WO2015005153A1 - ビニルアセタール系重合体 - Google Patents

ビニルアセタール系重合体 Download PDF

Info

Publication number
WO2015005153A1
WO2015005153A1 PCT/JP2014/067279 JP2014067279W WO2015005153A1 WO 2015005153 A1 WO2015005153 A1 WO 2015005153A1 JP 2014067279 W JP2014067279 W JP 2014067279W WO 2015005153 A1 WO2015005153 A1 WO 2015005153A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl
vinyl alcohol
acetal polymer
alcohol copolymer
polyfunctional monomer
Prior art date
Application number
PCT/JP2014/067279
Other languages
English (en)
French (fr)
Inventor
徳地 一記
熊木 洋介
達也 谷田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2015526264A priority Critical patent/JP6442405B2/ja
Publication of WO2015005153A1 publication Critical patent/WO2015005153A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones

Definitions

  • the present invention relates to a vinyl acetal polymer obtained by acetalizing a water-soluble vinyl alcohol copolymer obtained by saponifying a copolymer of vinyl acetate and a polyfunctional monomer.
  • a method of reducing the degree of polymerization of the vinyl alcohol copolymer as a raw material is generally used as a method of reducing the viscosity of the vinyl acetal polymer. Used for.
  • the degree of polymerization of the vinyl alcohol copolymer is lowered, the mechanical properties such as strength of the vinyl acetal polymer are lowered. For this reason, applications where such a low-polymerization degree vinyl acetal polymer can be used are limited to some applications.
  • a double bond is introduced into the molecule of the vinyl acetal polymer to perform crosslinking. Proposed. For example, by reacting a compound having an ethylenic double bond with a functional group capable of reacting with a hydroxyl group such as an isocyanate group or a glycidyl group in the molecule with the residual hydroxyl group of polyvinyl acetal, the molecular weight of the vinyl acetal polymer is increased. It is disclosed that a double bond is introduced into and crosslinked with each other (see, for example, Patent Documents 1 and 2).
  • Patent Document 2 describes that, by reacting a predetermined compound having an epoxy group and an ethylenic double bond in the molecule with polyvinyl acetal, the viscosity can be lowered with almost no change in the molecular weight of polyvinyl acetal. Has been.
  • a compound having a functional group such as an aldehyde group or an acetal group and an ethylenic double bond in the molecule is used as another method for introducing a double bond into a molecule of a vinyl acetal polymer and crosslinking it.
  • a compound having a functional group such as an aldehyde group or an acetal group and an ethylenic double bond in the molecule is used as another method for introducing a double bond into a molecule of a vinyl acetal polymer and crosslinking it.
  • the above-mentioned problem is a vinyl acetal polymer obtained by acetalizing a vinyl alcohol copolymer obtained by saponifying a copolymer of vinyl acetate and a polyfunctional monomer; , Which contains two or more ethylenic double bonds in the molecule, the vinyl alcohol copolymer contains an ethylenic double bond in the side chain, and the ethylenic group with respect to the total of vinyl alcohol units and vinyl acetate units
  • This is solved by providing a vinyl acetal polymer having a double bond molar ratio (d) of 0.05 / 100 to 2/100 and a degree of acetalization of 45 to 80 mol%.
  • the side chain preferably contains a vinyl ether group. It is also preferred that the side chain contains an allyl group.
  • a vinyl acetal polymer having an ethylenic double bond introduced in the side chain can be provided.
  • the vinyl acetal polymer of the present invention is excellent in solubility in an alcohol solvent and the like, and has low solution viscosity and melt viscosity, and is excellent in handleability. Further, the viscosity can be lowered while maintaining the mechanical properties such as strength. Accordingly, the vinyl acetal polymer is suitable for various uses such as an interlayer film composition for laminated glass, a ceramic slurry composition, an ink composition / coating composition, an adhesive composition, and a heat-developable photosensitive material composition. Used for.
  • Example 1 is a 1 H-NMR spectrum of polyvinyl acetate obtained in Example 1.
  • 1 is a 1 H-NMR spectrum of a vinyl alcohol copolymer obtained in Example 1.
  • the present invention relates to a vinyl acetal polymer obtained by acetalizing a vinyl alcohol copolymer obtained by saponifying a copolymer of vinyl acetate and a polyfunctional monomer.
  • the vinyl alcohol copolymer is preferably water-soluble.
  • the vinyl acetal polymer of the present invention is preferably obtained by acetalizing a water-soluble vinyl alcohol copolymer while containing an ethylenic double bond in its side chain.
  • the polyfunctional monomer used in the present invention contains two or more ethylenic double bonds in the molecule and is not particularly limited. However, it is preferable that an excessive amount of double bonds can be introduced without inhibiting the water solubility of the vinyl alcohol copolymer by the excessive crosslinking reaction. It is necessary to select a polyfunctional monomer with appropriate reactivity in consideration of various factors such as blending ratio of polyfunctional monomer to vinyl acetate, polymerization temperature, monomer concentration, polymerization rate, polymerization degree, etc. There is. From the viewpoint of suppressing an excessive crosslinking reaction, the number of ethylenic double bonds contained in the polyfunctional monomer is preferably two.
  • the polyfunctional monomers exemplified below can be used alone or in combination of two or more.
  • ethanediol divinyl ether propanediol divinyl ether, butanediol divinyl ether (for example, 1,4-butanediol divinyl ether), ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether
  • monomers containing vinyl ether groups such as divinyl ether compounds such as polyethylene glycol divinyl ether, propylene glycol divinyl ether, polypropylene glycol divinyl ether, and tetraethylene glycol divinyl ether.
  • Monomers containing vinyl ether groups can easily control the degree of polymerization of vinyl alcohol copolymer and the content of double bonds. More preferably used.
  • a monomer containing an allyl group is also suitable.
  • Monomers containing an allyl group include diene compounds such as pentadiene, hexadiene, heptadiene, octadiene, nonadiene, decadiene (for example, 1,9-decadiene), glycerin diallyl ether, diethylene glycol diallyl ether, ethylene glycol diallyl ether, triglyceride.
  • Diallyl ether compounds such as ethylene glycol diallyl ether, polyethylene glycol diallyl ether, trimethylolpropane diallyl ether, pentaerythritol diallyl ether, triallyl ether compounds such as glycerol triallyl ether, trimethylolpropane triallyl ether, pentaerythritol triallyl ether, Tetraallyl ether compounds such as pentaerythritol tetraallyl ether Monomers containing allyl ether groups; monomers containing allyl ester groups such as diallyl carboxylates such as diallyl phthalate, diallyl maleate, diallyl itaconate, diallyl terephthalate, diallyl adipate; diallylamine, diallyl A monomer containing an allylamino group such as diallylamine compounds such as methylamine and triallylamine; a monomer containing an allylammonium group such as dial
  • Monomers containing allyl ether groups can easily control the degree of polymerization of the vinyl alcohol copolymer and the content of double bonds. Yes, more preferably used.
  • Monomers having (meth) acrylic acid monomers having (meth) acrylamides such as N, N′-methylenebis (meth) acrylamide and N, N′-ethylenebis (meth) acrylamide, divinylbenzene, trivinylbenzene And so on.
  • the vinyl alcohol copolymer used in the present invention is produced by copolymerizing vinyl acetate and a polyfunctional monomer to obtain a vinyl ester copolymer, and then saponifying the vinyl ester copolymer. Is done. According to this production method, a vinyl alcohol copolymer in which a component derived from a polyfunctional monomer is uniformly distributed in a molecular chain can be obtained.
  • molar ratio (p) it is preferable to copolymerize the polyfunctional monomer to vinyl acetate in a molar ratio (p) of 0.1 / 100 to 5/100. If the molar ratio (p) is less than 0.1 / 100, it may be difficult to introduce an ethylenic double bond into the side chain.
  • the molar ratio (p) is more preferably 0.15 / 100 or more, and further preferably 0.2 / 100 or more. On the other hand, when the molar ratio (p) exceeds 5/100, it may be difficult to control the degree of polymerization of the vinyl ester copolymer. Further, the vinyl alcohol copolymer obtained by saponifying the vinyl ester copolymer may not be dissolved in water.
  • the molar ratio (p) is more preferably 3/100 or less, and even more preferably 2/100 or less.
  • any polymerization method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method can be employed.
  • the copolymerization can be carried out without solvent or in the presence of an alcohol solvent.
  • a solvent-free bulk polymerization method and a solution polymerization method using an alcohol solvent are preferably employed.
  • the alcohol solvent is not particularly limited, and for example, methanol, ethanol, propanol and the like can be used alone or in admixture of two or more.
  • the copolymerization method is not particularly limited, and any of batch polymerization, semi-batch polymerization, continuous polymerization, and semi-continuous polymerization may be used.
  • the temperature at the time of copolymerizing vinyl acetate and a polyfunctional monomer is not particularly limited.
  • the copolymerization temperature is preferably 0 to 200 ° C, more preferably 30 to 140 ° C. When the copolymerization temperature is lower than 0 ° C., a sufficient polymerization rate may not be obtained. When the copolymerization temperature is higher than 200 ° C., there is a concern about the decomposition of the vinyl acetate or polyfunctional monomer used.
  • the method for controlling the copolymerization temperature is not particularly limited.
  • Examples of the method for controlling the copolymerization temperature include a method of balancing the heat generated by the polymerization and the heat radiation from the surface of the polymerization vessel by controlling the polymerization rate.
  • the method of controlling by the external jacket using a suitable heat medium is also mentioned. The latter method is preferable from the viewpoint of safety.
  • a polymerization initiator used when copolymerizing vinyl acetate and a polyfunctional monomer is a known initiator (for example, an azo initiator, a peroxide initiator, a redox system) depending on the polymerization method. Initiator etc.) may be selected.
  • the azo initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2, 4-dimethylvaleronitrile).
  • peroxide-based initiator examples include percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, ⁇ -Perester compounds such as cumylperoxyneodecanate and t-butylperoxydecanate; acetylcyclohexylsulfonyl peroxide; 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate and the like.
  • These initiators may be combined with potassium persulfate, ammonium persulfate, hydrogen peroxide, or the like as an initiator.
