WO2019022035A1 - 化学強化ガラスおよびその製造方法 - Google Patents

化学強化ガラスおよびその製造方法 Download PDF

Info

Publication number
WO2019022035A1
WO2019022035A1 PCT/JP2018/027579 JP2018027579W WO2019022035A1 WO 2019022035 A1 WO2019022035 A1 WO 2019022035A1 JP 2018027579 W JP2018027579 W JP 2018027579W WO 2019022035 A1 WO2019022035 A1 WO 2019022035A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
chemically strengthened
strengthened glass
compressive stress
Prior art date
Application number
PCT/JP2018/027579
Other languages
English (en)
French (fr)
Inventor
清 李
健二 今北
小池 章夫
枝里子 前田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN201880049325.5A priority Critical patent/CN110958992A/zh
Publication of WO2019022035A1 publication Critical patent/WO2019022035A1/ja
Priority to US16/747,593 priority patent/US11731901B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0028Compositions for glass with special properties for crystal glass, e.g. lead-free crystal glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the present invention relates to chemically strengthened glass and a method of manufacturing the same.
  • Chemically strengthened glass is used for the cover glass of the portable terminal and the like. Chemically strengthened glass is, for example, brought into contact with a molten salt containing alkali metal ions to cause ion exchange between alkali metal ions in the glass and alkali metal ions in the molten salt, and compressive stress is applied to the glass surface A layer is formed.
  • Crystallized glass is one in which crystals are precipitated in the glass, and is harder and less susceptible to damage compared to amorphous glass that does not contain crystals.
  • Patent Document 1 describes an example in which crystallized glass is subjected to ion exchange treatment to be chemically strengthened. However, crystallized glass does not reach amorphous glass in terms of transparency.
  • Patent Document 2 describes a transparent crystallized glass.
  • Japanese Patent Publication No. 2016-529201 gazette Japanese Unexamined Patent Publication No. 64-52631
  • the cover glass of the portable terminal is required to be free from discoloration and a decrease in transmittance during use.
  • a change in color and a decrease in transmittance occur due to, for example, a change in the valence of transition metal ions contained in a small amount in the glass. .
  • the chemical strengthening properties of the crystallized glass are strongly influenced by the glass composition and precipitated crystals.
  • the scratch resistance and transparency of the crystallized glass are also strongly affected by the glass composition and the precipitated crystals. Therefore, in order to obtain a crystallized glass which is excellent in both the chemical strengthening property and the transparency, it is necessary to finely adjust the glass composition and the precipitated crystal.
  • the present invention provides a chemically strengthened glass which is excellent in transparency and strength and is not easily damaged.
  • the present invention is a chemically strengthened glass having a compressive stress layer on the surface, which is a crystallized glass having a surface compressive stress of 600 MPa or more, a compressive stress depth of 80 ⁇ m or more, and containing ⁇ -spodumene, and having a thickness of Provided is a chemically strengthened glass having a visible light transmittance of 70% or more at 0.8 mm.
  • the present invention provides a method for producing a chemically strengthened glass, wherein an amorphous glass having 1 to 5% is crystallized to form a crystallized glass containing ⁇ -spodumene, and the crystallized glass is chemically strengthened.
  • FIG. 1 is a diagram showing an example of a stress profile of chemically strengthened glass.
  • FIG. 2 is a view showing an example of a stress profile of the chemically strengthened glass.
  • FIG. 3 is a view showing an example of a powder X-ray diffraction pattern of crystallized glass.
  • FIG. 4 shows an example of an SEM image of a crystallized glass surface.
  • FIG. 5 shows an example of a TEM image of a crystallized glass flake.
  • amorphous glass and “crystallized glass” are collectively referred to as "glass".
  • amorphous glass refers to a glass in which no diffraction peak indicating crystals is observed by powder X-ray diffraction.
  • the “crystallized glass” is obtained by heat-treating “amorphous glass” to precipitate crystals, and contains crystals.
  • powder X-ray diffraction measurement 2 ⁇ is measured in the range of 10 ° to 80 ° using a CuK ⁇ ray, and when a diffraction peak appears, a precipitated crystal is identified by, for example, the three strong line method.
  • chemically strengthened glass refers to glass after being subjected to a chemical strengthening treatment
  • chemically tempered glass refers to glass before being subjected to a chemical strengthening treatment
  • the matrix composition of the chemically strengthened glass is the glass composition of the glass for chemical strengthening, and a portion deeper than the compressive stress depth (DOL) of the chemically strengthened glass except in the case where the extreme ion exchange treatment is performed. Is the matrix composition of chemically strengthened glass.
  • the glass composition is expressed by mass% based on oxide unless otherwise specified, and mass% is simply expressed as “%”. Further, in the present specification, “does not substantially contain” means that it is not higher than the impurity level contained in the raw material etc., that is, it is not intentionally added. Specifically, for example, less than 0.1%.
  • stress profile refers to a value representing a compressive stress value with the depth from the glass surface as a variable. An example is shown in FIG. 1 and FIG. In stress profiles, tensile stress is expressed as negative compressive stress.
  • Compressive stress value (CS)" can be measured by slicing a cross section of the glass and analyzing the sliced sample with a birefringence imaging system. As a birefringence imaging system, for example, there is a birefringence imaging system Abrio-IM manufactured by Tokyo Instruments. Moreover, it can measure also using scattered light photoelasticity. In this method, light can be incident from the surface of the glass, and the polarization of the scattered light can be analyzed to measure CS.
  • a stress measuring instrument utilizing scattered light photoelasticity is a scattered light photoelastic stress meter SLP-1000 manufactured by Orihara Mfg.
  • the compressive stress layer depth (DOL) is a depth at which the compressive stress value CS becomes zero.
  • the surface compressive stress may be described as CS 0 , the compressive stress at a depth of DOL / 4 as CS 1 , and the compressive stress at a depth of DOL / 2 as CS 2 .
  • m 1 (CS 0 -CS 0 /2) / (0-DOL 1)
  • m 2 represented by the following equation be the slope of the stress profile from depth DOL / 4 to depth DOL / 2.
  • m 2 (CS 1 -CS 2 ) / (DOL / 4-DOL / 2)
  • m 3 represented by the following equation be the slope of the stress profile from depth DOL / 2 to depth DOL.
  • m 3 (CS 2 -0) / (DOL / 2-DOL)
  • CT internal tensile stress
  • visible light transmittance refers to the average transmittance at 380 nm to 780 nm.
  • Haze value is measured according to JIS K3761: 2000 using a C light source.
  • solarization resistance is a property of glass which hardly causes solarization, and can be evaluated by the following method.
  • the chroma C * is measured before and after irradiating the light of a 250 W low-pressure mercury lamp from a distance of 50 mm for 60 minutes to evaluate the chroma difference before and after the irradiation.
  • the saturation C * is represented by the following equation according to the L * a * b * color system standardized by the International Commission on Illumination (CIE) in 1976.
  • Vickers hardness is a Vickers hardness (HV 0.1) defined in JIS R 1610: 2003.
  • a fracture toughness value says the indenter press-in method (IF method) fracture toughness value prescribed
  • the chemically strengthened glass of the present invention (hereinafter sometimes referred to as “the present tempered glass”) is a glass for chemical strengthening, which is a crystallized glass to be described later (hereinafter sometimes referred to as the “the present crystallized glass”). It is obtained by strengthening.
  • the surface compressive stress CS 0 is a least 600 MPa, difficult to break by deformation such as bending, preferred.
  • the surface compressive stress of the present tempered glass is more preferably 800 MPa or more.
  • the present tempered glass is preferable because the compressive stress depth DOL is not less than 80 ⁇ m, so it is hard to be broken even when the surface is scratched.
  • the DOL is preferably 100 ⁇ m or more.
  • the maximum depth at which the compressive stress value is 50 MPa or more (hereinafter sometimes referred to as “50 MPa depth”) is 80 ⁇ m or more, because the asphalt drop strength is high.
  • the 50 MPa depth is more preferably 100 ⁇ m or more.
  • the asphalt drop strength can be evaluated by the following asphalt drop test.
  • a glass plate (120 mm ⁇ 60 mm ⁇ 0.8 mm) to be evaluated is regarded as a cover glass of a smartphone, attached to a housing simulating a smartphone, and dropped onto a flat asphalt surface.
  • the total mass of the glass plate and the housing is about 140 g.
  • the test is started from a height of 30 cm, and if the chemically strengthened glass plate is not broken, the test of raising the height by 10 cm is repeated and the height when broken is recorded [unit: cm]. This test is made into one set, 10 sets are repeated, and the average value of the height when broken is taken as the "falling height".
  • the drop height in the asphalt drop test of the present tempered glass is preferably 100 cm or more.
  • the slope m 1 of the stress profile in the depth DOL 1 from the glass surface is preferably from -50 MPa / [mu] m, more preferably not more than -55MPa / ⁇ m, more preferably -60MPa / ⁇ m or less.
  • Chemically strengthened glass is a glass on which a compressive stress layer is formed on the surface, and tensile stress is generated in a part far from the surface, so the stress profile has a negative slope from the surface with zero depth toward the inside have. Therefore, m 1 is a negative value, and a large absolute value thereof provides a stress profile in which the surface compressive stress CS 0 is large and the internal tensile stress CT is small.
  • the slope m 2 of the stress profile at depths DOL / 4 to DOL / 2 has a negative value.
  • the inclination m 2 is preferably ⁇ 5 or more, more preferably ⁇ 3 or more, and still more preferably ⁇ 2 or more, in order to suppress scattering of fragments when the tempered glass is broken. If m 2 is too large, the 50 MPa depth may be reduced, and the asphalt drop strength may be insufficient. In order to increase the 50 MPa depth, m 2 is preferably -0.3 or less, more preferably -0.5 or less, and still more preferably -0.7 or less.
  • the slope m 3 of the stress profile at depths DOL / 2 to DOL has a negative value.
  • m 3 is preferably -5 or more, more preferably -3 or more, and still more preferably -2 or more.
  • the absolute value of m 3 is too small, the depth becomes smaller by 50 MPa, and when scratched, it is easily broken.
  • m 3 is preferably -0.3 or less, more preferably -0.5 or less, and still more preferably -0.7 or less.
  • the ratio m 2 / m 3 of the inclination m 2 to the inclination m 3 is preferably 2 or less, since a small CT can be obtained together with the deep DOL.
  • m ⁇ 2 > / m ⁇ 3 > 1.5 or less is more preferable, and 1 or less is further more preferable.
  • m 2 / m 3 is preferably 0.3 or more, more preferably 0.5 or more, and still more preferably 0.7 or more.
  • the internal tensile stress (CT) of the present tempered glass is preferably 110 MPa or less because the scattering of fragments is suppressed when the chemically tempered glass is broken.
  • the CT is more preferably 100 MPa or less, still more preferably 90 MPa or less.
  • CS becomes smaller, and it tends to be difficult to obtain sufficient strength. Therefore, 50 MPa or more is preferable, 55 MPa or more is more preferable, and 60 MPa or more is more preferable.
  • the four-point bending strength of the present tempered glass is preferably 900 MPa or more.
  • the four-point bending strength is measured using a test piece of 40 mm ⁇ 5 mm ⁇ 0.8 mm with a lower span of 30 mm, an upper span of 10 mm, and a cross head speed of 0.5 mm / min. Let the average value of 10 test pieces be 4-point bending strength.
  • the Vickers hardness of the tempered glass tends to be larger than that before tempering due to the chemical tempering treatment. It is considered that the ion exchange between small ions in the crystal and large ions in the molten salt causes compressive stress in the crystal. 720 or more are preferable, as for the Vickers hardness of this tempered glass, 740 or more are more preferable, and 780 or more are more preferable. Moreover, the Vickers hardness of this tempered glass is 950 or less normally.
  • FIG. 3 The example of the X-ray-diffraction pattern of this tempered glass and the crystallized glass (glass for chemical strengthening) before strengthening is shown in FIG.
  • the solid line is the X-ray diffraction pattern measured for the crystallized glass plate before strengthening, and the diffraction line of the ⁇ -spodumene crystal shown by black circles in FIG. 3 is observed.
  • the dotted line shows the X-ray diffraction pattern measured for the crystallized glass plate after chemical strengthening.
  • the reason that the position of the diffraction peak is shifted to the lower angle side by the chemical strengthening is considered to be that the ion exchange between the small ions in the crystal and the large ions in the molten salt occurs and the lattice spacing becomes large.
  • the visible light transmittance of the tempered glass is 70% or more when the thickness is 0.8 mm, so the screen can be easily seen when used as a cover glass of a portable display.
  • the visible light transmittance is preferably 80% or more, more preferably 85% or more, and still more preferably 88% or more.
  • the visible light transmittance is preferably as high as possible, but is usually 90% or less. 90% is the same transmittance as ordinary amorphous glass.
  • the haze value is preferably 1.5% or less, more preferably 1.2% or less, still more preferably 1% or less, and very preferably 0.8% or less, 0. 5% or less is most preferable. The smaller the haze value, the better.
  • the mechanical strength is reduced. In order to heighten mechanical strength, 0.05% or more is preferable and, as for the haze value in the case of thickness 0.8mm, 0.1% or more is more preferable.
  • the matrix composition (the composition of the glass for chemical strengthening) of this tempered glass is 58 to 70% of SiO 2 , 15 to 30% of Al 2 O 3 , and 2 to 10% of Li 2 O in mass% display based on oxide 0-5% Na 2 O, 0-2% K 2 O, 0.5-6% SnO 2 , 0.5-6% ZrO 2 and 0-6% P 2 O 5 And Na 2 O + K 2 O is preferably 1 to 5%. That is, the present tempered glass is preferably one obtained by crystallizing amorphous glass of the composition and chemically strengthening it.
  • the present tempered glass as a whole has almost the same composition as the crystallized glass before strengthening, except in the case where the extreme ion exchange treatment is performed.
