率が50質量%以下である、<10>に記載のダイバーティングエージェント。
<12>前記ポリビニルアルコール系樹脂の前記膨潤度が30以下である、<10>又は<11>に記載のダイバーティングエージェント。
<13>坑井に生成された亀裂を一時的に閉塞する方法であって、<1>~<12>のいずれか1つに記載のダイバーティングエージェントを、坑井内の流体の流れに乗せて閉塞したい亀裂に流入させる、亀裂の閉塞方法。
 本発明によれば、ポリビニルアルコール系樹脂を用いることによって、一定時間(30分~1週間程度)は水に一部溶解する程度であり、亀裂をふさぐことができるが、一定時間経過後は水で溶解除去できるダイバーティングエージェントを提供することができる。
 また、後述の1時間後溶解率に対する24時間後溶解率の比が一定以上であるポリビニルアルコール系樹脂を用いることによって、水に添加後1時間程度は形状を維持でき、24時間程度経過後は水への溶解性が増すダイバーティングエージェントを提供することができる。
 さらに、膨潤度及び溶出率に関する特定の式を満たすポリビニルアルコール系樹脂を用いることによって、水への分散性が良好なダイバーティングエージェントを提供することができる。
 以下、本発明について詳述するが、これらは望ましい実施態様の一例を示すものであり、本発明はこれらの内容に特定されるものではない。
 本発明において、(メタ)アリルとはアリル又はメタリル、(メタ)アクリルとはアクリル又はメタクリル、(メタ)アクリレートとはアクリレート又はメタクリレートをそれぞれ意味する。
 また、本発明において、「質量」は「重量」と同義である。
[ポリビニルアルコール系樹脂]
 本発明のダイバーティングエージェントは、ポリビニルアルコール(以下、PVAと称することがある。)系樹脂を含有する。本発明のダイバーティングエージェントがPVA系樹脂を含有することにより水溶性のダイバーティングエージェントとなる。
 また、本発明のダイバーティングエージェントは、PVA系樹脂を含有することにより、比較的低温域(例えば、30℃~60℃)においても、一定時間(30分~1週間程度)は水に一部溶解する程度であり、亀裂をふさぐことができるが、一定時間経過後は水で溶解除去できるダイバーティングエージェントとなる。
 石油や天然ガス等を回収する際には、本発明のダイバーティングエージェントを用いて地中の亀裂を塞栓するわけであるが、本発明のダイバーティングエージェントは水に溶解するため、長期間地中にとどまることがない。よって、本発明のダイバーティングエージェントは、環境への負荷も極めて小さく、非常に有用である。
 本発明で用いるPVA系樹脂は、下記の態様(i)を満たすことが好ましい。
<態様(i):PVA系樹脂4gを40℃の水96g中に投入し、180分間撹拌した際の溶解率が0.1~30質量%であるPVA系樹脂>
 以下、態様(i)のPVA系樹脂について詳細に説明する。
 上記の溶解率は、1~20質量%であるものがより好ましく、2~10質量%であるものがさらに好ましい。かかる溶解率が低すぎると、坑井中の亀裂を塞ぐという役割が終了した後もダイバーティングエージェントが残存する傾向があり、かかる溶解率が高すぎると、塞栓期間が非常に短くなる傾向がある。
 上記の溶解率の測定方法は、以下の通りである。
(1)PVA系樹脂4gを40℃の水96gに投入する。
(2)水の温度を40℃に保ったまま180分間撹拌する。
(3)180分間撹拌後、溶け残った残渣を濾過し、残渣を除いた水溶液の濃度を測定する。
 水溶液の濃度は、PVA系樹脂水溶液を適量、量り取り、105℃の乾燥機に入れて3時間乾燥し、室温に冷却後、乾燥残渣の質量を測定し、次の式より算出する。
 水溶液の濃度(質量%)=乾燥残渣の質量(部)/量り取ったPVA系樹脂水溶液の質量(部)×100
(4)水溶液濃度とPVA系樹脂の仕込み量から、残渣量を算出し、溶解率を求める。
 態様(i)で用いられるPVA系樹脂の結晶化度は、好ましくは25~60%であり、より好ましくは30~55%、さらに好ましくは35~50%、特に好ましくは40~50%である。
 かかる結晶化度が小さすぎると目止効果が低下する傾向があり、かかる結晶化度が大きすぎると水溶解性が低下する傾向がある。
 かかる結晶化度は、対象のPVA系樹脂の融点の融解熱(ΔH)(J/g)を測定し、下記の式により算出する。
 結晶化度(%)=ΔH/ΔH×100
(ただし、ΔHは、ケン化度100モル%のPVA系樹脂の融解熱156.7(J/g)である。)
 PVA系樹脂の融点の融解熱(ΔH)(J/g)は、示差走査熱量計(DSC)を用いて測定する。
 まず、測定する試料量としては、測定容器に5mg量りとる。測定開始温度は-30℃であり、昇温速度10℃/分で昇温され、到達温度(融点より30℃高い温度)は、200~240℃まで昇温する。その後、降温速度10℃/分で測定開始温度まで降温する。再び昇温速度10℃/分で融点より30℃程度高い温度まで昇温する。その2回目の昇温時の融点の吸熱ピーク面積を融解熱ΔH(J/g)として算出する。
 融解熱(ΔH)の算出は、まず、分析チャートの横軸を温度軸とし、DSC曲線の吸熱ピークの終点の温度から5℃高い位置をA点、DSC曲線の吸熱ピークの頂点の温度から40℃低い点をB点とし、この2点を結んだ直線をベースラインとする。かかるベースラインと吸熱ピークに囲まれた部分の面積から融解熱(ΔH)(J/g)を算出する。
 態様(i)で用いるPVA系樹脂の融点は、通常、140~250℃であり、好ましくは150~245℃、より好ましくは160~240℃、さらに好ましくは170~235℃、特に好ましくは180~230℃である。
 なお、融点は、示差走査熱量計(DSC)で昇降温速度10℃/minで測定した値である。
 態様(i)で用いるPVA系樹脂を使用の目的に応じて設計したい場合、その性能を調整する方法としては、PVA系樹脂のケン化度を調整する方法、PVA系樹脂の平均重合度を調整する方法、PVA系樹脂に変性基を導入する方法、PVA系樹脂に熱処理を行う方法、PVA系樹脂を用いてコアシェル粒子とする方法等が挙げられる。なお、本願において、コアシェル粒子とはコア部とその表面に設けられたシェル部からなる粒子のことを指す。
 態様(i)で用いるPVA系樹脂のケン化度(JIS K 6726に準じて測定)は、通常、70モル%以上であり、90モル%以上が好ましく、95モル%以上がより好ましく、98モル%以上がさらに好ましい。
 態様(i)で用いるPVA系樹脂のケン化度が高いと、PVA系樹脂の1時間後溶解率を小さくすることができ、頁岩層の亀裂での態様(i)のダイバーティングエージェントによる一時的な塞栓形成を効率的に行うことができる。また、態様(i)で用いるPVA系樹脂のケン化度が高いと、PVA系樹脂の水への分散性が良好となる。
 また、態様(i)で用いるPVA系樹脂のケン化度が低すぎると、PVA系樹脂の水溶性が低くなり、除去されるまでに時間がかかる傾向がある。
 また、態様(i)で用いるPVA系樹脂のケン化度は、生産効率の観点から、99.9モル%以下が好ましく、99.8モル%以下がより好ましく、99.5モル%以下がさらに好ましい。
 態様(i)で用いるPVA系樹脂の平均重合度は、通常、150~4000であり、好ましくは200~3000である。なお、本明細書においてPVA系樹脂の平均重合度は、JIS K 6726に準拠して測定した20℃における4質量%水溶液の粘度から算出したものである。
 態様(i)で用いるPVA系樹脂は、未変性PVAであっても、変性PVA系樹脂であってもよい。
 また、かかる変性PVA系樹脂としては、共重合変性PVA系樹脂と後変性PVA系樹脂が挙げられる。
 共重合変性PVA系樹脂は、酢酸ビニルなどのビニルエステル系モノマーと、ビニルエステル系モノマーと共重合可能な他の不飽和単量体とを共重合させた後、ケン化することにより製造することができる。
 後変性PVA系樹脂は、未変性のPVAに変性モノマーを反応させることにより製造することができる。
 前述のビニルエステル系モノマーと共重合可能な上記他の不飽和単量体としては、例えば、エチレン、プロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸、ウンデシレン酸等の不飽和酸類あるいはその塩、そのモノ又はジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル類;ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩;アルキルビニルエーテル類;N-アクリルアミドメチルトリメチルアンモニウムクロライド;アリルトリメチルアンモニウムクロライド;ジメチルアリルビニルケトン;N-ビニルピロリドン;塩化ビニル;塩化ビニリデン;ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテル等のポリオキシアルキレン(メタ)アリルエーテル;ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート;ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド;ポリオキシエチレン(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)エステル;ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル等のポリオキシアルキレンビニルエーテル;ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン等のポリオキシアルキレンアリルアミン;ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等のポリオキシアルキレンビニルアミン;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン類あるいはそのアシル化物;ビニルエチレンカーボネート;2,2-ジアルキル-4-ビニル-1,3-ジオキソラン;グリセリンモノアリルエーテル;3,4-ジアセトキシ-1-ブテン等のビニル化合物;酢酸イソプロペニル;1-メトキシビニルアセテート等の置換酢酸ビニル類;1,4-ジアセトキシ-2-ブテン;ビニレンカーボネート等が挙げられる。
 また、共重合変性PVA系樹脂として、側鎖に一級水酸基を有するPVA系樹脂が挙げられる。かかるPVA系樹脂としては、例えば、3,4-ジアセトキシ-1-ブテン、ビニルエチレンカーボネート、グリセリンモノアリルエーテル等を共重合して得られる、側鎖に1,2-ジオール構造を有するPVA系樹脂;1,3-ジアセトキシ-2-メチレンプロパン、1,3-ジプロピオニルオキシ-2-メチレンプロパン、1,3-ジブチロニルオキシ-2-メチレンプロパン等のヒドロキシメチルビニリデンジアセテート等を共重合して得られる側鎖にヒドロキシメチル基を有するPVA系樹脂が挙げられる。
 前記後変性PVA系樹脂は、未変性PVAを後変性することにより製造することができる。かかる後変性の方法としては、未変性PVAをアセト酢酸エステル化、アセタール化、ウレタン化、エーテル化、リン酸エステル化、オキシアルキレン化する方法等が挙げられる。
 中でも、側鎖に1,2-ジオール構造を有するPVA系樹脂が、溶解性がコントロールしやすい点で好ましい。
 態様(i)で用いるPVA系樹脂は、通常はペレットや粉末などの形状で用いられる。中でも塞栓性の観点から、ペレット形状で用いられることが好ましい。
 態様(i)で用いるPVA系樹脂として粉末形状のものを用いる場合には、その平均粒子径は、好ましくは10~3000μm、より好ましくは50~2000μm、さらに好ましくは100~1000μmである。
 PVA系樹脂の平均粒子径が小さすぎると飛散するなどして扱いが困難となる傾向があり、大きすぎると後反応し、PVA系樹脂を変性させる場合に反応が不均一となる傾向がある。
 なお、かかる平均粒子径とは、レーザー回折で粒径別の体積分布を測定し、積算値(累積分布)が50%になる径である。
 また、PVA系樹脂としてペレット形状のものを用いる場合には、その平均重合度は、特に好ましくは200~1200であり、さらに好ましくは300~800である。かかる平均重合度が低すぎると水溶性が高くなりすぎ、目止効果が低下する傾向がある。かかる平均重合度が高すぎると水溶性が低下しすぎて、溶解除去できるまでの時間が長くなりすぎる傾向がある。
 PVA系樹脂としてペレット形状のものを用いる場合には、かかるペレット形状への成形は公知の方法を用いることができるが、押出機からストランド状に押出し、冷却後所定の長さに切断し、円柱状のペレットとする方法が効率的である。
 また、かかる円柱状のペレットの大きさとしては、長さは通常1~4mm、好ましくは2~3mm、直径は通常1~4mm、好ましくは2~3mmである。
