WO2018235630A1 - 積層体および積層体の製造方法 - Google Patents

積層体および積層体の製造方法 Download PDF

Info

Publication number
WO2018235630A1
WO2018235630A1 PCT/JP2018/021993 JP2018021993W WO2018235630A1 WO 2018235630 A1 WO2018235630 A1 WO 2018235630A1 JP 2018021993 W JP2018021993 W JP 2018021993W WO 2018235630 A1 WO2018235630 A1 WO 2018235630A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl alcohol
layer
resin
undercoat
laminate
Prior art date
Application number
PCT/JP2018/021993
Other languages
English (en)
French (fr)
Inventor
大介 濱本
咲美 石丸
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2019525380A priority Critical patent/JP6784839B2/ja
Priority to KR1020197037257A priority patent/KR102562326B1/ko
Priority to CN201880041509.7A priority patent/CN110770026B/zh
Publication of WO2018235630A1 publication Critical patent/WO2018235630A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a laminate having a polyvinyl alcohol-based resin layer.
  • Patent Document 1 There has been proposed a method of forming a polyvinyl alcohol-based resin layer on a resin base material, dyeing and stretching this laminate to obtain a polarizing film (for example, Patent Document 1). According to such a method, since a thin polarizing film can be obtained, for example, it is noted that it can contribute to thinning of the image display device.
  • the polarizing film may be used in the state of being laminated on the resin base material.
  • the polyvinyl alcohol-based resin layer does not peel from the resin substrate, the polarizing film and the resin substrate do not peel at the time of rework, processing (for example, It is required that the polarizing film or the resin substrate does not float due to impact during punching or during use.
  • Patent Document 2 In order to improve the adhesion, it has been proposed to provide an undercoat layer containing a polyvinyl alcohol-based material between the resin base and the polyvinyl alcohol-based resin layer (Patent Document 2). According to this technique, peeling from the resin base material side can be suitably suppressed, but suppression of peeling from the polyvinyl alcohol resin layer side is insufficient.
  • the present invention has been made to solve the above-mentioned problems, and the main object thereof is excellent adhesion in which both peeling from the resin substrate side and peeling from the polyvinyl alcohol resin layer side are suppressed.
  • a laminate having a resin base material, an undercoat layer and a polyvinyl alcohol resin layer in this order is provided.
  • the undercoat layer and the polyvinyl alcohol resin layer 5% by volume to 70% by volume of the undercoat layer in the undercoat layer and the polyvinyl alcohol resin layer provided in this order on the resin substrate is the polyvinyl alcohol It is formed by eluting into a system resin coating layer.
  • the undercoating layer contains two or more resin components including a polyvinyl alcohol-based component, and the blending ratio of the polyvinyl alcohol-based component in the resin component in the undercoating-coating layer is 5% to 50%.
  • the thickness of the undercoat layer is 0.2 ⁇ m to 2.0 ⁇ m.
  • the polyvinyl alcohol-based component comprises acetoacetyl-modified polyvinyl alcohol.
  • the undercoating layer contains the polyvinyl alcohol-based component and the polyolefin-based component.
  • the compounding ratio of the polyvinyl alcohol-based component to the polyolefin-based component is 5:95 to 50:50.
  • a primer coating layer is formed on one side of a resin substrate, a polyvinyl alcohol resin coating layer is formed on the surface of the primer coating layer, and 5% by volume to 70 volumes of the primer coating layer.
  • the undercoating layer contains two or more resin components including a polyvinyl alcohol-based component, and the proportion of the polyvinyl alcohol-based component in the resin component of the undercoating-coating layer is 5% to 50%.
  • the thickness of the undercoat layer is 0.2 ⁇ m to 2.0 ⁇ m.
  • the polyvinyl alcohol-based component comprises acetoacetyl-modified polyvinyl alcohol.
  • the undercoating layer contains the polyvinyl alcohol-based component and the polyolefin-based component.
  • the compounding ratio of the polyvinyl alcohol-based component to the polyolefin-based component is 5:95 to 50:50.
  • the optical laminate is a polarizing film in which the polyvinyl alcohol-based resin layer of the laminate has a dichroic substance adsorbed and oriented.
  • a method of producing an optical laminate having a resin base, an undercoat layer and a polarizing film in this order According to the method of producing an optical laminate, a laminate having a resin base material, an undercoat layer and a polyvinyl alcohol resin layer in this order is produced by the method of producing a laminate, and the polyvinyl alcohol resin layer is dyed. And stretching to form a polarizing film.
  • the undercoating layer containing the resin base material and the polyvinyl alcohol-based component and the polyvinyl alcohol-based resin coating layer are formed in this order, and the predetermined dissolution rate to the polyvinyl alcohol-based resin coating layer is partially formed.
  • the predetermined dissolution rate to the polyvinyl alcohol-based resin coating layer is partially formed.
  • the manufacturing method of a layered product provides the manufacturing method of the layered product which has a resin base material, an undercoat layer, and a polyvinyl alcohol system resin (Hereafter, a "PVA system resin” may be called) layer in this order.
  • the method for producing a laminate of the present invention is Forming a primer coating layer on one side of the resin substrate, and forming a PVA-based resin coating layer on the surface of the primer coating layer; Dissolving 5% by weight to 70% by weight of the undercoat coating layer into the PVA resin coating layer to form the undercoat coating layer and the PVA resin coating layer into an undercoat layer and a PVA resin layer, respectively; Including.
  • undercoat coating layer is typically formed by applying a composition for forming an undercoat layer on one side of a resin substrate.
  • ester resins such as polyethylene terephthalate resins, cycloolefin resins, olefin resins such as polypropylene, (meth) acrylic resins, polyamide resins, polycarbonate resins, and copolymer resins thereof can be mentioned.
  • a polyethylene terephthalate resin is used.
  • amorphous polyethylene terephthalate resin is preferably used.
  • amorphous polyethylene terephthalate resin examples include a copolymer further containing isophthalic acid as a dicarboxylic acid, and a copolymer further containing cyclohexane dimethanol as a glycol.
  • the glass transition temperature (Tg) of the resin substrate is preferably 170 ° C. or less.
  • stretchability can be sufficiently secured while suppressing crystallization of the PVA-based resin layer in the production of an optical laminate to be described later.
  • the temperature is 120 ° C. or less in consideration of the plasticization of the resin base material by water and the excellent stretching in water.
  • the glass transition temperature of the resin substrate is preferably 60 ° C. or higher.
  • stretching of the laminate can be performed at a suitable temperature (for example, about 60 ° C. to 70 ° C.).
  • a suitable temperature for example, about 60 ° C. to 70 ° C.
  • the glass transition temperature may be lower than 60 ° C. as long as the resin substrate is not deformed.
  • the glass transition temperature (Tg) is a value determined according to JIS K 7121.
  • the resin substrate preferably has a water absorption of 0.2% or more, more preferably 0.3% or more.
  • Such resin base material absorbs water, and the water acts as a plasticizer and can be plasticized.
  • the stretching stress can be significantly reduced in the in-water stretching, and the stretchability can be excellent.
  • the water absorption of the resin substrate is preferably 3.0% or less, more preferably 1.0% or less.
  • the thickness of the resin substrate is preferably 20 ⁇ m to 300 ⁇ m, and more preferably 30 ⁇ m to 200 ⁇ m.
  • a surface modification treatment for example, a corona treatment etc.
  • a corona treatment etc. may be beforehand given to the resin base material surface, and an easily bonding layer may be formed. According to such processing, the adhesion can be further improved.
  • the composition for forming the undercoat layer contains two or more resin components including a polyvinyl alcohol-based component.
  • a polyvinyl alcohol-based component Any appropriate PVA-based resin may be used as the polyvinyl alcohol-based component.
  • polyvinyl alcohol and modified polyvinyl alcohol are mentioned.
  • the modified polyvinyl alcohol include polyvinyl alcohol modified with an acetoacetyl group, a carboxylic acid group, an acrylic group and / or a urethane group.
  • acetoacetyl-modified PVA is preferably used.
  • acetoacetyl-modified PVA a polymer having at least a repeating unit represented by the following general formula (I) is preferably used.
  • the ratio of n to l + m + n is preferably 1% to 10%.
  • the average degree of polymerization of acetoacetyl-modified PVA is preferably 1000 to 10000, preferably 1200 to 5000.
  • the degree of saponification of the acetoacetyl-modified PVA is preferably 97 mol% or more.
  • the pH of a 4% by weight aqueous solution of acetoacetyl-modified PVA is preferably 3.5 to 5.5.
  • the average degree of polymerization and the degree of saponification can be determined according to JIS K 6726-1994.
  • any other appropriate resin component may be used as another resin component that can be used together with the polyvinyl alcohol-based component.
  • resin component include polyolefin-based components, polyester-based components, polyurethane-based components, polypropylene-based components, styrene butadiene-based components, vinylidene chloride-based components, vinyl chloride-based components and the like.
  • any appropriate polyolefin-based resin may be used as the polyolefin-based component.
  • the olefin component which is the main component of the polyolefin resin include olefin hydrocarbons having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 1-butene, 1-pentene and 1-hexene. These can be used alone or in combination of two or more. Among these, olefin hydrocarbons having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene are preferable, and ethylene is more preferably used.
  • the proportion of the olefin component in the monomer component constituting the polyolefin resin is preferably 50% by weight to 95% by weight.