  • the composition of the deepest part from the glass surface is the same as the composition of the crystallized glass before strengthening, except in the case of the extreme ion exchange treatment.
  • the present tempered glass is a crystallized glass in which ⁇ -spodumene is precipitated.
  • ⁇ -spodumene is expressed as LiAlSi 2 O 6, and generally, in the X-ray diffraction spectrum, the Bragg angle (2 ⁇ ) is 25.55 ° ⁇ 0.05 °, 22.71 ° ⁇ 0.05 °, 28 It is a crystal showing a diffraction peak at 20 ° ⁇ 0.05 °.
  • the present crystallized glass (hereinafter sometimes referred to as "the present glass for chemical strengthening”) is obtained by heat treatment of an amorphous glass described later to crystallize it.
  • the crystallized glass containing ⁇ -spodumene has excellent chemical strengthening properties.
  • ⁇ -quartz solid solution may precipitate depending on heat treatment conditions and the like.
  • vergelite is a crystal represented as LiAlSi 2 O 6 similarly to ⁇ -spodumene. Even if it contains ⁇ -quartz solid solution or vergelite, the crystallized glass containing ⁇ -spodumene has a larger CS by chemical strengthening, as compared to the crystallized glass not containing ⁇ -spodumene.
  • ⁇ -spodumene Since ⁇ -spodumene has a denser crystal structure than ⁇ -quartz solid solution or vergelite, high compressive stress is generated when ions in the precipitated crystal are replaced with larger ions by ion exchange treatment for chemical strengthening. The effect of chemical strengthening is considered to be high.
  • Crystallized glass containing ⁇ -spodumene is also known for having a low thermal expansion coefficient. Since the present crystallized glass has a small coefficient of thermal expansion, the occurrence of warpage due to heat treatment accompanying chemical strengthening or the like is suppressed. Moreover, since it is excellent in thermal shock resistance, it is possible to heat or cool rapidly and it is easy to handle.
  • the average thermal expansion coefficient at 50 ° C. to 350 ° C. of the present crystallized glass is preferably 30 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 25 ⁇ 10 ⁇ 7 / ° C. or less, still more preferably 20 ⁇ 10 ⁇ 7 / ° C. Or less, particularly preferably 15 ⁇ 10 ⁇ 7 / ° C. or less.
  • the average thermal expansion coefficient at 50 ° C. to 350 ° C. is preferably as small as possible, but is usually 10 ⁇ 10 ⁇ 7 / ° C. or more.
  • the crystallized glass containing ⁇ -spodumene tends to be large in crystal content, so the transparency is low and the haze value is often large.
  • the present chemical strengthening glass contains a large number of minute crystals, its transparency is high and its haze value is small even if the crystallization ratio is high.
  • the present crystallized glass is a crystallized glass in which only ⁇ -spodumene is precipitated as a crystal.
  • the crystallization ratio of the present chemical strengthening glass is preferably 10% or more, more preferably 15% or more, further preferably 20% or more, and particularly preferably 25% or more, in order to increase mechanical strength. In order to enhance transparency, 70% or less is preferable, 60% or less is more preferable, and 50% or less is particularly preferable. The small crystallization ratio is also excellent in that it is easy to heat and bend it.
  • the crystallization rate can be calculated from the X-ray diffraction intensity by the Rietveld method.
  • the Rietveld method is described in "Crystal analysis handbook” edited by "Crystal Analysis Handbook” edited by the Crystallographic Society of Japan, “Crystal analysis handbook” (Kyoritsu Shuppan 1999, p 492 to 499).
  • the average particle size of the precipitated crystals can be determined by observation with a transmission electron microscope (TEM). Also, it can be easily estimated from a scanning electron microscope (SEM) image.
  • FIG. 4 shows an example of a SEM image obtained by mirror-polishing a cross section of the crystallized glass, etching it with hydrofluoric acid, and observing it with a scanning electron microscope (SEM). In the SEM image of FIG. 4, the brightly visible portions are precipitated crystals, and the darkly visible portions are residual glass phases.
  • FIG. 5 is a TEM image obtained for the same crystallized glass.
  • the fracture toughness value of the present glass for chemical strengthening is preferably 0.8 MPa ⁇ m 1/2 or more, more preferably 1 MPa ⁇ m 1/2 or more, since fragments are less likely to scatter when the chemically strengthened glass is broken.
  • the present chemical strengthening glass has a high Vickers hardness because it contains crystals. Therefore, it is hard to be damaged and excellent in abrasion resistance.
  • the Vickers hardness is preferably 680 or more, more preferably 700 or more, and still more preferably 740 or more. If the hardness is too high, processing becomes difficult, so the Vickers hardness of the present glass for chemical strengthening is preferably 1100 or less, more preferably 1050 or less, and still more preferably 1000 or less.
  • the visible light transmittance and haze value of the present glass for chemical strengthening are the same as in the case of the present tempered glass, and therefore the description thereof is omitted. Moreover, since the glass composition of the present glass for chemical strengthening is the same as the composition of amorphous glass before crystallization, it will be described in the section of amorphous glass.
  • the amorphous glass according to the present invention contains 58 to 70% of SiO 2 , 15 to 30% of Al 2 O 3 , 2 to 10% of Li 2 O, and 0% of Na 2 O in mass% display based on oxide. 2 5%, 0 to 2% of K 2 O, 0.5 to 6% of SnO 2 , 0.5 to 6% of ZrO 2 , 0 to 6% of P 2 O 5 , Na 2 O and K
  • the total content of 2 O is 1 to 5%.
  • this glass composition will be described.
  • SiO 2 is a component forming a glass network structure. It is also a component that enhances chemical durability and is also a component of ⁇ -spodumene, which is a precipitated crystal.
  • the content of SiO 2 is preferably 58% or more.
  • the content of SiO 2 is more preferably 60% or more, still more preferably 64% or more.
  • the content of SiO 2 is preferably 70% or less, more preferably 68% or less, and still more preferably 66% or less.
  • Al 2 O 3 is an effective component to increase surface compression stress by chemical strengthening. In addition, it is a component of ⁇ -spodumene and is essential.
  • the content of Al 2 O 3 is preferably 15% or more.
  • the content of Al 2 O 3 is more preferably 20% or more.
  • the content of Al 2 O 3 is preferably 30% or less, more preferably 25% or less.
  • Li 2 O is a component that forms surface compressive stress by ion exchange, is a component of ⁇ -spodumene, and is essential.
  • the content of Li 2 O is preferably 2% or more, more preferably 4% or more.
  • the content of Li 2 O is preferably 10% or less, more preferably 8% or less, and still more preferably 6% or less.
  • the content ratio of Li 2 O and Al 2 O 3 Li 2 O / Al 2 O 3 is preferably 0.3 or less in order to increase transparency. If Li 2 O / Al 2 O 3 is too large, it is considered that crystallization rapidly proceeds during heat treatment to increase the grain size of the crystals and to reduce the transparency.
  • Na 2 O is a component that improves the meltability of glass.
  • Na 2 O is not essential, but is preferably 0.5% or more, more preferably 1% or more. If the amount of Na 2 O is too large, ⁇ -spodumene crystals are difficult to precipitate or the chemical strengthening property is reduced, so 5% or less is preferable, 4% or less is more preferable, and 3% or less is more preferable.
  • K 2 O like Na 2 O, is a component that lowers the melting temperature of glass, and may be contained.
  • the content in the case of containing K 2 O is preferably 0.5% or more, more preferably 1% or more.
  • the total content Na 2 O + K 2 O of Na 2 O and K 2 O is preferably at least 1%, 2% or more is more preferable. If the amount of K 2 O is too large, ⁇ -spodumene crystals are difficult to precipitate, so 2% or less is preferable.
  • the total content Na 2 O + K 2 O is more than 5% and promotion of crystallization during the heat treatment is the inhibition of the Na 2 O and K 2 O, since there is a possibility that transparency may decrease, preferably 5% or less 4% or less is more preferable, and 3% or less is more preferable.
  • ZrO 2 is a component that constitutes a crystal nucleus at the time of crystallization treatment, and is preferably contained.
  • the content of ZrO 2 is preferably 0.5% or more, more preferably 1% or more.
  • the content of ZrO 2 is preferably 6% or less, more preferably 5% or less, and still more preferably 4% or less.
  • SnO 2 is a component constituting a crystal nucleus at the time of crystallization treatment, and has a high effect of promoting the precipitation of ⁇ -spodumene crystals, so it is preferable to contain 0.5% or more.
  • the content of SnO 2 is more preferably 1% or more, further preferably 1.5% or more.
  • the content of SnO 2 is 6% or less, defects due to the unmelted material are less likely to occur in the glass, which is preferable. More preferably, it is 5% or less, more preferably 4% or less.
  • SnO 2 is also a component that enhances solarization resistance.
  • the content of SnO 2 is preferably 1% or more, more preferably 1.5% or more, in order to suppress solarization.
  • TiO 2 and ZrO 2 are known as crystal nucleation components of crystallized glass, but according to the study of the present inventors, in the present crystallized glass, ZrO 2 is more effective than TiO 2 in terms of ZrO 2 . The effect was high. Moreover, the addition of SnO 2, the transparency of the crystallized glass was higher.
  • SnO 2 + ZrO 2 content of SnO 2 and ZrO 2 is 3% or more is formed ZrO 2 nuclei in large quantities, the respective nuclear transmittance so suppress the growth is improved.
  • the content of SnO 2 + ZrO 2 is more preferably 4% or more, further preferably 5% or more, particularly preferably 6% or more, and most preferably 7% or more.
  • SnO 2 + ZrO 2 is preferably 12% or less, more preferably 10% or less, still more preferably 9% or less, and particularly preferably 8% or less, because defects due to unmelted substances hardly occur in glass.
  • the ratio of the amount of SnO 2 to the total amount of SnO 2 / (SnO 2 + ZrO 2 ) is preferably 0.3 or more, and 0.35 or more to enhance transparency. More preferably, 0.45 or more is more preferable.
  • SnO 2 / (SnO 2 + ZrO 2 ) is preferably 0.7 or less, more preferably 0.65 or less, and still more preferably 0.6 or less.
  • TiO 2 is a component which becomes a nucleation component of crystallized glass and which makes it difficult for fragments to scatter when the chemically strengthened glass is broken, and may be contained.
  • the content in the case of containing TiO 2 is preferably 0.1% or more, more preferably 0.15% or more, and still more preferably 0.2% or more.
  • the content of TiO 2 is more than 5%, devitrification tends to occur at the time of melting, and the quality of the chemically strengthened glass may be degraded.
  • it is 3% or less, more preferably 1.5% or less.
  • the content of TiO 2 is preferably 1% or less, more preferably 0.5% or less, still more preferably 0.25 to prevent coloration. It is particularly preferable that the content is not more than 10% and substantially not contained.
  • P 2 O 5 has an effect of promoting phase separation of glass to promote crystallization, and may be contained.
  • the content in the case of containing P 2 O 5 is preferably 0.1% or more, more preferably 0.5% or more, still more preferably 1% or more, and particularly preferably 2% or more.
  • the content of P 2 O 5 is preferably 6% or less, more preferably 5% or less, still more preferably 4% or less, particularly preferably 3% or less, and most preferably 2% or less. In order to further increase the acid resistance, it is preferable not to contain substantially.
  • B 2 O 3 is a component that improves the chipping resistance of the chemically strengthened glass or the chemically strengthened glass and improves the meltability, and may be contained.
  • B 2 O 3 is not essential, the content in the case of containing B 2 O 3 is preferably 0.5% or more, more preferably 1% or more, more preferably to improve the meltability. 2% or more.
  • the content of B 2 O 3 exceeds 5%, striae occurs at the time of melting and the quality of the glass for chemical strengthening is easily deteriorated, so 5% or less is preferable.
  • the content of B 2 O 3 is more preferably 4% or less, still more preferably 3% or less, and particularly preferably 1% or less. In order to raise acid resistance, it is preferable not to contain substantially.
  • MgO is a component that increases the surface compression stress of the chemically strengthened glass, and is a component that suppresses the scattering of fragments when the chemically strengthened glass is broken, and may be contained.
  • the content in the case of containing MgO is preferably 0.5% or more, more preferably 1% or more.
  • 5% or less is preferable, 4% or less is more preferable, and 3% or less is more preferable.
  • CaO is a component that improves the meltability of the glass for chemical strengthening, and may be included to prevent devitrification during melting and to improve solubility while suppressing an increase in the thermal expansion coefficient.
  • the content in the case of containing CaO is preferably 0.5% or more, more preferably 1% or more.
  • the content of CaO is preferably 4% or less, more preferably 3% or less, and particularly preferably 2% or less.
  • SrO is a component that improves the meltability of the glass for chemical strengthening, and improves the refractive index of the glass to make the crystallized glass by bringing the refractive index of the residual glass phase after crystallization close to the refractive index of the precipitated crystal. It may be contained because it can improve the transmittance of
  • the content in the case of containing SrO is preferably 0.1% or more, more preferably 0.5% or more, and still more preferably 1% or more.
  • the SrO content is too large, the ion exchange rate decreases, so 3% or less is preferable, 2.5% or less is more preferable, 2% or less is more preferable, and 1% or less is particularly preferable.
  • BaO is a component that improves the meltability of the glass for chemical strengthening, and also improves the refractive index of the glass to bring the refractive index of the residual glass phase after crystallization close to the refractive index of the ⁇ -spodumene crystal phase. You may contain, since the transmittance
  • the content in the case of containing BaO is preferably 0.1% or more, more preferably 0.5% or more, and still more preferably 1% or more. On the other hand, if the BaO content is too large, the ion exchange rate is reduced, so 3% or less is preferable, 2.5% or less is more preferable, 2% or less is more preferable, and 1% or less is particularly preferable.
  • ZnO is a component that lowers the thermal expansion coefficient of the glass for chemical strengthening and increases the chemical durability, and also improves the refractive index of the glass, and the refractive index of the residual glass phase after crystallization and the ⁇ -spodumene crystal You may make it contain in order to improve the transmittance