 態様(i)で用いるペレット形状のPVA系樹脂は、例えば、PVA系樹脂の粉末を溶融する方法などにより製造することができる。
 溶融方法としては、ヘンシェルミキサー、リボンブレンダー等の混合機により混合した後、単軸又は二軸押出機、ロール、バンバリーミキサー、ニーダー、ブラベンダーミキサー等の溶融混練機にて溶融混練する方法が挙げられる。溶融混練時の温度は、PVA系樹脂の融点以上であって、かつ熱劣化しない温度範囲で適宜設定することができるが、好ましくは100~250℃であり、特に好ましくは160~220℃である。
 態様(i)で用いるPVA系樹脂を熱処理にて製造する場合は、常法により得られたPVA系樹脂を、例えば、90~220℃、好ましくは90~180℃、より好ましくは100~160℃で、10~600分、好ましくは20~400分、より好ましくは30~300分熱処理することでPVA系樹脂を得ることができる。なお、熱処理は公知の方法で行うことができ、熱処理缶などを用いた熱処理の他、溶融押出等により行うことも可能である。
 また、態様(i)で用いるPVA系樹脂をコアシェル粒子とする方法にて製造する場合は、公知の方法、例えば日本国特開2017-048267号公報に記載の方法で得ることができる。
 また、本発明のPVA系樹脂は、下記の態様(ii)を満たすものが好ましい。
<態様(ii):PVA系樹脂1gを40℃の水100gに浸漬した際の1時間後溶解率に対する24時間後溶解率の比は2.8以上であるPVA系樹脂>
 すなわち、態様(ii)で用いるPVA系樹脂は、下記式(X)を満たすPVA系樹脂であることが好ましい。
 24時間後溶解率(質量%)/1時間後溶解率(質量%)≧2.8   (X)
 態様(ii)で用いるPVA系樹脂の1時間後溶解率に対する24時間後溶解率の比を2.8以上とすることにより、当該PVA系樹脂は、水に添加後1時間程度は形状を維持でき、24時間程度経過後は水への溶解性が増すPVA系樹脂となる傾向がある。
 よって、当該PVA系樹脂を含有する態様(ii)のダイバーティングエージェントを、一定時間は形状を維持でき、石油や天然ガス等を回収する際には水に溶解するものとすることができる。
 1時間後溶解率に対する24時間後溶解率の比は、24時間程度経過後は水への溶解性をより増加させる観点から、3.0以上がより好ましく、3.5以上がさらに好ましく、4.0以上が特に好ましい。
 また、1時間後溶解率に対する24時間後溶解率の比は、溶解が速すぎると目止効果の作用期間が短くなりすぎるので、20以下が好ましく、10以下がより好ましい。
 式(X)において、1時間後溶解率(質量%)は、40℃の水100gにPVA系樹脂1gを浸漬し、1時間静置した後に、溶解せずに残存したPVA系樹脂の質量の割合(質量%)から算出できる。具体的には、1時間後溶解率(質量%)は、下記の方法により算出することができる。
 100gの水が入った140mLの蓋付きガラス容器を恒温機に入れ、水温を40℃とする。ナイロン製の120メッシュ(目開き125μm、10cm×7cm)の長辺を二つ折りにし、両端をヒートシールしメッシュの袋(5cm×7cm)を得る。
 得られたメッシュの袋に1gのPVA系樹脂を入れ、開口部をヒートシールし、PVA系樹脂入りのメッシュの袋を得て、質量を測定する。上記ガラス容器中にPVA系樹脂入りのメッシュの袋を浸漬させる。1時間静置後、PVA系樹脂入りのメッシュの袋を上記ガラス容器から取り出し、105℃で3時間乾燥させ、かかるPVA系樹脂入りのメッシュの袋の質量を測定し、浸漬前の質量からメッシュの袋中に残存したPVA系樹脂の質量を計算し、下記式(Y)によってPVA系樹脂の1時間後溶解率(質量%)を算出する。
 なお、下記式(Y)中、ポリビニルアルコール系樹脂の固形分率(質量%)は、PVA系樹脂を105℃で3時間乾燥させ、乾燥前後のPVA系樹脂の質量を測定することにより、算出することができる。
Figure JPOXMLDOC01-appb-M000005
 また、式(X)において、24時間後溶解率(質量%)は、上記の1時間後溶解率(質量%)を算出する工程中の1時間静置するところを24時間静置に変更する以外は同様にして、24時間後、メッシュの袋中に残存したPVA系樹脂の質量を計算し、算出することができる。
 態様(ii)で用いるPVA系樹脂の1時間後溶解率は、30質量%未満が好ましく、25質量%以下がより好ましく、20質量%以下がさらに好ましい。
 1時間後溶解率が30質量%未満であると、PVA系樹脂の形状を一定時間維持することができ、頁岩層の亀裂での態様(ii)のダイバーティングエージェントによる一時的な閉塞を効率的に行うことができる。
 また、態様(ii)で用いるPVA系樹脂の1時間溶解率は、溶解が遅すぎると目止期間が長くなりすぎるので、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。
 態様(ii)で用いるPVA系樹脂の24時間後溶解率は、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましい。
 24時間後溶解率が30質量%以上であると、石油や天然ガス等を回収する際に態様(ii)のダイバーティングエージェントを効率的に除去することができる。
 また、態様(ii)で用いるPVA系樹脂の24時間後溶解率は、溶解が速すぎると目止期間が短くなりすぎるので、99質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下が特に好ましい。
 1時間後溶解率に対する24時間後溶解率の比を調整する方法としては、PVA系樹脂のケン化度を調整する方法、PVA系樹脂の平均重合度を調整する方法、PVA系樹脂に変性基を導入する方法、PVA系樹脂に熱処理を行う方法、PVA系樹脂を用いてコアシェル粒子とする方法等が挙げられる。
 上記式(X)を満たすPVA系樹脂を用いる場合、該PVA系樹脂の平均重合度(JIS K 6726に準拠して測定)は、450以上が好ましく、700以上がより好ましく、1000以上がさらに好ましい。
 該PVA系樹脂の平均重合度が450以上であると、PVA系樹脂の1時間後溶解率を小さくすることができ、頁岩層の亀裂での態様(ii)のダイバーティングエージェントによる一時的な閉塞を効率的に行うことができる。
 また、該PVA系樹脂の平均重合度は、24時間後の溶解性が低くなりすぎないようにする観点から、4000以下が好ましく、3000以下がより好ましく、2500以下がさらに好ましい。
 また、態様(ii)で用いるPVA系樹脂のケン化度(JIS K 6726に準じて測定)は、通常、70モル%以上であり、90モル%以上が好ましく、95モル%以上がより好ましく、98モル%以上がさらに好ましい。またケン化度の上限は、生産効率の観点から、99.9モル%以下が好ましく、99.8モル%以下がより好ましく、99.5モル%以下がさらに好ましい。
 また、態様(ii)で用いるPVA系樹脂を熱処理にて製造する場合は、常法により得られたPVA系樹脂を、例えば、90~220℃、好ましくは90~180℃、より好ましくは100~160℃で、10~600分、好ましくは20~400分、より好ましくは30~300分熱処理することでPVA系樹脂を得ることができる。なお、熱処理は公知の方法で行うことができ、熱処理缶などを用いた熱処理の他、溶融押出等により行うことも可能である。
 また、態様(ii)で用いるPVA系樹脂は、未変性PVAであっても、変性PVA系樹脂であってもよく、好ましくは側鎖に1,2-ジオール構造を有するPVA系樹脂である。
 また、態様(ii)で用いるPVA系樹脂をコアシェル粒子とする方法にて製造する場合は、公知の方法、例えば日本国特開2017-048267号公報に記載の方法で得ることができる。
 また、本発明で用いるPVA系樹脂は、下記の態様(iii)を満たすものが好ましい。
<態様(iii):下記式(A)を満たすPVA系樹脂>
 膨潤度×溶出率(質量%)≦500   (A)
 式(A)中、膨潤度とは、下記式(B)により求められる値である。
Figure JPOXMLDOC01-appb-M000006
 式(B)中、膨潤後のポリビニルアルコール系樹脂の質量(g)とは、100gの水に1gのポリビニルアルコール系樹脂を投入し、23℃の恒温室中で1日静置後、ろ過により採取した残存ポリビニルアルコール系樹脂の質量(g)である。
 式(B)中、膨潤後に乾燥させたポリビニルアルコール系樹脂の質量(g)とは、上記残存ポリビニルアルコール系樹脂を140℃で3時間乾燥した後の質量(g)である。
 また、式(A)中、溶出率(質量%)とは、下記式(C)により求められる値である。
Figure JPOXMLDOC01-appb-M000007
 式(C)中、膨潤後に乾燥させたポリビニルアルコール系樹脂の質量(g)とは、式(B)における定義と同様である。
 なお、式(C)中、ポリビニルアルコール系樹脂の固形分率(質量%)は、PVA系樹脂を105℃で3時間乾燥させ、乾燥前後のPVA系樹脂の質量を測定することにより、算出することができる。
 態様(iii)で用いるPVA系樹脂の膨潤度×溶出率(質量%)の値が500以下であると、PVA系樹脂水溶液を1日静置後の、PVA系樹脂の膨潤及び溶出を抑えることができ、PVA系樹脂同士の付着を抑えることになるので、態様(iii)のダイバーティングエージェントの水への分散性を高めることができる。
 また、より分散性を高める観点から、膨潤度×溶出率(質量%)の値は、0~500がより好ましく、1~480がさらに好ましく、2~400が特に好ましい。
 態様(iii)で用いるPVA系樹脂の膨潤度は、30以下が好ましく、20以下がより好ましく、10以下がさらに好ましい。
 態様(iii)で用いるPVA系樹脂の膨潤度が30以下であると、PVA系樹脂が水により肥大しすぎるのを抑制でき、水や態様(iii)のダイバーティングエージェントを送り込むポンプへの負荷を軽減できる。また、シェール層の微細な割れ目においても、態様(iii)のダイバーティングエージェントが塞栓を形成することができる。
 なお、膨潤度の下限値は0である。
 態様(iii)で用いるPVA系樹脂の膨潤度を調整する方法としては、PVA系樹脂のケン化度を調整する方法、PVA系樹脂の平均重合度を調整する方法、PVA系樹脂に変性基を導入する方法、PVA系樹脂に熱処理を行う方法、PVA系樹脂を用いてコアシェル粒子とする方法等が挙げられる。
 態様(iii)で用いるPVA系樹脂の溶出率は、50質量%以下が好ましく、30質量%以下がより好ましく、10質量%以下がさらに好ましい。
 態様(iii)で用いるPVA系樹脂の溶出率が50質量%以下であると、PVA系樹脂の形状を一定時間維持することができ、シェール層の割れ目での態様(iii)のダイバーティングエージェントによる一時的な塞栓形成を効率的に行うことができる。
 なお、溶出率の下限値は0質量%である。
 態様(iii)で用いるPVA系樹脂の溶出率を調整する方法としては、PVA系樹脂のケン化度を調整する方法、PVA系樹脂の平均重合度を調整する方法、PVA系樹脂に変性基を導入する方法、PVA系樹脂に熱処理を行う方法、PVA系樹脂を用いてコアシェル粒子とする方法等が挙げられる。
 また、態様(iii)で用いるPVA系樹脂のケン化度(JIS K 6726に準じて測定)は、通常、70モル%以上であり、90モル%以上が好ましく、95モル%以上がより好ましく、98モル%以上がさらに好ましい。またケン化度の上限は、生産効率の観点から、99.9モル%以下が好ましく、99.8モル%以下がより好ましく、99.5モル%以下がさらに好ましい。
 また、態様(iii)で用いるPVA系樹脂を熱処理にて製造する場合は、常法により得られたPVA系樹脂を、例えば、90~220℃、好ましくは90~180℃、より好ましくは100~160℃で、10~600分、好ましくは20~400分、より好ましくは30~300分熱処理することでPVA系樹脂を得ることができる。なお、熱処理は公知の方法で行うことができ、熱処理缶などを用いた熱処理の他、溶融押出等により行うことも可能である。
 また、態様(iii)で用いるPVA系樹脂は、未変性PVAであっても、変性PVA系樹脂であってもよく、好ましくは、未変性PVA、エチレン基を有するPVA系樹脂である。
 また、態様(iii)で用いるPVA系樹脂をコアシェル粒子とする方法にて製造する場合は、公知の方法、例えば日本国特開2017-048267号公報に記載の方法で得ることができる。
<PVA系樹脂の製造方法>
 本発明で用いるPVA系樹脂は、ケン化度相当のビニルアルコール構造単位と未ケン化部分の酢酸ビニル構造単位を有するものである。
 本発明で用いるPVA系樹脂としては、未変性PVAの他に、ビニルエステル系樹脂の製造時に各種モノマーを共重合させ、これをケン化して得られる変性PVA系樹脂や、未変性PVAに後変性によって各種官能基を導入した各種の後変性PVA系樹脂が挙げられる。かかる変性は、PVA系樹脂の水溶性が失われない範囲で行うことができる。また、場合によっては、変性PVA系樹脂を更に後変性させてもよい。
 ビニルエステル系樹脂の製造時にビニルエステル系モノマーとの共重合に用いられるモノマーとしては、例えば、エチレン、プロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩、そのモノ又はジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル類;アクリルアミド、メタクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩;アルキルビニルエーテル類;N-アクリルアミドメチルトリメチルアンモニウムクロライド;アリルトリメチルアンモニウムクロライド;ジメチルアリルビニルケトン;N-ビニルピロリドン;塩化ビニル;塩化ビニリデン;ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテル等のポリオキシアルキレン(メタ)アリルエーテル;ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート;ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド;ポリオキシエチレン(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)エステル;ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル等のポリオキシアルキレンビニルエーテル;ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン等のポリオキシアルキレンアリルアミン;ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等のポリオキシアルキレンビニルアミン;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン類あるいはそのアシル化物等の誘導体を挙げることができる。
 また、3,4-ジヒドロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-ヒドロキシ-1-ブテン、4-アシロキシ-3-ヒドロキシ-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4,5-ジヒドロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4,5-ジヒドロキシ-3-メチル-1-ペンテン、4,5-ジアシロキシ-3-メチル-1-ペンテン、5,6-ジヒドロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン、グリセリンモノアリルエーテル、2,3-ジアセトキシ-1-アリルオキシプロパン、2-アセトキシ-1-アリルオキシ-3-ヒドロキシプロパン、3-アセトキシ-1-アリルオキシ-2-ヒドロキシプロパン、グリセリンモノビニルエーテル、グリセリンモノイソプロペニルエーテル、ビニルエチレンカーボネート、2,2-ジメチル-4-ビニル-1,3-ジオキソラン等のジオールを有する化合物等が挙げられる。
 また、後反応によって官能基が導入された後変性PVA系樹脂としては、例えば、ジケテンとの反応によるアセトアセチル基を有するもの、エチレンオキサイドとの反応によるポリアルキレンオキサイド基を有するもの、エポキシ化合物等との反応によるヒドロキシアルキル基を有するもの、あるいは各種官能基を有するアルデヒド化合物をPVA系樹脂と反応させて得られたもの等を挙げることができる。
 本発明で用いるPVA系樹脂は、1時間後溶解率に対する24時間後溶解率の比をより大きくする観点から、変性PVA系樹脂であることが好ましく、親水性である変性基を有しているものがより好ましい。
 本発明で用いるPVA系樹脂が変性PVA系樹脂である場合、かかる変性PVA系樹脂中の変性率、すなわち共重合体中の各種モノマーに由来する構成単位、あるいは後反応によって導入された官能基の含有量は、1時間後溶解率に対する24時間後溶解率の比をより大きくする観点から、0.5~10モル%が好ましく、0.7~8モル%がより好ましく、1.0~5モル%がさらに好ましい。
 なお、本発明で用いるPVA系樹脂中の変性率は、ケン化度100モル%のPVA系樹脂のH-NMRスペクトル(溶媒:DMSO-d、内部標準:テトラメチルシラン)から求めることができる。具体的には、変性率は、変性基中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトン等に由来するピーク面積から算出することができる。
 上記親水性である変性基としては、例えば、オキシアルキレン基、水酸基含有アルキル基、アミノ基、アミノ基含有アルキル基、チオール基、チオール基含有アルキル基等が挙げられる。これらの中でも、本発明の効果が顕著に得られる点から、オキシアルキレン基及び水酸基含有アルキル基が好ましく用いられる。
 オキシアルキレン基としては、例えば、オキシエチレン基及びオキシエチレン-オキシプロピレン共重合基等を挙げることができるが、オキシエチレン-オキシプロピレン共重合基の場合、オキシプロピレン成分が増加すると親水性が低下する傾向にあるので、オキシエチレン基が好ましく用いられる。
 水酸基含有アルキル基としては、アルキル基の炭素数、水酸基の数、水酸基の価数及び結合様式等によって数多くのものが挙げられるが、アルキル基の炭素数は通常1~5、特に2~3が好ましい。また、水酸基の数は、通常1~4であり、特に1~3が好ましく、その価数としては1級水酸基が好ましい。これらの水酸基含有アルキル基の中でも、特に1級水酸基と2級水酸基が隣り合う炭素に結合した1,2ジオール基が好ましい。
 なお、オキシエチレン基の末端は通常水酸基であることから、オキシエチレン基は水酸基含有官能基に包含されるものである。
 また、本発明で用いるPVA系樹脂は、異なる他のPVA系樹脂との混合物であってもよく、かかる他のPVA系樹脂としては、変性基の含有量が異なるもの、ケン化度が異なるもの、平均重合度が異なるもの、他の共重合成分が異なるもの、変性基を有さないもの等を挙げることができる。混合物を用いる場合には、ケン化度、平均重合度、変性率の平均値が上述の範囲内であることが好ましい。
 さらに、本発明で用いるPVA系樹脂は、本発明の目的を阻害しない範囲において、各種不飽和モノマーを共重合したものを用いることができる。かかる不飽和モノマーの導入量としては、一概にはいえないが、通常10モル%未満であり、導入量が多すぎると親水性が損なわれる傾向がある。
 以下、本発明で用いるPVA系樹脂において、変性基として好ましく用いられるオキシエチレン基を側鎖に有するPVA系樹脂(以下、オキシエチレン基含有PVA系樹脂と称することがある。)について詳しく説明する。
 かかるオキシエチレン基は、下記一般式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000008
 一般式(1)におけるnは正の整数を表し、nは通常5~50、好ましくは8~20である。nは、PVA系樹脂中に含まれるオキシエチレン基の数の平均値である。
 また、R及びRは水素原子又は炭素数1~3のアルキル基を表す。炭素数1~3のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられ、当該アルキル基は必要に応じてハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
 なお、親水性を阻害しない程度であれば、オキシエチレン基以外のオキシアルキレン基、例えばオキシプロピレン基が少量共重合されているものでもよい。
 オキシエチレン基含有PVA系樹脂は、通常、ビニルエステル系単量体とオキシエチレン基を有する不飽和単量体を共重合して得られた変性ポリビニルエステル系樹脂をケン化することによって得ることができる。
 オキシエチレン基を有する不飽和単量体としては種々のものが挙げられ、代表的には次のものが例示される。
((メタ)アクリル酸エステル型)
 下記の式(2)で示されるもので、具体的にはポリオキシエチレン(メタ)アクリレートが挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(2)中、Yは水素原子又はメチル基、n、R及びRは前記定義と同様である。
((メタ)アクリル酸アミド型)
 下記の式(3)で示されるもので、具体的にはポリオキシエチレン(メタ)アクリル酸アミド等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(3)中、Y、n、R及びRは前記定義と同様である。
((メタ)アリルエーテル型)
 下記の式(4)で示されるもので、具体的にはポリオキシエチレン(メタ)アリルエーテル等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(4)中、Y、n、R及びRは前記定義と同様である。
(ビニルエーテル型)
 下記の式(5)で示されるもので、具体的にはポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 式(5)中、n、R及びRは前記定義と同様である。
 これらのオキシエチレン基を含有する単量体の中でも式(4)で示される(メタ)アリルエーテル型のものが共重合反応の容易さ、ケン化工程における安定性等の点から好適に使用される。
 上記の単量体と共重合するビニルエステル系単量体としては、ギ酸ビニル、酢酸ビニル、トリフルオロ酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプリン酸ビニル、ラウリル酸ビニル、バーサティック酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル等が単独又は併用で用いられるが、工業的には酢酸ビニルが好適である。
 また、共重合するに当たっては特に制限はなく公知の重合方法が用いられる。
 次に、本発明で用いるPVA系樹脂において、変性基として好ましく用いられる1,2-ジオール基を側鎖に有するPVA系樹脂(以下、1,2-ジオール基含有PVA系樹脂と称することがある。)について説明する。
 1,2-ジオール基含有PVA系樹脂は、下記一般式(6)で表わされる1,2-ジオール構造単位を有するPVA系樹脂である。
Figure JPOXMLDOC01-appb-C000013
 上記一般式(6)において、R~R10は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を示し、Xは単結合又は結合鎖を示す。
 炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基等が挙げられ、必要に応じて、ハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
 R~R10は、すべて水素原子であることが好ましいが、樹脂特性を大幅に損なわない程度の量であれば炭素数1~5のアルキル基であってもよい。
 Xは、熱安定性の点や高温下や酸性条件下での安定性の点で、単結合であるものが好ましいが、本発明の効果を阻害しない範囲であれば結合鎖であってもよい。
 結合鎖としては、特に限定されず、例えば、炭素数1~4の直鎖状又は分岐のアルキレン基、炭素数1~4の直鎖状又は分岐のアルケニレン基、炭素数1~4の直鎖状又は分岐のアルキニレン基、フェニレン基、ナフチレン基等の炭化水素(これらの炭化水素は、フッ素、塩素、臭素等のハロゲン等で置換されていてもよい)の他、-O-、-(CHO)-、-(OCH-、-(CHO)CH-、-CO-、-COCO-、-CO(CHCO-、-CO(C)CO-、-S-、-CS-、-SO-、-SO-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO-、-Si(OR)-、-OSi(OR)-、-OSi(OR)O-、-Ti(OR)-、-OTi(OR)-、-OTi(OR)O-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等が挙げられる。Rはそれぞれ独立して水素原子又は任意の置換基であり、水素原子又はアルキル基(特に炭素数1~4のアルキル基)が好ましい。
 また、mは自然数であり、好ましくは1~10、特に好ましくは1~5である。
 なかでも、製造時の粘度安定性や耐熱性等の点で、炭素数1~4のアルキレン基、特にメチレン基、あるいは-CHOCH-が好ましい。
 1,2-ジオール基含有PVA系樹脂は、公知の製造方法により製造することができる。例えば、日本国特開2002-284818号公報、日本国特開2004-285143号公報、日本国特開2006-95825号公報に記載されている方法により製造することができる。
 すなわち、(i)ビニルエステル系モノマーと下記一般式(7)で示される化合物との共重合体をケン化する方法、(ii)ビニルエステル系モノマーと下記一般式(8)で示されるビニルエチレンカーボネートとの共重合体をケン化及び脱炭酸する方法、(iii)ビニルエステル系モノマーと下記一般式(9)で示される2,2-ジアルキル-4-ビニル-1,3-ジオキソランとの共重合体をケン化及び脱ケタール化する方法等により、製造することができる。
Figure JPOXMLDOC01-appb-C000014
 上記一般式(7)中、R~R10及びXは、いずれも一般式(6)の場合と同様である。また、R11及びR12は、それぞれ独立して、水素原子又はR13-CO-(式中、R13は、炭素数1~5のアルキル基である。)である。
Figure JPOXMLDOC01-appb-C000015
 上記一般式(8)中、R~R10及びXは、いずれも一般式(6)の場合と同様である。
Figure JPOXMLDOC01-appb-C000016
 上記一般式(9)中、R~R10及びXは、いずれも一般式(6)の場合と同様である。また、R14及びR15は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基である。
 また、R13~R15の炭素数1~5のアルキル基の具体例は、一般式(6)の場合と同様である。
 上記方法のうち、共重合反応性及び工業的な取扱いにおいて優れるという点で、(i)の方法が好ましく、特に、上記一般式(7)で示される化合物は、R~R10が水素原子、Xが単結合、R11及びR12がR13-CO-であり、R13が炭素数1~5のアルキル基である3,4-ジアシロキシ-1-ブテンが好ましく、その中でも特にR13がメチル基である3,4-ジアセトキシ-1-ブテンが好ましく用いられる。
 また、重合温度を100℃以上にすることにより、PVA系樹脂の主鎖中に1,2-ジオール構造を1.6~3.5モル%程度導入したものを得ることが可能である。
[ダイバーティングエージェント]
 本発明のダイバーティングエージェントは、上記のPVA系樹脂を含有するものである。PVA系樹脂の含有量は、ダイバーティングエージェント全体に対して、通常50~100質量%、好ましくは80~100質量%、特に好ましくは90~100質量%である。かかる含有量が少なすぎると本発明の効果が得られにくくなる傾向がある。
 本発明のダイバーティングエージェントには、上記のPVA系樹脂以外に、例えば、砂、鉄、セラミック、その他の生分解性樹脂等の添加剤を配合することができる。
 かかる添加剤の配合量は、ダイバーティングエージェント全体に対して、通常50質量%以下、好ましくは20質量%以下、更に好ましくは10質量%以下である。
 本発明のダイバーティングエージェントの形状は、通常、円柱状(ペレット)、球状、粉末状等であり、目止効果の向上や製造の点で、好ましくは円柱状や粉末状であり、使用する際にはこれらの混合物とすることが好ましい。
 円柱状(ペレット)の場合は、直径は、通常0.5~4.0mm、好ましくは1.0~3.0mm、特に好ましくは1.85~2.25mmであり、厚みは、通常0.5~4.0mm、好ましくは1.0~3.0mm、特に好ましくは、1.85~2.25mmである。
 粉末状の場合は、平均粒子径は、好ましくは10~3000μm、より好ましくは50~2000μmであり、さらに好ましくは100~1000μmである。かかる平均粒子径とは、レーザー回折で粒径別の体積分布を測定し、積算値(累積分布)が50%になる径である。
 直径、厚み及び平均粒径が大きすぎると水溶解性が低下する傾向があり、小さすぎると目止効果が低下する傾向がある。
 本発明のダイバーティングエージェントは、石油やガスなどの掘削において、水圧破砕法を用いる場合に、形成される亀裂や割れ目の中に入り、その亀裂や割れ目を一時的に閉塞することにより、新たな亀裂や割れ目を形成することができる。亀裂や割れ目の閉塞方法としては、本発明のダイバーティングエージェントを坑井内の流体の流れに乗せて閉塞したい亀裂に流入させればよい。
 また、本発明のダイバーティングエージェントは水溶性でかつ、生分解性であるため、使用後は速やかに水に溶解し除去され、その後生分解されるため、環境負荷が小さく、非常に有用である。
 なお、上記実施形態における各要素及び各特徴の一部又は全部は、他の実施形態に適宜組み合わせてもよい。
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明は何らこれらに限定されるものではない。
 なお、例中、「部」、「%」とあるのは、特に断りのない限り、質量基準を意味する。
<<試験例1>>
[No.1-1]
〔PVA1-1の製造〕
 還流冷却器、滴下装置、撹拌機を備えた反応缶に、酢酸ビニル10部(全体の10%を初期仕込みに使用)、メタノール45部を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを0.050部投入し、重合を開始した。
 さらに、重合開始から0.28時間後に酢酸ビニル90部を22時間かけて等速滴下した。酢酸ビニルの重合率が95%となった時点で、ヒドロキノンモノメチルエーテルを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し酢酸ビニル重合体のメタノール溶液を得た。
 ついで、上記溶液をメタノールで希釈し、固形分濃度を55%に調整して、かかるメタノール溶液をニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウム中のナトリウム分2%メタノール溶液を酢酸ビニル構造単位1モルに対して6.3ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で、さらに水酸化ナトリウム中のナトリウム分2%メタノール溶液を酢酸ビニル構造単位1モルに対して6.0ミリモル追加しケン化を行った。その後、中和用の酢酸を水酸化ナトリウムの0.8当量添加し、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、PVA1-1を得た。
 得られたPVA1-1のケン化度は、樹脂中の残存酢酸ビニルの構造単位の加水分解に要するアルカリ消費量にて分析したところ、99モル%であった。
 また、PVA1-1の平均重合度は、JIS K6726に準じて分析を行ったところ、300であった。
〔PVA1-1ペレットの製造〕
 上記で得られたPVA1-1を下記の条件でペレットとした。
押出機:テクノベル社製 15mmφ L/D=60
回転数:200rpm
吐出量:1.2~1.5kg/h
押出温度:C1/C2/C3/C4/C5/C6/C7/C8/D=90/170/210/220/230/230/230/230/230℃
 得られたPVA系樹脂ペレットについて、以下の評価を行った。
〔結晶化度の測定〕
 上記で得られたPVA系樹脂ペレットについて、メトラートレド社製の熱流束型示差走査熱量計「DSC3」を用いて、サンプル量5mgを測定パンに密封し、-30℃から昇温速度10℃/分で、215℃まで昇温し、直ちに降温速度10℃/分で-30℃まで降温し、再び昇温速度10℃/分で230℃まで昇温した時の融点の融解熱(ΔH)を算出したところ69.0J/gであり、結晶化度は、44.0%であった。
〔溶解性評価(40℃)〕
 上記で得られたPVA系樹脂ペレット4gを40℃の水96gに投入し、水の温度を40℃に保ったまま180分間撹拌した。
 180分後、溶け残ったPVA系樹脂ペレットの残渣を濾過し、残渣を除いた水溶液の濃度を測定した。水溶液の濃度は、PVA系樹脂水溶液を適量、量り取り、105℃の乾燥機に入れて3時間乾燥し、室温に冷却後、乾燥残渣の質量を測定し、次の式より算出した。
 水溶液の濃度(質量%)=乾燥残渣の質量(部)/量り取ったPVA系樹脂水溶液の質量(部)×100
 かかる水溶液濃度とPVA系樹脂ペレットの仕込み量から、残渣量を算出し、溶解率を求めた。結果を表1-1に示す。
[No.1-2]
 No.1-1において、PVA1-1をPVA1-2(ケン化度99モル%、平均重合度500、未変性PVA)に替えた以外は、No.1-1と同様の評価を行った。結果を表1-1に示す。
[No.1-3]
〔PVA1-3の製造〕
 還流冷却器、滴下装置、撹拌機を備えた反応缶に、酢酸ビニル10部(全体の10%を初期仕込みに使用)、メタノール45部、及び3,4-ジアセトキシ-1-ブテン0.20部(全体の10%を初期仕込み)を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを0.100部投入し、重合を開始した。
 さらに、重合開始から0.5時間後に酢酸ビニル90部と3,4-ジアセトキシ-1-ブテン1.80部を22.5時間かけて等速滴下した。酢酸ビニルの重合率が95%となった時点で、ヒドロキノンモノメチルエーテルを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
 ついで、上記溶液をメタノールで希釈し、固形分濃度を55%に調整して、かかるメタノール溶液をニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウム中のナトリウム分2%メタノール溶液を共重合体中の酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して6.3ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で、さらに水酸化ナトリウム中のナトリウム分2%メタノール溶液を酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して6.0ミリモル追加しケン化を行った。その後、中和用の酢酸を水酸化ナトリウムの0.8当量添加し、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、側鎖に1,2-ジオール構造を有するPVA1-3を得た。
 得られた側鎖に1,2-ジオール構造を有するPVA1-3のケン化度は、樹脂中の残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの構造単位の加水分解に要するアルカリ消費量にて分析したところ、99モル%であった。
 また、PVA1-3の平均重合度は、JIS K6726に準じて分析を行ったところ、300であった。
 また、前記式(6)で表される1,2-ジオール構造単位の含有量は、1H-NMR(300MHzプロトンNMR、d-DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、1.0モル%であった。
〔PVA1-3ペレットの製造〕
 上記で得られたPVA1-3を下記の条件でペレットとした。
 押出機:テクノベル社製 15mmφ L/D=60
 回転数:200rpm
 吐出量:1.2~1.5kg/h
 押出温度:C1/C2/C3/C4/C5/C6/C7/C8/D=90/160/200/225/230/230/230/230/230℃
 得られたPVA系樹脂ペレットについて、No.1-1と同様の評価を行った。
[No.1-4]
 No.1-3において、PVA1-3をPVA1-4(ケン化度99モル%、平均重合度600、1,2ジオール構造の含有量1.0モル%)に替えた以外はNo.1-3と同様の評価を行った。
[No.1-5]
 No.1-3において、PVA1-3をPVA1-5(ケン化度99モル%、平均重合度450、1,2ジオール構造の含有量1.0モル%)に替えた以外はNo.1-3と同様の評価を行った。
[No.1-6]
 No.1-3において、PVA1-3をPVA1-6(ケン化度99モル%、平均重合度500、エチレン基含有量7.0モル%)を用いた以外はNo.1-3と同様の評価を行った。
[No.1-7]
 No.1-3において、PVA1-3をPVA1-7(ケン化度99モル%、平均重合度600、1,2ジオール構造の含有量1.5モル%)に替えた以外はNo.1-3と同様の評価を行った。
[No.1-8]
 No.1-3において、PVA1-3をPVA1-8(ケン化度99モル%、平均重合度520、1,2ジオール構造の含有量2.0モル%)に替えた以外はNo.1-3と同様の評価を行った。
[No.1-9]
 No.1-3において、PVA1-3をPVA1-9(ケン化度99モル%、平均重合度600、1,2ジオール構造の含有量3.0モル%)に替えた以外はNo.1-3と同様の評価を行った。
[No.1-10]
 No.1-3において、PVA1-3をPVA1-10(ケン化度99モル%、平均重合度470、1,2ジオール構造の含有量3.0モル%)に替えた以外はNo.1-3と同様の評価を行った。
[No.1-11]
 No.1-1において、PVA1-1をポリ乳酸(ネイチャーワークス社製 「Ingeo4032D」)に替えた以外はNo.1-1と同様の評価を行った。
 上記No.1-1~1-11の結果を表1-1に示す。
Figure JPOXMLDOC01-appb-T000017
 上記の通り本発明のダイバーティングエージェントを用いたNo.1-1~1-10は、水へ溶解するため、一時的に亀裂や割れ目を目止した後に、速やかに除去されるものである。
 即ち、隙間を埋めておく時間を長く設計したい場合や、一定時間だけ隙間を埋めた後の除去時間を短く設計したい場合等、種々の目的に応じて、適切なダイバーティングエージェントを選択することができる。
 一方、ポリ乳酸を用いたNo.1-11では、ポリ乳酸が水に溶解しないため一定時間は隙間を埋めることは可能であったが、その目的が達成された後にポリ乳酸を除去するのに長時間を要することがわかる。
<<試験例2>>
 試験例2で用いたPVA2-1~PVA2-16の製造方法は以下のとおりである。
<PVA2-1の製造>
 還流冷却器、滴下装置、及び撹拌機を備えた反応缶に、酢酸ビニル20部(全体の20%を初期仕込みに使用)、メタノール32.5部、及び3,4-ジアセトキシ-1-ブテン0.40部(全体の20%を初期仕込みに使用)を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを0.093部投入し、重合を開始させた。
 さらに、重合開始から0.4時間後に酢酸ビニル80部と3,4-ジアセトキシ-1-ブテン1.6部を11時間かけて等速で滴下した。酢酸ビニルの重合率が91%となった時点で、m-ジニトロベンゼンを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
 ついで、上記溶液をメタノールで希釈し、固形分濃度を50%に調整して、かかるメタノール溶液をニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウム中のナトリウム分2%メタノール溶液を共重合体中の酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して4.8ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で、さらに水酸化ナトリウム中のナトリウム分2%メタノール溶液を酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して7.5ミリモル追加しケン化を行った。その後、中和用の酢酸を水酸化ナトリウムの0.8当量添加し、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂(PVA2-1)を得た。
(ケン化度)
 PVA2-1のケン化度は、JIS K 6726に準じて、樹脂中の残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの構造単位の加水分解に要するアルカリ消費量にて分析したところ、99モル%であった。
(平均重合度)
 PVA2-1の平均重合度は、JIS K 6726に準じて分析を行ったところ、450であった。
(変性率)
 PVA2-1中の前記式(6)で表される1,2-ジオール構造単位の含有率(変性率)は、H-NMR(300MHz プロトンNMR、d-DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、1.0モル%であった。
(平均粒子径)
 PVA2-1の平均粒子径は、レーザー回折式粒度分布測定装置「マスターサイザー3000」(スペクトリス株式会社製)によって測定したところ、270μmであった。
<PVA2-2の製造>
 PVA2-1の製造において、酢酸ビニルを100部、メタノール23部、および3,4-ジアセトキシ-1-ブテン6部を初期一括で仕込み、重合率が70%となった時点で重合を終了した以外は、同様に製造して側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂を得た。当該変性PVA系樹脂を300μm篩で篩分けして得られた篩上物をPVA2-2とした。
 PVA2-1と同様にしてケン化度、平均重合度、変性率及び平均粒子径を求めた。ケン化度は99モル%、平均重合度は1200、変性率は3.0モル%、平均粒子径は415μmであった。
<PVA2-3の製造>
 PVA2-1の製造において、酢酸ビニルを100部、メタノール23部、および3,4-ジアセトキシ-1-ブテン2部を初期一括で仕込み、重合率が58%となった時点で重合を終了した以外は、同様に製造して側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂を得た。当該変性PVA系樹脂を300μm篩で篩分けして得られた篩上物をPVA2-3とした。
 PVA2-1と同様にしてケン化度、平均重合度、変性率及び平均粒子径を求めた。ケン化度は99モル%、平均重合度は1800、変性率は1.0モル%、平均粒子径は410μmであった。
<PVA2-4の製造>
 重合缶にオキシエチレン基の平均鎖長(n)が15のポリオキシエチレンモノアリルエーテル15.0部、酢酸ビニル85部、メタノール10.0部を仕込み、還流状態になるまで昇温した後30分間還流させてから、アゾビスイソブチロニトリルを酢酸ビニル量に対して0.08モル%仕込んで重合を開始した。反応開始後2時間目と4時間目にアゾビスイソブチロニトリルを酢酸ビニル量に対して0.08モル%ずつ追加した。
 ついで、重合反応開始後約10時間目で、冷却用メタノール20部と禁止剤としてm-ジニトロベンゼンを0.2部加え、反応缶ジャケットを冷却して重合反応を停止して、ポリオキシエチレン基含有酢酸ビニル重合体を得た。かかる重合体の重合率は約95%であった。
 ついで、上記で得られたポリオキシエチレン基含有酢酸ビニル重合体の溶液から残存モノマーを追い出した後、メタノールで希釈して濃度40%に調整してニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル1モル単位に対して3.5ミリモルとなる量を加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、遂には粒子状となった。生成した樹脂を濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、オキシエチレン基含有PVA系樹脂(PVA2-4)を得た。
 PVA2-1と同様にしてケン化度、平均重合度、変性率及び平均粒子径を求めた。ケン化度は99モル%、平均重合度は750、変性率は2.0モル%、平均粒子径は287μmであった。
<PVA2-5の製造>
 ケン化度73モル%及び平均重合度500の未変性PVAを恒温乾燥機にて、140℃で2時間熱処理を行い、PVA2-5を得た。得られたPVA2-5の平均粒子径は240μmであった。
<PVA2-6の製造>
 PVA2-1を恒温乾燥機にて、140℃で2時間熱処理を行い、PVA2-6を得た。
 PVA2-1と同様にしてケン化度、平均重合度、変性率及び平均粒子径を求めた。ケン化度は99モル%、平均重合度は450、変性率は1.0モル%、平均粒子径は270μmであった。
<PVA2-7の製造>
 転動流動コーティング装置(パウレック社製 MP-01)を用いて、コア部として後述のPVA2-8の微粉砕品(ケン化度88モル%、平均重合度500、平均粒子径は100μm)の粒子700部にシェル部として後述のPVA2-15(ケン化度99モル%、平均重合度500、平均粒子径は258μm)の3%水溶液700部(樹脂分:21部)で以下の条件でコーティングして、PVA2-7のコアシェル粒子を得た。
 PVA2-1と同様にして平均粒子径を求めた。平均粒子径は183μmであった。
コーティング条件
 時間:100分
 給気温度:80℃
 排気温度:40℃
 スプレー速度:4.5g/分(40分間)及び7.5g/分(60分間)
 ローター回転速度:300回転/分
<PVA2-8の製造>
 PVA2-8として、側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂を得た。
 PVA2-1と同様にしてケン化度、平均重合度、変性率及び平均粒子径を求めた。ケン化度は99モル%、平均重合度は600、変性率は1.5モル%、平均粒子径は594μmであった。
<PVA2-9の製造>
 PVA2-9として、アセトアセチル基を含有する変性PVA系樹脂を得た。
 PVA2-1と同様にしてケン化度、平均重合度、変性率及び平均粒子径を求めた。ケン化度は99モル%、平均重合度は1100、変性率は5.5モル%、平均粒子径は245μmであった。
<PVA2-10の製造>
 PVA2-10として、カルボン酸変性PVA系樹脂を得た。
 PVA2-1と同様にしてケン化度、平均重合度、変性率及び平均粒子径を求めた。ケン化度は99モル%、平均重合度は1700、変性率は2.0モル%、平均粒子径は1100μmであった。
<PVA2-11の製造>
 PVA2-11として、側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂を得た。
 PVA2-1と同様にしてケン化度、平均重合度、変性率及び平均粒子径を求めた。ケン化度は99モル%、平均重合度は1200、変性率は1.0モル%、平均粒子径は215μmであった。
<PVA2-12の製造>
 PVA2-12として、側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂を得た。
 PVA2-1と同様にしてケン化度、平均重合度、変性率及び平均粒子径を求めた。ケン化度は92モル%、平均重合度は2500、変性率は2.0モル%、平均粒子径は600μmであった。
<PVA2-13の製造>
 PVA2-13として、ケン化度88モル%及び平均重合度500の未変性PVAを製造した。
 PVA2-1と同様にして平均粒子径を求めた。平均粒子径は300μmであった。
<PVA2-14の製造>
 PVA2-14として、ケン化度73モル%及び平均重合度500の未変性PVAを製造した。
 PVA2-1と同様にして平均粒子径を求めた。平均粒子径は240μmであった。
<PVA2-15の製造>
 PVA2-15として、ケン化度99モル%及び平均重合度500の未変性PVAを製造した。
 PVA2-1と同様にして平均粒子径を求めた。平均粒子径は258μmであった。
<PVA2-16の製造>
 PVA2-16として、ケン化度99モル%及び平均重合度1800の未変性PVAを製造した。
 PVA2-1と同様にして平均粒子径を求めた。平均粒子径は259μmであった。
[No.2-1]
(1時間後溶解率)
 100gの水が入った140mLの蓋付きガラス容器を恒温機に入れ、水温を40℃とした。ナイロン製の120メッシュ(目開き125μm、10cm×7cm)の長辺を二つ折りにし、両端をヒートシールしメッシュの袋(5cm×7cm)を得た。
 得られたメッシュの袋に1gのPVA2-1を入れ、開口部をヒートシールし、PVA2-1入りのメッシュの袋を得て、質量を測定した。上記ガラス容器中にPVA2-1入りのメッシュの袋を浸漬させた。40℃の恒温機内で1時間静置後、PVA2-1入りのメッシュの袋を上記ガラス容器から取り出し、105℃で3時間乾燥させ、かかるPVA2-1入りのメッシュの袋の質量を測定し、浸漬前の質量からメッシュの袋中に残存したPVA2-1の質量を算出し、下記式(Y)によってPVA2-1の1時間後溶解率を算出した。当該1時間後溶解率は25質量%であった。
Figure JPOXMLDOC01-appb-M000018
(24時間後溶解率)
 上記の1時間後溶解率を測定する工程の1時間静置するところを24時間静置に変更した以外は同様にして、24時間後の、メッシュ中の袋に残存したPVA2-1の質量を算出し、PVA2-1の24時間後溶解率を算出した。当該24時間後溶解率は74質量%であった。
 PVA2-1において、24時間後溶解率(質量%)/1時間後溶解率(質量%)により求めた、1時間後溶解率に対する24時間後溶解率の比は、3.0であった。
 PVA2-1の1時間後溶解率(質量%)、24時間後溶解率(質量%)及び1時間後溶解率に対する24時間後溶解率の比を表2-1にまとめた。
[No.2-2~2-16]
 No.2-1において、PVA2-1の替わりにPVA2-2~PVA2-16を用いて、No.2-1と同様の試験を行った。結果を表2-1~表2-2に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 No.2-1~2-12のダイバーティングエージェントは、ある程度1時間経過後の初期溶解率がより抑えられ、なおかつ24時間経過後には水への溶解性により優れるものであった。
 1時間後溶解率に対する24時間後溶解率の比が2.8以上であるPVA系樹脂を含有するダイバーティングエージェントは、水に添加されてから一定時間は形状を維持できる傾向があるので頁岩層にできた亀裂を一時的に閉塞しやすく、かつ、石油や天然ガス等を回収する際には水に溶解しやすい。
<<試験例3>>
 試験例3で用いたPVA3-1~PVA3-6の製造方法は以下のとおりである。
<PVA3-1の製造>
 還流冷却器、滴下装置、及び撹拌機を備えた反応缶に、酢酸ビニル100部、メタノール23部、及び3,4-ジアセトキシ-1-ブテン2部を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを0.014部投入し、重合を開始させた。
 酢酸ビニルの重合率が58%となった時点で、m-ジニトロベンゼンを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
 その後、上記溶液をメタノールで希釈し、固形分濃度を50%に調整して、かかるメタノール溶液をニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウム中のナトリウム分2%メタノール溶液を共重合体中の酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して4.1ミリモルとなる割合で加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、粒子状となった時点で、さらに水酸化ナトリウム中のナトリウム分2%メタノール溶液を酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して7.5ミリモル追加しケン化を行った。その後、中和用の酢酸を水酸化ナトリウムの1.0当量添加し、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂を得た。当該変性PVA系樹脂を300μm篩で篩分けして得られた篩上物をPVA3-1とした。
(ケン化度)
 PVA3-1のケン化度は、JIS K 6726に準じて、樹脂中の残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの構造単位の加水分解に要するアルカリ消費量にて分析したところ、99モル%であった。
(平均重合度)
 PVA3-1の平均重合度は、JIS K 6726に準じて分析を行ったところ、1800であった。
(変性率)
 PVA3-1中の前記式(1)で表される1,2-ジオール構造単位の含有率(変性率)は、H-NMR(300MHz プロトンNMR、d-DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、1モル%であった。
(平均粒子径)
 PVA3-1の平均粒子径は、レーザー回折式粒度分布測定装置「マスターサイザー3000」(スペクトリス株式会社製)によって測定したところ、410μmであった。
(膨潤度及び溶出率)
 140mLの蓋付きガラス容器に100gのイオン交換水を入れ、1gのPVA3-1を投入しPVA3-1水溶液を調製し、23℃の恒温室中で1日静置した。その後、PVA3-1水溶液をナイロン製の120メッシュ(目開き125μm)に通しろ過し、篩上に残存したPVA3-1(膨潤後のPVA3-1)の質量を測定した。次いで、上記膨潤後のPVA3-1を140℃で、3時間乾燥し、乾燥後のPVA3-1の質量を測定し、PVA3-1の膨潤度を下記式(B)により求めたところ、16であった。
Figure JPOXMLDOC01-appb-M000021
 また、PVA3-1の溶出率(質量%)を下記式(C)により求めたところ、29質量%であった。
 なお、下記式(C)中、ポリビニルアルコール系樹脂の固形分率(質量%)は、PVA系樹脂を105℃で3時間乾燥させ、乾燥前後のPVA系樹脂の質量を測定することにより、算出することができる。
Figure JPOXMLDOC01-appb-M000022
 PVA3-1において、膨潤度×溶出率の値は、464であった。
<PVA3-2の製造>
 PVA3-2として、ケン化度99モル%及び平均重合度1800の未変性PVAを製造した。
 PVA3-1と同様にして平均粒子径、膨潤度及び溶出率を求めた。平均粒子径は259μm、膨潤度は3、溶出率は8質量%、膨潤度×溶出率の値は24であった。
<PVA3-3の製造>
 PVA3-3として、ケン化度99モル%及び平均重合度500の未変性PVAを製造した。
 PVA3-1と同様にして平均粒子径、膨潤度及び溶出率を求めた。平均粒子径は258μm、膨潤度は2、溶出率は8質量%、膨潤度×溶出率の値は16であった。
<PVA3-4の製造>
 PVA3-1の製造において、酢酸ビニルを100部、メタノール23部、および3,4-ジアセトキシ-1-ブテン2部を初期一括で仕込み、重合率が70%となった時点で重合を終了した以外は、同様に製造して側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂を得た。当該変性PVA系樹脂を140℃に設定した恒温乾燥機に入れて、2時間熱処理を行って得られた変性PVA系樹脂をPVA3-4とした。
 PVA3-1と同様にしてケン化度、平均重合度、変性率、平均粒子径、膨潤度及び溶出率を求めた。ケン化度は99モル%、平均重合度は1100、変性率は1モル%、平均粒子径は400μm、膨潤度は8、溶出率は20質量%、膨潤度×溶出率の値は160であった。
<PVA3-5の製造>
 PVA3-5として、ケン化度99モル%及び平均重合度500のエチレン基を含有する変性PVA系樹脂を用いた。
 PVA3-1と同様にして平均粒子径、膨潤度及び溶出率を求めた。平均粒子径は700μm、膨潤度は6、溶出率は2質量%、膨潤度×溶出率の値は12であった。
<PVA3-6の製造>
 PVA3-6として、ケン化度88モル%及び平均重合度500の未変性PVAを製造した。
 PVA3-1と同様にして平均粒子径、膨潤度及び溶出率を求めた。平均粒子径は300μm、膨潤度は11、溶出率は82質量%、膨潤度×溶出率の値は902であった。
[No.3-1]
 140mLの蓋付きガラス容器に100gのイオン交換水及び回転子を入れて、室温にて750rpmで撹拌した。撹拌しているところに6gのPVA3-1を投入し、1分間撹拌を続けPVA3-1水分散液を得た。その後、撹拌を止めて5分間静置し、750rpmで再度30秒撹拌を行い、その時のPVA3-1水分散液の状態を目視で観察し、以下の基準で評価した。結果を表3-1に示す。
 A:PVA系樹脂が水溶液中に均一に分散していた。
 B:撹拌してすぐはPVA系樹脂が水溶液中に分散していたが、撹拌を続けるとPVA系樹脂の粒子が膨潤し撹拌が難しくなった。
 C:PVA系樹脂同士が付着し、PVA系樹脂が水溶液中に均一に分散しなかった。
[No.3-2~3-6]
 No.3-1において、PVA3-1の替わりにPVA3-2~PVA3-6を用いて、No.3-1と同様の試験を行った。結果を表3-1に示す。
Figure JPOXMLDOC01-appb-T000023
 表3-1の結果から、膨潤度×溶出率の値が500以下であるPVA系樹脂を用いたNo.3-1~3-5では、No.3-6に比べ水溶液中のPVA系樹脂の分散性がより良好であることが分かった。
 また、No.3-6に比べケン化度がより大きいNo.3-1~3-5では、水溶液中のPVA系樹脂の分散性がより良好であることが分かった。
 さらに、No.3-1~3-5のなかでも、未変性PVAを用いたNo.3-2及び3-3、並びにエチレン変性PVA系樹脂を用いたNo.3-5では、膨潤度×溶出率の値がより低くなることが分かった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年8月10日出願の日本特許出願(特願2017-155040)、2017年12月28日出願の日本特許出願(特願2017-254842)及び2017年12月28日出願の日本特許出願(特願2017-254843)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (13)

  1.  ポリビニルアルコール系樹脂を含有する、ダイバーティングエージェント。
  2.  前記ポリビニルアルコール系樹脂のケン化度が90モル%以上である、請求項1に記載のダイバーティングエージェント。
  3.  前記ポリビニルアルコール系樹脂は、該ポリビニルアルコール系樹脂4gを40℃の水96g中に投入し、180分間撹拌した際の溶解率が0.1~30質量%である、請求項1又は2に記載のダイバーティングエージェント。
  4.  前記ポリビニルアルコール系樹脂の結晶化度が25~60%である、請求項1~3のいずれか1項に記載のダイバーティングエージェント。
  5.  前記ポリビニルアルコール系樹脂は、該ポリビニルアルコール系樹脂1gを40℃の水100gに浸漬した際の1時間後溶解率に対する24時間後溶解率の比が2.8以上である、請求項1に記載のダイバーティングエージェント。
  6.  前記ポリビニルアルコール系樹脂1gを40℃の水100gに浸漬した際の1時間後溶解率が30質量%未満である、請求項5に記載のダイバーティングエージェント。
  7.  前記ポリビニルアルコール系樹脂1gを40℃の水100gに浸漬した際の24時間後溶解率が30質量%以上である、請求項5又は6に記載のダイバーティングエージェント。
  8.  前記ポリビニルアルコール系樹脂が変性ポリビニルアルコール系樹脂である、請求項5~7のいずれか1項に記載のダイバーティングエージェント。
  9.  前記変性ポリビニルアルコール系樹脂の変性率が0.5~10モル%である、請求項8に記載のダイバーティングエージェント。
  10.  前記ポリビニルアルコール系樹脂は、下記式(A)を満たす、請求項1に記載のダイバーティングエージェント。
     膨潤度×溶出率(質量%)≦500   (A)
    (式(A)中、膨潤度とは、下記式(B)により求められる値であり、溶出率(質量%)とは、下記式(C)により求められる値である。)
    Figure JPOXMLDOC01-appb-M000001
    (式(B)中、膨潤後のポリビニルアルコール系樹脂の質量(g)とは、100gの水に1gのポリビニルアルコール系樹脂を投入し、23℃の恒温室中で1日静置後、ろ過により採取した残存ポリビニルアルコール系樹脂の質量(g)である。膨潤後に乾燥させたポリビニルアルコール系樹脂の質量(g)とは、前記残存ポリビニルアルコール系樹脂を140℃で3時間乾燥した後の質量(g)である。)
    Figure JPOXMLDOC01-appb-M000002
    (式(C)中、膨潤後に乾燥させたポリビニルアルコール系樹脂の質量(g)とは、式(B)における定義と同様である。)
  11.  前記ポリビニルアルコール系樹脂の前記溶出率が50質量%以下である、請求項10に記載のダイバーティングエージェント。
  12.  前記ポリビニルアルコール系樹脂の前記膨潤度が30以下である、請求項10又は11に記載のダイバーティングエージェント。
  13.  坑井に生成された亀裂を一時的に閉塞する方法であって、
     請求項1~12のいずれか1項に記載のダイバーティングエージェントを、坑井内の流体の流れに乗せて閉塞したい亀裂に流入させる、亀裂の閉塞方法。
PCT/JP2018/030142 2017-08-10 2018-08-10 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法 WO2019031613A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880051662.8A CN110997861B (zh) 2017-08-10 2018-08-10 转向剂及使用其的坑井的龟裂的堵塞方法
SG11202001095UA SG11202001095UA (en) 2017-08-10 2018-08-10 Diverting agent and method of filling fracture in well using the same
JP2018543180A JP7326741B2 (ja) 2017-08-10 2018-08-10 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
EP18845246.0A EP3666849A4 (en) 2017-08-10 2018-08-10 DEFLECTION MEANS AND METHOD OF USING THEM TO FILL AN INTERMILL
US16/782,415 US11597870B2 (en) 2017-08-10 2020-02-05 Diverting agent and method of filling fracture in well using the same
US18/090,917 US20230147740A1 (en) 2017-08-10 2022-12-29 Diverting agent and method of filling fracture in well using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017155040 2017-08-10
JP2017-155040 2017-08-10
JP2017254842 2017-12-28
JP2017-254842 2017-12-28
JP2017-254843 2017-12-28
JP2017254843 2017-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/782,415 Continuation US11597870B2 (en) 2017-08-10 2020-02-05 Diverting agent and method of filling fracture in well using the same

Publications (1)

Publication Number Publication Date
WO2019031613A1 true WO2019031613A1 (ja) 2019-02-14

Family

ID=65272417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030142 WO2019031613A1 (ja) 2017-08-10 2018-08-10 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法

Country Status (6)

Country Link
US (2) US11597870B2 (ja)
EP (1) EP3666849A4 (ja)
JP (1) JP7326741B2 (ja)
CN (1) CN110997861B (ja)
SG (1) SG11202001095UA (ja)
WO (1) WO2019031613A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020047127A1 (en) * 2018-08-28 2020-03-05 Kuraray Co., Ltd. Polyvinyl alcohol based lost circulation materials
WO2020047149A1 (en) * 2018-08-28 2020-03-05 Kuraray Co., Ltd. Polyvinyl alcohol based diverting agents
CN111892917A (zh) * 2020-10-09 2020-11-06 山东科兴化工有限责任公司 一种氯化钙基水溶性油田暂堵材料的制备方法
WO2021002471A1 (ja) 2019-07-03 2021-01-07 三菱ケミカル株式会社 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
WO2023038113A1 (ja) * 2021-09-13 2023-03-16 株式会社クラレ セメント組成物、脱水防止剤及びセメント脱水防止方法
DE112021004264T5 (de) 2020-08-12 2023-05-25 Kuraray Co., Ltd. Vinylalkoholpolymer und dessen Verwendung
US11851607B2 (en) 2020-02-27 2023-12-26 Kuraray Co., Ltd. Polyvinyl alcohol-based resin and plugging agent for underground treatment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019131952A1 (ja) * 2017-12-28 2020-11-19 日本合成化学工業株式会社 地下処理用目止め材、地下処理方法及び坑井壁の目止め方法
CN113227160A (zh) * 2018-12-27 2021-08-06 三菱化学株式会社 转向剂和使用了其的坑井的龟裂的堵塞方法
JPWO2020138251A1 (ja) * 2018-12-27 2021-11-18 三菱ケミカル株式会社 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
JPWO2020138252A1 (ja) * 2018-12-27 2021-11-18 三菱ケミカル株式会社 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
WO2020166597A1 (ja) * 2019-02-13 2020-08-20 三菱ケミカル株式会社 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284818A (ja) 2000-12-15 2002-10-03 Nippon Synthetic Chem Ind Co Ltd:The 新規ビニルアルコール系樹脂及びその用途
JP2004285143A (ja) 2003-03-20 2004-10-14 Nippon Synthetic Chem Ind Co Ltd:The 側鎖に1,2−グリコール結合を有するポリビニルアルコール系樹脂およびその製造方法
JP2006095825A (ja) 2004-09-29 2006-04-13 Nippon Synthetic Chem Ind Co Ltd:The 記録用媒体
US20060175059A1 (en) * 2005-01-21 2006-08-10 Sinclair A R Soluble deverting agents
US20120181034A1 (en) * 2010-12-14 2012-07-19 Altarock Energy, Inc. High temperature temporary diverter and lost circulation material
US20140076570A1 (en) * 2012-09-19 2014-03-20 Halliburton Energy Services, Inc. Methods of Treating Long-Interval and High-Contrast Permeability Subterranean Formations with Diverting Fluids
WO2015072317A1 (ja) 2013-11-15 2015-05-21 株式会社クレハ 坑井掘削用一時目止め剤
CN104727800A (zh) * 2015-01-22 2015-06-24 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种基于表面改性后聚乙烯醇纤维的暂堵转向压裂方法
CN105441047A (zh) * 2015-11-30 2016-03-30 长江大学 一种油溶性水力压裂暂堵转向剂及其制备方法
CN105441043A (zh) * 2014-08-11 2016-03-30 中国石油天然气股份有限公司 一种暂堵微球及其制备方法
JP2016056272A (ja) 2014-09-09 2016-04-21 東洋製罐グループホールディングス株式会社 加水分解性樹脂粒子からなる粉体
US20160138376A1 (en) * 2014-11-13 2016-05-19 Saudi Arabian Oil Company Flowing Fracturing Fluids to Subterranean Zones
JP2016147972A (ja) 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 ポリオキサレート粒子
JP2016147971A (ja) 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 加水分解性粒子
CN106350043A (zh) * 2016-07-22 2017-01-25 北京斯迪莱铂油气技术有限公司 用于暂堵转向压裂中的复合暂堵剂和复合暂堵方法
JP2017048267A (ja) 2015-08-31 2017-03-09 日本合成化学工業株式会社 水溶性高分子粒子及びその製造方法
US20170210965A1 (en) * 2014-08-18 2017-07-27 Halliburton Energy Services, Inc. Polymer brushes in diverting agents for use in subterranean formations
JP2017155040A (ja) 2016-02-26 2017-09-07 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、及び照明装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387986B2 (en) * 2004-01-21 2008-06-17 Schlumberger Technology Corporation Viscoelastic surfactant rheology modification
JP4667781B2 (ja) * 2004-07-21 2011-04-13 ルネサスエレクトロニクス株式会社 電流源回路及び差動増幅器
US7887882B2 (en) * 2005-02-09 2011-02-15 Essilor International (Compagnie Generale D'optique) Stabilized ultra-violet absorbers
WO2007114472A1 (ja) * 2006-04-05 2007-10-11 The Nippon Synthetic Chemical Industry Co., Ltd. ポリビニルアセタール系樹脂
WO2011118598A1 (ja) * 2010-03-24 2011-09-29 日本酢ビ・ポバール株式会社 ポリビニルアルコール系樹脂およびその製造方法
JP6327933B2 (ja) * 2013-06-28 2018-05-23 株式会社クレハ ダウンホールツール用ゴム部材、及びダウンホールツール、並びに炭化水素資源の回収方法
US9475900B2 (en) * 2013-12-11 2016-10-25 The Nippon Synthetic Chemical Industry Co., Ltd. Drilling fluid additive
WO2015099131A1 (ja) * 2013-12-26 2015-07-02 日本合成化学工業株式会社 掘削流体調整剤及びこれを用いた掘削流体
WO2016027720A1 (ja) * 2014-08-20 2016-02-25 日本合成化学工業株式会社 農薬分散剤およびこれを用いた農薬分散液
CN107208474A (zh) 2015-02-12 2017-09-26 东洋制罐集团控股株式会社 使用水解性颗粒的地下资源的开采方法
US10550038B2 (en) * 2015-12-09 2020-02-04 The Nippon Synthetic Chemical Industry Co., Ltd. Cement admixture
WO2017195855A1 (ja) * 2016-05-13 2017-11-16 デンカ株式会社 油井セメント用添加剤並びに該油井セメント用添加剤を用いたセメント組成物及びセメントスラリー
JP7149537B2 (ja) * 2017-07-11 2022-10-07 株式会社クラレ ポリビニルアルコール及びポリビニルアルコールの製造方法
US10570327B2 (en) * 2017-11-15 2020-02-25 The Nippon Synthetic Chemical Industry Co., Ltd. Organic-inorganic composite particles
JPWO2019131952A1 (ja) * 2017-12-28 2020-11-19 日本合成化学工業株式会社 地下処理用目止め材、地下処理方法及び坑井壁の目止め方法
JPWO2020138252A1 (ja) * 2018-12-27 2021-11-18 三菱ケミカル株式会社 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
WO2020166595A1 (ja) 2019-02-13 2020-08-20 三菱ケミカル株式会社 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
CN111763506B (zh) * 2020-07-09 2023-01-13 上海浦景化工技术股份有限公司 一种暂堵转向剂及其制备方法与应用

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284818A (ja) 2000-12-15 2002-10-03 Nippon Synthetic Chem Ind Co Ltd:The 新規ビニルアルコール系樹脂及びその用途
JP2004285143A (ja) 2003-03-20 2004-10-14 Nippon Synthetic Chem Ind Co Ltd:The 側鎖に1,2−グリコール結合を有するポリビニルアルコール系樹脂およびその製造方法
JP2006095825A (ja) 2004-09-29 2006-04-13 Nippon Synthetic Chem Ind Co Ltd:The 記録用媒体
US20060175059A1 (en) * 2005-01-21 2006-08-10 Sinclair A R Soluble deverting agents
US20120181034A1 (en) * 2010-12-14 2012-07-19 Altarock Energy, Inc. High temperature temporary diverter and lost circulation material
US20140076570A1 (en) * 2012-09-19 2014-03-20 Halliburton Energy Services, Inc. Methods of Treating Long-Interval and High-Contrast Permeability Subterranean Formations with Diverting Fluids
WO2015072317A1 (ja) 2013-11-15 2015-05-21 株式会社クレハ 坑井掘削用一時目止め剤
CN105441043A (zh) * 2014-08-11 2016-03-30 中国石油天然气股份有限公司 一种暂堵微球及其制备方法
US20170210965A1 (en) * 2014-08-18 2017-07-27 Halliburton Energy Services, Inc. Polymer brushes in diverting agents for use in subterranean formations
JP2016056272A (ja) 2014-09-09 2016-04-21 東洋製罐グループホールディングス株式会社 加水分解性樹脂粒子からなる粉体
US20160138376A1 (en) * 2014-11-13 2016-05-19 Saudi Arabian Oil Company Flowing Fracturing Fluids to Subterranean Zones
CN104727800A (zh) * 2015-01-22 2015-06-24 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种基于表面改性后聚乙烯醇纤维的暂堵转向压裂方法
JP2016147972A (ja) 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 ポリオキサレート粒子
JP2016147971A (ja) 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 加水分解性粒子
JP2017048267A (ja) 2015-08-31 2017-03-09 日本合成化学工業株式会社 水溶性高分子粒子及びその製造方法
CN105441047A (zh) * 2015-11-30 2016-03-30 长江大学 一种油溶性水力压裂暂堵转向剂及其制备方法
JP2017155040A (ja) 2016-02-26 2017-09-07 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、及び照明装置
CN106350043A (zh) * 2016-07-22 2017-01-25 北京斯迪莱铂油气技术有限公司 用于暂堵转向压裂中的复合暂堵剂和复合暂堵方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUGAMA, T. ET AL.: "Role of PVA Flakes in Promoting Self-Degradation of Sodium Metasilicate-Activated Cement under a Hydrothermal Environment at >150°C", JOURNAL OF TECHNOLOGY INNOVATIONS IN RENEWABLE ENERGY, vol. 2, no. 4, 2013, pages 352 - 365, XP055576444 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020047127A1 (en) * 2018-08-28 2020-03-05 Kuraray Co., Ltd. Polyvinyl alcohol based lost circulation materials
WO2020047115A1 (en) * 2018-08-28 2020-03-05 Kuraray Co., Ltd. Particulate polyvinyl alcohol compositions having reduced dust content
WO2020047149A1 (en) * 2018-08-28 2020-03-05 Kuraray Co., Ltd. Polyvinyl alcohol based diverting agents
WO2020047139A1 (en) 2018-08-28 2020-03-05 Kuraray Co., Ltd. Diverting agents based on thermoplastic polyvinyl alcohol pellets
US11098236B2 (en) 2018-08-28 2021-08-24 Kuraray Co., Ltd. Particulate polyvinyl alcohol compositions having reduced dust content
US11118105B2 (en) 2018-08-28 2021-09-14 Kuraray Co., Ltd. Polyvinyl alcohol based diverting agents
US11236260B2 (en) 2018-08-28 2022-02-01 Kuraray Co., Ltd. Diverting agents based on thermoplastic polyvinyl alcohol pellets
US11898090B2 (en) 2019-07-03 2024-02-13 Mitsubishi Chemical Corporation Diverting agent and method of filling fracture in well using the same
WO2021002471A1 (ja) 2019-07-03 2021-01-07 三菱ケミカル株式会社 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
CN114096637A (zh) * 2019-07-03 2022-02-25 三菱化学株式会社 转向剂和使用其的坑井的龟裂的堵塞方法
JP7471859B2 (ja) 2020-02-27 2024-04-22 株式会社クラレ ポリビニルアルコール系樹脂及び地下処理用目止め剤
US11851607B2 (en) 2020-02-27 2023-12-26 Kuraray Co., Ltd. Polyvinyl alcohol-based resin and plugging agent for underground treatment
DE112021004264T5 (de) 2020-08-12 2023-05-25 Kuraray Co., Ltd. Vinylalkoholpolymer und dessen Verwendung
CN111892917B (zh) * 2020-10-09 2020-12-11 山东科兴化工有限责任公司 一种氯化钙基水溶性油田暂堵材料的制备方法
CN111892917A (zh) * 2020-10-09 2020-11-06 山东科兴化工有限责任公司 一种氯化钙基水溶性油田暂堵材料的制备方法
WO2023038113A1 (ja) * 2021-09-13 2023-03-16 株式会社クラレ セメント組成物、脱水防止剤及びセメント脱水防止方法

Also Published As

Publication number Publication date
US11597870B2 (en) 2023-03-07
US20200172796A1 (en) 2020-06-04
SG11202001095UA (en) 2020-03-30
CN110997861B (zh) 2024-01-12
EP3666849A1 (en) 2020-06-17
EP3666849A4 (en) 2020-08-12
CN110997861A (zh) 2020-04-10
JP7326741B2 (ja) 2023-08-16
JPWO2019031613A1 (ja) 2020-07-02
US20230147740A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2019031613A1 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
JP7342362B2 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
WO2017099082A1 (ja) セメント混和剤
US11674073B2 (en) Diverting agent and method of filling fracture in well using same
US11851607B2 (en) Polyvinyl alcohol-based resin and plugging agent for underground treatment
US20210309911A1 (en) Diverting agent and method of filling fracture in well using same
US20210309910A1 (en) Diverting agent and method of filling fracture in well using same
JPWO2020138251A1 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
JPWO2020166598A1 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
WO2022085796A1 (ja) ダイバーティングエージェント、これを用いた坑井の亀裂の一時閉塞方法、及びさらなる亀裂の形成方法
WO2020166597A1 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018543180

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018845246

Country of ref document: EP

Effective date: 20200310