  • the redox initiator examples include an initiator in which the above peroxide is combined with a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, or longalite.
  • a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, or longalite.
  • an antioxidant such as tartaric acid may be added to the polymerization system in an amount of about 1 to 100 ppm based on vinyl acetate.
  • the copolymerization of vinyl acetate and a polyfunctional monomer is carried out in the presence of a chain transfer agent within the range not impairing the gist of the present invention, for the purpose of adjusting the degree of polymerization of the resulting copolymer.
  • a chain transfer agent within the range not impairing the gist of the present invention, for the purpose of adjusting the degree of polymerization of the resulting copolymer.
  • the chain transfer agent include aldehydes such as acetaldehyde and propionaldehyde; ketones such as acetone and methyl ethyl ketone; mercaptans such as 2-hydroxyethanethiol; halogenated hydrocarbons such as trichloroethylene and perchloroethylene. It is done. Of these, aldehydes and ketones are preferably used.
  • the addition amount of the chain transfer agent may be determined according to the chain transfer constant of the chain transfer agent to be added and the degree of polymerization of the target
  • the polymerization rate of vinyl acetate is preferably 20 to 90%. If the polymerization rate of vinyl acetate is less than 20%, the amount of vinyl ester copolymer that can be produced per unit time may decrease, resulting in a decrease in production efficiency, and the cost for recovering vinyl acetate. May increase. From the viewpoint of production efficiency and cost, the polymerization rate of vinyl acetate is more preferably 30% or more, and further preferably 40% or more. On the other hand, when the polymerization rate of vinyl acetate exceeds 90%, the crosslinking reaction proceeds excessively, and the water solubility of the resulting vinyl alcohol copolymer may be lowered.
  • the polymerization rate of vinyl acetate is more preferably 80% or less, and further preferably 70% or less.
  • the measurement of a polymerization rate calculates the solid content of a polymer by vacuum-drying the obtained polymer solution at 120 degreeC for 2 hours.
  • the saponification method of the vinyl ester copolymer obtained by copolymerizing vinyl acetate and a polyfunctional monomer is not particularly limited, and a known saponification method can be adopted.
  • a basic catalyst such as sodium hydroxide, potassium hydroxide or sodium methoxide or an acidic catalyst such as p-toluenesulfonic acid
  • the solvent that can be used in this reaction include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone methyl ethyl ketone: aromatic hydrocarbons such as benzene and toluene. . These solvents can be used alone or in combination of two or more.
  • saponification using methanol or a methanol / methyl acetate mixed solution as a solvent and sodium hydroxide as a catalyst is convenient and preferable.
  • the saponification degree of the vinyl alcohol copolymer used in the present invention is preferably 60 to 99.9 mol%. If the degree of saponification is less than 60 mol%, the vinyl alcohol copolymer may be insoluble in water.
  • the saponification degree is more preferably 65 mol% or more. On the other hand, when the degree of saponification exceeds 99.9 mol%, not only industrial production is difficult, but also the viscosity stability of the vinyl alcohol copolymer aqueous solution is deteriorated and handling may be difficult.
  • the degree of saponification is more preferably 98 mol% or less.
  • the saponification degree is a value measured by the saponification degree measuring method described in JIS K6726. At this time, units other than the vinyl alcohol unit, the vinyl acetate unit and the monomer unit containing an ethylenic double bond are a small amount even if they are contained in the vinyl alcohol copolymer. Ignore it and calculate the degree of saponification.
  • the viscosity average polymerization degree P ⁇ of the vinyl alcohol copolymer used in the present invention is preferably 100 to 8000. If the viscosity average polymerization degree P ⁇ is less than 100, industrial production may be difficult.
  • the viscosity average degree of polymerization P ⁇ is more preferably 200 or more. On the other hand, when the viscosity average polymerization degree P ⁇ exceeds 8000, not only industrial production is difficult, but also the viscosity of the aqueous vinyl alcohol copolymer solution becomes very high, which may be difficult to handle.
  • the viscosity average degree of polymerization P ⁇ is more preferably 5000 or less, and further preferably 2500 or less.
  • the viscosity average polymerization degree P ⁇ is measured according to JIS K6726. Specifically, the vinyl alcohol copolymer is saponified again to completely saponify the remaining acetate groups. The re-saponified vinyl alcohol copolymer is purified and dried, and then 1 g of the dried sample is added to 100 ml of water, dissolved by heating, and cooled to 30 ° C. The obtained aqueous solution is weighed into a viscometer, the intrinsic viscosity [ ⁇ ] (unit: L / g) in water at 30 ° C. is measured, and can be calculated from the measured intrinsic viscosity [ ⁇ ] by the following formula (1).
  • the ratio Mw / Mn of the weight average molecular weight Mw and the number average molecular weight Mn obtained from the size exclusion chromatography of the vinyl alcohol copolymer used in the present invention is preferably 2 to 5, and more preferably 2 to 4. If Mw / Mn is less than 2, industrial production may be difficult. Moreover, when Mw / Mn exceeds 5, when manufacturing a vinyl acetal polymer, there exists a tendency for an acetalization reaction rate to fall.
  • the vinyl alcohol copolymer used in the present invention is preferably water-soluble and contains an ethylenic double bond in its side chain.
  • the molar ratio (d) of the ethylenic double bond to the total of vinyl alcohol units and vinyl acetate units is 0.05 / 100 to 2/100. When the molar ratio (d) is less than 0.05 / 100, mechanical properties such as strength of the obtained vinyl acetal polymer are not sufficient.
  • the molar ratio (d) is preferably 0.07 / 100 or more, and more preferably 0.1 / 100 or more.
  • the molar ratio (d) of the ethylenic double bond is preferably 1.5 / 100 or less, and more preferably 1/100 or less.
  • the vinyl alcohol copolymer used in the present invention preferably contains a vinyl ether group in its side chain. It is also preferred that the side chain contains an allyl group or an allyl ether group. Since these structures have moderately lower reactivity than the vinyl ester group contained in vinyl acetate, it is possible to increase the proportion of the monomer that only one of the double bonds reacts while suppressing the crosslinking reaction. Thereby, a water-soluble vinyl alcohol copolymer having a controlled double bond content can be obtained. Further, since the vinyl alcohol copolymer containing such a side chain has a necessary amount of double bonds and has water solubility, the vinyl acetal polymer can be economically produced on an industrial scale. It is preferable at the point which manufactures stably.
  • the amount of ethylenic double bond introduced can be determined by 1 H-NMR spectrum of vinyl alcohol copolymer in heavy water or heavy dimethyl sulfoxide solvent or vinyl ester copolymer before saponification in deuterated chloroform solvent. Measured from 1 H-NMR spectrum. The amount of ethylenic double bonds introduced is controlled by the mixing ratio of the polyfunctional monomer to the vinyl ester monomer and the polymerization rate.
  • the molar ratio of ethylenic double bonds to the total of vinyl alcohol units and vinyl acetate units from the viewpoint of introducing the necessary amount of double bonds into the vinyl alcohol copolymer while maintaining the crosslinking reaction and maintaining production efficiency.
  • the ratio (d / p) of the molar ratio (p) of the polyfunctional monomer to (d) and vinyl acetate is preferably 0.2 or more, and more preferably 0.5 or more. If the ratio (d / p) is less than 0.2, the ratio of the product in which vinyl acetate and the polyfunctional monomer are cross-linked increases, and the water solubility of the vinyl alcohol copolymer may be hindered. is there.
  • the ratio (d / p) can be increased depending on the blending ratio of polyfunctional monomer to vinyl acetate and the polymerization conditions, but the ratio (d / p) is 0.8 or less in consideration of production efficiency. Is preferred.
  • the vinyl alcohol copolymer when the vinyl alcohol copolymer is water-soluble, when an aqueous solution of 4% by mass vinyl alcohol copolymer at a temperature of 90 ° C. is prepared, the vinyl alcohol copolymer is dissolved in water. When completely dissolved.
  • the vinyl acetal polymer of the present invention can be obtained by acetalizing the vinyl alcohol copolymer obtained as described above according to a conventionally known method.
  • the degree of acetalization at this time is 45 mol% or more and 80 mol% or less.
  • the degree of acetalization of the vinyl acetal polymer is more preferably 55 mol% or more, and further preferably 60 mol%.
  • the degree of acetalization of the vinyl acetal polymer can be appropriately selected according to the solubility in the solvent used.
  • the amount of aldehyde added to the vinyl alcohol copolymer to be used, the reaction time after adding the aldehyde and the acid catalyst, and the like may be adjusted as appropriate.
  • the degree of acetalization of the vinyl acetal polymer represents the ratio of the acetalized vinyl alcohol unit to the total monomer units constituting the vinyl acetal polymer.
  • the degree of acetalization can be measured according to, for example, the method of JIS K6728 (1977).
  • a vinyl alcohol copolymer is heated and dissolved in water to prepare an aqueous solution having a concentration of 5 to 30% by mass.
  • a method of adding a predetermined amount of aldehyde after cooling to 50 ° C., cooling to ⁇ 10 ° C. to 30 ° C., and adding an acid to bring the pH of the aqueous solution to 1 or less to start acetalization (2) vinyl alcohol The aqueous copolymer is dissolved in water by heating to prepare an aqueous solution having a concentration of 5 to 30% by mass, which is cooled to 5 ° C. to 50 ° C. Examples thereof include a method of starting acetalization by cooling to ⁇ 10 ° C. to 30 ° C. and adding a predetermined amount of aldehyde.
  • aldehydes used for acetalization include formaldehyde (including paraformaldehyde), acetaldehyde (including paraacetaldehyde), propionaldehyde, butyraldehyde, isobutyraldehyde, 2-ethylbutyraldehyde, valeraldehyde, pivalaldehyde, and amylaldehyde.
  • Aliphatic aldehydes such as hexyl aldehyde, heptyl aldehyde, 2-ethylhexyl aldehyde, octyl aldehyde, nonyl aldehyde, decyl aldehyde, dodecyl aldehyde; cyclopentane aldehyde, methyl cyclopentane aldehyde, dimethyl cyclopentane aldehyde, cyclohexane aldehyde, methyl cyclohexane aldehyde, Dimethylcyclohexanealdehyde, cyclohexaneacetoaldehyde Cyclopentene aldehyde, cyclohexene aldehyde and other cyclic unsaturated aldehydes; benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldeh
  • At least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, hexylaldehyde, and benzaldehyde is preferable, and butyraldehyde is particularly preferable.
  • an aldehyde used for acetalization an aldehyde having a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group or the like as a functional group may be used as long as the effects of the present invention are not impaired.
  • the acid used for the acetalization is not particularly limited, and examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, hydrochloric acid and the like. Among these, hydrochloric acid, sulfuric acid, and nitric acid are preferable, hydrochloric acid and nitric acid are more preferable, and two or more of these may be used in combination.
  • the time required for the acetalization reaction is usually about 1 to 10 hours, and the reaction is preferably carried out with stirring. In addition, when the acetal is performed under the above-described temperature conditions, the reaction may be continued at a high temperature of about 50 ° C. to 80 ° C. if the degree of acetalization of the vinyl acetal polymer does not increase.
  • the granular reaction product obtained after the acetalization is filtered off, washed thoroughly with water, added with a neutralizing agent such as alkali, washed and dried to obtain the desired vinyl acetal polymer.
  • a neutralizing agent such as alkali
  • alkali compound used as a neutralizing agent include sodium hydroxide and potassium hydroxide.
  • the vinyl acetal polymer of the present invention is an acetalized product of a copolymer of a polyfunctional compound having two or more ethylenic double bonds in the molecule and vinyl alcohol, and has an ethylenic double bond in the side chain. Is 0.05 to 2 mol% relative to the vinyl alcohol unit and its derivative, and the degree of acetalization is 45 to 80 mol%.
  • the derivative unit of a vinyl alcohol unit means an acetal unit obtained by acetalizing a vinyl acetate unit or a vinyl alcohol unit remaining without being saponified in the production process of a vinyl alcohol copolymer.
  • the amount of the ethylenic double bond is preferably 0.07 mol% or more, and more preferably 0.1 mol% or more.
  • the amount of the ethylenic double bond is less than 0.05 mol%, sufficient mechanical properties such as strength cannot be obtained. Moreover, it is preferable that it is 1.5 mol% or less, and it is more preferable that it is 1 mol% or less.
  • the amount of the ethylenic double bond exceeds 2 mol%, the vinyl alcohol copolymer used for the production of the vinyl acetal polymer is likely to be insoluble in water and difficult to produce.
  • the amount of the ethylenic double bond is determined by the 1 H-NMR spectrum of the vinyl acetal polymer in the heavy dimethyl sulfoxide solvent, the heavy alcohol or heavy dimethyl sulfoxide solvent of the vinyl alcohol copolymer before the acetalization. It is measured from a 1 H-NMR spectrum or a 1 H-NMR spectrum in a deuterated chloroform solvent of a vinyl ester copolymer before saponification. Basically, the amounts of ethylenic double bonds measured at each stage of vinyl acetal polymer, vinyl alcohol polymer, and vinyl ester polymer are the same.
  • the vinyl acetal polymer of the present invention produced in this way is excellent in solubility in alcohol solvents and the like, and has a low solution viscosity and excellent handleability. Therefore, the vinyl acetal polymer of the present invention is used for various types of interlayer film compositions for laminated glass, ceramic slurry compositions, ink compositions / coating compositions, adhesive compositions, heat-developable photosensitive material compositions, and the like. It is suitably used for applications.
  • parts and% represent parts by mass and mass%, respectively.
  • the viscosity average polymerization degree P ⁇ of the vinyl alcohol copolymer was measured according to JIS K6726. Specifically, the remaining alcohol group was completely saponified by saponifying the vinyl alcohol copolymer again. The re-saponified vinyl alcohol copolymer was purified and dried, and then 1 g of the dried sample was added to 100 ml of water, dissolved by heating, and cooled to 30 ° C. The obtained aqueous solution was weighed in a viscometer, and the intrinsic viscosity [ ⁇ ] (unit: L / g) in water at 30 ° C. was measured. The viscosity average degree of polymerization P ⁇ was calculated from the measured intrinsic viscosity [ ⁇ ] by the following formula (2).
  • the vinyl alcohol copolymer was measured by the method for measuring the degree of saponification described in JIS K6726.
  • Example 1 Synthesis of vinyl alcohol copolymer PVA-1 having an ethylenic double bond in the side chain
  • a 6-liter reaction vessel equipped with a stirrer, nitrogen inlet, additive inlet and initiator inlet is charged with 1200 g of vinyl acetate, 1800 g of methanol, and 19.8 g of 1,4-butanediol divinyl ether as a polyfunctional monomer. After raising the temperature to 60 ° C., the system was purged with nitrogen by carrying out nitrogen bubbling for 30 minutes. The temperature in the reaction vessel was adjusted to 60 ° C., and 2.5 g of 2,2′-azobis (isobutyronitrile) was added to initiate polymerization.
  • 2,2′-azobis isobutyronitrile
  • the polymerization temperature was maintained at 60 ° C. during the polymerization. After 3 hours, when the polymerization rate of vinyl acetate reached 58%, the polymerization was terminated by cooling. Next, unreacted vinyl acetate was removed under reduced pressure to obtain a methanol solution of polyvinyl acetate (hereinafter sometimes abbreviated as PVAc).
  • PVAc polyvinyl acetate
  • the PVAc thus obtained was subjected to reprecipitation purification using acetone as a good solvent and hexane as a poor solvent five times and dried by vacuum drying. Thereafter, the obtained PVAc was dissolved in deuterated chloroform, and 1 H-NMR measurement was performed. The measurement results are shown in FIG. From the spectrum of FIG.
  • the amount of ethylenic double bonds introduced relative to the total of vinyl alcohol units and vinyl acetate units was calculated to be 0.5 mol%.
  • concentration of the solution was adjusted to 30% by mass, and the alkali molar ratio (number of moles of NaOH / number of moles of vinyl ester units in PVAc) was 0.006.
  • NaOH methanol solution (10% concentration) was added so as to be saponified.
  • the obtained vinyl alcohol copolymer was washed with methanol.
  • a vinyl alcohol copolymer having a viscosity average polymerization degree of 1070 and a saponification degree of 79.6 mol% was obtained.
  • the obtained vinyl alcohol copolymer was dissolved in water at 90 ° C. to prepare a 4% by mass aqueous solution, it was completely dissolved.
  • the obtained vinyl alcohol copolymer was dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR measurement was performed. The measurement results are shown in FIG. From the spectrum of FIG. 2 obtained, the amount of ethylenic double bonds introduced relative to the total of vinyl alcohol units and vinyl acetate units was calculated to be 0.5 mol%.
  • VAP-1 vinyl acetal polymer
  • the degree of acetalization of the obtained vinyl acetal polymer VAP-1 was measured and found to be 70.2 mol%. Further, the viscosity of a 5 mass% ethanol / water (95 mass% / 5 mass%) solution of the obtained vinyl acetal polymer was a value shown in Table 2. Further, a film having a thickness of 100 ⁇ m was prepared by a cast film forming method using the above 5% by mass ethanol / water (95% by mass / 5% by mass) solution, and the tensile strength of this film was measured. The results are shown in Table 2.
  • Examples 2 to 7 Vinyl alcohol copolymers PVA-2 to PVA-7 in the same manner as in Example 1 except that the types and amounts of polyfunctional monomers used and the amounts of vinyl acetate and methanol are as shown in Table 1. Got. Tables 1 and 2 show the evaluation results of the vinyl alcohol copolymers PVA-2 to PVA-7. Also, vinyl acetal polymers VAP-2 to VAP-7 were obtained in the same manner as in Example 1 except that PVA shown in Table 2 was used instead of PVA-1. Table 2 shows the evaluation results of the vinyl acetal polymers VAP-2 to VAP-7.
  • the amount of ethylenic double bonds relative to the total amount of vinyl alcohol units of VAP-6 and derivatives thereof (vinyl acetate units and acetal units) was measured by 1 H-NMR in the same manner as the vinyl alcohol polymer. 0.2 mol%, which was no difference from the amount of ethylenic double bonds in the starting vinyl alcohol polymer.
  • Example 8 A vinyl acetal polymer VAP-8 was obtained in the same manner as in Example 7 except that the amount of butyraldehyde added was reduced. The evaluation results of the vinyl acetal polymer VAP-8 are shown in Table 2.
  • Example 9 A vinyl acetal polymer VAP-9 was obtained in the same manner as in Example 7 except that the amount of butyraldehyde added was increased. Table 2 shows the evaluation results of the vinyl acetal polymer VAP-9.
  • Example 10 A vinyl alcohol copolymer PVA-8 was obtained in the same manner as in Example 1 except that the type and amount of the polyfunctional monomer used were as shown in Table 1.
  • a vinyl acetal polymer VAP-10 was obtained in the same manner as in Example 1 except that the vinyl alcohol copolymer PVA-8 was used instead of PVA-1.
  • Table 2 shows the evaluation results of the vinyl acetal polymer VAP-10.
  • Vinyl alcohol copolymers PVA-C1 and PVA-C2 were prepared in the same manner as in Example 1 except that no polyfunctional monomer was used and the amounts of vinyl acetate and methanol were changed as shown in Table 1. Obtained.
  • Tables 1 and 2 show the evaluation results of the vinyl alcohol copolymers PVA-C1 and PVA-C2.
  • Vinyl acetal polymers VAP-C1 and VAP-C2 were obtained in the same manner as in Example 1 except that vinyl alcohol copolymers PVA-C1 and PVA-C2 were used instead of PVA-1.
  • Table 2 shows the evaluation results of the vinyl acetal polymers VAP-C1 and VAP-C2.
  • a vinyl alcohol copolymer PVA-C3 was obtained in the same manner as in Example 1 except that the amount of the polyfunctional monomer charged was changed as shown in Table 1.
  • Tables 1 and 2 show the evaluation results of the vinyl alcohol copolymer PVA-C3.
  • a vinyl acetal polymer VAP-C3 was obtained in the same manner as in Example 1 except that the vinyl alcohol copolymer PVA-C3 was used instead of PVA-1.
  • Table 2 shows the evaluation results of the vinyl acetal polymer VAP-C3.
  • Example 4 A vinyl alcohol-based copolymer is used in the same manner as in Example 1 except that acetaldehyde is used in place of the polyfunctional monomer in the amounts shown in Table 1, and that the amounts of vinyl acetate and methanol are shown in Table 1.
  • the combined PVA-C4 was obtained.
  • Tables 1 and 2 show the evaluation results of the vinyl alcohol copolymer PVA-C4.
  • a vinyl acetal polymer VAP-C4 was obtained in the same manner as in Example 1 except that the vinyl alcohol copolymer PVA-C4 was used instead of PVA-1.
  • Table 2 shows the evaluation results of the vinyl acetal polymer VAP-C4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 強度等の力学物性を維持したまま低粘度化できるビニルアセタール系重合体を提供することを目的とする。酢酸ビニルと多官能単量体との共重合体をけん化して得られるビニルアルコール系共重合体をアセタール化して得られるビニルアセタール系重合体であって;多官能単量体が、分子中に2つ以上のエチレン性二重結合を含有し、前記ビニルアルコール系共重合体が側鎖にエチレン性二重結合を含有し、ビニルアルコール単位と酢酸ビニル単位の合計に対する該エチレン性二重結合のモル比(d)が、0.05/100~2/100であり、アセタール化度が45~80モル%である、ビニルアセタール系重合体を提供することによって解決される。