  • the content of ZnO is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, and particularly preferably 2% or more.
  • 4% or less is preferable, 3% or less is more preferable, and 2% or less is more preferable.
  • Y 2 O 3 , La 2 O 3 , Nb 2 O 5 and Ta 2 O 5 are all components that make it difficult for fragments to scatter when the chemically strengthened glass is broken, and are included to increase the refractive index. May be When these components are contained, the total content of Y 2 O 3 , La 2 O 3 and Nb 2 O 5 Y 2 O 3 + La 2 O 3 + Nb 2 O 5 is preferably 0.5% or more, more preferably Is preferably at least 1%, more preferably at least 1.5%, particularly preferably at least 2%.
  • the content of Y 2 O 3 + La 2 O 3 + Nb 2 O 5 is preferably 4% or less, more preferably 3% or less, more preferably 2% or less And particularly preferably 1% or less.
  • the total content of Y 2 O 3 , La 2 O 3 , Nb 2 O 5 and Ta 2 O 5 Y 2 O 3 + La 2 O 3 + Nb 2 O 5 + Ta 2 O 5 is preferably 0.5% or more More preferably, it is 1% or more, more preferably 1.5% or more, and particularly preferably 2% or more.
  • Y 2 O 3 + La 2 O 3 + Nb 2 O 5 + Ta 2 O 5 is preferably 4% or less, more preferably 3% or less, and still more preferably 2 in order to make the glass difficult to devitrify during melting. % Or less, particularly preferably 1% or less.
  • CeO 2 has an effect of oxidizing the glass, and when the content of SnO 2 is large, the reduction to the coloring component SnO may be suppressed to suppress coloring.
  • the content of CeO 2 is preferably 0.03% or more, more preferably 0.05% or more, and still more preferably 0.07% or more.
  • the content of CeO 2 is preferably 1.5% or less, more preferably 1% or less, in order to make the glass easily colored if the content of CeO 2 is too large. preferable.
  • coloring component in the range which does not inhibit achievement of a desired chemical-strengthening characteristic.
  • the coloring component for example, Co 3 O 4 , MnO 2 , Fe 2 O 3 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , Er 2 O 3 , Nd 2 O 3 is mentioned as a suitable thing.
  • the content of the coloring component is preferably in the range of 1% or less in total. If it is desired to increase the visible light transmittance of the glass, it is preferred that these components be substantially absent.
  • SO 3 chlorides, fluorides or the like may also contain appropriate. It is preferable not to contain As 2 O 3 . When Sb 2 O 3 is contained, it is preferably 0.3% or less, more preferably 0.1% or less, and most preferably not contained.
  • the chemically strengthened glass of the present invention is produced by subjecting the above-mentioned amorphous glass to heat treatment to obtain a crystallized glass, and the obtained crystallized glass is subjected to a chemical strengthening treatment.
  • Amorphous glass can be produced, for example, by the following method.
  • the manufacturing method described below is an example in the case of manufacturing plate-shaped chemically strengthened glass.
  • the glass material is prepared so as to obtain a glass of a preferred composition, and is heated and melted in a glass melting furnace. Thereafter, the molten glass is homogenized by bubbling, stirring, addition of a clarifying agent, etc., and formed into a glass plate of a predetermined thickness by a known forming method, and gradually cooled.
  • the molten glass may be formed into a block shape, may be annealed and then cut into a plate shape.
  • a float method As a shaping
  • the float method In particular, in the case of producing a large glass plate, the float method is preferred. Further, continuous molding methods other than the float method, for example, the fusion method and the down draw method are also preferable.
  • Crystallization treatment By heat-treating the amorphous glass obtained by the above-mentioned procedure, a crystallized glass is obtained.
  • the heat treatment is preferably performed by a two-step heat treatment in which the temperature is raised from room temperature to the first treatment temperature and held for a certain time, and then held for a certain time at the second treatment temperature higher than the first treatment temperature. .
  • the first processing temperature is preferably a temperature range in which the crystal nucleation rate increases in the glass composition
  • the second processing temperature is a temperature range in which the crystal growth rate increases in the glass composition Is preferred.
  • the holding time at the first treatment temperature is preferably long so as to generate a sufficient number of crystal nuclei. The generation of a large number of crystal nuclei reduces the size of each crystal, and a crystallized glass with high transparency can be obtained.
  • the first treatment temperature is, for example, 550 ° C. to 800 ° C.
  • the second treatment temperature is, for example, 850 ° C. to 1000 ° C., and after being held at the first treatment temperature for 2 hours to 10 hours, the second treatment temperature Hold for 2 hours to 10 hours.
  • the crystallized glass obtained by the above-mentioned procedure is subjected to grinding and polishing treatment as needed to form a crystallized glass plate.
  • grinding and polishing treatment as needed to form a crystallized glass plate.
  • the chemical strengthening treatment involves contacting the glass with the metal salt by, for example, immersing in a melt of a metal salt (for example, potassium nitrate) containing a metal ion having a large ion radius (typically, Na ion or K ion) Therefore, metal ions with small ion radius (typically, Na ions or Li ions) in glass are metal ions with large ion radius, typically Na ions or K ions for Li ions, This is a process of substituting K ions for Na ions.
  • a metal salt for example, potassium nitrate
  • nitrate, a sulfate, carbonate, a chloride etc. examples include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, silver nitrate and the like.
  • examples of the sulfate include lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, silver sulfate and the like.
  • Examples of the chloride include lithium chloride, sodium chloride, potassium chloride, cesium chloride, silver chloride and the like.
  • the processing conditions of the chemical strengthening treatment may be appropriately selected from time and temperature in consideration of the glass composition, the type of molten salt, and the like.
  • the present tempered glass is preferably obtained, for example, by the following two-step chemical strengthening treatment.
  • the present crystallized glass is immersed for about 0.1 to 10 hours in a metal salt (for example, sodium nitrate) containing Na ions at about 350 to 500.degree.
  • a metal salt for example, sodium nitrate
  • This causes ion exchange between Li ions in the crystallized glass and Na ions in the metal salt, and for example, a compressive stress layer having a surface compressive stress of 200 MPa or more and a compressive stress depth of 80 ⁇ m or more can be formed.
  • the surface compressive stress exceeds 1000 MPa, it becomes difficult to increase DOL while keeping CT low.
  • the surface compressive stress is preferably 900 MPa or less, more preferably 700 MPa or less, and still more preferably 600 MPa or less.
  • the substrate is immersed in a metal salt (for example, potassium nitrate) containing K ions at about 350 to 500 ° C. for about 0.1 to 10 hours.
  • a metal salt for example, potassium nitrate
  • K ions at about 350 to 500 ° C. for about 0.1 to 10 hours.
  • a large compressive stress is generated in, for example, a portion within about 10 ⁇ m in depth of the compressive stress layer formed in the previous process.
  • a preferable stress profile having a surface compressive stress of 600 MPa or more can be easily obtained.
  • the substrate may be immersed in a metal salt containing Na ions, and then held at 350 to 500 ° C. in the air for 1 to 5 hours, and then immersed in a metal salt containing K ions.
  • the holding temperature is preferably 425 ° C. to 475 ° C., more preferably 440 ° C. to 460 ° C.
  • a metal salt containing Na ions and Li ions for example, a mixed salt of sodium nitrate and lithium nitrate
  • Immersion in a metal salt containing Na ions and Li ions causes ion exchange between Na ions in the glass and Li ions in the metal salt to form a more preferable stress profile, thereby enhancing the asphalt drop strength.
  • the total processing time is preferably 10 hours or less, more preferably 5 hours or less, and still more preferably 3 hours or less, from the viewpoint of production efficiency.
  • the treatment time needs to be 0.5 hours or more in total. More preferably, it is 1 hour or more.
  • the tempered glass is particularly useful as a cover glass used for mobile devices such as mobile phones and smartphones. Furthermore, it is useful also for the cover glass of display apparatuses, such as a television, a personal computer, and a touch panel, not for the purpose of carrying, an elevator wall surface, and a wall surface (full surface display) of buildings such as houses and buildings. In addition, it is useful as building materials such as window glass, table tops, interiors of automobiles and airplanes, etc., and as cover glasses for those, and applications such as housings having a curved surface shape. In addition, since the tempered glass has high transparency but low transmittance of ultraviolet light, it is particularly preferable to use it as a cover glass for an organic EL display, because it leads to the operation stability and the lifetime of the organic EL display.
  • Examples 1 to 11 and Examples 18 to 25 are Examples, and Examples 12 to 17 are Comparative Examples.
  • the raw materials for the glass were prepared so as to obtain the glass compositions shown by mass% on the basis of oxides in Tables 1 to 3, and weighed to obtain 800 g of glass. Then, the mixed glass raw material was put into a platinum crucible, put into an electric furnace at 1500 to 1700 ° C., melted for about 5 hours, defoamed and homogenized.
  • the obtained molten glass was poured into a mold and held at a temperature of glass transition temperature for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain a glass block.
  • a plurality of glass blocks were prepared.
  • Glass transition point Based on JIS R 1618: 2002, a thermal expansion curve was obtained at a temperature rising rate of 10 ° C./minute using a thermal expansion meter (made by Bruker AXS Co., Ltd .; TD5000SA). Moreover, the glass transition point Tg [unit: ° C.] was determined from the obtained thermal expansion curve. Blank fields in the table indicate unevaluated.
  • the obtained glass block is processed to 50 mm ⁇ 50 mm ⁇ 1.5 mm, and then heat treated under the conditions described in Tables 4 to 6 to obtain crystallized glass (Example 1 to 6) Example 16, Examples 18 to 25) were obtained.
  • the upper stage is nucleation treatment condition
  • the lower stage is crystal growth treatment condition, and for example, when described as 750 ° C.-4 h in the upper stage and 920 ° C.-4 h in the lower stage, hold at 750 ° C. for 4 hours It means holding at 920 ° C. for 4 hours.
  • the obtained crystallized glass was processed and mirror-polished to obtain a crystallized glass plate having a thickness t of 0.8 mm.
  • a rod-like sample for measuring the thermal expansion coefficient was produced.
  • a part of the remaining crystallized glass was crushed and used for analysis of precipitated crystals.
  • Thermal expansion coefficient Based on JIS R 1618: 2002, the average thermal expansion coefficient (unit: 10 -7 / ° C) at 50 ° C to 350 ° C was measured using a thermal expansion meter (made by Bruker AXS Co., Ltd .; TD5000SA). The heating rate was 10 ° C./min.
  • the crystallized glass was processed into a diameter of 6 mm and a thickness of 1 mm, and the specific heat was measured using a differential scanning calorimeter (manufactured by Netti; DSC 404 F3). Further, the crystallized glass was processed into a diameter of 5 mm and a thickness of 1 mm, and the thermal diffusivity was measured using a laser flash thermal property measuring apparatus (manufactured by Kyoto Denshi Kogyo Co., Ltd .; LFA-502). From both results, thermal conductivity [unit: W / m ⁇ K] at a temperature of 20 ° C. was calculated.
  • Example 1 to 9, Example 12, Example 14, Example 15 and Examples 17 to 25 were immersed in the molten sodium nitrate salt at 450 ° C. for 30 minutes, and then immersed in the molten potassium nitrate salt at 450 ° C. for 30 minutes to be chemically strengthened.
  • Example 10 was immersed in sodium nitrate at 450 ° C. for 1 hour, kept in air at 450 ° C. for 2.5 hours, and then immersed in potassium nitrate at 425 ° C. for 30 minutes for chemical strengthening.
  • Example 11 was chemically strengthened by immersion for 90 minutes in a sodium nitrate-potassium nitrate mixed salt (having a weight ratio of sodium nitrate to potassium nitrate of 10:90) at 450 ° C.
  • Example 13 was chemically strengthened by immersing it in a lithium sulfate-potassium sulfate mixed salt (having a weight ratio of lithium sulfate to potassium sulfate of 90:10) at 740 ° C. for 240 minutes.
  • Example 16 did not chemically strengthen. The following characteristics were evaluated about the obtained sample.
  • Stress profile The stress value is measured using a surface stress meter FSM-6000 manufactured by Orihara Mfg. Co., Ltd. and a measuring instrument SLP 1000 manufactured by Orihara Mfg. Co., Ltd. using scattered light photoelasticity, and the compressive stress value CS 0 [unit: MPa] of the glass surface
  • the depth DOL (unit: ⁇ m) at which the compressive stress value becomes zero and the maximum depth (unit: ⁇ m) at which the compressive stress value becomes 50 MPa or more were read.
  • the stress profile of Example 1 is shown in FIG. 1 and that of Example 10 in FIG.
  • the integrating sphere unit is attached to a spectrophotometer (PerkinElmer; LAMBDA 950), the transmittance of the crystallized glass plate at 380 to 780 nm is measured, and the spectrum obtained shows light in the L * a * b * color system
  • the pre-irradiation saturation C * 1 was calculated.
  • a 250 W low-pressure mercury lamp was installed so that the distance from the lamp to the surface of the glass plate was 50 mm, and the light of the low-pressure mercury lamp was irradiated for 60 minutes.
  • Example 1 with Examples 13 and 15 shows that the chemical strengthening property is excellent when the precipitated crystal is ⁇ -spodumene.
  • Comparison of Example 1 with Examples 10 and 11 reveals that adjusting the stress profile provides high strength. Also, it can be seen that the stress profile differs depending on the chemical strengthening treatment conditions even with the same crystallized glass.
  • Comparison of Example 1 and Example 12 shows that the transmittance decreases depending on the degree of crystallization temperature treatment.
  • Example 1 A comparison of the Example 18 glass 1 containing SnO 2 it can be seen that solarization resistance compared to glass 14 containing no SnO 2 is better.
  • Example 1 and Example 25 are compared, Example 1 in which only ⁇ -spodumene precipitates as a main crystal has a smaller haze value as compared with Example 25 in which both ⁇ -spodumene and other crystals are precipitated.

