WO2022118512A1 - 化学強化ガラスおよび電子機器筐体 - Google Patents

化学強化ガラスおよび電子機器筐体 Download PDF

Info

Publication number
WO2022118512A1
WO2022118512A1 PCT/JP2021/032550 JP2021032550W WO2022118512A1 WO 2022118512 A1 WO2022118512 A1 WO 2022118512A1 JP 2021032550 W JP2021032550 W JP 2021032550W WO 2022118512 A1 WO2022118512 A1 WO 2022118512A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
chemically strengthened
strengthened glass
chemical strengthening
Prior art date
Application number
PCT/JP2021/032550
Other languages
English (en)
French (fr)
Inventor
一樹 金原
裕 黒岩
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202180080619.6A priority Critical patent/CN116529216A/zh
Priority to JP2022566762A priority patent/JPWO2022118512A1/ja
Publication of WO2022118512A1 publication Critical patent/WO2022118512A1/ja
Priority to US18/202,825 priority patent/US20230322614A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details

Definitions

  • the present invention relates to chemically strengthened glass and an electronic device housing.
  • Chemically tempered glass is widely used for the housing of electronic devices such as mobile terminals because it is required to have strength that does not easily break even if the mobile terminal is dropped.
  • Chemically strengthened glass causes ion exchange between alkaline ions contained in glass and alkaline ions having a larger ion radius contained in the molten salt, such as by immersing the glass in a molten salt such as sodium nitrate. As a result, the glass has a compressive stress layer formed on the surface layer of the glass.
  • Patent Document 1 discloses an aluminosilicate glass having a specific composition and capable of obtaining a high surface compressive stress by chemical strengthening.
  • the cover glass may interfere with the transmission and reception of radio waves, and 5G-compatible mobile terminals are required to have a cover glass with excellent dielectric properties such as radio wave transmission.
  • excellent dielectric properties for example, it is desirable that the relative permittivity and the dielectric loss are low. By lowering the relative permittivity, it is possible to suppress the reflection of radio waves and improve the radio wave transmission. Moreover, the loss of radio waves can be suppressed by reducing the dielectric loss.
  • Non-alkali glasses have been developed so far as glass having high radio wave transmission in a high frequency band such as that used in 5G, that is, glass having a small relative permittivity and dielectric loss tangent (Patent Document 2).
  • an object of the present invention is to provide a chemically strengthened glass having both excellent radio wave transmission and high strength in a high frequency band.
  • the present inventors have found that in the high frequency band, there are both glass in which the radio wave permeability after the chemical strengthening decreases and glass in which the radio wave permeability increases as compared with the case before the chemical strengthening. Further, the present invention has been made by finding a correlation between the surface characteristics after chemical strengthening and the radio wave transmission for the glass whose radio wave permeability increases in the high frequency band after chemical strengthening.
  • the present invention is a chemically strengthened glass having a thickness of t (unit: ⁇ m) and a relative permittivity of 7.0 or less at 20 ° C. and a frequency of 10 GHz.
  • Entropy function S1 calculated from the amount of alkaline ions in the central part of the glass
  • entropy function S2 calculated from the average amount of alkaline ions from the glass surface to a depth of 0.05t, and from the glass surface to a depth of 0.05t.
  • It is a chemically strengthened glass in which Z obtained by the following formula from the average value X [unit: MPa] of the compressive stress in the region is 0.65 or more.
  • the value of (S2-S1) which is the value obtained by subtracting the entropy function S1 from the entropy function S2, is preferably 0.04 or more. ..
  • the dielectric loss tangent of this chemically strengthened glass at 20 ° C. and a frequency of 10 GHz is preferably 0.02 or less.
  • This chemically strengthened glass has a mother composition of oxide-based molar percentage display. 40-80% of SiO 2 B 2 O 3 0 to 20%, Al 2 O 3 1-25%, It is preferable to contain Li 2 O and / or Na 2 O in a total amount of 5 to 30%.
  • the chemically strengthened glass preferably has a surface compressive stress value CS 0 of 300 MPa or more.
  • the chemically strengthened glass preferably has an internal chemically strengthened stress CS of 0.05 t or more and a thickness of t of 300 ⁇ m or more at a depth of 0.05 t from the glass surface.
  • the chemically strengthened glass preferably has a compressive stress layer depth DOL of 70 ⁇ m or more and a thickness t of 350 ⁇ m or more.
  • This chemically strengthened glass is lithium aluminosilicate glass,
  • the population composition is expressed as an oxide-based molar percentage. 40-70% of SiO 2 Al 2 O 3 7.5-20%, It preferably contains 5 to 25% Li 2 O.
  • the thickness t of the chemically strengthened glass is preferably 100 ⁇ m or more and 2000 ⁇ m or less.
  • the chemically strengthened glass is preferably crystallized glass.
  • the present invention also provides an electronic device housing containing the chemically strengthened glass.
  • the chemically strengthened glass of the present invention has excellent strength and exhibits excellent radio wave transmission in the high frequency band.
  • FIG. 1 is a graph showing the correlation between the amount of change in the relative permittivity and the total value in dielectric loss tangent before and after chemical strengthening, which are important for radio wave transmission at a frequency of 10 GHz, and the entropy function and compressive stress.
  • the vertical axis is the total value of the relative permittivity changed before and after the chemical strengthening and the value obtained by multiplying the dielectric loss tangent by 100, and the horizontal axis is the parameter Z that can be calculated from the entropy function and the compressive stress before and after the chemical strengthening.
  • Radio wave transmission is determined by both the relative permittivity and the dielectric loss tangent, but since the relative permittivity has a larger absolute value and is more effective than the dielectric loss tangent, the radio wave transmission is the sum of the relative permittivity and the dielectric loss tangent 100 times. It is represented by a value.
  • chemically strengthened glass refers to glass after being chemically strengthened
  • chemically strengthened glass refers to glass before being chemically strengthened
  • the "matrix composition of chemically strengthened glass” is the glass composition of chemically strengthened glass.
  • the glass composition at a depth of 1/2 of the thickness t is the matrix composition of chemically strengthened glass, except when an extreme ion exchange treatment is performed.
  • the glass composition is expressed as an oxide-based molar percentage display unless otherwise specified, and molar% is simply expressed as "%".
  • substantially not contained means that it is below the level of impurities contained in raw materials and the like, that is, it is not intentionally contained. Specifically, for example, it is less than 0.1 mol%.
  • the "stress profile” refers to a compressive stress value expressed with the depth from the glass surface as a variable.
  • the “compressive stress layer depth (DOL)” is a depth at which the compressive stress value (CS) becomes zero.
  • “Internal tensile stress value (CT)” refers to a tensile stress value at a depth of 1/2 of the thickness t of glass. In the present specification, the tensile stress value is expressed as a negative compressive stress value.
  • the stress profile in the present specification can be measured using a scattered light photoelastic stress meter (for example, SLP-1000 manufactured by Orihara Seisakusho).
  • the scattered photoelastic stress meter may be affected by surface scattering, and the measurement accuracy near the sample surface may decrease.
  • the compressive stress value expressed as a function of depth follows the complementary error function, so the internal stress value.
  • the stress value on the surface can be known by measuring.
  • the complementary error function is not followed, the surface portion is measured by another method, for example, a method of measuring with a surface stress meter.
  • the chemically strengthened glass of the present invention is a chemically strengthened glass having a thickness of t (unit: ⁇ m) and a specific dielectric constant of 7.0 or less at a frequency of 10 GHz, and is calculated from the amount of alkali ions in the central portion of the glass.
  • Entropy function S1, entropy function S2 calculated from the average amount of alkaline ions from the glass surface to a depth of 0.05t, and the average value of compressive stress X [MPa] in the region from the glass surface to a depth of 0.05t. Therefore, Z obtained by the following formula is 0.65 or more.
  • Z (S2-S1) ⁇ 10 + X / 1000
  • the entropy function S is the contents [Li 2 O], [Na 2 O] and [K 2 O] according to the molar percentage of Li 2 O, Na 2 O and K 2 O at the respective depths. ], It shall be calculated by the following formula. In the following formula, when [Li 2 O], [Na 2 O] and [K 2 O] are zero, it is 1 ⁇ 10 -4 .
  • the present inventors focused on the relationship between the radio wave transmission in the high frequency band and the chemical strengthening, and found that the glass in which the radio wave transmission in the high frequency band increased after the chemical strengthening as compared with before the chemical strengthening, and the glass after the chemical strengthening. We have found that there is glass that reduces radio wave transmission in the high frequency band.
  • the present inventors have characterized that the radio wave permeability in the high frequency band increases after the chemical strengthening as compared with the case before the chemical strengthening. 1)
  • the mixing degree of alkaline ions changes significantly before and after the chemical strengthening. It was thought that it should be provided with both that and 2) that a high compressive stress was applied after the chemical strengthening.
  • the features of 1) and 2) will be described.
  • Relative permittivity and dielectric loss are mainly caused by the movement of alkali metal ions in glass. Therefore, by suppressing the movement of alkali metal ions in glass by chemical strengthening treatment, the relative permittivity and dielectric loss can be reduced. Conceivable.
  • the degree of alkali ion mixing changes significantly before and after chemical strengthening, alkali metal ions exchange with each other due to the presence and mixing of different types of alkali metal ions in the glass. It is considered that it becomes difficult, the relative permittivity and the dielectric loss decrease, and the dielectric characteristics improve.
  • the degree of mixing of alkali metal ions is expressed by the entropy function.
  • high compressive stress after chemical strengthening it is considered that if the compressive stress is strong, the movement of alkali metal ions is suppressed, the relative permittivity and the dielectric loss are lowered, and the dielectric properties are improved.
  • FIG. 1 shows the total of the relative permittivity and the dielectric tangent, which are important for the radio wave transmission at a frequency of 10 GHz, for the glass whose radio wave permeability increases after the chemical strengthening in Experimental Example 1 described later as compared with the case before the chemical strengthening.
  • It is a graph which shows the correlation between the change amount of a value before and after chemical strengthening, an entropy function and a compressive stress.
  • the vertical axis of FIG. 1 is the total value of the relative permittivity changed before and after the chemical strengthening and the value obtained by multiplying the dielectric loss tangent by 100, and the horizontal axis is the parameter Z that can be calculated from the entropy function and the compressive stress before and after the chemical strengthening.
  • Radio wave transmission is determined by both the relative permittivity and the dielectric loss tangent, but since the relative permittivity has a larger absolute value and is more effective than the dielectric loss tangent, the radio wave transmission is determined by the amount of change in the relative permittivity and the dielectric loss tangent. It is represented by the total value obtained by multiplying the amount of change in. Details of Experimental Example 1 will be described later.
  • the content of the alkali metal ion for calculating the entropy function is measured using EPMA (Electron Probe Micro Analyzer, manufactured by JEOL: JXA-8500F).
  • the measurement conditions of EPMA are an acceleration voltage of 15 kV, a probe current of 30 nA, and an integration time of 1000 msec. The interval is 1 ⁇ m as / point.
  • the chemical strengthening suppresses the movement of alkali metal ions after the chemical strengthening compared to before the chemical strengthening, and the improvement in radio wave transmission means that the amount of change in the relative permittivity due to the chemical strengthening and the dielectric loss due to the chemical strengthening It can be evaluated by the amount of change.
  • the value obtained by subtracting the "relative permittivity at 20 ° C. and 10 GHz after chemical strengthening" from the "relative permittivity at 20 ° C. and 10 GHz before chemical strengthening” is preferably 0 or more, more preferably 0. It is more preferably 0.02 or more, 0.04 or more, further preferably 0.06 or more, particularly preferably 0.08 or more, further preferably 0.1 or more, and most preferably 0.12 or more. Since the relative permittivity of the glass after the chemical strengthening is reduced by 0 or more as compared with the case before the chemical strengthening, it can be evaluated that the relative permittivity is lowered by the chemical strengthening and the radio wave transmission property is improved.
  • the value obtained by subtracting the "dielectric loss tangent at 20 ° C. and 10 GHz after chemical strengthening" from the "dielectric loss tangent at 20 ° C. and 10 GHz before chemical strengthening” is preferably 0 or more, more preferably 0.001 or more. 0.002 or more is further preferable, 0.003 or more is further preferable, and 0.004 or more is particularly preferable. Since the dielectric loss tangent of the glass after the chemical strengthening is reduced by 0 or more as compared with the case before the chemical strengthening, it can be evaluated that the dielectric loss is reduced by the chemical strengthening and the radio wave transmission property is improved.
  • the dielectric property of the glass surface is particularly important among the dielectric properties of glass, such as when designing a circuit on a glass substrate.
  • the chemically strengthened glass of the present invention can efficiently transmit radio waves in the high frequency band because the relative permittivity and dielectric tangent of the glass plate surface are smaller than the relative permittivity and dielectric tangent inside the glass, and the dielectric properties of the glass surface layer. Is excellent.
  • Z 0.65 or more, the movement of alkali metal ions after chemical strengthening is suppressed, and excellent radio wave transmission is exhibited in the high frequency band.
  • the value of Z can be adjusted by the composition of the chemically strengthened glass and the conditions of the chemically strengthened treatment (molten salt composition, time, temperature, etc.).
  • S1 in the above formula is an entropy function calculated from the amount of alkaline ions in the central portion of the glass
  • S2 is an entropy function calculated from the average amount of alkaline ions from the glass surface to a depth of 0.05 t.
  • the value of S1 is not particularly limited, but the lower the value of S1, the better the chemical strengthening property can be obtained.
  • the value is preferably 0.375 or less, more preferably 0.35 or less, and further preferably 0. It is 325 or less, more preferably 0.30 or less, particularly preferably 0.25 or less, further preferably 0.20 or less, and most preferably 0.15 or less.
  • S1 is too low, the relative permittivity and the dielectric loss tangent cannot be lowered even if chemically strengthened, so 0.0 or more is preferable.
  • the value of S2 is not particularly limited, but the higher the S2, the lower the relative permittivity and dielectric loss tangent of the glass after chemical strengthening, and the better radio wave transmission after chemical strengthening, for example, preferably 0.2 or more. Yes, more preferably 0.25 or more, still more preferably 0.3 or more, even more preferably 0.35 or more, particularly preferably 0.40 or more, still more preferably 0.45 or more.
  • S2 is too high, the chemical strengthening stress is not sufficiently applied, and for example, it is preferably 0.5 or less, more preferably 0.49 or less, still more preferably 0.48 or less, and 0.47. The following is even more preferable, and 0.46 or less is particularly preferable.
  • the value obtained by subtracting S1 from S2 is not particularly limited, but the higher the value, the lower the relative permittivity and the dielectric loss tangent after chemical strengthening, so that it is preferably 0.04 or more, more preferably 0. It is 0.05 or more, more preferably 0.1 or more, still more preferably 0.15 or more, particularly preferably 0.2 or more, further preferably 0.25 or more, and most preferably 0.3 or more.
  • the value obtained by subtracting S1 from S2 is too high, sufficient chemical strengthening stress cannot be applied, so that it is preferably 0.5 or less, more preferably 0.48 or less, still more preferably 0.46 or less. It is more preferably 0.44 or less, particularly preferably 0.42 or less, further preferably 0.40 or less, and most preferably 0.38 or less.
  • S1 and S2 By setting S1 and S2 in the above range, it is possible to increase the mixing degree of alkali metal ions by chemical strengthening, suppress the movement of alkali metal ions on the glass surface layer, and improve radio wave transmission in a high frequency band.
  • S1 and S2 can be adjusted depending on the composition of the chemically strengthening glass and the chemical strengthening treatment conditions (molten salt composition, time, temperature, etc.).
  • X in the above formula is the average value [unit: MPa] of the compressive stress in the region from the glass surface to the depth of 0.05 t.
  • the value of X is not particularly limited, but for example, it is preferably 100 MPa or more, more preferably 150 MPa or more, further preferably 200 MPa or more, further preferably 250 MPa or more, particularly preferably 275 MPa or more, and 300 MPa or more. It is more preferably 320 MPa or more, and most preferably 320 MPa or more.
  • the value of X is too high, it will explosively break as fine pieces when the glass is crushed, so that it is preferably 600 MPa or less, more preferably 500 MPa or less, and further preferably 475 MPa or less. It is more preferably 450 MPa or less, particularly preferably 425 MPa or less, further preferably 400 MPa or less, and most preferably 375 MPa or less.
  • the value of X can be adjusted by the composition of the chemically strengthened glass and the conditions of the chemically strengthened treatment (molten salt composition, time, temperature, etc.).
  • the chemically strengthened glass is preferably plate-shaped.
  • the glass plate may have a edging shape or the like having a different outer peripheral thickness.
  • the form of the glass plate is not limited to this, and for example, the two main surfaces may not be parallel to each other, and one or both of the two main surfaces may be a curved surface in whole or in part. More specifically, the glass plate may be, for example, a flat plate-shaped glass plate having no warp, or a curved glass plate having a curved surface.