  • the said polyolefin resin has a carboxyl group and / or its anhydride group.
  • Such polyolefin resins can be dispersed in water, and an undercoat layer can be formed well.
  • a monomer component which has such a functional group unsaturated carboxylic acid and its anhydride, the half ester of unsaturated dicarboxylic acid, a half amide are mentioned, for example. Specific examples of these include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid and crotonic acid.
  • the molecular weight of the polyolefin resin is, for example, 5,000 to 80,000.
  • polyester-based resin Any appropriate polyester-based resin may be used as the polyester-based component.
  • the copolymer formed by polycondensing a dicarboxylic acid component and a glycol component is mentioned.
  • the dicarboxylic acid component constituting the polyester resin is not particularly limited, and examples thereof include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 3-tert-butylisophthalic acid, Oxalic acid, succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, eicosan diacid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic acid, citraconic acid, citraconic anhydride Aliphatic dicarboxylic acids such as unsaturated aliphatic dicarboxylic acids such as dimer acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, tetrahydrophthalic acid and their
  • the glycol component constituting the above polyester-based resin is not particularly limited.
  • aliphatic glycols, and alicyclic glycols such as 1,4-cyclohexanedimethanol and 1,3-cyclobutanedimethanol.
  • the molecular weight of the polyester resin is, for example, 5,000 to 80,000.
  • the compounding ratio of the polyvinyl alcohol-based component to the other resin component is 5:95 to 50:50, Preferably, it is 20:80 to 50:50. If the blending ratio of the polyvinyl alcohol-based component is outside the above range, sufficient adhesion may not be obtained. Specifically, the peeling force required for peeling the PVA-based resin layer from the resin base may be reduced, and sufficient adhesion may not be obtained. On the other hand, when there is too little polyvinyl alcohol-type component, there exists a possibility that the peeling force required when peeling a resin base material from a PVA-type resin layer may fall, and sufficient adhesiveness may not be obtained.
  • the composition for forming the undercoat layer is preferably aqueous.
  • the composition for forming a primer layer may contain an organic solvent. Examples of the organic solvent include ethanol, isopropanol and the like.
  • the solid content concentration of the composition for forming an undercoat layer is preferably 1.0% by weight to 10% by weight.
  • a crosslinking agent etc.
  • the crosslinking agent include methylol compounds such as oxazoline, boric acid and trimethylolmelamine, carbodiimides, isocyanate compounds and epoxy compounds.
  • the compounding amount of the additive in the composition for forming an undercoat layer can be appropriately set depending on the purpose and the like.
  • the compounding amount of the crosslinking agent is preferably 10 parts by weight or less, more preferably 0.01 parts by weight to 10 parts by weight, and more preferably 100 parts by weight in total of the polyvinyl alcohol-based component and the other resin components. Is 0.1 to 5 parts by weight.
  • any appropriate method can be adopted as a method of applying the composition for forming the undercoat layer.
  • a roll coating method a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (a comma coating method etc.) and the like can be mentioned.
  • the composition for forming an undercoat layer is preferably applied so that the thickness (thickness after drying) of the resulting undercoat layer is 0.3 ⁇ m to 3.0 ⁇ m, preferably 0.5 ⁇ m to 2.0 ⁇ m. If the thickness of the undercoating layer is too thin, sufficient adhesion may not be obtained. On the other hand, if the thickness of the undercoating layer is too large, problems such as unevenness may occur in the coating film obtained when forming the PVA-based resin coating layer described later.
  • the coated film may be dried.
  • the drying temperature is, for example, 50 ° C. or more.
  • the PVA-based resin coating layer is typically formed by coating a coating liquid containing a PVA-based resin on the surface of the undercoat coating layer.
  • the surface of the undercoating coating layer on which the coating solution containing the PVA-based resin is applied may be subjected to surface modification treatment (for example, corona treatment etc.) in advance. According to such processing, the adhesion can be further improved.
  • the solution which dissolved PVA-type resin in the solvent is used typically.
  • Any appropriate resin may be employed as the PVA-based resin.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be mentioned.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. .
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA resin having such a degree of saponification, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected depending on the purpose.
  • the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • the solvent examples include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferred.
  • the PVA-based resin concentration of the coating solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film can be formed.
  • a plasticizer As an additive, a plasticizer, surfactant, etc. are mentioned, for example.
  • the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
  • surfactant a nonionic surfactant is mentioned, for example. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the obtained PVA-based resin layer.
  • an easily bonding component is mentioned, for example. The adhesion can be further improved by using the easy adhesion component.
  • a modified PVA such as acetoacetyl-modified PVA is used as the easy adhesion component.
  • the same method as the method of applying the composition for forming the undercoat layer may be employed.
  • the coating may be dried. Drying may be room temperature (about 25 ° C.) drying or heat drying (eg, 50 ° C. or more).
  • Elution of undercoat coating layer to PVA resin coated layer is the affinity between the polyvinyl alcohol component in the undercoat coated layer and the PVA resin in the PVA resin coated layer.
  • formation of the PVA-based resin coating layer may occur spontaneously.
  • the elution may decrease or end in response to a decrease in driving force caused by a concentration gradient or the like of the polyvinyl alcohol-based component.
  • the decrease in thickness of the undercoating layer caused by the elution stops and it is considered that the elution is completed when the thickness reaches a certain level, and the undercoating layer and the PVA resin coated layer thereafter are each treated as It is called an undercoat layer and a PVA-based resin layer.
  • 5% by volume to 70% by volume, preferably 8% by volume to 50% by volume, and more preferably 10% by volume to 40% by volume of the undercoating layer is eluted into the PVA-based resin coating layer.
  • the dissolution rate can be increased, for example, by increasing the blending ratio of the polyvinyl alcohol-based component in the composition for forming the undercoat layer.
  • the temperature environment for elution is not particularly limited, and may be, for example, a temperature environment of 20 ° C. to 100 ° C., preferably 30 ° C. to 80 ° C., more preferably 40 ° C. to 70 ° C.
  • the time required for the elution may be, for example, about 10 minutes immediately after the application.
  • the elution treatment may also serve as drying treatment of the coating film when forming the PVA-based resin coating layer.
  • the thickness of the undercoat layer formed through the above elution is preferably 0.2 ⁇ m to 2.0 ⁇ m, more preferably 0.3 ⁇ m to 1.8 ⁇ m.
  • the thickness of the PVA-based resin layer is typically 3 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m.
  • the present invention also provides a laminate having a resin substrate, an undercoat layer and a polyvinyl alcohol resin layer in this order.
  • the undercoat layer and the polyvinyl alcohol resin layer are 5 vol% to 70 vol% of the undercoat layer in the undercoat coating layer and the polyvinyl alcohol resin coating layer provided in this order on the resin substrate.
  • the PVA-based resin layer of the laminate may include an elution component derived from the undercoat coating layer, and the undercoat layer may be formed by the residue obtained by removing the elution component from the undercoat coating layer. .
  • the undercoating layer contains two or more resin components including a polyvinyl alcohol-based component, and the proportion of the polyvinyl alcohol-based component in the resin component of the undercoating-coating layer is 5% to 50%.
  • the laminate of the present invention can typically be produced by the production method described in the above section A. Therefore, the forming material and the forming method of each layer can be as described in the section A.
  • the present invention also provides a method of producing an optical laminate having a resin substrate, an undercoat layer, and a polarizing film in this order.
  • the method for producing an optical laminate according to the present invention comprises producing a laminate having a resin substrate, an undercoat layer, and a PVA-based resin layer in this order according to the method for producing a laminate described in A, and the PVA system.
  • Dyeing and stretching the resin layer to form a polarizing film may be appropriately treated to make the PVA-based resin layer a polarizing film.
  • the treatment for forming a polarizing film include insolubilization treatment, crosslinking treatment, washing treatment, and drying treatment. The number, order, and the like of these processes are not particularly limited.
  • the dyeing process is typically performed by dyeing a PVA-based resin layer with a dichroic substance. Preferably, it is carried out by adsorbing a dichroic substance to the PVA-based resin layer.
  • adsorption method for example, a method of immersing a PVA-based resin layer (laminate) in a staining solution containing a dichroic substance, a method of applying the staining solution to a PVA-based resin layer, a PVA-based staining solution The method etc. of spraying to a resin layer are mentioned.
  • it is a method of immersing a PVA-based resin layer in a staining solution. It is because a dichroic substance can be adsorbed well.
  • the dichroic substance examples include iodine and organic dyes. These can be used alone or in combination of two or more.
  • the dichroic substance is preferably iodine.
  • the staining solution is preferably an aqueous iodine solution.
  • the compounding amount of iodine is preferably 0.1 parts by weight to 0.5 parts by weight with respect to 100 parts by weight of water. In order to enhance the solubility of iodine in water, it is preferable to add an iodide to an aqueous iodine solution.
  • Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide and titanium iodide. Etc. Among these, preferred is potassium iodide.
  • the amount of iodide is preferably 0.02 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, per 100 parts by weight of water.
  • the liquid temperature at the time of dyeing of the staining solution is preferably 20 ° C. to 50 ° C. in order to suppress the dissolution of the PVA-based resin.
  • the immersion time is preferably 5 seconds to 5 minutes in order to secure the transmittance of the PVA-based resin layer.
  • the dyeing conditions can be set such that the degree of polarization or single transmittance of the finally obtained polarizing film falls within a predetermined range.
  • the immersion time is set such that the polarization degree of the obtained polarizing film is 99.98% or more.
  • the immersion time is set so that the single transmittance of the obtained polarizing film is 40% to 44%.
  • Stretching process Any appropriate method can be adopted as a method of stretching the laminate. Specifically, fixed end stretching (for example, a method using a tenter stretching machine) may be used, or free end stretching (for example, a method for uniaxially stretching a laminate between rolls having different peripheral speeds) may be used. Moreover, simultaneous biaxial stretching (for example, a method using a simultaneous biaxial stretching machine) may be used, or sequential biaxial stretching may be used. Stretching of the laminate may be performed in one step or in multiple steps. When it carries out in multiple steps, the draw ratio (maximum draw ratio) of the below-mentioned layered product is the product of the draw ratio of each step.
  • fixed end stretching for example, a method using a tenter stretching machine
  • free end stretching for example, a method for uniaxially stretching a laminate between rolls having different peripheral speeds
  • simultaneous biaxial stretching for example, a method using a simultaneous biaxial stretching machine
  • sequential biaxial stretching may be used. Stretching of the laminate may be performed in one step or in
  • the stretching treatment may be an underwater stretching method performed while immersing the laminate in a stretching bath, or may be an air stretching method.
  • the in-water stretching process is performed at least once, and preferably, the in-water stretching process and the in-flight stretching process are combined.
  • stretching can be performed at a temperature lower than the glass transition temperature (typically, about 80 ° C.) of the above-mentioned resin base material or PVA-based resin layer, and the PVA-based resin layer is suppressed while suppressing its crystallization. , Can be stretched to a high magnification. As a result, a polarizing film having excellent polarization characteristics can be manufactured.
  • any appropriate direction can be selected as the stretching direction of the laminate. In one embodiment, it is stretched in the longitudinal direction of the elongated laminate. Specifically, the laminate is conveyed in the longitudinal direction, which is the conveyance direction (MD). In another embodiment, the laminate is stretched in the width direction of the long laminate. Specifically, the laminate is conveyed in the longitudinal direction, which is a direction (TD) orthogonal to the conveyance direction (MD).
  • MD conveyance direction
  • MD conveyance direction
  • MD conveyance direction
  • TD direction orthogonal to the conveyance direction
  • the stretching temperature of the laminate can be set to any appropriate value depending on the forming material of the resin base, the stretching method, and the like.
  • the stretching temperature is preferably at least the glass transition temperature (Tg) of the resin substrate, more preferably at the glass transition temperature (Tg) of the resin substrate + 10 ° C. or more, particularly preferably Tg + 15 ° C. It is above.
  • the stretching temperature of the laminate is preferably 170 ° C. or less.
  • the liquid temperature of the stretching bath is preferably 40 ° C. to 85 ° C., more preferably 50 ° C. to 85 ° C. If it is such temperature, it can extend
  • the glass transition temperature (Tg) of the resin substrate is preferably 60 ° C. or more in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is less than 40 ° C., there is a possibility that the film can not be stretched well even in consideration of the plasticization of the resin base material by water.
  • the higher the temperature of the stretching bath the higher the solubility of the PVA-based resin layer, which may make it impossible to obtain excellent polarization characteristics.
  • the in-water stretching method it is preferable to immerse the laminate in a boric acid aqueous solution and stretch it (stretching in boric acid water).
  • a boric acid aqueous solution as a stretching bath, the PVA resin layer can be provided with rigidity to withstand the tension applied during stretching and water resistance which is not dissolved in water.
  • boric acid can form a tetrahydroxyborate anion in an aqueous solution and crosslink it with a PVA resin by hydrogen bonding.
  • rigidity and water resistance can be imparted to the PVA-based resin layer, the film can be stretched satisfactorily, and a polarizing film having excellent polarization characteristics can be produced.
  • the aqueous boric acid solution is preferably obtained by dissolving boric acid and / or a borate in water which is a solvent.
  • the boric acid concentration is preferably 1 part by weight to 10 parts by weight with respect to 100 parts by weight of water. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing film with higher characteristics can be produced.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
  • iodide is blended in the above-mentioned stretching bath (boric acid aqueous solution).
  • a stretching bath boric acid aqueous solution
  • concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
  • the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
  • the in-water stretching treatment is performed after the dyeing treatment.
  • the draw ratio (maximum draw ratio) of the laminate is preferably 4.0 times or more, more preferably 5.0 times or more with respect to the original length of the laminate.
  • a high draw ratio can be achieved, for example, by adopting an in-water stretching method (stretching in boric acid in water).
  • "the largest draw ratio” means the draw ratio immediately before the laminate breaks, separately confirms the draw ratio at which the laminate breaks, and means a value 0.2 lower than that value. .
  • the insolubilization treatment is typically performed by immersing the PVA-based resin layer in a boric acid aqueous solution.
  • a boric acid aqueous solution water resistance can be imparted to the PVA-based resin layer by performing insolubilization treatment.
  • the concentration of the aqueous boric acid solution is preferably 1 part by weight to 4 parts by weight with respect to 100 parts by weight of water.
  • the liquid temperature of the insolubilization bath (boric acid aqueous solution) is preferably 20 ° C to 40 ° C.
  • the insolubilization treatment is performed after the preparation of the laminate and before the dyeing treatment or the in-water stretching treatment.
  • Crosslinking treatment The above crosslinking treatment is typically performed by immersing the PVA-based resin layer in a boric acid aqueous solution. Water resistance can be given to a PVA-type resin layer by giving a crosslinking process.
  • the concentration of the aqueous boric acid solution is preferably 1 part by weight to 4 parts by weight with respect to 100 parts by weight of water.
  • blend iodide it is preferable to mix
  • the compounding amount of iodide is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of iodide are as described above.
  • the liquid temperature of the crosslinking bath is preferably 20 ° C to 50 ° C.
  • the crosslinking treatment is carried out before the in-water stretching treatment. In a preferred embodiment, the dyeing process, the crosslinking process and the in-water stretching process are performed in this order.
  • the washing treatment is typically performed by immersing the PVA-based resin layer in a potassium iodide aqueous solution.
  • the drying temperature in the drying process is preferably 30 ° C. to 100 ° C.
  • the present invention also provides an optical laminate having a resin substrate, an undercoat layer, and a polarizing film in this order.
  • the optical laminate of the present invention may be one in which the polyvinyl alcohol-based resin layer of the laminate described in the item A is a polarizing film in which a dichroic substance is adsorbed and oriented.
  • the thickness of the polarizing film is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, still more preferably 7 ⁇ m or less, particularly preferably 6 ⁇ m or less.
  • the thickness of the polarizing film is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more.
  • the polarizing film is substantially the above PVA-based resin layer in which a dichroic substance is adsorbed and oriented, and preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizing film (PVA-based resin layer) is preferably 40.0% or more, more preferably 41.0% or more, still more preferably 42.0% or more, particularly preferably 43.0% It is above.
  • the polarization degree of the polarizing film (PVA-based resin layer) is preferably 99.8% or more, more preferably 99.9% or more, and still more preferably 99.95% or more.
  • optical laminate of the present invention can be typically produced by the method for producing an optical laminate described in the section C.
  • the resin substrate can be used as an optical member as it is without peeling it from the polarizing film.
  • the resin substrate can function as, for example, a protective film of a polarizing film.
  • the optical functional film may be laminated on the polarizing film of the optical laminate through any appropriate adhesive layer, and then the resin substrate may be peeled off.
  • the said optical function film can function as a polarizing film protective film, retardation film, etc., for example.
  • Example 1 As a resin substrate, a long, amorphous, isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 ⁇ m) having a water absorption coefficient of 0.75% and a Tg of 75 ° C. was used.
  • IPA copolymerized PET polyethylene terephthalate
  • Corona treatment is applied to one side of the resin substrate, and acetoacetylated PVA (trade name "Gosefimer Z 200", manufactured by Nippon Gohsei Chemical Co., Ltd., degree of polymerization 1200, degree of saponification 99.0 mol on this corona-treated side %
  • acetoacetylated PVA trade name "Gosefimer Z 200", manufactured by Nippon Gohsei Chemical Co., Ltd., degree of polymerization 1200, degree of saponification 99.0 mol on this corona-treated side %
  • Aqueous solution of acetoacetyl modification degree of 4.6%), a modified polyolefin resin aqueous dispersion Unitika Co., Ltd., trade name "Arrobase SE1030N", solid content concentration 22%) and pure water were mixed
  • the mixed solution solid content concentration: 4.0%) was applied so that the thickness after drying was 2000 nm, and dried at 60 ° C. for 3 minutes to
  • the solid content blending ratio of acetoacetyl-modified PVA and modified polyolefin in the mixed solution was 30:70.
  • the surface of the undercoat coating layer is subjected to corona treatment, and on this corona-treated surface, polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl modified PVA (polymerization degree 1200, acetoacetyl modification degree 4 Aqueous solution containing 6%, degree of saponification of 99.0 mol% or more, manufactured by Japan Synthetic Chemical Industry Co., Ltd., trade name “Gosefimer Z200” in a ratio of 9: 1, and dried at 25 ° C.
  • the obtained laminate was subjected to free-end uniaxial stretching 2.0 times in the longitudinal direction (longitudinal direction) between rolls with different circumferential speeds in an oven at 120 ° C. (air-assisted extension). Then, the laminate was immersed in an insolubilizing bath (aqueous solution of boric acid obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment). Subsequently, it was immersed in a dyeing bath at a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the obtained polarizing film had a predetermined transmittance.
  • insolubilizing bath aqueous solution of boric acid obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water
  • iodine 0.2 parts by weight was mixed with 100 parts by weight of water, and it was immersed in an aqueous iodine solution obtained by mixing 1.0 parts by weight of potassium iodide for 60 seconds (staining treatment) . Then, it was immersed in a 30 ° C. crosslinking bath (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 100 parts by weight of water and 3 parts by weight of boric acid) for 30 seconds. (Crosslinking treatment). Thereafter, the laminate is immersed in a boric acid aqueous solution having a liquid temperature of 70 ° C.
  • Example 2 An optical laminate was obtained in the same manner as in Example 1 except that the above-mentioned mixed solution was applied so that the thickness after drying was 1000 nm.
  • Example 3 An optical laminate was obtained in the same manner as in Example 1 except that the above-mentioned mixed solution was applied so as to give a dried thickness of 500 nm.
  • Example 4 An optical laminate was obtained in the same manner as in Example 1 except that the solid content blending ratio of acetoacetyl-modified PVA and modified polyolefin in the mixed solution was 50:50.
  • Example 5 In the formation of the undercoating layer, a 4.0% aqueous solution of acetoacetyl modified PVA (Gausefamer Z200) and an aqueous dispersion of modified polyolefin resin (trade name "Arrow Base SD 1030 N” manufactured by Unitika, solid concentration 22%) An optical laminate was obtained in the same manner as in Example 1 except that a mixed solution (solid content concentration: 4.0%) obtained by mixing pure water was used.
  • Example 6 In the formation of the undercoating layer, a 4.0% aqueous solution of acetoacetyl modified PVA (Gausefamer Z200) and an aqueous dispersion of a modified polyolefin resin (trade name "Arrow base SE1035NJ2" manufactured by Unitika, solid concentration 22%) An optical laminate was obtained in the same manner as in Example 4 except that a mixed solution (solid content concentration: 4.0%) in which pure water was mixed was used.
  • Example 7 When forming the undercoat coating layer, acetoacetyl-modified PVA (trade name "Gosefimer Z410", manufactured by Japan Synthetic Chemical Engineering Co., Ltd., degree of polymerization 2200, degree of saponification 97.5 to 98.5%, degree of acetoacetyl modification4. 6% aqueous solution, a modified polyolefin resin aqueous dispersion (product name: "Arrow Base SE 1030 N", trade name “Arobase SE 1030 N", 22% solid content concentration, made by Unitika Co., Ltd.), and a mixed solution (solid content concentration 4. An optical laminate was obtained in the same manner as in Example 1 except that 0% was used.
  • Example 8 In the same manner as in Example 1 except that the draw ratio of airborne auxiliary drawing was 4.0 times and insolubilization treatment and in-water drawing were not performed, a 6 ⁇ m thick layer was formed on one side of a 37 ⁇ m thick resin substrate through an undercoat layer. The optical laminated body in which the polarizing film was formed was obtained.
  • Example 9 An example except that a mixed solution of 10 g of a 4.0% aqueous solution of acetoacetyl-modified PVA (Gausefamer Z200) and 62.5 g of a polyester aqueous emulsion resin (Elitel KT0507E6) was used in forming the undercoating layer.
  • An optical laminate was obtained in the same manner as in 1.
  • the solid content blending ratio of acetoacetyl-modified PVA and polyester in the mixed solution was 50:50.
  • Comparative Example 1 An optical laminate was obtained in the same manner as in Example 1 except that the PVA-based resin coating layer (PVA-based resin layer) was directly formed on the resin substrate without forming the undercoat coating layer.
  • PVA-based resin layer PVA-based resin layer
  • Comparative Example 2 An optical laminate was obtained in the same manner as in Example 3, except that a 4.0% aqueous solution of acetoacetyl-modified PVA (Gausefamer Z200) was used to form the undercoat coating layer.
  • acetoacetyl-modified PVA Gausefamer Z200
  • Comparative Example 3 An optical laminate was obtained in the same manner as in Example 2 except that a 4.0% aqueous solution of acetoacetyl-modified PVA (Gausefamer Z200) was used to form the undercoat coating layer.
  • acetoacetyl-modified PVA Gausefamer Z200
  • Comparative Example 4 An optical laminate was obtained in the same manner as in Example 1 except that a 4.0% aqueous solution of acetoacetyl-modified PVA (Gausefamer Z200) was used to form the undercoat coating layer.
  • acetoacetyl-modified PVA Gausefamer Z200
  • Comparative Example 5 In forming the undercoating layer, it was carried out except that a 4.0% aqueous solution of acetoacetyl-modified PVA (Gausefamer Z 200) was used, and that this mixture was applied to a thickness of 1000 nm after drying. An optical laminate was obtained in the same manner as Example 8.
  • Comparative Example 6 An optical laminate was obtained in the same manner as in Example 3, except that a polyester aqueous emulsion resin (trade name "Elitel KT0507E6” manufactured by Unitika, Inc.) was used in forming the undercoating layer.
  • a polyester aqueous emulsion resin trade name "Elitel KT0507E6” manufactured by Unitika, Inc.
  • Comparative Example 7 An optical laminate was obtained in the same manner as in Example 2 except that a polyester aqueous emulsion resin (trade name "Elitel KT0507E6” manufactured by Unitika, Inc.) was used when forming the undercoat coating layer.
  • a polyester aqueous emulsion resin trade name "Elitel KT0507E6” manufactured by Unitika, Inc.
  • a slit is made between the polarizing film of this measurement sample and the resin substrate with a cutter knife, and the polarizing film and the polyimide tape for reinforcement are raised at an angle of 90 ° to the resin substrate surface, and peeled off.
  • the force (N / 15 mm) required for peeling at a speed of 3000 mm / min was measured using an angle-type adhesive / film peeling analysis apparatus “VPA-2” (manufactured by Kyowa Interface Chemical Co., Ltd.). (Base material peeling force)
  • a pressure-sensitive adhesive was applied to the polarizing plate surface side of the obtained optical laminated body and attached to a glass plate, and a measurement sample was produced.
  • the optical laminate of the example has a PVA peeling force and a substrate peeling force of 0.6 N or more, and is excellent in adhesion.
  • the optical laminates of Examples 1 to 7 and 9 maintain sufficient adhesion even if they are drawn in water.
  • Comparative Example 1 in which no undercoat layer is formed and Comparative Examples 2 to 5 in which the undercoat coating layer contains only a polyvinyl alcohol-based component provides sufficient adhesion to peeling from the PVA-based resin layer (polarizing film) side. I can not.
  • Comparative Examples 6 and 7 in which the undercoat coating layer does not contain a polyvinyl alcohol-based component sufficient adhesion can not be obtained for peeling from the resin base material side.
  • FIG. 1 (a) The result of SEM observation (6500 times) of the cross section of the undercoating coated layer (cross section of the laminate of [resin base material / undercoating applied layer]) is shown in FIG. 1 (a).
  • FIG. 1 (b) The result of SEM observation (6500 times) of the section of a layered product of layer / PVA resin layer] is shown in Drawing 1 (b).
  • an undercoat layer having a thickness of 0.6 ⁇ m is obtained by eluting a polyvinyl alcohol-based component or the like from the undercoat layer formed to a thickness of 1.7 ⁇ m. Been formed.
  • the laminate of the present invention is suitably used, for example, in an image display device.
  • LCD TVs liquid crystal displays
  • mobile phones digital cameras
  • video cameras portable game machines
  • car navigation systems copy machines
  • printers printers
  • fax machines liquid crystal panels
  • liquid crystal panels such as watches, microwaves, etc.
  • antireflection plates for organic EL devices It is suitably used as an etc.

Abstract

本発明は、樹脂基材側からの剥離およびポリビニルアルコール系樹脂層側からの剥離の両方が抑制された、優れた密着性を有する積層体を提供する。 本発明の積層体は、樹脂基材と下塗り層とポリビニルアルコール系樹脂層とをこの順に有する積層体であって、該下塗り層および該ポリビニルアルコール系樹脂層は、該樹脂基材上にこの順に設けられた下塗り塗布層およびポリビニルアルコール系樹脂塗布層において該下塗り塗布層の5体積%~70体積%が該ポリビニルアルコール系樹脂塗布層に溶出することによって形成されたものであり、該下塗り塗布層が、ポリビニルアルコール系成分を含む2種以上の樹脂成分を含み、該下塗り塗布層の樹脂成分における該ポリビニルアルコール系成分の配合割合が、5%~50%である。

Description

積層体および積層体の製造方法
 本発明は、ポリビニルアルコール系樹脂層を有する積層体に関する。
 樹脂基材上にポリビニルアルコール系樹脂層を形成し、この積層体を染色および延伸することにより偏光膜を得る方法が提案されている(例えば、特許文献1)。このような方法によれば、厚みの薄い偏光膜が得られるため、例えば、画像表示装置の薄型化に寄与し得るとして注目されている。
 上記偏光膜は、上記樹脂基材に積層された状態のままで用いられ得る。このような実施形態においては、ポリビニルアルコール系樹脂層(偏光膜)と樹脂基材とが十分な密着性を有することが求められる。具体的には、偏光膜の製造において(例えば、延伸、搬送において)ポリビニルアルコール系樹脂層が樹脂基材から剥離しないこと、リワーク時に偏光膜と樹脂基材とが剥離しないこと、加工(例えば、打ち抜き)時や使用中の衝撃に対して偏光膜または樹脂基材の浮きが発生しないこと等が求められる。
 上記密着性を向上させるため、樹脂基材とポリビニルアルコール系樹脂層との間にポリビニルアルコール系材料を含む下塗り層を設けることが提案されている(特許文献2)。該技術によれば、樹脂基材側からの剥離は好適に抑制され得るが、ポリビニルアルコール系樹脂層側からの剥離の抑制は不十分である。
特開2000-338329号公報 特許第4950357号
 本発明は、上記問題を解決するためになされたものであり、その主たる目的は、樹脂基材側からの剥離およびポリビニルアルコール系樹脂層側からの剥離の両方が抑制された、優れた密着性を有する積層体を提供することにある。
 本発明によれば、樹脂基材と下塗り層とポリビニルアルコール系樹脂層とをこの順に有する積層体が提供される。該下塗り層および該ポリビニルアルコール系樹脂層は、該樹脂基材上にこの順に設けられた下塗り塗布層およびポリビニルアルコール系樹脂塗布層において該下塗り塗布層の5体積%~70体積%が該ポリビニルアルコール系樹脂塗布層に溶出することによって形成されたものである。また、該下塗り塗布層が、ポリビニルアルコール系成分を含む2種以上の樹脂成分を含み、該下塗り塗布層中の樹脂成分における該ポリビニルアルコール系成分の配合割合が、5%~50%である。
 1つの実施形態において、上記下塗り層の厚みが、0.2μm~2.0μmである。
 1つの実施形態において、上記ポリビニルアルコール系成分が、アセトアセチル変性ポリビニルアルコールを含む。
 1つの実施形態において、上記下塗り塗布層が、上記ポリビニルアルコール系成分とポリオレフィン系成分とを含む。
 1つの実施形態において、上記ポリビニルアルコール系成分と上記ポリオレフィン系成分との配合比(ポリビニルアルコール系成分:ポリオレフィン系成分)が、5:95~50:50である。
 本発明の別の局面によれば、樹脂基材と下塗り層とポリビニルアルコール系樹脂層とをこの順に有する積層体の製造方法が提供される。該積層体の製造方法は、樹脂基材の片側に下塗り塗布層を形成し、該下塗り塗布層表面にポリビニルアルコール系樹脂塗布層を形成することと、該下塗り塗布層の5体積%~70体積%を該ポリビニルアルコール系樹脂塗布層へ溶出させて、該下塗り塗布層および該ポリビニルアルコール系樹脂塗布層をそれぞれ下塗り層およびポリビニルアルコール系樹脂層にすることと、を含む。該下塗り塗布層は、ポリビニルアルコール系成分を含む2種以上の樹脂成分を含み、該下塗り塗布層の樹脂成分における該ポリビニルアルコール系成分の配合割合が、5%~50%である。
 1つの実施形態において、上記下塗り層の厚みが、0.2μm~2.0μmである。
 1つの実施形態において、上記ポリビニルアルコール系成分が、アセトアセチル変性ポリビニルアルコールを含む。
 1つの実施形態において、上記下塗り塗布層が、上記ポリビニルアルコール系成分とポリオレフィン系成分とを含む。
 1つの実施形態において、上記ポリビニルアルコール系成分と上記ポリオレフィン系成分との配合比(ポリビニルアルコール系成分:ポリオレフィン系成分)が、5:95~50:50である。
 本発明のさらに別の局面によれば、樹脂基材と下塗り層と偏光膜とをこの順に有する光学積層体が提供される。該光学積層体は、上記積層体のポリビニルアルコール系樹脂層が、二色性物質が吸着配向した偏光膜である。
 本発明のさらに別の局面によれば、樹脂基材と下塗り層と偏光膜とをこの順に有する光学積層体の製造方法が提供される。該光学積層体の製造方法は、上記積層体の製造方法によって、樹脂基材と下塗り層とポリビニルアルコール系樹脂層とをこの順に有する積層体を作製することと、該ポリビニルアルコール系樹脂層を染色および延伸して偏光膜にすることと、を含む。
 本発明によれば、樹脂基材とポリビニルアルコール系成分を含む下塗り塗布層とポリビニルアルコール系樹脂塗布層とをこの順に形成し、下塗り塗布層の一部ポリビニルアルコール系樹脂塗布層へ所定の溶出率で溶出させることにより、優れた密着性を有する積層体を得ることができる。
参考例の積層体の製造における下塗り塗布層断面(a)および下塗り層断面(b)のSEM観察写真である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.積層体の製造方法
 本発明は、樹脂基材と下塗り層とポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する場合がある)層とをこの順に有する積層体の製造方法を提供する。本発明の積層体の製造方法は、
 樹脂基材の片側に下塗り塗布層を形成し、該下塗り塗布層表面にPVA系樹脂塗布層を形成することと、
 該下塗り塗布層の5重量%~70重量%を該PVA系樹脂塗布層へ溶出させて、該下塗り塗布層および該PVA系樹脂塗布層をそれぞれ下塗り層およびPVA系樹脂層にすることと、を含む。
A-1.下塗り塗布層の形成
 下塗り塗布層は、代表的には、樹脂基材の片側に下塗り層形成用組成物を塗布することによって形成される。
 上記樹脂基材の構成材料としては、任意の適切な材料が採用され得る。例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、シクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、(メタ)アクリル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂が挙げられる。好ましくは、ポリエチレンテレフタレート系樹脂が用いられる。中でも、非晶質のポリエチレンテレフタレート系樹脂が好ましく用いられる。非晶質のポリエチレンテレフタレート系樹脂の具体例としては、ジカルボン酸としてイソフタル酸をさらに含む共重合体や、グリコールとしてシクロヘキサンジメタノールをさらに含む共重合体が挙げられる。
 樹脂基材のガラス転移温度(Tg)は、好ましくは170℃以下である。このような樹脂基材を用いることにより、後述の光学積層体の製造においてPVA系樹脂層の結晶化を抑制しながら、延伸性を十分に確保することができる。水による樹脂基材の可塑化と、水中延伸を良好に行うことを考慮すると、120℃以下であることがさらに好ましい。1つの実施形態においては、樹脂基材のガラス転移温度は、好ましくは60℃以上である。このような樹脂基材を用いることにより、後述のPVA系樹脂を含む塗布液を塗布・乾燥する際に、樹脂基材が変形(例えば、凹凸やタルミ、シワ等の発生)する等の不具合を防止することができる。また、積層体の延伸を、好適な温度(例えば、60℃~70℃程度)にて行うことができる。別の実施形態においては、PVA系樹脂を含む塗布液を塗布・乾燥する際に、樹脂基材が変形しなければ、60℃より低いガラス転移温度であってもよい。なお、ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。
 1つの実施形態においては、樹脂基材は、吸水率が0.2%以上であることが好ましく、さらに好ましくは0.3%以上である。このような樹脂基材は水を吸収し、水が可塑剤的な働きをして可塑化し得る。その結果、水中延伸において延伸応力を大幅に低下させることができ、延伸性に優れ得る。一方、樹脂基材の吸水率は、好ましくは3.0%以下、さらに好ましくは1.0%以下である。このような樹脂基材を用いることにより、光学積層体の製造時に樹脂基材の寸法安定性が著しく低下して、得られる光学積層体の外観が悪化するなどの不具合を防止することができる。また、水中延伸時に破断したり、樹脂基材からPVA系樹脂層が剥離したりするのを防止することができる。なお、吸水率は、JIS K 7209に準じて求められる値である。
 樹脂基材の厚みは、好ましくは20μm~300μm、さらに好ましくは30μm~200μmである。
 樹脂基材表面には、予め、表面改質処理(例えば、コロナ処理等)が施されていてもよいし、易接着層が形成されていてもよい。このような処理によれば、密着性をさらに向上させ得る。
 上記下塗り層形成用組成物は、ポリビニルアルコール系成分を含む2つ以上の樹脂成分を含む。該ポリビニルアルコール系成分としては、任意の適切なPVA系樹脂が用いられ得る。具体的には、ポリビニルアルコール、変性ポリビニルアルコールが挙げられる。変性ポリビニルアルコールとしては、例えば、アセトアセチル基、カルボン酸基、アクリル基および/またはウレタン基で変性されたポリビニルアルコールが挙げられる。これらの中でも、アセトアセチル変性PVAが好ましく用いられる。アセトアセチル変性PVAとしては、下記一般式(I)で表わされる繰り返し単位を少なくとも有する重合体が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(I)において、l+m+nに対するnの割合は、好ましくは1%~10%である。
 アセトアセチル変性PVAの平均重合度は、好ましくは1000~10000であり、好ましくは1200~5000である。アセトアセチル変性PVAのケン化度は、好ましくは97モル%以上である。アセトアセチル変性PVAの4重量%水溶液のpHは、好ましくは3.5~5.5である。なお、平均重合度およびケン化度は、JIS K 6726-1994に準じて求めることができる。
 上記ポリビニルアルコール系成分とともに用いられ得る他の樹脂成分としては、任意の適切な樹脂成分が用いられ得る。具体例としては、ポリオレフィン系成分、ポリエステル系成分、ポリウレタン系成分、ポリプロピレン系成分、スチレンブタジエン系成分、塩化ビニリデン系成分、塩化ビニル系成分等が挙げられる。上記他の樹脂成分をポリビニルアルコール系成分と組み合わせて用いることにより、優れた密着性を有する積層体を得ることができる。また、ポリオレフィン系成分を用いる場合、密着性の向上に加えて、外観の向上効果も得られ得る。
 上記ポリオレフィン系成分としては、任意の適切なポリオレフィン系樹脂が用いられ得る。ポリオレフィン系樹脂の主成分であるオレフィン成分としては、例えば、エチレン、プロピレン、イソブチレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素数2~6のオレフィン系炭化水素が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、エチレン、プロピレン、イソブチレン、1-ブテン等の炭素数2~4のオレフィン系炭化水素が好ましく、さらに好ましくはエチレンが用いられる。
 上記ポリオレフィン系樹脂を構成するモノマー成分のうち、オレフィン成分の占める割合は、好ましくは50重量%~95重量%である。
 上記ポリオレフィン系樹脂は、カルボキシル基および/またはその無水物基を有することが好ましい。このようなポリオレフィン系樹脂は水に分散し得、下塗り層が良好に形成され得る。このような官能基を有するモノマー成分としては、例えば、不飽和カルボン酸およびその無水物、不飽和ジカルボン酸のハーフエステル、ハーフアミドが挙げられる。これらの具体例としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸が挙げられる。
 ポリオレフィン系樹脂の分子量は、例えば5000~80000である。
 上記ポリエステル系成分としては、任意の適切なポリエステル系樹脂が用いられ得る。上記ポリエステル系樹脂の具体例としては、ジカルボン酸成分とグリコール成分とが重縮合してなる共重合体が挙げられる。
 上記ポリエステル系樹脂を構成するジカルボン酸成分としては、特に限定はされず、例えば、テレフタル酸、イソフタル酸、フタル酸、無水フタル酸、2,6-ナフタレンジカルボン酸、3-tert-ブチルイソフタル酸、シュウ酸、コハク酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、アイコサン二酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ダイマー酸等の不飽和脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、テトラヒドロフタル酸およびその無水物等の脂環式ジカルボン酸が挙げられる。
 上記ポリエステル系樹脂を構成するグリコール成分としては、特に限定はされず、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール等の脂肪族グリコール、1,4-シクロヘキサンジメタノール、1,3-シクロブタンジメタノール等の脂環族グリコールが挙げられる。 
 ポリエステル樹脂の分子量は、例えば5000~80000である。
 上記下塗り層形成用組成物において、ポリビニルアルコール系成分と他の樹脂成分との配合比(ポリビニルアルコール系成分:他の樹脂成分、固形分重量比)は、5:95~50:50であり、好ましくは20:80~50:50である。ポリビニルアルコール系成分の配合比が上記範囲外であると、十分な密着性が得られないおそれがある。具体的には、PVA系樹脂層を樹脂基材から剥離する際に要する剥離力が低下して、十分な密着性が得られないおそれがある。一方、ポリビニルアルコール系成分が少なすぎると、樹脂基材をPVA系樹脂層から剥離する際に要する剥離力が低下して、十分な密着性が得られないおそれがある。
 下塗り層形成用組成物は、好ましくは水系である。下塗り層形成用組成物は、有機溶剤を含み得る。有機溶剤としては、例えば、エタノール、イソプロパノール等が挙げられる。下塗り層形成用組成物の固形分濃度は、好ましくは1.0重量%~10重量%である。
 下塗り層形成用組成物に添加剤を配合してもよい。添加剤としては、例えば、架橋剤等が挙げられる。架橋剤としては、例えば、オキサゾリン、ホウ酸、トリメチロールメラミン等のメチロール化合物、カルボジイミド、イソシアネート化合物、エポキシ化合物等が挙げられる。下塗り層形成用組成物における添加物の配合量は、目的等に応じて適切に設定され得る。例えば、架橋剤の配合量は、ポリビニルアルコール系成分と他の樹脂成分との合計100重量部に対して、好ましくは10重量部以下、より好ましくは0.01重量部~10重量部、さらに好ましくは0.1重量部~5重量部である。
 下塗り層形成用組成物の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。
 下塗り層形成用組成物は、得られる下塗り塗布層の厚み(乾燥後の厚み)が0.3μm~3.0μm、好ましくは0.5μm~2.0μmとなるように塗布することが好ましい。下塗り塗布層の厚みが薄すぎると、十分な密着性が得られないおそれがある。一方、下塗り塗布層の厚みが厚すぎると、後述のPVA系樹脂塗布層の形成の際に得られる塗布膜にムラが生じる等の不具合が発生するおそれがある。
 下塗り層形成用組成物の塗布後、塗布膜は乾燥され得る。乾燥温度は、例えば50℃以上である。
A-2.PVA系樹脂塗布層の形成
 上記PVA系樹脂塗布層は、代表的には、上記下塗り塗布層表面にPVA系樹脂を含む塗布液を塗布することによって形成される。該PVA系樹脂を含む塗布液を塗布する下塗り塗布層表面は、予め、表面改質処理(例えば、コロナ処理等)が施されていてもよい。このような処理によれば、密着性をさらに向上させ得る。
 上記PVA系樹脂を含む塗布液としては、代表的には、PVA系樹脂を溶媒に溶解させた溶液が用いられる。PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光膜が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。
 PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。
 上記溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。塗布液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、均一な塗布膜を形成することができる。
 塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。また、添加剤としては、例えば、易接着成分が挙げられる。易接着成分を用いることにより、密着性をさらに向上させ得る。易接着成分としては、例えば、アセトアセチル変性PVAなどの変性PVAが用いられる。
 塗布液の塗布方法は、上記下塗り層形成用組成物の塗布方法と同様の方法が採用され得る。塗布後、塗布膜は乾燥され得る。乾燥は、室温(約25℃)乾燥でもよく、加熱乾燥(例えば、50℃以上)であってもよい。
A-3.下塗り塗布層のPVA系樹脂塗布層への溶出
 下塗り塗布層のPVA系樹脂塗布層への溶出は、下塗り塗布層中のポリビニルアルコール系成分とPVA系樹脂塗布層中のPVA系樹脂との親和性の高さに起因して、PVA系樹脂塗布層の形成(実質的には、上記塗布液の塗布)と同時に自然発生的に生じ得る。また、該溶出は、ポリビニルアルコール系成分の濃度勾配等に起因する駆動力の減少に応じて減少または終了し得る。本発明においては、該溶出に伴う下塗り塗布層の厚みの減少が停止し、一定の厚みになった時点で溶出が完了したものとみなし、その後の下塗り塗布層およびPVA系樹脂塗布層をそれぞれ、下塗り層およびPVA系樹脂層と称する。
 上記溶出により、下塗り塗布層の5体積%~70体積%、好ましくは8体積%~50体積%、より好ましくは10体積%~40体積%がPVA系樹脂塗布層へ溶出する。溶出率が当該範囲内であることにより、優れた密着性を有する積層体が得られ得る。溶出率は、例えば、下塗り層形成用組成物中におけるポリビニルアルコール系成分の配合比を大きくすること等によって、増大させることができる。
 溶出の際の温度環境としては、特に制限はなく、例えば、20℃~100℃、好ましくは30℃~80℃、より好ましくは40℃~70℃の温度環境であり得る。また、溶出に要する時間(塗布液の塗布から溶出完了までの時間)は、例えば、塗工直後~10分程度であり得る。該溶出処理は、PVA系樹脂塗布層を形成する際の塗布膜の乾燥処理を兼ねてもよい。
 上記溶出を経て形成される下塗り層の厚みは、好ましくは0.2μm~2.0μm、より好ましくは0.3μm~1.8μmである。また、PVA系樹脂層の厚みは、代表的には3μm~40μm、さらに好ましくは3μm~20μmである。
B.積層体
 本発明はまた、樹脂基材と下塗り層とポリビニルアルコール系樹脂層とをこの順に有する積層体を提供する。該積層体中、該下塗り層および該ポリビニルアルコール系樹脂層は、該樹脂基材上にこの順に設けられた下塗り塗布層およびポリビニルアルコール系樹脂塗布層において該下塗り塗布層の5体積%~70体積%が該ポリビニルアルコール系樹脂塗布層に溶出することによって形成されたものである。よって、本発明の1つの実施形態において、積層体のPVA系樹脂層は、下塗り塗布層由来の溶出成分を含み、下塗り層は、該下塗り塗布層から該溶出成分を除いた残余によって形成され得る。また、該下塗り塗布層は、ポリビニルアルコール系成分を含む2種以上の樹脂成分を含み、下塗り塗布層の樹脂成分における該ポリビニルアルコール系成分の配合割合は、5%~50%である。このような構成とすることにより、樹脂基材側からの剥離およびポリビニルアルコール系樹脂層側からの剥離の両方を抑制し得、優れた密着性が得られ得る。
 本発明の積層体は、代表的には、上記A項に記載の製造方法によって製造され得る。よって、各層の形成材料および形成方法については、A項に記載のとおりとすることができる。
C.光学積層体の製造方法
 本発明はまた、樹脂基材と下塗り層と偏光膜とをこの順に有する光学積層体の製造方法を提供する。本発明の光学積層体の製造方法は、A項に記載の積層体の製造方法によって、樹脂基材と下塗り層とPVA系樹脂層とをこの順に有する積層体を作製することと、該PVA系樹脂層を染色および延伸して偏光膜にすることと、を含む。該PVA系樹脂層には、染色および延伸以外に、そのPVA系樹脂層を偏光膜とするための処理が、適宜施され得る。偏光膜とするための処理としては、例えば、不溶化処理、架橋処理、洗浄処理、乾燥処理等が挙げられる。なお、これらの処理の回数、順序等は、特に限定されない。
(染色処理)
 上記染色処理は、代表的には、PVA系樹脂層を二色性物質で染色することにより行う。好ましくは、PVA系樹脂層に二色性物質を吸着させることにより行う。当該吸着方法としては、例えば、二色性物質を含む染色液にPVA系樹脂層(積層体)を浸漬させる方法、PVA系樹脂層に当該染色液を塗工する方法、当該染色液をPVA系樹脂層に噴霧する方法等が挙げられる。好ましくは、染色液にPVA系樹脂層を浸漬させる方法である。二色性物質が良好に吸着し得るからである。
 上記二色性物質としては、例えば、ヨウ素、有機染料が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。二色性物質は、好ましくは、ヨウ素である。二色性物質としてヨウ素を用いる場合、上記染色液は、好ましくは、ヨウ素水溶液である。ヨウ素の配合量は、水100重量部に対して、好ましくは0.1重量部~0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.02重量部~20重量部、さらに好ましくは0.1重量部~10重量部である。
 染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃~50℃である。染色液にPVA系樹脂層を浸漬させる場合、浸漬時間は、PVA系樹脂層の透過率を確保するため、好ましくは5秒~5分である。また、染色条件(濃度、液温、浸漬時間)は、最終的に得られる偏光膜の偏光度もしくは単体透過率が所定の範囲となるように、設定することができる。1つの実施形態においては、得られる偏光膜の偏光度が99.98%以上となるように、浸漬時間を設定する。別の実施形態においては、得られる偏光膜の単体透過率が40%~44%となるように、浸漬時間を設定する。
(延伸処理)
 積層体の延伸方法としては、任意の適切な方法を採用することができる。具体的には、固定端延伸(例えば、テンター延伸機を用いる方法)でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。また、同時二軸延伸(例えば、同時二軸延伸機を用いる方法)でもよいし、逐次二軸延伸でもよい。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率(最大延伸倍率)は、各段階の延伸倍率の積である。
 延伸処理は、積層体を延伸浴に浸漬させながら行う水中延伸方式であってもよいし、空中延伸方式であってもよい。1つの実施形態においては、水中延伸処理を少なくとも1回施し、好ましくは、水中延伸処理と空中延伸処理を組み合わせる。水中延伸によれば、上記樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた偏光特性を有する偏光膜を製造することができる。
 積層体の延伸方向としては、任意の適切な方向を選択することができる。1つの実施形態においては、長尺状の積層体の長手方向に延伸する。具体的には、積層体を長手方向に搬送し、その搬送方向(MD)である。別の実施形態においては、長尺状の積層体の幅方向に延伸する。具体的には、積層体を長手方向に搬送し、その搬送方向(MD)と直交する方向(TD)である。
 積層体の延伸温度は、樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。空中延伸方式を採用する場合、延伸温度は、好ましくは樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、積層体の延伸温度は、好ましくは170℃以下である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。
 延伸方式として水中延伸方式を採用する場合、延伸浴の液温は、好ましくは40℃~85℃、さらに好ましくは50℃~85℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた偏光特性が得られないおそれがある。
 水中延伸方式を採用する場合、積層体をホウ酸水溶液中に浸漬させて延伸することが好ましい(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた偏光特性を有する偏光膜を作製することができる。
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光膜を作製することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。
 好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、さらに好ましくは0.5重量部~8重量部である。
 積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。好ましくは、水中延伸処理は染色処理の後に行う。
 積層体の延伸倍率(最大延伸倍率)は、積層体の元長に対して、好ましくは4.0倍以上、さらに好ましくは5.0倍以上である。このような高い延伸倍率は、例えば、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成し得る。なお、本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。
(不溶化処理)
 上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。特に水中延伸方式を採用する場合、不溶化処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃~40℃である。好ましくは、不溶化処理は、積層体作製後、染色処理や水中延伸処理の前に行う。
(架橋処理)
 上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。また、上記染色処理後に架橋処理を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。好ましくは、架橋処理は水中延伸処理の前に行う。好ましい実施形態においては、染色処理、架橋処理および水中延伸処理をこの順で行う。
(洗浄処理)
 上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。
(乾燥処理)
 乾燥処理における乾燥温度は、好ましくは30℃~100℃である。
D.光学積層体
 本発明はまた、樹脂基材と下塗り層と偏光膜とをこの順に有する光学積層体を提供する。本発明の光学積層体は、A項に記載の積層体のポリビニルアルコール系樹脂層が、二色性物質が吸着配向した偏光膜とされているものであり得る。
 偏光膜の厚みは、好ましくは10μm以下、より好ましくは8μm以下、さらに好ましくは7μm以下、特に好ましくは6μm以下である。一方、該偏光膜の厚みは、好ましくは1.0μm以上、さらに好ましくは2.0μm以上である。
 偏光膜は、実質的には、二色性物質が吸着配向された上記PVA系樹脂層であり、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。この場合、偏光膜(PVA系樹脂層)の単体透過率は、好ましくは40.0%以上、より好ましくは41.0%以上、さらに好ましくは42.0%以上、特に好ましくは43.0%以上である。偏光膜(PVA系樹脂層)の偏光度は、好ましくは99.8%以上、より好ましくは99.9%以上、さらに好ましくは99.95%以上である。
 本発明の光学積層体は、代表的には、C項に記載の光学積層体の製造方法によって製造され得る。
E.光学積層体の用途
 本発明の光学積層体によれば、樹脂基材を偏光膜から剥離せずに、そのまま光学部材として用いることができる。この場合、樹脂基材は、例えば、偏光膜の保護フィルムとして機能し得る。あるいは、光学積層体の偏光膜上に任意の適切な接着層を介して光学機能フィルムを積層し、その後、樹脂基材を剥離してもよい。上記光学機能フィルムは、例えば、偏光膜保護フィルム、位相差フィルム等として機能し得る。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚みの測定方法は以下の通りである。また、下記実施例および比較例における「部」および「%」は、それぞれ「重量部」および「重量%」を表す。
(厚み)
 デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(溶出率)
 以下の式によって算出した。
 溶出率(%)=([塗布液を塗布する前の下塗り塗布層の厚み]-[下塗り層の厚み])/[塗布液を塗布する前の下塗り塗布層の厚み]×100
[実施例1]
 樹脂基材として、長尺状で、吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)を用いた。
 樹脂基材の片面に、コロナ処理を施し、このコロナ処理面に、アセトアセチル変性PVA(日本合成化学工社製、商品名「ゴーセファイマーZ200」、重合度1200、ケン化度99.0モル%以上、アセトアセチル変性度4.6%)の4.0%水溶液と変性ポリオレフィン樹脂水性分散体(ユニチカ社製、商品名「アローベースSE1030N」、固形分濃度22%)と純水を混合した混合液(固形分濃度4.0%)を、乾燥後の厚みが2000nmになるように塗布し、60℃で3分間乾燥し、下塗り塗布層を形成した。ここで、混合液におけるアセトアセチル変性PVAと変性ポリオレフィンとの固形分配合比は30:70であった。
 次いで、下塗り塗布層表面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み11μmのPVA系樹脂塗布層を形成した。
 次いで、65℃で10分以上静置して下塗り塗布層の構成成分のPVA系樹脂塗布層への溶出を行った。こうして、樹脂基材と下塗り層とPVA系樹脂層とをこの順で含む積層体を作製した。
 得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.0倍に自由端一軸延伸した(空中補助延伸)。
 次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴に、得られる偏光膜が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.0重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。
 次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を4重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸)。
 その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 こうして、厚み30μmの樹脂基材の片側に厚み5μmの偏光膜が形成された光学積層体(偏光板)を得た。
[実施例2]
 上記混合液を乾燥後の厚みが1000nmになるように塗布したこと以外は実施例1と同様にして、光学積層体を得た。
[実施例3]
 上記混合液を乾燥後の厚みが500nmになるように塗布したこと以外は実施例1と同様にして、光学積層体を得た。
[実施例4]
 混合液におけるアセトアセチル変性PVAと変性ポリオレフィンとの固形分配合比を50:50としたこと以外は実施例1と同様にして、光学積層体を得た。
[実施例5]
 下塗り塗布層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液と変性ポリオレフィン樹脂水性分散体(ユニチカ社製、商品名「アローベースSD1030N」、固形分濃度22%)と純水を混合した混合液(固形分濃度4.0%)を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[実施例6]
 下塗り塗布層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液と変性ポリオレフィン樹脂水性分散体(ユニチカ社製、商品名「アローベースSE1035NJ2」、固形分濃度22%)と純水を混合した混合液(固形分濃度4.0%)を用いたこと以外は実施例4と同様にして、光学積層体を得た。
[実施例7]
 下塗り塗布層の形成に際し、アセトアセチル変性PVA(日本合成化学工社製、商品名「ゴーセファイマーZ410」、重合度2200、ケン化度97.5~98.5%、アセトアセチル変性度4.6%)の4.0%水溶液と変性ポリオレフィン樹脂水性分散体(ユニチカ株式会社製、商品名「アローベースSE1030N」、固形分濃度22%)と純水を混合した混合液(固形分濃度4.0%)を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[実施例8]
 空中補助延伸の延伸倍率を4.0倍とし、不溶化処理および水中延伸を行わなかったこと以外は実施例1と同様にして、厚み37μmの樹脂基材の片側に下塗り層を介して厚み6μmの偏光膜が形成された光学積層体を得た。
[実施例9]
 下塗り塗布層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液10gとポリエステル水性エマルション樹脂(エリーテルKT0507E6)62.5gとを混合した混合液を用いたこと以外は実施例1と同様にして、光学積層体を得た。ここで、混合液におけるアセトアセチル変性PVAとポリエステルとの固形分配合比は50:50であった。
[比較例1]
 下塗り塗布層を形成することなく、樹脂基材上に直接PVA系樹脂塗布層(PVA系樹脂層)を形成したこと以外は実施例1と同様にして、光学積層体を得た。
[比較例2]
 下塗り塗布層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液を用いたこと以外は実施例3と同様にして、光学積層体を得た。
[比較例3]
 下塗り塗布層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液を用いたこと以外は実施例2と同様にして、光学積層体を得た。
[比較例4]
 下塗り塗布層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[比較例5]
 下塗り塗布層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液を用いたこと、および、この混合液を乾燥後の厚みが1000nmになるように塗布したこと以外は実施例8と同様にして、光学積層体を得た。
[比較例6]
 下塗り塗布層の形成に際し、ポリエステル水性エマルション樹脂(ユニチカ社製、商品名「エリーテルKT0507E6」)を用いたこと以外は実施例3と同様にして、光学積層体を得た。
[比較例7]
 下塗り塗布層の形成に際し、ポリエステル水性エマルション樹脂(ユニチカ社製、商品名「エリーテルKT0507E6」)を用いたこと以外は実施例2と同様にして、光学積層体を得た。
(密着性評価)
 上記実施例および比較例について、PVA剥離力および基材剥離力を測定することにより、密着性を評価した。評価結果を表1にまとめる。なお、PVA剥離力および基材剥離力の測定方法は、以下のとおりである。
(PVA剥離力)
 ガラス板に得られた光学積層体を樹脂基材面側に粘着剤を塗布して貼り合わせ、偏光膜面に補強用のポリイミドテープ(日東電工(株)製、ポリイミド粘着テープNo.360A)を貼り合わせて、測定用サンプルを作製した。この測定用サンプルの偏光膜と樹脂基材との間にカッターナイフで切込みを入れ、偏光膜および補強用のポリイミドテープを樹脂基材面に対して90°の角度をなすように立ち上げ、剥離速度3000mm/minで剥離する際に要する力(N/15mm)を角度自在タイプ粘着・皮膜剥離解析装置「VPA-2」(共和界面化学株式会社製)により測定した。
(基材剥離力)
 ガラス板に、得られた光学積層体を偏光膜面側に粘着剤を塗布して貼り合わせて、測定用サンプルを作製した。この測定用サンプルの偏光膜と樹脂基材との間にカッターナイフで切込みを入れ、樹脂基材を偏光膜面に対して90°の角度をなすように立ち上げ、剥離速度3000mm/minで剥離する際に要する力(N/15mm)を上記「VPA-2」により測定した。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例の光学積層体はPVA剥離力および基材剥離力がいずれも0.6N以上であり、密着性に優れることが分かる。また、実施例1~7および9の光学積層体は、水中延伸を施しても十分な密着性が保持されている。一方、下塗り層を形成しない比較例1および下塗り塗布層がポリビニルアルコール系成分のみを含む比較例2~5では、PVA系樹脂層(偏光膜)側からの剥離に対して十分な密着性が得られない。また、下塗り塗布層がポリビニルアルコール系成分を含まない比較例6および7では、樹脂基材側からの剥離に対して十分な密着性が得られない。
[参考例1]
 混合液を乾燥後の厚みが1.7μmになるように塗布したこと以外は実施例9と同様にして、積層体を得た。下塗り塗布層の断面([樹脂基材/下塗り塗布層]の積層体の断面)のSEM観察(6500倍)の結果を図1(a)に示し、下塗り層の断面([樹脂基材/下塗り層/PVA樹脂層]の積層体の断面)のSEM観察(6500倍)の結果を図1(b)に示す。図1(a)および図1(b)に示されるとおり、1.7μmの厚みに形成された下塗り塗布層からポリビニルアルコール系成分等が溶出することにより、0.6μmの厚みを有する下塗り層が形成された。
 本発明の積層体は、例えば、画像表示装置に好適に用いられる。具体的には、液晶テレビ、液晶ディスプレイ、携帯電話、デジタルカメラ、ビデオカメラ、携帯ゲーム機、カーナビゲーション、コピー機、プリンター、ファックス、時計、電子レンジ等の液晶パネル、有機ELデバイスの反射防止板等として好適に用いられる。

Claims (12)

  1.  樹脂基材と下塗り層とポリビニルアルコール系樹脂層とをこの順に有する積層体であって、
     該下塗り層および該ポリビニルアルコール系樹脂層は、該樹脂基材上にこの順に設けられた下塗り塗布層およびポリビニルアルコール系樹脂塗布層において該下塗り塗布層の5体積%~70体積%が該ポリビニルアルコール系樹脂塗布層に溶出することによって形成されたものであり、
     該下塗り塗布層が、ポリビニルアルコール系成分を含む2種以上の樹脂成分を含み、
     該下塗り塗布層の樹脂成分における該ポリビニルアルコール系成分の配合割合が、5%~50%である、積層体。
  2.  前記下塗り層の厚みが、0.2μm~2.0μmである、請求項1に記載の積層体。
  3.  前記ポリビニルアルコール系成分が、アセトアセチル変性ポリビニルアルコールを含む、請求項1または2に記載の積層体。
  4.  前記下塗り塗布層が、前記ポリビニルアルコール系成分とポリオレフィン系成分とを含む、請求項1から3のいずれかに記載の積層体。
  5.  前記ポリビニルアルコール系成分と前記ポリオレフィン系成分との配合比(ポリビニルアルコール系成分:ポリオレフィン系成分)が、5:95~50:50である、請求項4に記載の積層体。
  6.  樹脂基材と下塗り層とポリビニルアルコール系樹脂層とをこの順に有する積層体の製造方法であって、
     樹脂基材の片側に下塗り塗布層を形成し、該下塗り塗布層表面にポリビニルアルコール系樹脂塗布層を形成することと、
     該下塗り塗布層の5体積%~70体積%を該ポリビニルアルコール系樹脂塗布層へ溶出させて、該下塗り塗布層および該ポリビニルアルコール系樹脂塗布層をそれぞれ下塗り層およびポリビニルアルコール系樹脂層にすることと、を含み、
     該下塗り塗布層が、ポリビニルアルコール系成分を含む2種以上の樹脂成分を含み、
     該下塗り塗布層の樹脂成分における該ポリビニルアルコール系成分の配合割合が、5%~50%である、
     製造方法。
  7.  前記下塗り層の厚みが、0.2μm~2.0μmである、請求項6に記載の製造方法。
  8.  前記ポリビニルアルコール系成分が、アセトアセチル変性ポリビニルアルコールを含む、請求項6または7に記載の製造方法。
  9.  前記下塗り塗布層が、前記ポリビニルアルコール系成分とポリオレフィン系成分とを含む、請求項6から8のいずれかに記載の製造方法。
  10.  前記ポリビニルアルコール系成分と前記ポリオレフィン系成分との配合比(ポリビニルアルコール系成分:ポリオレフィン系成分)が、5:95~50:50である、請求項9に記載の製造方法。
  11.  樹脂基材と下塗り層と偏光膜とをこの順に有する光学積層体であって、
     請求項1から5のいずれかに記載の積層体の前記ポリビニルアルコール系樹脂層が、二色性物質が吸着配向した偏光膜である、光学積層体。
  12.  請求項6から10のいずれかに記載の積層体の製造方法によって、樹脂基材と下塗り層とポリビニルアルコール系樹脂層とをこの順に有する積層体を作製することと、
     該ポリビニルアルコール系樹脂層を染色および延伸して偏光膜にすることと、を含む、
     樹脂基材と下塗り層と偏光膜とをこの順に有する光学積層体の製造方法。
PCT/JP2018/021993 2017-06-22 2018-06-08 積層体および積層体の製造方法 WO2018235630A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019525380A JP6784839B2 (ja) 2017-06-22 2018-06-08 積層体および積層体の製造方法
KR1020197037257A KR102562326B1 (ko) 2017-06-22 2018-06-08 적층체 및 적층체의 제조 방법
CN201880041509.7A CN110770026B (zh) 2017-06-22 2018-06-08 层叠体及层叠体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017121836 2017-06-22
JP2017-121836 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018235630A1 true WO2018235630A1 (ja) 2018-12-27

Family

ID=64737577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021993 WO2018235630A1 (ja) 2017-06-22 2018-06-08 積層体および積層体の製造方法

Country Status (5)

Country Link
JP (1) JP6784839B2 (ja)
KR (1) KR102562326B1 (ja)
CN (1) CN110770026B (ja)
TW (1) TWI757513B (ja)
WO (1) WO2018235630A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256329A1 (ja) * 2020-06-17 2021-12-23 日東電工株式会社 偏光膜、偏光板、および該偏光膜の製造方法
JPWO2021261277A1 (ja) * 2020-06-23 2021-12-30
WO2021261344A1 (ja) * 2020-06-26 2021-12-30 日東電工株式会社 位相差層付偏光板、および、それを用いた画像表示装置
JPWO2021261276A1 (ja) * 2020-06-26 2021-12-30
WO2022024798A1 (ja) * 2020-07-29 2022-02-03 日東電工株式会社 偏光板、位相差層付偏光板、ならびに、該偏光板または該位相差層付偏光板を含む画像表示装置
WO2022024797A1 (ja) * 2020-07-29 2022-02-03 日東電工株式会社 偏光板および該偏光板を含む画像表示装置
WO2022024796A1 (ja) * 2020-07-29 2022-02-03 日東電工株式会社 偏光子ならびに該偏光子を含む偏光板および画像表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022038978A (ja) * 2020-08-27 2022-03-10 日東電工株式会社 光学積層体および該光学積層体を用いた偏光板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186834A (ja) * 1984-03-07 1985-09-24 Toray Ind Inc 水現像可能な感光性樹脂版材
JP2004529750A (ja) * 2001-02-09 2004-09-30 スリーエム イノベイティブ プロパティズ カンパニー ポリビニルアルコール被覆のための結合層
JP2005178328A (ja) * 2003-12-24 2005-07-07 Dainippon Printing Co Ltd 化粧材
WO2005085383A1 (ja) * 2004-03-03 2005-09-15 Nippon Kayaku Kabushiki Kaisha 偏光素子用水性接着剤およびそれを用いて得られる偏光板
JP2014238612A (ja) * 2012-03-29 2014-12-18 住友化学株式会社 偏光性積層フィルムの製造方法及び偏光板の製造方法
WO2017110750A1 (ja) * 2015-12-25 2017-06-29 日東電工株式会社 積層体および積層体の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279944B2 (ja) 1999-06-01 2009-06-17 株式会社サンリッツ 偏光板の製造方法
JP2005175328A (ja) * 2003-12-15 2005-06-30 Seiko Epson Corp 半導体装置及びその製造方法
JP4858005B2 (ja) * 2006-03-07 2012-01-18 住友化学株式会社 複合位相差板、その製造方法、複合光学部材及び液晶表示装置
JP2008129427A (ja) * 2006-11-22 2008-06-05 Sumitomo Chemical Co Ltd 偏光板およびその製造方法
JP4849563B2 (ja) * 2007-08-07 2012-01-11 住友化学株式会社 偏光板およびその製造方法
JP4762320B2 (ja) * 2009-02-20 2011-08-31 住友化学株式会社 液晶表示装置
KR101197164B1 (ko) * 2009-02-20 2012-11-02 주식회사 엘지화학 변성 폴리비닐알코올계 수지, 이를 포함하는 접착제, 편광판 및 표시장치
US9334406B2 (en) * 2009-02-25 2016-05-10 Lg Chem, Ltd. Composition for primer coating, optical film comprising the same, and polarizing plate comprising the same
TWI401479B (zh) * 2010-12-09 2013-07-11 Sumitomo Chemical Co 偏光性積層膜及偏光板之製造方法
JP5313297B2 (ja) * 2010-12-24 2013-10-09 日東電工株式会社 活性エネルギー線硬化型接着剤組成物、偏光板、光学フィルムおよび画像表示装置
JP6238684B2 (ja) * 2013-11-07 2017-11-29 日東電工株式会社 光学積層体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186834A (ja) * 1984-03-07 1985-09-24 Toray Ind Inc 水現像可能な感光性樹脂版材
JP2004529750A (ja) * 2001-02-09 2004-09-30 スリーエム イノベイティブ プロパティズ カンパニー ポリビニルアルコール被覆のための結合層
JP2005178328A (ja) * 2003-12-24 2005-07-07 Dainippon Printing Co Ltd 化粧材
WO2005085383A1 (ja) * 2004-03-03 2005-09-15 Nippon Kayaku Kabushiki Kaisha 偏光素子用水性接着剤およびそれを用いて得られる偏光板
JP2014238612A (ja) * 2012-03-29 2014-12-18 住友化学株式会社 偏光性積層フィルムの製造方法及び偏光板の製造方法
WO2017110750A1 (ja) * 2015-12-25 2017-06-29 日東電工株式会社 積層体および積層体の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256329A1 (ja) * 2020-06-17 2021-12-23 日東電工株式会社 偏光膜、偏光板、および該偏光膜の製造方法
JPWO2021261277A1 (ja) * 2020-06-23 2021-12-30
WO2021261277A1 (ja) * 2020-06-23 2021-12-30 日東電工株式会社 位相差層付偏光板、および、それを用いた画像表示装置
WO2021261344A1 (ja) * 2020-06-26 2021-12-30 日東電工株式会社 位相差層付偏光板、および、それを用いた画像表示装置
JPWO2021261276A1 (ja) * 2020-06-26 2021-12-30
WO2021261276A1 (ja) * 2020-06-26 2021-12-30 日東電工株式会社 偏光板、位相差層付偏光板および画像表示装置
WO2022024798A1 (ja) * 2020-07-29 2022-02-03 日東電工株式会社 偏光板、位相差層付偏光板、ならびに、該偏光板または該位相差層付偏光板を含む画像表示装置
JPWO2022024798A1 (ja) * 2020-07-29 2022-02-03
WO2022024797A1 (ja) * 2020-07-29 2022-02-03 日東電工株式会社 偏光板および該偏光板を含む画像表示装置
WO2022024796A1 (ja) * 2020-07-29 2022-02-03 日東電工株式会社 偏光子ならびに該偏光子を含む偏光板および画像表示装置
JPWO2022024796A1 (ja) * 2020-07-29 2022-02-03
JPWO2022024797A1 (ja) * 2020-07-29 2022-02-03

Also Published As

Publication number Publication date
JP6784839B2 (ja) 2020-11-11
KR102562326B1 (ko) 2023-08-02
KR20200021468A (ko) 2020-02-28
TW201904768A (zh) 2019-02-01
TWI757513B (zh) 2022-03-11
JPWO2018235630A1 (ja) 2020-03-19
CN110770026B (zh) 2022-11-01
CN110770026A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
JP6784839B2 (ja) 積層体および積層体の製造方法
JP6774556B2 (ja) 光学積層体および光学積層体の製造方法
JP6893762B2 (ja) 偏光板
TWI619612B (zh) 積層體及其製造方法
CN108780171B (zh) 偏振片
JP6921953B2 (ja) 積層体、積層体の製造方法、偏光板、および偏光板の製造方法
TWI513578B (zh) 積層體及其製造方法
JP6680533B2 (ja) 積層体および積層体の製造方法
WO2019069757A1 (ja) 偏光板、画像表示装置、および偏光板の製造方法
JP6357069B2 (ja) 積層体の製造方法
JP6159693B2 (ja) 積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525380

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197037257

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820092

Country of ref document: EP

Kind code of ref document: A1