WO2023243574A1 - 化学強化用ガラス及びガラス - Google Patents

化学強化用ガラス及びガラス Download PDF

Info

Publication number
WO2023243574A1
WO2023243574A1 PCT/JP2023/021632 JP2023021632W WO2023243574A1 WO 2023243574 A1 WO2023243574 A1 WO 2023243574A1 JP 2023021632 W JP2023021632 W JP 2023021632W WO 2023243574 A1 WO2023243574 A1 WO 2023243574A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mol
less
chemically strengthened
content
Prior art date
Application number
PCT/JP2023/021632
Other languages
English (en)
French (fr)
Inventor
健二 今北
周作 秋葉
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023243574A1 publication Critical patent/WO2023243574A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Definitions

  • the present invention relates to chemically strengthened glass and glass.
  • Glass used for cover glasses of mobile terminals, etc. is required to have high strength, be capable of 3D molding, and have excellent transparency, scratch resistance, and charging characteristics. Furthermore, from the perspective of SDGs, there is a growing need for glass with low viscosity and low melting temperature.
  • Chemically strengthened glass is produced by bringing the glass into contact with a molten salt such as sodium nitrate to cause ion exchange between the alkali metal ions contained in the glass and the alkali metal ions contained in the molten salt that have a larger ionic radius. This is glass with a compressive stress layer formed on the glass surface.
  • the strength of chemically strengthened glass strongly depends on the stress profile expressed by the compressive stress value with the depth from the glass surface as a variable.
  • CT tensile stress
  • the glass used for the cover glass must have high strength, be able to be 3D molded, have excellent transparency, scratch resistance, and charging characteristics, and have low viscosity and a low melting temperature. is required.
  • the inventors of the present invention found that there is an optimal range for the strengthening properties when chemically strengthened using sodium nitrate, from the viewpoint of not exceeding the CT limit and ensuring drop strength. Ta.
  • the present invention aims to provide a chemically strengthened glass and a glass for obtaining a chemically strengthened glass that has excellent strengthening properties and exhibits properties suitable for a cover glass.
  • a first aspect of the present invention is a chemically strengthened glass, Expressed as mol% based on oxides, SiO 2 50-65%, 15-25% Al 2 O 3 , 2-10% B 2 O 3 , 0 to 15% P 2 O 5 ; ZnO from 0 to 15%, MgO 0-10%, CaO 0-15%, 3-15% Li 2 O, 2.5-15% Na 2 O, 0-5% K 2 O, ZrO 2 0-5%, 0 to 5% Y 2 O 3 , Contains 0-5% TiO2 , [Li 2 O]/([Na 2 O] + [K 2 O]) is 0.5 to 3.5, Provided is a chemically strengthened glass in which [Al 2 O 3 ] + [Li 2 O] is 27 to 35%.
  • [ ] in the formula represents the content of each component described in parentheses in terms of mol% on an oxide basis.
  • the second aspect of the present invention is expressed in mol% based on oxide, SiO 2 50-65%, 15-25% Al 2 O 3 , 2-10% B 2 O 3 , 0 to 15% P 2 O 5 ; ZnO from 0 to 15%, MgO 0-10%, CaO 0-15%, 3-15% Li 2 O, 2.5-15% Na 2 O, 0-5% K 2 O, ZrO 2 0-5%, 0 to 5% Y 2 O 3 ; Contains 0-5% TiO2 , [Li 2 O]/([Na 2 O] + [K 2 O]) is 0.5 to 3.5, [Al 2 O 3 ] + [Li 2 O] is 27 to 35%,
  • the entropy function S value of the alkali ion expressed by the following formula is 0.25 to 0.40, Provide glass.
  • the third aspect of the present invention contains 2% or more of B 2 O 3 expressed as mol% on an oxide basis, Young's modulus is more than 76 GPa,
  • Young's modulus is more than 76 GPa
  • the surface compressive stress CS 0 is 200 to 450 MPa and the compressive stress layer depth DOC is 70 to 120 ⁇ m
  • the temperature (T 2 ) at which the viscosity is 10 2 dPa ⁇ s is 1650° C. or less
  • a Li 2 O--Al 2 O 3 --SiO 2- based chemically strengthened glass is provided.
  • a fourth aspect of the present invention is a chemically strengthened glass, Expressed as mol% based on oxides, SiO 2 50-67%, 16-25% Al 2 O 3 , 2-10% B 2 O 3 , 0 to 15% P 2 O 5 ; ZnO from 0 to 15%, MgO 0-10%, CaO 0-15%, 3-15% Li 2 O, 2.5-15% Na 2 O, 0-5% K 2 O, ZrO 2 0-5%, 0 to 5% Y 2 O 3 ; Contains 0-5% TiO2 , [Li 2 O]/([Na 2 O] + [K 2 O]) is 0.5 to 3.5, [Al 2 O 3 ] + [Li 2 O] is 22 to 35%, Provided is a chemically strengthened glass having a Young's modulus of 77 GPa or more. However, [ ] in the formula represents the content of each component described in parentheses in terms of mol% on an oxide basis.
  • the fifth aspect of the present invention is expressed in mol% based on oxide, SiO 2 50-67%, 16-25% Al 2 O 3 , 2-10% B 2 O 3 , 0 to 15% P 2 O 5 ; ZnO from 0 to 15%, MgO 0-10%, CaO 0-15%, 3-15% Li 2 O, 2.5-15% Na 2 O, 0-5% K 2 O, ZrO 2 0-5%, 0 to 5% Y 2 O 3 ; Contains 0-5% TiO2 , [Li 2 O]/([Na 2 O] + [K 2 O]) is 0.5 to 3.5, [Al 2 O 3 ] + [Li 2 O] is 22 to 35%, Young's modulus is 77 GPa or more, The entropy function S value of the alkali ion expressed by the following formula is 0.25 to 0.40, Provide glass.
  • the chemically strengthened glass according to the first aspect of the present invention satisfies a specific composition range, particularly with respect to the total content of Al 2 O 3 and Li 2 O, and the total content of Na 2 O and K 2 O.
  • the content ratio of Li 2 O is within a specific range.
  • the glass according to the second aspect of the present invention satisfies a specific composition range, in particular the sum of the contents of Al 2 O 3 and Li 2 O, the sum of the contents of Na 2 O and K 2 O
  • the content ratio of alkali ions and the entropy function value of alkali ions are within a specific range.
  • the glass of the present invention has excellent fracture toughness and reinforcing properties, so it has high strength, and also has excellent 3D formability, charging properties, and scratch resistance, and has low viscosity, so it can be melted at low temperatures.
  • the amount of CO 2 generated can be suppressed.
  • the chemically strengthened glass according to the fourth aspect of the present invention satisfies a specific composition range, particularly with respect to the total content of Al 2 O 3 and Li 2 O, and the total content of Na 2 O and K 2 O.
  • the content ratio of Li 2 O is within a specific range.
  • the glass according to the fifth aspect of the present invention satisfies a specific composition range, in particular the total content of Al2O3 and Li2O , and the total content of Li2O relative to the total content of Na2O and K2O .
  • the content ratio of alkali ions and the entropy function value of alkali ions are within a specific range.
  • the glass of the present invention has excellent fracture toughness and reinforcing properties, so it has high strength, and also has excellent 3D formability, charging properties, and scratch resistance, and has low viscosity, so it can be melted at low temperatures.
  • the amount of CO 2 generated can be suppressed.
  • FIG. 1 the horizontal axis shows CS1 (calculated value of surface compressive stress CS 0 when strengthened with 100% NaNO3 salt at 380°C for 4 hours), and the vertical axis shows specific glass satisfying the composition of the present invention at 380°C.
  • CS 50 circle
  • CS 90 square
  • FIG. 3 is a diagram plotting the calculated values of . It is assumed that the plate thickness is 0.7 mm. The area surrounded by the dotted line is the range that exhibits optimal stress characteristics.
  • FIG. 2 is a diagram showing the stress profile of chemically strengthened glass obtained by chemically strengthening the glass of Example 5.
  • indicating a numerical range is used to include the numerical values described before and after it as a lower limit value and an upper limit value, and unless otherwise specified, hereinafter, “ ⁇ ” , used with the same meaning.
  • stress profile refers to a compressive stress value expressed using the depth from the glass surface as a variable.
  • DOC is the depth from the glass surface of the portion where stress becomes zero in the stress profile.
  • DOC can be estimated by sectioning a cross section of glass and analyzing the sectioned sample with a birefringence imaging system. Examples of the birefringence imaging system include the birefringence imaging system Abrio-IM manufactured by Tokyo Instruments Inc.
  • the DOC can also be estimated using the photoelasticity of scattered light. In this method, light is incident on the surface of the glass and the polarization of the scattered light is analyzed to measure the stress profile and estimate the DOC.
  • Internal tensile stress CT refers to the tensile stress value at a depth of 1/2 of the glass plate thickness t.
  • optical waveguide surface stress meter can accurately measure the stress of glass in a short time.
  • An example of the optical waveguide surface stress meter is FSM-6000 manufactured by Orihara Seisakusho Co., Ltd. Highly accurate stress measurement is possible by combining the FSM-6000 with the included software Fsm-V.
  • the present tempered glass that satisfies the above composition can easily form a preferable stress profile through chemical strengthening treatment, does not exceed the CT limit, and can ensure drop strength.
  • the horizontal axis shows CS1 (hereinafter, CS1 is also referred to as NaCS.
  • CS1 is the surface compressive stress CS0 when a specific tempering glass satisfying the above composition is strengthened with 100% NaNO3 salt at 380°C for 4 hours).
  • 100% NaNO 3 salt at 380°C is used to obtain the highest CT within a range that does not exceed the CT limit.
  • FIG. 3 is a diagram plotting the calculated values of CS 50 (circles) and CS 90 (squares) of the stress profile of glass obtained by optimizing the strengthening time and chemically strengthening the glass.
  • the thickness of the glass plate at the time of calculation is assumed to be 0.7 mm.
  • Figure 1 shows that there is an optimal range for CS1 assuming a single chemical strengthening process with 100% NaNO3 salt at 380 °C.
  • DOC glass surface
  • the value of CS 90 is less than 50 MPa, and the reinforcing properties are not sufficient. Furthermore, in the region where CS1 is less than about 200 MPa, CS 50 is less than 120 MPa, and the reinforcing properties are not sufficient. In the range surrounded by the dotted line in FIG. 1, the CS 50 value is 120 MPa or more, and the CS 90 value is 50 MPa or more, so it exhibits excellent reinforcing properties and properties suitable for a cover glass. Therefore, from FIG. 1, the optimum range of CS1 is preferably about 200 MPa to 450 MPa, particularly preferably about 200 MPa to 440 MPa.
  • Figure 1 shows the results limited to one chemical strengthening process using 100% NaNO 3 salt at 380°C (hereinafter referred to as 1-step strengthening), the CS1 index obtained here and its optimal The range can also be applied to the design of a stress profile (hereinafter referred to as a two-step reinforcement stress profile) obtained by a two-step chemical strengthening process (hereinafter referred to as two-step reinforcement) as shown in FIG.
  • a stress profile hereinafter referred to as a two-step reinforcement stress profile
  • two-step reinforcement two-step reinforcement
  • the two-stage strengthening stress profile is based on the first chemical strengthening process, in which a molten salt containing a large amount of NaNO3 salt is used to exchange Na ⁇ Li (Na ions in the molten salt and Li ions in the glass).
  • a molten salt containing a large amount of KNO3 salt is used to form a deep stress layer by K ⁇ Na exchange (exchange of K ions in the molten salt with Na ions in the glass). ) often forms a surface stress layer.
  • K ⁇ Na exchange exchange of K ions in the molten salt with Na ions in the glass.
  • the influence of the first chemical strengthening process is more dominant than the influence of the second chemical strengthening process. It is important to optimize the deep stress layer by Na ⁇ Li exchange.
  • the method and concept for optimizing the chemical strengthening process described above is similar to the case of one-stage strengthening using 100% NaNO 3 salt at 380°C, so the CS1 index and its optimal range are used for two-stage strengthening. It can also be applied to stress design. In other words, by using the surface layer CS obtained by strengthening with 100% NaNO 3 salt at 380° C. for 4 hours as an index, it is possible to select the optimal glass composition range for designing the two-step strengthening stress profile.
  • the index is created based on the results for a plate thickness of 0.7 mm in FIG. 1, but the obtained index is applicable to chemically strengthened glass of 0.4 mm to 1.5 mm. Furthermore, in the present invention, an index is created based on the results of glass cooled at a cooling rate of 0.5°C/min. It is also applicable to glass cooled at a rate of °C/min. By satisfying the above composition range, the present tempered glass can achieve optimal stress characteristics when chemically strengthened using sodium nitrate.
  • SiO 2 is a component that constitutes the skeleton of glass. It is also a component that increases chemical durability and reduces the occurrence of cracks when the glass surface is scratched. In order to improve chemical durability, the content of SiO 2 is 50% or more, preferably 52% or more, more preferably 54% or more, even more preferably 55% or more, and particularly preferably 56% or more.
  • the content of SiO 2 is 65% or less, preferably 62% or less, more preferably 60% or less, even more preferably 59% or less, and particularly preferably 58% or less.
  • Al 2 O 3 is added by 15% in order to improve the ion exchange property during chemical strengthening and increase the surface compressive stress after strengthening, or to increase the glass transition temperature (Tg) and Young's modulus. It is preferably 16% or more, more preferably 17% or more, even more preferably 19% or more, particularly preferably 20% or more, and most preferably 20.5% or more.
  • the content of Al 2 O 3 is 25% or less, preferably 23% or less, more preferably 22% or less, even more preferably 21.5% or less.
  • the content of B 2 O 3 is 2% or more, preferably 2.5% or more, preferably 3% or more, more preferably 4% or more, even more preferably 5% or more.
  • B 2 O 3 is 10% or less, preferably 9% or less, more preferably 8% or less, even more preferably 7% or less, still more preferably 6% or less, particularly preferably 5.5% or less.
  • P 2 O 5 may be contained in order to improve ion exchange performance. If the content of P 2 O 5 is small, the viscosity will increase, and if it is too large, the chemical resistance will deteriorate.
  • the content is preferably 0.2% or more, more preferably 0.5% or more, still more preferably 0.7% or more, even more preferably 1.0% or more, especially Preferably it is 1.2% or more.
  • the content of P 2 O 5 is 15% or less, preferably 10% or less, more preferably 5% or less, even more preferably 3% or less, particularly preferably 2% or less. , 1.5% or less is most preferable.
  • the MgO content is preferably 0.1% or more, more preferably 0.3% or more, even more preferably 0.5% or more, and 0.75% or more. is particularly preferred, and 1% or more is most preferred. From the viewpoint of improving ion exchange performance, the content is 10% or less, preferably 8% or less, more preferably 5% or less, even more preferably 3% or less, particularly preferably 2% or less, and most preferably 1.5% or less. .
  • the content of CaO is preferably 0.2% or more, more preferably 0.5% or more, even more preferably 0.7% or more, and 1% or more. Particularly preferred.
  • the content is 15% or less, preferably 5% or less, more preferably 2% or less, even more preferably 1.5% or less, and particularly preferably 1.2% or less.
  • SrO, BaO, or ZnO may be contained together with MgO and CaO or in place of MgO and CaO.
  • the content is preferably 0.1% or more, more preferably 0.2% or more.
  • the content is preferably 3% or less, more preferably 2% or less, even more preferably 1.2% or less, even more preferably 1% or less, and particularly preferably 0.5% or less. That is, when SrO is contained, the content of SrO is preferably 0.1 to 3%.
  • the content is preferably 0.1% or more, more preferably 0.2% or more.
  • the content is preferably 15% or less, more preferably 3% or less, even more preferably 1% or less, and particularly preferably 0.5% or less.
  • the content When BaO is contained, the content is preferably 0.1% or more, more preferably 0.2% or more. On the other hand, in order to improve ion exchange performance, the content is preferably 3% or less, more preferably 1% or less, and even more preferably 0.5% or less. That is, when BaO is contained, the BaO content is preferably 0.1 to 3%.
  • Alkaline earth metal oxides such as MgO, CaO, SrO, BaO, and ZnO are all components that improve the meltability of glass, but they tend to reduce ion exchange performance.
  • the total content of MgO, CaO, SrO, BaO and ZnO ([MgO] + [CaO] + [SrO] + [BaO] + [ZnO]) is preferably 0.5 to 15%.
  • ([MgO] + [CaO] + [SrO] + [BaO] + [ZnO]) is preferably 15% or less, more preferably 10% or less, even more preferably 5% or less, particularly preferably 3% or less, 2 .8% or less is particularly preferable.
  • the total content of MgO, CaO, SrO, BaO and ZnO is preferably 0.5% or more, and 1% or more. More preferably, 1.5% or more is particularly preferable.
  • Li 2 O is a component that forms surface compressive stress through ion exchange. If the Li 2 O content is low, the reinforcing properties (NaCS described below) will be too low and the viscosity will be too high. On the other hand, if it is too large, the reinforcing properties (NaCS described later) will become too high. From this viewpoint, the content of Li 2 O is 3% or more, preferably 5% or more, more preferably 7% or more, even more preferably 7.5% or more, and particularly preferably 8% or more. Moreover, the content of Li 2 O is 15% or less, preferably 12% or less, more preferably 10% or less, even more preferably 9% or less, and particularly preferably 8.5% or less.
  • Na 2 O is a component that forms a surface compressive stress layer through ion exchange using a molten salt containing potassium, and is a component that improves the meltability of glass.
  • the viscosity becomes high and the reinforcing properties (NaCS described below) become too high.
  • the reinforcing properties NaCS, which will be described later
  • the content when containing Na 2 O, is 2.5% or more, preferably 3% or more, more preferably 4% or more, even more preferably 5% or more, particularly preferably 6% or more, Most preferably 7% or more.
  • the content of Na 2 O is 15% or less, preferably 12% or less, more preferably 10% or less, even more preferably 9% or less, particularly preferably 8.5% or less, most preferably 8%. It is as follows.
  • K 2 O is a component that improves the meltability of glass, and is also a component that improves the processability of glass.
  • the glass contains K 2 O.
  • the content of K 2 O is low, the viscosity becomes high and the devitrification properties deteriorate. On the other hand, if the content of K 2 O is large, the charging characteristics will deteriorate.
  • its content is preferably 0.05% or more, more preferably 0.1% or more, even more preferably 0.15% or more, and particularly preferably 0.2% or more.
  • the content of K 2 O is 5% or less, preferably 4% or less, more preferably 3% or less, still more preferably 2% or less, particularly preferably 1.5% or less.
  • ZrO 2 is a component that increases surface compressive stress due to ion exchange, and may be included.
  • the content is preferably 0.005% or more, more preferably 0.2% or more, even more preferably 1% or more, particularly preferably 1.2% or more, and 1.3% or more. More particularly preferred. From the viewpoint of suppressing devitrification during melting, the content is 5% or less, preferably 4% or less, more preferably 3% or less, even more preferably 2% or less, and particularly preferably 1.7% or less.
  • Y 2 O 3 is a component that suppresses the crushing of chemically strengthened glass, and may be included.
  • the content of these components is preferably 0.05% or more, more preferably 0.1% or more, and even more preferably 0.15% or more.
  • the content of Y 2 O 3 is 5% or less, preferably 3% or less, and more preferably 1% or less, from the viewpoint of preventing the glass from becoming devitrified during melting and deteriorating the quality of chemically strengthened glass. , more preferably 0.5% or less, particularly preferably 0.2% or less.
  • La 2 O 3 and Nb 2 O 5 are components that suppress the crushing of chemically strengthened glass, and may be included.
  • the content of each of these components is preferably 0.1% or more, more preferably 0.2% or more.
  • the content of La 2 O 3 and Nb 2 O 5 is preferably 3% or less, and more preferably 3% or less, respectively, in order to prevent the glass from devitrification during melting and to prevent the quality of the chemically strengthened glass from deteriorating. is 1% or less, more preferably 0.3% or less.
  • TiO 2 is a component that suppresses scattering of fragments when chemically strengthened glass is broken, and may be included.
  • the content is preferably 0.005% or more, more preferably 0.1% or more, even more preferably 0.15% or more, and particularly preferably 0.2% or more.
  • the content of TiO 2 is preferably 5% or less, more preferably 2% or less, further preferably 1% or less, and particularly preferably 0.5% or less in order to suppress devitrification during melting. Since TiO 2 may cause coloring, it is more preferable that substantially no TiO 2 be contained in order to increase the transparency of the glass.
  • [Li 2 O] / ([Li 2 O] + [Na 2 O] + [K 2 O]) is preferably 1.0 or less, more preferably 0.75 or less, even more preferably 0.70 or less, still more preferably 0.65 or less.
  • the ratio of the content of Li 2 O to the total content of Al 2 O 3 and Li 2 O ([Al 2 O 3 ] + [Li 2 O]) [[Li 2 O]/([ Al 2 O 3 ] + [Li 2 O]] is preferably 0.20 to 0.45. From the viewpoint of achieving both low viscosity and excellent reinforcing properties, [Li 2 O]/([Al 2 O 3 ] + [Li 2 O]) is preferably 0.20 or more, more preferably 0.25 or more, More preferably 0.28 or more.
  • the total content of SiO 2 , B 2 O 3 and P 2 O 5 ([SiO 2 ]+[B 2 O 3 ]+[P 2 O 5 ]) is preferably 50 to 69%.
  • [SiO 2 ] + [B 2 O 3 ] + [P 2 O 5 ] is preferably 50% or more, more preferably 55% or more, even more preferably 58% or more, More preferably, it is 60% or more, particularly preferably 61% or more.
  • [SiO 2 ] + [B 2 O 3 ] + [P 2 O 5 ] is preferably 69% or less, more preferably 65% or less, even more preferably 64% or less, Particularly preferably 63% or less, more particularly preferably 62% or less.
  • Alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O are components that lower the melting temperature of glass, and may not be included.
  • the total content of Li 2 O, Na 2 O, and K 2 O is 12 to 20%.
  • [Li 2 O] + [Na 2 O] + [K 2 O] is preferably 12% or more, more preferably 14% or more, even more preferably 15.0% or more, and 15.5% or more. is particularly preferable, and 16.0% or more is particularly preferable.
  • [Li 2 O] + [Na 2 O] + [K 2 O] is preferably at most 20%, more preferably at most 18%, even more preferably at most 17%, 16. Particularly preferred is 5% or less.
  • the total content of Al 2 O 3 and B 2 O 3 ([Al 2 O 3 ]+[B 2 O 3 ]) is preferably 19 to 40%.
  • [Al 2 O 3 ] + [B 2 O 3 ] is preferably 19% or more, more preferably 22% or more, even more preferably 23% or more, particularly preferably 24% or more, from the viewpoint of improving fracture toughness.
  • [Al 2 O 3 ] + [B 2 O 3 ] is preferably 40% or less, more preferably 30% or less, still more preferably 27% or less, particularly preferably 25% or less. be. If the acid resistance is low, problems arise, such as difficulty in acid cleaning during glass processing.
  • the total content of B 2 O 3 and P 2 O 5 ([B 2 O 3 ]+[P 2 O 5 ]) is preferably 2 to 10%.
  • [B 2 O 3 ] + [P 2 O 5 ] is preferably 2% or more, more preferably 3% or more, still more preferably 4% or more, especially Preferably it is 5% or more.
  • [B 2 O 3 ] + [P 2 O 5 ] is preferably 10% or less, more preferably 8% or less, even more preferably 7% or less, particularly preferably 6% or less. be.
  • FeO When FeO is contained, it is preferably 200 ppm or less in mass % based on the oxide. If it exceeds 200 ppm, it may cause coloring and change the color tone of the display.
  • Ta 2 O 5 and Gd 2 O 3 may be contained in small amounts in order to suppress the crushing of chemically strengthened glass, but since the refractive index and reflectance become high, each of them is preferably 1% or less, and 0.5% or less. is more preferable, and it is even more preferable that it is substantially not contained.
  • a coloring component When the glass is colored, a coloring component may be added within a range that does not inhibit the achievement of desired chemical strengthening properties.
  • coloring components include Co3O4 , MnO2 , Fe2O3 , NiO, CuO, Cr2O3 , V2O5 , Bi2O3 , SeO2 , CeO2 , Er2O3 , Nd2O3 is mentioned. These may be used alone or in combination.
  • the total content of the coloring components is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less.
  • these components are not substantially contained.
  • SO 3 , chloride, fluoride, etc. may be appropriately contained as a fining agent during glass melting.
  • substantially no As 2 O 3 is contained.
  • Sb 2 O 3 is contained, it is preferably 0.3% by mass or less, more preferably 0.1% by mass or less, and most preferably substantially not contained.
  • the tempered glass preferably satisfies the following (A1) to (A4).
  • A1 Young's modulus is 80 to 100 GPa.
  • the temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s is 1650°C or lower, and the temperature at which the viscosity becomes 10 4 dPa ⁇ s is 1250°C or lower.
  • Fracture toughness value K IC is 0.75 to 0.85 MPa ⁇ m 1/2 . Each item will be explained below.
  • the Young's modulus of the tempered glass is preferably 77 GPa or more, more preferably 80 GPa or more, and even more preferably 85 GPa or more.
  • the Young's modulus is preferably 100 GPa or less, more preferably 95 GPa or less, and even more preferably 90 GPa or less. Young's modulus can be measured, for example, by the ultrasonic pulse method.
  • This tempered glass has a surface compressive stress (hereinafter also abbreviated as NaCS) of 200% when ion-exchanged with 100% by mass sodium nitrate at 380°C for 4 hours when it is in the form of a plate with a thickness of 0.7mm.
  • the depth of the compressive stress layer (hereinafter also abbreviated as NaDOL) is preferably 70 to 120 ⁇ m.
  • NaCS is preferably at least 200 MPa, more preferably at least 250 MPa, even more preferably at least 300 MPa, particularly preferably at least 350 MPa. When NaCS is 250 MPa or more, sufficient compressive stress can be applied to a deep region of 50 ⁇ m or more in depth. Moreover, NaCS is preferably 450 MPa or less, more preferably 425 MPa or less, still more preferably 400 MPa or less, particularly preferably 375 MPa or less. When NaCS exceeds 450 MPa, the DOC must be made shallow due to CT limit constraints during stress profile design, and as a result, compressive stress (CS 50 and CS 90 ) in a deep region with a depth of 50 ⁇ m or more becomes small.
  • the NaDOL is preferably 70 ⁇ m or more, more preferably 80 ⁇ m or more, even more preferably 90 ⁇ m or more, particularly preferably 100 ⁇ m or more.
  • chemical strengthening can be performed in a short time, resulting in improved process efficiency.
  • NaDOL is preferably 150 ⁇ m or less, more preferably 140 ⁇ m or less, even more preferably 130 ⁇ m or less, particularly preferably 120 ⁇ m or less.
  • NaDOL is 150 ⁇ m or less, sufficient chemical strengthening time can be ensured to stably control the chemical strengthening process. If the chemical strengthening time is too short, the influence of ion diffusion during preheating before and after immersion in strengthening salt and during the process of removing molten strengthening salt becomes relatively large, resulting in large variations in the mass-produced strengthening stress profile.
  • the temperature (T 2 ) at which the viscosity log ⁇ becomes 2 (poise) is preferably 1650°C or less, more preferably from the viewpoint of reducing viscosity and improving productivity and from the viewpoint of SDGs. is 1615°C or lower, more preferably 1590°C or lower. T2 is usually 1400°C or higher.
  • the temperature (T 2 ) at which the viscosity log ⁇ becomes 2 (poise) is synonymous with the temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s.
  • the fracture toughness value (K Ic ) of the tempered glass is preferably 0.75 MPa ⁇ m 1/2 or more, more preferably 0.77 MPa ⁇ m 1/2 or more, and 0.80 MPa ⁇ m It is more preferably 1/2 or more, and particularly preferably 0.82 MPa ⁇ m 1/2 or more.
  • K Ic is 0.75 MPa ⁇ m 1/2 or more, the number of fractures when glass is broken can be effectively suppressed.
  • Young's modulus increases, and the strength against bending tends to decrease. From the viewpoint of ensuring sufficient bending strength, K Ic is preferably 0.85 MPa ⁇ m 1/2 or less, more preferably 0.84 MPa ⁇ m 1/2 or less, and 0.83 MPa ⁇ m 1 It is more preferable that it is /2 or less.
  • the fracture toughness value (K Ic ) in this specification is a fracture toughness value obtained by measuring a K I -v curve by the DCDC method, which will be explained in detail in Examples below.
  • the glass transition temperature (Tg) of the present tempering glass is preferably 480° C. or higher in order to suppress stress relaxation during chemical strengthening.
  • Tg is more preferably 500°C or higher, and even more preferably 520°C or higher, in order to suppress stress relaxation and obtain a large compressive stress.
  • Tg is preferably 700°C or less because the ion diffusion rate becomes faster during chemical strengthening.
  • Tg is more preferably 650°C or less, and even more preferably 600°C or less.
  • the glass transition point Tg was obtained by obtaining a thermal expansion curve using a thermal dilatometer (manufactured by Bruker AXS; TD5000SA) at a heating rate of 10°C/min based on JIS R1618:2002.
  • the glass transition point Tg [unit: °C] is measured from the thermal expansion curve.
  • the crystallization peak temperature of the chemically strengthened glass measured by the following measurement method be higher than the softening point of the glass.
  • the value obtained by subtracting Tg from the crystallization peak temperature (hereinafter also abbreviated as DSC peak temperature) (DSC peak temperature - Tg) is preferably 180 ° C. or higher, more preferably 220 ° C. or higher, and even more preferably The temperature is 250°C or higher.
  • DSC peak temperature - Tg the value obtained by subtracting Tg from the crystallization peak temperature
  • DSC peak temperature - Tg is preferably 180 ° C. or higher, more preferably 220 ° C. or higher, and even more preferably The temperature is 250°C or higher.
  • it is more preferable that no crystallization peak is observed. (Measuring method) About 70 mg of glass is crushed and ground in an agate mortar, and the temperature is measured from room temperature to 1000°C using a differential scanning calorimeter (DSC) at a heating rate of 10°
  • the shape of the tempered glass is not particularly limited, and may have a curved shape.
  • the curved shape include a shape having an R portion on one surface and a flat surface facing the surface (sometimes referred to as a 2.5D shape), or a 3D shape having an R shape.
  • the "2.5D shape” refers to a shape having rounded portions at the corners of a flat plate (2D).
  • 3D shape refers to glass that is not a flat plate (2D) but has a bent shape.
  • the thickness of the tempering glass is usually preferably 1.5 mm or less, and preferably 1.2 mm or less, from the viewpoint of effective chemical strengthening treatment and weight when used as a cover glass. It is more preferably 1.1 mm or less, even more preferably 1.0 mm or less, and most preferably 0.8 mm or less. Further, from the viewpoint of strength, the thickness is preferably 0.4 mm or more, more preferably 0.45 mm or more, even more preferably 0.50 mm or more, particularly preferably 0.55 mm or more.
  • the glass plate forming method examples include a float method, a press method, a fusion method, and a down-draw method. Particularly preferred is the float method, which is suitable for mass production. Continuous molding methods other than the float method, ie, the fusion method and the down-draw method, are also preferred.
  • the present Li 2 O--Al 2 O 3 --SiO 2 -based chemically strengthened glass has a NaDOL of 70 ⁇ m or more, preferably 80 ⁇ m or more, more preferably 90 ⁇ m or more, and particularly preferably 100 ⁇ m or more.
  • NaDOL is 120 ⁇ m or less, preferably 110 ⁇ m or less, more preferably 100 ⁇ m or less, particularly preferably 90 ⁇ m or less.
  • NaDOL is 120 ⁇ m or less, sufficient chemical strengthening time can be secured to stably manage the chemical strengthening process.
  • the glass according to the second aspect has an entropy function S value determined by the following equation of 0.25 or more, preferably 0.28 or more, and more preferably 0.30 or more.
  • the entropy function S value is 0.40 or less, preferably 0.35 or less, more preferably 0.33 or less, and particularly preferably 0. .31 or less.
  • the glass according to the second aspect that satisfies the above composition can be used as a glass for chemical strengthening because it can easily form a preferable stress profile through chemical strengthening treatment, does not exceed the CT limit, and can ensure drop strength. preferable.
  • This glass has been strengthened, for example, by ion exchange.
  • the glass according to the second aspect has a composition, characteristics, and manufacturing method other than those described above with respect to the composition, characteristics, and manufacturing method of the glass for chemical strengthening in the first aspect. Can be adopted as appropriate.
  • the chemically strengthened glass according to the fourth aspect is Expressed as mol% based on oxides, SiO 2 50-67%, 16-25% Al 2 O 3 , 2-10% B 2 O 3 , 0 to 15% P 2 O 5 ; ZnO from 0 to 15%, MgO 0-10%, CaO 0-15%, 3-15% Li 2 O, 2.5-15% Na 2 O, 0-5% K 2 O, ZrO 2 0-5%, 0 to 5% Y 2 O 3 ; Contains 0-5% TiO2 , [Li 2 O]/([Na 2 O] + [K 2 O]) is 0.5 to 3.5, [Al 2 O 3 ] + [Li 2 O] is 22 to 35%, Young's modulus is 77 GPa or more.
  • [ ] in the formula represents the content of each component described in parentheses in terms of mol% on an oxide basis.
  • the content of SiO 2 is 50% or more, preferably 52% or more, more preferably 54% or more, and 55% or more, in order to improve chemical durability. % or more is more preferable, and 56% or more is particularly preferable.
  • the content of SiO 2 is 67% or less, preferably 66% or less, more preferably 65% or less, further preferably 62% or less, even more preferably 60% or less, 59% or less is particularly preferred, and 58% or less is most preferred.
  • Al 2 O 3 improves ion exchange properties during chemical strengthening, increases surface compressive stress after strengthening, or increases glass transition temperature (Tg).
  • Tg glass transition temperature
  • it is 16% or more, preferably 17% or more, more preferably 19% or more, even more preferably 20% or more, and particularly preferably 20.5% or more.
  • the content of Al 2 O 3 is 25% or less, preferably 23% or less, more preferably 22% or less, even more preferably 21.5% or less.
  • the total content of Al 2 O 3 and Li 2 O achieves both low viscosity and excellent reinforcement properties. From the viewpoint of More preferably, it is 27% or more, particularly preferably 29% or more. In addition, from the viewpoint of suppressing the increase in viscosity and suppressing excessive compressive stress from being applied to the glass during chemical strengthening, [Al 2 O 3 ] + [Li 2 O] is 35% or less, preferably 33% or less. % or less, more preferably 31% or less, further preferably 30.5% or less, particularly preferably 30% or less.
  • the Young's modulus is 77 GPa or more, preferably 78 GPa or more, and more preferably 80 GPa or more, from the viewpoint of increasing fracture toughness and CT limit. Moreover, Young's modulus is preferably 100 GPa or less, more preferably 95 GPa or less, and even more preferably 90 GPa or less.
  • the chemically strengthened glass according to the fourth aspect has the composition, characteristics, and manufacturing method other than those described above as described above for the (composition), (characteristics), and (manufacturing method) of the chemically strengthened glass in the first aspect. Those that have been prepared may be adopted as appropriate.
  • the glass according to the fifth aspect is expressed in mol% based on oxides, SiO 2 50-67%, 16-25% Al 2 O 3 , 2-10% B 2 O 3 , 0 to 15% P 2 O 5 ; ZnO from 0 to 15%, MgO 0-10%, CaO 0-15%, 3-15% Li 2 O, 2.5-15% Na 2 O, 0-5% K 2 O, ZrO 2 0-5%, 0 to 5% Y 2 O 3 , Contains 0-5% TiO2 , [Li 2 O]/([Na 2 O] + [K 2 O]) is 0.5 to 3.5, [Al 2 O 3 ] + [Li 2 O] is 22 to 35%, Young's modulus is 77 GPa or more, The entropy function S value of alkali ions expressed by the following formula is 0.25 to 0.40.
  • the SiO 2 content is 50% or more, preferably 52% or more, more preferably 54% or more, and 55% or more in order to improve chemical durability. More preferably, 56% or more is particularly preferable.
  • the content of SiO 2 is 67% or less, preferably 66% or less, more preferably 65% or less, even more preferably 62% or less, even more preferably 60% or less, Particularly preferably 59% or less, most preferably 58% or less.
  • Al 2 O 3 improves ion exchange properties during chemical strengthening, increases the surface compressive stress after strengthening, or increases the glass transition temperature (Tg) and In order to increase the ratio, it is 16% or more, preferably 17% or more, more preferably 19% or more, even more preferably 20% or more, and particularly preferably 20.5% or more.
  • the content of Al 2 O 3 is 25% or less, preferably 23% or less, more preferably 22% or less, even more preferably 21.5% or less.
  • [Al 2 O 3 ] + [Li 2 O] is 35% or less, preferably 33 % or less, more preferably 31% or less, further preferably 30.5% or less, particularly preferably 30% or less.
  • the Young's modulus is 77 GPa or more, preferably 78 GPa or more, and more preferably 80 GPa or more. Moreover, Young's modulus is preferably 100 GPa or less, more preferably 95 GPa or less, and even more preferably 90 GPa or less.
  • the glass according to the fifth aspect has a composition, characteristics, and manufacturing method other than those described above with respect to the composition, characteristics, and manufacturing method of the chemically strengthened glass in the first aspect. Can be adopted as appropriate.
  • the chemically strengthened glass according to the present invention (hereinafter sometimes referred to as the present chemically strengthened glass) is obtained by chemically strengthening the above-mentioned chemically strengthened glass, Li 2 O-Al 2 O 3 -SiO 2 -based chemically strengthened glass, or glass. It can be manufactured by forming a compressive stress layer.
  • the present chemically strengthened glass preferably has the following stress characteristics (C1) to (C6).
  • C1 Surface compressive stress CS 0 is 500 MPa or more.
  • C2) DOC/t is 0.125 to 0.225, where the plate thickness is t ( ⁇ m) and the compressive stress layer depth DOC ( ⁇ m).
  • C3 In a stress profile where the vertical axis is compressive stress (MPa) and the horizontal axis is depth from the surface ( ⁇ m), the average slope at a depth of 1 to 3 ⁇ m from the surface is more than ⁇ 400 and less than ⁇ 100.
  • This chemically strengthened glass shall have an average slope of over -400 at a depth of 1 to 3 ⁇ m from the surface in a stress profile where the vertical axis is compressive stress (MPa) and the horizontal axis is depth from the surface ( ⁇ m). is preferable, more preferably -300 or more, still more preferably -200 or more.
  • MPa compressive stress
  • the average slope at a depth of 1 to 3 ⁇ m from the surface is preferably less than -100, more preferably -150 or less, and still more preferably -200 or less.
  • the term "average slope” refers to the average of the slopes of the stress profile obtained every 1 ⁇ m within the depth range for which the slopes are calculated.
  • This chemically strengthened glass has a stress profile in which the vertical axis is compressive stress (MPa) and the horizontal axis is depth from the surface ( ⁇ m), from a depth of 20 ⁇ m from the surface to a compressive stress layer depth DOC/2 ⁇ m.
  • the average slope is preferably greater than -4, more preferably -3.5 or more, still more preferably -3.0 or more.
  • the average slope is preferably less than -1.5, more preferably -2.0 or less, and even more preferably -2.5 or less. If the average slope is less than -1.5, a high CS 90 can be achieved, but if the average slope is greater than -1.5, it becomes difficult to achieve a high CS 50 .
  • the present chemically strengthened glass preferably has a compressive stress value CS 50 of 0.1 t (MPa) or more, more preferably 0.13 t (MPa) or more at a depth of 50 ⁇ m from the surface, where the plate thickness is t ( ⁇ m). (MPa) or more, more preferably 0.15 t (MPa) or more, particularly preferably 0.17 t (MPa) or more.
  • CS 50 When the CS 50 is 0.1 t (MPa) or more, it is easy to prevent the chemically strengthened glass from breaking when a mobile terminal or the like having the chemically strengthened glass as a cover glass is dropped.
  • the larger the CS 50 the higher the strength, but if it is too large, severe crushing may occur if it breaks, so it is preferably 0.3 t (MPa) or less, and more preferably 0.25 t (MPa) or less.
  • Chemical strengthening treatment involves contacting the glass with a metal salt, such as by immersing it in a melt of a metal salt (e.g., potassium nitrate) containing metal ions with a large ionic radius (typically Na or K ions).
  • a metal salt e.g., potassium nitrate
  • metal ions with a large ionic radius typically Na or K ions.
  • Examples of molten salts for chemical strengthening include nitrates, sulfates, carbonates, and chlorides.
  • examples of nitrates include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, and silver nitrate.
  • examples of the sulfate include lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, and silver sulfate.
  • Examples of carbonates include lithium carbonate, sodium carbonate, potassium carbonate, and the like.
  • Examples of chlorides include lithium chloride, sodium chloride, potassium chloride, cesium chloride, and silver chloride. These molten salts may be used alone or in combination.
  • the time, temperature, etc. can be selected in consideration of the glass composition, the type of molten salt, etc.
  • chemically strengthening glass may be chemically strengthened at a temperature of preferably 450° C. or less for preferably 1 hour or less.
  • a molten salt for example, a mixed salt of lithium nitrate and sodium nitrate
  • a molten salt for example, a mixed salt of lithium nitrate and sodium nitrate
  • a molten salt for example, a mixed salt of lithium nitrate and sodium nitrate
  • a process of immersion is preferably heated for 0.5 hours.
  • a metal salt for example, potassium nitrate
  • K ions preferably at a temperature of about 350 to 500°C, for preferably about 0.1 to 10 hours.
  • a large compressive stress is generated in a portion of the compressive stress layer formed in the previous process, for example, within a depth of about 10 ⁇ m.
  • a stress profile with a large surface compressive stress value is easily obtained.
  • the ion profile and stress characteristics of the present chemically strengthened glass can be adjusted by the mother composition of the present chemically strengthened glass and the conditions of the chemical strengthening treatment.
  • the "mother composition of chemically strengthened glass” refers to the composition of glass before chemically strengthening.
  • the composition of this chemically strengthened glass is generally similar to that of glass before tempering, except in cases where extreme ion exchange treatment is performed, and the composition of glass before tempering is usually the same as that of chemically strengthened glass. It is equivalent to the composition at the center of the plate thickness.
  • the composition of the deepest part from the glass surface is the same as the composition of the glass before tempering, except when extreme ion exchange treatment is performed.
  • the glass according to the present invention is particularly useful as a cover glass used in electronic devices such as mobile devices such as mobile phones and smartphones. Furthermore, it is useful for cover glasses of electronic devices such as televisions, personal computers, and touch panels that are not intended for mobile use, walls of elevators, and walls (full-scale displays) of buildings such as houses and buildings. It is also useful as building materials such as window glass, table tops, interiors of automobiles and airplanes, and cover glasses thereof, and cases having curved shapes.
  • the chemically strengthened glasses of Examples 1 to 16 shown in Tables 1 and 2 are generally used with oxides, hydroxides, carbonates, or nitrates so that each glass composition is expressed in mole percentage based on oxides shown in the tables.
  • the glass raw materials used in the above are selected appropriately, placed in a platinum crucible, and melted by heating to a high temperature of 1650°C or higher in an electric furnace.Then, the glass melt is poured onto a carbon mold, and heated at Tg + 50°C for 30 minutes. After holding for a minute, a glass block was obtained by cooling at a rate of 0.5°C/min. By cutting, grinding, and polishing the obtained glass block, a sheet glass measuring 25 mm long x 25 mm wide x 0.7 mm thick was obtained.
  • Young's modulus was measured by ultrasonic pulse method (JIS R1602, 1995).
  • Stress profile Stress values were measured using an optical waveguide surface stress meter FSM-6000 and a scattered light photoelastic stress meter SLP2000 manufactured by Orihara Seisakusho.
  • the CS 0 of the 2-stage strengthening stress profile was measured using an optical waveguide surface stress meter FSM-6000
  • the CS 0 of the 1-stage strengthening stress profile of NaCS was measured using an optical waveguide surface stress meter FSM-6000.
  • the fracture toughness value is M. Y. He, M. R. Turner and A. G. Evans, Acta Metal. Mater. 43 (1995) 3453.
  • the stress intensity factor K I (unit: A K I -v curve showing the relationship between MPa ⁇ m 1/2 ) and crack growth rate v (unit: m/s) was measured, and the obtained data for Region III was regressed and extrapolated using a linear equation, and 0.
  • the stress intensity factor K I at 1 m/s was defined as the fracture toughness value K Ic .
  • DSC peak temperature, Tg Grind the glass using an agate mortar, put about 80 mg of the powder into a platinum cell, and while raising the temperature from room temperature to 1100°C at a heating rate of 10/min, a differential scanning calorimeter (manufactured by Bruker; DSC3300SA) was run. A DSC curve was measured using the same, and the DSC peak temperature (crystallization peak temperature) and glass transition point Tg were determined.
  • the devitrification temperature was determined as follows. The glass was crushed, classified using 4 mm mesh and 2 mm mesh sieves, washed with pure water, and dried to obtain cullet. 2 to 5 g of cullet was placed on a platinum plate, held in an electric furnace kept at a constant temperature for 17 hours, taken out into the air at room temperature, cooled, and then observed with a polarizing microscope for the presence or absence of devitrification. , the devitrification temperature T was estimated.
  • Example 11 is within the composition range described in WO 2019/108751
  • Example 12 is within the composition range described in WO 2019/191480
  • Example 13 is within the composition range described in WO 2021/108314. It has a glass composition that is within the range of .
  • NaCS and NaDOL in Tables 1 and 2 are stress characteristics of chemically strengthened glass obtained by chemically strengthening under the above condition A.
  • FIG. 2 shows the stress profile of the chemically strengthened glass obtained by subjecting the glass of Example 5 to two-step chemical strengthening under the above-mentioned condition B.
  • the chemically strengthened glass obtained by chemically strengthening the glass of Example 5 shown in FIG. 2 under the above condition B exhibited the following stress characteristics.
  • the plate thickness t is 700 ⁇ m.
  • C1 Surface compressive stress CS 0 : 1287 MPa.
  • C2 When the plate thickness is t ( ⁇ m) and the compressive stress layer depth DOC ( ⁇ m), DOC/t: 0.17.
  • C3 In a stress profile where the vertical axis is compressive stress (MPa) and the horizontal axis is depth from the surface ( ⁇ m), the average slope at a depth of 1 to 3 ⁇ m from the surface: -310.
  • the chemically strengthened glasses of Examples 1 to 10 and 14 have a surface compressive stress of 200 to 400 MPa when chemically strengthened, and a compressive stress layer depth of 70 to 400 MPa. It was 120 ⁇ m, and exhibited excellent reinforcing properties that did not exceed the CT limit and ensured drop strength. Further, the chemically strengthened glasses of Examples 1 to 10 had lower T2 and T4 than the comparative examples, and had excellent productivity.
  • C4 In a stress profile where the vertical axis is compressive stress (MPa) and the horizontal axis is depth from the surface ( ⁇ m), the average slope in the region from a depth of 20 ⁇ m from the surface to the compressive stress layer depth DOC/2 ⁇ m is more than -4 and less than -1.5.
  • C5 When the plate thickness is t ( ⁇ m), the compressive stress value CS 50 at a depth of 50 ⁇ m from the surface is 0.1 t (MPa) or more.
  • C6 When the plate thickness is t ( ⁇ m), the compressive stress value CS 90 at a depth of 90 ⁇ m from the surface is 0.03 t (MPa) or more. 11. 10.
  • a chemically strengthened glass Expressed as mol% based on oxides, SiO 2 50-67%, 16-25% Al 2 O 3 , 2-10% B 2 O 3 , 0 to 15% P 2 O 5 ; ZnO 0-15%, MgO 0-10%, CaO 0-15%, 3-15% Li 2 O, 2.5-15% Na 2 O, 0-5% K 2 O, ZrO 2 0-5%, 0 to 5% Y 2 O 3 , Contains 0-5% TiO2 , [Li 2 O]/([Na 2 O] + [K 2 O]) is 0.5 to 3.5, [Al 2 O 3 ] + [Li 2 O] is 22 to 35%, A chemically strengthened glass having a Young's modulus of 77 GPa or more.
  • [ ] in the formula represents the content of each component described in parentheses in terms of mol% on an oxide basis.
  • [ ] in the formula represents the content of each component described in parentheses in terms of mol% on an oxide basis. 25.

Abstract

強化特性に優れるとともに、カバーガラスに適した特性を示す化学強化ガラスを得るための化学強化用ガラス及びガラスの提供を目的する。化学強化用ガラスであって、酸化物基準のモル%表示で、SiO2を50~65%、Al2O3を15~23%、B2O3を2~10%、P2O5を0~15%、ZnOを0~15%、MgOを0~10%、CaOを0~15%、Li2Oを3~15%、Na2Oを2.5~15%、K2Oを0~5%、ZrO2を0~5%、Y2O3を0~5%、TiO2を0~5%含有し、[Li2O]/([Na2O]+[K2O])が0.5~3.5であり、[Al2O3]+[Li2O]が27~35%である、化学強化用ガラス。ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。

Description

化学強化用ガラス及びガラス
 本発明は化学強化用ガラス及びガラスに関する。
 携帯端末等のカバーガラスに用いられるガラスには、高強度であり、3D成形可能であるとともに、透明性、耐スクラッチ性及び帯電特性に優れることなどが求められる。また、SDGsの観点から、粘性が低く、且つ溶融温度の低いガラスへのニーズが高まっている。
 ガラスを高強度化する手法として、ガラスにイオン交換処理を施すことにより化学強化ガラスとする方法が挙げられる。化学強化ガラスは、ガラスを硝酸ナトリウムなどの溶融塩に接触させて、ガラス中に含まれるアルカリ金属イオンと、溶融塩に含まれるよりイオン半径の大きいアルカリ金属イオンとの間でイオン交換を生じさせ、ガラス表面部分に圧縮応力層を形成したガラスである。化学強化ガラスの強度は、ガラス表面からの深さを変数とする圧縮応力値で表される応力プロファイルに強く依存する。
 特許文献1には、リチウムを含有する化学強化用ガラスを用いて、2段階のイオン交換処理を行う方法が記載されている。その方法によれば、ガラスの表面部分にはナトリウム-カリウム交換による大きな圧縮応力を生じさせ、より深い部分は、リチウム-ナトリウム交換によるやや小さい圧縮応力を生じさせ得る。
 一方で、ガラスの表面部分に圧縮応力層を形成すると、ガラス中心部には、表面の圧縮応力の総量に応じた引張応力(以下、CTとも略す。)が必然的に発生する。この引張応力値が大きくなりすぎると、ガラス物品が破壊する際に激しく割れて破片が飛散する。CTがその閾値(以下、CTリミットとも略す。)を超えると加傷時の破砕数が爆発的に増加する。
 したがって、化学強化ガラスは、表面の圧縮応力を大きくし、より深い部分にまで圧縮応力層を形成する一方で、CTリミットを超えないように、表層の圧縮応力の総量が設計される(以下、超えた場合はCTリミット超過とも略す。)。
日本国特表2013-536155号公報
 上述したように、カバーガラスに用いられるガラスには、高強度であり、3D成形可能であるとともに、透明性、耐スクラッチ性及び帯電特性に優れること、並びに粘性が低く、且つ溶融温度の低いことが求められる。
 ガラスの高強度化に必要な物性としては、(1)破壊靱性が高いこと、及び(2)強化特性に優れること、の2つが重要であると考えられる。後者の(2)強化特性については、イオン交換処理により強化が入りやすい(化学強化した際の表面圧縮応力が高い)ほど良いと考えられている。
 しかしながら、本発明者らが検討を重ねた結果、CTリミットを超えず、且つ落下強度を担保する観点から、硝酸ナトリウムを用いて化学強化した際の強化特性には最適な範囲があることを見出した。
 したがって、本発明は、強化特性に優れるとともに、カバーガラスに適した特性を示す化学強化ガラスを得るための化学強化用ガラス及びガラスの提供を目的とする。
 上記課題を検討した結果、LiO-Al-SiO系の化学強化用ガラス及び化学強化ガラスで、上記した特性を満たす組成範囲を見出し、本発明を完成させた。
 本発明の第1の態様は、化学強化用ガラスであって、
 酸化物基準のモル%表示で、
 SiOを50~65%、
 Alを15~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が27~35%である、化学強化用ガラスを提供する。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
 また、本発明の第2の態様は、酸化物基準のモル%表示で、
 SiOを50~65%、
 Alを15~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が27~35%であり、
 下式で表されるアルカリイオンのエントロピー関数S値が0.25~0.40である、
ガラスを提供する。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P)PLi=[LiO]/([LiO]+[NaO]+[KO])
Na=[NaO]/([LiO]+[NaO]+[KO])
=[KO]/([LiO]+[NaO]+[KO])
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
 また、本発明の第3の態様は、酸化物基準のモル%表示で、Bを2%以上含有し、
 ヤング率が76GPa超であり、
 100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化したときの表面圧縮応力CSが200~450MPa且つ圧縮応力層深さDOCが70~120μmであり、
 粘度が10dPa・sとなる温度(T)が1650℃以下である、
 LiO-Al-SiO系化学強化用ガラスを提供する。
 また、本発明の第4の態様は、化学強化用ガラスであって、
 酸化物基準のモル%表示で、
 SiOを50~67%、
 Alを16~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が22~35%であり、
 ヤング率が77GPa以上である化学強化用ガラスを提供する。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
 また、本発明の第5の態様は、酸化物基準のモル%表示で、
 SiOを50~67%、
 Alを16~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が22~35%であり、
 ヤング率が77GPa以上であり、
 下式で表されるアルカリイオンのエントロピー関数S値が0.25~0.40である、
ガラスを提供する。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P)PLi=[LiO]/([LiO]+[NaO]+[KO])
Na=[NaO]/([LiO]+[NaO]+[KO])
=[KO]/([LiO]+[NaO]+[KO])
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
 本発明の第1の態様に係る化学強化用ガラスは、特定の組成範囲を満たし、特にAlとLiOの含有量の合計、NaO及びKOの含有量の合計に対するLiOの含有量の割合が特定範囲である。これにより、破壊靱性、強化特性に優れるため強度が高く、かつ、3D成形性、帯電特性、耐スクラッチ性に優れた化学強化ガラスが得られ、かつ粘性が低いため低温で熔解でき、製造時におけるCOの発生量を抑制できる。
 本発明の第2の態様に係るガラスは、特定の組成範囲を満たし、特にAlとLiOの含有量の合計、NaO及びKOの含有量の合計に対するLiOの含有量の割合、アルカリイオンのエントロピー関数値が特定範囲である。これにより、本発明のガラスによれば、破壊靱性、強化特性に優れるため強度が高く、かつ、3D成形性、帯電特性、耐スクラッチ性に優れ、かつ粘性が低いため低温で熔解でき、製造時におけるCOの発生量を抑制できる。
 本発明の第3の態様に係るLiO-Al-SiO系化学強化用ガラスは、特定の組成範囲及び強化特性を有するとともに粘性が低い。これにより、本発明のLiO-Al-SiO系化学強化用ガラスは、強度、3D成形性、帯電特性及び耐スクラッチ性に優れた化学強化ガラスが得られ、かつ低温で熔解でき、製造時におけるCOの発生量を抑制できる。
 本発明の第4の態様に係る化学強化用ガラスは、特定の組成範囲を満たし、特にAlとLiOの含有量の合計、NaO及びKOの含有量の合計に対するLiOの含有量の割合が特定範囲である。これにより、破壊靱性、強化特性に優れるため強度が高く、かつ、3D成形性、帯電特性、耐スクラッチ性に優れた化学強化ガラスが得られ、かつ粘性が低いため低温で熔解でき、製造時におけるCOの発生量を抑制できる。
 本発明の第5の態様に係るガラスは、特定の組成範囲を満たし、特にAlとLiOの含有量の合計、NaO及びKOの含有量の合計に対するLiOの含有量の割合、アルカリイオンのエントロピー関数値が特定範囲である。これにより、本発明のガラスによれば、破壊靱性、強化特性に優れるため強度が高く、かつ、3D成形性、帯電特性、耐スクラッチ性に優れ、かつ粘性が低いため低温で熔解でき、製造時におけるCOの発生量を抑制できる。
図1は、横軸にCS1(100%NaNO塩で380℃4時間強化したときの表面圧縮応力CSの計算値)、縦軸に、本発明の組成を満たす特定のガラスを380℃の100%NaNO塩を用いてCTリミットを超えない範囲内で最もCTが高くなるように強化時間を最適化し強化することによって得られるガラスの応力プロファイルのCS50(丸)及びCS90(四角)の計算値をプロットした図である。板厚を0.7mmと仮定している。点線で囲んだ部分が最適な応力特性を示す範囲である。 図2は、例5のガラスを化学強化して得られた化学強化ガラスの応力プロファイルを示す図である。 図3は、DCDC法による破壊靱性値測定に用いるサンプルの説明図である。 図4は、DCDC法による破壊靱性値測定に用いる、応力拡大係数Kとクラック進展速度vとの関係を示すK-v曲線を示す図である。
 本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味で使用される。
 本明細書において「応力プロファイル」はガラス表面からの深さを変数として圧縮応力値を表したものをいう。本明細書において、DOCは応力プロファイル中で応力がゼロになる部分のガラス表面からの深さである。DOCは、ガラスの断面を薄片化し、該薄片化サンプルを複屈折イメージングシステムによって解析することによって見積もることができる。複屈折イメージングシステムとしては、例えば、株式会社東京インスツルメンツ製複屈折イメージングシステムAbrio-IM等がある。また、散乱光光弾性を利用してDOCを見積もることもできる。この方法では、ガラスの表面から光を入射し、その散乱光の偏光を解析することによって応力プロファイルを測定し、DOCを見積もることができる。「内部引張応力CT」は、ガラスの板厚tの1/2の深さにおける引張応力値をいう。
 本明細書において応力プロファイルは、光導波表面応力計と複屈折率応力計とを組み合わせて用いる方法、あるいは、光導波表面応力計と散乱光光弾性応力計とを組み合わせて用いる方法、により測定できる。
 光導波表面応力計を用いる方法は、短時間で正確にガラスの応力を測定できることが知られている。光導波表面応力計としては、たとえば折原製作所社製FSM-6000がある。FSM-6000に付属ソフトウェアFsm-Vを組み合わせると高精度の応力測定が可能である。
 しかし、光導波表面応力計は原理的に、試料表面から内部に向かって屈折率が低くなる場合にしか応力を測定できない。化学強化ガラスにおいてガラス内部のナトリウムイオンを外部のカリウムイオンで置換して得られた層は、試料表面から内部に向かって屈折率が低くなるので光導波表面応力計で応力を測定できる。しかし、ガラス内部のリチウムイオンを外部のナトリウムイオンで置換して得られた層の応力は、光導波表面応力計では測定できない。そのためリチウムを含有するガラスに対してナトリウムを含有する溶融塩を用いたイオン交換処理を行った場合、光導波表面応力計で測定される圧縮応力値がゼロとなる深さ(D)は真の圧縮応力層深さではない。
 複屈折率応力計を用いる方法は、屈折率分布に関係なく応力を測定できる。複屈折率応力計としては、例えば、Cri社製複屈折イメージングシステムAbrio-IMがある。しかし複屈折率応力計で応力を測定するためにはガラス試料を薄片に加工して用いる必要があり、特にエッジ部分を精密に加工することが難しいために、ガラス表面付近の応力値を正確に求めることが困難である。光導波表面応力計と組み合わせて用いることで正確な応力測定が可能になる。散乱光光弾性応力計は、例えば、折原製作所社製SLP2000である。この方法では、ガラス内部を通過する光から出る微弱な散乱光の偏光特性を解析することにより、ガラス内部の応力を測定することができる。しかし、ガラス表層付近では、ガラス内部からの散乱光の強度よりも最表層における散乱光の強度の影響が強いため、ガラス表層付近の応力を正確に測定することが難しい。光導波表面応力計と組み合わせて用いることで正確な応力測定が可能になる。
 本明細書において、「化学強化ガラス」は、化学強化処理を施した後のガラスを指し、「化学強化用ガラス」は、化学強化処理を施す前のガラスを指す。
 本明細書において、ガラス組成は、酸化物基準のモル%表示で表す。また、本明細書において「実質的に含有しない」とは、原材料等に含まれる不純物レベル以下である、つまり意図的に含有させたものではないことをいう。具体的には、たとえば0.1質量%未満が好ましく、0.05質量%未満がより好ましく、0.01質量%未満が更に好ましい。
(第1の態様)
<化学強化用ガラス>
(組成)
 第1の態様に係る化学強化用ガラス(以下、本強化用ガラスということがある。)は、
 酸化物基準のモル%表示で、
 SiOを50~65%、
 Alを15~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が27~35%である。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
 前記組成を満たす本強化用ガラスは、化学強化処理によって好ましい応力プロファイルを形成しやすく、CTリミットを超えず、且つ落下強度を担保し得る。図1は、横軸にCS1(以下、CS1をNaCSともいう。CS1は、前記組成を満たす特定の本強化用ガラスを100%NaNO塩で380℃4時間強化したときの表面圧縮応力CSの計算値である。)、縦軸に前記組成を満たす特定の本強化用ガラスに対して380℃の100%NaNO塩を用いてCTリミットを超えない範囲内で最もCTが高くなるように強化時間を最適化し化学強化することによって得られるガラスの応力プロファイルのCS50(丸)及びCS90(四角)の計算値をプロットした図である。計算時のガラスの板厚は、0.7mmと仮定している。
 図1において、点線で囲んだ範囲が、CTリミットを超えず、且つ落下強度を担保する観点から最適な応力特性を示す範囲である。以下に説明する。CS50は、ガラス表面からの深さ50μmにおける圧縮応力値であり、化学強化ガラスをカバーガラスとして備える携帯端末等を細かい砂を有する地面に落下させた際の強度に関与する値である。またCS90は、ガラス表面からの深さ90μmにおける圧縮応力値であり、粗い砂を有する地面に落下させた際の化学強化ガラスの強度に関与する値である。カバーガラスの強度試験方法として、サンドペーパーの上にガラスを落下させて強度を評価する方法があり、CS50は#180サンドペーパーを用いた際の強度、CS90は#80サンドペーパーを用いた際の強度に相当する。
 図1は、380℃の100%NaNO塩を用いた1回の化学強化プロセスを前提にした場合に、CS1に最適な範囲があることを示す。CS1が高くなるとCTリミットの制約によりDOCが浅くなる。すなわち、ガラス内部において圧縮応力と引張応力が釣り合う点であるガラス表面からの深さ(DOC)が、CS1が高すぎると浅くなる。その結果、CS90が低くなる傾向にある。また、CS1が低くなると、DOCを深くすることはできるが、応力が深さ方向全域で全体的に低くなり、CS50及びCS90が低くなる傾向にある。その結果、例えば、図1では、CS1が約440~450MPa超の領域ではCS90の値が50MPa未満であり、強化特性が十分ではない。またCS1が約200MPa未満の領域では、CS50が120MPa未満となっており、強化特性が十分ではない。図1において点線で囲んだ範囲内では、CS50の値が120MPa以上、且つCS90の値が50MPa以上であるため、強化特性に優れ、カバーガラスに適した特性を示す。よって図1より、CS1の最適な範囲は好ましくは200MPaから450MPa、特に好ましくは200MPaから440MPa程度である。
 なお、図1は、380℃にて100%NaNO塩を用いた1回の化学強化プロセス(以下、1段強化)に限定した結果であるが、ここで得られるCS1の指標およびその最適な範囲は、図2に示すような2回の化学強化プロセス(以下、2段強化)により得られる応力プロファイル(以下2段強化応力プロファイル)の設計に対しても適用可能である。
 一般的に2段強化応力プロファイルは、1回目の化学強化プロセスで、NaNO塩を多く含有する溶融塩を用いて、Na→Li交換(溶融塩中のNaイオンとガラス中のLiイオンとの交換)による深層部応力層を形成し、2回目の強化プロセスで、KNO塩を多く含有する溶融塩を用いてK→Na交換(溶融塩中のKイオンとガラス中のNaイオンとの交換)による表層部応力層を形成することが多い。深層部のCS50やCS90の最適化に対しては、2回目の化学強化プロセスの影響よりも、1回目の化学強化プロセスの影響の方が支配的であり、1回目の化学強化プロセスのNa→Li交換による深層部応力層の最適化が重要である。
 前記した化学強化プロセスの最適化の手法や考え方は、380℃の100%NaNO塩を用いた1段強化の場合と類似しているため、CS1の指標及びその最適な範囲を2段強化の応力設計にも適用できる。つまり、380℃の100%NaNO塩で4時間強化した際の表層CSを指標として用いることにより、2段強化応力プロファイルの設計に最適なガラス組成の範囲を選択できる。
 本発明では、図1の板厚0.7mmの結果をもとに指標を作成しているが、得られた指標は、0.4mm~1.5mmの化学強化用ガラスに適用可能である。また、本発明では、0.5℃/分の冷却速度で冷却したガラスの結果をもとに指標を作成しているが、得られた指標は、冷却速度が0.5℃/分~1000℃/分の速度で冷却されたガラスにも適用可能である。本強化用ガラスは、前記組成範囲を満たすことにより、硝酸ナトリウムを用いて化学強化した際に最適な応力特性を達成し得る。
 以下、本強化用ガラスのガラス組成について説明する。
 SiOはガラスの骨格を構成する成分である。また、化学的耐久性を上げる成分であり、ガラス表面に傷がついた時のクラックの発生を低減させる成分である。SiOの含有量は、化学的耐久性を高めるためには、50%以上であり、52%以上が好ましく、54%以上がより好ましく、55%以上がさらに好ましく、56%以上が特に好ましい。
 ガラスの溶融性をよくするためにSiOの含有量は、65%以下であり、62%以下が好ましく、60%以下がより好ましく、59%以下がさらに好ましく、58%以下が特に好ましい。
 Alは化学強化の際のイオン交換性を向上させ、強化後の表面圧縮応力を大きくするため、または、ガラス転移温度(Tg)を高くし、ヤング率を高くするために、15%以上であり、16%以上が好ましく、17%以上がより好ましく、19%以上がさらに好ましく、20%以上が特に好ましく、20.5%以上が最も好ましい。
 また、Alの含有量が多すぎると粘性が高まり、失透特性が悪化する。Alの含有量は25%以下であり、23%以下が好ましく、より好ましくは22%以下、さらに好ましくは21.5%以下である。
 Bの含有量が少ないと粘性が高まり、多すぎると耐薬品性が悪化する。Bの含有量は2%以上であり、好ましくは2.5%以上、好ましくは3%以上、より好ましくは4%以上、さらに好ましくは5%以上である。Bは、10%以下であり、9%以下が好ましく、より好ましくは8%以下、さらに好ましくは7%以下、さらに好ましくは6%以下、特に好ましくは5.5%以下である。
 Pは、イオン交換性能を向上させるために含有してもよい。Pの含有量が少ないと粘性が高まり、多すぎると耐薬品性が悪化する。Pを含有させる場合の含有量は、0.2%以上が好ましく、0.5%以上がより好ましく、さらに好ましくは0.7%以上、よりさらに好ましくは1.0%以上、特に好ましくは1.2%以上である。化学的耐久性を高くするためにはPの含有量は15%以下であり、10%以下が好ましく、5%以下がより好ましく、3%以下がさらに好ましく、2%以下が特に好ましく、1.5%以下が最も好ましい。
 ガラスの溶融性を高める為にMgOを含有する場合、MgOの含有量は0.1%以上が好ましく、0.3%以上がより好ましく、0.5%以上がさらに好ましく、0.75%以上が特に好ましく、1%以上が最も好ましい。イオン交換性能を高くする観点から、10%以下であり、8%以下が好ましく、5%以下がより好ましく、3%以下がさらに好ましく、2%以下が特に好ましく、1.5%以下が最も好ましい。
 ガラスの溶融性を高める為にCaOを含有する場合、CaOの含有量は、0.2%以上が好ましく、0.5%以上がより好ましく、0.7%以上がさらに好ましく、1%以上が特に好ましい。一方、イオン交換性能を高くする観点から、15%以下であり、5%以下が好ましく、2%以下がより好ましく、1.5%以下がさらに好ましく、1.2%以下が特に好ましい。
 MgO、CaOとともに、又はMgO、CaOの代わりにSrO、BaO又はZnOを含有させてもよい。SrOを含有させる場合の含有量は、0.1%以上が好ましく、0.2%以上がより好ましい。一方、イオン交換性能を高くするためには3%以下が好ましく、2%以下がより好ましく、1.2%以下がさらに好ましく、1%以下がよりさらに好ましく、0.5%以下が特に好ましい。すなわち、SrOを含有させる場合、SrOの含有量は0.1~3%が好ましい。
 ZnOを含有させる場合の含有量は、0.1%以上が好ましく、0.2%以上がより好ましい。一方、イオン交換性能を高くするためには15%以下が好ましく、3%以下がより好ましく、1%以下がさらに好ましく、0.5%以下が特に好ましい。
 BaOを含有させる場合の含有量は、0.1%以上が好ましく、0.2%以上がより好ましい。一方、イオン交換性能を高くするためには3%以下が好ましく、1%以下がより好ましく、0.5%以下がさらに好ましい。すなわち、BaOを含有させる場合、BaOの含有量は0.1~3%が好ましい。
 MgO、CaO、SrO、BaO及びZnO等のアルカリ土類金属酸化物は、いずれもガラスの溶融性を高める成分であるが、イオン交換性能を低下させる傾向がある。MgO、CaO、SrO、BaO及びZnOの含有量の合計([MgO]+[CaO]+[SrO]+[BaO]+[ZnO])は0.5~15%であることが好ましい。([MgO]+[CaO]+[SrO]+[BaO]+[ZnO])は15%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましく、3%以下が特に好ましく、2.8%以下がより特に好ましい。またMgO、CaO、SrO、BaO及びZnOの含有量の合計([MgO]+[CaO]+[SrO]+[BaO]+[ZnO])は、0.5%以上が好ましく、1%以上がより好ましく、1.5%以上が特に好ましい。
 LiOは、イオン交換により表面圧縮応力を形成させる成分である。LiOの含有量が少ないと強化特性(後述するNaCS)が低くなりすぎ、粘性が高くなりすぎる。一方、多すぎると強化特性(後述するNaCS)が高くなりすぎる。かかる観点から、LiOの含有量は、3%以上であり、5%以上が好ましく、7%以上がより好ましく、7.5%以上がさらに好ましく、8%以上が特に好ましい。また、LiOの含有量は、15%以下であり、12%以下が好ましく、10%以下がより好ましく、9%以下がさらに好ましく、8.5%以下が特に好ましい。
 NaOはカリウムを含有する溶融塩を利用したイオン交換により表面圧縮応力層を形成する成分であり、またガラスの溶融性を向上させる成分である。NaOの含有量が少ないと粘性が高くなり、強化特性(後述するNaCS)が高くなりすぎる。一方、多いと強化特性(後述するNaCS)が低くなりすぎる。
 かかる観点から、NaOを含有する場合の含有量は2.5%以上であり、3%以上が好ましく、4%以上がより好ましく、5%以上がさらに好ましく、6%以上が特に好ましく、7%以上が最も好ましい。NaOの含有量は、15%以下であり、好ましくは12%以下であり、より好ましくは10%以下、さらに好ましくは9%以下、特に好ましくは8.5%以下、最も好ましくは8%以下である。
 KOはガラスの溶融性を向上させる成分であり、ガラスの加工性を良好にする成分でもある。本ガラスはKOを含有することが好ましい。KOの含有量が少ないと粘性が高くなり、失透特性が悪化する。一方、KOの含有量が多いと帯電特性が悪くなる。KOを含有する場合、その含有量は0.05%以上が好ましく、0.1%以上がより好ましく、0.15%以上がさらに好ましく、0.2%以上が特に好ましい。また、KOの含有量は5%以下であり、好ましくは4%以下、より好ましくは3%以下、さらに好ましくは2%以下、特に好ましくは1.5%以下である。
 ZrOは、イオン交換による表面圧縮応力を増大させる成分であり、含有させてもよい。ZrOを含有させる場合の含有量は、0.005%以上が好ましく、0.2%以上がより好ましく、1%以上がさらに好ましく、1.2%以上が特に好ましく、1.3%以上がより特に好ましい。溶融時の失透を抑制する観点から、5%以下であり、4%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましく、1.7%以下が特に好ましい。
 Yは、化学強化ガラスの破砕を抑制する成分であり、含有させてもよい。これらの成分を含有させる場合の含有量は、好ましくは0.05%以上、より好ましくは0.1%以上、さらに好ましくは0.15%以上である。
 Yの含有量は、溶融時にガラスが失透しにくくなり化学強化ガラスの品質が低下するのを防ぐ観点から、5%以下であり、3%以下が好ましく、より好ましくは1%以下、さらに好ましくは0.5%以下、特に好ましくは0.2%以下である。
 LaおよびNbは、化学強化ガラスの破砕を抑制する成分であり、含有させてもよい。これらの成分を含有させる場合のそれぞれの含有量は、好ましくは0.1%以上であり、より好ましくは0.2%以上である。LaおよびNbを含有する場合の含有量は、溶融時にガラスが失透しにくくなり化学強化ガラスの品質が低下するのを防ぐためには、それぞれ3%以下が好ましく、より好ましくは1%以下、さらに好ましくは0.3%以下である。
 TiOは、化学強化ガラスの破壊時に破片が飛散することを抑制する成分であり、含有させてもよい。TiOを含有させる場合の含有量は、好ましくは0.005%以上、より好ましくは0.1%以上が好ましく、0.15%以上がさらに好ましく、0.2%以上が特に好ましい。TiOの含有量は、溶融時の失透を抑制するために5%以下が好ましく、2%以下がより好ましく、1%以下がさらに好ましく、0.5%以下が特に好ましい。TiOは、着色の原因になることがあるので、ガラスの透明性を高くするためには、実質的に含有しないことがさらに好ましい。
 NaOおよびKOの合計含有量に対するLiOの含有量の比率〔[LiO]/([NaO]+[KO])〕は、強化特性(後述するNaCS)を高めるとともに、帯電特性を向上する観点から、0.5以上であり、より好ましくは0.7以上、さらに好ましくは0.85以上、さらに好ましくは0.95、さらに好ましくは1.05以上、さらに好ましくは1.15以上、特に好ましくは1.25以上である。また、強化特性(後述するNaCS)が高くなり過ぎないようにするとともに、失透特性を向上する観点から、[LiO]/([NaO]+[KO])は3.5以下であり、より好ましくは3.0以下、さらに好ましくは2.5以下、さらに好ましくは2.0以下、特に好ましくは1.5以下である。
 LiO、NaOおよびKOの合計含有量に対するLiOの含有量の比率〔[LiO]/([LiO]+[NaO]+[KO])〕は、0.50~1.0であることが好ましい。強化特性(後述するNaCS)を高めるとともに、帯電特性を向上する観点から、[LiO]/([LiO]+[NaO]+[KO])は好ましくは0.50以上であり、より好ましくは0.55以上、さらに好ましくは0.60以上である。また、強化特性(後述するNaCS)が高くなり過ぎないようにするとともに、失透特性を向上する観点から、[LiO]/([LiO]+[NaO]+[KO])は好ましくは1.0以下であり、より好ましくは0.75以下、さらに好ましくは0.70以下、さらに好ましくは0.65以下である。
 AlおよびLiOの合計含有量([Al]+[LiO])は、低い粘性と優れた強化特性とを両立する観点から、27%以上であり、好ましくは27.5%以上、より好ましくは28.0%以上、さらに好ましくは28.5%以上、さらに好ましくは29.0%以上、特に好ましくは29.5%以上である。また、粘性が高くなるのを抑制し、化学強化時にガラスに圧縮応力が入りすぎるのを抑制する観点から、[Al]+[LiO]は35%以下であり、好ましくは33%以下、より好ましくは31%以下、さらに好ましくは30.5%以下、特に好ましくは30%以下である。
 AlおよびLiOの合計含有量([Al]+[LiO])に対するLiOの含有量の比率〔[LiO]/([Al]+[LiO])〕は、0.20~0.45であることが好ましい。低い粘性と優れた強化特性とを両立する観点から、[LiO]/([Al]+[LiO])は0.20以上が好ましく、0.25以上がさらに好ましく、0.28以上がより好ましい。また、失透粘性が低くなるのを抑制し、化学強化時にガラスに圧縮応力が入りすぎるのを抑制する観点から、[LiO]/([Al]+[LiO])は0.45以下が好ましく、0.40以下がより好ましく、0.35以下がさらに好ましい。
 エントロピー関数S値は、帯電性や誘電損失に関わるパラメータである。本強化用ガラスは、次式で求められるエントロピー関数S値が0.25以上であることが好ましく、より好ましくは0.28以上、さらに好ましくは0.30以上である。またエントロピー関数S値が0.40以下であることが好ましく、より好ましくは0.35以下、さらに好ましくは0.33以下、特に好ましくは0.31以下である。エントロピー関数S値が大きすぎると帯電特性が悪くなり、小さすぎると高周波数域の誘電損失が大きくなる。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P
ここでPLi=[LiO]/([LiO]+[NaO]+[KO])
   PNa=[NaO]/([LiO]+[NaO]+[KO])
   P=[KO]/([LiO]+[NaO]+[KO])
 ただし[LiO]、[NaO]、[KO]はそれぞれLiO、NaO、KOの酸化物基準のモル%表示での含有量を表す。
 SiO、BおよびPの合計含有量([SiO]+[B]+[P])は、50~69%であることが好ましい。失透特性を向上する観点から、[SiO]+[B]+[P]は好ましくは50%以上であり、より好ましくは55%以上、さらに好ましくは58%以上、さらに好ましくは60%以上、特に好ましくは61%以上である。また、失透特性を向上する観点から、[SiO]+[B]+[P]は好ましくは69%以下、より好ましくは65%以下、さらに好ましくは64%以下、特に好ましくは63%以下、より特に好ましくは62%以下である。
 NaOおよびKO等のアルカリ金属酸化物(以下において、ROと表記することがある)は、いずれもガラスの溶融温度を低下させる成分であり、含有することが好ましく、NaO、KOの含有量の合計([NaO]+[KO])は2.0~10%であることが好ましい。かかる観点から、[NaO]+[KO]は、2.0%以上が好ましく、2.5%以上がより好ましく、3.0%以上がさらに好ましい。ガラスの強度を維持する観点から、[NaO]+[KO]は、10%以下が好ましく、8%以下がより好ましく、7%以下がさらに好ましい。
 LiO、NaOおよびKO等のアルカリ金属酸化物(以下において、ROと表記することがある)は、いずれもガラスの溶融温度を低下させる成分であり、含有することが好ましく、LiO、NaO、KOの含有量の合計([LiO]+[NaO]+[KO])は12~20%であることが好ましい。かかる観点から、[LiO]+[NaO]+[KO]は、12%以上が好ましく、14%以上がより好ましく、15.0%以上がさらに好ましく、15.5%以上が特に好ましく、16.0%以上がより特に好ましい。ガラスの強度を維持する観点から、[LiO]+[NaO]+[KO]は、20%以下が好ましく、18%以下がより好ましく、17%以下がさらに好ましく、16.5%以下が特に好ましい。
 AlおよびBの合計含有量([Al]+[B])は、19~40%であることが好ましい。[Al]+[B]は破壊靱性を向上する観点から、19%以上が好ましく、より好ましく22%以上、さらに好ましくは23%以上、特に好ましくは24%以上である。また、耐酸性向上の観点から、[Al]+[B]は好ましくは40%以下、より好ましくは30%以下、さらに好ましくは27%以下、特に好ましくは25%以下である。耐酸性が低いと、例えばガラス加工時に酸洗浄が難しくなる等の課題が出る。
 BおよびPの合計含有量([B]+[P])は、2~10%であることが好ましい。失透特性を維持しつつ、粘性を低減する観点から、[B]+[P]は2%以上が好ましく、より好ましくは3%以上、さらに好ましくは4%以上、特に好ましくは5%以上である。また、耐酸性向上の観点から、[B]+[P]は好ましくは10%以下、より好ましくは8%以下、さらに好ましくは7%以下、特に好ましくは6%以下である。
 FeOを含有する場合は、酸化物基準の質量%で200ppm以下が好ましい。200ppmを超えると着色しディスプレイの色味が変わる場合がある。
 清澄剤として、Cl、Sn及びSを微量(好ましくは1質量%以下)含んでいてもよい。
 耐薬品性を向上させる観点から、Sc、Ga、GeO、Nb、In、TeO、HfO、Ta、WO、Bi、La、Gd、Yb3ZnおよびLuからなる群から選択される少なくとも一種を合計含有量で好ましくは0.01質量%~1.0質量%含有してもよい。
 β-OH値は、ガラスの粘性や泡に関係性がある。β-OH値は0.05~0.5が好ましい。β-OH値が低すぎると粘性を下げる効果が得られにくく、β-OH値が高すぎると分解による泡が発生し、ガラスの泡品質が劣る場合がある。
 Ta、Gdは、化学強化ガラスの破砕を抑制するために少量含有してもよいが、屈折率や反射率が高くなるのでそれぞれ1%以下が好ましく、0.5%以下がより好ましく、実質的に含有しないことがさらに好ましい。
 ガラスを着色する場合は、所望の化学強化特性の達成を阻害しない範囲において着色成分を添加してもよい。着色成分としては、例えば、Co、MnO、Fe、NiO、CuO、Cr、V、Bi、SeO、CeO、Er、Ndが挙げられる。これらは単独で用いてもよく、組み合わせて用いてもよい。
 着色成分の含有量は、ガラスの失透を抑制する観点から、合計で5%以下が好ましく、3%以下がより好ましく、1%以下がさらに好ましい。ガラスの可視光透過率を高くしたい場合は、これらの成分は実質的に含有しないことが好ましい。
 また、ガラス溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。Asは実質的に含有しないことが好ましい。Sbを含有する場合は、0.3質量%以下が好ましく、0.1質量%以下がより好ましく、実質的に含有しないことが最も好ましい。
(特性)
 本強化用ガラスは、以下の(A1)~(A4)を満たすことが好ましい。
(A1)ヤング率が80~100GPaである。
(A2)厚み0.7mmの板形状である場合に、100質量%の硝酸ナトリウム塩で380℃にて4時間イオン交換したときの表面圧縮応力CSが200~450MPa、圧縮応力層深さが70~120μmである。
(A3)粘度が10dPa・sとなる温度(T)が1650℃以下であり、且つ粘度が10dPa・sとなる温度が1250℃以下である。(A4)破壊靱性値KICが0.75~0.85MPa・m1/2である。
 以下、各項目について説明する。
 ヤング率が高いほど、破壊靱性が高くなり、CTリミットが高くなる。かかる観点から、本強化用ガラスのヤング率は、77GPa以上が好ましく、80GPa以上がより好ましく、85GPa以上がさらに好ましい。一方、ヤング率が高すぎると、化学強化時にイオンの拡散が遅く、深いDOCを得ることが困難になる傾向がある。そこでヤング率は100GPa以下が好ましく、95GPa以下がより好ましく、90GPa以下がさらに好ましい。ヤング率は、たとえば超音波パルス法で測定できる。
 本強化用ガラスは、厚み0.7mmの板形状である場合に、100質量%の硝酸ナトリウム塩で380℃にて4時間イオン交換したときの表面圧縮応力(以下、NaCSとも略す。)が200~450MPaであることが好ましく、圧縮応力層深さ(以下、NaDOLとも略す。)が70~120μmであることが好ましい。
 NaCSは好ましくは200MPa以上であり、より好ましくは250MPa以上、さらに好ましくは300MPa以上、特に好ましくは350MPa以上である。NaCSが250MPa以上であることにより、深さ50μm以上の深い領域に十分な圧縮応力を付与することができる。また、NaCSは好ましくは450MPa以下であり、より好ましくは425MPa以下、さらに好ましくは400MPa以下、特に好ましくは375MPa以下である。NaCSが450MPaを超えると応力プロファイル設計時にCTリミットの制約によりDOCが浅くならざるを得ず、その結果、深さ50μm以上の深い領域の圧縮応力(CS50やCS90)が小さくなる。
 NaDOLは好ましくは70μm以上、より好ましくは80μm以上、さらに好ましくは90μm以上、特に好ましくは100μm以上である。NaDOLが70μm以上であることにより、短い時間で化学強化をすることができるため、プロセス効率がよくなる。NaDOLは好ましくは150μm以下、より好ましくは140μm以下、さらに好ましくは130μm以下、特に好ましくは120μm以下である。NaDOLが150μm以下であることにより、安定的に化学強化プロセスを制御する上で十分な化学強化時間を確保することができる。化学強化時間が短くなりすぎると、強化塩に浸漬する前後の予熱や溶融強化塩を落とす工程でのイオンの拡散の影響が相対的に大きくなり、量産された強化応力プロファイルのばらつきが大きくなる。
 本強化用ガラスは、粘性を低減して、生産性を向上する観点及びSDGsの観点から、粘性logηが2(poise)となる温度(T)が1650℃以下であることが好ましく、より好ましくは1615℃以下であり、さらに好ましくは1590℃以下である。Tは通常は1400℃以上である。粘性logηが2(poise)となる温度(T)は、粘度が10dPa・sとなる温度(T)と同義である。
 本強化用ガラスは、粘性を低減して、生産性を向上する観点及びSDGsの観点から、粘性logηが4(poise)となる温度(T)が1250℃以下であることが好ましく、より好ましくは1220℃以下、さらに好ましくは1200℃以下である。Tは通常は1000℃以上である。粘性logηが4(poise)となる温度は、粘度が10dPa・sとなる温度(T)と同義である。
 本強化用ガラスは、破壊靱性値(KIc)が0.75MPa・m1/2以上であることが好ましく、0.77MPa・m1/2以上であることがより好ましく、0.80MPa・m1/2以上であることがさらに好ましく、0.82MPa・m1/2以上であることが特に好ましい。当該破壊靱性値(KIc)が0.75MPa・m1/2以上であると、ガラスの破壊時の破砕数を効果的に抑制できる。また、KIcが高くなるとヤング率が高くなり、曲げに対する強度が下がる傾向がある。十分な曲げ強度を確保する観点から、KIcは0.85MPa・m1/2以下であることが好ましく、0.84MPa・m1/2以下であることがより好ましく、0.83MPa・m1/2以下であることがさらに好ましい。
 なお、本明細書における破壊靱性値(KIc)とは、後述の実施例にて詳述されるDCDC法によりK-v曲線を測定して求められる破壊靱性値である。
 本強化用ガラスのガラス転移温度(Tg)は、化学強化時の応力緩和を抑制するために480℃以上が好ましい。Tgは、応力緩和を抑制して大きな圧縮応力が得られるために、500℃以上がより好ましく、520℃以上がさらに好ましい。
 またTgは、化学強化時にイオン拡散速度が速くなるために、700℃以下が好ましい。深いDOCを得やすいために、Tgは650℃以下がより好ましく、600℃以下がさらに好ましい。
 ガラス転移点Tgは、JIS R1618:2002に基づき、熱膨張計(ブルカー・エイエックスエス社製;TD5000SA)を用いて、昇温速度を10℃/分として熱膨張曲線を得て、得られた熱膨張曲線からガラス転移点Tg[単位:℃]を測定する。
 本強化用ガラスは、曲げ成形時の結晶の析出を抑える観点から、以下の測定方法で測定される化学強化用ガラスの結晶化ピーク温度は、そのガラスの軟化点より高いことが好ましい。かかる観点から、結晶化ピーク温度(以下、DSCピーク温度とも略す)からTgを減じた値(DSCピーク温度-Tg)が180℃以上であることが好ましく、より好ましくは220℃以上、さらに好ましくは250℃以上である。また、結晶化ピークが認められないことがより好ましい。
(測定方法)
 約70mgのガラスを砕いて、メノウ乳鉢ですりつぶし、昇温速度を10℃/分として室温から1000℃まで示差走査熱量計(DSC)を用いて測定する。
 本強化用ガラスは、生産性を向上する観点から、比重が2.35以上であることが好ましく、より好ましくは2.38以上、さらに好ましくは2.40以上である。また、比重が2.45以下であることが好ましく、より好ましくは2.43以下、さらに好ましくは2.41以下である。比重はアルキメデス法で測定する。
 本強化用ガラスの形状は特に限定されず、曲面形状を有していてもよい。曲面形状としては、一方の面にR部を有し、かつ該面に対向する面が平坦である形状(2.5D形状と呼ばれることがある)、又はR形状を有する3D形状が挙げられる。本明細書において、「2.5D形状」とは、平板(2D)の角部にR部を有する形状をいう。本明細書において、「3D形状」とは、平板(2D)ではない、曲げ形状のガラスをいう。
 本強化用ガラスの厚みは、化学強化処理を効果的に行う観点、及びカバーガラスとして使用した時の重量の観点から、通常1.5mm以下であることが好ましく、1.2mm以下であることがより好ましく、1.1mm以下であることがさらに好ましく、1.0mm以下であることが特に好ましく、0.8mm以下であることが最も好ましい。また、強度の観点から、0.4mm以上であることが好ましく、より好ましくは0.45mm以上、さらに好ましくは0.50mm以上、特に好ましくは0.55mm以上である。
(製造方法)
 本強化用ガラスは通常の方法で製造できる。例えば、ガラスの各成分の原料を調合し、ガラス溶融窯で加熱溶融する。その後、公知の方法によりガラスを均質化し、ガラス板等の所望の形状に成形し、徐冷する。
 ガラス板の成形法としては、例えば、フロート法、プレス法、フュージョン法及びダウンドロー法が挙げられる。特に、大量生産に適したフロート法が好ましい。また、フロート法以外の連続成形法、すなわち、フュージョン法およびダウンドロー法も好ましい。
 その後、成形したガラスを必要に応じて研削および研磨処理して、ガラス基板を形成する。なお、ガラス基板を所定の形状及びサイズに切断したり、ガラス基板の面取り加工を行う場合、後述する化学強化処理を施す前に、ガラス基板の切断や面取り加工を行えば、その後の化学強化処理によって端面にも圧縮応力層が形成されるため、好ましい。
(第3の態様)
<LiO-Al-SiO系化学強化用ガラス>
 第3の態様に係るLiO-Al-SiO系化学強化用ガラス(以下、本LiO-Al-SiO系化学強化用ガラスということがある。)は、酸化物基準のモル%表示で、Bを2%以上含有し、ヤング率が76GPa超であり、100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化したときの表面圧縮応力CSが200~450MPa且つ圧縮応力層深さDOCが70~120μmであり、粘度が10dPa・sとなる温度(T)が1650℃以下である。
 本LiO-Al-SiO系化学強化用ガラスにおけるBの含有量は、耐スクラッチ性向上の観点から、2%以上であり、好ましくは3%以上、より好ましくは4%以上、さらに好ましくは5%以上、特に好ましくは6%以上である。Bは、化学強化後の応力緩和を生じやすくする成分なので、応力緩和による表面圧縮応力の低下を防止する観点から、10%以下であることが好ましく、より好ましくは9%以下、さらに好ましくは8%以下、特に好ましくは7%以下である。
 本LiO-Al-SiO系化学強化用ガラスは、ヤング率が76GPa超であり、77GPa以上が好ましく、80GPa以上がより好ましく、85GPa以上がさらに好ましい。一方、ヤング率が高すぎると、化学強化時にイオンの拡散が遅く、深いDOCを得ることが困難になる傾向がある。そこでヤング率は100GPa以下が好ましく、95GPa以下がより好ましく、90GPa以下がさらに好ましい。
 本LiO-Al-SiO系化学強化用ガラスは、NaCSは200MPa以上であり、好ましくは250MPa以上、より好ましくは300MPa以上、特に好ましくは350MPa以上である。NaCSが200MPa以上であることにより、深さ50μm以上の深い領域に十分な圧縮応力を付与することができる。また、NaCSは450MPa以下であり、好ましくは400MPa以下であり、より好ましくは350MPa以下、特に好ましくは300MPa以下である。NaCSが450MPaを超えると応力プロファイル設計時にCTリミットの制約によりDOCが浅くならざるを得ず、その結果、深さ50μm以上の深い領域の圧縮応力が小さくなる。
 本LiO-Al-SiO系化学強化用ガラスは、NaDOLは70μm以上であり、好ましくは80μm以上、より好ましくは90μm以上、特に好ましくは100μm以上である。NaDOLが70μm以上であることにより、短い時間で化学強化をすることができ、プロセスコストが安くなる。NaDOLは120μm以下であり、好ましくは110μm以下、より好ましくは100μm以下、特に好ましくは90μm以下である。NaDOLが120μm以下であることにより、安定的に化学強化プロセスを管理する上で十分な化学強化時間を確保することができる。
 本LiO-Al-SiO系化学強化用ガラスは、生産性を向上する観点から、粘度が10dPa・sとなる温度(T)が1650℃以下であり、好ましくは1615℃以下であり、より好ましくは1590℃以下である。Tは通常は1400℃以上である。
 本LiO-Al-SiO系化学強化用ガラスは、上記以外の組成及び特性、並びに製造方法については、本化学強化用ガラスの(組成)、(特性)及び(製造方法)について上述したものを適宜採用しうる。
(第2の態様)
<ガラス>
 第2の態様に係るガラスは、
 酸化物基準のモル%表示で、
 SiOを50~65%、
 Alを15~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5、
 [Al]+[LiO]が27~35%であり、
 下式で表されるアルカリイオンのエントロピー関数S値が0.25~0.40である。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P)PLi=[LiO]/([LiO]+[NaO]+[KO])
Na=[NaO]/([LiO]+[NaO]+[KO])
=[KO]/([LiO]+[NaO]+[KO])
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
 第2の態様に係るガラスは、次式で求められるエントロピー関数S値が0.25以上であり、好ましくは0.28以上、さらに好ましくは0.30以上である。また、化学強化時にガラスに圧縮応力が入りすぎるのを抑制する観点から、エントロピー関数S値が0.40以下であり、好ましくは0.35以下、より好ましくは0.33以下、特に好ましくは0.31以下である。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P)ここでPLi=[LiO]/([LiO]+[NaO]+[KO])
   PNa=[NaO]/([LiO]+[NaO]+[KO])
   P=[KO]/([LiO]+[NaO]+[KO])
 ただし[LiO]、[NaO]、[KO]はそれぞれLiO、NaO、KOの酸化物基準のモル%表示での含有量を表す。エントロピー関数S値が大きすぎると帯電特性が悪くなり、小さすぎると高周波数域の誘電損失が大きくなる。
 前記組成を満たす第2の態様に係るガラスは、化学強化処理によって好ましい応力プロファイルを形成しやすく、CTリミットを超えず、且つ落下強度を担保し得ることから、化学強化用ガラスとして用いられることが好ましい。本ガラスは例えば、イオン交換法により強化されている。
 第2の態様に係るガラスは、上記した以外の組成及び特性、並びに製造方法については、第1の態様における化学強化用ガラスの(組成)、(特性)及び(製造方法)について上述したものを適宜採用しうる。
(第4の態様)
<化学強化用ガラス>
 第4の態様に係る化学強化用ガラスは、
 酸化物基準のモル%表示で、
 SiOを50~67%、
 Alを16~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が22~35%であり、
 ヤング率が77GPa以上である。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
 第4の態様に係る化学強化用ガラスおいて、SiOの含有量は、化学的耐久性を高めるためには、50%以上であり、52%以上が好ましく、54%以上がより好ましく、55%以上がさらに好ましく、56%以上が特に好ましい。ガラスの溶融性をよくするためにSiOの含有量は、67%以下であり、66%以下が好ましく、65%以下がより好ましく、62%以下がさらに好ましく、60%以下がよりさらに好ましく、59%以下が特に好ましく、58%以下が最も好ましい。
 第4の態様に係る化学強化用ガラスにおいて、Alは化学強化の際のイオン交換性を向上させ、強化後の表面圧縮応力を大きくするため、または、ガラス転移温度(Tg)を高くし、ヤング率を高くするために16%以上であり、17%以上が好ましく、19%以上がより好ましく、20%以上がさらに好ましく、20.5%以上が特に好ましい。Alの含有量は25%以下であり、23%以下が好ましく、より好ましくは22%以下、さらに好ましくは21.5%以下である。
 第4の態様に係る化学強化用ガラスにおいて、AlおよびLiOの合計含有量([Al]+[LiO])は、低い粘性と優れた強化特性とを両立する観点から、22%以上であり、好ましくは22.5%以上であり、より好ましくは23%以上であり、さらに好ましくは23.5%以上、より好ましくは24%以上、さらに好ましくは25%以上、さらに好ましくは27%以上、特に好ましくは29%以上である。また、粘性が高くなるのを抑制し、化学強化時にガラスに圧縮応力が入りすぎるのを抑制する観点から、[Al]+[LiO]は35%以下であり、好ましくは33%以下、より好ましくは31%以下、さらに好ましくは30.5%以下、特に好ましくは30%以下である。
 第4の態様に係る化学強化用ガラスにおいて、破壊靱性及びCTリミットを高める観点から、ヤング率は77GPa以上であり、好ましくは78GPa以上、より好ましくは80GPa以上である。また、ヤング率は100GPa以下が好ましく、95GPa以下がより好ましく、90GPa以下がさらに好ましい。
 第4の態様に係る化学強化用ガラスは、上記した以外の組成及び特性、並びに製造方法については、第1の態様における化学強化用ガラスの(組成)、(特性)及び(製造方法)について上述したものを適宜採用しうる。
(第5の態様)
<ガラス>
 第5の態様に係るガラスは、酸化物基準のモル%表示で、
 SiOを50~67%、
 Alを16~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が22~35%であり、
 ヤング率が77GPa以上であり、
 下式で表されるアルカリイオンのエントロピー関数S値が0.25~0.40である。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P)PLi=[LiO]/([LiO]+[NaO]+[KO])
Na=[NaO]/([LiO]+[NaO]+[KO])
=[KO]/([LiO]+[NaO]+[KO])
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
 第5の態様に係るガラスおいて、SiOの含有量は、化学的耐久性を高めるためには、50%以上であり、52%以上が好ましく、54%以上がより好ましく、55%以上がさらに好ましく、56%以上が特に好ましい。ガラスの溶融性をよくするためにSiOの含有量は、67%以下であり、66%以下が好ましく、65%以下がより好ましく、62%以下がさらに好ましく、60%以下がよりさらに好ましく、59%以下が特に好ましく、58%以下が最も好ましい。
 第5の態様に係るガラスにおいて、Alは化学強化の際のイオン交換性を向上させ、強化後の表面圧縮応力を大きくするため、または、ガラス転移温度(Tg)を高くし、ヤング率を高くするために16%以上であり、17%以上が好ましく、19%以上がより好ましく、20%以上がさらに好ましく、20.5%以上が特に好ましい。Alの含有量は25%以下であり、23%以下が好ましく、より好ましくは22%以下、さらに好ましくは21.5%以下である。
 第5の態様に係るガラスにおいて、AlおよびLiOの合計含有量([Al]+[LiO])は、低い粘性と優れた強化特性とを両立する観点から、22%以上であり、好ましくは22.5%以上であり、より好ましくは23%以上であり、さらに好ましくは23.5%以上、より好ましくは24%以上、さらに好ましくは25%以上、さらに好ましくは27%以上、特に好ましくは29%以上である。また、粘性が高くなるのを抑制し、化学強化時にガラスに圧縮応力が入りすぎるのを抑制する観点から、[Al]+[LiO]は35%以下であり、好ましくは33%以下、より好ましくは31%以下、さらに好ましくは30.5%以下、特に好ましくは30%以下である。
 第5の態様に係るガラスにおいて、破壊靱性及びCTリミットを高める観点から、ヤング率は77GPa以上であり、好ましくは78GPa以上、より好ましくは80GPa以上である。また、ヤング率は100GPa以下が好ましく、95GPa以下がより好ましく、90GPa以下がさらに好ましい。
 第5の態様に係るガラスは、上記した以外の組成及び特性、並びに製造方法については、第1の態様における化学強化用ガラスの(組成)、(特性)及び(製造方法)について上述したものを適宜採用しうる。
(第6の態様)
<化学強化ガラス>
 本発明に係る化学強化ガラス(以下、本化学強化ガラスということがある)は、上記した化学強化用ガラス、LiO-Al-SiO系化学強化用ガラスまたはガラスを化学強化して圧縮応力層を形成することにより製造できる。
(応力特性)
 本化学強化ガラスは、以下の(C1)~(C6)の応力特性を有することが好ましい。
(C1)表面圧縮応力CSが500MPa以上である。
(C2)板厚をt(μm)、圧縮応力層深さDOC(μm)としたとき、DOC/tが0.125~0.225である。
(C3)縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ1~3μmにおける平均傾きが-400超-100未満である。
(C4)縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ20μmから圧縮応力層深さDOC/2μmまでの領域における平均傾きが-4超-1.5未満である。
(C5)板厚をt(μm)としたときに、表面からの深さ50μmの圧縮応力値CS50が0.1t(MPa)以上である。
(C6)板厚をt(μm)としたときに、表面からの深さ90μmの圧縮応力値CS90が0.03t(MPa)以上である。
 以下、各項目について説明する。
 本化学強化ガラスは、撓み等の変形による割れを抑制する観点から、表面圧縮応力CSが500MPa以上であることが好ましく、より好ましくは550MPa以上、さらに好ましくは650MPa以上、特に好ましくは750MPa以上である。CSは、大きいほど強度が高くなるが、大きすぎると割れた場合に激しい破砕が生じるおそれがあるため、1400MPa以下が好ましく、1200MPa以下がより好ましい。
 本化学強化ガラスは、板厚をt(μm)、圧縮応力層深さDOC(μm)としたとき、表面に傷が生じた場合にも割れにくくする観点から、DOC/tが0.125以上であることが好ましく、より好ましくは0.14以上、さらに好ましくは0.16以上である。また、表面付近に形成された圧縮応力に応じて内部に引張応力が生じることから、化学強化ガラスが破壊した時に破片の飛散を抑制する観点から、0.225以下であることが好ましく、より好ましくは0.20以下、さらに好ましくは0.18以下である。
 本化学強化ガラスは、縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ1~3μmにおける平均傾きが-400超であることが好ましく、より好ましくは-300以上、さらに好ましくは-200以上である。表面からの深さ1~3μmにおける平均傾きが-400超であることにより、十分に高い表層CSを確保することができる。表面からの深さ1~3μmにおける平均傾きは、-100未満であることが好ましく、より好ましくは-150以下、さらに好ましくは-200以下である。表面からの深さ1~3μmにおける平均傾きが-100未満であることにより、ガラス加工時に発生する浅い傷によって曲げ強度が下がるのを抑制することができる。本明細書において、「平均傾き」とは、傾きを求める深さの範囲において、応力プロファイルの傾きを1μmごとに求め、得られた平均をいう。
 本化学強化ガラスは、縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ20μmから圧縮応力層深さDOC/2μmまでの領域における平均傾きが-4超であることが好ましく、より好ましくは-3.5以上、さらに好ましくは-3.0以上である。前記平均傾きが-4超であることにより、高いCS50を達成することができるが、平均傾きが-4よりも小さくなると、高いCS90を達成するのが難しくなる。また、前記平均傾きが-1.5未満であることが好ましく、より好ましくは-2.0以下、さらに好ましくは-2.5以下である。前記平均傾きが-1.5未満であることにより、高いCS90を達成することができるが、平均傾きが-1.5よりも大きくなると、高いCS50を達成するのが難しくなる。
 本化学強化ガラスは、板厚をt(μm)としたときに、表面からの深さ50μmの圧縮応力値CS50が0.1t(MPa)以上であることが好ましく、より好ましくは0.13t(MPa)以上、さらに好ましくは0.15t(MPa)以上、特に好ましくは0.17t(MPa)以上である。CS50が0.1t(MPa)以上であると、本化学強化ガラスをカバーガラスとして備える携帯端末等を落下させた際の本化学強化ガラスの割れを防ぎやすい。CS50は、大きいほど強度が高くなるが、大きすぎると割れた場合に激しい破砕が生じる場合があるため、0.3t(MPa)以下が好ましく、0.25t(MPa)以下がより好ましい。
 本化学強化ガラスは、板厚をt(μm)としたときに、表面からの深さ90μmの圧縮応力値CS90が0.03t(MPa)以上であることが好ましく、より好ましくは0.04t(MPa)以上、さらに好ましくは0.05t(MPa)以上、特に好ましくは0.07t(MPa)以上である。CS90が0.03t(MPa)以上であると、粗い砂などに本化学強化ガラスをカバーガラスとして備える携帯端末等を落下させた際の本化学強化ガラスの割れを防ぎやすい。CS90は、大きいほど強度が高くなるが、大きすぎると割れた場合に激しい破砕が生じる場合があるため、0.15t(MPa)以下が好ましく、0.14t(MPa)以下がより好ましく、0.13t(MPa)以下がさらに好ましく、0.10t(MPa)以下が特に好ましい。
(化学強化処理)
 化学強化処理は、大きなイオン半径の金属イオン(典型的には、NaイオンまたはKイオン)を含む金属塩(例えば、硝酸カリウム)の融液に浸漬する等の方法で、ガラスを金属塩に接触させることにより、ガラス中の小さなイオン半径の金属イオン(典型的には、NaイオンまたはLiイオン)が大きなイオン半径の金属イオン典型的には、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)と置換させる処理である。
 化学強化処理の速度を速くするためには、ガラス中のLiイオンをNaイオンと交換する「Li-Na交換」を利用することが好ましい。またイオン交換により大きな圧縮応力を形成するためには、ガラス中のNaイオンをKイオンと交換する「Na-K交換」を利用することが好ましい。
 化学強化処理を行うための溶融塩としては、例えば、硝酸塩、硫酸塩、炭酸塩、塩化物などが挙げられる。このうち硝酸塩としては、例えば、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸セシウム、硝酸銀などが挙げられる。硫酸塩としては、例えば、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸セシウム、硫酸銀などが挙げられる。炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。塩化物としては、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム、塩化銀などが挙げられる。これらの溶融塩は単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 化学強化処理の処理条件は、ガラス組成や溶融塩の種類などを考慮して、時間及び温度等を選択できる。例えば、化学強化用ガラスを好ましくは450℃以下にて好ましくは1時間以下の化学強化処理が挙げられる。具体的には例えば、好ましくは450℃の0.3質量%のLi及び99.7質量%のNaを含有する溶融塩(例えば、硝酸リチウム及び硝酸ナトリウムの混合塩)に好ましくは0.5時間程度浸漬する処理が挙げられる。
 化学強化処理は、2段階以上のイオン交換によってもよい。2段階のイオン交換は、具体的には例えば、次のように行なう。まず、化学強化用ガラスを好ましくは350~500℃程度のNaイオンを含む金属塩(例えば、硝酸ナトリウム)に好ましくは0.1~10時間程度浸漬する。これによって化学強化用ガラス中のLiイオンと金属塩中のNaイオンとのイオン交換が生じ、比較的深い圧縮応力層が形成できる。
 化学強化処理によってガラス物品の表面部分に圧縮応力層を形成すると、ガラス物品中心部には、表面の圧縮応力の総量に応じた引張応力が必然的に発生する。この引張応力値が大きくなりすぎると、ガラス物品が破壊する際に激しく割れて破片が飛散する。CTがその閾値(以下、CTリミットとも略す。)を超えると加傷時の破砕数が爆発的に増加する。2段階以上のイオン交換を行う場合、最初のイオン交換(第1のイオン交換)によりガラス内部に形成される応力プロファイルの最大引張応力値は、CTリミットより大きいことが好ましい。第1のイオン交換後の最大引張応力値がCTリミットより大きいことで、第1のイオン交換により圧縮応力が十分に導入され、続く第2のイオン交換工程において、ガラス表層の応力値が低減された後も、CS50及びCS90を高く保持できる。
 次に、好ましくは350~500℃程度のKイオンを含む金属塩(例えば、硝酸カリウム)に好ましくは0.1~10時間程度浸漬する。これによって、前の処理で形成された圧縮応力層の、例えば深さ10μm程度以内の部分に、大きな圧縮応力が生じる。このような2段階の処理によれば、表面圧縮応力値が大きい応力プロファイルが得られやすい。
 本化学強化ガラスにおけるイオンプロファイル及び応力特性は、本化学強化ガラスの母組成及び化学強化処理の条件により調整し得る。ここで「化学強化ガラスの母組成」は、化学強化前のガラスの組成をいう。本化学強化ガラスの組成は、極端なイオン交換処理がされた場合を除いて、全体として強化前のガラスと類似の組成を有しており、通常、強化前のガラスの組成は化学強化ガラスにおける板厚中心の組成と同等である。特に、ガラス表面から最も深い部分の組成は、極端なイオン交換処理がされた場合を除いて、強化前のガラスの組成と同じである。
(化学強化ガラスの用途)
 本発明に係る化学強化ガラスは、特に、携帯電話、スマートフォン等のモバイル機器等の電子機器に用いられるカバーガラスとして有用である。さらに、携帯を目的としない、テレビ、パーソナルコンピュータ、タッチパネル等の電子機器のカバーガラス、エレベータ壁面、家屋やビル等の建築物の壁面(全面ディスプレイ)にも有用である。また、窓ガラス等の建築用資材、テーブルトップ、自動車や飛行機等の内装等やそれらのカバーガラスとして、また曲面形状を有する筺体等にも有用である。
(ガラスの用途)
 本発明に係るガラスは、特に、携帯電話、スマートフォン等のモバイル機器等の電子機器に用いられるカバーガラスとして有用である。さらに、携帯を目的としない、テレビ、パーソナルコンピュータ、タッチパネル等の電子機器のカバーガラス、エレベータ壁面、家屋やビル等の建築物の壁面(全面ディスプレイ)にも有用である。また、窓ガラス等の建築用資材、テーブルトップ、自動車や飛行機等の内装等やそれらのカバーガラスとして、また曲面形状を有する筺体等にも有用である。
 以下、本発明を実施例によって説明するが、本発明はこれによって限定されない。
(化学強化用ガラスの作製)
 表1及び2に示す例1~16の化学強化用ガラスを表中に示される酸化物基準のモル百分率表示の各ガラス組成となるように酸化物、水酸化物、炭酸塩または硝酸塩等一般に使用されているガラス原料を適宜選択して、白金坩堝に入れ、電気炉で1650℃以上の高温に加熱することによって熔解させ、その後カーボンの型枠上にガラス融液を流し出し、Tg+50℃で30分保持した後、0.5℃/分で冷却することによってガラスブロックを得た。得られたガラスブロックを切断、研削、研磨することによって、縦25mm×横25mm×板厚0.7mmの板状ガラスを得た。
(化学強化ガラスの作製)
 続いて、例1~14の各化学強化用ガラスに対して、条件A(100質量%の硝酸ナトリウム塩で380℃にて4時間)にて化学強化処理を行うことにより、化学強化ガラスを得た。
 例5のガラスについては、下記条件Bにて2段階の化学強化をした化学強化ガラスも得た。(条件B)1段目:100質量%硝酸ナトリウム塩を用いて、380℃にて100分間。2段目:100質量%硝酸カリウム塩を用いて、380℃にて60分間。
 得られた化学強化用ガラス及び化学強化ガラスについて、各特性を以下の手順で評価した。
[比重]
 比重はアルキメデス法で測定した。
[ヤング率]
 ヤング率は超音波パルス法(JIS R1602、1995年)で測定した。
[応力プロファイル]
 折原製作所社製の光導波表面応力計FSM-6000及び散乱光光弾性応力測定機SLP2000を用いて応力値を測定した。2段強化応力プロファイルのCSは光導波表面応力計FSM-6000で、1段強化応力プロファイルのNaCS(100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化処理後のCS)は散乱光光弾性応力測定機SLP2000を用いて測定された値であり、NaDOL(100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化処理後のDOC)、CS50、CS90は散乱光光弾性応力測定機SLP2000による値である。
[T及びT
 T及びTは、ASTM C 965-96(2017年)に規定されている方法に従い、回転粘度計を用いて粘度を測定し、10dPa・sまたは10dPa・sとなるときの温度としてそれぞれ求めた。なお、装置校正用の参照試料としてNBS710およびNIST717aを使用した。
[KIc
 破壊靱性値は、M.Y. He, M.R. Turner and A.G. Evans, Acta Metall. Mater. 43 (1995) 3453.に記載の方法を参考に、DCDC法により、図3に示される形状のサンプルおよびオリエンテック社製のテンシロンUTA-5kNを用いて、図4に示されるような、応力拡大係数K(単位:MPa・m1/2)とクラック進展速度v(単位:m/s)との関係を示すK-v曲線を測定し、得られたRegionIIIのデータを一次式で回帰、外挿し、0.1m/sの応力拡大係数Kを破壊靱性値KIcとした。
[DSCピーク温度、Tg]
 メノウ乳鉢を用いてガラスを粉砕し、約80mgの粉末を白金セルに入れて昇温速度を10/分として室温から1100℃まで昇温しながら、示差走査熱量計(ブルカー社製;DSC3300SA)を用いてDSC曲線を測定し、DSCピーク温度(結晶化ピーク温度)、ガラス転移点Tgを求めた。
[失透温度]
 失透温度は、次のようにして求めた。ガラスを粉砕し、4mmメッシュと2mmメッシュの篩を用いて分級し、純水で洗浄した後、乾燥してカレットを得た。2~5gのカレットを白金皿に載せて一定温度に保った電気炉中で17時間保持し、室温の大気中に取り出して冷却した後、偏光顕微鏡で失透の有無を観察する操作を繰り返して、失透温度Tを見積もった。
[失透粘性]
 失透粘性は、回転式高温粘度計を用いて、1700℃から1000℃まで(または失透により粘性が急激に上昇し始めるまで)10℃/分で降温しながら粘度測定を行い、上記失透温度での粘性値を失透粘性logη(dPa・s)とした。
 結果を表1及び2に示す。表1及び2において例1~10及び14~16は実施例であり、例11~13は比較例である。表1及び2において、斜体で記載された数値は計算値であり、「-」は未評価であることを示す。例11は国際公開第2019/108751号に記載の組成の範囲内、例12は国際公開第2019/191480号に記載の組成の範囲内、例13は国際公開第2021/108314号に記載の組成の範囲内であるガラス組成を有する。
 表1及び2におけるNaCS及びNaDOLは上記条件Aにて化学強化して得られた化学強化ガラスの応力特性である。また、図2に例5のガラスを上記条件Bにて2段階の化学強化をして得られた化学強化ガラスの応力プロファイルを示す。
 図2に示す例5のガラスを上記条件Bにて化学強化した化学強化ガラスは、以下の応力特性を示した。板厚tは700μmである。
(C1)表面圧縮応力CS:1287MPa。
(C2)板厚をt(μm)、圧縮応力層深さDOC(μm)としたとき、DOC/t:0.17。
(C3)縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ1~3μmにおける平均傾き:-310。
(C4)縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ20μmから圧縮応力層深さDOC/2μmまでの領域における平均傾き:-2.68。
(C5)板厚をt(μm)としたときに、表面からの深さ50μmの圧縮応力値CS50:0.186tMPa。
(C6)板厚をt(μm)としたときに、表面からの深さ90μmの圧縮応力値CS90:0.06tMPa。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示すように、実施例である例1~10及び14の化学強化用ガラスは、化学強化した際の表面圧縮応力が200~400MPaであり、且つ圧縮応力層深さが70~120μmであり、CTリミットを超えず、且つ落下強度を担保し得る優れた強化特性を示した。また、例1~10の化学強化用ガラスは、比較例と比較してT2及びT4が低く、生産性に優れていた。
 例11の化学強化用ガラスは、[Al]+[LiO]が27%未満であり、Bの含有量が2%未満である。例11の化学強化用ガラスは、実施例と比較して、ヤング率、KIcが低いとともに、強化特性(NaCS)が低かった。また、T及びTが実施例に比して高く、生産性が劣っていた。
 例12の化学強化用ガラスは、[LiO]/([NaO]+[KO])が3.5超、NaOの含有量が2.5%未満であり、エントロピー関数が0.25未満である。
例12の化学強化用ガラスは、実施例と比較して、NaCSが高すぎ、応力が入りすぎてCTリミットを超えるおそれがあり、応力設計しにくいことがわかった。
 例13の化学強化用ガラスは、[Al]+[LiO]が27%未満である。例13の化学強化用ガラスは、実施例と比較して、ヤング率が低いとともに、強化特性(NaCS)が低かった。また、Tが実施例に比して高く、生産性が劣っていた。
 以上説明したように、本明細書には次の事項が開示されている。
1.化学強化用ガラスであって、
 酸化物基準のモル%表示で、
 SiOを50~65%、
 Alを15~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が27~35%である、化学強化用ガラス。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
2.下式で求められるアルカリイオンのエントロピー関数S値が0.25~0.40である前記1に記載の化学強化用ガラス。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P
Li=[LiO]/([LiO]+[NaO]+[KO])
Na=[NaO]/([LiO]+[NaO]+[KO])
=[KO]/([LiO]+[NaO]+[KO])
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
3.[SiO]+[B]+[P]が50~65%、
 [LiO]+[NaO]+[KO]が14~20%、
 [Al]+[B]が22~40%、
 [B]+[P]が2~10%である、前記1または2に記載の化学強化用ガラス。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
4.以下の(A1)~(A4)を満たす、前記1~3のいずれか1に記載の化学強化用ガラス。
(A1)ヤング率が80~100GPaである。
(A2)厚み0.7mmの板形状である場合に、100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化したときの表面圧縮応力CSが200~450MPa、圧縮応力層深さDOCが70~120μmである。
(A3)粘度が10dPa・sとなる温度(T)が1650℃以下であり、且つ粘度が10dPa・sとなる温度(T)が1250℃以下である。
(A4)破壊靱性値KIcが0.75~0.85MPa・m1/2である。
5.板厚が0.4~1.5mmである、前記1~4のいずれか1に記載の化学強化用ガラス。
6.板厚が0.4~1.2mmである、前記1~5のいずれか1に記載の化学強化用ガラス。
7.酸化物基準のモル%表示で、
 SiOを50~65%、
 Alを15~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が27~35%であり、
 下式で表されるアルカリイオンのエントロピー関数S値が0.25~0.40である、ガラス。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P)PLi=[LiO]/([LiO]+[NaO]+[KO])
Na=[NaO]/([LiO]+[NaO]+[KO])
=[KO]/([LiO]+[NaO]+[KO])
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
8.酸化物基準のモル%表示で、
 [SiO]+[B]+[P]が50~65%、
 [LiO]+[NaO]+[KO]が14~20%、
 [Al]+[B]が22~40%、
 [B]+[P]が2~10%である、前記7に記載のガラス。
9.以下の(B1)~(B4)を満たす、前記7又は8に記載のガラス。
(B1)ヤング率が80~100GPaである。
(B2)厚み0.7mmの板形状である場合に、100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化したときの表面圧縮応力CSが200~450MPa、圧縮応力層深さDOCが70~120μmである。
(B3)粘度が10dPa・sとなる温度(T)が1650℃以下であり、且つ粘度が10dPa・sとなる温度(T)が1250℃以下である。
(B4)破壊靱性値KIcが0.75~0.85MPa・m1/2である。
10.前記1~6のいずれか1に記載の化学強化用ガラスに圧縮応力層が形成されたガラスであって、以下の(C1)~(C6)の応力特性を有するガラス。
(C1)表面圧縮応力CSが500MPa以上である。
(C2)板厚をt(μm)、圧縮応力層深さDOC(μm)としたとき、DOC/tが0.125~0.225である。
(C3)縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ1~3μmにおける平均傾きが-400超-100未満である。
(C4)縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ20μmから圧縮応力層深さDOC/2μmまでの領域における平均傾きが-4超-1.5未満である。
(C5)板厚をt(μm)としたときに、表面からの深さ50μmの圧縮応力値CS50が0.1t(MPa)以上である。
(C6)板厚をt(μm)としたときに、表面からの深さ90μmの圧縮応力値CS90が0.03t(MPa)以上である。
11.化学強化用ガラスである、前記7~9のいずれか1に記載のガラス。
12.酸化物基準のモル%表示で、Bを2%以上含有し、
 ヤング率が76GPa超であり、
 100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化したときの表面圧縮応力CSが200~450MPa且つ圧縮応力層深さDOCが70~120μmであり、
 粘度が10dPa・sとなる温度(T)が1650℃以下である、
 LiO-Al-SiO系化学強化用ガラス。
13.化学強化用ガラスであって、
 酸化物基準のモル%表示で、
 SiOを50~67%、
 Alを16~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が22~35%であり、
 ヤング率が77GPa以上である化学強化用ガラス。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
14.下式で求められるアルカリイオンのエントロピー関数S値が0.25~0.40である前記13に記載の化学強化用ガラス。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P
Li=[LiO]/([LiO]+[NaO]+[KO])
Na=[NaO]/([LiO]+[NaO]+[KO])
=[KO]/([LiO]+[NaO]+[KO])
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
15.[SiO]+[B]+[P]が50~69%、
 [LiO]+[NaO]+[KO]が12~20%、
 [Al]+[B]が19~40%、
 [B]+[P]が2~10%である、前記13又は14に記載の化学強化用ガラス。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
16.化学強化用ガラスであって、
 酸化物基準のモル%表示で、
 SiOを56~65%、
 Alを16~25%、
 Bを3~5%、
 Pを0.7~1.5%、
 ZnOを0~15%、
 MgOを0超~1.5%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0%超~5%、
 ZrOを0~5%、
 YO3を0~5%、
 TiOを0超~1%
 SrOを0~1.2%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [MgO]+[CaO]+[SrO]+[BaO]+[ZnO]が1~3%であり、
 [LiO]/([LiO]+[NaO]+[KO])が0.50~0.65であり、
 [Al]+[LiO]が22~35%である、
前記13又は14に記載の化学強化用ガラス。
ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
17.化学強化用ガラスであって、
 酸化物基準のモル%表示で、
 TiOを0.1超~1%含有する、
前記16に記載の化学強化用ガラス。
18.化学強化用ガラスであって、
 酸化物基準のモル%表示で、
 [NaO]+[KO]が0~8%である、
前記16または17に記載の化学強化用ガラス。
ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
19.化学強化用ガラスであって、
 酸化物基準のモル%表示で、
 [MgO]+[CaO]+[SrO]+[BaO]+[ZnO]が1~2.8%である、
前記16~18のいずれか1に記載の化学強化用ガラス。
ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
20.酸化物基準のモル%表示で、
 SiOを50~67%、
 Alを16~25%、
 Bを2~10%、
 Pを0~15%、
 ZnOを0~15%、
 MgOを0~10%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0~5%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [Al]+[LiO]が22~35%であり、
 ヤング率が77GPa以上であり、
 下式で表されるアルカリイオンのエントロピー関数S値が0.25~0.40である、ガラス。
S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P)PLi=[LiO]/([LiO]+[NaO]+[KO])
Na=[NaO]/([LiO]+[NaO]+[KO])
=[KO]/([LiO]+[NaO]+[KO])
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
21.酸化物基準のモル%表示で、
 [SiO]+[B]+[P]が50~69%、
 [LiO]+[NaO]+[KO]が12~20%、
 [Al]+[B]が19~40%、
 [B]+[P]が2~10%である、前記20に記載のガラス。
22.酸化物基準のモル%表示で、
 SiOを56~65%、
 Alを16~25%、
 Bを3~5%、
 Pを0.7~1.5%、
 ZnOを0~15%、
 MgOを0超~1.5%、
 CaOを0~15%、
 LiOを3~15%、
 NaOを2.5~15%、
 KOを0%超~5%、
 ZrOを0~5%、
 Yを0~5%、
 TiOを0超~1%
 SrOを0~1.2%含有し、
 [LiO]/([NaO]+[KO])が0.5~3.5であり、
 [MgO]+[CaO]+[SrO]+[BaO]+[ZnO]が1~3%であり、
 [LiO]/([LiO]+[NaO]+[KO])が0.50~0.65であり、
 [Al]+[LiO]が22~35%である、
前記20又は21に記載のガラス。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
23.酸化物基準のモル%表示で、
 TiOを0.1超~1%含有する、
前記20~22のいずれか1に記載のガラス。
24.酸化物基準のモル%表示で、
 [NaO]+[KO]が0~8%である、
前記20~23のいずれか1に記載のガラス。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
25.酸化物基準のモル%表示で、
 [MgO]+[CaO]+[SrO]+[BaO]+[ZnO]が1~2.8%である、
前記20~24のいずれか1に記載のガラス。
 ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2022年6月15日付けで出願された日本特許出願(特願2022-096854)及び2022年12月27日付けで出願された日本特許出願(特願2022-210494)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (25)

  1.  化学強化用ガラスであって、
     酸化物基準のモル%表示で、
     SiOを50~65%、
     Alを15~25%、
     Bを2~10%、
     Pを0~15%、
     ZnOを0~15%、
     MgOを0~10%、
     CaOを0~15%、
     LiOを3~15%、
     NaOを2.5~15%、
     KOを0~5%、
     ZrOを0~5%、
     Yを0~5%、
     TiOを0~5%含有し、
     [LiO]/([NaO]+[KO])が0.5~3.5であり、
     [Al]+[LiO]が27~35%である、化学強化用ガラス。
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
  2.  下式で求められるアルカリイオンのエントロピー関数S値が0.25~0.40である請求項1に記載の化学強化用ガラス。
    S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P
    Li=[LiO]/([LiO]+[NaO]+[KO])
    Na=[NaO]/([LiO]+[NaO]+[KO])
    =[KO]/([LiO]+[NaO]+[KO])
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
  3.  [SiO]+[B]+[P]が50~65%、
     [LiO]+[NaO]+[KO]が14~20%、
     [Al]+[B]が22~40%、
     [B]+[P]が2~10%である、請求項1に記載の化学強化用ガラス。
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
  4.  以下の(A1)~(A4)を満たす、請求項1~3のいずれか1項に記載の化学強化用ガラス。
    (A1)ヤング率が80~100GPaである。
    (A2)厚み0.7mmの板形状である場合に、100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化したときの表面圧縮応力CSが200~450MPa、圧縮応力層深さDOCが70~120μmである。
    (A3)粘度が10dPa・sとなる温度(T)が1650℃以下であり、且つ粘度が10dPa・sとなる温度(T)が1250℃以下である。
    (A4)破壊靱性値KIcが0.75~0.85MPa・m1/2である。
  5.  板厚が0.4~1.5mmである、請求項1~3のいずれか1項に記載の化学強化用ガラス。
  6.  板厚が0.4~1.2mmである、請求項1~3のいずれか1項に記載の化学強化用ガラス。
  7.  酸化物基準のモル%表示で、
     SiOを50~65%、
     Alを15~25%、
     Bを2~10%、
     Pを0~15%、
     ZnOを0~15%、
     MgOを0~10%、
     CaOを0~15%、
     LiOを3~15%、
     NaOを2.5~15%、
     KOを0~5%、
     ZrOを0~5%、
     Yを0~5%、
     TiOを0~5%含有し、
     [LiO]/([NaO]+[KO])が0.5~3.5であり、
     [Al]+[LiO]が27~35%であり、
     下式で表されるアルカリイオンのエントロピー関数S値が0.25~0.40である、ガラス。
    S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P
    Li=[LiO]/([LiO]+[NaO]+[KO])
    Na=[NaO]/([LiO]+[NaO]+[KO])
    =[KO]/([LiO]+[NaO]+[KO])
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
  8.  酸化物基準のモル%表示で、
     [SiO]+[B]+[P]が50~65%、
     [LiO]+[NaO]+[KO]が14~20%、
     [Al]+[B]が22~40%、
     [B]+[P]が2~10%である、請求項7に記載のガラス。
  9.  以下の(B1)~(B4)を満たす、請求項7又は8に記載のガラス。
    (B1)ヤング率が80~100GPaである。
    (B2)厚み0.7mmの板形状である場合に、100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化したときの表面圧縮応力CSが200~450MPa、圧縮応力層深さDOCが70~120μmである。
    (B3)粘度が10dPa・sとなる温度(T)が1650℃以下であり、且つ粘度が10dPa・sとなる温度(T)が1250℃以下である。
    (B4)破壊靱性値KIcが0.75~0.85MPa・m1/2である。
  10.  請求項1~3のいずれか1項に記載の化学強化用ガラスに圧縮応力層が形成されたガラスであって、以下の(C1)~(C6)の応力特性を有するガラス。
    (C1)表面圧縮応力CSが500MPa以上である。
    (C2)板厚をt(μm)、圧縮応力層深さDOC(μm)としたとき、DOC/tが0.125~0.225である。
    (C3)縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ1~3μmにおける平均傾きが-400超-100未満である。
    (C4)縦軸を圧縮応力(MPa)、横軸を表面からの深さ(μm)とする応力プロファイルにおいて、表面からの深さ20μmから圧縮応力層深さDOC/2μmまでの領域における平均傾きが-4超-1.5未満である。
    (C5)板厚をt(μm)としたときに、表面からの深さ50μmの圧縮応力値CS50が0.1t(MPa)以上である。
    (C6)板厚をt(μm)としたときに、表面からの深さ90μmの圧縮応力値CS90が0.03t(MPa)以上である。
  11.  化学強化用ガラスである、請求項7又は8に記載のガラス。
  12.  酸化物基準のモル%表示で、Bを2%以上含有し、
     ヤング率が76GPa超であり、
     100質量%の硝酸ナトリウム塩で380℃にて4時間化学強化したときの表面圧縮応力CSが200~450MPa且つ圧縮応力層深さDOCが70~120μmであり、
     粘度が10dPa・sとなる温度(T)が1650℃以下である、
     LiO-Al-SiO系化学強化用ガラス。
  13.  化学強化用ガラスであって、
     酸化物基準のモル%表示で、
     SiOを50~67%、
     Alを16~25%、
     Bを2~10%、
     Pを0~15%、
     ZnOを0~15%、
     MgOを0~10%、
     CaOを0~15%、
     LiOを3~15%、
     NaOを2.5~15%、
     KOを0~5%、
     ZrOを0~5%、
     Yを0~5%、
     TiOを0~5%含有し、
     [LiO]/([NaO]+[KO])が0.5~3.5であり、
     [Al]+[LiO]が22~35%であり、
     ヤング率が77GPa以上である化学強化用ガラス。
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
  14.  下式で求められるアルカリイオンのエントロピー関数S値が0.25~0.40である請求項13に記載の化学強化用ガラス。
    S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P
    Li=[LiO]/([LiO]+[NaO]+[KO])
    Na=[NaO]/([LiO]+[NaO]+[KO])
    =[KO]/([LiO]+[NaO]+[KO])
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
  15.  [SiO]+[B]+[P]が50~69%、
     [LiO]+[NaO]+[KO]が12~20%、
     [Al]+[B]が19~40%、
     [B]+[P]が2~10%である、請求項13又は14に記載の化学強化用ガラス。
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
  16.  化学強化用ガラスであって、
     酸化物基準のモル%表示で、
     SiOを56~65%、
     Alを16~25%、
     Bを3~5%、
     Pを0.7~1.5%、
     ZnOを0~15%、
     MgOを0超~1.5%、
     CaOを0~15%、
     LiOを3~15%、
     NaOを2.5~15%、
     KOを0%超~5%、
     ZrOを0~5%、
     Yを0~5%、
     TiOを0超~1%
     SrOを0~1.2%含有し、
     [LiO]/([NaO]+[KO])が0.5~3.5であり、
     [MgO]+[CaO]+[SrO]+[BaO]+[ZnO]が1~3%であり、
     [LiO]/([LiO]+[NaO]+[KO])が0.50~0.65であり、
     [Al]+[LiO]が22~35%である、
    請求項13又は14に記載の化学強化用ガラス。
    ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
  17.  化学強化用ガラスであって、
     酸化物基準のモル%表示で、
     TiOを0.1超~1%含有する、
    請求項16に記載の化学強化用ガラス。
  18.  化学強化用ガラスであって、
     酸化物基準のモル%表示で、
     [NaO]+[KO]が0~8%である、
    請求項16に記載の化学強化用ガラス。
    ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
  19.  化学強化用ガラスであって、
     酸化物基準のモル%表示で、
     [MgO]+[CaO]+[SrO]+[BaO]+[ZnO]が1~2.8%である、
    請求項16に記載の化学強化用ガラス。
    ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
  20.  酸化物基準のモル%表示で、
     SiOを50~67%、
     Alを16~25%、
     Bを2~10%、
     Pを0~15%、
     ZnOを0~15%、
     MgOを0~10%、
     CaOを0~15%、
     LiOを3~15%、
     NaOを2.5~15%、
     KOを0~5%、
     ZrOを0~5%、
     Yを0~5%、
     TiOを0~5%含有し、
     [LiO]/([NaO]+[KO])が0.5~3.5であり、
     [Al]+[LiO]が22~35%であり、
     ヤング率が77GPa以上であり、
     下式で表されるアルカリイオンのエントロピー関数S値が0.25~0.40である、ガラス。
    S=-PLi×log(PLi)-PNa×log(PNa)-P×log(P
    Li=[LiO]/([LiO]+[NaO]+[KO])
    Na=[NaO]/([LiO]+[NaO]+[KO])
    =[KO]/([LiO]+[NaO]+[KO])
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。また、logの底は10とする。
  21.  酸化物基準のモル%表示で、
     [SiO]+[B]+[P]が50~69%、
     [LiO]+[NaO]+[KO]が12~20%、
     [Al]+[B]が19~40%、
     [B]+[P]が2~10%である、請求項20に記載のガラス。
  22.  酸化物基準のモル%表示で、
     SiOを56~65%、
     Alを16~25%、
     Bを3~5%、
     Pを0.7~1.5%、
     ZnOを0~15%、
     MgOを0超~1.5%、
     CaOを0~15%、
     LiOを3~15%、
     NaOを2.5~15%、
     KOを0%超~5%、
     ZrOを0~5%、
     Yを0~5%、
     TiOを0超~1%
     SrOを0~1.2%含有し、
     [LiO]/([NaO]+[KO])が0.5~3.5であり、
     [MgO]+[CaO]+[SrO]+[BaO]+[ZnO]が1~3%であり、
     [LiO]/([LiO]+[NaO]+[KO])が0.50~0.65であり、
     [Al]+[LiO]が22~35%である、
    請求項20又は21に記載のガラス。
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
  23.  酸化物基準のモル%表示で、
     TiOを0.1超~1%含有する、
    請求項22に記載のガラス。
  24.  酸化物基準のモル%表示で、
     [NaO]+[KO]が0~8%である、
    請求項22に記載のガラス。
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
  25.  酸化物基準のモル%表示で、
     [MgO]+[CaO]+[SrO]+[BaO]+[ZnO]が1~2.8%である、
    請求項22に記載のガラス。
     ただし、式における[ ]は括弧内に記載された各成分の酸化物基準のモル%表示での含有量を表す。
PCT/JP2023/021632 2022-06-15 2023-06-09 化学強化用ガラス及びガラス WO2023243574A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022096854 2022-06-15
JP2022-096854 2022-06-15
JP2022-210494 2022-12-27
JP2022210494 2022-12-27

Publications (1)

Publication Number Publication Date
WO2023243574A1 true WO2023243574A1 (ja) 2023-12-21

Family

ID=89191290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021632 WO2023243574A1 (ja) 2022-06-15 2023-06-09 化学強化用ガラス及びガラス

Country Status (1)

Country Link
WO (1) WO2023243574A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126607A1 (ja) * 2016-01-21 2017-07-27 旭硝子株式会社 化学強化ガラスおよび化学強化用ガラス
US20210155528A1 (en) * 2019-11-26 2021-05-27 Corning Incorporated Aluminosilicate glasses with high fracture toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126607A1 (ja) * 2016-01-21 2017-07-27 旭硝子株式会社 化学強化ガラスおよび化学強化用ガラス
US20210155528A1 (en) * 2019-11-26 2021-05-27 Corning Incorporated Aluminosilicate glasses with high fracture toughness

Similar Documents

Publication Publication Date Title
JP7184073B2 (ja) 化学強化用ガラス
JP7136096B2 (ja) 化学強化ガラス、その製造方法および化学強化用ガラス
JP7115479B2 (ja) 結晶化ガラスおよび化学強化ガラス
KR102292273B1 (ko) 화학 강화 유리 및 화학 강화용 유리
JP7095686B2 (ja) 化学強化ガラス
WO2018199046A1 (ja) 化学強化ガラスおよび化学強化用ガラス
JP7248020B2 (ja) 化学強化用ガラス
JP7173011B2 (ja) 化学強化ガラスおよび化学強化ガラスの製造方法
JP7420152B2 (ja) 化学強化ガラス物品およびその製造方法
JP7255594B2 (ja) 化学強化ガラスおよびその製造方法
US20230060972A1 (en) Chemically strengthened glass article and manufacturing method thereof
WO2023243574A1 (ja) 化学強化用ガラス及びガラス
WO2022215575A1 (ja) 結晶化ガラスからなる化学強化ガラス及びその製造方法
WO2023149384A1 (ja) ガラス、化学強化ガラスおよびカバーガラス
WO2022215717A1 (ja) 化学強化ガラス及びその製造方法
WO2023127306A1 (ja) 結晶化ガラス及び結晶性ガラス
CN115385571B (zh) 化学强化玻璃以及化学强化用玻璃
US20230082423A1 (en) Glass, crystallized glass and chemically strengthened glass
WO2024043194A1 (ja) 強化ガラス板、強化ガラス板の製造方法及び強化用ガラス板
WO2022181812A1 (ja) 化学強化ガラスの製造方法及び化学強化ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823864

Country of ref document: EP

Kind code of ref document: A1