Description

ビニルアセタール系重合体
 本発明は、酢酸ビニルと多官能単量体との共重合体をけん化して得られる水溶性のビニルアルコール系共重合体をアセタール化して得られるビニルアセタール系重合体に関する。
 ビニルアセタール系重合体の溶融又は溶解時の取扱い性を向上させるために、ビニルアセタール系重合体を低粘度化する方法として、原料のビニルアルコール系共重合体を低重合度化する方法が一般的に用いられる。しかし、ビニルアルコール系共重合体の低重合度化に伴って、ビニルアセタール系重合体の強度等の力学物性が低下することになる。そのため、そのような低重合度のビニルアセタール系重合体が使用できる用途は、一部の用途に限定されている。
 このような中、ビニルアセタール系重合体の強度等の力学物性やその他の諸物性を向上させることを目的として、ビニルアセタール系重合体の分子内に二重結合を導入し、架橋を行うことが提案されている。例えば、分子内にイソシアナート基やグリシジル基などの水酸基と反応可能な官能基とエチレン性二重結合を有する化合物を、ポリビニルアセタールの残存水酸基と反応させることで、ビニルアセタール系重合体の分子内に二重結合を導入し、架橋させることが開示されている(例えば、特許文献1及び2参照)。特に、特許文献2では、分子内にエポキシ基とエチレン性二重結合を有する所定の化合物と、ポリビニルアセタールを反応させることで、ポリビニルアセタールの分子量をほとんど変化させずに、低粘度化できることが記載されている。
 また、ビニルアセタール系重合体の分子内に二重結合を導入し、架橋させるためのその他の方法としては、分子内にアルデヒド基やアセタール基などの官能基とエチレン性二重結合を有する化合物を用いてポリビニルアセタールとアセタール化反応させ、ビニルアセタール系重合体の分子内に二重結合を導入することが開示されている(例えば、特許文献3参照)。特許文献3では、得られたビニルアセタール系重合体を含む架橋性セラミックグリーンシート用組成物が、通常のポリビニルアセタールと同程度の粘度で作業性に優れ、且つ、得られるシートが架橋により高強度化されることが記載されている。
 しかし、特許文献1~3に記載された方法では、強度等の力学物性を維持したまま、十分に低粘度化できているとはいえず、また、ポリビニルアセタールの分子内へエチレン性二重結合を導入するために、通常のポリビニルアセタールの製造方法に比べ反応工程が増えるなど、製造コストが大幅に上がる場合があった。
特開2007-115827号公報 特表2009-520856号公報 特開2009-108305号公報
 そのため、強度等の力学物性を維持したまま低粘度化できるビニルアセタール系重合体が求められていた。
 上記課題は、酢酸ビニルと多官能単量体との共重合体をけん化して得られるビニルアルコール系共重合体をアセタール化して得られるビニルアセタール系重合体であって;多官能単量体が、分子中に2つ以上のエチレン性二重結合を含有し、前記ビニルアルコール系共重合体が側鎖にエチレン性二重結合を含有し、ビニルアルコール単位と酢酸ビニル単位の合計に対する該エチレン性二重結合のモル比(d)が、0.05/100~2/100であり、アセタール化度が45~80モル%である、ビニルアセタール系重合体を提供することによって解決される。
 このとき、前記側鎖がビニルエーテル基を含有することが好ましい。前記側鎖がアリル基を含有することも好ましい。
 本発明により、側鎖にエチレン性二重結合が導入されたビニルアセタール系重合体を提供することができる。本発明のビニルアセタール系重合体は、アルコール系溶媒等への溶解性に優れると共に、溶液粘度および溶融粘度が低く、取扱性に優れる。また、強度等の力学物性を維持したまま低粘度化することができる。従って、当該ビニルアセタール系重合体は、合わせガラス用中間膜組成物、セラミックスラリー組成物、インク組成物・塗料組成物、接着剤組成物、熱現像性感光材料組成物等の各種の用途に好適に用いられる。
実施例1で得られたポリ酢酸ビニルのH-NMRスペクトルである。 実施例1で得られたビニルアルコール系共重合体のH-NMRスペクトルである。
 本発明は、酢酸ビニルと多官能単量体との共重合体をけん化して得られるビニルアルコール系共重合体をアセタール化して得られるビニルアセタール系重合体に関する。ビニルアルコール系共重合体をアセタール化して、ビニルアセタール系重合体を得るには、ビニルアルコール系共重合体は水溶性であることが好ましい。したがって、本発明のビニルアセタール系重合体は、好ましくはその側鎖にエチレン性二重結合を含有しながらも水溶性であるビニルアルコール系共重合体をアセタール化して得られる。
 分子中にエチレン性二重結合を2つ以上含有する多官能単量体を、酢酸ビニルとともに重合させる場合には、多官能単量体中の複数のエチレン性二重結合が反応することが避けられない。そして、この場合、当該多官能単量体単位が架橋点になるので、得られる重合体が架橋されて、溶媒に対して不溶性のものになってしまうことが多かった。しかしながら、本発明者らが検討した結果、必要量のエチレン性二重結合を含有しながらも架橋を抑制して、水溶性のビニルアルコール系共重合体を得ることができた。以下、当該ビニルアルコール系共重合体について詳細に説明する。
 本発明で用いられる多官能単量体は、分子中にエチレン性二重結合を2つ以上含有するものであり、特に限定されない。しかしながら、過剰な架橋反応が進行することによってビニルアルコール系共重合体の水溶性が阻害されることがなく、必要量の二重結合を導入できるものであることが好ましい。酢酸ビニルに対する多官能単量体の配合割合、重合温度、単量体濃度、重合率、重合度など、様々な要因を考慮しながら、適切な反応性を有する多官能単量体を選択する必要がある。過剰な架橋反応を抑制する観点からは、多官能単量体に含まれるエチレン性二重結合の数が2つであることが好ましい。以下で例示する多官能単量体は、単独で、あるいは2種以上を用いることができる。
 中でも、多官能単量体として、エタンジオールジビニルエーテル、プロパンジオールジビニルエーテル、ブタンジオールジビニルエーテル(例えば、1,4-ブタンジオールジビニルエーテル)、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ポリプロピレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテルなどのジビニルエーテル化合物のようなビニルエーテル基を含有する単量体が好適なものとして挙げられる。ビニルエーテル基を含有する単量体、特に、1,4-ブタンジオールジビニルエーテル、トリエチレングリコールジビニルエーテルは、ビニルアルコール系共重合体の重合度や二重結合の含有量の制御が容易であり、より好適に用いられる。
 また、アリル基を含有する単量体も好適である。アリル基を含有する単量体としては、ペンタジエン、ヘキサジエン、ヘプタジエン、オクタジエン、ノナジエン、デカジエン(例えば、1,9-デカジエン)等のジエン化合物、グリセリンジアリルエーテル、ジエチレングリコールジアリルエーテル、エチレングリコールジアリルエーテル、トリエチレングリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテルなどのジアリルエーテル化合物、グリセリントリアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールトリアリルエーテルなどのトリアリルエーテル化合物、ペンタエリスリトールテトラアリルエーテルなどのテトラアリルエーテル化合物のようなアリルエーテル基を含有する単量体;フタル酸ジアリル、マレイン酸ジアリル、イタコン酸ジアリル、テレフタル酸ジアリル、アジピン酸ジアリルなどカルボン酸ジアリルのようなアリルエステル基を含有する単量体;ジアリルアミン、ジアリルメチルアミンなどのジアリルアミン化合物、トリアリルアミンなどのアリルアミノ基を含有する単量体;ジアリルジメチルアンモニウムクロライドなどジアリルアンモニウム塩のようなアリルアンモニウム基を含有する単量体;イソシアヌル酸トリアリル;1,3-ジアリル尿素;リン酸トリアリル;ジアリルジスルフィドなどが例示される。アリルエーテル基を含有する単量体、特に、1,9-デカジエン、ポリエチレングリコールジアリルエーテル、ペンタエリスリトールジアリルエーテルは、ビニルアルコール系共重合体の重合度や二重結合の含有量の制御が容易であり、より好適に用いられる。
 さらに、上述した多官能単量体の他に、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレートなどの(メタ)アクリル酸を有する単量体;N,N’-メチレンビス(メタ)アクリルアミド、N,N’-エチレンビス(メタ)アクリルアミドなどの(メタ)アクリルアミドを有する単量体、ジビニルベンゼン、トリビニルベンゼンなども挙げることができる。
 本発明で用いられるビニルアルコール系共重合体は、酢酸ビニルと多官能単量体とを共重合させてビニルエステル系共重合体を得てから、ビニルエステル系共重合体をけん化することにより製造される。この製造方法によれば、多官能単量体由来の成分が分子鎖中に均一に分布したビニルアルコール系共重合体が得られる。
 上記製造方法において、酢酸ビニルに対する上記多官能単量体のモル比(p)を0.1/100~5/100として共重合させることが好ましい。モル比(p)が0.1/100未満であると、側鎖にエチレン性二重結合が導入され難くなるおそれがある。モル比(p)は0.15/100以上がより好ましく、0.2/100以上がさらに好ましい。一方、モル比(p)が5/100を超えると、ビニルエステル系共重合体の重合度を制御するのが困難になるおそれがある。また、当該ビニルエステル系共重合体をけん化して得られたビニルアルコール系共重合体が水に溶解しないおそれがある。モル比(p)は3/100以下がより好ましく、2/100以下がさらに好ましい。
 酢酸ビニルと多官能単量体との重合方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法など任意の重合方法を採用することができる。また、共重合は、無溶媒またはアルコール系溶媒の存在下で行うことができる。その中でも、無溶媒の塊状重合法およびアルコール系溶媒を用いた溶液重合法が好適に採用される。アルコール系溶媒は特に限定されないが、例えば、メタノール、エタノール、プロパノールなどを単独で、あるいは2種以上混合して用いることができる。共重合の方式は特に限定されず、回分重合、半回分重合、連続重合、半連続重合のいずれでもよい。
 酢酸ビニルと多官能単量体とを共重合する際の温度(共重合温度)は特に限定されない。共重合温度は、0~200℃が好ましく、30~140℃がより好ましい。共重合温度が0℃より低い場合、十分な重合速度が得られないことがある。共重合温度が200℃より高い場合、使用する酢酸ビニルや多官能単量体の分解が懸念される。
 共重合温度の制御方法は特に限定されない。共重合温度の制御方法としては、例えば、重合速度の制御により、重合により生成する熱と、重合容器表面からの放熱とのバランスをとる方法が挙げられる。また、適当な熱媒を用いた外部ジャケットにより制御する方法も挙げられる。安全性の面からは、後者の方法が好ましい。
 酢酸ビニルと多官能単量体とを共重合する際に使用される重合開始剤は、重合方法に応じて、公知の開始剤(例えば、アゾ系開始剤、過酸化物系開始剤、レドックス系開始剤など)から選択すればよい。アゾ系開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などが挙げられる。過酸化物系開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネートなどのパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシデカネートなどのパーエステル化合物;アセチルシクロヘキシルスルホニルパーオキシド;2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテートなどが挙げられる。これらの開始剤に、過硫酸カリウム、過硫酸アンモニウム、過酸化水素などを組み合わせて開始剤としてもよい。レドックス系開始剤としては、例えば、上記過酸化物と、亜硫酸水素ナトリウム、炭酸水素ナトリウム、酒石酸、L-アスコルビン酸、ロンガリットなどの還元剤とを組み合わせた開始剤が挙げられる。共重合を高温で行った場合に、酢酸ビニルの分解に起因する着色が見られることがある。その場合、着色の防止を目的として、酒石酸のような酸化防止剤を、酢酸ビニルに対して1~100ppm程度、重合系に添加することはなんら差し支えない。