Abstract

本発明は、透明性と強度に優れ、かつ傷つきにくい化学強化ガラスの提供を目的とする。本発明は、表面に圧縮応力層を有する化学強化ガラスであって、厚さが0.8mmに換算した可視光透過率が70%以上であり、表面圧縮応力が600MPa以上かつ圧縮応力深さが80μm以上であり、β-スポジュメンを含有する化学強化ガラスに関する。

Description

化学強化ガラスおよびその製造方法
 本発明は、化学強化ガラスおよびその製造方法に関する。
 携帯端末のカバーガラス等には、化学強化ガラスが用いられている。
 化学強化ガラスは、例えばアルカリ金属イオンを含む溶融塩にガラスを接触させて、ガラス中のアルカリ金属イオンと、溶融塩中のアルカリ金属イオンとの間でイオン交換を生じさせ、ガラス表面に圧縮応力層を形成したものである。
 結晶化ガラスは、ガラス中に結晶を析出させたものであり、結晶を含まない非晶質ガラスと比較して硬く、傷つきにくい。特許文献1には、結晶化ガラスをイオン交換処理して化学強化した例が記載されている。しかし、結晶化ガラスは、透明性の点で非晶質ガラスに及ばない。
 特許文献2には、透明結晶化ガラスが記載されている。
日本国特表2016-529201号公報 日本国特開昭64-52631号公報
 しかし、透明結晶化ガラスでもカバーガラスに適するほどの高い透明性を有するものは少ない。また、特許文献2に記載の結晶化ガラスは化学強化されていないので、カバーガラスとしては強度が不十分である。
 携帯端末のカバーガラスは、画面の視認性を確保するために、使用中に変色や透過率の低下が生じないことが求められる。しかし、一般的なガラスに光を照射すると、ガラス中に少量含まれる遷移金属イオンの価数が変化する等のために色の変化や透過率の低下(ソラリゼーション)が生じることが知られている。
 結晶化ガラスの化学強化特性は、ガラス組成や析出結晶の影響を強く受ける。結晶化ガラスの傷付きにくさや透明性も、ガラス組成や析出結晶の影響を強く受ける。そこで、化学強化特性と透明性の両方が優れる結晶化ガラスを得るためには、ガラス組成や析出結晶の微妙な調整が必要となる。
 本発明は、透明性と強度に優れ、かつ傷つきにくい化学強化ガラスを提供する。
 本発明は、表面に圧縮応力層を有する化学強化ガラスであって、表面圧縮応力が600MPa以上、圧縮応力深さが80μm以上であり、β-スポジュメンを含有する結晶化ガラスであり、厚さが0.8mmにおける可視光透過率が70%以上である化学強化ガラスを提供する。
 また、酸化物基準の質量%表示で、SiOを58~70%、Alを15~30%、LiOを2~10%、NaOを0~5%、KOを0~2%、SnOを0.5~6%、ZrOを0.5~6%、Pを0~6%含有し、NaOおよびKOの含有量の合計が1~5%である非晶質ガラスを結晶化してβ-スポジュメンを含む結晶化ガラスとし、該結晶化ガラスを化学強化する、化学強化ガラスの製造方法を提供する。
 本発明によれば、透明性と機械的強度に優れ、傷つきにくい化学強化ガラスが得られる。
図1は、化学強化ガラスの応力プロファイルの一例を示す図である。 図2は、化学強化ガラスの応力プロファイルの一例を示す図である。 図3は、結晶化ガラスの粉末X線回折パターンの一例を示す図である。 図4は、結晶化ガラス表面のSEM像の一例を示す。 図5は、結晶化ガラス薄片のTEM像の一例を示す。
 本明細書において数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 本明細書においては、「非晶質ガラス」と「結晶化ガラス」とを合わせて「ガラス」という。本明細書において「非晶質ガラス」は、粉末X線回折法によって、結晶を示す回折ピークが認められないガラスをいう。「結晶化ガラス」は、「非晶質ガラス」を加熱処理して、結晶を析出させたものであり、結晶を含有する。
 粉末X線回折測定は、CuKα線を用いて2θが10°~80°の範囲を測定し、回折ピークが現れた場合には、例えば、3強線法によって析出結晶を同定する。
 以下において、「化学強化ガラス」は、化学強化処理を施した後のガラスを指し、「化学強化用ガラス」は、化学強化処理を施す前のガラスを指す。
 また、「化学強化ガラスの母組成」とは、化学強化用ガラスのガラス組成であり、極端なイオン交換処理がされた場合を除いて、化学強化ガラスの圧縮応力深さ(DOL)より深い部分のガラス組成は化学強化ガラスの母組成である。
 本明細書において、ガラス組成は、特に断らない限り酸化物基準の質量%表示で表し、質量%を単に「%」と表記する。
 また、本明細書において「実質的に含有しない」とは、原材料等に含まれる不純物レベル以下である、つまり意図的に加えたものではないことをいう。具体的には、たとえば0.1%未満である。
 本明細書において「応力プロファイル」はガラス表面からの深さを変数として圧縮応力値を表したものをいう。一例を図1、図2に示す。応力プロファイルにおいて、引張応力は負の圧縮応力として表される。
 「圧縮応力値(CS)」は、ガラスの断面を薄片化し、該薄片化したサンプルを複屈折イメージングシステムで解析することによって測定できる。複屈折イメージングシステムとしては、例えば、東京インスツルメンツ製複屈折イメージングシステムAbrio-IMがある。また、散乱光光弾性を利用しても測定できる。この方法では、ガラスの表面から光を入射し、その散乱光の偏光を解析してCSを測定できる。散乱光光弾性を利用した応力測定器としては、例えば、折原製作所製散乱光光弾性応力計SLP-1000がある。
 また、「圧縮応力層深さ(DOL)」は、圧縮応力値CSがゼロとなる深さである。
 以下では表面圧縮応力をCS、深さがDOL/4における圧縮応力をCS、深さがDOL/2における圧縮応力をCSと記載することがある。
 また、圧縮応力値がCS/2となる深さをDOLとし、次の式で表されるmをガラス表面から深さDOLにおける応力プロファイルの傾きとする。
 m=(CS-CS/2)/(0-DOL
 次の式で表されるmを深さDOL/4から深さDOL/2における応力プロファイルの傾きとする。
 m=(CS-CS)/(DOL/4-DOL/2)
 次の式で表されるmを深さDOL/2から深さDOLにおける応力プロファイルの傾きとする。
 m=(CS-0)/(DOL/2-DOL)
 本明細書において「内部引張応力(CT)」は、板厚tの1/2の深さにおける引張応力値をいう。
 本明細書において「可視光透過率」は、380nm~780nmにおける平均透過率をいう。また、「ヘーズ値」はC光源を使用し、JIS K3761:2000に従って測定する。
 本明細書において、「ソラリゼーション耐性」は、ソラリゼーションを生じにくいガラスの性質であり、以下の方法で評価できる。
 厚さ0.8mmのガラス板について、250Wの低圧水銀ランプの光を50mmの距離から60分間照射する前後に彩度Cを測定し、照射前後の彩度差を評価する。彩度Cは1976年に国際照明委員会(CIE)で規格化されたL表色系により次式で表される。
Figure JPOXMLDOC01-appb-M000001
 彩度Cの値は、分光光度計により、積分球を用いて380~780nmの透過率を測定してXYZ表色系の色座標を算出し、L表色系に換算して求められる。
 本明細書において「ビッカース硬度」は、JIS R1610:2003に規定されるビッカース硬さ(HV0.1)である。
 また、「破壊靭性値」は、JIS R1607:2010に規定される圧子圧入法(IF法)破壊靭性値をいう。
<化学強化ガラス>
 本発明の化学強化ガラス(以下において、「本強化ガラス」ということがある)は、後に説明する結晶化ガラスである化学強化用ガラス(以下において「本結晶化ガラス」ということがある)を化学強化して得られる。
 本強化ガラスは、表面圧縮応力CSが600MPa以上なので、撓み等の変形によって割れにくく、好ましい。本強化ガラスの表面圧縮応力は、800MPa以上がより好ましい。
 本強化ガラスは、圧縮応力深さDOLが80μm以上なので、表面に傷が生じた時も割れにくく、好ましい。DOLは、好ましくは100μm以上である。
 また、圧縮応力値が50MPa以上となる最大深さ(以下において「50MPa深さ」ということがある。)が80μm以上であると、アスファルト落下強度が高くなるのでより好ましい。50MPa深さは、さらに好ましくは100μm以上である。
 ここで、アスファルト落下強度は、以下のアスファルト落下試験によって評価できる。
(アスファルト落下試験)
 評価対象のガラス板(120mm×60mm×0.8mm)をスマートフォンのカバーガラスに見立てて、スマートフォンを模擬した筐体に取り付けて、平坦なアスファルト面上に落下する。ガラス板と筐体を合わせた質量は約140gとする。
 高さ30cmから試験を開始し、化学強化ガラス板が割れなかったら、高さを10cm高くして落下させる試験を繰り返し、割れたときの高さ[単位:cm]を記録する。この試験を1セットとして、10セット繰り返し、割れたときの高さの平均値を「落下高さ」とする。
 本強化ガラスのアスファルト落下試験における落下高さは、100cm以上が好ましい。
 本強化ガラスにおいて、ガラス表面から深さDOLにおける応力プロファイルの傾きmは-50MPa/μm以下が好ましく、-55MPa/μm以下がより好ましく、-60MPa/μm以下がさらに好ましい。化学強化ガラスは、表面に圧縮応力層を形成したガラスであり、表面から遠い部分には引張応力が発生することから、その応力プロファイルは、深さがゼロの表面から内部に向かって負の傾きを有している。そこでmは負の値であり、その絶対値が大きいことで、表面圧縮応力CSが大きく、かつ内部引張応力CTが小さい応力プロファイルが得られる。
 深さDOL/4から深さDOL/2における応力プロファイルの傾きmは負の値を有する。傾きmは、強化ガラスが破壊した時の破片の飛散を抑制するために-5以上が好ましく、-3以上がより好ましく、-2以上がさらに好ましい。mは大きすぎると50MPa深さが小さくなり、アスファルト落下強度が不足するおそれがある。50MPa深さを大きくするために、mは-0.3以下が好ましく、-0.5以下がより好ましく、-0.7以下がさらに好ましい。
 本強化ガラスにおいて、深さDOL/2からDOLにおける応力プロファイルの傾きmは、負の値を有する。強化ガラスが破壊した時の破片の飛散を抑制するために、mは、-5以上が好ましく、-3以上がより好ましく、-2以上がさらに好ましい。mの絶対値は小さすぎると50MPa深さが小さくなり、傷付いた際に割れやすくなる。50MPa深さを大きくするために、mは-0.3以下が好ましく、-0.5以下がより好ましく、-0.7以下がさらに好ましい。
 傾きmと傾きmの比m/mは2以下であると、深いDOLとともに小さいCTが得られるので好ましい。m/mは1.5以下がより好ましく、1以下がさらに好ましい。強化ガラスの端面にクラックが発生することを防止するためには、m/mは0.3以上が好ましく、0.5以上がより好ましく、0.7以上がさらに好ましい。
 本強化ガラスの内部引張応力(CT)は110MPa以下であると、化学強化ガラスが破壊した時に破片の飛散が抑制されるので好ましい。CTは、より好ましくは100MPa以下、さらに好ましくは90MPa以下である。一方でCTを小さくするとCSが小さくなり、充分な強度が得られ難くなる傾向がある。そのため、CTは50MPa以上が好ましく、55MPa以上がより好ましく、60MPa以上がさらに好ましい。
 本強化ガラスの4点曲げ強度は、900MPa以上が好ましい。
 ここで4点曲げ強度は、40mm×5mm×0.8mmの試験片を用いて、下スパン30mm、上スパン10mm、クロスヘッドスピード0.5mm/分で測定する。10試験片の平均値を4点曲げ強度とする。
 本強化ガラスのビッカース硬度は、化学強化処理によって、強化前よりも大きくなる傾向がある。結晶中の小さいイオンと溶融塩中の大きいイオンとのイオン交換によって、結晶中に圧縮応力が生じるため、と考えられる。
 本強化ガラスのビッカース硬度は、720以上が好ましく、740以上がより好ましく、780以上がさらに好ましい。また、本強化ガラスのビッカース硬度は、通常は950以下である。
 図3に本強化ガラスと強化前の結晶化ガラス(化学強化用ガラス)とのX線回折パターンの例を示す。図3において、実線は強化前の結晶化ガラス板について測定されたX線回折パターンであり、図3中に黒丸で示したβ-スポジュメン結晶の回折線が認められる。点線で示したのは、化学強化後の結晶化ガラス板について測定されたX線回折パターンである。化学強化によって回折ピークの位置が低角度側にシフトしているのは、結晶中の小さいイオンと溶融塩中の大きいイオンとのイオン交換が生じて、格子面間隔が大きくなったためと考えられる。
 しかし、本発明者等が化学強化前後の粉末X線回折パターンを比較したところ、このような回折線のシフトは認められなかった。これは、化学強化処理による格子面間隔の変化が、ガラス板の表面付近でのみ生じ、内部の結晶については化学強化処理による変化が生じないためと考えられる。
 本強化ガラスの可視光透過率は、厚さが0.8mmの場合に、70%以上なので、携帯ディスプレイのカバーガラスに用いた場合に、画面が見えやすい。可視光透過率は80%以上が好ましく、85%以上がより好ましく、88%以上がさらに好ましい。可視光透過率は、高い程好ましいが、通常は90%以下である。90%は普通の非晶質ガラスと同等の透過率である。
 また、ヘーズ値は、厚さ0.8mmの場合に、1.5%以下が好ましく、1.2%以下がより好ましく、1%以下がさらに好ましく、0.8%以下が極めて好ましく、0.5%以下が最も好ましい。ヘーズ値は小さい程好ましいが、ヘーズ値を小さくするために結晶化率を下げたり、結晶粒径を小さくしたりすると、機械的強度が低下する。機械的強度を高くするためには、厚さ0.8mmの場合のヘーズ値は0.05%以上が好ましく、0.1%以上がより好ましい。
 本強化ガラスの母組成(化学強化用ガラスの組成)は、酸化物基準の質量%表示でSiOを58~70%、Alを15~30%、LiOを2~10%、NaOを0~5%、KOを0~2%、SnOを0.5~6%、ZrOを0.5~6%、Pを0~6%含有し、NaO+KOが1~5%が好ましい。すなわち、本強化ガラスは、該組成の非晶質ガラスを結晶化して、化学強化したものが好ましい。
 本強化ガラスは、極端なイオン交換処理がされた場合を除いて、全体として強化前の結晶化ガラスとほぼ同じ組成を有している。特に、ガラス表面から最も深い部分の組成は、極端なイオン交換処理がされた場合を除いて、強化前の結晶化ガラスの組成と同じである。
<結晶化ガラス(化学強化用ガラス)>
 本強化ガラスは、β-スポジュメンが析出した結晶化ガラスである。β-スポジュメンは、LiAlSiと表され、一般的には、X線回折スペクトルにおいてブラッグ角(2θ)が25.55°±0.05°、22.71°±0.05°、28.20°±0.05°に回折ピークを示す結晶である。しかしながら、リートベルト法を用いることで、結晶構造が歪んだ場合でも、X線回折スペクトルからβ-スポジュメンの析出を確認することができる。
 本結晶化ガラス(以下において、「本化学強化用ガラス」ということがある)は、後に説明する非晶質ガラスを加熱処理して結晶化することで得られる。
 β-スポジュメンを含有する結晶化ガラスは、化学強化特性が優れる。β-スポジュメンが析出し得る非晶質ガラスは、熱処理条件等によってβ-石英固溶体が析出する場合がある。また、バージライトは、β-スポジュメンと同様にLiAlSiと表される結晶である。β-石英固溶体やバージライトを含有しても、β-スポジュメンを含まない結晶化ガラスと比較して、β-スポジュメンを含有する結晶化ガラスは化学強化によってCSが大きくなる。β-スポジュメンは結晶構造がβ-石英固溶体やバージライトに比べて緻密なので、化学強化のためのイオン交換処理によって析出結晶中のイオンがより大きいイオンに置換されたときに高い圧縮応力が発生し、化学強化の効果が高くなると考えられる。
 β-スポジュメンを含有する結晶化ガラスは、熱膨張係数が小さいことでも知られている。本結晶化ガラスは熱膨張係数が小さいので化学強化等に伴う熱処理による反りの発生が抑制される。また、耐熱衝撃性に優れるので、急速に加熱または冷却することが可能であり、扱いやすい。本結晶化ガラスの50℃~350℃における平均熱膨張係数は、好ましくは30×10-7/℃以下、より好ましくは25×10-7/℃以下、さらに好ましくは20×10-7/℃以下、特に好ましくは15×10-7/℃以下である。50℃~350℃における平均熱膨張係数は、小さい程好ましいが、通常は、10×10-7/℃以上である。
 β-スポジュメンは、結晶成長速度が大きいことが知られている。そこで、β-スポジュメンを含有する結晶化ガラスは含有する結晶が大きくなりやすく、そのために透明性が低く、ヘーズ値が大きいことが多い。しかし、本化学強化用ガラスは、微小な結晶を多数含有しているので、結晶化率が高くても透明性が高く、ヘーズ値が小さい。
 また、特にヘーズを小さくするためには、本結晶化ガラスはβ-スポジュメンのみが結晶として析出した結晶化ガラスであることが特に好ましい。
 本化学強化用ガラスの結晶化率は、機械的強度を高くするために10%以上が好ましく、15%以上がより好ましく、20%以上がさらに好ましく、25%以上が特に好ましい。透明性を高くするために、70%以下が好ましく、60%以下がより好ましく、50%以下が特に好ましい。結晶化率が小さいことは、加熱して曲げ成形等しやすい点でも優れている。
 結晶化率は、X線回折強度からリートベルト法で算出できる。リートベルト法については、日本結晶学会「結晶解析ハンドブック」編集委員会編、「結晶解析ハンドブック」(協立出版 1999年刊、p492~499)に記載されている。
 本化学強化用ガラスの析出結晶の平均粒径は、300nm以下が好ましく、200nm以下がより好ましく、150nm以下がさらに好ましく、100nm以下が特に好ましい。析出結晶の平均粒径は、透過型電子顕微鏡(TEM)で観察することにより求められる。また、簡易的には走査型電子顕微鏡(SEM)像から推定できる。
 図4に結晶化ガラスの断面を鏡面研磨してフッ酸でエッチングし、走査型電子顕微鏡(SEM)で観察したSEM像の一例を示す。図4のSEM像において、明るく見える部分が析出結晶であり、暗く見える部分が残留ガラス相である。図5は同じ結晶化ガラスについて得られたTEM像である。
 本化学強化用ガラスの破壊靱性値は、0.8MPa・m1/2以上、より好ましくは1MPa・m1/2以上であると、化学強化ガラスが割れた時に破片が飛散しにくいので好ましい。
 本化学強化用ガラスは、結晶を含むために、ビッカース硬度が大きい。そのために傷つきにくく、耐摩耗性にも優れる。耐摩耗性を大きくするために、ビッカース硬度は680以上が好ましく、700以上がより好ましく、740以上がさらに好ましい。
 硬度が高過ぎると加工しにくくなるため、本化学強化用ガラスのビッカース硬度は、1100以下が好ましく、1050以下がより好ましく、1000以下がさらに好ましい。
 本化学強化用ガラスの可視光透過率やヘーズ値は、本強化ガラスの場合と同様なので説明を省略する。
 また、本化学強化用ガラスのガラス組成は、結晶化前の非晶質ガラスの組成と同じなので、非晶質ガラスの項で説明する。
<非晶質ガラス>
 本発明にかかる非晶質ガラスは、酸化物基準の質量%表示でSiOを58~70%、Alを15~30%、LiOを2~10%、NaOを0~5%、KOを0~2%、SnOを0.5~6%、ZrOを0.5~6%、Pを0~6%含有し、NaO及びKOの含有量の合計が1~5%である。
 以下、このガラス組成を説明する。
 本発明にかかる非晶質ガラスにおいて、SiOはガラスのネットワーク構造を形成する成分である。また、化学的耐久性を上げる成分であり、析出結晶であるβ-スポジュメンの構成成分でもある。SiOの含有量は58%以上が好ましい。SiOの含有量は、より好ましくは、60%以上、さらに好ましくは64%以上である。一方、溶融性をよくするために、SiOの含有量は70%以下が好ましく、より好ましくは68%以下、さらに好ましくは66%以下である。
 Alは化学強化による表面圧縮応力を大きくするために有効な成分である。また、β-スポジュメンの構成成分であり、必須である。Alの含有量は15%以上が好ましい。Alの含有量は、より好ましくは、20%以上である。一方、ガラスの失透温度が高くなりすぎないために、Alの含有量は、30%以下が好ましく、25%以下がより好ましい。
 LiOは、イオン交換により表面圧縮応力を形成させる成分であり、β-スポジュメンの構成成分であり、必須である。
 LiOの含有量は、好ましくは2%以上であり、より好ましくは4%以上である。一方、LiOの含有量は、10%以下が好ましく、より好ましくは8%以下、さらに好ましくは6%以下である。
 LiOとAlの含有量比LiO/Alは透明性を高くするために0.3以下が好ましい。LiO/Alが大きすぎると熱処理時に結晶化が急激に進行して結晶の粒径が大きくなり、透明性が低下すると考えられる。
 NaOは、ガラスの溶融性を向上させる成分である。
 NaOは必須ではないが、好ましくは0.5%以上、より好ましくは1%以上である。NaOは多すぎるとβ-スポジュメン結晶が析出しにくくなり、または化学強化特性が低下するため、5%以下が好ましく、4%以下がより好ましく、3%以下がさらに好ましい。
 KOは、NaOと同じくガラスの溶融温度を下げる成分であり、含有してもよい。KOを含有する場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。またNaOとKOとの合計の含有量NaO+KOは1%以上が好ましく、2%以上がより好ましい。
 KOは多すぎるとβ-スポジュメン結晶が析出しにくくなるため、2%以下が好ましい。またNaOとKOとの合計の含有量NaO+KOが5%以上になると熱処理時に結晶化の促進が阻害され、透明性が低下するおそれがあるため、5%以下が好ましく、4%以下がより好ましく、3%以下がさらに好ましい。
 ZrOは、結晶化処理に際して、結晶核を構成する成分であり、含有することが好ましい。ZrOの含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。一方、溶融時の失透を抑制するために、ZrOの含有量は6%以下が好ましく、5%以下がより好ましく、4%以下がさらに好ましい。
 SnOは、結晶化処理に際して、結晶核を構成する成分であり、β-スポジュメン結晶の析出を促進する効果が高いので、0.5%以上含有することが好ましい。SnOの含有量は、1%以上がより好ましく、1.5%以上がさらに好ましい。SnOの含有量は6%以下であると、ガラス中に未融物による欠点が生じにくく好ましい。より好ましくは5%以下、さらに好ましくは4%以下である。
 SnOは、ソラリゼーション耐性を高める成分でもある。SnOの含有量は、ソラリゼーションを抑制するために1%以上が好ましく、1.5%以上がより好ましい。
 一般的に、結晶化ガラスの結晶核形成成分として、TiOやZrOが知られているが、本発明者等の検討によれば、本結晶化ガラスにおいては、TiOよりもZrOの効果が高かった。また、SnOを加えることで、結晶化ガラスの透明性が高くなった。
 SnOとZrOとの含有量の合計SnO+ZrOが3%以上になるとZrO核が大量に形成され、それぞれの核の成長を抑えられるので透過率が向上する。SnO+ZrO含有量は4%以上がより好ましく、5%以上がさらに好ましく、6%以上が特に好ましく、7%以上が最も好ましい。また、SnO+ZrOは、ガラス中に未融物による欠点が生じにくいために12%以下が好ましく、10%以下がより好ましく、9%以下がさらに好ましく、8%以下が特に好ましい。
 SnOとZrOとをともに含有する場合、その合計量に対するSnO量の比SnO/(SnO+ZrO)は透明性を高くするために0.3以上が好ましく、0.35以上がより好ましく、0.45以上がさらに好ましい。
 またSnO/(SnO+ZrO)は、強度を高くするために0.7以下が好ましく、0.65以下がより好ましく、0.6以下がさらに好ましい。
 TiOは、結晶化ガラスの核形成成分となり、また化学強化ガラスが破壊した時に破片が飛散しにくくする成分であり、含有してもよい。TiOを含有する場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.15%以上、さらに好ましくは0.2%以上である。一方、TiOの含有量が5%超であると溶融時に失透しやすくなり、化学強化ガラスの品質が低下する恐れがある。好ましくは、3%以下、より好ましくは1.5%以下である。
 また、ガラス中にFeが含まれる場合に、ガラスがTiOを含有するとイルメナイト複合体とよばれる複合体が形成され、黄色または褐色の着色を生じやすい。Feはガラス中に不純物として普通に含まれるので、着色を防止するためにはTiOの含有量は1%以下が好ましく、より好ましくは0.5%以下、さらに好ましくは0.25%以下であり、実質的に含有しないことが特に好ましい。
 Pは、必須ではないが、ガラスの分相を促して結晶化を促進する効果があり、含有してもよい。Pを含有する場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.5%以上、さらに好ましくは1%以上、特に好ましくは2%以上である。一方、Pの含有量が多すぎると、化学強化ガラスが破壊した時に破片が飛散しやすくなる、また耐酸性が著しく低下する。Pの含有量は、好ましくは6%以下、より好ましくは5%以下、さらに好ましくは4%以下、特に好ましくは3%以下、極めて好ましくは2%以下である。耐酸性をさらに高くするためには実質的に含有しないことが好ましい。
 Bは、化学強化用ガラスまたは化学強化ガラスのチッピング耐性を向上させ、また溶融性を向上させる成分であり、含有してもよい。Bは必須ではないが、Bを含有する場合の含有量は、溶融性を向上するために好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは2%以上である。一方、Bの含有量が5%を超えると溶融時に脈理が発生し化学強化用ガラスの品質が低下しやすいため5%以下が好ましい。Bの含有量は、より好ましくは4%以下、さらに好ましくは3%以下であり、特に好ましくは1%以下である。耐酸性を高くするためには実質的に含有しないことが好ましい。
 MgOは、化学強化ガラスの表面圧縮応力を増大させる成分であり、化学強化ガラスが破壊した時に破片の飛散を抑制する成分であり、含有してもよい。MgOを含有する場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。一方、溶融時の失透を抑制するためには5%以下が好ましく、4%以下がより好ましく、3%以下がさらに好ましい。
 CaOは、化学強化用ガラスの溶融性を向上させる成分であり、溶融時の失透を防止し、かつ熱膨張係数の上昇を抑制しながら溶解性を向上させるため含有してもよい。CaOを含有する場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。一方、イオン交換特性を高くするために、CaOの含有量は4%以下が好ましく、3%以下がより好ましく、2%以下が特に好ましい。
 SrOは、化学強化用ガラスの溶融性を向上する成分であり、またガラスの屈折率を向上させて、結晶化後の残留ガラス相の屈折率と析出結晶の屈折率を近づけることによって結晶化ガラスの透過率を向上できるため含有してもよい。SrOを含有する場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.5%以上であり、さらに好ましくは1%以上である。一方、SrO含有量が多すぎるとイオン交換速度が低下するため3%以下が好ましく、2.5%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。
 BaOは、化学強化用ガラスの溶融性を向上する成分であり、またガラスの屈折率を向上させて、結晶化後の残留ガラス相の屈折率とβ-スポジュメン結晶相の屈折率を近づけることによって結晶化ガラスの透過率を向上できるため含有してもよい。BaOを含有する場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.5%以上であり、さらに好ましくは1%以上である。一方、BaO含有量が多すぎるとイオン交換速度が低下するため3%以下が好ましく、2.5%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。
 ZnOは、化学強化用ガラスの熱膨張係数を低下させ、化学的耐久性を増大させる成分であり、またガラスの屈折率を向上し、結晶化後の残留ガラス相の屈折率とβ-スポジュメン結晶相の屈折率を近づけることによって結晶化ガラスの透過率を向上するため含有させてもよい。ZnOを含有させる場合の含有量は、好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは1.5%以上、特に好ましくは2%以上である。一方、溶融時の失透を抑制するためには4%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましい。
 Y、La、NbおよびTaは、いずれも化学強化ガラスが破壊した時に破片が飛散しにくくする成分であり、屈折率を高くするために、含有させてもよい。これらの成分を含有させる場合、Y、La、Nbの含有量の合計Y+La+Nbは好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは1.5%以上、特に好ましくは2%以上である。また、溶融時にガラスが失透しにくくなるために、Y+La+Nbの含有量は4%以下が好ましく、より好ましくは3%以下、さらに好ましくは2%以下であり、特に好ましくは1%以下である。
 Y、La、NbおよびTaの合計の含有量Y+La+Nb+Taは好ましくは0.5%以上であり、より好ましくは1%以上であり、さらに好ましくは1.5%以上であり、特に好ましくは2%以上である。また、溶融時にガラスが失透しにくくなるために、Y+La+Nb+Taは4%以下が好ましく、より好ましくは3%以下であり、さらに好ましくは2%以下であり、特に好ましくは1%以下である。
 また、CeOを含有してもよい。CeOはガラスを酸化する効果があり、SnOが多く含有する場合着色成分のSnOに還元することを抑制して着色を抑える場合がある。CeOを含有する場合の含有量は0.03%以上が好ましく、0.05%以上がより好ましく、0.07%以上がさらに好ましい。CeOを酸化剤として用いる場合には、CeOの含有量は、多すぎるとガラスが着色しやすくなるため、透明性を高くするためには1.5%以下が好ましく、1%以下がより好ましい。
 さらに、強化ガラスを着色して使用する際は、所望の化学強化特性の達成を阻害しない範囲において着色成分を添加してもよい。着色成分としては、例えば、Co、MnO、Fe、NiO、CuO、Cr、V、Bi、SeO、Er、Ndが好適なものとして挙げられる。
 着色成分の含有量は、合計で1%以下の範囲が好ましい。ガラスの可視光透過率をより高くしたい場合は、これらの成分は実質的に含有しないことが好ましい。
 また、ガラスの溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。Asは含有しないことが好ましい。Sbを含有する場合は、0.3%以下が好ましく、0.1%以下がより好ましく、含有しないことが最も好ましい。
<化学強化ガラスの製造方法>
 本発明の化学強化ガラスは、上記の非晶質ガラスを加熱処理して結晶化ガラスを得、得られた結晶化ガラスを化学強化処理して製造する。
(非晶質ガラスの製造)
 非晶質ガラスは、例えば、以下の方法で製造できる。なお、以下に記す製造方法は、板状の化学強化ガラスを製造する場合の例である。
 好ましい組成のガラスが得られるようにガラス原料を調合し、ガラス溶融窯で加熱溶融する。その後、バブリング、撹拌、清澄剤の添加等により溶融ガラスを均質化し、公知の成形法により所定の厚さのガラス板に成形し、徐冷する。または、溶融ガラスをブロック状に成形して、徐冷した後に切断する方法で板状に成形してもよい。
 板状ガラスの成形法としては、例えば、フロート法、プレス法、フュージョン法及びダウンドロー法が挙げられる。特に、大型のガラス板を製造する場合は、フロート法が好ましい。また、フロート法以外の連続成形法、たとえば、フュージョン法及びダウンドロー法も好ましい。
(結晶化処理)
 上記の手順で得られた非晶質ガラスを加熱処理することで結晶化ガラスが得られる。
 加熱処理は、室温から第一の処理温度まで昇温して一定時間保持した後、第一の処理温度より高温である第二の処理温度に一定時間保持する2段階の加熱処理によることが好ましい。
 二段階の加熱処理による場合、第一の処理温度は、そのガラス組成において結晶核生成速度が大きくなる温度域が好ましく、第二の処理温度は、そのガラス組成において結晶成長速度が大きくなる温度域が好ましい。また、第一の処理温度での保持時間は、充分な数の結晶核が生成するように長く保持することが好ましい。多数の結晶核が生成することで、各結晶の大きさが小さくなり、透明性の高い結晶化ガラスが得られる。
 第一の処理温度は、たとえば550℃~800℃であり、第二の処理温度は、たとえば850℃~1000℃であり、第一処理温度で2時間~10時間保持した後、第二処理温度で2時間~10時間保持する。
 上記手順で得られた結晶化ガラスを必要に応じて研削及び研磨処理して、結晶化ガラス板を形成する。結晶化ガラス板を所定の形状及びサイズに切断したり、面取り加工を行ったりする場合、化学強化処理を施す前に、切断や面取り加工を行えば、その後の化学強化処理によって端面にも圧縮応力層が形成されるため、好ましい。
(化学強化処理)
 化学強化処理は、大きなイオン半径の金属イオン(典型的には、NaイオンまたはKイオン)を含む金属塩(例えば、硝酸カリウム)の融液に浸漬する等の方法で、ガラスを金属塩に接触させることにより、ガラス中の小さなイオン半径の金属イオン(典型的には、NaイオンまたはLiイオン)が大きなイオン半径の金属イオン典型的には、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)と置換させる処理である。
 化学強化処理の速度を速くするためには、ガラス中のLiイオンをNaイオンと交換する「Li-Na交換」を利用することが好ましい。またイオン交換により大きな圧縮応力を形成するためには、ガラス中のNaイオンをKイオンと交換する「Na-K交換」を利用することが好ましい。
 化学強化処理を行うための溶融塩としては、硝酸塩、硫酸塩、炭酸塩、塩化物などが挙げられる。このうち硝酸塩としては、例えば、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸セシウム、硝酸銀などが挙げられる。硫酸塩としては、例えば、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸セシウム、硫酸銀などが挙げられる。炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、などが挙げられる。塩化物としては、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム、塩化銀などが挙げられる。これらの溶融塩は単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 化学強化処理の処理条件は、ガラス組成や溶融塩の種類などを考慮して、時間及び温度等を適切に選択すればよい。
 本強化ガラスは、たとえば以下の2段階の化学強化処理によって得ることが好ましい。
 まず、本結晶化ガラスを350~500℃程度のNaイオンを含む金属塩(たとえば硝酸ナトリウム)に0.1~10時間程度浸漬する。これによって結晶化ガラス中のLiイオンと金属塩中のNaイオンとのイオン交換が生じ、たとえば表面圧縮応力が200MPa以上で圧縮応力深さが80μm以上の圧縮応力層が形成できる。一方、表面圧縮応力が1000MPaを超えると、CTを低く保ちつつ、DOLを大きくすることが困難になる。表面圧縮応力は好ましくは900MPa以下であり、より好ましくは700MPa以下、さらに好ましくは600MPa以下である。
 次に、350~500℃程度のKイオンを含む金属塩(たとえば硝酸カリウム)に0.1~10時間程度浸漬する。これによって、前の処理で形成された圧縮応力層の、たとえば深さ10μm程度以内の部分に、大きな圧縮応力が生じる。
 このような2段階の処理によれば、表面圧縮応力が600MPa以上の、好ましい応力プロファイルが得られやすい。
 はじめにNaイオンを含む金属塩に浸漬した後、大気中で350~500℃に1~5時間保持してから、Kイオンを含む金属塩に浸漬してもよい。保持温度は好ましくは425℃~475℃、さらに好ましくは440℃~460℃である。
 大気中で高温に保持することで、はじめの処理によって金属塩からガラス内部に導入されたNaイオンが、ガラス中で熱拡散することで、より好ましい応力プロファイルが形成され、それによってアスファルト落下強度が高められる。
 または、Naイオンを含む金属塩に浸漬した後、大気中で保持するかわりに、350~500℃の、NaイオンとLiイオンとを含む金属塩(たとえば硝酸ナトリウムと硝酸リチウムとの混合塩)に0.1~20時間浸漬してもよい。
 NaイオンとLiイオンとを含む金属塩に浸漬することで、ガラス中のNaイオンと金属塩中のLiイオンとのイオン交換が生じ、より好ましい応力プロファイルが形成され、それによってアスファルト落下強度が高められる。
 このような2段階または3段階の強化処理を行う場合には、生産効率の点から、処理時間は合計で10時間以下が好ましく、5時間以下がより好ましく、3時間以下がさらに好ましい。一方、所望の応力プロファイルを得るためには、処理時間は合計で0.5時間以上必要である。より好ましくは1時間以上である。
 本強化ガラスは、携帯電話、スマートフォン等のモバイル機器等に用いられるカバーガラスとして、特に有用である。さらに、携帯を目的としない、テレビ、パーソナルコンピュータ、タッチパネル等のディスプレイ装置のカバーガラス、エレベータ壁面、家屋やビル等の建築物の壁面(全面ディスプレイ)にも有用である。また、窓ガラス等の建築用資材、テーブルトップ、自動車や飛行機等の内装等やそれらのカバーガラスとして、また曲面形状を有する筺体等の用途にも有用である。
 また、本強化ガラスは、透明性は高いが紫外光の透過率が低いので、特に有機ELディスプレイ用カバーガラスに用いると、有機ELディスプレイの動作安定性や高寿命化につながり、好ましい。
 以下、本発明を実施例によって説明するが、本発明はこれによって限定されない。例1~11、例18~25は実施例、例12~17は比較例である。
 表1~3に酸化物基準の質量%表示で示したガラス組成となるようにガラス原料を調合し、800gのガラスが得られるように秤量した。ついで、混合したガラス原料を白金るつぼに入れ、1500~1700℃の電気炉に投入して5時間程度溶融し、脱泡し、均質化した。
 得られた溶融ガラスを型に流し込み、ガラス転移点の温度において1時間保持した後、0.5℃/分の速度で室温まで冷却してガラスブロックを得た。ただし、ガラス1についてはガラスブロックを複数用意した。
 (ガラス転移点)
 JIS R1618:2002に基づき、熱膨張計(ブルカー・エイエックスエス社製;TD5000SA)を用いて、昇温速度を10℃/分として熱膨張曲線を得た。また、得られた熱膨張曲線からガラス転移点Tg[単位:℃]を求めた。表の空欄は未評価を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004
<結晶化処理>
 ガラス1~9、ガラス11~20については、得られたガラスブロックを50mm×50mm×1.5mmに加工してから、表4~6に記載した条件で熱処理して結晶化ガラス(例1~例16、例18~例25)を得た。表の結晶化条件欄は、上段が核生成処理条件、下段が結晶成長処理条件であり、たとえば上段に750℃-4h、下段に920℃-4hと記載した場合は、750℃で4時間保持した後、920℃に4時間保持したことを意味する。
 得られた結晶化ガラスを加工し、鏡面研磨して厚さtが0.8mmの結晶化ガラス板を得た。また、熱膨張係数を測定するための棒状試料を作製した。残った結晶化ガラスの一部は粉砕して、析出結晶の分析に用いた。(熱膨張係数)
 JIS R1618:2002に基づき、熱膨張計(ブルカー・エイエックスエス社製;TD5000SA)を用いて、50℃~350℃における平均熱膨張係数[単位:×10-7/℃]を測定した。昇温速度は、10℃/分とした。
(析出結晶:粉末X線回折測定)
 以下の条件で粉末X線回折を測定し、析出結晶を同定した。また、リートベルト法を用いて、結晶化率[単位:%]を計算した。結果を表4~6に示す。表中βSPはβ-スポジュメン、LDは二ケイ酸リチウム、βQはβ石英、Virはバージライトを意味する。
   測定装置:リガク社製 SmartLab
   使用X線:CuKα線
   測定範囲:2θ=10°~80°
   スピード:10°/分
   ステップ:0.02°
(析出結晶:SEM観察)
 例1の結晶化ガラスの表面を5%HF水溶液で1分間エッチングしたものについて、走査型電子顕微鏡(SEM)を用い、観察倍率50000倍で反射電子像を観察した。SEM像を図4に示す。SEM像から求めた析出結晶の平均粒径はおよそ150nmであった。
(析出結晶:TEM観察)
 例1の結晶化ガラスをイオンミリング法で薄片化し、透過型電子顕微鏡(TEM)を用いて観察倍率50000倍で観察したTEM像を図5に示す。またTEM像から求めた析出結晶の平均粒径を表中に示す。
(透過率)
 分光光度計(PerkinElmer社製;LAMBDA950)を用いて、結晶化ガラス板の380~780nmにおける平均透過率[単位:%]を測定した。結果を表4~6に示す。(ヘーズ値)
 ヘーズメーター(スガ試験機製;HZ-2)を用いて、C光源でのヘーズ値[単位:%]測定した。結果を表4~6に示す。
(ビッカース硬度)
 島津マイクロビッカース硬度計(島津製作所製;HMV-2)を用い、荷重100gfで15秒間圧子を圧入して測定した。なお、ビッカース硬度は、後述の化学強化処理後にも、同様にして測定した。結果を表4~6に示す。
(破壊靭性値)
 JIS R1607:2010に基づき、ビッカース硬度計(フューチュアテック社製;FLC-50V)を用いて、圧子圧入法(IF法)により破壊靭性値Kcを求めた。温度22℃、相対湿度40%の雰囲気において、荷重3kgfにてインデンテーションを行った。圧痕長さの測定は、低速亀裂進展の影響を考慮し、同一雰囲気にてインデンテーションから20分後に測定した。各試料につき、10点の測定を行い、平均値を算出して、破壊靭性値Kc[単位:MPa・m1/2]とした。
(熱伝導率)
 結晶化ガラスを直径6mm、厚さ1mmに加工し、示差走査熱量測定装置(ネッチ社製;DSC 404 F3)を用いて、比熱を測定した。また、結晶化ガラスを直径5mm、厚さ1mmに加工し、レーザフラッシュ法熱物性測定装置(京都電子工業社製;LFA-502)を用いて、熱拡散率を測定した。両者の結果から、温度20℃における熱伝導率[単位:W/m・K]を算出した。
<化学強化処理>
 例1~9、例12、例14、例15、例17~25は、450℃の硝酸ナトリウム溶融塩に30分浸漬した後、450℃の硝酸カリウム溶融塩に30分浸漬して化学強化した。
 例10は、450℃の硝酸ナトリウムに1時間浸漬した後、大気中で450℃に2.5時間保持し、次に425℃の硝酸カリウムに30分浸漬して化学強化した。
 例11は、450℃の硝酸ナトリウム-硝酸カリウム混合塩(硝酸ナトリウムと硝酸カリウムの質量比が10:90のもの)に90分浸漬して化学強化した。
 例13は、740℃の硫酸リチウム-硫酸カリウム混合塩(硫酸リチウムと硫酸カリウムの質量比が90:10のもの)に240分浸漬して化学強化した。
 例16は化学強化しなかった。
 得られた試料について以下の特性を評価した。
(応力プロファイル)
 折原製作所社製の表面応力計FSM-6000及び散乱光光弾性を応用した折原製作所社製の測定機SLP1000を用いて応力値を測定し、ガラス表面の圧縮応力値CS[単位:MPa]と、圧縮応力値がゼロになる深さDOL[単位:μm]および圧縮応力値が50MPa以上となる最大の深さ[単位:μm]を読み取った。
 例1の応力プロファイルを図1、例10の応力プロファイルを図2に示す。
(4点曲げ強度)
 得られた化学強化ガラスについて、下スパン30mm、上スパン10mm、クロスヘッドスピード0.5mm/分の条件で4点曲げ試験を行うことにより曲げ強度[単位:MPa]を測定した。結果を表4~6に示す。
(アスファルト落下試験)
 化学強化ガラスを120mm×60mm×0.8mmの板に加工して、スマートフォンを模擬した筐体に取り付け、前述のアスファルト落下試験を行った。落下高さ[単位:cm]を表4~6に示す。
(ソラリゼーション耐性)
 分光光度計(PerkinElmer社製;LAMBDA950)に積分球ユニットを取り付けて、結晶化ガラス板の380~780nmにおける透過率を測定し、得られたスペクトルから、L表色系における光照射前彩度C を算出した。次にランプからガラス板表面までの距離が50mmになるように250Wの低圧水銀ランプを設置し、低圧水銀ランプの光を60分間照射した。光照射後の彩度C を同様にして測定し、光照射前後の彩度差ΔC=C -C を算出した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 例1と例13、15を比較すると、析出結晶がβ-スポジュメンの場合に、化学強化特性が優れていることがわかる。
 例1と例10、11を比較すると、応力プロファイルを調整することで、高い強度が得られることがわかる。また、同じ結晶化ガラスでも化学強化処理条件によって応力プロファイルが異なることがわかる。
 例1と例12を比較すると、結晶化温処理度によっては透過率が下がることがわかる。
 例1と例18を比較するとSnOを含有するガラス1はSnOを含有しないガラス14と比較してソラリゼーション耐性が優れていることがわかる。
 例1と例25を比較すると、β-スポジュメンだけが主結晶として析出した例1は、β-スポジュメンと他の結晶がともに析出した例25と比較してヘーズ値が小さい。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年7月26日出願の日本特許出願(特願2017-144868)、及び2018年1月10日出願の日本特許出願(特願2018-002200)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (8)