  • the thickness (t) is, for example, 2000 ⁇ m or less, preferably 1500 ⁇ m or less, more preferably 1000 ⁇ m or less, still more preferably 900 ⁇ m or less, and particularly preferably 900 ⁇ m or less, from the viewpoint of enhancing the effect of chemical strengthening. It is 800 ⁇ m or less, and most preferably 700 ⁇ m or less. Further, the thickness is, for example, 100 ⁇ m or more, preferably 200 ⁇ m or more, more preferably 300 ⁇ m or more, still more preferably 350 ⁇ m or more, from the viewpoint of obtaining the effect of sufficient strength improvement by the chemical strengthening treatment. Yes, more preferably 400 ⁇ m or more, and particularly preferably 500 ⁇ m or more.
  • the shape of this chemically strengthened glass may be a shape other than a plate shape, depending on the product to which it is applied, the application, and the like.
  • the relative permittivity of the chemically strengthened glass at 20 ° C. and a frequency of 10 GHz is 7.0 or less, preferably 6.9 or less, more preferably 6.8 or less, further preferably 6.7 or less, and 6.6 or less. Even more preferably, 6.5 or less is particularly preferable, 6.4 or less is even more preferable, and 6.3 or less is most preferable. Since the relative permittivity is small, the loss of radio waves due to reflection on the glass surface can be suppressed, so that the radio wave transmission tends to be good. On the other hand, if the relative permittivity is too low, the glass will not be sufficiently chemically strengthened, so 4.0 or more is preferable, 4.2 or more is more preferable, and 4.4 or more is further preferable.
  • the relative permittivity can be measured by the slip-post dielectric resonance method (SPDR method) using a network analyzer for a value at 20 ° C. and a frequency of 10 GHz.
  • the dielectric positive contact (tan ⁇ ) of the chemically strengthened glass at 20 ° C. and a frequency of 10 GHz is preferably 0.02 or less, more preferably 0.018 or less, still more preferably 0.016 or less, still more preferably 0.014 or less. , 0.012 or less is particularly preferable, 0.011 or less is more preferable, and 0.010 or less is most preferable. Since the dielectric loss tangent is small, the loss when the radio wave passes through the inside of the glass can be suppressed, so that the radio wave transmission tends to be good. On the other hand, if the dielectric loss tangent is too low, the glass will not be able to apply sufficient chemical strengthening stress.
  • the dielectric loss tangent (tan ⁇ ) can be measured by a slip-post dielectric resonance method (SPDR method) using a network analyzer for a value at 20 ° C. and a frequency of 10 GHz.
  • the relative permittivity and the dielectric tangential value at 20 ° C. and a frequency of 10 GHz are brought closer to each other, and the frequency dependence (dielectric dispersion) is reduced by reducing the frequency dependence (dielectric dispersion). It is preferable because the frequency characteristics of the above are not easily changed and the design change can be small even when the frequency at the time of use is different.
  • the relative permittivity and the dielectric loss tangent can be adjusted by the composition of the glass and the chemical strengthening conditions.
  • this chemically strengthened glass Since the alkali content of this chemically strengthened glass is appropriately adjusted in the glass composition, the relative permittivity and the dielectric loss tangent at a frequency of 10 GHz can be reduced. Generally, in the frequency range of about 10 GHz to 40 GHz, the relative permittivity of glass and the frequency dependence of dielectric loss tangent are small, so this chemically strengthened glass with excellent dielectric properties at a frequency of 10 GHz is 28 GHz, 35 GHz, etc. used at 5 G. Excellent radio wave transmission even in the band of.
  • the relative permittivity and the dielectric loss tangent can be measured by the slip-post dielectric resonance method (SPDR method) using a network analyzer.
  • This chemically strengthened glass is obtained by chemically strengthening the chemically strengthened glass or crystallized glass described later. That is, the mother composition of the present chemically strengthened glass is the same as the glass composition of the chemically strengthened glass described later, and the preferable composition range is also the same.
  • the average composition of the chemically strengthened glass is the same as the composition of the chemically strengthened glass or the crystallized glass described later.
  • the average composition refers to a composition obtained by analyzing a glass sample that has been heat-treated from a glass state and then finely crushed.
  • the chemically strengthened glass preferably has an internal chemically strengthened stress CS of 0.05 t or more, more preferably 150 MPa or more, still more preferably 200 MPa or more, still more preferably 225 MPa or more, and particularly preferably 250 MPa or more.
  • an internal chemically strengthened stress CS of 0.05 t or more, more preferably 150 MPa or more, still more preferably 200 MPa or more, still more preferably 225 MPa or more, and particularly preferably 250 MPa or more.
  • the surface compressive stress value CS 0 is preferably 300 MPa or more, more preferably 400 MPa or more, and further preferably 500 MPa or more, excellent strength can be easily obtained, and the compressive stress value CS 50 at a depth of 50 ⁇ m from the surface is also available. It is preferable because it tends to grow.
  • the compressive stress value CS 50 at a depth of 50 ⁇ m from the surface is preferably 75 MPa or more, more preferably 90 MPa or more, still more preferably 100 MPa or more, and particularly preferably 125 MPa or more.
  • the large CS 50 makes it difficult to break when the chemically strengthened glass is damaged due to falling or the like.
  • the internal tensile stress value CT of the chemically strengthened glass is preferably 80 MPa or less, more preferably 75 MPa or less. Since the CT is small, crushing is unlikely to occur.
  • the internal tensile stress value CT is preferably 50 MPa or more, more preferably 60 MPa or more, still more preferably 65 MPa or more. When the CT is equal to or higher than the above value, the compressive stress near the surface becomes large and the strength becomes high.
  • the compressive stress layer depth DOL of the chemically strengthened glass is preferably 0.25t or less, more preferably 0.2t or less, still more preferably 0.19t or less, because if it is too large with respect to the thickness t, it causes an increase in CT. , More preferably 0.18 tons or less. Further, from the viewpoint of improving the strength, the DOL is preferably 0.06 tons or more, more preferably 0.08 tons or more, still more preferably 0.10 tons or more, and particularly preferably 0.12 tons or more.
  • the DOL is preferably 140 ⁇ m or less, more preferably 133 ⁇ m or less.
  • the DOL is preferably 70 ⁇ m or more, more preferably 80 ⁇ m or more, and even more preferably 90 ⁇ m or more.
  • the preferred thickness (t) and preferred shape of the chemically strengthened glass are the same as the preferred thickness (t) and shape of the present glass described above.
  • the Young's modulus of the chemically strengthened glass is preferably 50 GPa or more, more preferably 80 GPa or more, still more preferably 85 GPa or more because it is difficult to crush.
  • the upper limit of the Young's modulus is not particularly limited, but since a glass having a high Young's modulus may have a low acid resistance, it is, for example, 110 GPa or less, preferably 100 GPa or less, and more preferably 90 GPa or less. Young's modulus can be measured, for example, by the ultrasonic pulse method.
  • the four-point bending strength of the chemically strengthened glass is preferably 350 MPa or more, more preferably 450 MPa or more, and further preferably 400 MPa or more.
  • the upper limit of the 4-point bending strength is not particularly limited, but is typically 1000 MPa or less.
  • the 4-point bending strength is measured by the method specified in JIS R1601: 2008.
  • the Vickers hardness of the surface of the chemically strengthened glass is preferably 4.4 GPa or more, more preferably 4.8 GPa or more, and further preferably 5.2 GPa or more.
  • the upper limit of Vickers hardness is not particularly limited, but is typically 9.0 GPa or less.
  • the Vickers hardness is the Vickers hardness (HV0.1) specified in JIS R1610: 2003.
  • the thermal conductivity of the chemically strengthened glass is preferably 2.0 W / m ° C or lower, more preferably 1.8 W / m ° C or lower, and even more preferably 1.5 W / m ° C or lower.
  • the lower limit of the thermal conductivity is not particularly limited, but is typically 0.8 W / m ° C. or higher.
  • This chemically strengthened glass is particularly useful as a cover glass used for mobile devices such as mobile phones, smartphones, personal digital assistants (PDAs), and tablet terminals.
  • non-portable construction such as cover glass for display devices such as televisions (TVs), personal computers (PCs), and touch panels, wall surfaces of elevators, walls of buildings such as houses and buildings (full-scale display), and window glass. It is also useful as materials, table tops, interiors of automobiles and airplanes, cover glass for them, and applications such as housings having a curved shape that is not plate-shaped due to bending or molding.
  • the chemically strengthened glass can be produced by chemically strengthening the chemically strengthened glass described below (hereinafter, also referred to as “this chemically strengthened glass”).
  • Chemically strengthened glass any one of soda-lime glass, alkaline aluminosilicate glass, and alkaline aluminoborosilicate glass is preferable. These glasses are suitable for chemical strengthening treatments.
  • the chemically strengthened glass is lithium aluminosilicate glass. Since lithium aluminum nosilicate glass contains lithium ion, which is an alkaline ion having the smallest ion radius, it has a favorable stress profile and excellent strength by chemical strengthening treatment in which ions are exchanged using various molten salts. It is easy to obtain chemically strengthened glass.
  • SiO 2 B 2 O 3 0 to 20%, Al 2 O 3 1-25%, It is preferable to contain Li 2 O and / or Na 2 O in a total amount of 5 to 30%.
  • lithium aluminosilicate glass 40-70% of SiO 2 Al 2 O 3 7.5-20%, Those containing 5 to 25% of Li 2 O are preferable.
  • SiO 2 is a component constituting a glass network. Further, SiO 2 is a component that enhances chemical durability and is a component that reduces the occurrence of cracks when the glass surface is scratched.
  • the content of SiO 2 is preferably 40% or more, more preferably 50% or more, further preferably 55% or more, further preferably 56% or more, still more preferably 63% or more, in order to improve chemical durability. It is particularly preferable, and 65% or more is most preferable. In order to improve the meltability during glass production, the content of SiO 2 is preferably 80% or less, more preferably 75% or less, further preferably 70% or less, particularly preferably 68% or less, and 65% or less. Most preferred.
  • Al 2 O 3 is an effective component from the viewpoint of improving the ion exchange performance during chemical strengthening and increasing the surface compressive stress after strengthening.
  • the content of Al 2 O 3 is preferably 1% or more, preferably 3% or more, more preferably 5% or more, and 7% or more in order to improve the chemical durability and the chemical strengthening property. Is even more preferable, 9.1% or more is even more preferable, 10% or more is even more preferable, 11% or more is particularly preferable, and 12% or more is most preferable. On the other hand, if the content of Al 2 O 3 is too large, crystals may easily grow during melting. In order to prevent a decrease in yield due to devitrification defects, the content of Al 2 O 3 is preferably 25% or less, more preferably 23% or less, further preferably 21% or less, particularly preferably 20% or less, and most preferably. Is 19% or less.
  • Both SiO 2 and Al 2 O 3 are components that stabilize the structure of the glass, and the total content is preferably 57.5% or more, more preferably 65% or more in order to reduce the brittleness. It is more preferably 75% or more, still more preferably 77% or more, and particularly preferably 79% or more.
  • the total content thereof is preferably 95% or less, more preferably 90% or less, still more preferably 87% or less, still more preferably 85% or less, and particularly preferably 82. % Or less.
  • Li 2 O is a component that forms surface compressive stress by ion exchange, and is a component that improves the meltability of glass.
  • chemically strengthened glass contains Li 2 O, Li ions on the glass surface are ion-exchanged with Na ions, and Na ions are further ion-exchanged with K ions. Both the surface compressive stress and the compressive stress layer have large stress. A profile is obtained.
  • the Li 2 O content is preferably 5% or more, more preferably 6.5% or more, further preferably 7.1% or more, and 7.5% or more. It is particularly preferable, and 8% or more is most preferable.
  • the Li 2O content is preferably 18% or less, more preferably 16% or less, still more preferably 15% or less, still more preferably 14% or less. Particularly preferably, it is 12% or less. Further, if the content of alkaline ions is too large, the radio wave permeability tends to decrease. Therefore, from the viewpoint of improving the radio wave permeability, the Li 2 O content is preferably 12% or less, more preferably 10% or less. 9% or less is more preferable.
  • the total amount of Li 2 O and / or Na 2 O is preferably 5% or more, more preferably 7.5% or more, still more preferably 10% or more. Further, from the viewpoint of preventing the glass from dissolving in water or the like, the total amount of Li 2 O and / or Na 2 O is preferably 30% or less, more preferably 25% or less, still more preferably 20% or less. ..
  • Both Na 2 O and K 2 O are not essential, but are components that improve the meltability of the glass and reduce the crystal growth rate of the glass, and are preferably contained in order to improve the ion exchange performance.
  • Na 2 O is a component that forms a surface compressive stress layer in a chemical strengthening treatment using a potassium salt, and is a component that can improve the meltability of glass.
  • the content of Na 2 O is preferably 1.5% or more, more preferably 2.5% or more, further preferably 3% or more, still more preferably 3.6% or more, particularly. It is preferably 4% or more.
  • the content is preferably 10% or less, more preferably 7% or less, and 5%. The following is even more preferable, and 3% or less is even more preferable.
  • K2 O may be contained for the purpose of suppressing devitrification in the glass manufacturing process.
  • the content is preferably 0.1% or more, more preferably 0.15% or more, and particularly preferably 0.2% or more. In order to further prevent devitrification, 0.5% or more is preferable, and 1.2% or more is more preferable.
  • the content of K2O is preferably 4% or less, more preferably 3% or less, and more preferably 2 %, because a large amount of K causes brittleness and a decrease in surface stress due to reverse exchange during strengthening. The following is even more preferable, 1% or less is even more preferable, and 0.5% or less is particularly preferable.
  • the total content of Na 2 O and K 2 O ([Na 2 O] + [K 2 O]) is preferably 2% or more, more preferably 2.5% or more, in order to increase the meltability of the glass. It is more preferably 3% or more, and particularly preferably 3.5% or more. If ([Na 2 O] + [K 2 O]) is too large, the surface compressive stress value tends to decrease. Therefore, ([Na 2 O] + [K 2 O]) is preferably 10% or less, more preferably. Is 8% or less, more preferably 7% or less, and particularly preferably 6% or less. Further, the coexistence of Na 2 O and K 2 O suppresses the movement of the alkaline component, which is preferable from the viewpoint of radio wave transmission.
  • this chemically strengthened glass has the ratio of the content of Li 2 O to the total content of Na 2 O and K 2 O ([Na 2 O] + [K 2 O]) [[ Li 2 O] / ([Na 2 O] + [K 2 O])] is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more, and particularly preferably 5 or more.
  • the upper limit of [[Li 2 O] / ([Na 2 O] + [K 2 O])] is not particularly limited, but is typically 20 or less.
  • MgO, CaO, SrO, and BaO are not essential, but one or more of them may be contained from the viewpoint of improving the stability of the glass and improving the chemical strengthening characteristics.
  • the total content of 1 or more selected from MgO, CaO, SrO, and BaO [MgO] + [CaO] + [SrO] + [BaO] is preferably 1% or more, preferably 2% or more. More preferably, 4% or more is further preferable.
  • the total content of these is preferably 20% or less, more preferably 10% or less.
  • MgO may be contained in order to reduce the viscosity at the time of dissolution.
  • the content is preferably 1% or more, more preferably 2% or more, still more preferably 3% or more.
  • the content of MgO is preferably 5% or less, more preferably 4% or less, still more preferably 3% or less, and particularly preferably 2% or less.
  • CaO is a component that improves the meltability of glass and may be contained.
  • the content is preferably 0.1% or more, more preferably 0.15% or more, and further preferably 0.5% or more.
  • the CaO content is preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, and typically 0.5% or less.
  • ZnO is a component that improves the meltability of glass and may be contained.
  • the content is preferably 0.2% or more, more preferably 0.5% or more.
  • the ZnO content is preferably 8% or less, more preferably 5% or less, still more preferably 3% or less.
  • [ZnO] + [SrO] + [BaO] is preferably less than 1%, preferably 0.5% or less, in order to facilitate chemical strengthening. Is more preferable. It is more preferable that these are substantially not contained.
  • ZrO 2 may not be contained, but it is preferably contained from the viewpoint of increasing the surface compressive stress of the chemically strengthened glass.
  • the content of ZrO 2 is preferably 0.1% or more, more preferably 0.15% or more, still more preferably 0.2% or more, particularly preferably 0.25% or more, typically 0.3%. That is all.
  • the content of ZrO 2 is preferably 2% or less, more preferably 1.5% or less, still more preferably 1% or less, and particularly preferably 0.8% or less.
  • the content of Y2O3 is preferably 0.1% or more , more preferably 0.2% or more, still more preferably 0.5% or more, and particularly preferably 1% or more. On the other hand, if the amount is too large, it becomes difficult to increase the compressive stress layer during the chemical strengthening treatment.
  • the content of Y2O3 is preferably 10 % or less, more preferably 8% or less, still more preferably 5% or less, still more preferably 3% or less, particularly preferably 2% or less, still more preferably 1 It is less than 5.5%.
  • La 2 O 3 is not essential, but can be contained for the same reason as Y 2 O 3 .
  • La 2 O 3 is preferably 0.1% or more, more preferably 0.2% or more, still more preferably 0.5% or more, and particularly preferably 0.8% or more.
  • it is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less, and particularly preferably 1.5% or less.
  • TiO 2 is a component that suppresses the solarization of glass and may be contained.
  • the content is preferably 0.02% or more, more preferably 0.03% or more, still more preferably 0.04% or more, and particularly preferably 0.05% or more. Yes, typically 0.06% or higher.
  • the content of TiO 2 is preferably 5% or less, more preferably 3% or less, further preferably 2% or less, still more preferably 1% or less, particularly preferably 0.5% or less, still more preferably 0.25. % Or less.
  • B 2 O 3 is not essential, it may be contained for the purpose of reducing the brittleness of the glass and improving the crack resistance, and for the purpose of improving the radio wave transmission.
  • the content is preferably 1.0% or more, preferably 3.0% or more, more preferably 4.0% or more, particularly preferably 5.0% or more, and 7 It is more preferably 9.0% or more, and most preferably 8.0% or more.
  • the content of B 2 O 3 is preferably 25% or less.
  • the content of B 2 O 3 is more preferably 16% or less, still more preferably 13% or less, and particularly preferably 12% or less. The following is particularly preferable, 11% or less is more preferable, and 10% or less is most preferable. It is more preferable that B 2 O 3 is substantially not contained in order to prevent the problem of pulse formation during melting.
  • P 2 O 5 is not essential, it may be contained for the purpose of increasing the compressive stress layer at the time of chemical strengthening.
  • the content is preferably 0.25% or more, preferably 0.5% or more, more preferably 0.75% or more, and particularly preferably 1.0% or more. It is more preferably .25% or more, and most preferably 1.5% or more.
  • the content of P 2 O 5 is preferably 10% or less, more preferably 8% or less, still more preferably 6% or less, still more preferably 4% or less, and 3% or less. Is particularly preferable, 2.5% or less is more preferable, and 2.0% or less is most preferable. In order to prevent the occurrence of veins at the time of melting, it is more preferable that the substance is not substantially contained.
  • the total content of B 2 O 3 and P 2 O 5 is preferably 0 to 35%, more preferably 5% or more, still more preferably 8% or more.
  • the total content of B 2 O 3 and P 2 O 5 is preferably 20% or less, more preferably 17% or less, still more preferably 15% or less.
  • Nb 2 O 5, Ta 2 O 5 , Gd 2 O 3 , and CeO 2 are components that suppress the solarization of glass, are components that improve meltability, and may be contained.
  • the content of each is preferably 0.03% or more, more preferably 0.1% or more, still more preferably 0.5% or more, particularly preferably 0.8% or more, typically.
  • the target is 1% or more.
  • the compressive stress value is preferably 3% or less, more preferably 2% or less, still more preferably 1% or less. , Particularly preferably 0.5% or less.
  • the coloring component may be added as long as it does not hinder the achievement of the desired chemical strengthening property.
  • the coloring component include Fe 2 O 3 , Co 3 O 4 , MnO 2 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , CeO 2 , Er 2 O 3 , and so on. Nd 2 O 3 and the like are preferable.
  • the content of the coloring component is preferably 5% or less in total in terms of molar percentage display based on oxides. If it exceeds 5%, the glass may easily devitrify.
  • the content of the coloring component is preferably 3% or less, more preferably 1% or less. If it is desired to increase the transmittance of the glass, it is preferable that these components are not substantially contained.
  • SO 3 , chloride, fluoride and the like may be appropriately contained as a clarifying agent or the like when the glass is melted. It is preferable that As 2 O 3 is not contained. When Sb 2 O 3 is contained, it is preferably 0.3% or less, more preferably 0.1% or less, and most preferably not contained.
  • the ⁇ -OH value is a value used as an index of the water content of glass, and the absorbance of light having a wavelength of 2.75 to 2.95 ⁇ m is measured, and the maximum value ⁇ max is the thickness (mm) of the glass. It is the value obtained by dividing by.
  • the ⁇ -OH value is preferably 0.8 mm -1 or less because the radio wave permeability of the glass can be further improved, more preferably 0.6 mm -1 or less, further preferably 0.5 mm -1 or less, and 0. 4 mm -1 or less is even more preferable.
  • the ⁇ -OH value is more preferably 0.1 mm -1 or more, and further preferably 0.2 mm -1 or more.
  • the ⁇ -OH value can be adjusted by the composition of the glass, the heat source at the time of melting, the melting time, and the raw material.
  • the temperature (T2) at which the viscosity is 102 dPa ⁇ s is preferably 1750 ° C. or lower, more preferably 1700 ° C. or lower, particularly preferably 1675 ° C. or lower, and typically 1650 ° C. or lower.
  • the temperature (T2) is a temperature that serves as a guideline for the melting temperature of the glass, and the lower the T2, the easier it is to manufacture the glass.
  • the lower limit of T2 is not particularly limited, but since a glass having a low T2 tends to have a glass transition point too low, T2 is usually 1400 ° C. or higher, preferably 1450 ° C. or higher.
  • the temperature (T4) at which the viscosity is 104 dPa ⁇ s is preferably 1350 ° C. or lower, more preferably 1300 ° C. or lower, further preferably 1250 ° C. or lower, and particularly preferably 1150 ° C. or lower.
  • the temperature (T4) is a temperature that serves as a guideline for the temperature at which the glass is formed into a plate shape, and the glass having a high T4 tends to have a high load on the forming equipment.
  • the lower limit of T4 is not particularly limited, but since a glass having a low T4 tends to have a glass transition point too low, T4 is usually 900 ° C. or higher, preferably 950 ° C. or higher, more preferably 1000 ° C. That is all.
  • the devitrification temperature of the chemically strengthened glass is 120 ° C. higher than the temperature (T4) at which the viscosity is 104 dPa ⁇ s, because devitrification is unlikely to occur during molding by the float method.
  • the devitrification temperature is more preferably 100 ° C. higher than T4, still more preferably 50 ° C. higher than T4, and particularly preferably T4 or lower.
  • the breaking toughness value of the chemically strengthened glass is preferably 0.70 MPa ⁇ m 1/2 or more, more preferably 0.75 MPa ⁇ m 1/2 or more, still more preferably 0.80 MPa ⁇ m 1/2 or more. Particularly preferably, it is 0.83 MPa ⁇ m 1/2 or more.
  • the fracture toughness value is usually 2.0 MPa ⁇ m 1/2 or less, and typically 1.5 MPa ⁇ m 1/2 or less. Due to the large fracture toughness value, even if a large surface compressive stress is introduced into the glass by chemical strengthening, severe crushing is unlikely to occur.
  • the fracture toughness value can be measured using, for example, the DCDC method (Acta metall. Mater. Vol. 43, pp. 3453-3458, 1995).
  • the Young's modulus of the chemically strengthened glass is preferably 80 GPa or more, more preferably 82 GPa or more, still more preferably 84 GPa or more, and particularly preferably 85 GPa or more because the glass is not easily crushed.
  • the upper limit of the Young's modulus is not particularly limited, but glass having a high Young's modulus may have a low acid resistance. Therefore, for example, 110 GPa or less is preferable, more preferably 100 GPa or less, and further preferably 90 GPa or less. Young's modulus can be measured, for example, by the ultrasonic pulse method.
  • the average linear thermal expansion coefficient (thermal expansion coefficient) of the present chemical strengthening glass at 50 to 350 ° C. is preferably 95 ⁇ 10 -7 / ° C. or less, more preferably 90 ⁇ , from the viewpoint of reducing warpage after chemical strengthening. It is 10-7 / ° C. or lower, more preferably 88 ⁇ 10-7 / ° C. or lower, particularly preferably 86 ⁇ 10-7 / ° C. or lower, and most preferably 84 ⁇ 10-7 / ° C. or lower.
  • the lower limit of the coefficient of thermal expansion is not particularly limited, but since glass having a small coefficient of thermal expansion may be difficult to melt, the average linear thermal expansion coefficient (thermal expansion) of this chemically strengthened glass at 50 to 350 ° C.
  • the coefficient is, for example, preferably 60 ⁇ 10 -7 / ° C. or higher, more preferably 70 ⁇ 10 -7 / ° C. or higher, still more preferably 74 ⁇ 10 -7 / ° C. or higher, and particularly preferably 76 ⁇ 10 -7 / ° C. It is above °C.
  • the glass transition point (Tg) is preferably 500 ° C. or higher, more preferably 520 ° C. or higher, still more preferably 540 ° C. or higher, from the viewpoint of reducing warpage after chemical strengthening. In terms of easy float molding, it is preferably 750 ° C. or lower, more preferably 700 ° C. or lower, still more preferably 650 ° C. or lower, particularly preferably 600 ° C. or lower, and most preferably 580 ° C. or lower.
  • This chemically strengthened glass can be manufactured by a normal method. For example, the raw materials for each component of glass are mixed and melted by heating in a glass melting kiln. Then, the glass is homogenized by a known method, formed into a desired shape such as a glass plate, and slowly cooled.
  • the glass plate forming method examples include a float method, a pressing method, a fusion method and a downdraw method.
  • the float method suitable for mass production is preferable.
  • continuous molding methods other than the float method, for example, the fusion method and the down draw method are also preferable.
  • the molded glass is ground and polished as necessary to form a glass substrate.
  • the subsequent chemical strengthening treatment is performed. This is preferable because a compressive stress layer is also formed on the end face.
  • the chemically strengthened glass may be crystallized glass (hereinafter, also referred to as “this crystallized glass”).
  • the present crystallized glass is a crystallized glass having the glass composition of the present chemically strengthening glass described above.
  • the present crystallized glass preferably contains at least one of lithium silicate crystal, lithium aluminosilicate crystal or lithium phosphate crystal, magnesium aluminosilicate crystal, magnesium silicate crystal, and silicate crystal.
  • lithium silicate crystal lithium metasilicate crystal is more preferable.
  • lithium aluminosilicate crystal petalite crystal, ⁇ -spodium crystal, ⁇ -eucryptite, and ⁇ -eucryptite are preferable.
  • As the lithium phosphate crystal a lithium orthophosphate crystal is preferable.
  • Crystallized glass containing lithium metasilicate crystals is more preferable in order to increase the transparency.
  • Crystallized glass is obtained by heat-treating amorphous glass having the same composition as the chemically strengthened glass to crystallize it.
  • the glass composition of crystallized glass is the same as that of amorphous glass.
  • the crystallized glass has a visible light transmittance (total light visible light transmittance including diffused transmitted light) of preferably 85% or more when converted to a thickness of 700 ⁇ m, so that it can be used as a cover glass for a portable display. When used, the screen of the display is easy to see.
  • the visible light transmittance is more preferably 88% or more, further preferably 90% or more. The higher the visible light transmittance is, the more preferable it is, but it is usually 93% or less.
  • the visible light transmittance of ordinary amorphous glass is about 90% or more.
  • the transmittance at 700 ⁇ m can be calculated from the measured transmittance using Lambert-Beer-Lambert's law.
  • the thickness may be adjusted to 0.7 mm by polishing or etching, and the actual measurement may be performed.
  • the haze value is preferably 1.0% or less, more preferably 0.4% or less, further preferably 0.3% or less, and 0.2% or less when converted to a thickness of 700 ⁇ m. It is particularly preferable, and 0.15% or less is most preferable.
  • the haze value when the thickness is 700 ⁇ m is preferably 0.02% or more, more preferably 0.03% or more.
  • the haze value is a value measured according to JIS K7136 (2000).
  • the haze value H 0.7 in the case of 700 ⁇ m is calculated by the following formula.
  • the thickness may be adjusted to 700 ⁇ m by polishing or etching and actually measured.
  • the refractive index of the present crystallized glass is preferably 1.52 or more, more preferably 1.55 or more, still more preferably 1.57 or more at a wavelength of 590 nm.
  • the crystallization rate of the crystallized glass is preferably 5% or more, more preferably 10% or more, further preferably 15% or more, and particularly preferably 20% or more in order to increase the mechanical strength. In order to increase the transparency, 70% or less is preferable, 60% or less is more preferable, and 50% or less is particularly preferable.
  • the low crystallization rate is also excellent in that it can be easily bent and molded by heating.
  • the crystallization rate can be calculated by the Rietveld method from the X-ray diffraction intensity.
  • the Rietveld method is described in the "Crystal Analysis Handbook” (Kyoritsu Shuppan, 1999, pp. 492-499), edited by the editorial board of the "Crystal Analysis Handbook” of the Crystallographic Society of Japan.
  • the average particle size of the precipitated crystals of the crystallized glass is preferably 80 nm or less, more preferably 60 nm or less, further preferably 50 nm or less, particularly preferably 40 nm or less, and most preferably 30 nm or less.
  • the average particle size of the precipitated crystals is determined from a transmission electron microscope (TEM) image.
  • the average particle size of the precipitated crystals can be estimated from a scanning electron microscope (SEM) image.
  • the present chemically strengthened glass can be produced by subjecting the obtained glass plate to a chemically strengthened treatment, and then washing and drying.
  • the chemical strengthening treatment can be performed by a known method.
  • the glass plate is brought into contact with a melt of a metal salt (for example, potassium nitrate) containing a metal ion (typically K ion) having a large ionic radius by immersion or the like.
  • a metal salt for example, potassium nitrate
  • the metal ion having a small ion radius typically Na ion or Li ion
  • the metal ion having a small ion radius typically Na ion or Li ion
  • the glass plate becomes a metal ion having a large ion radius (typically, K ion or Li ion for Na ion).
  • K ion or Li ion for Na ion typically, K ion or Li ion for Na ion.
  • it is replaced with Na ion).
  • the chemical strengthening treatment can be performed, for example, by immersing the glass plate in a molten salt such as potassium nitrate heated to 360 to 600 ° C. for 0.1 to 500 hours.
  • a molten salt such as potassium nitrate heated to 360 to 600 ° C. for 0.1 to 500 hours.
  • the heating temperature of the molten salt is preferably 375 to 500 ° C.
  • the immersion time of the glass plate in the molten salt is preferably 0.3 to 200 hours, for example.
  • Examples of the molten salt for performing the chemical strengthening treatment include nitrates, sulfates, carbonates, chlorides and the like.
  • examples of the nitrate include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, silver nitrate and the like.
  • examples of the sulfate include lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, silver sulfate and the like.
  • Examples of the carbonate include lithium carbonate, sodium carbonate, potassium carbonate and the like.
  • examples of the chloride include lithium chloride, sodium chloride, potassium chloride, cesium chloride, silver chloride and the like.
  • the treatment conditions of the chemically strengthened glass are the characteristics and composition of the glass, the type of molten salt, the entropy function S desired for the finally obtained chemically strengthened glass, the surface compressive stress and the depth of the compressive stress layer.
  • Appropriate conditions may be selected in consideration of chemical strengthening characteristics such as glass.
  • the chemical strengthening treatment may be performed only once, or the chemical strengthening treatment (multi-stage strengthening) may be performed a plurality of times under two or more different conditions.
  • the chemical strengthening treatment is performed under the condition that the DOL is large and the CS is relatively small.
  • the second stage of the chemical strengthening treatment when the chemical strengthening treatment is performed under the condition that the DOL is small and the CS is relatively high, the internal tensile stress area (St) is increased while increasing the CS on the outermost surface of the chemically strengthened glass. And the internal tensile stress (CT) can be suppressed low.
  • the electronic device housing of the present invention includes the chemically strengthened glass of the present invention.
  • Examples of the electronic device housing include a cover glass for the display surface of a mobile terminal, a cover glass for the back surface, and a cover glass for a display device such as a television (TV), a personal computer (PC), or a touch panel that is not intended to be carried. Can be mentioned.
  • Example 1 Various glass raw materials were mixed and weighed to 400 g as glass. Then, the mixed raw materials were put into a platinum crucible, put into an electric furnace at 1500 to 1700 ° C., melted for about 3 hours, defoamed, and homogenized.
  • FIG. 1 shows a graph showing the correlation between the radio wave transmission at a frequency of 10 GHz and the entropy function and the compressive stress for the glass whose radio wave transmission has increased due to chemical strengthening.
  • the vertical axis of FIG. 1 is the total value of the relative permittivity changed before and after the chemical strengthening and the value obtained by multiplying the dielectric loss tangent by 100, and the horizontal axis is the parameter Z that can be calculated from the entropy function and the compressive stress before and after the chemical strengthening.
  • the content of the alkali metal ion for calculating the entropy function was measured using EPMA (Electron Probe Micro Analoger, manufactured by JEOL: JXA-8500F).
  • the measurement conditions of EPMA are an acceleration voltage of 15 kV, a probe current of 30 nA, and an integration time of 1000 msec. The interval was set to 1 ⁇ m as / point.
  • Example 2 The glass raw materials were prepared so as to have the composition shown in the molar percentage display based on the oxide in Table 1, and weighed to 400 g as glass. Then, the mixed raw materials were put into a platinum crucible, put into an electric furnace at 1500 to 1700 ° C., melted for about 3 hours, defoamed, and homogenized.
  • the obtained molten glass was poured into a metal mold, kept at a temperature about 50 ° C. higher than the glass transition point for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain glass blocks.
  • the obtained glass block was cut and ground, and finally both sides were mirror-polished to obtain a glass plate having a thickness (t) of 700 ⁇ m.
  • the compressive stress and compressive stress layer depth DOL of the surface layer after chemical strengthening were measured using an optical waveguide surface stress meter FSM-6000 and a scattered photoelastic stress meter SLP-1000 manufactured by Orihara Seisakusho, and from the surface layer to 0.05 t ⁇ m.
  • the average value of the compressive stress in the region of is described as the internal average chemical strengthening stress.
  • the obtained sample was obtained by using EPMA (Electron Probe Micro Analyzer, manufactured by JEOL: JXA-8500F), and the content of alkali metal ions after chemical strengthening at a depth of 0.05 t from the glass surface.
  • EPMA Electro Probe Micro Analyzer, manufactured by JEOL: JXA-8500F
  • the content of alkali metal ions in the center of the plate thickness (center of the glass) was measured.
  • the average value is shown in Table 2 as the amount of ions after strengthening and the amount of ions at the center of the plate thickness.
  • the entropy function S was obtained from the obtained ion amount of the alkali metal element according to the following definition formula.
  • the relative permittivity and tan ⁇ were measured by the slip-post dielectric resonance method (SPDR method) using a network analyzer.
  • the measurement conditions were a temperature of 20 ° C. and a frequency of 10 GHz.
  • Examples 5 to 7 which are comparative examples, since the amount of change in the entropy function before and after the chemical strengthening is small, the alkali fixing parameter Z is less than 0.65, and as a result, the chemical strengthening treatment is performed to make the relative permittivity. It can be confirmed that both the rate and the dielectric loss increase and the dielectric characteristics decrease.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

本発明は、高周波数帯における優れた電波透過性と高い強度とを併せ持つ化学強化ガラスの提供を目的とする。本発明は、厚さがt(単位:μm)であり、20℃、周波数10GHzにおける比誘電率が7.0以下の化学強化ガラスであって、ガラスの中心部分のアルカリイオン量から算出されるエントロピー関数S1、ガラス表面から0.05tの深さまでの平均のアルカリイオン量から算出されるエントロピー関数S2、およびガラス表面から深さ0.05tまでの領域における圧縮応力の平均値X[単位:MPa]から式[Z=(S2-S1)×10+X/1000]により求められるZが0.65以上である化学強化ガラスに関する。

Description

化学強化ガラスおよび電子機器筐体
 本発明は、化学強化ガラスおよび電子機器筐体に関する。
 携帯端末等の電子機器の筐体には、携帯端末を落としても容易に割れない強度が求められることから、化学強化ガラスが広く用いられている。化学強化ガラスは、ガラスを硝酸ナトリウムなどの溶融塩に浸漬する等の方法で、ガラス中に含まれるアルカリイオンと、溶融塩に含まれるイオン半径がより大きいアルカリイオンとのイオン交換を生じさせ、それによってガラスの表層部分に圧縮応力層を形成したガラスである。例えば特許文献1には、特定の組成を有し、化学強化により高い表面圧縮応力を得られるアルミノシリケートガラスが開示されている。
 一方で、携帯電話機、スマートフォン、携帯情報端末、Wi-Fi機器のような通信機器、弾性表面波(SAW)デバイス、レーダ部品、アンテナ部品等の電子デバイスにおいては、通信容量の大容量化や通信速度の高速化等を図るために、信号周波数の高周波化が進められている。近年は、より高周波の帯域を使用する新たな通信システムとして、5G(第5世代移動通信システム)の普及が見込まれる。
 5Gで用いられる高周波数帯においてはカバーガラスが電波送受信の妨げとなる場合があり、5G対応の携帯端末には電波透過性等の誘電特性に優れたカバーガラスが求められる。優れた誘電特性としては、例えば、比誘電率及び誘電損失が低いことが望ましい。比誘電率の低下により電波の反射を抑制し、電波透過性を向上できる。また誘電損失の低下により、電波の損失を抑制できる。
 5Gで用いられるような高周波数帯において電波透過性の高いガラス、すなわち比誘電率や誘電正接の小さいガラスとしては、これまでにいくつかの無アルカリガラスが開発されている(特許文献2)。
日本国特表2018-520082号公報 国際公開第2019/181707号
 しかしながら、特許文献2に開示されているようなアルカリイオンをほぼ含有しない無アルカリガラスは化学強化が困難である。また、化学強化ガラスの電波透過性は、予測がつきにくく、高周波数帯における電波透過性と強度との両立は難しい。
 したがって、本発明は、高周波数帯における優れた電波透過性と高い強度とを併せ持つ化学強化ガラスの提供を目的とする。
 本発明者らは、高周波数帯において、化学強化前と比して、化学強化後の電波透過性が低下するガラスと上昇するガラスとの両方が存在することを見出した。さらに化学強化後に高周波数帯での電波透過性が上昇するガラスについて、化学強化後の表面特性と電波透過性との相関関係を見出し、本発明をなした。
 本発明は、厚さがt(単位:μm)であり、20℃、周波数10GHzにおける比誘電率が7.0以下の化学強化ガラスであって、
 ガラスの中心部分のアルカリイオン量から算出されるエントロピー関数S1、ガラス表面から0.05tの深さまでの平均のアルカリイオン量から算出されるエントロピー関数S2、およびガラス表面から深さ0.05tまでの領域における圧縮応力の平均値X[単位:MPa]から以下の式で求められるZが0.65以上である化学強化ガラスである。
 Z=(S2-S1)×10+X/1000
 ただしエントロピー関数Sは、それぞれの深さにおけるLiO、NaOおよびKOの酸化物基準のモル百分率による含有量[LiO]、[NaO]および[KO]から以下の式で求めるものとする。下記式において、[LiO]、[NaO]および[KO]がゼロである場合は、1×10-4とする。
 S=-[LiO]/([LiO]+[NaO]+[KO])log([LiO]/([LiO]+[NaO]+[KO]))-[NaO]/([LiO]+[NaO]+[KO])log([NaO]/([LiO]+[NaO]+[KO]))-[KO]/([LiO]+[NaO]+[KO])log([KO]/([LiO]+[NaO]+[KO]))
 本発明の化学強化ガラス(以下、本化学強化ガラスともいう)は、前記エントロピー関数S2から前記エントロピー関数S1を減じた値である(S2-S1)の値が0.04以上であることが好ましい。
 本化学強化ガラスの20℃、周波数10GHzにおける誘電正接は、0.02以下が好ましい。
 本化学強化ガラスは、母組成が、酸化物基準のモル百分率表示で、
 SiOを40~80%、
 Bを0~20%、
 Alを1~25%、
 LiOおよび/またはNaOを合計で5~30%、含有することが好ましい。
 本化学強化ガラスは、表面圧縮応力値CSが300MPa以上であることが好ましい。
 本化学強化ガラスは、ガラス表面から0.05tの深さにおける内部化学強化応力CS0.05tが75MPa以上、かつ前記厚tが300μm以上であることが好ましい。
 本化学強化ガラスは、圧縮応力層深さDOLが70μm以上、かつ前記厚さtが350μm以上であることが好ましい。
 本化学強化ガラスは、リチウムアルミノシリケートガラスであり、
 母組成が、酸化物基準のモル百分率表示で、
 SiOを40~70%、
 Alを7.5~20%、
 LiOを5~25%含有することが好ましい。
 本化学強化ガラスは、前記厚さtが100μm以上2000μm以下であることが好ましい。
 本化学強化ガラスは、結晶化ガラスであることが好ましい。
 本発明は、また、本化学強化ガラスを含む電子機器筐体を提供する。
 本発明の化学強化ガラスは、アルカリ金属イオンの混合の度合いを表すエントロピー関数Sと圧縮応力の平均値Xで表される式で求められるZが特定範囲であり、ガラス中のアルカリ金属イオンの動きが抑制されている。これにより、本発明の化学強化ガラスは、強度に優れるとともに、高周波数帯において優れた電波透過性を示す。
図1は、周波数10GHzにおける電波透過性において重要となる比誘電率および誘電正接における合計値の化学強化前後の変化量と、エントロピー関数及び圧縮応力との相関を示すグラフである。縦軸は化学強化前後で変化した比誘電率と誘電正接を100倍した値の合計値であり、横軸は化学強化前後のエントロピー関数及び圧縮応力から計算できるパラメータZである。電波透過性は比誘電率と誘電正接の両方で決まるが、誘電正接より比誘電率の方が絶対値が大きく効果も高いことから、電波透過性を比誘電率と誘電正接の100倍の合計値で表している。
 本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。特段の定めがない限り、以下本明細書において「~」は、同様の意味で使用される。
 本明細書において、「化学強化ガラス」は、化学強化処理を施した後のガラスを指し、「化学強化用ガラス」は、化学強化処理を施す前のガラスを指す。
 本明細書において、「化学強化ガラスの母組成」とは、化学強化用ガラスのガラス組成である。化学強化ガラスにおいては、極端なイオン交換処理がされた場合を除いて、厚さtの1/2の深さにおけるガラス組成は、化学強化ガラスの母組成である。
 本明細書において、ガラス組成は、特に断らない限り酸化物基準のモル百分率表示で表し、モル%を単に「%」と表記する。
 また、本明細書において「実質的に含有しない」とは、原材料等に含まれる不純物レベル以下である、つまり意図的に含有させたものではないことをいう。具体的には、たとえば0.1モル%未満である。
 本明細書において「応力プロファイル」はガラス表面からの深さを変数として圧縮応力値を表したものをいう。また、「圧縮応力層深さ(DOL)」は、圧縮応力値(CS)がゼロとなる深さである。「内部引張応力値(CT)」は、ガラスの厚さtの1/2の深さにおける引張応力値をいう。本明細書において引張応力値は負の圧縮応力値として表される。
 本明細書における応力プロファイルは、散乱光光弾性応力計(たとえば折原製作所製SLP-1000)を用いて測定できる。散乱光光弾性応力計は、表面散乱の影響を受けて、試料表面付近の測定精度が低下する場合がある。しかし、例えばガラス中のリチウムイオンと外部のナトリウムイオンとのイオン交換のみによって圧縮応力が生じている場合には、深さの関数で表した圧縮応力値が相補誤差関数に従うので、内部の応力値を測定することで、表面の応力値を知ることができる。相補誤差関数に従わない場合等は、表面部分を別の方法、たとえば、表面応力計で測定する方法等によって測定する。
<化学強化ガラス>
 本発明の化学強化ガラスは、厚さがt(単位:μm)であり、周波数10GHzにおける比誘電率が7.0以下の化学強化ガラスであって、ガラスの中心部分のアルカリイオン量から算出されるエントロピー関数S1、ガラス表面から0.05tの深さまでの平均のアルカリイオン量から算出されるエントロピー関数S2、およびガラス表面から深さ0.05tまでの領域における圧縮応力の平均値X[MPa]から以下の式で求められるZが0.65以上である。Z=(S2-S1)×10+X/1000
 ここで、エントロピー関数Sは、それぞれの深さにおけるLiO、NaO、KOの酸化物基準のモル百分率による含有量[LiO]、[NaO]および[KO]から以下の式で求めるものとする。下記式において、[LiO]、[NaO]および[KO]がゼロである場合は、1×10-4とする。
S=-[LiO]/([LiO]+[NaO]+[KO])log([LiO]/([LiO]+[NaO]+[KO]))-[NaO]/([LiO]+[NaO]+[KO])log([NaO]/([LiO]+[NaO]+[KO]))-[KO]/([LiO]+[NaO]+[KO])log([KO]/([LiO]+[NaO]+[KO]))
 従来、化学強化ガラスの電波透過性は、周波数の変化に伴い変化するために予測がつきにくく、高周波数帯における電波透過性と強度との両立は難しいとされている。本発明者らは、高周波数帯の電波透過性と化学強化との関係に着目し、化学強化前と比較して、化学強化後に高周波数帯の電波透過性が上昇するガラスと、化学強化後に高周波数帯の電波透過性が低下するガラスとが存在することを見出した。
 さらに本発明者らは、化学強化前と比較して、化学強化後に高周波数帯の電波透過性が上昇するガラスの特徴は、1)化学強化前後でアルカリイオンの混合度が大きく変化していること、2)化学強化後に高い圧縮応力が入っていること、の両方を備えることであると考えた。以下、1)および2)の特徴について説明する。
 比誘電率や誘電損失の低下により電波透過性は上昇する。比誘電率や誘電損失は主にガラス中のアルカリ金属イオンが動くことによって生じるため、化学強化処理によりアルカリ金属イオンのガラスにおける動きを抑制することで、比誘電率や誘電損失を低下し得ると考えられる。
 前記1)化学強化前後でアルカリイオンの混合度が大きく変化していることについて、互いに異なる種類のアルカリ金属イオンがガラス中に存在して混合されていることにより、アルカリ金属イオン同士の交換が起こりにくくなり、比誘電率や誘電損失が低下し、誘電特性が向上すると考えられる。アルカリ金属イオンの混合度合いはエントロピー関数で表される。
 前記2)化学強化後に高い圧縮応力が入っていることについて、圧縮応力が強いとアルカリ金属イオンの動きが抑制され、比誘電率や誘電損失が下がり、誘電特性が向上すると考えられる。
 図1は、後述する実験例1において、化学強化前と比較して、化学強化後に電波透過性が上昇するガラスについての、周波数10GHzにおける電波透過性において重要となる比誘電率および誘電正接における合計値の化学強化前後の変化量と、エントロピー関数及び圧縮応力との相関を示すグラフである。図1の縦軸は化学強化前後で変化した比誘電率と誘電正接を100倍した値の合計値であり、横軸は化学強化前後のエントロピー関数及び圧縮応力から計算できるパラメータZである。なお、電波透過性は比誘電率と誘電正接の両方で決まるが、誘電正接より比誘電率の方が絶対値が大きく効果も高いことから、電波透過性を比誘電率の変化量と誘電正接の変化量を100倍した値の合計値で表している。実験例1の詳細は後述する。
 エントロピー関数を算出するためのアルカリ金属イオンの含有量は、EPMA(Electron Probe Micro Analyzer、JEOL社製:JXA-8500F)を用いて測定する。EPMAの測定条件としては、加速電圧15kV、プローブ電流30nA、積算時間1000msec./pointとして1μm間隔とする。
 図1によれば、上記式[Z=(S2-S1)×10+X/1000]で表されるZが0.65以上であることにより、化学強化前と比して化学強化後にアルカリ金属イオンの動きが抑制されており、高周波数帯において優れた電波透過性を示すことがわかる。
 化学強化により、化学強化前と比して化学強化後にアルカリ金属イオンの動きが抑制され、電波透過性が向上していることは、化学強化による比誘電率の変化量、化学強化による誘電損失の変化量により評価できる。
 具体的には例えば、「化学強化前の20℃、10GHzにおける比誘電率」から「化学強化後の20℃、10GHzにおける比誘電率」を減じた値が、好ましくは0以上、より好ましくは0.02以上、0.04以上がさらに好ましく、0.06以上がよりさらに好ましく、0.08以上が特に好ましく、0.1以上が一層好ましく、最も好ましくは0.12以上である。化学強化前よりも化学強化後のガラスの比誘電率が0以上減少していることにより、化学強化により比誘電率が低下し、電波透過性が向上していると評価できる。
 また、例えば、「化学強化前の20℃、10GHzにおける誘電正接」から「化学強化後の20℃、10GHzにおける誘電正接」を減じた値が、好ましくは0以上、より好ましくは0.001以上、0.002以上がさらに好ましく、0.003以上がよりさらに好ましく、0.004以上が特に好ましい。化学強化前よりも化学強化後のガラスの誘電正接が0以上減少していることにより、化学強化により誘電損失が低下し、電波透過性が向上していると評価できる。
 高周波数帯においては、ガラス基板に回路設計する場合等、ガラスの誘電特性のうち、特にガラス表層の誘電特性が特に重要となる。本発明の化学強化ガラスは、高周波数帯において、ガラス板表面の比誘電率および誘電正接がガラス内部の比誘電率および誘電正接より小さいため、効率的に電波を透過でき、ガラス表層の誘電特性に優れている。
 上記式[Z=(S2-S1)×10+X/1000]で表されるZは、0.65以上であり、好ましくは0.7以上であり、0.8以上がより好ましく、0.9以上がさらに好ましく、1.0以上がよりさらに好ましく、1.25以上が特に好ましく、1.5以上が一層好ましく、最も好ましくは2.0以上である。Zが0.65以上であることにより、化学強化後のアルカリ金属イオンの動きが抑制されており、高周波数帯において優れた電波透過性を示す。Zの値は、化学強化用ガラスの組成および化学強化処理条件(溶融塩組成、時間、温度等)により調整できる。
 上記式におけるS1はガラスの中心部分のアルカリイオン量から算出されるエントロピー関数であり、S2はガラス表面から0.05tの深さまでの平均のアルカリイオン量から算出されるエントロピー関数である。
 S1の値は特に限定されないが、S1が低いほど良好な化学強化特性を得ることができ、例えば、好ましくは0.375以下であり、より好ましくは0.35以下であり、さらに好ましくは0.325以下であり、0.30以下がよりさらに好ましく、0.25以下が特に好ましく、0.20以下が一層好ましく、最も好ましくは0.15以下である。一方、S1が低すぎると化学強化しても比誘電率及び誘電正接を下げることができないことから0.0以上が好ましい。
 S2の値は特に限定されないが、S2が高いほど化学強化後のガラスの比誘電率及び誘電正接が低くなりやすく化学強化後に良好な電波透過性になりやすく、例えば、好ましくは0.2以上であり、より好ましくは0.25以上であり、さらに好ましくは0.3以上であり、0.35以上がよりさらに好ましく、0.40以上が特に好ましく、0.45以上が一層好ましい。一方、S2が高すぎると化学強化応力が十分に入らず、例えば、好ましくは0.5以下であり、より好ましくは0.49以下であり、さらに好ましくは0.48以下であり、0.47以下がよりさらに好ましく、0.46以下が特に好ましい。
 S2からS1を減じた値である(S2-S1)は特に限定されないが、高いほど化学強化後に比誘電率および誘電正接を低下させることができるため、好ましくは0.04以上、より好ましくは0.05以上、さらに好ましくは0.1以上であり、0.15以上がよりさらに好ましく、0.2以上が特に好ましく、0.25以上が一層好ましく、最も好ましくは0.3以上である。一方、S2からS1を減じた値が高すぎる場合は十分な化学強化応力が入らなくなってしまうため、好ましくは0.5以下であり、より好ましくは0.48以下、さらに好ましくは0.46以下であり、0.44以下がよりさらに好ましく、0.42以下が特に好ましく、0.40以下が一層好ましく、最も好ましくは0.38以下である。
 S1およびS2を前記範囲とすることにより、化学強化によるアルカリ金属イオンの混合度を高めてガラス表層におけるアルカリ金属イオンの動きを抑制し、高周波数帯おける電波透過性を向上できる。S1およびS2は、化学強化用ガラスの組成および化学強化処理条件(溶融塩組成、時間、温度等)により調整できる。
 上記式におけるXはガラス表面から深さ0.05tまでの領域における圧縮応力の平均値[単位:MPa]である。Xの値は特に限定されないが、例えば、好ましくは100MPa以上であり、より好ましくは150MPa以上であり、さらに好ましくは200MPa以上であり、250MPa以上がよりさらに好ましく、275MPa以上が特に好ましく、300MPa以上が一層好ましく、最も好ましくは320MPa以上である。Xを前記範囲とすることにより、ガラス表層に高い圧縮応力を導入してガラス表層におけるアルカリ金属イオンの動きを抑制し、高周波数帯における誘電特性を向上できる。一方で、Xの値が高すぎるとガラスを破砕した際に細かい小片として爆発的に割れてしまうため、好ましくは600MPa以下であり、より好ましくは500MPa以下であり、さらに好ましくは475MPa以下であり、450MPa以下がよりさらに好ましく、425MPa以下が特に好ましく、400MPa以下が一層好ましく、最も好ましくは375MPa以下である。Xの値は、化学強化用ガラスの組成および化学強化処理条件(溶融塩組成、時間、温度等)により調整できる。
 本化学強化ガラスは板状が好ましい。またガラス板は、外周の厚みが異なる縁取り形状などを有していてもよい。また、ガラス板の形態はこれに限定されず、例えば2つの主面は互いに平行でなくともよく、また、2つの主面の一方又は両方の全部又は一部が曲面であってもよい。より具体的には、ガラス板は、例えば、反りの無い平板状のガラス板であってもよく、また、湾曲した表面を有する曲面ガラス板であってもよい。
 その厚さ(t)は、化学強化の効果を高くする観点から、例えば2000μm以下であり、好ましくは1500μm以下であり、より好ましくは1000μm以下であり、さらに好ましくは900μm以下であり、特に好ましくは800μm以下であり、最も好ましくは700μm以下である。また、当該厚さは、化学強化処理による十分な強度向上の効果を得る観点からは、例えば100μm以上であり、好ましくは200μm以上であり、より好ましくは300μm以上であり、さらに好ましくは350μm以上であり、よりさらに好ましくは400μm以上であり、特に好ましくは500μm以上である。
 本化学強化ガラスの形状は、適用される製品や用途等に応じて、板状以外の形状でもよい。
 本化学強化ガラスの20℃、周波数10GHzにおける比誘電率は7.0以下であり、6.9以下が好ましく、6.8以下がより好ましく、6.7以下がさらに好ましく、6.6以下がよりさらに好ましく、6.5以下が特に好ましく、6.4以下が一層好ましく、最も好ましくは6.3以下である。比誘電率が小さいことで、ガラス面での反射による電波の損失が抑制できるため、電波透過性が良好となりやすい。一方、比誘電率が低すぎる場合、十分な化学強化応力が付与されないガラスとなってしまうことから、4.0以上が好ましく、4.2以上がより好ましく、4.4以上がさらに好ましく、4.6以上がよりさらに好ましく、4.8以上が特に好ましく、5.0以上が一層好ましく、最も好ましくは5.2以上である。比誘電率は20℃、周波数10GHzにおける値についてネットワークアナライザを用いて、スリップポスト誘電体共振法(SPDR法)により測定できる。
 本化学強化ガラスの20℃、周波数10GHzにおける誘電正接(tanδ)は0.02以下が好ましく、0.018以下がより好ましく、さらに好ましくは0.016以下であり、0.014以下がよりさらに好ましく、0.012以下が特に好ましく、0.011以下が一層好ましく、最も好ましくは0.010以下である。誘電正接が小さいことで、電波がガラス内部を通過する際の損失が抑制できるため、電波透過性が良好となりやすい。一方、誘電正接が低すぎる場合、十分な化学強化応力が付与できるガラスではなくなってしまうことから、0.001以上が好ましく、0.002以上がより好ましく、0.003以上がさらに好ましく、0.004以上がよりさらに好ましく、0.005以上が特に好ましく、0.006以上が一層好ましく、最も好ましくは0.007以上である。誘電正接(tanδ)は20℃、周波数10GHzにおける値についてネットワークアナライザを用いて、スリップポスト誘電体共振法(SPDR法)により測定できる。
 なお、20℃、周波数10GHzにおける比誘電率及び誘電正接の値と、より高周波数における比誘電率及び誘電正接の値とをそれぞれ近付け、周波数依存性(誘電分散)を小さくすることにより、誘電特性の周波数特性が変化しにくく、使用する際の周波数が異なる際にも設計変更が小さくて済むことから好ましい。比誘電率ならびに誘電正接はガラスの組成および化学強化条件により調整できる。
 本化学強化ガラスは、ガラス組成においてアルカリ含有量が適度に調節されているので、周波数10GHzにおける比誘電率および誘電正接を小さくできる。一般的に10GHz~40GHz程度の周波数域では、ガラスの比誘電率および誘電正接の周波数依存性は小さいため、周波数10GHzにおける誘電特性に優れる本化学強化ガラスは、5Gで使用される28GHz、35GHz等の帯域でも電波透過性に優れる。
 なお、比誘電率及び誘電正接はネットワークアナライザを用いて、スリップポスト誘電体共振法(SPDR法)により測定できる。
 本化学強化ガラスは、後述する化学強化用ガラスまたは結晶化ガラスを化学強化して得られる。すなわち、本化学強化ガラスの母組成は、後述する化学強化用ガラスのガラス組成と同様であり、好ましい組成範囲も同様である。また、本化学強化ガラスの平均の組成は、後述する化学強化用ガラスまたは結晶化ガラスの組成と同様である。ここで平均の組成とは、ガラス状態から熱処理を加えた後のガラスサンプルを細かく粉砕した後のものを分析して得られる組成をいう。
 本化学強化ガラスは、内部化学強化応力CS0.05tが100MPa以上であることが好ましく、150MPa以上がより好ましく、さらに好ましくは200MPa以上、よりさらに好ましくは225MPa以上、特に好ましくは250MPa以上である。また、表面圧縮応力値CSが好ましくは300MPa以上、より好ましくは400MPa以上、さらに好ましくは500MPa以上であることで優れた強度を得やすく、さらに表面からの深さ50μmにおける圧縮応力値CS50も大きくなりやすいため、好ましい。
 表面圧縮応力値CSは大きいほど強度は高くなるが、表面圧縮応力値CSが大きすぎると化学強化ガラス内部に大きな引張応力が生じ、破壊に至る恐れがあるため1000MPa以下が好ましく、800MPa以下がより好ましい。
 本化学強化ガラスの応力プロファイルにおいて、表面からの深さ50μmにおける圧縮応力値CS50は75MPa以上が好ましく、より好ましくは90MPa以上、さらに好ましくは100MPa以上、特に好ましくは125MPa以上である。CS50が大きいことで化学強化ガラスが落下する等によって傷ついた時に割れにくくなる。
 本化学強化ガラスの内部引張応力値CTは80MPa以下が好ましく、75MPa以下がより好ましい。CTが小さいことで破砕が生じにくい。内部引張応力値CTは50MPa以上が好ましく、より好ましくは60MPa以上であり、さらに好ましくは65MPa以上である。CTが前記値以上であることで、表面付近の圧縮応力が大きくなり、強度が高くなる。
 本化学強化ガラスの圧縮応力層深さDOLは、厚さtに対して大きすぎるとCTの増加を招くので0.25t以下が好ましく、0.2t以下がより好ましく、さらに好ましくは0.19t以下、よりさらに好ましくは0.18t以下である。また、強度を向上する点から、DOLは0.06t以上が好ましく、より好ましくは0.08t以上、さらに好ましくは0.10t以上、特に好ましくは0.12t以上である。
 具体的には、例えば厚さtが700μmの場合は、DOLは140μm以下が好ましく、133μm以下がより好ましい。また、DOLは70μm以上が好ましく、80μm以上がより好ましく、90μm以上がさらに好ましい。なお本化学強化ガラスの好ましい厚さ(t)や好ましい形状は上述の本ガラスの好ましい厚さ(t)や形状と同様である。
 本化学強化ガラスのヤング率は、破砕しにくいために50GPa以上が好ましく、80GPa以上がより好ましく、さらに好ましくは85GPa以上である。ヤング率の上限は特に限定されるものではないが、ヤング率が高いガラスは耐酸性が低くなる場合があるので、例えば110GPa以下、好ましくは100GPa以下、より好ましくは90GPa以下である。ヤング率は、たとえば超音波パルス法により測定できる。
 本化学強化ガラスの4点曲げ強度は、350MPa以上が好ましく、より好ましくは450MPa以上、さらに好ましくは400MPa以上である。4点曲げ強度の上限は特に限定されないが、典型的には1000MPa以下である。4点曲げ強度はJIS R1601:2008年に定める方法で測定される。
 本化学強化ガラス表面のビッカース硬さは4.4GPa以上が好ましく、より好ましくは4.8GPa以上、さらに好ましくは5.2GPa以上である。ビッカース硬さの上限は特に限定されないが、典型的には9.0GPa以下である。ビッカース硬さは、JIS R1610:2003年に規定されるビッカース硬さ(HV0.1)である。
 本化学強化ガラスの熱伝導率は、2.0W/m℃以下が好ましく、より好ましくは1.8W/m℃以下、さらに好ましくは1.5W/m℃以下である。熱伝導率の下限は特に限定されないが、典型的には0.8W/m℃以上である。
 本化学強化ガラスは、携帯電話、スマートフォン、携帯情報端末(PDA)、タブレット端末等のモバイル機器等に用いられるカバーガラスとして、特に有用である。さらに、携帯を目的としない、テレビ(TV)、パーソナルコンピュータ(PC)、タッチパネル等のディスプレイ装置のカバーガラス、エレベータ壁面、家屋やビル等の建築物の壁面(全面ディスプレイ)、窓ガラス等の建築用資材、テーブルトップ、自動車や飛行機等の内装等やそれらのカバーガラスとして、また曲げ加工や成形により板状でない曲面形状を有する筺体等の用途にも有用である。
<化学強化ガラスの製造方法>
 本化学強化ガラスは、以下に説明する化学強化用ガラス(以下、「本化学強化用ガラス」ともいう)を化学強化処理することにより製造できる。
<<化学強化用ガラス>>
 本化学強化用ガラスは、ソーダ石灰ガラス、アルカリアルミノシリケートガラス、及びアルカリアルミノホウケイ酸ガラスのいずれかが好ましい。これらのガラスは化学強化処理に適している。
 本化学強化用ガラスは、リチウムアルミノシリケートガラスであることがより好ましい。リチウムアルミノシリケートガラスは、最もイオン半径の小さいアルカリイオンであるリチウムイオンを含有しているので、種々の溶融塩を用いてイオン交換する化学強化処理によって、好ましい応力プロファイルを有し、優れた強度を有する化学強化ガラスを得やすい。
 具体的には、
 SiOを40~80%、
 Bを0~20%、
 Alを1~25%、
 LiOおよび/またはNaOを合計で5~30%、含有することが好ましい。
 リチウムアルミノシリケートガラスとしては、
 SiOを40~70%、
 Alを7.5~20%、
 LiOを5~25%含有するものが好ましい。
 以下、化学強化用ガラスの好ましい組成についてさらに説明する。
 SiOはガラスのネットワークを構成する成分である。また、SiOは化学的耐久性を上げる成分であり、ガラス表面に傷がついた時のクラックの発生を低減させる成分である。
 SiOの含有量は、化学的耐久性を向上させるために、40%以上が好ましく、50%以上がより好ましく、55%以上がさらに好ましく、56%以上がよりさらに好ましく、63%以上がより特に好ましく、65%以上が最も好ましい。ガラス製造時の溶融性をよくするためには、SiOの含有量は80%以下が好ましく、75%以下がより好ましく、70%以下がさらに好ましく、68%以下が特に好ましく、65%以下が最も好ましい。
 Alは化学強化の際のイオン交換性能を向上させ、強化後の表面圧縮応力を大きくする観点から有効な成分である。
 Alの含有量は、化学的耐久性を向上するために、また化学強化特性を向上するために1%以上が好ましく、3%以上が好ましく、5%以上がより好ましく、7%以上がさらに好ましく、9.1%以上がよりさらに好ましく、10%以上がよりさらに好ましく、11%以上が特に好ましく、最も好ましくは12%以上である。一方、Alの含有量が多すぎると溶融中に結晶が成長しやすくなる場合がある。失透欠点による歩留まり低下を防止するためにはAlの含有量は、25%以下が好ましく、23%以下がより好ましく、21%以下がさらに好ましく、20%以下が特に好ましく、最も好ましくは19%以下である。
 SiOとAlとは、いずれもガラスの構造を安定させる成分であり、脆性を低くするためには合計の含有量は好ましくは57.5%以上であり、より好ましくは65%以上、さらに好ましくは75%以上、よりさらに好ましくは77%以上、特に好ましくは79%以上である。
 SiOとAlとは、いずれもガラスの溶融温度を高くする傾向がある。そこで、溶融しやすくするためには、その合計の含有量は好ましくは95%以下であり、より好ましくは90%以下、さらに好ましくは87%以下、よりさらに好ましくは85%以下、特に好ましくは82%以下である。
 LiOは、イオン交換により表面圧縮応力を形成させる成分であり、ガラスの溶融性を向上させる成分である。化学強化ガラスがLiOを含有することにより、ガラス表面のLiイオンをNaイオンにイオン交換し、さらにNaイオンをKイオンにイオン交換する方法で、表面圧縮応力および圧縮応力層がともに大きな応力プロファイルが得られる。
 化学強化時の表面圧縮応力を大きくするために、LiOの含有量は5%以上が好ましく、6.5%以上がより好ましく、7.1%以上がさらに好ましく、7.5%以上が特に好ましく、8%以上が最も好ましい。
 一方、LiOの含有量が多すぎるとガラス成型時の結晶成長速度が大きくなり、失透欠点による歩留まり低下の問題が大きくなる場合がある。ガラス製造工程での失透を抑制するためには、LiOの含有量は、18%以下が好ましく、より好ましくは16%以下、さらに好ましくは15%以下、よりさらに好ましくは14%以下、特に好ましくは12%以下である。また、アルカリイオンの含有量が多すぎると電波透過性が低下しやすいため、電波透過性を良好にする観点からはLiOの含有量は12%以下が好ましく、10%以下がより好ましく、9%以下がさらに好ましい。
 ガラスを成形しやすくする点から、LiOおよび/またはNaOは合計で5%以上が好ましく、より好ましくは7.5%以上、さらに好ましくは10%以上である。また、ガラスが水などに対して溶けないようにする観点から、LiOおよび/またはNaOは合計で30%以下が好ましく、より好ましくは25%以下、さらに好ましくは20%以下である。
 NaOおよびKOは、いずれも必須ではないが、ガラスの溶融性を向上させ、ガラスの結晶成長速度を小さくする成分であり、イオン交換性能を向上させるために含有することが好ましい。
 NaOは、カリウム塩を用いる化学強化処理において表面圧縮応力層を形成させる成分であり、またガラスの溶融性を向上させ得る成分である。その効果を得るために、NaOの含有量は、1.5%以上が好ましく、より好ましくは2.5%以上、さらに好ましくは3%以上、よりさらに好ましくは3.6%以上、特に好ましくは4%以上である。一方、NaOの含有量が多すぎると化学強化によって、表面から比較的深い部分の圧縮応力を高くしにくくなるので、含有量は10%以下が好ましく、7%以下がより好ましく、5%以下がさらに好ましく、3%以下がよりさらに好ましい。
 KOは、ガラス製造工程での失透を抑制する等の目的で含有させてもよい。KOを含有させる場合の含有量は、0.1%以上が好ましく、より好ましくは0.15%以上、特に好ましくは0.2%以上である。失透をより防止するためには0.5%以上が好ましく、1.2%以上がより好ましい。一方、Kを多く含むことで脆性や、強化時の逆交換によって表層応力の低下の要因となることから、KOの含有量は4%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましく、1%以下がよりさらに好ましく、0.5%以下が特に好ましい。
 NaOおよびKOの含有量の合計([NaO]+[KO])はガラスの溶融性を高くするために好ましくは2%以上、より好ましくは2.5%以上、さらに好ましくは3%以上、特に好ましくは3.5%以上である。([NaO]+[KO])が多すぎると表面圧縮応力値の低下が生じやすいため、([NaO]+[KO])は好ましくは10%以下、より好ましくは8%以下、さらに好ましくは7%以下、特に好ましくは6%以下である。また、NaO及びKOを共存させることでアルカリ成分の移動が抑えられるため、電波透過性の観点から好ましい。
 本化学強化用ガラスは、電波透過性の観点から、NaOおよびKOの含有量の合計([NaO]+[KO])に対するLiOの含有量の比率〔[LiO]/([NaO]+[KO])〕が、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上、特に好ましくは5以上である。〔[LiO]/([NaO]+[KO])〕を前記範囲とすることにより、アルカリ成分の移動を抑制できる。〔[LiO]/([NaO]+[KO])〕の上限は特に制限されないが、典型的には20以下である。
 MgO、CaO、SrO、BaOはいずれも必須ではないが、ガラスの安定性を高める観点や、化学強化特性を向上させる観点から、いずれか1種以上を含有してもよい。これらを含有する場合、MgO、CaO、SrO、BaOから選ばれる1以上の含有量の合計[MgO]+[CaO]+[SrO]+[BaO]は、1%以上が好ましく、2%以上がより好ましく、4%以上が更に好ましい。また、化学強化時に十分な化学強化応力を入れる観点や、電波透過性を高める観点からは、これらの含有量の合計は、20%以下が好ましく、10%以下がより好ましい。
 MgOは、溶解時の粘性を下げる等のために含有してもよい。MgOを含有させる場合の含有量は、好ましくは1%以上、より好ましくは2%以上、さらに好ましくは3%以上である。一方、MgOの含有量が多すぎると化学強化処理時に圧縮応力層を大きくしにくくなる。MgOの含有量は好ましくは5%以下であり、より好ましくは4%以下であり、さらに好ましくは3%以下であり、特に好ましくは2%以下である。
 CaOは、ガラスの溶融性を向上させる成分であり、含有させてもよい。CaOを含有させる場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.15%以上であり、さらに好ましくは0.5%以上である。一方、CaOの含有量が過剰であると化学強化処理時に圧縮応力値を大きくしにくくなる。CaOの含有量は好ましくは5%以下であり、より好ましくは3%以下であり、さらに好ましくは1%以下であり、典型的には0.5%以下である。
 ZnOはガラスの溶融性を向上させる成分であり、含有してもよい。ZnOを含有する場合の含有量は、好ましくは0.2%以上であり、より好ましくは0.5%以上である。ガラスの耐候性を高くするためには、ZnOの含有量は8%以下が好ましく、5%以下がより好ましく、3%以下がさらに好ましい。
 ZnO、SrOおよびBaOは化学強化特性を悪化させる傾向があるので、化学強化しやすくするためには、[ZnO]+[SrO]+[BaO]は、1%未満が好ましく、0.5%以下がより好ましい。これらは、実質的に含有しないことがさらに好ましい。
 ZrOは含有させなくともよいが、化学強化ガラスの表面圧縮応力を増大させる観点から含有することが好ましい。ZrOの含有量は、好ましくは0.1%以上、より好ましくは0.15%以上、さらに好ましくは0.2%以上、特に好ましくは0.25%以上、典型的には0.3%以上である。一方、ZrOの含有量が多すぎると失透欠点が発生しやすくなり、化学強化処理時に圧縮応力値を大きくしにくくなる。ZrOの含有量は好ましくは2%以下であり、より好ましくは1.5%以下であり、さらに好ましくは1%以下であり、特に好ましくは0.8%以下である。
 Yの含有量は、好ましくは0.1%以上、より好ましくは0.2%以上、さらに好ましくは0.5%以上、特に好ましくは1%以上である。一方、多すぎると化学強化処理時に圧縮応力層を大きくしにくくなる。Yの含有量は好ましくは10%以下であり、より好ましくは8%以下、さらに好ましくは5%以下、よりさらに好ましくは3%以下、特に好ましくは2%以下、さらに特に好ましくは1.5%以下である。
 Laは、必須ではないが、Yと同様の理由で含有できる。Laは、好ましくは0.1%以上、より好ましくは0.2%以上、さらに好ましくは0.5%以上、特に好ましくは0.8%以上、である。一方、多すぎると化学強化処理時に圧縮応力層を大きくしにくくなるので好ましくは5%以下、より好ましくは3%以下、さらに好ましくは2%以下、特に好ましくは1.5%以下である。
 TiOは、ガラスのソラリゼーションを抑制する成分であり、含有させてもよい。TiOを含有させる場合の含有量は、好ましくは0.02%以上であり、より好ましくは0.03%以上、さらに好ましくは0.04%以上であり、特に好ましくは0.05%以上であり、典型的には0.06%以上である。一方、TiOの含有量が1%超であると失透が発生しやすくなり、化学強化ガラスの品質が低下する恐れがある。TiOの含有量は5%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましく、1%以下がよりさらに好ましく、特に好ましくは0.5%以下、さらに特に好ましくは0.25%以下である。
 Bは必須ではないが、ガラスの脆性を小さくし耐クラック性を向上させる目的で、また電波透過性を向上させる目的で含有してもよい。Bを含有させる場合の含有量は、好ましくは1.0%以上、好ましくは3.0%以上、さらに好ましくは4.0%以上であり、5.0%以上が特に好ましく、7.0%以上が一層好ましく、最も好ましくは8.0%以上である。一方、Bの含有量が多すぎると耐酸性が悪化しやすいためBの含有量は25%以下が好ましい。Bの含有量は、より好ましくは16%以下、さらに好ましくは13%以下、特に好ましくは12%以下である。以下が特に好ましく、11%以下が一層好ましく、最も好ましくは10%以下である。Bは、溶融時に脈理が発生する問題を防止するためには、実質的に含有しないことがより好ましい。
 Pは必須ではないが、化学強化時の圧縮応力層を大きくする目的で含有してもよい。Pを含有させる場合の含有量は、好ましくは0.25%以上、好ましくは0.5%以上、さらに好ましくは0.75%以上であり、1.0%以上が特に好ましく、1.25%以上が一層好ましく、最も好ましくは1.5%以上である。一方、耐酸性を高くする観点からPの含有量は10%以下が好ましく、8%以下がより好ましく、さらに好ましくは6%以下、よりさらに好ましくは4%以下であり、3%以下が特に好ましく、2.5%以下が一層好ましく、最も好ましくは2.0%以下である。溶融時に脈理が発生することを防止するためには、実質的に含有しないことがより好ましい。
 BとPの含有量の合計は0~35%が好ましく、5%以上がより好ましく、8%以上がさらに好ましい。BとPの含有量の合計は20%以下が好ましく、17%以下がより好ましく、15%以下がさらに好ましい。
 Nb5、Ta、Gd、CeOは、ガラスのソラリゼーションを抑制する成分であり、溶融性を改善する成分であり、含有させてもよい。これらの成分を含有させる場合のそれぞれの含有量は、好ましくは0.03%以上、より好ましくは0.1%以上、さらに好ましくは0.5%以上、特に好ましくは0.8%以上、典型的には1%以上である。一方、これらの含有量が多すぎると化学強化処理時に圧縮応力値を大きくしにくくなることから、好ましくは3%以下であり、より好ましくは2%以下であり、さらに好ましくは1%以下であり、特に好ましくは0.5%以下である。
 さらに、所望の化学強化特性の達成を阻害しない範囲において着色成分を添加してもよい。着色成分としては、例えば、Fe、Co、MnO、NiO、CuO、Cr、V、Bi、SeO、CeO、Er、Nd等が好適なものとして挙げられる。
 着色成分の含有量は、酸化物基準のモル百分率表示で、合計で5%以下が好ましい。5%を超えるとガラスが失透しやすくなる場合がある。着色成分の含有量は好ましくは3%以下、さらに好ましくは1%以下である。ガラスの透過率を高くしたい場合は、これらの成分は実質的に含有しないことが好ましい。
 ガラスの溶融の際の清澄剤等として、SO、塩化物、フッ化物などを適宜含有してもよい。Asは含有しないことが好ましい。Sbを含有する場合は、0.3%以下が好ましく、0.1%以下がより好ましく、含有しないことが最も好ましい。
 β-OH値とは、ガラスの水分含有量の指標として用いられる値であり、波長2.75~2.95μmの光に対する吸光度を測定し、その最大値βmaxをガラスの厚さ(mm)で割ることにより求められる値である。
 β-OH値は0.8mm-1以下とすることによって、ガラスの電波透過性をさらに向上できることから好ましく、0.6mm-1以下がより好ましく、0.5mm-1以下がさらに好ましく、0.4mm-1以下がよりさらに好ましい。
 一方、β-OH値を0.05mm-1以上とすることにより、極端な乾燥雰囲気での溶解や原料中の水分量を極端に減少させる必要がなく、ガラスの生産性や泡品質等を高められるため好ましい。β-OH値は0.1mm-1以上がより好ましく、0.2mm-1以上がさらに好ましい。
 β-OH値はガラスの組成や溶融時の熱源、溶融時間、原料により調整できる。
 粘度が10dPa・sとなる温度(T2)は1750℃以下が好ましく、1700℃以下がより好ましく、1675℃以下であることが特に好ましく、典型的には1650℃以下である。温度(T2)はガラスの溶解温度の目安となる温度であり、T2が低いほどガラスを製造しやすい傾向がある。T2の下限は特に限定されるものではないが、T2が低いガラスはガラス転移点が低くなりすぎる傾向があるので、T2は通常、1400℃以上、好ましくは1450℃以上である。
 また、粘度が10dPa・sとなる温度(T4)は1350℃以下が好ましく、1300℃以下がより好ましく、1250℃以下であることがさらに好ましく、1150℃以下が特に好ましい。温度(T4)はガラスを板状に成形する温度の目安となる温度であり、T4が高いガラスは成形設備への負荷が高くなる傾向がある。T4の下限は特に限定されるものではないが、T4が低いガラスは、ガラス転移点が低くなりすぎる傾向があるので、T4は、通常900℃以上、好ましくは950℃以上、より好ましくは1000℃以上である。
 本化学強化用ガラスの失透温度は、粘度が10dPa・sとなる温度(T4)より120℃高い温度以下であるとフロート法による成形時に失透が生じにくいので好ましい。失透温度は、より好ましくはT4より100℃高い温度以下、さらに好ましくはT4より50℃高い温度以下、特に好ましくはT4以下である。
 本化学強化用ガラスの破壊靱性値は0.70MPa・m1/2以上であることが好ましく、より好ましくは0.75MPa・m1/2以上、さらに好ましくは0.80MPa・m1/2以上、特に好ましくは0.83MPa・m1/2以上である。また、破壊靱性値は通常、2.0MPa・m1/2以下であり、典型的には1.5MPa・m1/2以下である。破壊靱性値が大きいことにより、化学強化によって大きな表面圧縮応力をガラス中に導入しても、激しい破砕が生じにくい。
 破壊靱性値は、例えば、DCDC法(Acta metall.mater. Vol.43、pp.3453-3458、1995)を用いて測定できる。
 本化学強化用ガラスのヤング率は、ガラスが破砕しにくいために80GPa以上が好ましく、より好ましくは82GPa以上、さらに好ましくは84GPa以上、特に好ましくは85GPa以上である。ヤング率の上限は特に限定されるものではないが、ヤング率が高いガラスは耐酸性が低くなる場合があるので、例えば110GPa以下が好ましく、より好ましくは100GPa以下、さらに好ましくは90GPa以下である。ヤング率は、たとえば超音波パルス法により測定できる。
 本化学強化用ガラスの50~350℃の平均線熱膨張係数(熱膨張係数)は、化学強化後の反りを低減する観点から、好ましくは95×10-7/℃以下、より好ましくは90×10-7/℃以下、さらに好ましくは88×10-7/℃以下、特に好ましくは86×10-7/℃以下、最も好ましくは84×10-7/℃以下である。熱膨張係数の下限は特に限定されるものではないが、熱膨張係数が小さいガラスは、溶融しにくい場合があるので、本化学強化用ガラスの50~350℃の平均線熱膨張係数(熱膨張係数)は、例えば、60×10-7/℃以上が好ましく、より好ましくは70×10-7/℃以上、さらに好ましくは74×10-7/℃以上、特に好ましくは76×10-7/℃以上である。
 ガラス転移点(Tg)は、化学強化後の反りを低減する観点から、好ましくは500℃以上、より好ましくは520℃以上、さらに好ましくは540℃以上である。フロート成形しやすい点では、好ましくは750℃以下、より好ましくは700℃以下、さらに好ましくは650℃以下、特に好ましくは600℃以下、最も好ましくは580℃以下である。
 本化学強化用ガラスは、通常の方法で製造できる。例えば、ガラスの各成分の原料を調合し、ガラス溶融窯で加熱溶融する。その後、公知の方法によりガラスを均質化し、ガラス板等の所望の形状に成形し、徐冷する。
 ガラス板の成形法としては、例えば、フロート法、プレス法、フュージョン法及びダウンドロー法が挙げられる。特に、大量生産に適したフロート法が好ましい。また、フロート法以外の連続成形法、たとえば、フュージョン法およびダウンドロー法も好ましい。
 その後、成形したガラスを必要に応じて研削および研磨処理して、ガラス基板を形成する。なお、ガラス基板を所定の形状及びサイズに切断したり、ガラス基板の面取り加工を行う場合、後述する化学強化処理を施す前に、ガラス基板の切断や面取り加工を行えば、その後の化学強化処理によって端面にも圧縮応力層が形成されることから、好ましい。
<<結晶化ガラス>> 
 本化学強化用ガラスは、結晶化ガラス(以下、「本結晶化ガラス」ともいう。)であってもよい。本結晶化ガラスは、上述した本化学強化用ガラスのガラス組成を有する結晶化ガラスである。
 本結晶化ガラスは、ケイ酸リチウム結晶、アルミノケイ酸リチウム結晶またはリン酸リチウム結晶、アルミノケイ酸マグネシウム結晶、ケイ酸マグネシウム結晶、ケイ酸結晶のいずれか1種以上を含有することが好ましい。ケイ酸リチウム結晶としては、メタケイ酸リチウム結晶がより好ましい。アルミノケイ酸リチウム結晶としては、ペタライト結晶またはβスポジュメン結晶、αユークリプタイト、βユークリプタイトが好ましい。リン酸リチウム結晶としてはオルトリン酸リチウム結晶が好ましい。
 透明性を高くするためにはメタケイ酸リチウム結晶を含有する結晶化ガラスがより好ましい。
 結晶化ガラスは、本化学強化用ガラスと同様の組成を有する非晶質ガラスを加熱処理して結晶化することで得られる。結晶化ガラスのガラス組成は、非晶質ガラスの組成と同じである。
 結晶化ガラスは可視光透過率(拡散透過光も含めた全光線可視光透過率)が、厚さが700μmに換算した場合に、好ましくは85%以上であることにより、携帯ディスプレイのカバーガラスに用いた場合に、ディスプレイの画面が見えやすい。可視光透過率は88%以上がより好ましく、90%以上がさらに好ましい。可視光透過率は、高い程好ましいが、通常、93%以下である。なお、通常の非晶質ガラスの可視光透過率は90%程度以上である。
 結晶化ガラスの厚さが700μmではない場合は、ランベルト・ベールの法則(Lambert-Beer law)を用いて、測定された透過率から700μmの場合の透過率を計算できる。
 また、厚さtが700μmよりも大きいガラスの場合は、研磨やエッチングなどで厚さを0.7mmに調整して、実際に測定してもよい。
 また、ヘーズ値は、厚さ700μmに換算した場合に、1.0%以下であることが好ましく、0.4%以下がより好ましく、0.3%以下がさらに好ましく、0.2%以下が特に好ましく、0.15%以下が最も好ましい。ヘーズ値は小さい程好ましいが、ヘーズ値を小さくするために結晶化率を下げたり、結晶粒径を小さくしたりすると、機械的強度が低下する。機械的強度を高くするためには、厚さ700μmの場合のヘーズ値は0.02%以上が好ましく、0.03%以上がより好ましい。ヘーズ値はJIS K7136(2000年)にしたがい測定された値である。
 なお、厚さt[μm]の結晶化ガラスの全光線可視光透過率が100×T[%]、ヘーズ値が100×H[%]の場合、ランベルト・ベールの法則を援用することにより、定数αを用いて、T=(1-R)×exp(-αt/1000)と記載できる。この定数αを使って、
 dH/dt∝exp(-αt/1000)×(1-H)
 と表せる。
 すなわち、ヘーズ値は、厚さが増すごとに内部直線透過率に比例した分増えると考えられるので、700μmの場合のヘーズ値H0.7は、以下の式で求められる。
Figure JPOXMLDOC01-appb-M000001
 また、厚さtが700μmよりも大きいガラスの場合は、研磨やエッチングなどで厚さを700μmに調整して、実際に測定してもよい。
 結晶化ガラスを強化した強化ガラスを携帯ディスプレイのカバーガラスに用いる場合、プラスチックと異なる質感・高級感を持つことが好ましい。そのため、本結晶化ガラスの屈折率は波長590nmにて1.52以上が好ましく、1.55以上がより好ましく、1.57以上がさらに好ましい。
 結晶化ガラスの結晶化率は、機械的強度を高くするために、5%以上が好ましく、10%以上がより好ましく、15%以上がさらに好ましく、20%以上が特に好ましい。透明性を高くするために、70%以下が好ましく、60%以下がより好ましく、50%以下が特に好ましい。結晶化率が小さいことは、加熱して曲げ成形等しやすい点でも優れている。
 結晶化率は、X線回折強度からリートベルト法で算出できる。リートベルト法については、日本結晶学会「結晶解析ハンドブック」編集委員会編、「結晶解析ハンドブック」(協立出版 1999年刊、p492~499)に記載されている。
 結晶化ガラスの析出結晶の平均粒径は、80nm以下が好ましく、60nm以下がより好ましく、50nm以下がさらに好ましく、40nm以下が特に好ましく、30nm以下がもっとも好ましい。析出結晶の平均粒径は、透過型電子顕微鏡(TEM)像から求められる。析出結晶の平均粒径は、走査型電子顕微鏡(SEM)像から推定できる。
<<化学強化処理>> 
 本化学強化ガラスは、得られたガラス板に化学強化処理を施した後、洗浄および乾燥することにより、製造できる。
 化学強化処理は、公知の方法により行える。化学強化処理においては、大きなイオン半径の金属イオン(典型的には、Kイオン)を含む金属塩(例えば、硝酸カリウム)の融液に、浸漬などによってガラス板を接触させる。これにより、ガラス板中の小さなイオン半径の金属イオン(典型的には、NaイオンまたはLiイオン)が大きなイオン半径の金属イオン(典型的には、Naイオンに対してはKイオン、Liイオンに対してはNaイオン)と置換される。
 化学強化処理(イオン交換処理)は、例えば、360~600℃に加熱された硝酸カリウム等の溶融塩中に、ガラス板を0.1~500時間浸漬することによって行える。なお、溶融塩の加熱温度としては、例えば、375~500℃が好ましく、また、溶融塩中へのガラス板の浸漬時間は、例えば、0.3~200時間が好ましい。
 化学強化処理を行うための溶融塩としては、例えば、硝酸塩、硫酸塩、炭酸塩、塩化物などが挙げられる。このうち硝酸塩としては、例えば、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸セシウム、硝酸銀などが挙げられる。硫酸塩としては、例えば、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸セシウム、硫酸銀などが挙げられる。炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。塩化物としては、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム、塩化銀などが挙げられる。これらの溶融塩は単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 本発明において、化学強化処理の処理条件は、ガラスの特性・組成や溶融塩の種類、ならびに、最終的に得られる化学強化ガラスに所望されるエントロピー関数S、表面圧縮応力や圧縮応力層の深さ等の化学強化特性などを考慮して、適切な条件を選択すればよい。
 また、本発明においては、化学強化処理を一回のみ行ってもよく、あるいは2以上の異なる条件で複数回の化学強化処理(多段強化)を行ってもよい。ここで、例えば、1段階目の化学強化処理として、DOLが大きくCSが相対的に小さくなる条件で化学強化処理を行う。その後に、2段階目の化学強化処理として、DOLが小さくCSが相対的に高くなる条件で化学強化処理を行うと、化学強化ガラスの最表面のCSを高めつつ、内部引張応力面積(St)を抑制でき、内部引張応力(CT)を低く抑えられる。
<電子機器筐体>
 本発明の電子機器筐体は、本発明の化学強化ガラスを含む。電子機器筐体としては、例えば、携帯端末の表示面のカバーガラス及び背面等のカバーガラス、携帯を目的としないテレビ(TV)、パーソナルコンピュータ(PC)又はタッチパネル等のディスプレイ装置のカバーガラス等が挙げられる。
 以下、本発明を実施例によって説明するが、本発明はこれに限定されない。
[実験例1] 
 各種ガラス原料を調合し、ガラスとして400gになるように秤量した。ついで、混合した原料を白金るつぼに入れ、1500~1700℃の電気炉に投入して3時間程度溶融し、脱泡し、均質化した。
 得られた各種化学強化ガラスについて、化学強化前と比較して、化学強化後に比誘電率、もしくは誘電正接が化学強化前よりも減少したガラスを化学強化により電波透過性が上昇したガラスとした。化学強化により電波透過性が上昇したガラスについて、周波数10GHzにおける電波透過性と、エントロピー関数及び圧縮応力との相関を示すグラフを図1に示す。図1の縦軸は化学強化前後で変化した比誘電率と誘電正接を100倍した値の合計値であり、横軸は化学強化前後のエントロピー関数及び圧縮応力から計算できるパラメータZである。
 エントロピー関数を算出するためのアルカリ金属イオンの含有量は、EPMA(Electron Probe Micro Analyzer、JEOL社製:JXA-8500F)を用いて測定した。EPMAの測定条件としては、加速電圧15kV、プローブ電流30nA、積算時間1000msec./pointとして1μm間隔とした。
 図1によれば、式[Z=(S2-S1)×10+X/1000]で表されるZが0.65以上であることにより、化学強化前と比して化学強化後にアルカリ金属イオンの動きが抑制されており、高周波数帯において優れた電波透過性を示すことがわかった。
[実験例2]
 表1に酸化物基準のモル百分率表示で示した組成となるようにガラス原料を調合し、ガラスとして400gになるように秤量した。ついで、混合した原料を白金るつぼに入れ、1500~1700℃の電気炉に投入して3時間程度溶融し、脱泡し、均質化した。
 得られた溶融ガラスを金属型に流し込み、ガラス転移点より50℃程度高い温度に1時間保持した後、0.5℃/分の速度で室温まで冷却し、ガラスブロックを得た。得られたガラスブロックを切断、研削し、最後に両面を鏡面研磨して、厚さ(t)が700μmのガラス板を得た。
 各ガラスについて、20℃、周波数10GHzにおける比誘電率と誘電正接tanδを測定した。結果を表2に示す。また、表2に示す条件により2段階の化学強化処理を施し、以下の例1~例7の化学強化ガラスを作製した。例1~4は実施例、例5~7は比較例である。
Figure JPOXMLDOC01-appb-T000002
 化学強化後の表層の圧縮応力と圧縮応力層深さDOLを折原製作所製の光導波表面応力計FSM-6000及び散乱光光弾性応力計SLP-1000を用いて測定し、表層から0.05tμmまでの領域における圧縮応力の平均値を内部平均化学強化応力として記載した。
 また、得られたサンプルについて、EPMA(Electron Probe Micro Analyzer、JEOL社製:JXA-8500F)を用いて得られた、ガラス表面から0.05tの深さにおける化学強化後のアルカリ金属イオンの含有量および、板厚中心(ガラス中心部分)におけるアルカリ金属イオンの含有量を測定した。その平均値を強化後のイオン量および板厚中心のイオン量として表2に示す。
 また、得られたアルカリ金属元素のイオン量から、下記の定義式に従ってエントロピー関数Sを求めた。
 S=-[LiO]/([LiO]+[NaO]+[KO])log([LiO]/([LiO]+[NaO]+[KO]))-[NaO]/([LiO]+[NaO]+[KO])log([NaO]/([LiO]+[NaO]+[KO]))-[KO]/([LiO]+[NaO]+[KO])log([KO]/([LiO]+[NaO]+[KO]))
 なお、ガラス表面から0.05tの深さまでの平均のアルカリイオン量から算出されるエントロピー関数S2、ガラスの中心部分のアルカリイオン量から算出されるエントロピー関数をS1と定義する。これらの、エントロピー関数S1、S2と、ガラス表面から深さ0.05tまでの領域における圧縮応力の平均値X[単位:MPa]と、からアルカリ固定パラメータZを下記式により計算した。結果を表2に示す。表2において、「エントロピー関数の変化量」は、「化学強化後のエントロピー関数S2」から「板厚中心(ガラス中心)のエントロピー関数S1」を減じることにより求めた。
 Z=(S2-S1)×10+X/1000
 更に化学強化後のサンプルに関して、20℃、周波数10GHzにおける比誘電率とtanδを測定した。結果を表2に示す。
 なお、比誘電率とtanδはネットワークアナライザを用いて、スリップポスト誘電体共振法(SPDR法)により測定した。測定条件は、温度を20℃、周波数を10GHzとした。
 表2において、「化学強化による比誘電率の変化量」は、「化学強化後の比誘電率」から「化学強化前の比誘電率」を減じることにより求めた。また、「化学強化による誘電損失の変化量」は、「化学強化後の誘電損失」から「化学強化前の誘電損失」を減じることにより求めた。
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、実施例である例1~4は、化学強化前後のエントロピー関数の変化量が非常に大きく、かつガラス表層付近の圧縮応力も高いのでアルカリ固定パラメータZが0.65以上となり、結果的に化学強化処理前後で比誘電率及び誘電損失のいずれかの物性が低下し、誘電特性が向上していることが確認できる。
 一方、比較例である例5~7に関しては、化学強化前後のエントロピー関数の変化量が小さいため、アルカリ固定パラメータZが0.65を下回り、結果的に化学強化処理をすることで、比誘電率及び誘電損失が共に上昇し、誘電特性が低下していることが確認できる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2020年12月4日付けで出願された日本特許出願(特願2020-202039)および2021年6月4日付けで出願された日本特許出願(特願2021-094715)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (11)

  1.  厚さがt(単位:μm)であり、20℃、周波数10GHzにおける比誘電率が7.0以下の化学強化ガラスであって、
     ガラスの中心部分のアルカリイオン量から算出されるエントロピー関数S1、ガラス表面から0.05tの深さまでの平均のアルカリイオン量から算出されるエントロピー関数S2、およびガラス表面から深さ0.05tまでの領域における圧縮応力の平均値X[単位:MPa]から以下の式で求められるZが0.65以上である化学強化ガラス。
     Z=(S2-S1)×10+X/1000
     ただしエントロピー関数Sは、それぞれの深さにおけるLiO、NaOおよびKOの酸化物基準のモル百分率による含有量[LiO]、[NaO]および[KO]から以下の式で求めるものとする。下記式において、[LiO]、[NaO]および[KO]がゼロである場合は、1×10-4とする。
     S=-[LiO]/([LiO]+[NaO]+[KO])log([LiO]/([LiO]+[NaO]+[KO]))-[NaO]/([LiO]+[NaO]+[KO])log([NaO]/([LiO]+[NaO]+[KO]))-[KO]/([LiO]+[NaO]+[KO])log([KO]/([LiO]+[NaO]+[KO]))
  2.  前記エントロピー関数S2から前記エントロピー関数S1を減じた値である(S2-S1)の値が0.04以上である請求項1に記載の化学強化ガラス。
  3.  20℃、周波数10GHzにおける誘電正接が0.02以下である請求項1または2に記載の化学強化ガラス。 
  4.  母組成が、酸化物基準のモル百分率表示で、
     SiOを40~80%、
     Bを0~20%、
     Alを1~25%、
     LiOおよび/またはNaOを合計で5~30%、含有する請求項1~3のいずれか1項に記載の化学強化ガラス。
  5.  表面圧縮応力値CSが300MPa以上である請求項1~4のいずれか1項に記載の化学強化ガラス。
  6.  ガラス表面から0.05tの深さにおける内部化学強化応力CS0.05tが75MPa以上、かつ前記厚さtが300μm以上である請求項1~5のいずれか1項に記載の化学強化ガラス。
  7.  圧縮応力層深さDOLが70μm以上、かつ前記厚さtが350μm以上である請求項1~6のいずれか1項に記載の化学強化ガラス。
  8.  リチウムアルミノシリケートガラスであり、
     母組成が、酸化物基準のモル百分率表示で、
     SiOを40~70%、
     Alを7.5~20%、
     LiOを5~25%含有する請求項1~7のいずれか1項に記載の化学強化ガラス。
  9.  前記厚さtが100μm以上2000μm以下である、請求項1~5および8のいずれか1項に記載の化学強化ガラス。
  10.  結晶化ガラスである請求項1~9のいずれか1項に記載の化学強化ガラス。
  11.  請求項1~10のいずれか1項に記載の化学強化ガラスを含む電子機器筐体。
PCT/JP2021/032550 2020-12-04 2021-09-03 化学強化ガラスおよび電子機器筐体 WO2022118512A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180080619.6A CN116529216A (zh) 2020-12-04 2021-09-03 化学强化玻璃和电子设备壳体
JP2022566762A JPWO2022118512A1 (ja) 2020-12-04 2021-09-03
US18/202,825 US20230322614A1 (en) 2020-12-04 2023-05-26 Chemically strengthened glass, and electronic device housing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-202039 2020-12-04
JP2020202039 2020-12-04
JP2021-094715 2021-06-04
JP2021094715 2021-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/202,825 Continuation US20230322614A1 (en) 2020-12-04 2023-05-26 Chemically strengthened glass, and electronic device housing

Publications (1)

Publication Number Publication Date
WO2022118512A1 true WO2022118512A1 (ja) 2022-06-09

Family

ID=81852695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032550 WO2022118512A1 (ja) 2020-12-04 2021-09-03 化学強化ガラスおよび電子機器筐体

Country Status (3)

Country Link
US (1) US20230322614A1 (ja)
JP (1) JPWO2022118512A1 (ja)
WO (1) WO2022118512A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126605A1 (ja) * 2016-01-21 2017-07-27 旭硝子株式会社 化学強化ガラス及び化学強化ガラスの製造方法
WO2018186402A1 (ja) * 2017-04-06 2018-10-11 Agc株式会社 化学強化ガラス
JP2020033202A (ja) * 2018-08-27 2020-03-05 Agc株式会社 結晶化ガラス基体、化学強化ガラス板、及びこれらの製造方法
WO2020121888A1 (ja) * 2018-12-11 2020-06-18 Agc株式会社 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
WO2020149236A1 (ja) * 2019-01-18 2020-07-23 Agc株式会社 化学強化ガラスおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126605A1 (ja) * 2016-01-21 2017-07-27 旭硝子株式会社 化学強化ガラス及び化学強化ガラスの製造方法
WO2018186402A1 (ja) * 2017-04-06 2018-10-11 Agc株式会社 化学強化ガラス
JP2020033202A (ja) * 2018-08-27 2020-03-05 Agc株式会社 結晶化ガラス基体、化学強化ガラス板、及びこれらの製造方法
WO2020121888A1 (ja) * 2018-12-11 2020-06-18 Agc株式会社 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
WO2020149236A1 (ja) * 2019-01-18 2020-07-23 Agc株式会社 化学強化ガラスおよびその製造方法

Also Published As

Publication number Publication date
US20230322614A1 (en) 2023-10-12
JPWO2022118512A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
KR102638938B1 (ko) 결정화 유리 및 화학 강화 유리
JP7136096B2 (ja) 化学強化ガラス、その製造方法および化学強化用ガラス
US9060435B2 (en) Glass plate for display device, plate glass for display device and production process thereof
JP7067665B2 (ja) 結晶化ガラス、化学強化ガラスおよび半導体支持基板
WO2020121888A1 (ja) 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
WO2019022035A1 (ja) 化学強化ガラスおよびその製造方法
WO2021145258A1 (ja) 化学強化ガラス物品およびその製造方法
JPWO2019194110A1 (ja) 化学強化用ガラス
WO2019172426A1 (ja) カバーガラスおよび無線通信機器
WO2020008901A1 (ja) 化学強化ガラスおよびその製造方法
US20230060972A1 (en) Chemically strengthened glass article and manufacturing method thereof
WO2022118512A1 (ja) 化学強化ガラスおよび電子機器筐体
WO2022004892A1 (ja) ガラス、結晶化ガラスおよび化学強化ガラス
WO2022215575A1 (ja) 結晶化ガラスからなる化学強化ガラス及びその製造方法
WO2022215717A1 (ja) 化学強化ガラス及びその製造方法
WO2023243574A1 (ja) 化学強化用ガラス及びガラス
CN116529216A (zh) 化学强化玻璃和电子设备壳体
WO2023032936A1 (ja) 結晶化ガラス、化学強化ガラス及び電子デバイス
WO2023032937A1 (ja) 結晶化ガラス及びその製造方法、化学強化ガラス並びに電子デバイス
CN117642369A (zh) 结晶玻璃、化学强化玻璃和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566762

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180080619.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900268

Country of ref document: EP

Kind code of ref document: A1