 酢酸ビニルと多官能単量体との共重合に際して、本発明の主旨を損なわない範囲で、他の単量体を共重合してもよい。当該他の単量体としては例えば、エチレン、プロピレンなどのα-オレフィン類;(メタ)アクリル酸およびその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシルなどの(メタ)アクリル酸エステル類;(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリルアミドプロパンスルホン酸およびその塩、(メタ)アクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N-メチロール(メタ)アクリルアミドおよびその誘導体などの(メタ)アクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテルなどのビニルエーテル類;アクリロニトリル、メタクリロニトリルなどのニトリル類;塩化ビニル、フッ化ビニルなどのハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン類;酢酸アリル、塩化アリルなどのアリル化合物;マレイン酸、イタコン酸、フマル酸などの不飽和ジカルボン酸およびその塩またはそのエステル;ビニルトリメトキシシランなどのビニルシリル化合物;酢酸イソプロペニルなどが挙げられる。このような他の単量体の共重合量は、通常5モル%以下である。
 酢酸ビニルと多官能単量体との共重合は、得られる共重合体の重合度を調節することなどを目的として、本発明の主旨を損なわない範囲で、連鎖移動剤の存在下で行ってもよい。連鎖移動剤としては、例えば、アセトアルデヒド、プロピオンアルデヒドなどのアルデヒド類;アセトン、メチルエチルケトンなどのケトン類;2-ヒドロキシエタンチオールなどのメルカプタン類;トリクロロエチレン、パークロロエチレンなどのハロゲン化炭化水素類などが挙げられる。なかでもアルデヒド類およびケトン類が好適に用いられる。連鎖移動剤の添加量は、添加する連鎖移動剤の連鎖移動定数、ならびに目的とするビニルアルコール系共重合体の重合度に応じて決定すればよいが、一般に、酢酸ビニルに対して0.1~10質量%程度が望ましい。
 また、酢酸ビニルの重合率が20~90%であることが好ましい。酢酸ビニルの重合率が20%未満であると単位時間当たりに製造できるビニルエステル系共重合体の量が減少することによる生産効率の低下のおそれがあるとともに、酢酸ビニルを回収するためのコストが増加するおそれがある。生産効率とコストの観点から、酢酸ビニルの重合率は30%以上であることがより好ましく、40%以上であることがさらに好ましい。一方、酢酸ビニルの重合率が90%を超えると、架橋反応が過剰に進行して、得られるビニルアルコール系共重合体の水溶性が低下するおそれがある。架橋反応の抑制の観点から、酢酸ビニルの重合率は80%以下であることがより好ましく、70%以下であることがさらに好ましい。なお、重合率の測定は、得られた重合体溶液を120℃で2時間真空乾燥することにより、重合体の固形分を算出する。
 酢酸ビニルと多官能単量体とを共重合することによって得られたビニルエステル系共重合体のけん化方法は特に限定されず、公知のけん化方法を採用できる。例えば、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシドなどの塩基性触媒やp-トルエンスルホン酸などの酸性触媒を用いた、加アルコール分解反応または加水分解反応が挙げられる。この反応に使用しうる溶媒としては、例えば、メタノール、エタノールなどのアルコール類;酢酸メチル、酢酸エチルなどのエステル類;アセトンメチルエチルケトンなどのケトン類:ベンゼン、トルエンなどの芳香族炭化水素などが挙げられる。これらの溶媒は単独で、または2種以上を組み合わせて用いることができる。なかでも、メタノールまたはメタノール/酢酸メチル混合溶液を溶媒とし、水酸化ナトリウムを触媒としてけん化することが簡便であり好ましい。
 本発明で用いられるビニルアルコール系共重合体のけん化度は60~99.9モル%が好ましい。けん化度が60モル%未満では、ビニルアルコール系共重合体が水に不溶となる場合がある。けん化度は65モル%以上がより好ましい。一方、けん化度が99.9モル%を超えると、工業的製造が難しいだけでなく、ビニルアルコール系共重合体水溶液の粘度安定性が悪くなり取り扱いが困難な場合がある。けん化度は98モル%以下がより好ましい。
 なお、けん化度は、JIS K6726に記載されているけん化度の測定方法により測定した値とする。このとき、ビニルアルコール単位、酢酸ビニル単位及びエチレン性二重結合を含む単量体単位以外の単位は、仮にビニルアルコール系共重合体に含まれていたとしても少量であるので、これらの単位を無視して、けん化度の算定を行う。
 本発明で用いられるビニルアルコール系共重合体の粘度平均重合度Pηは100~8000が好ましい。粘度平均重合度Pηが100未満では、工業的生産が難しくなるおそれがある。粘度平均重合度Pηは200以上であることがより好ましい。一方、粘度平均重合度Pηが8000を超えると、工業的生産が難しいだけでなく、ビニルアルコール系共重合体水溶液の粘度が非常に高くなり取り扱いが困難な場合がある。粘度平均重合度Pηは5000以下であることがより好ましく、2500以下であることがさらに好ましい。
 粘度平均重合度Pηは、JIS K6726に準じて測定される。具体的には、ビニルアルコール系共重合体を再度けん化して、残存する酢酸基を完全にけん化する。再けん化したビニルアルコール系共重合体を精製し、乾燥させた後、乾燥させた試料1gを水100mlに加えて加熱溶解し、30℃まで冷却する。得られた水溶液を粘度計に量り採り、30℃の水中における極限粘度[η](単位:L/g)を測定し、測定した極限粘度[η]から以下の式(1)により算出できる。
Figure JPOXMLDOC01-appb-M000001
 本発明で用いられるビニルアルコール系共重合体のサイズ排除クロマトグラフィーから求められる重量平均分子量Mwと数平均分子量Mnの比Mw/Mnは、2~5が好ましく、2~4がより好ましい。Mw/Mnが2未満では工業的生産が難しくなるおそれがある。また、Mw/Mnが5を越える場合は、ビニルアセタール系重合体を製造する際に、アセタール化反応速度が低下する傾向にある。
 本発明で用いられるビニルアルコール系共重合体は水溶性であることが好ましく、その側鎖にエチレン性二重結合を含有する。そして、ビニルアルコール単位と酢酸ビニル単位の合計に対する該エチレン性二重結合のモル比(d)が0.05/100~2/100である。モル比(d)が0.05/100未満であると、得られるビニルアセタール系重合体の強度等の力学物性が十分でなくなる。モル比(d)は0.07/100以上であることが好ましく、0.1/100以上であることがより好ましい。一方、モル比(d)が2/100を超えると、ビニルエステル系共重合体の重合度の制御が非常に困難になって、得られるビニルアルコール系共重合体が水に不溶になり、アセタール化が困難になり易い。エチレン性二重結合のモル比(d)は1.5/100以下であることが好ましく、1/100以下であることがより好ましい。
 本発明で用いられるビニルアルコール系共重合体は、その側鎖にビニルエーテル基を含有することが好ましい。また、側鎖がアリル基またはアリルエーテル基を含有することも好ましい。これらの構造は、酢酸ビニルに含まれるビニルエステル基よりも適度に反応性が低いので、架橋反応を抑制しながら二重結合の一方だけが反応する単量体の割合を多くすることができる。これによって、二重結合の含有量が制御された水溶性のビニルアルコール系共重合体を得ることができる。また、このような側鎖を含有するビニルアルコール系共重合体は、必要量の二重結合を有していながらも水溶性を有するので、ビニルアセタール系重合体を工業的な規模で経済的に安定に製造する点で好ましい。
 エチレン性二重結合の導入量は、ビニルアルコール系共重合体の重水又は重ジメチルスルホキシド溶媒中でのH-NMRスペクトル、または、けん化前のビニルエステル系共重合体の重クロロホルム溶媒中でのH-NMRスペクトルから測定する。エチレン性二重結合の導入量は、多官能単量体のビニルエステル系単量体に対する混合比や重合率で制御する。
 架橋反応を抑制しつつビニルアルコール系共重合体に必要量の二重結合を導入し、かつ生産効率も維持する観点から、ビニルアルコール単位と酢酸ビニル単位の合計に対するエチレン性二重結合のモル比(d)と酢酸ビニルに対する多官能単量体のモル比(p)の比(d/p)が0.2以上であることが好ましく、0.5以上であることがより好ましい。比(d/p)が0.2未満であると、酢酸ビニルと多官能単量体とが架橋した生成物の割合が多くなり、ビニルアルコール系共重合体の水溶性が阻害されるおそれがある。酢酸ビニルに対する多官能単量体の配合割合や重合条件によって比(d/p)を高くすることができるが、生産効率を考慮すれば、比(d/p)は0.8以下であることが好ましい。
 本明細書において、ビニルアルコール系共重合体が水溶性であるとは、温度90℃の4質量%のビニルアルコール系共重合体の水溶液を調製した場合に、ビニルアルコール系共重合体が水に完全に溶解する場合をいう。
 本発明のビニルアセタール系重合体は、上述のようにして得られたビニルアルコール系共重合体を従来公知の方法に従ってアセタール化することにより得られる。この際のアセタール化度は45モル%以上であり、80モル%以下である。アセタール化度をこの範囲とすることで、ビニルアセタール系重合体は、柔軟で耐水性に優れた皮膜を形成でき、アルコール系溶媒等の広範囲の極性を有する溶媒への溶解性等を向上させることができる。ビニルアセタール系重合体のアセタール化度は、55モル%以上であることがより好ましく、60モル%であることがさらに好ましい。また、ビニルアセタール系重合体のアセタール化度は、使用する溶剤に対する溶解性に応じて適宜選択することができる。ビニルアセタール系重合体のアセタール化度を調整するには、使用するビニルアルコール系共重合体に対するアルデヒドの添加量、アルデヒドと酸触媒を添加した後の反応時間等を適宜調整すればよい。
 ここで、ビニルアセタール系重合体のアセタール化度とは、ビニルアセタール系重合体を構成する全単量体単位に対する、アセタール化されたビニルアルコール単位の割合を表す。アセタール化度は、例えば、JIS K6728(1977年)の方法に準拠して測定できる。
 ビニルアルコール系共重合体をアセタール化する方法としては、例えば、(1)ビニルアルコール系共重合体を水に加熱溶解して5~30質量%の濃度の水溶液を調製し、これを5℃~50℃まで冷却した後、所定量のアルデヒドを加えて-10℃~30℃まで冷却し、酸を添加することにより水溶液のpHを1以下にしてアセタール化を開始する方法、(2)ビニルアルコール系共重合体を水に加熱溶解して5~30質量%の濃度の水溶液を調製し、これを5℃~50℃まで冷却し、酸を添加することにより水溶液のpHを1以下にした後-10℃~30℃まで冷却し、所定量のアルデヒドを加えてアセタール化を開始する方法等が挙げられる。
 アセタール化に用いるアルデヒドとしては、例えば、ホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド(パラアセトアルデヒドを含む)、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、2-エチルブチルアルデヒド、バレルアルデヒド、ピバルアルデヒド、アミルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、2-エチルヘキシルアルデヒド、オクチルアルデヒド、ノニルアルデヒド、デシルアルデヒド、ドデシルアルデヒド等の脂肪族アルデヒド;シクロペンタンアルデヒド、メチルシクロペンタンアルデヒド、ジメチルシクロペンタンアルデヒド、シクロヘキサンアルデヒド、メチルシクロヘキサンアルデヒド、ジメチルシクロヘキサンアルデヒド、シクロヘキサンアセトアルデヒド等の脂環族アルデヒド;シクロペンテンアルデヒド、シクロヘキセンアルデヒド等の環式不飽和アルデヒド;ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、ジメチルベンズアルデヒド、メトキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド、クミンアルデヒド、ナフチルアルデヒド、アントラアルデヒド、シンナムアルデヒド、クロトンアルデヒド、アクロレインアルデヒド、7-オクテン-1-アール等の芳香族又は不飽和結合含有アルデヒド;フルフラール、メチルフルフラール等の複素環アルデヒド等が挙げられる。
 これらのうち、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ヘキシルアルデヒド及びベンズアルデヒドからなる群より選ばれる少なくとも1種が好ましく、ブチルアルデヒドが特に好ましい。このようなアルデヒドを用いることで、ビニルアルコール系共重合体のアセタール化をより効率よく行うことができる。
 また、アセタール化に用いるアルデヒドとして、本発明の効果を損なわない範囲で、水酸基、カルボキシル基、スルホン酸基、リン酸基等を官能基として有するアルデヒドを使用してもよい。
 アセタール化に用いる酸としては、特に限定されないが、例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。これらの中でも塩酸、硫酸、硝酸が好ましく、塩酸、硝酸がより好ましく、これらを2種以上併用してもよい。また、アセタール化の反応に要する時間としては、通常1時間~10時間程度であり、反応は攪拌下に行うことが好ましい。また、上述した温度条件でアセタールを行った場合に、ビニルアセタール系重合体のアセタール化度が上昇しない場合には、50℃~80℃程度の高い温度で反応を継続してもよい。
 アセタール化後に得られる粒状の反応生成物を濾別してこれを水で十分に洗浄し、アルカリ等の中和剤を添加し、洗浄、乾燥することにより、目的とするビニルアセタール系重合体が得られる。中和剤として用いられるアルカリ化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。
 本発明のビニルアセタール系重合体は、分子中に2つ以上のエチレン性二重結合を有する多官能体とビニルアルコールとの共重合体のアセタール化物であり、側鎖に有するエチレン性二重結合の量がビニルアルコール単位およびその誘導体に対して0.05~2モル%であり、アセタール化度が45~80モル%である。ここで、ビニルアルコール単位の誘導体単位とは、ビニルアルコール系共重合体の製造工程でけん化されずに残った酢酸ビニル単位またはビニルアルコール単位がアセタール化されたアセタール単位をいう。エチレン性二重結合の量は0.07モル%以上であることが好ましく、0.1モル%以上であることがより好ましい。エチレン性二重結合の量が0.05モル%未満となると、十分な強度等の力学物性を得ることができなくなる。また、1.5モル%以下であることが好ましく、1モル%以下であることがより好ましい。エチレン性二重結合の量が2モル%を超える場合、ビニルアセタール系重合体の製造に用いられるビニルアルコール系共重合体が水に不溶になり易く、製造することが困難となる。前記エチレン性二重結合の量は、ビニルアセタール系重合体の重ジメチルスルホキシド溶媒中でのH-NMRのスペクトル、アセタール化前のビニルアルコール系共重合体の重水又は重ジメチルスルホキシド溶媒中でのH-NMRスペクトル、または、けん化前のビニルエステル系共重合体の重クロロホルム溶媒中でのH-NMRスペクトルから測定する。基本的に、ビニルアセタール系重合体、ビニルアルコール系重合体、ビニルエステル系重合体の各段階で測定したエチレン性二重結合の量は一致する。
 このようにして製造された本発明のビニルアセタール系重合体は、アルコール系溶媒等への溶解性に優れると共に、溶液粘度が低く抑えられ、取扱性に優れる。従って、本発明のビニルアセタール系重合体は、合わせガラス用中間膜組成物、セラミック用スラリー組成物、インク組成物・塗料組成物、接着剤組成物、熱現像性感光材料組成物等の各種の用途に好適に用いられる。
 以下、本発明を実施例により、さらに詳細に説明する。以下の実施例及び比較例において、特に断りがない場合、部及び%はそれぞれ質量部及び質量%を示す。
<ビニルアルコール系共重合体の評価>
 各実施例及び比較例で得られたビニルアルコール系共重合体について、以下の方法で評価を行った。
(エチレン性二重結合の導入量の測定)
 ビニルアルコール系共重合体0.3mgを重ジメチルスルホキシド3mlに溶解して、核磁気共鳴装置(日本電子株式会社製、LAMBDA500)を用いてH-NMRの測定を実施した。得られたスペクトルから、ビニルアルコール単位と酢酸ビニル単位の合計に対するエチレン性二重結合の導入量(モル比(d))を算出した。
(粘度平均重合度の測定)
 ビニルアルコール系共重合体の粘度平均重合度PηをJIS K6726に準じて測定した。具体的には、ビニルアルコール系共重合体を再度けん化することで、残存する酢酸基を完全にけん化した。再けん化したビニルアルコール系共重合体を精製し、乾燥させた後、乾燥させた試料1gを水100mlに加えて加熱溶解し、30℃まで冷却した。得られた水溶液を粘度計に量り採り、30℃の水中における極限粘度[η](単位:L/g)を測定した。粘度平均重合度Pηは、測定した極限粘度[η]から、以下の式(2)により算出した。
Figure JPOXMLDOC01-appb-M000002
(けん化度の測定)
ビニルアルコール系共重合体について、JIS K6726に記載されている、けん化度の測定方法により測定した。
<ビニルアセタール系重合体の評価>
 各実施例及び比較例で得られたビニルアセタール系重合体について、以下の方法で評価を行った。
(アセタール化度の測定)
 ビニルアセタール系重合体のアセタール化度をJIS K6728に記載された方法に準拠して分析した。
(溶解性の評価及び溶液粘度の測定)
 ビニルアセタール系重合体について、5質量%のエタノール/水(95質量%/5質量%)溶液を調製し、各ビニルアセタール系重合体の溶解性を目視により観察した。完全に溶解したものを「○」、完全には溶解しなかったものを「×」と評価した。結果を表2に示す。また、ビニルアセタール系重合体が完全に溶解した場合には、得られた溶液を20℃恒温槽中に2時間以上放置して、ブルックフィールド型粘度計を用いて、溶液の粘度(mPa・s)を測定した。
(力学特性の評価)
 以下の各実施例及び比較例で得られたビニルアセタール系重合体のそれぞれについて、10質量%のエタノール/水(95質量%/5質量%)溶液を用いてキャスト製膜法により、50℃、で、15時間真空乾燥させて、厚さ100μmのフィルムを作製した。JIS K7162に準拠して、引張試験を行った。より具体的には、厚さ100μmのフィルムをダンベル形状に切り出し、これを引張り試験機(株式会社島津製作所製、オートグラフAG-IS)を用いて、引張速度50mm/minで引張り試験を行った際の試験中に加わった最大の引張応力を測定した。各実施例及び比較例について、5つの試験片を準備して、それぞれ最大の引張応力を測定し、それらの平均値を引張強さとして求めた。
[実施例1]
(側鎖にエチレン性二重結合を有するビニルアルコール系共重合体PVA-1の合成)
 撹拌機、窒素導入口、添加剤導入口および開始剤添加口を備えた6Lの反応槽に酢酸ビニル1200g、メタノール1800g、多官能単量体として1,4-ブタンジオールジビニルエーテル19.8gを仕込み、60℃に昇温した後、30分間窒素バブリングを行うことにより系中を窒素置換した。反応槽内の温度を60℃に調整し、2,2’-アゾビス(イソブチロニトリル)2.5gを加えて重合を開始した。重合中は重合温度を60℃に維持した。3時間後に酢酸ビニルの重合率が58%に達したところで冷却して重合を停止した。次いで、減圧下にて未反応の酢酸ビニルを除去し、ポリ酢酸ビニル(以下、PVAcと略記することがある)のメタノール溶液を得た。こうして得られたPVAcを良溶媒としてアセトン、貧溶媒としてヘキサンを用いた再沈殿精製を5回行い、真空乾燥により乾燥させた。その後、得られたPVAcを重クロロホルムへ溶解してH-NMRの測定を実施した。測定結果を図1に示す。得られた図1のスペクトルから、ビニルアルコール単位と酢酸ビニル単位の合計に対するエチレン性二重結合の導入量は0.5モル%と算出された。得られたPVAcのメタノール溶液にメタノールを添加することで、溶液の濃度を30質量%に調製し、アルカリモル比(NaOHのモル数/PVAc中のビニルエステル単位のモル数)が0.006となるようにNaOHメタノール溶液(10%濃度)を添加してけん化した。得られたビニルアルコール系共重合体をメタノールで洗浄した。
 以上の操作により粘度平均重合度1070、けん化度79.6モル%のビニルアルコール系共重合体を得た。得られたビニルアルコール系共重合体を90℃の水に溶解させて4質量%の水溶液を調製したところ、完全に溶解した。また、得られたビニルアルコール系共重合体を重ジメチルスルホキシドへ溶解してH-NMRの測定を実施した。測定結果を図2に示す。得られた図2のスペクトルから、ビニルアルコール単位と酢酸ビニル単位の合計に対するエチレン性二重結合の導入量は0.5モル%と算出された。
(側鎖にエチレン性二重結合を有するビニルアセタール系重合体の合成)
 480gのPVA-1を、5,520mLの水中に投入し、撹拌しながら溶液の温度を90℃まで昇温して溶解させた後、30℃まで冷却した。この水溶液に20%濃度の塩酸水溶液400gを添加した。その後、水溶液を14℃まで冷却し、ブチルアルデヒド267gを10分間かけて滴下して反応を開始させた。14℃で40分間反応を行った後、約0.6℃/分の昇温速度で65℃まで昇温し、65℃で300分間維持した。その後、反応溶液を室温まで冷却し、析出した粒状物を濾別してこれを水で十分に洗浄した。得られた生成物を0.3%水酸化ナトリウム溶液に投入し、70℃に加温して中和した。この生成物を引き続き、水で洗浄してアルカリ性化合物を除去した後、生成物を乾燥し、ビニルアセタール系重合体(VAP-1)を得た。
 得られたビニルアセタール系重合体VAP-1のアセタール化度を測定したところ、70.2モル%であった。また、得られたビニルアセタール系重合体の5質量%のエタノール/水(95質量%/5質量%)溶液の粘度は表2に示す値であった。また、上記5質量%のエタノール/水(95質量%/5質量%)溶液を用いてキャスト製膜法により厚さ100μmのフィルムを作製し、このフィルムについて引張り強さを測定した。結果を表2に示す。
[実施例2~7]
 使用する多官能単量体の種類及び仕込み量、酢酸ビニルとメタノールの仕込み量を表1に示すようにした以外は実施例1と同様にしてビニルアルコール系共重合体PVA-2~PVA-7を得た。ビニルアルコール系共重合体PVA-2~PVA-7の評価結果を表1および表2に示す。また、PVA-1の代わりに、表2に示すPVAを使用した以外は、実施例1と同様にしてビニルアセタール系重合体VAP-2~VAP-7を得た。ビニルアセタール系重合体VAP-2~VAP-7の評価結果を表2に示す。また、VAP-6のビニルアルコール単位およびその誘導体(酢酸ビニル単位およびアセタール単位)の合計量に対するエチレン性二重結合の量を、ビニルアルコール系重合体と同様にしてH-NMRで測定したところ、0.2mol%であり、原料のビニルアルコール系重合体におけるエチレン性二重結合の量と差異はなかった。
[実施例8]
 ブチルアルデヒドの添加量を減らした以外は、実施例7と同様にして、ビニルアセタール系重合体VAP-8を得た。ビニルアセタール系重合体VAP-8の評価結果を表2に示す。
[実施例9]
 ブチルアルデヒドの添加量を増やした以外は、実施例7と同様にして、ビニルアセタール系重合体VAP-9を得た。ビニルアセタール系重合体VAP-9の評価結果を表2に示す。
[実施例10]
 使用する多官能単量体の種類及び仕込み量を、表1に示すようにした以外は実施例1と同様にしてビニルアルコール系共重合体PVA-8を得た。PVA-1の代わりに、ビニルアルコール系共重合体PVA-8を用いた以外は、実施例1と同様にして、ビニルアセタール系重合体VAP-10を得た。ビニルアセタール系重合体VAP-10の評価結果を表2に示す。
[比較例1及び2]
 多官能単量体を使用せず、酢酸ビニルとメタノールの仕込み量を表1に示すように変えた以外は実施例1と同様にして、ビニルアルコール系共重合体PVA-C1及びPVA-C2を得た。ビニルアルコール系共重合体PVA-C1及びPVA-C2の評価結果を表1および表2に示す。PVA-1の代わりに、ビニルアルコール系共重合体PVA-C1、PVA-C2をそれぞれ用いた以外は実施例1と同様にして、ビニルアセタール系重合体VAP-C1、VAP-C2を得た。ビニルアセタール系重合体VAP-C1及びVAP-C2の評価結果を表2に示す。
[比較例3]
 多官能単量体の仕込み量を表1に示すように変えた以外は、実施例1と同様にして、ビニルアルコール系共重合体PVA-C3を得た。ビニルアルコール系共重合体PVA-C3の評価結果を表1および表2に示す。PVA-1の代わりに、ビニルアルコール系共重合体PVA-C3を用いた以外は実施例1と同様にして、ビニルアセタール系重合体VAP-C3を得た。ビニルアセタール系重合体VAP-C3の評価結果を表2に示す。
[比較例4]
 多官能単量体の代わりにアセトアルデヒドを表1に示す仕込み量で使用し、酢酸ビニルとメタノールの仕込み量を表1に示すようにした以外は実施例1と同様にして、ビニルアルコール系共重合体PVA-C4を得た。ビニルアルコール系共重合体PVA-C4の評価結果を表1および表2に示す。PVA-1の代わりに、ビニルアルコール系共重合体PVA-C4を用いた以外は実施例1と同様にして、ビニルアセタール系重合体VAP-C4得た。ビニルアセタール系重合体VAP-C4の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (6)

  1. 酢酸ビニルと多官能単量体との共重合体をけん化して得られるビニルアルコール系共重合体をアセタール化して得られるビニルアセタール系重合体であり、
    多官能単量体が、分子中に2つ以上のエチレン性二重結合を含有し、
    ビニルアルコール系共重合体が側鎖にエチレン性二重結合を含有し、ビニルアルコール単位と酢酸ビニル単位の合計に対する該エチレン性二重結合のモル比(d)が、0.05/100~2/100であり、アセタール化度が45~80モル%であるビニルアセタール系重合体。
  2. 前記側鎖がビニルエーテル基を含有する請求項1に記載のビニルアセタール系重合体。
  3. 前記側鎖がアリル基を含有する請求項1又は2に記載のビニルアセタール系重合体。
  4. 酢酸ビニルと多官能単量体とを共重合してビニルエステル系共重合体を得る工程、
    該ビニルエステル系共重合体をけん化してビニルアルコール系共重合体を得る工程、及び
    該ビニルアルコール系共重合体をアセタール化する工程を含む、
    請求項1~3のいずれかに記載のビニルアセタール系重合体を製造する方法。
  5. 前記酢酸ビニルと多官能単量体とを共重合する際の酢酸ビニルに対する多官能単量体のモル比(p)が0.1/100~5/100である、請求項4に記載のビニルアセタール系重合体を製造する方法。
  6. 前記ビニルアルコール系重合体におけるビニルアルコール単位と酢酸ビニル単位の合計に対するエチレン性二重結合のモル比(d)と前記ビニルエステル系共重合体の酢酸ビニルに対する多官能単量体のモル比(p)との比(d/p)が0.2~0.8である、請求項5に記載のビニルアセタール系重合体を製造する方法。
PCT/JP2014/067279 2013-07-11 2014-06-27 ビニルアセタール系重合体 WO2015005153A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015526264A JP6442405B2 (ja) 2013-07-11 2014-06-27 ビニルアセタール系重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013145687 2013-07-11
JP2013-145687 2013-07-11

Publications (1)

Publication Number Publication Date
WO2015005153A1 true WO2015005153A1 (ja) 2015-01-15

Family

ID=52279839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067279 WO2015005153A1 (ja) 2013-07-11 2014-06-27 ビニルアセタール系重合体

Country Status (3)

Country Link
JP (1) JP6442405B2 (ja)
TW (1) TWI636086B (ja)
WO (1) WO2015005153A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094698A1 (ja) * 2015-12-04 2017-06-08 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびそれを用いるビニル系重合体の製造方法、並びに塩化ビニル樹脂
EP3208286A4 (en) * 2014-10-17 2018-05-16 Kuraray Co., Ltd. Vinyl alcohol polymer and use thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211184A (en) * 1975-07-17 1977-01-27 Yoshiaki Motozato Two-layer spherical gel particles for molecular sieve
JPS62179516A (ja) * 1986-01-22 1987-08-06 アトケム 塩化ビニル共重合体及びその製造法
JPH04372605A (ja) * 1991-06-21 1992-12-25 Nitto Chem Ind Co Ltd ラジカル硬化性ポリビニルアルコール誘導体
JPH07500621A (ja) * 1991-10-22 1995-01-19 ボレアリス、ホールディング、アクティーゼルスカブ 不飽和エチレン−非共役ジエン共重合体およびそのラジカル重合による製造
JPH09227627A (ja) * 1996-02-20 1997-09-02 Shin Etsu Chem Co Ltd スルホン酸変性ポリビニルアルコールの製造方法
JPH11199846A (ja) * 1998-01-06 1999-07-27 Bridgestone Corp 接着剤組成物
JP2000284119A (ja) * 1999-03-30 2000-10-13 Fuji Photo Film Co Ltd 光学補償シートおよびstn型液晶表示装置
JP2000284286A (ja) * 1999-03-30 2000-10-13 Fuji Photo Film Co Ltd 液晶配向膜、液晶素子および液晶性分子を配向させる方法
JP2000284292A (ja) * 1999-03-30 2000-10-13 Fuji Photo Film Co Ltd 液晶配向膜、液晶性分子を配向させる方法、光学補償シートおよびstn型液晶表示装置
JP2006089536A (ja) * 2004-09-21 2006-04-06 Sekisui Chem Co Ltd 架橋ポリビニルアルコール系樹脂微粒子の製造方法
JP2006322002A (ja) * 2005-05-18 2006-11-30 Wacker Polymer Systems Gmbh & Co Kg カチオン性ポリビニルアセタールの製造方法及びその使用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211184A (en) * 1975-07-17 1977-01-27 Yoshiaki Motozato Two-layer spherical gel particles for molecular sieve
JPS62179516A (ja) * 1986-01-22 1987-08-06 アトケム 塩化ビニル共重合体及びその製造法
JPH04372605A (ja) * 1991-06-21 1992-12-25 Nitto Chem Ind Co Ltd ラジカル硬化性ポリビニルアルコール誘導体
JPH07500621A (ja) * 1991-10-22 1995-01-19 ボレアリス、ホールディング、アクティーゼルスカブ 不飽和エチレン−非共役ジエン共重合体およびそのラジカル重合による製造
JPH09227627A (ja) * 1996-02-20 1997-09-02 Shin Etsu Chem Co Ltd スルホン酸変性ポリビニルアルコールの製造方法
JPH11199846A (ja) * 1998-01-06 1999-07-27 Bridgestone Corp 接着剤組成物
JP2000284119A (ja) * 1999-03-30 2000-10-13 Fuji Photo Film Co Ltd 光学補償シートおよびstn型液晶表示装置
JP2000284286A (ja) * 1999-03-30 2000-10-13 Fuji Photo Film Co Ltd 液晶配向膜、液晶素子および液晶性分子を配向させる方法
JP2000284292A (ja) * 1999-03-30 2000-10-13 Fuji Photo Film Co Ltd 液晶配向膜、液晶性分子を配向させる方法、光学補償シートおよびstn型液晶表示装置
JP2006089536A (ja) * 2004-09-21 2006-04-06 Sekisui Chem Co Ltd 架橋ポリビニルアルコール系樹脂微粒子の製造方法
JP2006322002A (ja) * 2005-05-18 2006-11-30 Wacker Polymer Systems Gmbh & Co Kg カチオン性ポリビニルアセタールの製造方法及びその使用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208286A4 (en) * 2014-10-17 2018-05-16 Kuraray Co., Ltd. Vinyl alcohol polymer and use thereof
US10214604B2 (en) 2014-10-17 2019-02-26 Kuraray Co., Ltd. Vinyl alcohol polymer and use thereof
WO2017094698A1 (ja) * 2015-12-04 2017-06-08 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびそれを用いるビニル系重合体の製造方法、並びに塩化ビニル樹脂
CN108290968A (zh) * 2015-12-04 2018-07-17 日本瓦姆&珀巴尔株式会社 悬浮聚合用分散助剂、使用该分散助剂的乙烯系聚合物的制造方法以及氯乙烯树脂
JPWO2017094698A1 (ja) * 2015-12-04 2018-09-20 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびそれを用いるビニル系重合体の製造方法、並びに塩化ビニル樹脂
US10731032B2 (en) 2015-12-04 2020-08-04 Japan Vam & Poval Co., Ltd. Dispersion assistant for suspension polymerization, method for producing vinyl-based polymer using the same, and vinyl chloride resin
CN108290968B (zh) * 2015-12-04 2021-07-13 日本瓦姆&珀巴尔株式会社 悬浮聚合用分散助剂、使用该分散助剂的乙烯系聚合物的制造方法以及氯乙烯树脂

Also Published As

Publication number Publication date
JPWO2015005153A1 (ja) 2017-03-02
TWI636086B (zh) 2018-09-21
TW201518374A (zh) 2015-05-16
JP6442405B2 (ja) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6541036B2 (ja) ビニルアルコール系共重合体及びその製造方法
KR101127058B1 (ko) 비닐 화합물의 현탁 중합용 분산 안정제 및 비닐 화합물 중합체의 제조방법
TWI515250B (zh) 聚氧化烯改性乙烯縮醛系聚合物及含有其之組成物
JP6162962B2 (ja) ポリオキシアルキレン変性ビニルアセタール系重合体、その製造方法及び組成物
KR102301275B1 (ko) 비닐 화합물의 현탁 중합용 분산제
EP3088430B1 (en) Modified polyvinyl alcohol and production method therefor
JP6510792B2 (ja) 懸濁重合用分散安定剤及びその製造方法
JP6442405B2 (ja) ビニルアセタール系重合体
JP6207921B2 (ja) ビニルアセタール系重合体
JP5981527B2 (ja) 増粘剤
TW202110919A (zh) 乙烯醇系嵌段共聚物及其製造方法
WO2019244967A1 (ja) ビニル系重合体の製造方法
JP6340287B2 (ja) ビニルアルコール系共重合体および成形物
JP2019112652A (ja) 懸濁重合用分散安定剤の製造方法及びビニル系樹脂の製造方法
JP5501913B2 (ja) ブロック共重合体の製法
JP6258219B2 (ja) ビニルアセタール系重合体
JP6193723B2 (ja) 主鎖に1,2,3−トリオール基を有するポリビニルアルコール系樹脂およびその製造方法
JP2023179809A (ja) 変性ビニルアルコール系重合体
JP2020200460A (ja) ポリビニルアルコール、その製造方法及びその用途
JP2018165291A (ja) ビニルアルコール系共重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822280

Country of ref document: EP

Kind code of ref document: A1