  1.  表面に圧縮応力層を有する化学強化ガラスであって、
     厚さが0.8mmに換算した可視光透過率が70%以上であり、
     表面圧縮応力が600MPa以上かつ圧縮応力深さが80μm以上であり、
     β-スポジュメンを含有する結晶化ガラスである化学強化ガラス。
  2.  SnOを0.5%以上含有する請求項1に記載の化学強化ガラス。
  3.  化学強化ガラスの母組成が、酸化物基準の質量%表示で、
     SiOを58~70%、
     Alを15~30%、
     LiOを2~10%、
     NaOを0~5%、
     KOを0~2%、
     SnOを0.5~6%、
     ZrOを0.5~6%、
     Pを0~6%含有し、
     NaOおよびKOの含有量の合計が1~5%である請求項1に記載の化学強化ガラス。
  4.  厚さ0.8mmに換算したヘーズ値が1.5%以下である請求項1~3のいずれか一項に記載の化学強化ガラス。
  5.  圧縮応力値が50MPa以上である最大の深さが80μm以上である請求項1~4のいずれか一項に記載の化学強化ガラス。
  6.  50℃~350℃における平均熱膨張係数が30×10-7/℃以下である請求項1~5のいずれか一項に記載の化学強化ガラス。
  7.  ビッカース硬さが720以上である請求項1~6のいずれか一項に記載の化学強化ガラス。
  8.  酸化物基準の質量%表示で、
     SiOを58~70%、
     Alを15~30%、
     LiOを2~10%、
     NaOを0~5%、
     KOを0~2%、
     SnOを0.5~6%、
     ZrOを0.5~6%、
     Pを0~6%含有し、
     NaOおよびKOの含有量の合計が1~5%である非晶質ガラスを結晶化してβ-スポジュメンを含む結晶化ガラスとし、
     得られた前記結晶化ガラスを化学強化する、化学強化ガラスの製造方法。
PCT/JP2018/027579 2017-07-26 2018-07-23 化学強化ガラスおよびその製造方法 WO2019022035A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880049325.5A CN110958992A (zh) 2017-07-26 2018-07-23 化学强化玻璃及其制造方法
US16/747,593 US11731901B2 (en) 2017-07-26 2020-01-21 Chemically strengthened glass and production method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-144868 2017-07-26
JP2017144868 2017-07-26
JP2018-002200 2018-01-10
JP2018002200 2018-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/747,593 Continuation US11731901B2 (en) 2017-07-26 2020-01-21 Chemically strengthened glass and production method therefor

Publications (1)

Publication Number Publication Date
WO2019022035A1 true WO2019022035A1 (ja) 2019-01-31

Family

ID=65041408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027579 WO2019022035A1 (ja) 2017-07-26 2018-07-23 化学強化ガラスおよびその製造方法

Country Status (3)

Country Link
US (1) US11731901B2 (ja)
CN (1) CN110958992A (ja)
WO (1) WO2019022035A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167850A1 (ja) * 2018-02-27 2019-09-06 Agc株式会社 3次元形状の結晶化ガラス、3次元形状の化学強化ガラスおよびそれらの製造方法
WO2019230889A1 (ja) * 2018-06-01 2019-12-05 日本電気硝子株式会社 強化ガラス及び強化用ガラス
WO2020121888A1 (ja) * 2018-12-11 2020-06-18 Agc株式会社 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
JPWO2020203200A1 (ja) * 2019-04-05 2020-10-08
WO2022039056A1 (ja) * 2020-08-19 2022-02-24 Agc株式会社 化学強化ガラス
WO2022039072A1 (ja) 2020-08-21 2022-02-24 Agc株式会社 化学強化ガラスおよび結晶化ガラス並びにそれらの製造方法
CN114096493A (zh) * 2019-06-26 2022-02-25 Agc株式会社 化学强化玻璃及其制造方法
WO2022050105A1 (ja) * 2020-09-04 2022-03-10 株式会社 オハラ 強化結晶化ガラス
CN115745400A (zh) * 2022-11-22 2023-03-07 湖南旗滨微晶新材料有限公司 玻璃组合物、强化微晶玻璃及其制备方法和微晶玻璃制品
WO2024004965A1 (ja) * 2022-06-30 2024-01-04 Agc株式会社 結晶化ガラス、化学強化ガラス及び結晶化ガラスの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110799467B (zh) * 2017-06-28 2023-01-03 Agc株式会社 化学强化玻璃、其制造方法和化学强化用玻璃
CN113880412B (zh) * 2021-10-25 2023-04-28 清远南玻节能新材料有限公司 微晶玻璃及其制备方法、玻璃保护层、玻璃盖板与电子器件
EP4194416A1 (de) * 2021-12-10 2023-06-14 Schott Ag Glaskeramische deckscheibe, verfahren zu deren herstellung sowie deren verwendung und digitales anzeigegerät umfassend eine solche deckscheibe
CN114671616B (zh) * 2022-04-01 2024-02-23 河北省沙河玻璃技术研究院 一种高强度透明微晶玻璃及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101434A (ja) * 1984-10-23 1986-05-20 Nippon Sheet Glass Co Ltd 透明結晶化ガラス
JPS6452631A (en) * 1987-01-19 1989-02-28 Nippon Sheet Glass Co Ltd Transparent crystallized glass
JPH0323237A (ja) * 1989-06-19 1991-01-31 Nippon Sheet Glass Co Ltd 低膨張透明結晶化ガラス
JPH08151228A (ja) * 1994-11-25 1996-06-11 Asahi Glass Co Ltd 表面結晶化高強度ガラス、その製法及びその用途
JP2001316132A (ja) * 2000-05-02 2001-11-13 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系透明結晶化ガラス物品及びそれを用いた光通信用デバイス
JP2001348250A (ja) * 2000-04-03 2001-12-18 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系透明結晶化ガラス物品及びそれを用いた光通信デバイス
JP2002154840A (ja) * 2000-11-16 2002-05-28 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス
JP2007527354A (ja) * 2003-10-24 2007-09-27 ピーピージー インダストリーズ オハイオ, インコーポレイテッド リチア−アルミナ−シリカを含むガラス組成物および化学的焼戻しに適したガラスならびに化学的に焼戻しされたガラスを用いて製造される物品
WO2016154235A1 (en) * 2015-03-24 2016-09-29 Corning Incorporated High strength, scratch resistant and transparent glass-based materials

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074993A (en) * 1964-05-05 1978-02-21 Corning Glass Works Potassium ion-exchange on surface of beta-spodumene
US4074992A (en) * 1964-05-05 1978-02-21 Corning Glass Works Sodium ion-exchange on surface of beta-spodumene
US4192688A (en) * 1972-07-07 1980-03-11 Owens-Illinois, Inc. Product and process for forming same
US4438210A (en) 1982-12-20 1984-03-20 Corning Glass Works Transparent colorless glass-ceramics especially suitable for use as stove windows
JP3997593B2 (ja) * 1998-02-19 2007-10-24 日本電気硝子株式会社 Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JPH11228181A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JP3063760B2 (ja) 1998-05-29 2000-07-12 日本電気硝子株式会社 Li2O―Al2O3―SiO2系透明結晶化ガラス及び結晶性ガラス
JP3767260B2 (ja) 1999-08-02 2006-04-19 日本電気硝子株式会社 Li2O−Al2O3−SiO2系結晶化ガラス及び結晶性ガラス
JP2006330010A (ja) 2003-07-25 2006-12-07 National Institute Of Advanced Industrial & Technology マイクロレンズ及びマイクロレンズアレイ
US7572746B2 (en) * 2003-09-09 2009-08-11 Kabushiki Kaisha Ohara Optical glass
US7476633B2 (en) * 2006-03-31 2009-01-13 Eurokera β-spodumene glass-ceramic materials and process for making the same
US7875565B1 (en) 2006-05-31 2011-01-25 Corning Incorporated Transparent glass-ceramic armor
FR2909374B1 (fr) 2006-11-30 2016-11-25 Soc En Nom Collectif Dite : Eurokera Vitroceramiques de beta-quartz, transparentes et incolores, a faible teneur en tio2; articles en lesdites vitroceramiques ; verres precurseurs, procedes d'elaboration
JP5673909B2 (ja) 2008-05-19 2015-02-18 日本電気硝子株式会社 結晶性ガラス及びこれを結晶化させてなる結晶化ガラス
CN102089252A (zh) 2008-07-03 2011-06-08 康宁股份有限公司 用于电子设备的耐用玻璃陶瓷机壳/封罩
EP2364957A1 (en) 2010-02-26 2011-09-14 Corning Incorporated Glass ceramics with bulk scattering properties and methods of making them
DE102012100233B4 (de) * 2012-01-12 2014-05-15 Schott Ag Hochtransmittive Gläser mit hoher Solarisationsbeständigkeit, ihre Verwendung und Verfahren zu ihrer Herstellung
DE102012202697A1 (de) 2012-02-22 2013-08-22 Schott Ag Transparente farbarme Lithiumaluminiumsilikat-Glaskeramik und deren Verwendung
US9604871B2 (en) * 2012-11-08 2017-03-28 Corning Incorporated Durable glass ceramic cover glass for electronic devices
FR3002532B1 (fr) * 2013-02-28 2015-02-27 Eurokera Vitroceramique du type aluminosilicate de lithium contenant une solution solide de beta-spodumene
US9701573B2 (en) 2013-09-06 2017-07-11 Corning Incorporated High strength glass-ceramics having lithium disilicate and beta-spodumene structures
US9546106B2 (en) 2014-06-30 2017-01-17 Corning Incorporated White, opaque, βspodumene glass-ceramic articles with tunable color and methods for making the same
US9751798B2 (en) 2014-06-30 2017-09-05 Corning Incorporated White, opaque,β-spodumene glass-ceramic articles with inherent damage resistance and methods for making the same
TWI768788B (zh) * 2014-11-04 2022-06-21 美商康寧公司 深不易碎的應力分佈及其製造方法
TWI750807B (zh) 2016-04-08 2021-12-21 美商康寧公司 包含金屬氧化物濃度梯度之玻璃基底物件
CN106116143B (zh) * 2016-06-29 2019-12-03 成都光明光电股份有限公司 光学玻璃
US10626046B2 (en) 2016-10-12 2020-04-21 Corning Incorporated Glass ceramics
WO2019022034A1 (ja) 2017-07-26 2019-01-31 Agc株式会社 結晶化ガラスおよび化学強化ガラス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101434A (ja) * 1984-10-23 1986-05-20 Nippon Sheet Glass Co Ltd 透明結晶化ガラス
JPS6452631A (en) * 1987-01-19 1989-02-28 Nippon Sheet Glass Co Ltd Transparent crystallized glass
JPH0323237A (ja) * 1989-06-19 1991-01-31 Nippon Sheet Glass Co Ltd 低膨張透明結晶化ガラス
JPH08151228A (ja) * 1994-11-25 1996-06-11 Asahi Glass Co Ltd 表面結晶化高強度ガラス、その製法及びその用途
JP2001348250A (ja) * 2000-04-03 2001-12-18 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系透明結晶化ガラス物品及びそれを用いた光通信デバイス
JP2001316132A (ja) * 2000-05-02 2001-11-13 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系透明結晶化ガラス物品及びそれを用いた光通信用デバイス
JP2002154840A (ja) * 2000-11-16 2002-05-28 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス
JP2007527354A (ja) * 2003-10-24 2007-09-27 ピーピージー インダストリーズ オハイオ, インコーポレイテッド リチア−アルミナ−シリカを含むガラス組成物および化学的焼戻しに適したガラスならびに化学的に焼戻しされたガラスを用いて製造される物品
WO2016154235A1 (en) * 2015-03-24 2016-09-29 Corning Incorporated High strength, scratch resistant and transparent glass-based materials

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268673B2 (ja) 2018-02-27 2023-05-08 Agc株式会社 3次元形状の結晶化ガラス、3次元形状の化学強化ガラスおよびそれらの製造方法
JPWO2019167850A1 (ja) * 2018-02-27 2021-02-04 Agc株式会社 3次元形状の結晶化ガラス、3次元形状の化学強化ガラスおよびそれらの製造方法
WO2019167850A1 (ja) * 2018-02-27 2019-09-06 Agc株式会社 3次元形状の結晶化ガラス、3次元形状の化学強化ガラスおよびそれらの製造方法
WO2019230889A1 (ja) * 2018-06-01 2019-12-05 日本電気硝子株式会社 強化ガラス及び強化用ガラス
JPWO2019230889A1 (ja) * 2018-06-01 2021-06-10 日本電気硝子株式会社 強化ガラス及び強化用ガラス
WO2020121888A1 (ja) * 2018-12-11 2020-06-18 Agc株式会社 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
JPWO2020203200A1 (ja) * 2019-04-05 2020-10-08
WO2020203200A1 (ja) * 2019-04-05 2020-10-08 Agc株式会社 結晶化ガラス及び化学強化ガラス並びにそれらの製造方法
CN113646278A (zh) * 2019-04-05 2021-11-12 Agc株式会社 微晶玻璃和化学强化玻璃以及它们的制造方法
JP7351334B2 (ja) 2019-04-05 2023-09-27 Agc株式会社 結晶化ガラス及び化学強化ガラス並びにそれらの製造方法
CN114096493B (zh) * 2019-06-26 2023-12-01 Agc株式会社 化学强化玻璃及其制造方法
CN114096493A (zh) * 2019-06-26 2022-02-25 Agc株式会社 化学强化玻璃及其制造方法
WO2022039056A1 (ja) * 2020-08-19 2022-02-24 Agc株式会社 化学強化ガラス
KR20230054660A (ko) 2020-08-21 2023-04-25 에이지씨 가부시키가이샤 화학 강화 유리 및 결정화 유리 그리고 그들의 제조 방법
WO2022039072A1 (ja) 2020-08-21 2022-02-24 Agc株式会社 化学強化ガラスおよび結晶化ガラス並びにそれらの製造方法
WO2022050105A1 (ja) * 2020-09-04 2022-03-10 株式会社 オハラ 強化結晶化ガラス
WO2024004965A1 (ja) * 2022-06-30 2024-01-04 Agc株式会社 結晶化ガラス、化学強化ガラス及び結晶化ガラスの製造方法
CN115745400A (zh) * 2022-11-22 2023-03-07 湖南旗滨微晶新材料有限公司 玻璃组合物、强化微晶玻璃及其制备方法和微晶玻璃制品

Also Published As

Publication number Publication date
CN110958992A (zh) 2020-04-03
US11731901B2 (en) 2023-08-22
US20200207660A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP7115479B2 (ja) 結晶化ガラスおよび化学強化ガラス
WO2019022035A1 (ja) 化学強化ガラスおよびその製造方法
US11718556B2 (en) Glass for chemical strengthening, chemically strengthened glass, and electronic device case
JP7268673B2 (ja) 3次元形状の結晶化ガラス、3次元形状の化学強化ガラスおよびそれらの製造方法
US10913681B2 (en) Glass-ceramic article and glass-ceramic for electronic device cover plate
JP7067665B2 (ja) 結晶化ガラス、化学強化ガラスおよび半導体支持基板
WO2020121888A1 (ja) 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
US20220119306A1 (en) Chemically strengthened glass and manufacturing method therefor
JP2013249222A (ja) 化学強化結晶化ガラス物品及びその製造方法
WO2019172426A1 (ja) カバーガラスおよび無線通信機器
WO2022049823A1 (ja) 結晶化ガラスおよび化学強化ガラス
JP6962512B1 (ja) 結晶化ガラスおよび化学強化ガラス
WO2022025011A1 (ja) 化学強化結晶化ガラス及びその製造方法
JP2021181388A (ja) 結晶化ガラス
WO2022181812A1 (ja) 化学強化ガラスの製造方法及び化学強化ガラス
WO2022215575A1 (ja) 結晶化ガラスからなる化学強化ガラス及びその製造方法
WO2022118512A1 (ja) 化学強化ガラスおよび電子機器筐体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP