WO2007114472A1 - ポリビニルアセタール系樹脂 - Google Patents

ポリビニルアセタール系樹脂 Download PDF

Info

Publication number
WO2007114472A1
WO2007114472A1 PCT/JP2007/057586 JP2007057586W WO2007114472A1 WO 2007114472 A1 WO2007114472 A1 WO 2007114472A1 JP 2007057586 W JP2007057586 W JP 2007057586W WO 2007114472 A1 WO2007114472 A1 WO 2007114472A1
Authority
WO
WIPO (PCT)
Prior art keywords
based resin
resin
pva
alcohol
group
Prior art date
Application number
PCT/JP2007/057586
Other languages
English (en)
French (fr)
Inventor
Mitsuo Shibutani
Masahiro Saito
Original Assignee
The Nippon Synthetic Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Nippon Synthetic Chemical Industry Co., Ltd. filed Critical The Nippon Synthetic Chemical Industry Co., Ltd.
Priority to AT07741022T priority Critical patent/ATE479714T1/de
Priority to EP07741022A priority patent/EP2006308B1/en
Priority to DE602007008862T priority patent/DE602007008862D1/de
Priority to US12/225,972 priority patent/US9139675B2/en
Publication of WO2007114472A1 publication Critical patent/WO2007114472A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages

Definitions

  • the present invention relates to a poly (bucacetal) resin, and more specifically, a polyvinyl acetal resin having excellent solubility in an alcohol-based single solvent having a high elastic modulus, high transparency, and an alcohol solution.
  • a poly (bucacetal) resin and more specifically, a polyvinyl acetal resin having excellent solubility in an alcohol-based single solvent having a high elastic modulus, high transparency, and an alcohol solution.
  • Polyvinyl acetal-based resins are generally acetalized from poly-buluric alcohol-based resins (hereinafter, abbreviated as PVA) obtained by saponifying a poly-büll ester-based resin.
  • PVA poly-buluric alcohol-based resins
  • the continuous butyl alcohol structural unit of PVA-based resin is a structural unit that has been acetalized by an aldehyde compound, an unreacted vinyl alcohol structural unit, and the unmodified portion of PVA-based resin.
  • the powerful polybulassal-based resin has excellent toughness, dispersibility of inorganic powder and organic powder, adhesion to various materials and transparency, and is soluble in many organic solvents.
  • Wash primer such as metal paint, printing ink such as flexo ink and gravure ink, printed circuit board, coil wire varnish, adhesive, ceramic binder, binder such as magnetic tape, inkjet media, textile printing Used in various applications such as coating materials, glass interlayers, etc.
  • an organic solvent in the case of using polyvinylacetal resin as a solution a solution having a low viscosity and a small viscosity change during storage can be obtained.
  • a mixed solvent of an aromatic solvent and an alcohol solvent has been preferably used, but the use of an aromatic solvent has a tendency to be restricted because it has a great impact on the environment and health, and polyvinyl acetal. It is also desirable to use an alcohol-based single solvent as the base resin solution.
  • polyvinylacetal resin described in Patent Document 1 is also a mixed aromatic or alcohol solvent. Although it shows good solubility in the solution, the solubility in a single solvent of alcohol is insufficient.
  • the hydroxyl group in the unreacted vinyl alcohol structural unit derived from the PVA-based resin, which is the raw material has a large effect on the properties of the polyvinyl acetal-based resin.
  • a polyvinyl acetal resin having excellent high elastic modulus and toughness can be obtained. Therefore, for applications that require high elastic modulus and toughness, such as films, coatings, and glass interlayers, PVA-based resin with a high degree of Kenya, that is, a large amount of hydroxyl groups, is obtained as a raw material.
  • the polybulacetal-based resin produced is used.
  • strong poly-vinylacetal resin with strong Kenya PVA resin may not be sufficiently soluble in alcohol-based solvents, even if dissolved
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-183325
  • the present applicant has already obtained a polybulur obtained by acetalizing a PVA-based resin having a 1,2-diol structure in the side chain as a polybulacetal-based resin excellent in solubility in alcohol alone.
  • Acetal-based rosin was proposed (Japanese Patent Application No. 2004-292098).
  • the other purpose of the powerful new polyvinylacetal resin is to improve flexibility, and the polybulucetal resin evaluated in the examination is a film or glass having a low elastic modulus. It was not suitable for applications such as interlayer films.
  • a powerful new polyvinyla It has been found that there is still room for improvement in terms of transparency when using a single solvent solution of a settal-based resin.
  • an object of the present invention is to provide a polybulacetal-based resin that is excellent in solubility in an alcohol-based single solvent having a high elastic modulus and from which an alcohol solution excellent in transparency can be obtained.
  • a polybule alcohol-based resin having 0.1 to 1.5 mol% of a 1,2-diol structural unit represented by the following general formula (1) and having a keny degree of 95 mol% or more A polyvinyl acetal-based resin obtained by acetalizing A).
  • R ⁇ R 2 and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bond chain
  • R 4 , R 5 , and R 6 each independently Represents a hydrogen atom or an organic group.
  • Polybula alcohol-based resin (A) has a bule ester monomer and a general formula (2) Characterized by being obtained by saponifying a copolymer with a compound represented by the above [
  • R ⁇ R 2 and R 3 each independently represent hydrogen or an organic group
  • X represents a single bond or a bond chain
  • R 4 , R 5 and R 6 each independently represent A hydrogen atom or an organic group
  • R 7 and R 8 each independently represent a hydrogen atom or R 9 —CO— (wherein R 9 is an alkyl group)
  • the present invention uses a modified PVA having a 1,2-diol structural unit represented by the general formula (1) in the side chain as a PVA resin that is a raw material of a polybulacetal resin.
  • a PVA resin that is a raw material of a polybulacetal resin.
  • it is characterized by the use of the one having a relatively low content of 1,2-diol structural units and having a high degree of keying, which makes it highly elastic and excellent Solubility in alcohol solvents! That is, the effect peculiar to the present invention is obtained.
  • the PVA resin used as a raw material has a high degree of hardness, but the alcohol solubility is low. Degree is preferred. Therefore, in the present invention, by introducing a 1,2-diol structure into the side chain that can significantly improve alcohol solubility even in a small amount, a high saponification degree PVA resin is obtained. It is presumed that it was possible to achieve both a high modulus of elasticity due to the use of and an excellent alcohol solubility due to the modifying group.
  • Polyvinyl acetal resin is usually produced by acetalizing PVA resin in an aqueous solution at low temperatures. In the case of high-ken PVA resin, fine crystals are formed in the aqueous solution.
  • the force that could immediately inhibit uniform acetal candy PVA-based resin (A) used in the present invention is uniform in that microcrystals in a low-temperature aqueous solution are difficult to form even at high temperature. It is presumed that the poly (vinylacetal) resin having the characteristics of the present invention was obtained by the progress of the acetal cake. The invention's effect
  • the polybulacetal-based resin of the present invention is excellent in solubility in an alcohol-based single solvent having a high elastic modulus, and an alcohol solution excellent in transparency can be obtained, a film, a coating film, It is extremely suitable for applications that require high elastic modulus and toughness, such as glass interlayers, and applications in which a solvent solution is cast and dried to form a transparent film.
  • the effect of the present invention is obtained by using a PVA-based resin (A) having a 1,2-diol structure in the side chain as a raw material.
  • the ratio of the head-to-head or tail-to-tail coupling of the 1,3-glycol bond is increased by raising the polymerization temperature of the polyacetate vinyl higher than usual.
  • a PVA-based rosin in which the amount of the main chain 1,2-glycol bond obtained by the increase is larger than a normal value (about 1.6 mol%) (for example, JP-A-2001-355175) .
  • a main chain 1,2-glycol bond is a low-temperature aqueous solution having a small effect of reducing crystallinity.
  • the hydroxyl group due to the main chain 1,2-glycol bond is a secondary hydroxyl group similar to that of ordinary PVA resin, and a strong hydrogen bond like the primary hydroxyl group in the side chain 1,2-diol structure of the present invention. Cannot expect high elastic modulus due to intermolecular cohesion.
  • PVA-based resins having a monohydroxyalkyl group in the side chain obtained by copolymerizing ex-olefin having a hydroxyl group at the terminal are also known (for example, JP-A-7-179707).
  • the monomer used in this technology can obtain a high polymerization degree PVA resin.
  • the polybutacetal resin of the present invention is obtained by acetalizing a PVA resin (A) having a 1,2-diol structural unit represented by the following general formula (1). Is.
  • R 2 and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bond chain
  • R 4 , R 5 , and R 6 each independently represent a hydrogen atom or an organic group .
  • the polybutacetal-based resin of the present invention includes a structural unit in which the continuous bulal alcohol structural units of the PVA-based resin (A) are acetalized with an aldehyde compound, and the general formula (1).
  • structural units represented by the 1,2-diol moiety acetalized unreacted vinyl alcohol structural unit, unreacted structural unit represented by general formula (1), and PVA resin It is a polymer having an unsaponified butyl acetate structural unit.
  • the PVA resin (A) used in the present invention is a PVA resin having a 1,2-diol structural unit represented by the following general formula (1).
  • R 3 each independently represents a hydrogen atom or an organic group
  • X represents a single bond, that is, a direct bond between carbon in the bulule structure and carbon in the 1,2-diol structure, or a bond chain
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom or an organic group.
  • the content of the 1,2-diol structural unit represented by the general formula (1) of the PVA-based resin (A) is 0.1 to 1.5 mol%, and the PVA-based resin
  • the remaining part of (A) contains a vinyl alcohol structural unit and a slight amount of vinyl acetate structural unit as in the case of ordinary PV A-based resin.
  • R 4 to R 6 are all preferably hydrogen atoms, but if the amount is not so much to impair the properties of the resin, and R 4 to R 6 may be organic groups. Good.
  • the organic group is not particularly limited. For example, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group is preferable.
  • alkyl group having 1 to 4 carbon atoms may have a substituent such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, or a sulfonic acid group, if necessary.
  • X in the 1,2-diol structural unit represented by the general formula (1) is preferably a single bond.
  • the carbon of the vinyl structure portion and the carbon of the 1,2-diol structure portion are directly bonded, but the bonding chain may be used as long as it does not inhibit the effect of the present invention.
  • the bonding chain is not particularly limited, but hydrocarbons such as alkylene, alkylene, alkylene, phenylene and naphthylene (these hydrocarbons may be substituted with halogen such as fluorine, chlorine and bromine). ), 0- (CH O)-(OCH)-
  • R is each independently an optional substituent, preferably a hydrogen atom or an alkyl group.
  • R is preferable from the viewpoint of stability during production or use.
  • the method for producing the PVA-based rosin (A) used in the present invention is not particularly limited, and ⁇ is a co-polymerization of (i) a vinyl ester monomer and a compound represented by the following general formula (2) A method for saponifying the coalescence is preferably used.
  • R ⁇ R 2 and R 3 each independently represent hydrogen or an organic group
  • X represents a single bond or a bond chain
  • R 4 , R 5 and R 6 each independently represent hydrogen
  • R 7 and R 8 each independently represent a hydrogen atom or R 9 —CO— (wherein R 9 is an alkyl group)
  • R ⁇ R 2 and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bond chain
  • R 4 , R 5 , and R 6 each independently Represents a hydrogen atom or an organic group.
  • R 2 and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bonded chain
  • R 4 , R 5 , and R 6 each independently represent a hydrogen atom or an organic group
  • R 1G and R 11 each independently represents a hydrogen atom or an organic group.
  • the bull ester monomers used in the present invention include formate, vinyl acetate, propionate, valerate, butyrate, isobutyrate, pivalate, force purate, and laurin.
  • vinyl acetate is preferably used from an economical point of view.
  • a vinyl ester monomer and a compound represented by the above general formula (2) are copolymerized and then saponified to have a 1,2-diol structural unit represented by the above general formula (1).
  • This is a method for producing PVA-based rosin.
  • R 9 is an alkyl group, preferably a methyl group, a propyl group, a butyl group, a hexyl group or an octyl group. It may have a substituent such as a halogen group, a hydroxyl group, an ester group, a strong sulfonic acid group, or a sulfonic acid group as long as it does not adversely affect the subsequent steps.
  • Specific examples of the compound represented by the formula (2) include 3, 4 dihydroxy-1-butene, 3,4 disiloxy 1-butene, 3 acyloxy-4-hydroxy 1 butene, and 4-acyloxy 3 hydroxy 1 in which X is a single bond.
  • Serine monoallyl ether 2,3 diacetoxy 1-allyloxypropane, 2-acetoxy 1-allyloxy 3 hydroxypropane, 3-acetoxy 1-allyloxy 2-hydroxypropane, glycerin monovinyl ether, glycerin monoisopropenyl ether, etc. Can be mentioned.
  • R 2 , R 3 , R 4 , R 6 is hydrogens, X a single bond, R 7, R 8 is R 9 - CO a and R 9 is an alkyl group 3, preferably 4 Jiashi port carboxymethyl one-butene, in particular R 9 months Among them ⁇ 3,4 Diacetoxy 1-butene, which is a til group, is preferably used.
  • Cx 0.023 (65 ° C)
  • 3, 4 diacetoxy 1-butene is used as a co-monomer of a bull ester monomer. This indicates that it is difficult to inhibit the increase in the degree of polymerization.
  • 3,4 diacetoxy 1-butene is superior to the other monomers described above.
  • the 3,4-diacetoxy 1-butene is a by-product generated when the copolymer is kenned, and is an acetic acid derivative similar to the vinyl acetate structural unit as the main structural unit.
  • the fact that no special equipment or process is required is also an industrial advantage.
  • 3,4-diacetoxy 1-butene products of Eastman Chemical Co., Ltd. for industrial production and Akros Co., Ltd. can be obtained from Kayaba for the reagent level.
  • 3,4-diacetoxy 1-butene obtained as a by-product during the production process of 1,4-butanediol can be purified and used.
  • 1,4-diacetoxy-2-butene can be converted to 3,4-diacetoxy 1-butene by a known isomeric reaction using a palladium chloride catalyst or the like.
  • the method for charging the monomer component at the time of copolymerization is not particularly limited, and any method such as batch charging, split charging, continuous charging, etc. can be adopted, but it is derived from the compound represented by the general formula (2) 1, 2 —Point force that diol structural units are uniformly distributed in the molecular chain of the polyvinyl ester polymer. Drop polymerization is preferred. Particularly, the polymerization method based on the HANNA method using the above-mentioned reaction ratio with butyl acetate is preferred. ,.
  • Solvents used in intensive copolymerization usually include lower alcohols such as methanol, ethanol, isopropyl alcohol, n -propanol and butanol, and ketones such as acetone and methyl ethyl ketone. Methanol is preferably used.
  • the amount of the solvent used may be appropriately selected in consideration of the chain transfer constant of the solvent in accordance with the degree of polymerization of the target copolymer.
  • S (solvent) ZM ( Monomer) 0.01 to 10 (weight ratio), preferably selected from the range of about 0.05 to 3 (weight ratio).
  • a polymerization catalyst is used.
  • azobi Low-temperature active radical polymerization catalysts such as known radical polymerization catalysts such as Swissobutyl-Tolyl, Acetyl peroxide, Benzoyl peroxide, Lauryl peroxide, etc.
  • the amount of polymerization catalyst used varies depending on the type of comonomer and the type of catalyst and cannot be determined unconditionally, but is arbitrarily selected according to the polymerization rate. For example, Azoisopuchi port -.. If you use a tolyl or Kasani ⁇ Asechiru, 0. respect Bulle ester monomer 01-0 7 mole 0/0 .02 to 0 to preferred tool especially 5 mole 0 / 0 is preferred.
  • the reaction temperature of the copolymerization reaction is about 30 ° C to about the boiling point depending on the solvent and pressure used, and more specifically 35 to 150 ° C, preferably 40 to 75 ° C. .
  • a known polymerization inhibitor used in radical polymerization is, for example, m-dinitrobenzene, ascorbic acid, benzoquinone. , ⁇ -methylstyrene dimer, ⁇ -methoxyphenol and the like.
  • the obtained copolymer is then saponified.
  • the copolymer obtained above is dissolved in a solvent such as alcohol, and then an alkali catalyst or an acid catalyst is used.
  • a solvent such as alcohol
  • an alkali catalyst or an acid catalyst is used.
  • Typical examples of the solvent include methanol, ethanol, propanol, tert-butanol and the like. Methanol is particularly preferably used.
  • concentration of the copolymer in the alcohol is appropriately selected depending on the viscosity of the system, but is usually selected from the range of 10 to 60% by weight.
  • Catalysts used in the kenny include alkali metal hydroxides and alcoholates such as sodium hydroxide, hydrous hydroxide, sodium methylate, sodium ethylate, potassium methylate and lithium methylate.
  • alkali catalysts sulfuric acid, hydrochloric acid, nitric acid, metasulfonic acid, zeolite, cation exchange resin, and other acid catalysts.
  • the amount of the strong ken-y catalyst used is appropriately selected depending on the ken-y method, the target ken-y degree, and the like.
  • the butyl ester-based monomer and the formula (2) are usually used.
  • a ratio of 0.1 to 30 mmol, preferably 2 to 17 mmol, is appropriate with respect to 1 mol of the total amount of 1,2-diol structural units derived from the compound represented by formula (1).
  • the reaction temperature for the saponification reaction is not particularly limited, but 10 to 60 ° C is preferable, and 20 to 50 ° C is more preferable.
  • X is 1 CH
  • Glycerol monoallyl ether in which R 5 and R 6 are hydrogen is also a preferred monomer Compared with the above-mentioned 3,4-diacetoxy 1-butene, etc., it requires a high degree of film strength that makes it possible to obtain a PVA resin having a high degree of polymerization. It is unsuitable as a raw material for the polyvinyl acetal resin.
  • R 4 to R 6 and X are the same as those in the general formula (1). Above all, it is easily available and has good copolymerizability.
  • Bibutylene carbonate in which R 6 is hydrogen and X is a single bond is preferably used.
  • decarboxylation is performed along with saponification without special treatment, and the ethylene carbonate ring is opened to convert it to a 1,2-diol structure. It is also possible to perform decarboxylation without saponifying the bull ester part under a constant pressure (normal pressure to 1 ⁇ 10 7 Pa) and high temperature (50 to 200 ° C.). After decarboxylation, the above-mentioned can be performed.
  • R 4 to R 6 And X are the same as those in the general formula (1), and R 1 and R 11 are each independently hydrogen or an alkyl group, and the alkyl group is not particularly limited, but examples thereof include a methyl group and an ethyl group.
  • N -propyl group, isopropyl group, n -butyl group, isobutyl group, tert -alkyl group having 1 to 4 carbon atoms such as butyl group is preferred.
  • the strong alkyl group may have a substituent such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, or a sulfonic acid group as long as the copolymerization reactivity is not inhibited. Above all, it is easy to obtain and has good copolymerization.
  • R 2 , R 3 , R 4 , R 5 , R 6 are hydrogen and R 10 , R 11 are methyl groups 2,
  • deketalized soot if the saponification reaction is carried out using an alkali catalyst, after the saponification, further using an acid catalyst, an aqueous solvent (a mixed solvent of lower alcohol such as water, water Z acetone, water Z methanol, etc.) etc.) deketalization is done in, it is converted to 1, 2 Jioru structure.
  • an aqueous solvent a mixed solvent of lower alcohol such as water, water Z acetone, water Z methanol, etc.
  • the acid catalyst in this case include acetic acid, hydrochloric acid, sulfuric acid, nitric acid, metasulfonic acid, zeolite, and cation exchange resin.
  • 2,2 dimethyl-4-bule 1,3 dioxolane has a larger chain transfer constant than 3,4 diacetoxy 1-butene, etc.
  • it is somewhat unsuitable as a raw material for polyvinyl acetal-based rosin, which requires a coating strength that is difficult to obtain.
  • the PVA-based resin (A) used in the present invention may be a copolymer obtained by copolymerizing various unsaturated monomers over a range without impairing the object of the present invention.
  • the amount of the unsaturated monomer introduced cannot be generally specified, but if the amount introduced is too large, the water solubility may be impaired or the gas noirality may be lowered.
  • unsaturated monomers examples include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, 3 butene 1-ol, 4 pentene-1-ol, and 5-hexene-1-ol. Hydroxyl group-containing ⁇ — Olefins, unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, and itaconic acid, salts thereof, monoesters, dialkyl esters, talitolyl-tolyl, methacrylonitrile, etc.
  • unsaturated monomers such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, and itaconic acid, salts thereof, monoesters, dialkyl esters, talitolyl-tolyl, methacrylonitrile, etc.
  • Amides such as diacetone acrylamide, acrylamide and methacrylamide, olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, or salts thereof, alkyl butyl ethers, dimethyl araryl ketone, N butyl pyrrolidone, chloride Bull compounds such as butyl, isopropyl acetate, substituted butyl acetate such as 1-methoxybutyrate, vinylidene chloride, 1,4 diacetoxy-2-butene, vinylene carbonate, acetoacetyl group-containing monomers, etc. Is mentioned.
  • polyoxyethylene (meth) aryl ether polyoxyethylene (meth) acrylamide, polyoxypropylene (meth) acrylamide, polyoxyethylene (meth) acrylate, polyoxypropylene (meth) acrylate, polyoxy Ethylene (1- (meth) acrylamide-1, 1-dimethylpropyl) ester, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, polyoxyethylene arylamine, polyoxypropylene vinylamine, polyoxyethylene vinylamine, polyoxy Polyoxyalkylene group-containing monomers such as propylene vinylamine, N-acrylamidomethyltrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylic Dopropyltrimethylammonium chloride, 2-Ataryllochichetyltrimethylammonium chloride, 2-Methacryloxychetyltrimethylammonium chloride, 2-Hydroxy-3-methacryloyloxypropy
  • the content of the represented by 1, 2 diol structural units Chikarabe to the PVA ⁇ (A) formula in the resulting (1) is at 0.1 power et 1.5 Monore 0/0 news from 0.2 to 1.2 Monore 0/0, especially 0 3 to 1 mol% is preferred. If the content of the 1,2-diol structural unit is too small, the alcohol solution may be insufficiently transparent, or the viscosity stability during long-term storage may be reduced. Since the elastic modulus of the acetal-based resin may become too low, it is not preferable.
  • the content of the 1,2-diol structural unit is too large, the elastic modulus power S of the obtained polyvinyl acetal-based resin will be small, making it difficult to apply to applications that require high rigidity and toughness. It is not preferable because it may become.
  • the saponification degree of the PVA-based ⁇ (A) is at least 95 mol%, preferably 96 to 99.9 Monore 0/0, further ⁇ or 97 to 99.8 Monore 0/0, especially ⁇ or 99.0 to 99.5 Monore is 0/0.
  • An excessively low degree of gelation is not preferred because the resulting polyvinyl acetal resin may have insufficient elasticity.
  • the average degree of polymerization (measured in accordance with JIS ⁇ 6726) of PVA-based resin ( ⁇ ) is usually 100 to 4000, and further after ⁇ to 200 to 3500, especially ⁇ to 250 to 3000 S If the average degree of polymerization is too small, the strength of the obtained polybulucetal resin is not sufficient. On the other hand, if the average polymerization degree is too large, the viscosity of the polyvinylacetal resin solution becomes too high. It is not preferable because the workability is lowered or it becomes difficult to obtain a high concentration solution.
  • the PVA-based resin used in the present invention may be a mixture with other different PVA-based resins.
  • examples thereof include those having different contents of the 1,2-diol structural unit represented by 1), those having different degrees of key chain, those having different degrees of polymerization, and those having different other copolymerization components as described above. .
  • the production method of the polybulassal-based resin of the present invention is not particularly limited, and any known method can be used. Among them, a method of acetalizing the PVA resin ( ⁇ ) with an aldehyde compound in a solvent in the presence of an acid catalyst is preferably used. That Methods are broadly divided into precipitation methods and dissolution methods. In the former case (precipitation method), PVA-based resin (A) is used as an aqueous solution, and acetal-i reaction is carried out at low temperature in a solvent mainly composed of water.
  • a method in which the temperature of the system is raised and a ripening reaction is preferably used after the precipitation of the settal coconut resin.
  • a ripening reaction consisting of the acetal cocoon reaction and rearrangement of the acetal cocoon part
  • an alcoholic solvent such as isopropyl alcohol or a mixed solvent in which water or the like is used in combination is used, and after the acetal reaction is performed at a high temperature, water is added to the system. This is carried out by precipitating a buracetal-based rosin.
  • the aldehyde compound used in the above-mentioned acetal reaction is not particularly limited, and examples thereof include formaldehyde (including trimer and multimeric paraformaldehyde), and acetaldehyde (trimer).
  • the acid catalyst used in the acetal reaction is not particularly limited, and examples thereof include organic acids such as acetic acid and valatoruene sulfonic acid, and inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid. Is used.
  • alkaline compounds such as sodium hydroxide, potassium hydroxide, ammonia, sodium acetate, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, ethylene
  • alkylene oxides such as oxide and glycidyl ethers such as ethylene glycol diglycidyl ether.
  • the degree of acetal viscosity of the polybulassal-based resin of the present invention is not particularly limited, It force S preferably 40-80 Monore 0/0, especially 50-80 Monore 0/0, and more preferably 60 to 75 Monore 0/0. If the strength of the acetal strength is too small, it becomes water-soluble, so it is difficult to take out the polyvinyl acetal resin from the reaction system even if the precipitation method and the dissolution method are different. Since the hydrophilicity of the acetal-based resin increases and the water resistance becomes insufficient, it is unfavorable, and when it is too large, the residual hydroxyl group decreases, resulting in insufficient toughness of the polybulassal-based resin. In addition, the solubility in an alcohol-based single solvent may be poor, which is not preferable.
  • the polyvinyl acetal resin of the present invention there is a possibility that both the hydroxyl group of the main chain of the PVA resin (A) and the hydroxyl group of the 1,2-diol structure of the side chain may be acetalized.
  • the degree of acetal light is expressed by the amount of hydroxyl groups acetalized relative to the total amount of hydroxyl groups before the acetal light.
  • the polyvinylacetal-based resin of the present invention obtained by force is made from PVA-based resin having a 1,2-diol structure in the side chain, so that unreacted 1, It has a 2-diol structural unit and exhibits high elasticity and excellent solubility in alcoholic solvents due to its effects.
  • the polyvinyl acetal-based resin of the present invention produces a uniform acetalized product because there is little crystallite formation of the PVA-based resin during the acetalization reaction of the PVA-based resin in low-temperature water, It is estimated that the interfacial or intramolecular acetal distribution is uniform.
  • good adhesion is obtained. In either case, the adhesion by the vacuum bag method is presumed to be difficult to cause poor melt adhesion.
  • the solution was diluted with methanol to adjust the concentration to 35%, and charged in a uniform manner. While maintaining the solution temperature at 40 ° C, a 2% methanol solution of sodium hydroxide and sodium hydroxide was added to the copolymer. The determination was carried out at a rate of 8 mmol per 1 mol of the total amount of vinyl acetate structural units and 3,4-diacetoxy 1-butene structural units.
  • the mixture was filtered, washed well with methanol, and dried in a hot air drier to obtain PVA-based resin (A1).
  • the PVA-based resin (A1) obtained was analyzed for its degree of chaininess by analyzing the alkali consumption required for hydrolysis of residual vinyl acetate and 3,4-diacetoxy 1-butene.
  • the average degree of polymerization was 1850 when analyzed according to JIS K6726.
  • the content of 1,2-diol structure was calculated by measuring by 1 H-NMR and was 0.4 mol 0 /. Met.
  • “AVANCE DPX400J” manufactured by Nippon Bruker Co., Ltd. was used.
  • the obtained aqueous solution of PVA-based rosin (A1) was prepared to 5% concentration, and 250 g of the solution was cooled to 10 ° C. To this, 1.3 g of hydrochloric acid with a concentration of 35% and 7.45 g of n-butanolenolide were obtained. Was added, and the liquid temperature was maintained at 10 ° C. to carry out the acetal reaction to precipitate the reaction product. Thereafter, the liquid temperature is maintained at 25 ° C. for 30 minutes and further at 40 ° C. for 5 hours to complete the reaction, followed by neutralization, washing with water and drying by a conventional method to obtain a polybulassetal-based resin. It was. The degree of acetalization of the polyvinyl acetal resin by 1 H-NMR was 69.8 mol%. [Transparency of alcohol solution]
  • the resulting polyvinyl acetal resin is made into a 4% solution of methanol and ethanol, and the light transmittance at 430 nm is measured at 25 ° C using a spectrophotometer (manufactured by JASCO Corporation, UV-visible spectrophotometer V-560). (%) was calculated.
  • a 10% ethanol solution of vigorous polyvinylacetal resin was cast on a glass plate and dried to prepare a film having a thickness of 10 / zm.
  • the viscoelasticity of the film was measured using a humidity-controlled viscoelasticity measuring device (DVA-225Rheometer, manufactured by IT Measurement Control Co., Ltd.), relative humidity 40% RH, frequency 10Hz, temperature 30 to 90 ° C (heating rate) 0.5 ° CZ min), and the storage modulus obtained at a data force of 45 ° C was determined.
  • DVA-225Rheometer manufactured by IT Measurement Control Co., Ltd.
  • Example 1 In the production process of the polybroacetal-based resin in Example 1, Example 1 except that the PVA-based resin dissolution temperature was raised to 80 to 85 ° C and set to 1.5 hours. polyvinyl similarly to - prepare a Ruasetaru system ⁇ (Asetaru degree 66.7 mole 0/0) to evaluate the transparency of the alcohol solvent liquid similarly. The results are shown in Table 1.
  • Example 1 In the production process of the polybulacetal-based resin in Example 1, the dissolution condition of the PVA-based resin was raised to 90 ° C, 1.5 hours, and further raised to 120 ° C by autoclave Then, except that the time was 1 hour, a polybulacetal-based resin (acetal density was 62.4 mol%) was prepared in the same manner as in Example 1, and the transparency of the alcohol solution was similarly evaluated. The results are shown in Table 1.
  • Example 1 the PVA-based resin is composed only of a butyl alcohol structural unit and a butyl acetate structural unit, and PVA having a Ken degree of 99.0 mol% and an average degree of polymerization of 1750 is used. Similarly, polybulassetal-based resin (acetal purity 67.4 mol%) was prepared and evaluated in the same manner. Table 1 shows the evaluation results.
  • Comparative Example 1 the temperature of the PVA-based resin was increased to 80 to 85 ° C and 1.5 hours In the same manner as in Comparative Example 1 except for the above, a polybulassetal-based resin (acetal purity 65.2 mol%) was prepared, and the transparency of the alcohol solution was similarly evaluated. The results are shown in Table 1.
  • Comparative Example 1 and Comparative Example 1 were the same as those in Comparative Example 1 except that the dissolution condition of PVA-based resin was raised to 90 ° C for 1.5 hours, and further raised to 120 ° C for 1 hour using an autoclave. Similarly prepare a polyvinyl two Ruasetaru system ⁇ (Asetaru degree 65.8 mole 0/0) to evaluate the transparency of similarly alcoholic solution. The results are shown in Table 1.
  • PVA-based resin prepared according to the production process of PVA-based resin (A) in Example 1 (content of 1,2-diol structure 6.1 mol%, Ken-degree 99 mol%, average degree of polymerization) with 860), was prepared in the same manner as the actual Example 1 poly Bulle ⁇ Se tar (Asetarui ⁇ 69 mole 0/0), were evaluated in the same manner. The results are shown in Table 1.
  • Example 1 As the PVA based ⁇ , a copolymer of ethylene and vinyl acetate obtained by Keni spoon, ethylene content of 6%, Echire down denaturation degree of saponification of 98 mole 0/0, average polymerization degree 1700 Except for the use of PVA, a polybulucetal-based resin (aceta-free 64 mol%) was prepared in the same manner as in Example 1, and evaluated in the same manner. Table 1 shows the evaluation results.
  • the polybulucetal-based resin of the present invention is a polyvinylacetal-based resin made of unmodified PVA (Comparative Examples 1 to 3).
  • an alcohol solution having excellent solubility in methanol and ethanol and excellent transparency was obtained.
  • the polybulucetal-based resin of the present invention can provide good alcohol solubility and transparency even when PVA is dissolved at the low temperature during production.
  • the polybutacetal-based resin of the present invention uses an alcohol solution having a high elastic modulus compared to that using PVA-based resin having a large content of 1,2-diol structure (Comparative Example 4). High transparency when done.
  • the polybulucetal resin of the present invention is excellent in solubility in an alcohol solvent having a high elastic modulus, and a transparent alcohol solution can be obtained. Therefore, a film, a coating film, and a glass It is extremely suitable for applications that require high elastic modulus and toughness, such as stainless steel intermediate films, and applications that form a transparent film by casting and drying a solvent solution.

Description

明 細 書
ポリビュルァセタール系樹脂
技術分野
[0001] 本発明はポリビュルァセタール系榭脂に関し、さらに詳しくは、弾性率が高ぐアル コール系単独溶剤への溶解性に優れ、透明性が高 、アルコール溶液が得られるポリ ビニルァセタール系榭脂に関する。
背景技術
[0002] ポリビニルァセタール系榭脂は一般的にはポリビュルエステル系榭脂をケンィ匕して 得られるポリビュルアルコール系榭脂(以下、ポリビュルアルコールを PVAと略記す る。)をァセタール化して得られるもので、 PVA系榭脂の連続するビュルアルコール 構造単位がアルデヒド化合物によってァセタールィヒされた構造単位と、未反応のビ -ルアルコール構造単位、および PVA系榭脂の未ケンィ匕部分である酢酸ビニル構 造単位を有する高分子である。力かるポリビュルァセタール系榭脂は、強靭性、無機 粉体'有機粉体の分散性、各種素材に対する接着性、透明性に優れ、多くの有機溶 剤に可溶であることから、ゥォッシュプライマー、保護塗料、金属塗料などの塗料、フ レキソインク、グラビアインクなどの印刷用インク、プリント基板、コイル電線用ワニス、 接着剤、セラミックスバインダー、磁気テープなどのバインダー、インクジェットメディア 、織物捺染などのコーティング材料、ガラス中間膜等の様々な用途で使用されている
[0003] 力かるポリビニルァセタール榭脂は有機溶剤溶液として使用されることが多 ヽが、 近年、環境保護の観点カゝら有機溶剤の使用量低減が求められ、ポリビュルァセター ル系榭脂においても、より高濃度溶液での使用が求められている。そのため、高濃度 溶液とした際の溶液粘度が低いポリビュルァセタール系榭脂が望まれ、例えば、主 鎖にエチレンを構成単位として有する PVA系榭脂をァセタールイ匕してなるポリビュル ァセタール系榭脂が提案されている (例えば、特許文献 1参照。 )
[0004] また、ポリビニルァセタール系榭脂を溶液として使用する場合の有機溶剤としては、 低粘度かつ貯蔵中の粘度変化が小さい溶液が得られることからトルエン、キシレン等 の芳香族系溶剤とアルコール系溶剤の混合溶剤が好ましく用いられてきたが、芳香 族系溶剤は環境に対する負荷、および健康に対する影響が大きいため、使用が制 限される傾向にあり、ポリビニルァセタール系榭脂溶液もアルコール系の単独溶剤に よるものが望まれている。
しかしながら、通常のポリビュルァセタール系榭脂はアルコールの単独溶剤への溶 解性は十分ではなぐ例えば、特許文献 1記載のポリビニルァセタール系榭脂も、芳 香族系,アルコール系の混合溶剤溶液には良好な溶解性を示すが、アルコール単 独溶剤に対する溶解性については不十分である。
[0005] 一方、ポリビニルァセタール系榭脂の特性には原料である PVA系榭脂に由来する 未反応ビニルアルコール構造単位中の水酸基が大きな影響を与えており、水酸基量 が多いものほど水素結合によって結晶化しやすぐ高弾性率および強靭性に優れた ポリビニルァセタール系榭脂が得られる。そのため、フィルムや塗膜、ガラス中間膜の ように高弾性率、および強靭性を必要とする用途に対してはケンィ匕度の高い、すなわ ち水酸基量が多い PVA系榭脂を原料として得られたポリビュルァセタール系榭脂が 用いられる。
し力しながら、力かる高ケンィ匕度 PVA系榭脂によるポリビュルァセタール系榭脂は アルコール系単独溶剤への溶解性が十分でな 、場合があり、たとえ溶解したとしても
、透明性が低い溶液し力得られないため、透明性を要求されるフィルム等への適用 は難しいものであった。
特許文献 1 :特開 2003— 183325号公報
発明の開示
発明が解決しょうとする課題
[0006] 本出願人は既に、アルコール単独溶剤への溶解性に優れたポリビュルァセタール 系榭脂として側鎖に 1 , 2—ジオール構造を有する PVA系榭脂をァセタールイ匕して なるポリビュルァセタール系榭脂を提案した (特願 2004— 292098)。しかしながら、 力かる新規ポリビニルァセタール系榭脂の他の目的は柔軟性の向上であり、その検 討の中で評価したポリビュルァセタール系榭脂は 、ずれも弾性率が低ぐフィルムや ガラス中間膜などの用途に適したものではな力つた。さらに、力かる新規ポリビニルァ セタール系榭脂は、アルコール単独溶剤溶液としたときの透明性の点でまだまだ改 良の余地があることが判明した。
[0007] すなわち本発明は、弾性率が高ぐアルコール系の単独溶剤への溶解性に優れ、 透明性に優れたアルコール溶液が得られるポリビュルァセタール系榭脂の提供を目 的とする。
課題を解決するための手段
[0008] 本発明者は、上記事情に鑑み、鋭意検討した結果、以下の構成により本発明の目 的が達成されることを見出し、本発明を完成した。
[1] 下記一般式(1)で表される 1, 2—ジオール構造単位を 0. 1〜1. 5モル%有し、 ケンィ匕度が 95モル%以上であるポリビュルアルコール系榭脂 (A)をァセタールイ匕し てなることを特徴とするポリビニルァセタール系榭脂。
[0009] [化 1]
R1 R3
Figure imgf000005_0001
OH OH
[0010] [式中、 R\ R2及び R3はそれぞれ独立して水素原子または有機基を示し、 Xは単結 合または結合鎖を示し、 R4、 R5、及び R6はそれぞれ独立して水素原子または有機基 を示す。]
[0011] [2] 一般式(1)における R R2、及び R3がいずれも水素であり、 Xが単結合であり、 R4、 R 及び R6がいずれも水素であることを特徴とする上記 [1]記載のポリビュルァ セタール系榭脂。
[0012] [3] ポリビュルアルコール系榭脂(A)が、ビュルエステル系モノマーと一般式(2)で 表される化合物との共重合体をケンィ匕して得られたものであることを特徴とする上記 [
1]または [2]記載のポリビュルァセタール系榭脂。
[0013] [化 2]
Figure imgf000006_0001
[式中、 R\ R2、及び R3はそれぞれ独立して水素または有機基を示し、 Xは単結合ま たは結合鎖を示し、 R4、 R5、及び R6はそれぞれ独立して水素原子または有機基を示 し、 R7及び R8はそれぞれ独立して水素原子または R9— CO— (式中、 R9はアルキル 基である)を示す]
[0014] [4] ァセタール化度が 40〜80モル0 /0であることを特徴とする上記 [1]〜[3]いずれ か記載のポリビュルァセタール系榭脂。
[0015] [5] ブチルアルデヒドによってァセタールイ匕されたものであることを特徴とする上記 [ 1]〜[4]いずれか記載のポリビュルァセタール系榭脂。
[0016] すなわち、本発明はポリビュルァセタール系榭脂の原料である PVA系榭脂として、 側鎖に一般式(1)で表される 1 , 2—ジオール構造単位を有する変性 PVAを用 ヽ、 特にその 1, 2—ジオール構造単位の含有量が比較的少なぐケンィ匕度が高いものを 用いたことを最大の特徴とするものであり、それによつて、高弾性率かつ、優れたアル コール系溶剤への溶解性と!/、う、本発明特有の効果が得られたものである。
[0017] 通常、高弾性率のポリビュルァセタール系榭脂を得る場合には、原料である PVA 系榭脂は高ケンィ匕度のものが好まし ヽが、アルコール溶解性に関しては低ケンィ匕度 の方が望ましい。そこで、本発明では少量であっても著しくアルコール溶解性を改善 できる 1, 2—ジオール構造を側鎖に導入することによって、高ケン化度 PVA系榭脂 を用いることによる高弾性率と、変性基による優れたアルコール溶解性とを両立させ ることができたちのと推定される。
また、ポリビニルァセタール系榭脂は、通常、水溶液とした PVA系榭脂を低温下で ァセタールイ匕して製造される力 高ケンィ匕度 PVA系榭脂の場合、水溶液中で微結晶 が生成しやすぐこれが均一なァセタールイ匕を阻害する可能性があった力 本発明 で用いられる PVA系榭脂 (A)は、高ケンィ匕度であっても低温水溶液中の微結晶が 生成しにくぐ均一にァセタールイ匕が進行することで本発明の特徴を有するポリビ- ルァセタール系樹脂がえられたものであると推定される。 発明の効果
[0018] 本発明のポリビュルァセタール系榭脂は、弾性率が高ぐアルコール系の単独溶剤 への溶解性に優れ、透明性に優れたアルコール溶液が得られることから、フィルム、 塗膜、およびガラス中間膜のような高弾性率と強靭性が必要とされる用途や、溶剤溶 液を流延,乾燥して透明な皮膜を形成するような用途に極めて好適である。
[0019] なお、本発明の効果は側鎖に 1, 2—ジオール構造を有する PVA系榭脂 (A)を原 料とすること〖こよって得られたものである。
これに対し、 PVA主鎖の主結合様式である 1, 3—グリコール結合を、ポリ酢酸ビ- ルの重合温度を通常より高温にすることによって、頭一頭、あるいは尾一尾結合の比 率を増やして得られる、主鎖 1, 2—グリコール結合の量が通常の値 (約 1. 6モル%) よりも多い PVA系榭脂が知られている(例えば、特開 2001— 355175号など)。しか しながら、かかる主鎖 1, 2—グリコール結合は本発明で用いられる PVA系榭脂 (A) の側鎖 1, 2—ジオール構造と異なり、結晶性を低下させる効果が小さぐ低温水溶 液中での微結晶形成を抑制する効果はさほど期待できない。また、かかる主鎖 1, 2 ーグリコール結合による水酸基は、通常の PVA系榭脂と同様の二級水酸基であり、 本発明の側鎖 1, 2—ジオール構造中の一級水酸基のような強い水素結合、分子間 凝集力に起因する高弾性率を期待することはできな 、。
[0020] また、末端に水酸基を有する ex—ォレフインを共重合させてえられる、側鎖にモノヒ ドロキシアルキル基を有する PVA系榭脂も公知(例えば、特開平 7— 179707号など )であるが、かかる技術で用いられるモノマーでは高重合度の PVA系榭脂をえること は困難である場合が多ぐ皮膜強度が必要とされるポリビニルァセタール系榭脂の原 料としても用いるには不充分である。
発明を実施するための最良の形態
[0021] 以下に記載する構成要件の説明は、本発明の実施態様の一例 (代表例)であり、こ れらの内容に特定されるものではない。
以下、本発明について詳細に説明する。
[0022] 本発明のポリビュルァセタール系榭脂は、下記一般式(1)で表わされる 1, 2—ジォ ール構造単位を有する PVA系榭脂 (A)をァセタールイ匕して得られるものである。
[0023] [化 3]
R1 R3
Figure imgf000008_0001
OH OH
[0024] [式中、
Figure imgf000008_0002
R2及び R3はそれぞれ独立して水素原子または有機基を示し、 Xは単結 合または結合鎖を示し、 R4、 R5、及び R6はそれぞれ独立して水素原子または有機基 を示す。]
すなわち、本発明のポリビュルァセタール系榭脂は、 PVA系榭脂 (A)の連続する ビュルアルコール構造単位がアルデヒドィ匕合物によってァセタールイ匕された構造単 位と、一般式(1)で表される構造単位中の 1, 2—ジオール部分がァセタールイ匕され た構造単位、未反応のビニルアルコール構造単位、未反応の一般式(1)で表される 構造単位、および PVA系榭脂の未ケン化部分である酢酸ビュル構造単位を有する 高分子である。
[0025] 以下、本発明のポリビュルァセタール系榭脂の原料として用いられる PVA系榭脂( A)について詳細に説明する。
本発明で用いられる PVA系榭脂 (A)は、下記一般式(1)で表わされる 1, 2—ジォ ール構造単位を有する PVA系榭脂であり、一般式(1)において、
Figure imgf000009_0001
及び R3は それぞれ独立して水素原子または有機基を示し、 Xは単結合、すなわちビュル構造 部分の炭素と 1, 2—ジオール構造部分の炭素が直接結合したもの、または結合鎖を 示し、 R4、 R5、及び R6はそれぞれ独立して水素原子または有機基を示す。
[0026] [化 4]
R1 R3
Figure imgf000009_0002
OH OH
[0027] なお、かかる PVA系榭脂 (A)の一般式(1)で表わされる 1, 2—ジオール構造単位 の含有量は、 0. 1〜1. 5モル%であり、 PVA系榭脂 (A)の残る部分は、通常の PV A系榭脂と同様、ビニルアルコール構造単位と若干量の酢酸ビニル構造単位を含む
[0028] 一般式(1)で表わされる 1, 2—ジオール構造単位中の!^〜 、及び R4〜R6は、 すべて水素原子であることが望ましいが、榭脂特性を大幅に損なわない程度の量で あれば 〜 、及び R4〜R6は有機基であってもよい。その有機基としては特に限定 されないが、例えばメチル基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチ ル基、イソブチル基、 tert—ブチル基等の炭素数 1〜4のアルキル基が好ましぐまた 、その炭素数 1〜4のアルキル基は、必要に応じて、ハロゲン基、水酸基、エステル基 、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
[0029] また、一般式(1)で表わされる 1, 2—ジオール構造単位中の Xは、好ましくは単結 合、すなわちビニル構造部分の炭素と 1, 2—ジオール構造部分の炭素が直接結合 したものであるが、本発明の効果を阻害しな 、範囲であれば結合鎖であってもよぐ 力かる結合鎖としては特に限定されないが、アルキレン、ァルケ-レン、アルキ-レン 、フエ二レン、ナフチレン等の炭化水素(これらの炭化水素はフッ素、塩素、臭素等の ハロゲン等で置換されていても良い)の他、 0- (CH O) - (OCH ) -
2 m
(CH O) CH - 一 H
2 m 2 CO 、 一 coco—、 CO (CH ) CO CO (C
6 4
CS SO SO -、 -NR- CONR- -NRCO
CSNR—、 一 NRCS 、 一 NRNR HPO - Si (OR) ヽ 一 OSi (0
4
、 一 OSi (OR) O 、 一 Ti (OR) OTi(OR) OTi (OR) O
2 2 2
Al(OR)―、 -OAl (OR)―、— OAl (OR) 0—、等が挙げられ (Rは各々独立して 任意の置換基であり、水素原子、アルキル基が好ましぐまた mは自然数である)、そ の中でも製造時あるいは使用時の安定性の点で炭素数 6以下のアルキレン基、ある いは一 CH OCH—が好ましい。
2 2
[0030] 本発明で用いられる PVA系榭脂 (A)の製造法は、特に限定されな!ヽが、 (i)ビニル エステル系モノマーと下記一般式(2)で示される化合物との共重合体をケン化する 方法が好適に用いられる。
[0031] [化 5]
Figure imgf000010_0001
[式中、 R\ R2、及び R3、はそれぞれ独立して水素または有機基を示し、 Xは単結合 または結合鎖を示し、 R4、 R5、及び R6はそれぞれ独立して水素原子または有機基を 示し、 R7及び R8はそれぞれ独立して水素原子または R9— CO— (式中、 R9はアルキ ル基である)を示す]
[0033] また、(i)以外の製造法として、
(ii)ビュルエステル系モノマーと下記一般式(3)で示される化合物との共重合体をケ ン化及び脱炭酸する方法や、
[0034] [化 6]
Figure imgf000011_0001
[0035] [式中、 R\ R2及び R3はそれぞれ独立して水素原子または有機基を示し、 Xは単結 合または結合鎖を示し、 R4、 R5、及び R6はそれぞれ独立して水素原子または有機基 を示す。]
(iii)ビニルエステル系モノマーと下記一般式 (4)で示される化合物との共重合体を ケンィ匕及び脱ケタールイ匕する方法を用いてもょ ヽ。
[0036] [化 7]
Figure imgf000012_0001
[0037] [式中、
Figure imgf000012_0002
R2及び R3はそれぞれ独立して水素原子または有機基を示し、 Xは単結 合または結合鎖を示し、 R4、 R5、及び R6はそれぞれ独立して水素原子または有機基 を示し、 R1G及び R11はそれぞれ独立して水素原子または有機基を示す。 ]
[0038] なお、本発明で用いられるビュルエステル系モノマーとしては、ギ酸ビュル、酢酸ビ -ル、プロピオン酸ビュル、バレリン酸ビュル、酪酸ビュル、イソ酪酸ビュル、ピバリン 酸ビュル、力プリン酸ビュル、ラウリン酸ビュル、ステアリン酸ビュル、安息香酸ビュル 、バーサチック酸ビニル等が挙げられる力 経済的にみて中でも酢酸ビニルが好まし く用いられる。
以下、かかる(i)、 (ii)、及び (iii)の方法につ 、て説明する。
[0039] [ (i)の方法]
(i)の方法は、ビニルエステル系モノマーと上記一般式(2)で示される化合物とを共 重合したのちケン化して、上記一般式(1)で表わされる 1, 2—ジオール構造単位を 有する PVA系榭脂を製造する方法である。
力かる上記一般式(2)で示される化合物において、 〜 、 R4〜R6及び Xは上記 一般式(1)と同様のものが挙げられ、 R7及び R8は、それぞれ独立して水素原子また は R9—CO— (式中、 R9は、アルキル基、好ましくはメチル基、プロピル基、ブチル基 、へキシル基またはォクチル基であり、力かるアルキル基は共重合反応性やそれに 続く工程において悪影響を及ぼさない範囲で、ハロゲン基、水酸基、エステル基、力 ルボン酸基、スルホン酸基等の置換基を有して 、てもよ 、)である。 [0040] 式(2)で示される化合物としては、具体的に Xが単結合である 3, 4 ジヒドロキシー 1ーブテン、 3, 4 ジァシロキシ 1ーブテン、 3 ァシロキシー4ーヒドロキシ 1 ブテン、 4ーァシロキシ 3 ヒドロキシ 1ーブテン、 3, 4 ジァシロキシー2—メチ ルー 1ーブテン、 Xがアルキレン基である 4, 5 ジヒドロキシ 1 ペンテン、 4, 5— ジァシロキシ 1 ペンテン、 4, 5 ジヒドロキシー3—メチルー 1 ペンテン、 4, 5 —ジァシロキシ一 3—メチル 1—ペンテン、 5, 6 ジヒドロキシ一 1—へキセン、 5, 6 ジァシ口キシー 1一へキセン、 Xがー CH OCH あるいは OCH—であるグリ
2 2 2
セリンモノァリルエーテル、 2, 3 ジァセトキシー 1ーァリルォキシプロパン、 2 ァセ トキシー 1ーァリルォキシ 3 ヒドロキシプロパン、 3 ァセトキシ 1 ァリルォキシ 2—ヒドロキシプロパン、グリセリンモノビニルエーテル、グリセリンモノイソプロぺニ ルエーテル、などが挙げられる。
[0041] なかでも、共重合反応性及び工業的な取り扱いにお!/、て優れると ヽぅ点で、
Figure imgf000013_0001
R2 、 R3、 R4
Figure imgf000013_0002
R6が水素、 Xが単結合、 R7、 R8が R9— CO であり R9がアルキル基で ある 3, 4 ジァシ口キシ一 1—ブテンが好ましく、そのなかでも特に R9カ^チル基であ る 3, 4 ジァセトキシー 1ーブテンが好ましく用いられる。
なお、ビュルエステル系モノマーとして酢酸ビュルを用い、これと 3, 4—ジァセトキ シー 1ーブテンを共重合させた時の各モノマーの反応性比は、 r (酢酸ビニル) =0. 7 10、 r(3, 4 ジァセトキシー 1ブテン) =0. 701、であり、これは後述のビュルェチレ ンカーボネートの場合の、 r (酢酸ビュル) =0. 85、 r (ビュルエチレンカーボネート) = 5. 4と比較して、 3, 4 ジァセトキシー 1ーブテンが酢酸ビュルとの共重合反応性 に優れることを示すものである。
また、 3, 4 ジァセトキシー 1ーブテンの連鎖移動定数 Cxは 0. 003 (65°C)であり 、ビュルエチレンカーボネートの Cx=0. 005 (65°C)や、 2, 2 ジメチルー 4 ビ- ルー 1, 3 ジォキソランの Cx=0. 023 (65°C)と比較して小さい値であり、これは 3, 4 ジァセトキシー 1ーブテンをビュルエステル系モノマーのコモノマーとして用いた 場合に、他のモノマーと比べて重合度の上昇を阻害しにく 、ことを示すものである。 また、重合速度の点でも 3, 4 ジァセトキシー 1ーブテンは上記の他のモノマーより も優れている。 また、かかる 3, 4—ジァセトキシー 1ーブテンは、その共重合体をケンィ匕する際に発 生する副生成物が、主構造単位である酢酸ビニル構造単位と同様の酢酸誘導体で あり、その後処理に特別な装置や工程を設ける必要がない点も、工業的に大きな利 点である。
[0042] なお、 3, 4—ジァセトキシー 1ーブテンは、工業生産用ではイーストマンケミカル社 、試薬レベルではァクロス社の製品を巿場カも入手することができる。また、 1, 4ーブ タンジオール製造工程中の副生成物として得られる 3 , 4—ジァセトキシー 1ーブテン を精製して利用することも出来る。また、 1, 4—ジァセトキシ— 2—ブテンを塩化パラ ジゥム触媒等を用いた公知の異性ィ匕反応によって 3, 4—ジァセトキシー 1ーブテン に変換して用いることもできる。
[0043] 力かるビュルエステル系モノマーと一般式(2)で表される化合物とを共重合するに 当たっては、特に制限はなぐ塊状重合、溶液重合、懸濁重合、分散重合、またはェ マルジヨン重合等の公知の方法を採用することができる力 通常は溶液重合が行わ れる。
共重合時のモノマー成分の仕込み方法としては特に制限されず、一括仕込み、分 割仕込み、連続仕込み等任意の方法が採用されるが、一般式 (2)で示される化合物 に由来する 1, 2—ジオール構造単位がポリビニルエステル系ポリマーの分子鎖中に 均一に分布させられる点力 滴下重合が好ましぐ特には前述の酢酸ビュルとの反 応性比を用いた HANNA法に基づく重合方法が好ま U、。
[0044] 力かる共重合で用いられる溶媒としては、通常、メタノール、エタノール、イソプロピ ルアルコール、 n—プロパノール、ブタノール等の低級アルコールやアセトン、メチル ェチルケトン等のケトン類等が挙げられ、工業的には、メタノールが好適に使用され る。
溶媒の使用量は、 目的とする共重合体の重合度に合わせて、溶媒の連鎖移動定 数を考慮して適宜選択すればよぐ例えば、溶媒力 タノールの時は、 S (溶媒) ZM (モノマー) =0. 01〜10 (重量比)、好ましくは0. 05〜3 (重量比)程度の範囲から 選択される。
[0045] 共重合に当たっては重合触媒が用いられ、力かる重合触媒としては、例えばァゾビ スイソプチ口-トリル、過酸化ァセチル、過酸化べンゾィル、過酸化ラウリル等の公知 のラジカル重合触媒ゃァゾビスジメチルバレ口-トリル、ァゾビスメトキシジメチルバレ 口-トリル等の低温活性ラジカル重合触媒等が挙げられ、重合触媒の使用量は、コ モノマーの種類や触媒の種類により異なり一概には決められないが、重合速度に応 じて任意に選択される。例えば、ァゾイソプチ口-トリルや過酸ィ匕ァセチルを用いる場 合、ビュルエステル系モノマーに対して 0. 01〜0. 7モル0 /0が好ましぐ特には 0. 02 〜0. 5モル0 /0が好ましい。
また、共重合反応の反応温度は、使用する溶媒や圧力により 30°C〜沸点程度で 行われ、より具体的には、 35〜150°C、好ましくは 40〜75°Cの範囲で行われる。
[0046] 重合終了時には、ラジカル重合において用いられる公知の重合禁止剤を反応系内 に添加することが好ましぐ力かる重合禁止剤としては、例えば、 m—ジニトロべンゼ ン、ァスコルビン酸、ベンゾキノン、 α—メチルスチレンの二量体、 ρ—メトキシフエノー ノレ等を挙げることができる。
[0047] 得られた共重合体は次いでケンィ匕されるのである力 力かるケンィ匕にあたっては上 記で得られた共重合体をアルコール等の溶媒に溶解し、アルカリ触媒又は酸触媒を 用いて行われる。代表的な溶媒としては、メタノール、エタノール、プロパノール、 tert —ブタノール等が挙げられる力 メタノールが特に好ましく用いられる。アルコール中 の共重合体の濃度は系の粘度により適宜選択されるが、通常は 10〜60重量%の範 囲から選ばれる。ケンィ匕に使用される触媒としては、水酸化ナトリウム、水酸化力リウ ム、ナトリウムメチラート、ナトリウムェチラート、カリウムメチラート、リチウムメチラート等 のアルカリ金属の水酸ィ匕物やアルコラートの如きアルカリ触媒、硫酸、塩酸、硝酸、メ タスルフォン酸、ゼォライト、カチオン交換榭脂等の酸触媒が挙げられる。
[0048] 力かるケンィ匕触媒の使用量については、ケンィ匕方法、 目標とするケンィ匕度等により 適宜選択されるが、アルカリ触媒を使用する場合は通常、ビュルエステル系モノマー 及び式(2)で示される化合物に由来する 1 , 2—ジオール構造単位の合計量 1モル に対して 0. 1〜30ミリモル、好ましくは 2〜17ミリモルの割合が適当である。
また、ケン化反応の反応温度は特に限定されないが、 10〜60°Cが好ましぐより好 ましくは 20〜50°Cである。 [0049] また、式(2)で示される化合物として、 Xが一 CH
Figure imgf000016_0001
R5、 R6が水素であるグリセリンモノアリルエーテルも好ましいモノマーである力 上述 の 3, 4—ジァセトキシー 1ーブテン等と比較すると高重合度の PVA系榭脂がえられ にくぐ皮膜強度が必要とされるポリビニルァセタール系榭脂の原料としてはやゃ不 向きである。
[0050] [ (ii)の方法]
(ii)の方法は、ビニルエステル系モノマーと上記一般式(3)で示される化合物とを 共重合したのちケン化、脱炭酸して、上記一般式(1)で表わされる 1, 2—ジオール 構造単位を有する PVA系榭脂を製造する方法である。
本発明で用いられる上記一般式(3)で示される化合物において、
Figure imgf000016_0002
R4〜R6 及び Xは上記一般式(1)と同様のものが挙げられる。中でも入手の容易さ、良好な共 重合性を有する点で、
Figure imgf000016_0003
R6が水素で、 Xが単結合であるビ-ルェ チレンカーボネートが好適に用いられる。
[0051] ビュルエステル系モノマーと一般式(3)で示される化合物とを共重合及びケン化す るに当たっては、上記 (i)の方法と同様に行われる。
なお、脱炭酸については、特別な処理を施すことなぐケン化とともに脱炭酸が行わ れ、エチレンカーボネート環が開環することで 1, 2—ジオール構造に変換される。 また、一定圧力下(常圧〜 1 X 107Pa)で且つ高温下(50〜200°C)でビュルエステ ル部分をケン化することなぐ脱炭酸を行うことも可能であり、かかる場合、脱炭酸を 行った後、上記ケンィ匕を行うこともできる。
[0052] なお、ビュルエチレンカーボネートを用いた場合、そのビニルエステル系モノマーと の共重合体をケンィ匕する際に、有害物質である炭酸ジメチルが副生することから、製 造時、回収溶剤の処理、あるいは製品への残存等に注意を払う必要がある。
[0053] [ (iii)の方法]
(iii)の方法は、ビュルエステル系モノマーと上記一般式 (4)で示される化合物とを 共重合したのちケン化、脱ケタール化して、上記一般式(1)で表わされる 1, 2—ジォ ール構造単位を有する PVA系榭脂を製造する方法である。
本発明で用いられる上記一般式 (4)で示される化合物において、 R4〜R6 及び Xは上記一般式(1)と同様のものが挙げられ、 R , R11はそれぞれ独立して水 素又はアルキル基であり、該アルキル基としては特に限定されないが、例えばメチル 基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチル基、イソブチル基、 tert— ブチル基等の炭素数 1〜4のアルキル基が好ま U、。力かるアルキル基は共重合反 応性等を阻害しない範囲内において、ハロゲン基、水酸基、エステル基、カルボン酸 基、スルホン酸基等の置換基を有していてもよい。中でも入手の容易さ、良好な共重 合性を有する点で、
Figure imgf000017_0001
R2、 R3、 R4、 R5、 R6が水素で、 R10, R11がメチル基である 2,
2 ジメチル 4 ビュル 1, 3 ジォキソランが好適である。
[0054] ビュルエステル系モノマーと上記一般式 (4)で示される化合物とを共重合及びケン 化するに当たっては、上記 (i)の方法と同様に行われる。
なお、脱ケタールイ匕については、ケン化反応がアルカリ触媒を用いて行われる場合 は、ケン化後、更に酸触媒を用いて水系溶媒 (水、水 Zアセトン、水 Zメタノール等の 低級アルコール混合溶媒等)中で脱ケタール化が行われ、 1, 2ージオール構造に変 換される。その場合の酸触媒としては、酢酸、塩酸、硫酸、硝酸、メタスルフォン酸、 ゼォライト、カチオン交換榭脂等が挙げられる。
また、ケン化反応が酸触媒を用いて行われる場合は、特別な処理を施すことなぐ ケン化とともに脱ケタールイ匕が行われ、 1, 2—ジオール構造に変換される。
[0055] なお、前述したように 2, 2 ジメチルー 4 ビュル 1, 3 ジォキソランは 3, 4 ジ ァセトキシ 1 ブテン等と比較して連鎖移動定数が大き!/、ため、高重合度の PVA 系榭脂がえられにくぐ皮膜強度が必要とされるポリビニルァセタール系榭脂の原料 としてはやや不向きである。
[0056] また、本発明に用いる PVA系榭脂 (A)は、本発明の目的を阻害しな 、範囲にぉ ヽ て各種不飽和モノマーを共重合したものを用いることができる。かかる不飽和モノマ 一の導入量としては、一概にはいえないが、導入量が多すぎると水溶性が損なわれ たり、ガスノ リア一性が低下することがあるため、好ましくない。
かかる不飽和モノマーとしては、例えばエチレンやプロピレン、イソブチレン、 α— オタテン、 α—ドデセン、 α—ォクタデセン等のォレフィン類、 3 ブテン 1ーォー ル、 4 ペンテン— 1—オール、 5 へキセン— 1—オール等のヒドロキシ基含有 α— ォレフィン類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタ コン酸等の不飽和酸類、その塩、モノエステル、あるいはジアルキルエステル、アタリ 口-トリル、メタアクリロニトリル等の-トリル類、ジアセトンアクリルアミド、アクリルアミド 、メタクリルアミド等のアミド類、エチレンスルホン酸、ァリルスルホン酸、メタァリルスル ホン酸等のォレフインスルホン酸類あるいはその塩、アルキルビュルエーテル類、ジ メチルァリルビ-ルケトン、 N ビュルピロリドン、塩化ビュル等のビュル化合物、酢 酸イソプロべ-ル、 1—メトキシビュルアセテート等の置換酢酸ビュル類、塩化ビ-リ デン、 1, 4 ジァセトキシ— 2 ブテン、ビ-レンカーボネート、ァセトァセチル基含 有モノマー等が挙げられる。
[0057] 更に、ポリオキシエチレン (メタ)ァリルエーテル、ポリオキシエチレン (メタ)アクリル アミド、ポリオキシプロピレン (メタ)アクリルアミド、ポリオキシエチレン (メタ)アタリレート 、ポリオキシプロピレン (メタ)アタリレート、ポリオキシエチレン(1— (メタ)アクリルアミド - 1, 1ージメチルプロピル)エステル、ポリオキシエチレンビニルエーテル、ポリオキ シプロピレンビニルエーテル、ポリオキシエチレンァリルァミン、ポリオキシプロピレン ァリルァミン、ポリオキシエチレンビニルァミン、ポリオキシプロピレンビニルァミン等の ポリオキシアルキレン基含有モノマー、 N アクリルアミドメチルトリメチルアンモ -ゥム クロライド、 N—アクリルアミドエチルトリメチルアンモ -ゥムクロライド、 N—アクリルアミ ドプロピルトリメチルアンモ -ゥムクロライド、 2—アタリロキシェチルトリメチルアンモ- ゥムクロライド、 2—メタクリロキシェチルトリメチルアンモ -ゥムクロライド、 2—ヒドロキ シ 3—メタクリロイルォキシプロピルトリメチルアンモ -ゥムクロライド、ァリルトリメチ ルアンモ -ゥムクロライド、メタァリルトリメチルアンモ -ゥムクロライド、 3—ブテントリメ チルアンモ -ゥムクロライド、ジメチルジァリルアンモ-ゥムクロリド、ジェチルジァリル アンモ-ゥムクロライド等のカチオン基含有モノマー等も挙げられる。
又、重合温度を 100°C以上にすることにより、 PVA主鎖中に異種結合である 1, 2 ージオール結合を 1. 6〜3. 5モル%程度導入したものを使用することが可能である
[0058] 力べして得られる PVA系榭脂 (A)中の一般式(1)で表わされる 1, 2 ジオール構 造単位の含有量は 0. 1力ら 1. 5モノレ0 /0であり、さらには 0. 2〜1. 2モノレ0 /0、特には 0 . 3〜1モル%のものが好ましい。かかる 1, 2—ジオール構造単位の含有量が少なす ぎると、アルコール溶液の透明性が不足したり、長期保存時の粘度安定性が低下す る場合があり、逆に含有量が多すぎるとポリビニルァセタール系榭脂の弾性率が低く なりすぎる場合があるため好ましくない。これは、製造工程において、原料である PV A系榭脂を水溶液としたとき、見かけ上は均一な水溶液であっても分子レベルでは 分子会合によるミクロジャンクションが形成されている場合があり、このような状態でァ セタールイ匕反応を行うと分子間あるいは分子内でァセタールイ匕度が不均一になるこ とによるちのと推定される。
一方、かかる 1, 2—ジオール構造単位の含有量が多すぎると得られたポリビニルァ セタール系榭脂の弾性率力 S小さくなり、高剛性、強靭性などを必要とする用途への適 用が困難になる場合があるため好ましくない。
[0059] また、 PVA系榭脂(A)のケン化度は 95モル%以上であり、好ましくは 96〜99. 9 モノレ0 /0、さらに ίま 97〜99. 8モノレ0 /0、特に ίま 99. 0〜99. 5モノレ0 /0である。力力るゲ ン化度が低すぎると、得られたポリビニルァセタール系榭脂の弾性率が不足する場 合があるため好ましくない。
[0060] また、 PVA系榭脂 (Α)の平均重合度 (JIS Κ6726に準拠して測定)は通常は 100 〜4000であり、さらに ίま 200〜3500、特に ίま 250〜3000のちの力 S好ましく、力^^る 平均重合度が小さすぎると得られたポリビュルァセタール系榭脂の強度が充分では なぐ逆に大きすぎるとポリビニルァセタール系榭脂溶液の粘度が高くなりすぎて作 業性が低下したり、高濃度溶液にすることが困難になるため好ましくない。
[0061] また、本発明で使用される PVA系榭脂 (Α)は、異なる他の PVA系榭脂との混合物 であってもよぐ力かる他の PVA系榭脂としては、一般式(1)で表わされる 1, 2—ジ オール構造単位の含有量が異なるもの、ケンィ匕度が異なるもの、重合度が異なるも の、上述の他の共重合成分が異なるものなどを挙げることができる。
[0062] 次に、本発明のポリビニルァセタール系榭脂の製造法について説明する。
本発明のポリビュルァセタール系榭脂の製造法は特に限定されるものではなぐ公 知の方法を用いることができる。中でも、溶剤中、酸触媒の存在下で上記 PVA系榭 脂 (Α)をアルデヒド化合物によってァセタールイ匕する方法が好ましく用いられる。その 方法は、沈殿法と溶解法に大別され、前者 (沈殿法)の場合には PVA系榭脂 (A)を 水溶液とし、水を主体とした溶剤中、低温でァセタールイ匕反応を行い、ポリビュルァ セタール系榭脂が析出した後、系の温度を上げて熟成反応 (ァセタールイ匕反応の完 結とァセタールイ匕部分の再配列)させる方法が好ましく用いられる。また、後者 (溶解 法)の場合は、イソプロピルアルコール等のアルコール系溶剤、あるいはこれに水等 を併用した混合溶剤を用い、高温でァセタールイ匕反応を行った後、系に水等を加え てポリビュルァセタール系榭脂を沈殿析出させて行われる。
[0063] 上記ァセタールイ匕反応において使用されるアルデヒドィ匕合物としては、特に限定さ れないが、例えば、ホルムアルデヒド(三量体および多量体のパラホルムアルデヒドを 含む)、ァセトアルデヒド(三量体のパラァセトアルデヒドを含む)、プロピオンアルデヒ ド、ブチルアルデヒド、イソブチルアルデヒド、ペンチルアルデヒド、イソペンチルアル デヒド、へキシルアルデヒド、 2—ェチルへキシルアルデヒド、シクロへキシルアルデヒ ド等の脂肪族アルデヒド、ダリオキザール、スクシンジアルデヒド、ダルタルジアルデヒ ドなどの脂肪族ジアルデヒド、ベンズアルデヒド、 o—トルアルデヒド、 p—トルアルデヒ ド、 m—トルアルデヒド、 p—ヒドロキシベンズアルデヒド、サリチルアルデヒドなどの芳 香族アルデヒド、フルフラールなどの複素環式アルデヒドが挙げられる。なかでも、ァ セトアルデヒドおよびブチルアルデヒドが好適に用いられ、特にブチルアルデヒドが好 適に用いられる。また、これらのアルデヒドは単独で用いてもよぐ 2種以上のアルデヒ ドを混合して用いてもよい。
[0064] ァセタールイ匕反応に用いる酸触媒としては特に限定されず、例えば、酢酸、バラト ルエンスルホン酸などの有機酸、塩酸、硫酸、硝酸などの無機酸が挙げられる力 好 適には塩酸、硫酸が用いられる。
また、ァセタールイ匕反応が終了した後、その反応停止剤として、水酸ィ匕ナトリウム、 水酸ィ匕カリウム、アンモニア、酢酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭 酸カリウムなどのアルカリ性化合物や、エチレンオキサイドなどのアルキレンォキサイ ド類、エチレングリコールジグリシジルエーテル等のグリシジルエーテル類を添カ卩する ことも可能である。
[0065] 本発明のポリビュルァセタール系榭脂のァセタールイ匕度は、特に限定されないが、 40〜80モノレ0 /0であること力 S好ましく、特には 50〜80モノレ0 /0、更には 60〜75モノレ0 /0 であることが好ましい。力かるァセタールイ匕度が小さすぎると水溶性となるため、沈殿 法、溶解法の ヽずれの製造法にぉ 、てもポリビニルァセタール系榭脂を反応系から 取り出すことが困難になったり、ポリビニルァセタール系榭脂の親水性が増し、耐水 性が不充分となるため好ましくなぐまた、大きすぎると残存水酸基が少なくなるため に、ポリビュルァセタール系榭脂の強靭性が不充分になったり、アルコール系の単独 溶剤への溶解性が乏しくなることがあるため好ましくない。
なお、本発明のポリビニルァセタール系榭脂においては、 PVA系榭脂 (A)の主鎖 の水酸基と、側鎖の 1, 2—ジオール構造における水酸基の両方がァセタールィヒされ る場合がある力 そのァセタールイ匕度は、ァセタールイ匕前の総水酸基量に対する、ァ セタールイ匕された水酸基量で表されるものである。
[0066] 力べして得られた本発明のポリビニルァセタール系榭脂は、側鎖に 1, 2—ジオール 構造を有する PVA系榭脂を原料とするため、分子鎖中に未反応の 1, 2—ジオール 構造単位を有し、その効果によって高弾性率とアルコール系溶剤への優れた溶解性 を示す。
さらに、本発明のポリビニルァセタール系榭脂は、低温水中での PVA系榭脂のァ セタール化反応時に、 PVA系榭脂の微結晶生成が少ないことから、均一なァセター ル化物が得られ、分子間あるいは分子内のァセタールイ匕分布が均一であると推定さ れる。その結果、塗料、セラミックス、熱現像性感光材料などのバインダーとして使用 された場合に、良好な接着力が得られ、また、ガラス中間膜に用いられた場合、ォー トクレーブによる加圧'加熱接着、あるいは真空バッグ方式による接着のいずれの場 合も、溶融接着不良をおこしにくいものと推定される。
実施例
[0067] 以下に、本発明を実施例を挙げて説明するが、本発明はその要旨を超えない限り
、実施例の記載に限定されるものではない。
尚、例中、「部」、「%」とあるのは、断りのない限り重量基準を意味する。
[0068] 実施例 1
〔PVA系榭脂 (A)の製造〕 還流冷却器、滴下漏斗、撹拌機を備えた反応缶に、酢酸ビニル 1200g、メタノール 240g、 3, 4—ジァセトキシ— 1—ブテン 12g (酢酸ビュルに対して 0. 5モル0 /。)を仕 込み、ァゾビスイソブチ口-トリルを 0. 017モル% (対仕込み酢酸ビュル)投入し、撹 拌しながら窒素気流下で温度を上昇させ、還流させながら重合を行った。
酢酸ビニルの重合率が 74. 5%となった時点で、 m—ジニトロベンゼン 0. 3gを添カロ して重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビ- ルモノマーを系外に除去し共重合体のメタノール溶液を得た。
次いで、該溶液をメタノールで希釈して濃度 35%に調整して-一ダ一に仕込み、 溶液温度を 40°Cに保ちながら、水酸ィ匕ナトリウムの 2%メタノール溶液を共重合体中 の酢酸ビニル構造単位及び 3, 4—ジァセトキシー 1ーブテン構造単位の合計量 1モ ルに対して 8ミリモルとなる割合でカ卩えてケンィ匕を行った。ケンィ匕が進行すると共にケ ン化物が析出し、粒子状となった時点で、濾別し、メタノールでよく洗浄して熱風乾燥 機中で乾燥し、 PVA系榭脂 (A1)を得た。
[0069] 得られた PVA系榭脂 (A1)のケンィ匕度は、残存酢酸ビニル及び 3, 4—ジァセトキ シー 1ーブテンの加水分解に要するアルカリ消費量で分析を行ったところ 99. 3モル %であり、平均重合度は、 JIS K6726に準して分析を行ったところ 1850であった。 また、 1, 2—ジオール構造の含有量は1 H— NMRで測定して算出したところ 0. 4モ ル0 /。であった。なお、 NMR測定には日本ブルカー社製「AVANCE DPX400Jを 用いた。
[0070] 〔ポリビュルァセタールの製造〕
PVA系榭脂 (Al) 18gを水 284gの入ったビーカー中に投入、攪拌、分散させた後 、 90°Cに昇温し、 1. 5時間かけて溶解させた。
得られた PVA系榭脂 (A1)水溶液を 5%濃度に調製し、その 250gを 10°Cに冷却 し、これに濃度 35%の塩酸 1. 3gと n—ブチノレアノレデヒド 7. 45gとを添カロし、液温を 1 0°Cに維持してァセタールイ匕反応を行い、反応生成物を析出させた。その後、液温を 25°Cで 30分間、さらに 40°Cで 5時間維持して反応を完了させ、常法により中和、水 洗、及び乾燥を行い、ポリビュルァセタール系榭脂を得た。該ポリビニルァセタール 系榭脂の1 H— NMRによるァセタール化度は、 69. 8モル%であった。 [0071] 〔アルコール溶液の透明性〕
得られたポリビニルァセタール系榭脂をメタノール、エタノールの 4%溶液とし、分光 光度計(日本分光社製、紫外可視分光光度計 V— 560)を用いて 25°Cで、 430nm における光透過率(%)を求めた。
[0072] 〔貯蔵弾性率〕
力かるポリビニルァセタール系榭脂の 10%エタノール溶液をガラス板上に流延、乾 燥して厚さ 10 /z mのフィルムを作製した。該フィルムの粘弾性を、調湿粘弾性測定装 置(アイティー計測制御株式会社製、 DVA— 225Rheometer)を用いて、相対湿度 40%RH,周波数 10Hz、温度 30〜90°C (昇温速度 0. 5°CZ分)の条件で測定し、 得られたデータ力 45°Cにおける貯蔵弾性率を求めた。
[0073] 実施例 2
実施例 1のポリビュルァセタール系榭脂の製造工程にお 、て、 PVA系榭脂の溶解 条件を 80〜85°Cに昇温して、 1. 5時間とした以外は、実施例 1と同様にしてポリビ- ルァセタール系榭脂(ァセタール化度 66. 7モル0 /0)を作製し、同様にアルコール溶 液の透明性を評価した。結果を表 1に示す。
[0074] 実施例 3
実施例 1のポリビュルァセタール系榭脂の製造工程にお 、て、 PVA系榭脂の溶解 条件を 90°Cに昇温して、 1. 5時間、さらにオートクレーブで 120°Cに昇温して 1時間 とした以外は、実施例 1と同様にしてポリビュルァセタール系榭脂(ァセタールイ匕度は 62. 4モル%)を作製し、同様にアルコール溶液の透明性を評価した。結果を表 1〖こ 示す。
[0075] 比較例 1
実施例 1において、 PVA系榭脂として、ビュルアルコール構造単位と酢酸ビュル構 造単位のみからなり、ケンィ匕度 99. 0モル%、平均重合度 1750の PVAを用いた以 外は実施例 1と同様にポリビュルァセタール系榭脂(ァセタールイ匕度 67. 4モル%) を作製し、同様に評価した。評価結果を表 1に示す。
[0076] 比較例 2
比較例 1において、 PVA系榭脂の溶解条件を 80〜85°Cに昇温して、 1. 5時間と した以外は、比較例 1と同様にしてポリビュルァセタール系榭脂(ァセタールイ匕度 65 . 2モル%)を作製し、同様にアルコール溶液の透明性を評価した。結果を表 1に示 す。
[0077] 比較例 3
比較例 1において、 PVA系榭脂の溶解条件を 90°Cに昇温して、 1. 5時間、さらに オートクレープで 120°Cに昇温して 1時間とした以外は、比較例 1と同様にしてポリビ 二ルァセタール系榭脂(ァセタール化度 65. 8モル0 /0)を作製し、同様にアルコール 溶液の透明性を評価した。結果を表 1に示す。
[0078] 比較例 4
実施例 1の PVA系榭脂 (A)の製造工程に準じて作製した PVA系榭脂(1, 2—ジ オール構造の含有量 6. 1モル%、ケンィ匕度 99モル%、平均重合度 860)を用い、実 施例 1と同様にポリビュルァセタール (ァセタールイ匕度 69モル0 /0)を作製し、同様に 評価した。結果を表 1に示す。
[0079] 比較例 5
実施例 1において、 PVA系榭脂として、エチレンと酢酸ビニルの共重合物をケンィ匕 して得られる、エチレン含有率 6%、ケン化度 98モル0 /0、平均重合度 1700のェチレ ン変性 PVAを用いた以外は実施例 1と同様にポリビュルァセタール系榭脂(ァセタ 一ルイ匕度 64モル%)を作製し、同様に評価した。評価結果を表 1に示す。
[0080] [表 1]
PVAの アルコール溶液の透明性 (o/0) 貯蔵弾性率 溶解条件 メタノール エタノール (Pa) 実施例 1 90。C X 1.5hr 98.6 93.6 2. OX 109
II 2 80〜85°CX1.5hr 98.1 71.2 ―
90°CX1.5hr
II 3 98.7 93.6 ―
+ 120。CXlhr
比較例 1 90°CX1.5hr 94.0 54.3 1.9X109
II 2 80〜85°CX1.5hr 95.6 ※ ―
I' 3 90°CX1.5hr+120 xihr 94.5 66.8 ―
II 4 90°CX1.5hr 90.9 71.3 1.4X109
" 5 90X X 1.5hr ※※ ※※ 1.5X109
※:未溶解ゲルあり ※※:白濁のため測定不能
[0081] 表 1に明らかなように、本発明のポリビュルァセタール系榭脂(実施例 1〜3)は、未 変性 PVAを原料とするポリビニルァセタール系榭脂(比較例 1〜3)と比較して、メタノ ールおよびエタノールへの溶解性に優れ、透明性に優れたアルコール溶液が得られ た。特に、本発明のポリビュルァセタール系榭脂は、製造時の PVAの溶解を低温で 行った場合でも良好なアルコール溶解性と透明性が得られることが分力ゝる。
また、本発明のポリビュルァセタール系榭脂は、その 1, 2—ジォール構造の含有 量が大きい PVA系榭脂を用いたもの(比較例 4)に対し、弾性率が高ぐアルコール 溶液としたときの透明性が高い。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2006年 4月 5日出願の日本特許出願 (特願 2006— 103977号)に基 づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0082] 本発明のポリビュルァセタール系榭脂は、弾性率が高ぐアルコール系溶剤への溶 解性に優れ、透明なアルコール溶液が得られることから、フィルム、塗膜、およびガラ ス中間膜のような高弾性率と強靭性が必要とされる用途や、溶剤溶液を流延 ·乾燥し て透明な皮膜を形成するような用途に極めて好適である。

Claims

請求の範囲 下記一般式(1)で表される 1, 2—ジオール構造単位を 0. 1〜1. 5モル%有し、ケン 化度が 95モル%以上であるポリビュルアルコール系榭脂 (A)をァセタールイ匕してな ることを特徴とするポリビニルァセタール系榭脂。 [化 1] R1 R3
( 1 )
Figure imgf000027_0001
OH OH
[式中、
Figure imgf000027_0002
R2及び R3はそれぞれ独立して水素原子または有機基を示し、 Xは単結 合または結合鎖を示し、 R4、 R5、及び R6はそれぞれ独立して水素原子または有機基 を示す。]
[2] 一般式(1)における 、 R2、及び R3がいずれも水素であり、 Xが単結合であり、 R4、 R 5、及び R6カ^、ずれも水素であることを特徴とする請求項 1記載のポリビュルァセター ル系榭脂。
[3] ポリビュルアルコール系榭脂(A)力 ビュルエステル系モノマーと一般式(2)で表さ れる化合物との共重合体をケンィ匕して得られたものであることを特徴とする請求項 1ま たは 2記載のポリビュルァセタール系榭脂。
[化 2]
Figure imgf000028_0001
[式中、
Figure imgf000028_0002
R2、及び R3はそれぞれ独立して水素または有機基を示し、 Xは単結合ま たは結合鎖を示し、 R4、 R5、及び R6はそれぞれ独立して水素原子または有機基を示 し、 R7及び R8はそれぞれ独立して水素原子または R9— CO— (式中、 R9はアルキル 基である)を示す]
ァセタールイ匕度力 0〜80モル%であることを特徴とする請求項 1〜3いずれか記載 のポリビュルァセタール系榭脂。
ブチルアルデヒドによってァセタールイ匕されたものであることを特徴とする請求項 1〜 4いずれか記載のポリビュルァセタール系榭脂。
PCT/JP2007/057586 2006-04-05 2007-04-04 ポリビニルアセタール系樹脂 WO2007114472A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT07741022T ATE479714T1 (de) 2006-04-05 2007-04-04 Harz auf basis von polyvinylacetal
EP07741022A EP2006308B1 (en) 2006-04-05 2007-04-04 Polyvinyl acetal-based resin
DE602007008862T DE602007008862D1 (de) 2006-04-05 2007-04-04 Harz auf Basis von Polyvinylacetal
US12/225,972 US9139675B2 (en) 2006-04-05 2007-04-04 Polyvinyl acetal-based resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-103977 2006-04-05
JP2006103977 2006-04-05

Publications (1)

Publication Number Publication Date
WO2007114472A1 true WO2007114472A1 (ja) 2007-10-11

Family

ID=38563733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057586 WO2007114472A1 (ja) 2006-04-05 2007-04-04 ポリビニルアセタール系樹脂

Country Status (6)

Country Link
US (1) US9139675B2 (ja)
EP (1) EP2006308B1 (ja)
CN (1) CN101426821A (ja)
AT (1) ATE479714T1 (ja)
DE (1) DE602007008862D1 (ja)
WO (1) WO2007114472A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026371A (ja) * 2009-07-21 2011-02-10 Sekisui Chem Co Ltd スラリー組成物
JP2016193985A (ja) * 2015-03-31 2016-11-17 株式会社Adeka 重合体及び光硬化性組成物

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006012198D1 (de) * 2005-08-22 2010-03-25 Nippon Synthetic Chem Ind Acetessig-estergruppe mit polyvinylalkoholharz, harzzusammensetzung und deren verwendung
EP2474415B1 (en) * 2009-08-31 2015-03-25 The Nippon Synthetic Chemical Industry Co., Ltd. Multi-layer structure
KR101780839B1 (ko) * 2010-01-26 2017-09-21 주식회사 쿠라레 세라믹 그린 시트용 슬러리 조성물, 세라믹 그린 시트 및 적층 세라믹 콘덴서
CN103068859B (zh) * 2010-08-19 2015-11-25 株式会社可乐丽 聚乙烯醇缩醛树脂、其浆料组合物、陶瓷坯片和多层陶瓷电容器
JP6118012B2 (ja) * 2010-12-03 2017-04-19 日本板硝子株式会社 防曇性膜被覆物品
CN103476807B (zh) * 2011-02-25 2016-01-13 可乐丽股份有限公司 聚氧化烯改性乙烯醇缩醛系聚合物及含有其的组合物
JP5750507B2 (ja) 2011-03-28 2015-07-22 株式会社クラレ アルキル変性ビニルアセタール系重合体及び組成物
EP2880680A4 (en) * 2012-07-30 2016-11-16 Eastman Kodak Co INK FORMULATIONS FOR FLEXODRUCK HIGH-RESOLUTION LEAD PATTERN
EP2999719B1 (en) * 2013-05-21 2020-07-29 Sun Chemical Corporation Acetalized polyvinyl alcohol barrier coatings
WO2019031613A1 (ja) * 2017-08-10 2019-02-14 日本合成化学工業株式会社 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295016A (ja) * 1992-04-21 1993-11-09 Sekisui Chem Co Ltd 水溶性ポリビニルアセタール樹脂、グリーンシート成形用セラミック泥漿物及びグリーンシート
JPH07179707A (ja) 1993-12-24 1995-07-18 Kuraray Co Ltd 易崩壊性組成物
JPH10158328A (ja) * 1996-12-02 1998-06-16 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法
JP2000313721A (ja) * 1999-03-01 2000-11-14 Nippon Shokubai Co Ltd 新規ヒドロキシル基含有共重合体とその製造方法
JP2001355175A (ja) 2000-06-13 2001-12-26 Kuraray Co Ltd 熱可塑性ポリビニルアルコール系極細繊維不織布とその製法
JP2002284818A (ja) * 2000-12-15 2002-10-03 Nippon Synthetic Chem Ind Co Ltd:The 新規ビニルアルコール系樹脂及びその用途
JP2004292098A (ja) 2003-03-26 2004-10-21 Izutekku Kk 搬送装置における走行体停止機構および走行体ストレージ機構
JP2006104309A (ja) * 2004-10-05 2006-04-20 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアセタール系樹脂
JP2006103977A (ja) 2004-09-30 2006-04-20 Ngk Spark Plug Co Ltd 誘電体磁器組成物及び電子部品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518440A (en) * 1948-08-09 1950-08-15 Du Pont Hydroxy-containing polymers
JPH0971443A (ja) 1995-09-08 1997-03-18 Kuraray Co Ltd 安全合わせガラス用中間膜
US6652883B2 (en) * 2000-03-13 2003-11-25 Biocure, Inc. Tissue bulking and coating compositions
JP4133158B2 (ja) 2001-09-21 2008-08-13 積水化学工業株式会社 変性ポリビニルアセタール樹脂
EP1384731B1 (en) * 2002-07-23 2005-12-14 Kuraray Co., Ltd. Polyvinyl acetal and its use
JP4079806B2 (ja) 2003-03-20 2008-04-23 日本合成化学工業株式会社 側鎖に1,2−グリコール結合を有するポリビニルアルコール系樹脂およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295016A (ja) * 1992-04-21 1993-11-09 Sekisui Chem Co Ltd 水溶性ポリビニルアセタール樹脂、グリーンシート成形用セラミック泥漿物及びグリーンシート
JPH07179707A (ja) 1993-12-24 1995-07-18 Kuraray Co Ltd 易崩壊性組成物
JPH10158328A (ja) * 1996-12-02 1998-06-16 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法
JP2000313721A (ja) * 1999-03-01 2000-11-14 Nippon Shokubai Co Ltd 新規ヒドロキシル基含有共重合体とその製造方法
JP2001355175A (ja) 2000-06-13 2001-12-26 Kuraray Co Ltd 熱可塑性ポリビニルアルコール系極細繊維不織布とその製法
JP2002284818A (ja) * 2000-12-15 2002-10-03 Nippon Synthetic Chem Ind Co Ltd:The 新規ビニルアルコール系樹脂及びその用途
JP2004292098A (ja) 2003-03-26 2004-10-21 Izutekku Kk 搬送装置における走行体停止機構および走行体ストレージ機構
JP2006103977A (ja) 2004-09-30 2006-04-20 Ngk Spark Plug Co Ltd 誘電体磁器組成物及び電子部品
JP2006104309A (ja) * 2004-10-05 2006-04-20 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアセタール系樹脂

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026371A (ja) * 2009-07-21 2011-02-10 Sekisui Chem Co Ltd スラリー組成物
JP2016193985A (ja) * 2015-03-31 2016-11-17 株式会社Adeka 重合体及び光硬化性組成物

Also Published As

Publication number Publication date
US9139675B2 (en) 2015-09-22
DE602007008862D1 (de) 2010-10-14
EP2006308B1 (en) 2010-09-01
US20090093609A1 (en) 2009-04-09
ATE479714T1 (de) 2010-09-15
EP2006308A4 (en) 2010-01-06
CN101426821A (zh) 2009-05-06
EP2006308A1 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
WO2007114472A1 (ja) ポリビニルアセタール系樹脂
JP5199791B2 (ja) 合わせガラス用中間膜
US7674854B2 (en) Process for producing polyvinyl acetal resin, polyvinyl butyral resin, and process for producing esterified polyvinyl alcohol resin
TWI515250B (zh) 聚氧化烯改性乙烯縮醛系聚合物及含有其之組成物
JP3315128B2 (ja) 低溶液粘度を有する変性ポリビニルアセタール
EP3088430B1 (en) Modified polyvinyl alcohol and production method therefor
KR101667234B1 (ko) 신규한 폴리비닐알코올계 중합체 및 이의 제조 방법
JP4794121B2 (ja) インキまたは塗料用バインダー
JP4584666B2 (ja) ポリビニルアセタール系樹脂
EP2128176B1 (en) Modified polyvinyl acetal as binder for inks or paints
JP5196829B2 (ja) ポリビニルアセタール系樹脂
JP2007269881A (ja) ポリビニルアセタールの製法
JP6445774B2 (ja) 変性ポリビニルアセタール樹脂
JP6418924B2 (ja) 塗膜および塗膜形成剤
JP2005002285A (ja) ポリビニルアセタール樹脂の製造方法及びポリビニルブチラール樹脂
WO2015005153A1 (ja) ビニルアセタール系重合体
JP2005029764A (ja) ビニルアセタール系重合体およびその製造法
TWI625337B (zh) Ethylene acetal polymer
JP5956889B2 (ja) インクジェット記録材、その製造方法、及びそれを用いた印刷物の製造方法
JP3976818B2 (ja) ビニルアルコール系重合体の製法
CN115515989A (zh) 改性乙烯-乙烯醇系树脂和阻气材料
JP2014101439A (ja) 防曇剤
JP5009302B2 (ja) 一酸化炭素−ビニルアルコール系共重合体の製造方法ならびに一酸化炭素−ビニルアルコール系共重合体とこれを用いた耐水性組成物
JP5349175B2 (ja) 水性分散液
JPH05202344A (ja) 合板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007741022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12225972

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780012208.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE