WO2018221681A1 - 封止用液状樹脂組成物及び電子部品装置 - Google Patents

封止用液状樹脂組成物及び電子部品装置 Download PDF

Info

Publication number
WO2018221681A1
WO2018221681A1 PCT/JP2018/021059 JP2018021059W WO2018221681A1 WO 2018221681 A1 WO2018221681 A1 WO 2018221681A1 JP 2018021059 W JP2018021059 W JP 2018021059W WO 2018221681 A1 WO2018221681 A1 WO 2018221681A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
liquid resin
sealing
epoxy compound
mass
Prior art date
Application number
PCT/JP2018/021059
Other languages
English (en)
French (fr)
Inventor
井上 英俊
松崎 隆行
寿登 高橋
剛 上村
東之 吉井
Original Assignee
日立化成株式会社
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社, ナミックス株式会社 filed Critical 日立化成株式会社
Priority to CN201880036334.0A priority Critical patent/CN110785451A/zh
Priority to EP18809299.3A priority patent/EP3620481B1/en
Priority to US16/618,697 priority patent/US20200194325A1/en
Priority to JP2019521313A priority patent/JP7148507B2/ja
Priority to KR1020197038170A priority patent/KR20200015584A/ko
Publication of WO2018221681A1 publication Critical patent/WO2018221681A1/ja
Priority to JP2022151724A priority patent/JP2022179534A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/28Di-epoxy compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1025Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by non-chemical features of one or more of its constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0243Silica-rich compounds, e.g. silicates, cement, glass
    • C09K2200/0247Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0647Polyepoxides

Definitions

  • the present invention relates to a sealing liquid resin composition and an electronic component device.
  • a wafer level chip size package that performs resin sealing at the wafer stage is attracting attention.
  • this wafer level chip size package a large number of elements are sealed at a wafer stage by compression molding (compression molding) using a solid epoxy resin composition or printing molding using a liquid epoxy resin composition. Divide into pieces. Therefore, the productivity can be greatly improved as compared with the method of sealing after the element is singulated.
  • the sealed silicon wafer tends to warp, and this warpage is a problem in the subsequent steps of conveyance, grinding, inspection, and singulation, and there may be a problem that the device characteristics may vary depending on the device. .
  • Patent Document 1 describes a liquid epoxy resin composition for sealing containing a liquid bisphenol-type epoxy resin, silicone rubber fine particles, a silicone-modified epoxy resin, an aromatic amine curing agent, an inorganic filler, and an organic solvent.
  • Patent Document 2 a liquid epoxy resin, an aromatic amine curing agent, a core-shell silicone polymer fine particle comprising a solid silicone polymer core and an organic polymer shell, an inorganic filler and an organic solvent are contained.
  • a liquid epoxy resin composition is described.
  • Patent Document 3 discloses a liquid molding agent containing an epoxy resin, an acid anhydride curing agent, and an inorganic filler.
  • Patent Document 1 using silicone rubber fine particles and silicone-modified epoxy resin
  • Patent Document 2 using fine particles of a core-shell silicone polymer
  • the elastic modulus of the cured epoxy resin can be lowered and the stress can be reduced.
  • patent document 3 which uses an acid anhydride hardening
  • the elastic modulus of the cured epoxy resin is high, and the warp of a large silicon wafer may not be sufficiently reduced.
  • silicon wafers tend to have larger diameters and thinner thicknesses in the future, and it is necessary to reduce the warpage of these silicon wafers.
  • the problem of warpage of a silicon wafer is considered to be a problem that can occur in all semiconductor wafers such as compound semiconductor wafers such as SiC (silicon carbide) wafers, sapphire wafers, and GaAs (gallium arsenide) wafers.
  • One form of this invention is made
  • One embodiment of the present invention relates to the following.
  • the liquid resin composition for sealing whose content rate is 77 mass% or more.
  • (A) aliphatic epoxy compound contains a compound represented by the following general formula (I).
  • n is an integer of 1 to 15.
  • the epoxy compound (B) having an aromatic ring in the molecule is N, N-diglycidyl orthotoluidine and N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy )
  • the encapsulating liquid resin composition according to any one of ⁇ 1> to ⁇ 3>, comprising at least one of aniline.
  • liquid resin composition for sealing according to any one of ⁇ 1> to ⁇ 4>, comprising (E) a coupling agent.
  • An electronic component device comprising an element sealed with the sealing liquid resin composition according to any one of ⁇ 1> to ⁇ 5>.
  • a sealing liquid resin composition capable of suppressing the occurrence of warping of a semiconductor wafer and an electronic component device using the same.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified.
  • a plurality of particles corresponding to each component may be included.
  • the particle diameter of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” or “film” includes only a part of the region in addition to the case where the layer or film is formed over the entire region. The case where it is formed is also included.
  • the encapsulating liquid resin composition of the present disclosure includes (A) an aliphatic epoxy compound, (B) an epoxy compound having an aromatic ring in the molecule, (C) a nitrogen-containing heterocyclic compound, and (D) an inorganic filler.
  • the content of the (D) inorganic filler is 77% by mass or more.
  • the sealing liquid resin composition of the present disclosure may contain other components other than the above components as necessary. According to the encapsulating liquid resin composition of the present disclosure, the occurrence of warpage of the semiconductor wafer can be suppressed.
  • each component which comprises the liquid resin composition for sealing is demonstrated.
  • the liquid resin composition for sealing contains (A) an aliphatic epoxy compound.
  • the (A) aliphatic epoxy compound means an aliphatic compound having at least one epoxy group in the molecule and having no cyclic structure other than the epoxy group in the molecule. Even if the sealing liquid resin composition contains the aliphatic epoxy compound (A), even if the sealing liquid resin composition is applied to a semiconductor wafer and cured, the warpage of the semiconductor wafer is more likely to occur. There is a tendency to be effectively suppressed.
  • (A) As an aliphatic epoxy compound a well-known thru
  • Specific examples of (A) aliphatic epoxy compounds include alkyl alcohol glycidyl ether [butyl glycidyl ether, 2-ethylhexyl glycidyl ether, etc.], alkenyl alcohol glycidyl ether [vinyl glycidyl ether, allyl glycidyl ether, etc.] Monofunctional aliphatic epoxy compound having one group; bifunctional aliphatic epoxy compound having two epoxy groups in a molecule such as alkylene glycol diglycidyl ether, poly (alkylene glycol) diglycidyl ether, alkenylene glycol diglycidyl ether; Polyglycidyl ethers of tri- or higher functional alcohols such as trimethylolpropane, pentaerythritol, dipentaeryth
  • a bifunctional aliphatic epoxy compound is preferable in that the warpage of the semiconductor wafer when a cured product is formed on the semiconductor wafer is more efficiently suppressed.
  • the bifunctional aliphatic epoxy compound ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,3-propanediol diglycidyl ether, 2-methyl-1,3-propanediol diglycidyl ether 2-butyl-2-ethyl-1,3-propanediol diglycidyl ether, 1,4-butanediol diglycidyl ether (tetramethylene glycol diglycidyl ether), neopentyl glycol diglycidyl ether, 3-methyl-2, 4-pentanediol diglycidyl ether, 2,4-pentanediol diglycidyl ether,
  • polyalkylene glycol diglycidyl ether is preferable in some embodiments in that warpage of a semiconductor wafer is highly suppressed, and polyalkylene glycol diglycidyl ether having 1 to 20 alkylene glycol (alkyleneoxy) units (particularly, More preferred are alkylene glycol diglycidyl ethers having 1 to 20 alkylene glycol units and 2 to 4 carbon atoms in the alkylene glycol unit. In another embodiment, polyalkylene glycol diglycidyl ether having 2 to 20 alkylene glycol (alkyleneoxy) units (particularly, the number of alkylene glycol units having 2 to 20 carbon atoms in the alkylene glycol unit). 2 to 4 alkylene glycol diglycidyl ether).
  • the molecular weight of the aliphatic epoxy compound (in the case of a polymer, the number average molecular weight in terms of standard polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as an elution solvent) is not particularly limited, and is 200 to 10,000. It is preferably 200 to 1200, more preferably 200 to 1000, and particularly preferably 300 to 900.
  • GPC gel permeation chromatography
  • (A) aliphatic epoxy compound a compound represented by the following general formula (I) (diglycidyl ether of tetramethylene glycol or diglycidyl ether of polytetramethylene glycol) is preferably exemplified.
  • a compound represented by the following general formula (I) diglycidyl ether of tetramethylene glycol or diglycidyl ether of polytetramethylene glycol
  • n is an integer of 1 to 15.
  • the (A) aliphatic epoxy compound may be used alone or in combination of two or more.
  • the compound represented by the general formula (I) commercially available products such as trade name “Epogosei PT (general grade)” (Yokkaichi Gosei Co., Ltd., polytetramethylene glycol diglycidyl ether, number average molecular weight 700 to 800), etc. Can also be used.
  • the content of the (A) aliphatic epoxy compound contained in the sealing liquid resin composition is not particularly limited, and the total amount of the compounds having epoxy groups contained in the sealing liquid resin composition (total epoxy compounds ; 100% by mass), preferably 3% by mass to 40% by mass, more preferably 5% by mass to 35% by mass, and still more preferably 10% by mass to 30% by mass.
  • total epoxy compounds 100% by mass
  • total epoxy compounds preferably 3% by mass to 40% by mass
  • more preferably 5% by mass to 35% by mass preferably 10% by mass to 30% by mass.
  • (A) By making content of an aliphatic epoxy compound into 3 mass% or more, there exists a tendency for the curvature of a semiconductor wafer to be suppressed more.
  • the content of the (A) aliphatic epoxy compound is 40% by mass or less, the curability of the encapsulating liquid resin composition is further improved, and the heat resistance of the cured product tends to be further improved.
  • the liquid resin composition for sealing contains (B) an epoxy compound having an aromatic ring in the molecule.
  • numerator a well-known thru
  • Specific examples of epoxy compounds having an aromatic ring in the molecule include glycidyl ethers of phenols such as bisphenol A, bisphenol F, bisphenol AD, bisphenol S, catechol and resorcinol, and hydroxycarboxylic acids such as p-hydroxybenzoic acid.
  • Glycidyl ether esters of acids monoglycidyl esters or polyglycidyl esters of carboxylic acids such as benzoic acid, phthalic acid, terephthalic acid, diglycidyl aniline, diglycidyl toluidine, triglycidyl-p-aminophenol, tetraglycidyl-m-xylylene Epoxy compounds having a naphthalene skeleton such as glycidylamine type epoxy compounds such as amines, glycidyl esters of naphthol, glycidyl ether esters such as ⁇ -hydroxynaphthoic acid, etc. And the like. Moreover, you may use the novolak compound which made novolak-ized phenols, such as phenol, catechol, and resorcinol. Among these, glycidylamine type epoxy compounds are preferable.
  • the epoxy compound having an aromatic ring in the molecule (B) contained in the liquid resin composition for sealing preferably has a viscosity of 30 mPa ⁇ s to 5000 mPa ⁇ s at 25 ° C., preferably 30 mPa ⁇ s to 1000 mPa ⁇ s. Those exhibiting a viscosity of are more preferred.
  • the viscosity of the epoxy compound having an aromatic ring in the molecule is within this range, a composition suitable for a liquid sealant can be obtained even when the content of the inorganic filler (D) is 77% by mass or more. Obtainable.
  • the viscosity at 25 ° C. refers to a value measured at a shear rate of 10 rotations / minute using a rotary shear viscometer equipped with a cone plate (diameter 48 mm, cone angle 1 °).
  • N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy) aniline and N, N— are used as epoxy compounds having an aromatic ring in the molecule.
  • Diglycidyl orthotoluidine is preferably exemplified.
  • N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy) aniline and N, N-diglycidyl orthotoluidine are used together as an epoxy compound having an aromatic ring in the molecule
  • the content ratio of N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy) aniline and N, N-diglycidyl orthotoluidine based on mass (N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy) aniline / N, N-diglycidyl orthotoluidine) is preferably from 0.5 to 13.0, preferably from 0.7 to It is more preferably 8.0, and further preferably 1.0 to 3.5.
  • the content of the epoxy compound having an aromatic ring in the molecule (B) contained in the liquid resin composition for sealing is not particularly limited, and the content of the compound having an epoxy group contained in the liquid resin composition for sealing is not limited. It is preferably 45% to 95% by mass, more preferably 55% to 90% by mass, and still more preferably 65% to 85% by mass with respect to the total amount (total epoxy compound; 100% by mass). It is. (B) When the content of the epoxy compound having an aromatic ring in the molecule is 45% by mass or more, curability tends to be improved. On the other hand, when the content of the epoxy compound having an aromatic ring in the molecule (B) is 95% by mass or less, the warp of the semiconductor wafer tends to be suppressed.
  • the epoxy compound having an aromatic ring therein is preferably 0.05 to 1.22, more preferably 0.11 to 0.82, and preferably 0.17 to 0.54. Further preferred.
  • the liquid resin composition for sealing contains (C) a nitrogen-containing heterocyclic compound.
  • a nitrogen-containing heterocyclic compound any known or commonly used nitrogen-containing heterocyclic compound may be used as long as it allows the polymerization of (A) an aliphatic epoxy compound and (B) an epoxy compound having an aromatic ring in the molecule. It can be used and is not particularly limited.
  • Specific examples of the nitrogen-containing heterocyclic compound include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 2-phenyl-4.
  • (C) As the nitrogen-containing heterocyclic compound, those adducted or microencapsulated with an epoxy resin or an isocyanate resin can be used. Of these, 2-phenyl-4-methylimidazole is preferred from the viewpoint of reactivity and storage stability.
  • the compounding quantity of a nitrogen-containing heterocyclic compound is a total of 100 mass parts of (A) an aliphatic epoxy compound, (B) the epoxy compound which has an aromatic ring in a molecule
  • the amount is preferably 2 to 20 parts by weight, more preferably 3 to 12 parts by weight.
  • the compounding amount of the nitrogen-containing heterocyclic compound is 2 parts by mass or more, the curing time of the sealing liquid resin composition does not become too long, and the productivity of the electronic component device tends to be improved. .
  • the compounding quantity of a nitrogen-containing heterocyclic compound is 20 mass parts or less, there exists a tendency for the storage stability of the liquid resin composition for sealing to improve.
  • a curing agent such as a liquid acid anhydride, a liquid phenol, an aromatic amine or the like can be used in combination within the range not impairing the effects of the present invention.
  • the curing agent other than (C) the nitrogen-containing heterocyclic compound is less than 0.1 equivalent relative to 1 equivalent of the epoxy compound in the liquid resin composition for sealing.
  • the liquid resin composition for sealing contains (D) an inorganic filler.
  • an inorganic filler a well-known thru
  • silica such as fused silica, crystalline silica, calcium carbonate, clay, alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, zirconia, zircon, Examples thereof include powders such as fosterite, steatite, spinel, mullite, titania, beads spheroidized from these, and glass fibers.
  • examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate.
  • These (D) inorganic fillers may be used singly or in combination of two or more. Of these, fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity.
  • the shape of the inorganic filler is preferably spherical from the viewpoints of (D) high filling of the inorganic filler and fluidity and permeability into the fine gaps of the sealing liquid resin composition.
  • the average particle diameter of the inorganic filler is preferably 1 ⁇ m to 20 ⁇ m, more preferably 1.5 ⁇ m to 15 ⁇ m, even more preferably 2 ⁇ m to 10 ⁇ m, particularly in the case of spherical silica.
  • the average particle diameter refers to the particle diameter at which the volume cumulative particle size distribution measured using a laser diffraction method is 50%. If the average particle diameter of the (D) inorganic filler is 1 ⁇ m or more, it tends to be easy to disperse the (D) inorganic filler in a high concentration in the sealing liquid resin composition.
  • the average particle size of the inorganic filler is 20 ⁇ m or less, the coarse particle component of the (D) inorganic filler is reduced, and the filling of the sealing liquid resin composition into the fine gaps or streaks during printing is performed.
  • the shape defect tends to be suppressed, and the surface smoothness tends to be improved.
  • the content rate of an inorganic filler is 77 mass% or more with respect to the total amount of the liquid resin composition for sealing. If the content rate of an inorganic filler is 77 mass% or more, generation
  • the content of the inorganic filler is preferably in the range of 77% by mass to 93% by mass, more preferably in the range of 77% by mass to 91% by mass, with respect to the total amount of the liquid resin composition for sealing.
  • the liquid resin composition for sealing may contain (E) a coupling agent as necessary in order to strengthen the adhesion between the resin and the inorganic filler or between the resin and the component of the electronic component.
  • E As a coupling agent, a well-known thru
  • Examples of coupling agents include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Silane ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane , ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ -anilinopropyltriethoxysilane, ⁇ - (N, N-dimethyl) aminopro Rutrimethoxysilane, ⁇ - (N, N-diethyl) aminopropyltrimethoxysilane, ⁇ - (N, N-dibutyl) aminopropyltrimethoxysilane, ⁇ - (N-methyl) an
  • the content of (E) coupling agent is 0. 0 with respect to the total amount of (D) inorganic filler and (E) coupling agent.
  • the content is preferably 1% by mass to 2.0% by mass, and more preferably 0.2% by mass to 1.5% by mass. If the content rate of (E) coupling agent is 0.1 mass% or more, the effect of improving the dispersibility of (D) inorganic filler by (E) coupling agent tends to be easily obtained.
  • the content rate of a coupling agent is 2.0 mass% or less, there exists a tendency for a void to be hard to generate
  • the liquid resin composition for sealing may contain (F) an organic solvent as needed.
  • (F) As an organic solvent a well-known thru
  • the content of the (F) organic solvent may be less than 5% by mass with respect to the total amount of the components (A) to (F). preferable.
  • the liquid resin composition for sealing may contain other components other than the components (A) to (F) as necessary.
  • the liquid resin composition for sealing may contain (A) an aliphatic epoxy compound and (B) another epoxy compound other than an epoxy compound having an aromatic ring in the molecule.
  • (A) aliphatic epoxy compounds and (B) known or conventional epoxy compounds other than epoxy compounds having an aromatic ring in the molecule can be used, and are not particularly limited.
  • the content of the other epoxy compounds is the total amount of compounds having epoxy groups contained in the liquid resin composition for sealing (total epoxy compounds; 100% by mass). ) Is preferably more than 0% by mass and 40% by mass or less, more preferably more than 0% by mass and 30% by mass or less, and still more preferably more than 0% by mass and 20% by mass or less.
  • the encapsulating liquid resin composition preferably contains an ion trap agent as another component.
  • an ion trap agent There is no restriction
  • the ion trapping agent include hydrotalcites, hydrous oxides of elements such as magnesium, aluminum, titanium, zirconium and bismuth. These ion trapping agents may be used alone or in combination of two or more. Specific examples include DHT-4A (Kyowa Chemical Industry Co., Ltd., trade name), IXE500 (Toa Gosei Co., Ltd., trade name), and the like.
  • the content of the ion trapping agent in the liquid resin composition for sealing is not particularly limited as long as it is a sufficient amount capable of capturing anions such as halogen ions and cations such as sodium, and 1 mass with respect to the total amount of the epoxy compound. % To 10% by mass is preferable.
  • the liquid resin composition for sealing contains, as other components, a curing accelerator; a colorant such as a dye, pigment, carbon black; silicone oil; surfactant; antioxidant; phosphate ester; melamine, melamine derivative, triazine
  • a curing accelerator such as a dye, pigment, carbon black
  • silicone oil such as silicone oil
  • surfactant such as a dye, pigment, carbon black
  • antioxidant such as phosphate ester
  • melamine melamine derivative
  • triazine Compounds having a ring, nitrogen-containing compounds such as cyanuric acid derivatives and isocyanuric acid derivatives; phosphorus nitrogen-containing compounds such as cyclophosphazene
  • metal compounds such as zinc oxide, iron oxide, molybdenum oxide and ferrocene
  • antimony trioxide antimony tetraoxide
  • antimony oxides such as antimony pentoxide and conventionally known flame retardants such as brominated epoxy resins as necessary.
  • the liquid resin composition for sealing may be prepared by any method as long as the above various components can be uniformly dispersed and mixed.
  • a general method for preparing a liquid resin composition for sealing is to weigh ingredients of a predetermined blending amount and disperse them with a three-roll, crushed grinder, planetary mixer, hard mixer, homomixer, etc. The method of kneading can be mentioned. Moreover, the method using the master batch which carried out preliminary dispersion
  • the curing conditions for the encapsulating liquid resin composition of the present disclosure are not particularly limited.
  • the temperature of the heat treatment is preferably 120 ° C. to 200 ° C., more preferably 130 ° C. to 180 ° C., and further preferably 140 ° C. to 170 ° C.
  • the heat treatment time is preferably 15 minutes to 3 hours, more preferably 30 minutes to 2 hours.
  • the glass transition temperature measured by the DMA method for the cured product of the encapsulating liquid resin composition of the present disclosure is preferably 125 ° C. or higher, and more preferably 150 ° C. or higher.
  • the elastic modulus at a temperature lower than the glass transition temperature measured by the DMA method for the cured product of the encapsulating liquid resin composition of the present disclosure is preferably 20 GPa or less, and more preferably 16 GPa or less.
  • the linear expansion coefficient at a temperature lower than the glass transition temperature of the cured liquid resin composition for sealing of the present disclosure is preferably 15 ppm / ° C. or less, and more preferably 12 ppm / ° C. or less.
  • the viscosity at 25 ° C. of the liquid resin composition for sealing of the present disclosure is preferably less than 1000 Pa ⁇ s, more preferably 800 Pa ⁇ s or less, and further preferably 500 Pa ⁇ s or less.
  • An electronic component device includes an element sealed with the liquid resin composition for sealing according to the present disclosure.
  • Electronic component devices include lead frames, pre-wired tape carriers, wiring boards, glass, silicon wafers and other supporting members, semiconductor chips, transistors, diodes, thyristors and other active elements, capacitors, resistors, resistor arrays, coils
  • An electronic component device obtained by mounting an electronic component such as a passive element such as a switch and sealing a necessary portion with the liquid resin composition for sealing of the present disclosure can be given.
  • the liquid resin composition for sealing of the present disclosure is effective for an electronic component device that requires low warpage and high reliability, and is particularly suitable for a wafer level chip size package.
  • Examples of a method for sealing an element using the sealing liquid resin composition of the present disclosure include a dispensing method, a casting method, a printing method, and the like, and a printing method is particularly preferable.
  • Example 1 and 2 and Comparative Example 1 Each material shown in Table 1 was mixed for 2 hours using a planetary mixer, and further stirred and degassed for 1 hour at a vacuum degree of 80 Pa to 90 Pa using a hard mixer to produce a sealing liquid resin composition.
  • component, (B) component, (C) component and (D) component are respectively (A) an aliphatic epoxy compound, (B) an epoxy compound having an aromatic ring in the molecule, (C) A nitrogen-containing heterocyclic compound and (D) an inorganic filler are meant.
  • the unit of a composition of each component of Table 1 is a mass part.
  • the manufactured liquid resin composition for sealing was evaluated by the following tests. The obtained results are summarized in Table 1.
  • Viscosity and thickness index Using a Brookfield HB viscometer, the viscosity of the produced liquid resin composition for sealing was measured under the conditions of 25 ° C. and 10 revolutions / minute. When the viscosity at 25 ° C. is less than 1000 Pa ⁇ s, high productivity can be obtained by using an ordinary compression molding apparatus. Further, the value obtained by dividing the measured value of the viscosity of the liquid resin composition for sealing measured at 25 ° C. under the condition of 1 revolution / minute by dividing the measured value of the viscosity measured under the condition of 25 ° C. under the condition of 10 revolutions / minute is changed. It was an index.
  • Linear expansion coefficient A cured product obtained by heat-curing the liquid resin composition for sealing at 150 ° C. for 60 minutes by a TMA (Thermal Mechanical Analysis) method using a TMA4000SA series manufactured by Bruker ASX, 50 ° C. to 70 ° C. and 180 ° C. to The linear expansion coefficient was measured at 200 ° C., respectively.
  • TMA Thermal Mechanical Analysis
  • Glass transition temperature (Tg) and elastic modulus About the hardened
  • DMA Dynamic Mechanical Analysis, dynamic viscoelasticity measurement
  • a liquid resin composition layer for sealing having a diameter of 292 mm and a thickness of 300 ⁇ m was formed on a silicon wafer having a diameter of 300 mm and a thickness of 300 ⁇ m by using a mold, and was heated and cured at 150 ° C. for 60 minutes to prepare a sample. After curing, the difference in height between the center and end of the silicon wafer was measured as a warp using a ruler.
  • Example 2 The average particle size of all silica fillers contained in Example 2 and Comparative Example 1 was 8 ⁇ m.
  • the encapsulating liquid resin composition of the present disclosure As described above, by using the encapsulating liquid resin composition of the present disclosure, a large number of devices can be encapsulated even on a thinner silicon wafer or a 12-inch or larger silicon wafer. can do. Furthermore, even when the liquid resin composition for sealing of the present disclosure is applied to a compound semiconductor wafer such as a SiC (silicon carbide) wafer, a sapphire wafer, or a GaAs (gallium arsenide) wafer, warpage of the semiconductor wafer occurs. It is thought that it can be suppressed.
  • SiC silicon carbide
  • sapphire wafer a sapphire wafer
  • GaAs gallium arsenide

Abstract

封止用液状樹脂組成物は、(A)脂肪族エポキシ化合物、(B)分子中に芳香環を有するエポキシ化合物、(C)含窒素複素環化合物及び(D)無機充填剤を含み、前記(D)無機充填剤の含有率が、77質量%以上である。

Description

封止用液状樹脂組成物及び電子部品装置
 本発明は、封止用液状樹脂組成物及び電子部品装置に関する。
 近年、電子部品装置の低コスト化、小型化、薄型化、軽量化、高性能化及び高機能化を図るために、素子の配線の微細化、多層化、多ピン化及びパッケージの小型薄型化による高密度実装化が進んでいる。これに伴い、IC(Integrated Circuit)等の素子とほぼ同じサイズの電子部品装置、すなわち、CSP(Chip Size Package)が広く用いられている。
 その中で、ウエハー段階で樹脂封止を行うウエハーレベルチップサイズパッケージが注目されている。このウエハーレベルチップサイズパッケージでは、ウエハー段階で、固形のエポキシ樹脂組成物を用いたコンプレッション成型(圧縮成型)又は液状のエポキシ樹脂組成物を用いた印刷成形により、多数の素子を一度に封止し個片化する。そのため、素子を個片化してから封止する方法に比べ大幅な生産性の向上が可能となる。しかしながら、封止したシリコンウエハーが反りやすく、この反りがその後の搬送、研削、検査及び個片化の各工程で問題となっており、デバイスによっては素子特性に変動が生じる問題が起こることがある。
 一方、従来から、電子部品装置の素子封止の分野では、生産性、コスト等の面から樹脂封止が主流となり、エポキシ樹脂組成物が広く用いられている。この理由としては、エポキシ樹脂が電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性にバランスがとれているためである。シリコンウエハーの反りは、このエポキシ樹脂組成物の硬化収縮、シリコンウエハーとエポキシ樹脂組成物の熱膨張係数のミスマッチ等によって発生する応力に由来するものであると考えられる。シリコンウエハーの反りは、パッケージの信頼性を低下させる恐れがある。そのため、このような用途に用いるエポキシ樹脂組成物には低応力化が要求される。エポキシ樹脂組成物を低応力化するためには、無機充填剤を高充填し熱膨張係数を小さくし、かつ、可撓化剤、可撓性樹脂等を用い弾性率を小さくすることが有効とされている。
 例えば、特許文献1では、液状ビスフェノール型エポキシ樹脂、シリコーンゴム微粒子、シリコーン変性エポキシ樹脂、芳香族アミン硬化剤、無機充填剤及び有機溶剤を含有した封止用液状エポキシ樹脂組成物が記載されている。
 また、特許文献2では、液状エポキシ樹脂、芳香族アミン硬化剤、固形シリコーン重合体のコアと有機重合体のシェルからなるコアシェルシリコーン重合体の微粒子、無機充填剤及び有機溶剤を含有した封止用液状エポキシ樹脂組成物が記載されている。
 このように、従来技術には、封止したシリコンウエハーの反りを低減するための圧縮成型用液状樹脂組成物として、少なくとも液状エポキシ樹脂、硬化剤、ゴム微粒子及び無機充填剤を含む液状エポキシ樹脂組成物が開示されている。
 また、特許文献3では、エポキシ樹脂、酸無水物硬化剤及び無機フィラーを含む液状モールド剤が開示されている。
特開2007-23272号公報 特開2008-150555号公報 特開2014-152314号公報
 シリコーンゴム微粒子及びシリコーン変性エポキシ樹脂を使用した特許文献1又はコアシェルシリコーン重合体の微粒子を使用した特許文献2の場合は、エポキシ樹脂硬化物の弾性率を下げ、低応力化を図ることができる。しかしながら、より一層薄いシリコンウエハー又は12インチサイズ若しくはそれよりも大型のシリコンウエハーの反りを十分に小さくすることができない問題が生じる場合がある。また、酸無水物硬化剤を使用した特許文献3の場合、組成物の粘度を低く抑えることができ、無機フィラーを多量に充填することによりエポキシ樹脂硬化物の線膨張係数を下げることができる。しかしながら、エポキシ樹脂硬化物の弾性率が高く、大型のシリコンウエハーの反りを十分に小さくすることができない場合がある。更なるコストダウン及びパッケージの薄型化を図るため、シリコンウエハーは今後益々径が大きく、厚みは薄くなる傾向があり、これらのシリコンウエハーの反りを小さくすることが必要である。
 シリコンウエハーの反りの問題は、SiC(シリコンカーバイド)ウエハー、サファイアウエハー、GaAs(ヒ化ガリウム)ウエハー等の化合物半導体ウエハーなどの半導体ウエハー全般に生じうる問題であると考えられる。
 本発明の一形態は、かかる状況に鑑みなされたものであり、半導体ウエハーの反りの発生を抑制可能な封止用液状樹脂組成物及びこれを用いた電子部品装置を提供することを目的とする。
 本発明の一形態は、以下に関する。
<1> (A)脂肪族エポキシ化合物、(B)分子中に芳香環を有するエポキシ化合物、(C)含窒素複素環化合物及び(D)無機充填剤を含み、前記(D)無機充填剤の含有率が、77質量%以上である封止用液状樹脂組成物。
<2> 前記(A)脂肪族エポキシ化合物が、下記一般式(I)で示される化合物を含む<1>に記載の封止用液状樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

 
[式中、nは、1~15の整数である。]
<3> 前記(A)脂肪族エポキシ化合物の数平均分子量が、200~10000である<1>又は<2>に記載の封止用液状樹脂組成物。
<4> 前記(B)分子中に芳香環を有するエポキシ化合物が、N,N-ジグリシジルオルトトルイジン及びN,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリンの少なくとも一方を含む<1>~<3>のいずれか一項に記載の封止用液状樹脂組成物。
<5> (E)カップリング剤を含む<1>~<4>のいずれか一項に記載の封止用液状樹脂組成物。
<6> <1>~<5>のいずれか一項に記載の封止用液状樹脂組成物により封止された素子を備えた電子部品装置。
 本発明の一形態によれば、半導体ウエハーの反りの発生を抑制可能な封止用液状樹脂組成物及びこれを用いた電子部品装置を提供することができる。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<封止用液状樹脂組成物>
 本開示の封止用液状樹脂組成物は、(A)脂肪族エポキシ化合物、(B)分子中に芳香環を有するエポキシ化合物、(C)含窒素複素環化合物及び(D)無機充填剤を含み、前記(D)無機充填剤の含有率が、77質量%以上である。本開示の封止用液状樹脂組成物は、必要に応じて上記成分以外のその他の成分を含んでもよい。本開示の封止用液状樹脂組成物によれば、半導体ウエハーの反りの発生が抑制可能となる。
 以下、封止用液状樹脂組成物を構成する各成分について説明する。
-(A)脂肪族エポキシ化合物-
 封止用液状樹脂組成物は、(A)脂肪族エポキシ化合物を含む。
 本開示において、(A)脂肪族エポキシ化合物とは、分子内にエポキシ基を少なくとも1個有し、なおかつエポキシ基以外の環状構造を分子中に有しない脂肪族化合物をいう。封止用液状樹脂組成物が(A)脂肪族エポキシ化合物を含むことで、封止用液状樹脂組成物を半導体ウエハーへ塗布し硬化させる態様で使用しても、半導体ウエハーの反りの発生がより効率的に抑制される傾向がある。
 (A)脂肪族エポキシ化合物としては、公知乃至慣用の脂肪族エポキシ化合物を使用することができ、特に限定されない。
 (A)脂肪族エポキシ化合物の具体例としては、アルキルアルコールグリシジルエーテル[ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル等]、アルケニルアルコールグリシジルエーテル[ビニルグリシジルエーテル、アリルグリシジルエーテル等]などの分子内にエポキシ基を1つ有する単官能脂肪族エポキシ化合物;アルキレングリコールジグリシジルエーテル、ポリ(アルキレングリコール)ジグリシジルエーテル、アルケニレングリコールジグリシジルエーテル等の分子内にエポキシ基を2つ有する二官能脂肪族エポキシ化合物;トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の三官能以上のアルコールのポリグリシジルエーテル[トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトール(トリ又はテトラ)グリシジルエーテル、ジペンタエリスリトール(トリ、テトラ、ペンタ又はヘキサ)グリシジルエーテル等]などの分子内にエポキシ基を3つ以上有する多官能脂肪族エポキシ化合物などが挙げられる。
 中でも、(A)脂肪族エポキシ化合物としては、半導体ウエハー上に硬化物を形成した場合の半導体ウエハーの反りがいっそう効率的に抑制される点で、二官能脂肪族エポキシ化合物が好ましい。
 二官能脂肪族エポキシ化合物としては、より具体的には、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,3-プロパンジオールジグリシジルエーテル、2-メチル-1,3-プロパンジオールジグリシジルエーテル、2-ブチル-2-エチル-1,3-プロパンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル(テトラメチレングリコールジグリシジルエーテル)、ネオペンチルグリコールジグリシジルエーテル、3-メチル-2,4-ペンタンジオールジグリシジルエーテル、2,4-ペンタンジオールジグリシジルエーテル、1,5-ペンタンジオールジグリシジルエーテル(ペンタメチレングリコールジグリシジルエーテル)、3-メチル-1,5-ペンタンジオールジグリシジルエーテル、2-メチル-2,4-ペンタンジオールジグリシジルエーテル、2,4-ジエチル-1,5-ペンタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル(ヘキサメチレングリコールジグリシジルエーテル)、1,7-ヘプタンジオールジグリシジルエーテル、3,5-ヘプタンジオールジグリシジルエーテル、1,8-オクタンジオールジグリシジルエーテル、2-メチル-1,8-オクタンジオールジグリシジルエーテル、1,9-ノナンジオールジグリシジルエーテル等のアルキレングリコールジグリシジルエーテル(アルカンジオールジグリシジルエーテル);ジエチレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、テトラエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリ(エチレングリコール/プロピレングリコール)ジグリシジルエーテル、ジテトラメチレングリコールジグリシジルエーテル、トリテトラメチレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ジペンタメチレングリコールジグリシジルエーテル、トリペンタメチレングリコールジグリシジルエーテル、ポリペンタメチレングリコールジグリシジルエーテル、ジヘキサメチレングリコールジグリシジルエーテル、トリヘキサメチレングリコールジグリシジルエーテル、ポリヘキサメチレングリコールジグリシジルエーテル等のポリアルキレングリコールジグリシジルエーテル(オリゴアルキレングリコールジグリシジルエーテルも含まれる)などが挙げられる。
 特に半導体ウエハーの反りが高度に抑制される点で、ある態様では、ポリアルキレングリコールジグリシジルエーテルが好ましく、アルキレングリコール(アルキレンオキシ)単位の数が1~20のポリアルキレングリコールジグリシジルエーテル(特に、アルキレングリコール単位の数が1~20でアルキレングリコール単位中の炭素原子の数が2~4のアルキレングリコールジグリシジルエーテル)がより好ましい。
 また、その他の態様としては、アルキレングリコール(アルキレンオキシ)単位の数が2~20のポリアルキレングリコールジグリシジルエーテル(特に、アルキレングリコール単位の数が2~20でアルキレングリコール単位中の炭素原子の数が2~4のアルキレングリコールジグリシジルエーテル)であってもよい。
 (A)脂肪族エポキシ化合物の分子量(重合体の場合は、溶出溶媒にテトラヒドロフランを用いたゲル浸透クロマトグラフィー(GPC)による標準ポリスチレン換算の数平均分子量)は特に限定されず、200~10000であることが好ましく、より好ましくは200~1200であり、さらに好ましくは200~1000であり、特に好ましくは300~900である。(A)脂肪族エポキシ化合物の分子量(又は数平均分子量)を上記範囲とすることにより、半導体ウエハーの反りがより効率的に抑制される傾向がある。
 より具体的には、(A)脂肪族エポキシ化合物として、下記一般式(I)で示される化合物(テトラメチレングリコールのジグリシジルエーテル又はポリテトラメチレングリコールのジグリシジルエーテル)が好ましく例示される。このような化合物を使用することにより、半導体ウエハーの反りがより効率的に抑制される傾向がある。
Figure JPOXMLDOC01-appb-C000003

 
 式中、nは、1~15の整数である。
 封止用液状樹脂組成物において(A)脂肪族エポキシ化合物は、一種を単独で用いても二種以上を組み合わせて用いてもよい。
 なお、一般式(I)で示される化合物としては、商品名「エポゴーセーPT(一般グレード)」(四日市合成株式会社、ポリテトラメチレングリコールのジグリシジルエーテル、数平均分子量700~800)等の市販品を使用することもできる。
 封止用液状樹脂組成物に含まれる(A)脂肪族エポキシ化合物の含有率は特に限定されるものではなく、封止用液状樹脂組成物に含まれるエポキシ基を有する化合物の全量(全エポキシ化合物;100質量%)に対して、3質量%~40質量%であることが好ましく、より好ましくは5質量%~35質量%であり、さらに好ましくは10質量%~30質量%である。(A)脂肪族エポキシ化合物の含有量を3質量%以上とすることにより、半導体ウエハーの反りがより抑制される傾向がある。一方、(A)脂肪族エポキシ化合物の含有量を40質量%以下とすることにより、封止用液状樹脂組成物の硬化性がより向上し、硬化物の耐熱性がより向上する傾向がある。
-(B)分子中に芳香環を有するエポキシ化合物-
 封止用液状樹脂組成物は、(B)分子中に芳香環を有するエポキシ化合物を含む。
 (B)分子中に芳香環を有するエポキシ化合物としては、公知乃至慣用の芳香族エポキシ化合物を使用することができ、特に限定されない。
 (B)分子中に芳香環を有するエポキシ化合物の具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、カテコール、レゾルシノール等のフェノール類のグリシジルエーテル、p-ヒドロキシ安息香酸等のヒドロキシカルボン酸のグリシジルエーテルエステル、安息香酸、フタル酸、テレフタル酸等のカルボン酸のモノグリシジルエステル又はポリグリシジルエステル、ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジル-p-アミノフェノール、テトラグリシジル-m-キシリレンジアミン等のグリシジルアミン型エポキシ化合物、ナフトールのグリシジルエステル、β-ヒドロキシナフトエ酸等のグリシジルエーテルエステルなどのナフタレン骨格を有するエポキシ化合物などが挙げられる。また、フェノール、カテコール、レゾルシノール等のフェノール類をノボラック化したノボラック化合物を用いてもよい。
 これらの中でも、グリシジルアミン型エポキシ化合物が好ましい。
 封止用液状樹脂組成物に含まれる(B)分子中に芳香環を有するエポキシ化合物としては、25℃において30mPa・s~5000mPa・sの粘度を示すものが好ましく、30mPa・s~1000mPa・sの粘度を示すものがより好ましい。(B)分子中に芳香環を有するエポキシ化合物の粘度がこの範囲であると、(D)無機充填剤の含有率が77質量%以上であっても、液状封止剤に適した組成物を得ることができる。
 本開示において、25℃における粘度は、コーンプレート(直径48mm、コーン角1°)を装着した回転式のせん断粘度計を用いて、10回転/分のせん断速度で測定される値をいう。
 より具体的には、(B)分子中に芳香環を有するエポキシ化合物として、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン及びN,N-ジグリシジルオルトトルイジンが好ましく例示される。このようなエポキシ化合物を用いることにより、封止用液状樹脂組成物の硬化性がより向上し、硬化物の耐熱性がより向上する傾向がある。
 (B)分子中に芳香環を有するエポキシ化合物として、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン及びN,N-ジグリシジルオルトトルイジンが併用される場合、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン及びN,N-ジグリシジルオルトトルイジンの質量基準の含有比率(N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン/N,N-ジグリシジルオルトトルイジン)としては、0.5~13.0であることが好ましく、0.7~8.0であることがより好ましく、1.0~3.5であることがさらに好ましい。
 封止用液状樹脂組成物に含まれる(B)分子中に芳香環を有するエポキシ化合物の含有率は特に限定されるものではなく、封止用液状樹脂組成物に含まれるエポキシ基を有する化合物の全量(全エポキシ化合物;100質量%)に対して、45質量%~95質量%であることが好ましく、より好ましくは55質量%~90質量%であり、さらに好ましくは65質量%~85質量%である。(B)分子中に芳香環を有するエポキシ化合物の含有量を45質量%以上とすることにより、硬化性が向上する傾向がある。一方、(B)分子中に芳香環を有するエポキシ化合物の含有量を95質量%以下とすることにより、半導体ウエハーの反りが抑制される傾向がある。
 封止用液状樹脂組成物に含まれる(A)脂肪族エポキシ化合物と(B)分子中に芳香環を有するエポキシ化合物との質量基準の含有比率((A)脂肪族エポキシ化合物/(B)分子中に芳香環を有するエポキシ化合物)としては、0.05~1.22であることが好ましく、0.11~0.82であることがより好ましく、0.17~0.54であることがさらに好ましい。
-(C)含窒素複素環化合物-
 封止用液状樹脂組成物は、(C)含窒素複素環化合物を含む。
 (C)含窒素複素環化合物としては、(A)脂肪族エポキシ化合物及び(B)分子中に芳香環を有するエポキシ化合物の重合を進行させるものであれば公知乃至慣用の含窒素複素環化合物を使用することができ、特に限定されない。
 (C)含窒素複素環化合物の具体例としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンゾイミダゾール等のイミダゾール類、ジアザビシクロウンデセン(DBU)、DBU-フェノール塩、DBU-オクチル酸塩、DBU-p-トルエンスルホン酸塩、DBU-ギ酸塩、DBU-オルソフタル酸塩、DBU-フェノールノボラック樹脂塩、DBU系テトラフェニルボレート塩、ジアザビシクロノネン(DBN)、DBN-フェノールノボラック樹脂塩、ジアザビシクロオクタン、ピラゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、イソインドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジンなどが挙げられる。(C)含窒素複素環化合物は、エポキシ樹脂若しくはイソシアネート樹脂とアダクト化又はマイクロカプセル化されたものを使用することができる。これらのうち、反応性及び保存安定性の観点から2-フェニル-4-メチルイミダゾールが好ましい。
 (C)含窒素複素環化合物の配合量は、(A)脂肪族エポキシ化合物と(B)分子中に芳香環を有するエポキシ化合物と必要に応じて用いられるその他のエポキシ化合物との合計100質量部に対して2質量部~20質量部であることが好ましく、3質量部~12質量部であることがより好ましい。(C)含窒素複素環化合物の配合量が2質量部以上であれば、封止用液状樹脂組成物の硬化時間が長くなりすぎることがなく、電子部品装置の生産性が向上する傾向がある。(C)含窒素複素環化合物の配合量が20質量部以下であれば、封止用液状樹脂組成物の保存安定性が向上する傾向がある。
 さらに、本発明の効果を損なわない範囲で、必要に応じて、液状酸無水物、液状フェノール、芳香族アミン等の硬化剤を併用することができる。この場合、封止用液状樹脂組成物中のエポキシ化合物1当量に対して、(C)含窒素複素環化合物以外の硬化剤が0.1当量未満であることが好ましい。
-(D)無機充填剤-
 封止用液状樹脂組成物は、(D)無機充填剤を含む。
 (D)無機充填剤としては、公知乃至慣用の無機充填剤を使用することができ、特に限定されない。
 (D)無機充填剤としては、溶融シリカ、結晶シリカ等のシリカ、炭酸カルシウム、クレー、アルミナ、窒化珪素、炭化珪素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミニウム、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、これらを球状化したビーズ、ガラス繊維などが挙げられる。さらに、難燃効果のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。これらの(D)無機充填剤は、一種を単独で用いても二種以上を組み合わせて用いてもよい。中でも線膨張係数の低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましい。(D)無機充填剤の形状は、(D)無機充填剤の高充填化並びに封止用液状樹脂組成物の微細間隙への流動性及び浸透性の観点から球状が好ましい。
 (D)無機充填剤の平均粒径は、特に球状シリカの場合、1μm~20μmであることが好ましく、1.5μm~15μmであることがより好ましく、2μm~10μmであることがさらに好ましい。ここで平均粒径は、レーザー回折法を用いて測定される体積累積粒度分布が50%となる粒子径をいう。(D)無機充填剤の平均粒径が1μm以上であれば、(D)無機充填剤を封止用液状樹脂組成物へ高濃度に分散することが容易になる傾向がある。(D)無機充填剤の平均粒径が20μm以下であれば、(D)無機充填剤の粗粒成分が少なくなり、封止用液状樹脂組成物の微細間隙への充填不足又は印刷時のスジ状の不良が抑えられ、表面平滑性が向上する傾向がある。
 (D)無機充填剤の含有率は、封止用液状樹脂組成物の合計量に対して、77質量%以上である。無機充填剤の含有率が77質量%以上であれば、半導体ウエハーの反りの発生が抑制可能となる。その理由は明確ではないが、無機充填剤の含有率が77質量%以上であれば、封止用液状樹脂組成物の熱膨張係数が、半導体ウエハーの反りの発生を抑制可能な程度まで小さくなるためと推察される。
 (D)無機充填剤の含有率は、封止用液状樹脂組成物の合計量に対して、好ましくは77質量%~93質量%の範囲に、より好ましくは77質量%~91質量%の範囲に設定される。
-(E)カップリング剤-
 封止用液状樹脂組成物は、樹脂と無機充填剤又は樹脂と電子部品の構成部材との接着性を強固にするために、必要に応じて(E)カップリング剤を含んでもよい。(E)カップリング剤としては、公知乃至慣用の(E)カップリング剤を使用することができ、特に限定されない。
 (E)カップリング剤としては、1級アミノ基、2級アミノ基及び3級アミノ基からなる群より選択される少なくとも一つを有するシラン化合物、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物などが挙げられる。
 (E)カップリング剤を例示すると、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリメトキシシラン、γ-(N-メチル)アニリノプロピルトリメトキシシラン、γ-(N-エチル)アニリノプロピルトリメトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリエトキシシラン、γ-(N-メチル)アニリノプロピルトリエトキシシラン、γ-(N-エチル)アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジエチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジブチル)アミノプロピルメチルジメトキシシラン、γ-(N-メチル)アニリノプロピルメチルジメトキシシラン、γ-(N-エチル)アニリノプロピルメチルジメトキシシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤などが挙げられる。これらの(E)カップリング剤は、一種を単独で用いても二種以上を組み合わせて用いてもよい。
 封止用液状樹脂組成物が(E)カップリング剤を含む場合、(E)カップリング剤の含有率は、(D)無機充填剤及び(E)カップリング剤の合計量に対して0.1質量%~2.0質量%であることが好ましく、0.2質量%~1.5質量%であることがより好ましい。(E)カップリング剤の含有率が0.1質量%以上であれば、(E)カップリング剤による(D)無機充填剤の分散性を向上する効果が得られやすい傾向がある。(E)カップリング剤の含有率が2.0質量%以下であれば、封止用液状樹脂組成物の硬化物中にボイドが発生しにくい傾向がある。
-(F)有機溶剤-
 封止用液状樹脂組成物は、必要に応じて(F)有機溶剤を含んでもよい。(F)有機溶剤としては、公知乃至慣用の(F)有機溶剤を使用することができ、特に限定されない。
 封止用液状樹脂組成物が(F)有機溶剤を含む場合、(F)有機溶剤の含有率は、(A)成分~(F)成分の合計量に対して5質量%未満であることが好ましい。(F)有機溶剤の含有率が5質量%未満であれば、硬化後における膜減りの発生が抑制される傾向がある。
-その他の成分-
 封止用液状樹脂組成物は必要に応じて、(A)成分~(F)成分以外のその他の成分を含んでもよい。
 封止用液状樹脂組成物には、(A)脂肪族エポキシ化合物及び(B)分子中に芳香環を有するエポキシ化合物以外のその他のエポキシ化合物を含んでもよい。その他のエポキシ化合物としては、(A)脂肪族エポキシ化合物及び(B)分子中に芳香環を有するエポキシ化合物以外の公知乃至慣用のエポキシ化合物を使用することができ、特に限定されない。封止用液状樹脂組成物がその他のエポキシ化合物を含む場合、その他のエポキシ化合物の含有率は、封止用液状樹脂組成物に含まれるエポキシ基を有する化合物の全量(全エポキシ化合物;100質量%)に対して、0質量%を超え40質量%以下であることが好ましく、より好ましくは0質量%を超え30質量%以下であり、さらに好ましくは0質量%を超え20質量%以下である。
 IC等の半導体素子の耐マイグレーション性、耐湿性及び高温放置特性を向上させる観点からは、封止用液状樹脂組成物は、その他の成分としてイオントラップ剤を含むことが好ましい。イオントラップ剤としては特に制限はなく、公知乃至慣用のものを用いることができる。イオントラップ剤としては、ハイドロタルサイト類、マグネシウム、アルミニウム、チタン、ジルコニウム、ビスマス等の元素の含水酸化物などが挙げられる。これらのイオントラップ剤は、一種を単独で用いても二種以上を組み合わせて用いてもよい。具体的には、DHT-4A(協和化学工業株式会社、商品名)、IXE500(東亜合成株式会社、商品名)等が挙げられる。封止用液状樹脂組成物へのイオントラップ剤の含有率は、ハロゲンイオン等の陰イオン及びナトリウム等の陽イオンを捕捉できる十分量であれば特に制限はなく、エポキシ化合物全量に対して1質量%~10質量%であることが好ましい。
 封止用液状樹脂組成物は、その他の成分として、硬化促進剤;染料、顔料、カーボンブラック等の着色剤;シリコーンオイル;界面活性剤;酸化防止剤;リン酸エステル;メラミン、メラミン誘導体、トリアジン環を有する化合物、シアヌル酸誘導体、イソシアヌル酸誘導体等の窒素含有化合物;シクロホスファゼン等の燐窒素含有化合物;酸化亜鉛、酸化鉄、酸化モリブデン、フェロセン等の金属化合物;三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等の酸化アンチモン、ブロム化エポキシ樹脂等の従来公知の難燃剤などを必要に応じて含むことが好ましい。
 封止用液状樹脂組成物は、上記各種成分を均一に分散し混合できるのであれば、いかなる手法を用いて調製してもよい。封止用液状樹脂組成物を調製するための一般的な手法としては、所定の配合量の成分を秤量し、三本ロール、らい潰機、プラネタリーミキサー、ハードミキサー、ホモミキサー等によって分散し混練を行う方法を挙げることができる。また、各配合成分を予備分散及び予備加熱させたマスターバッチを用いる手法が、均一分散性及び流動性の点から好ましい。
 本開示の封止用液状樹脂組成物の硬化条件は特に限定されない。熱処理の温度としては、120℃~200℃であることが好ましく、130℃~180℃であることがより好ましく、140℃~170℃であることがさらに好ましい。熱処理時間としては、15分~3時間であることが好ましく、30分~2時間であることがより好ましい。
 本開示の封止用液状樹脂組成物の硬化物についてのDMA法により測定されるガラス転移温度は、125℃以上であることが好ましく、150℃以上であることがより好ましい。
 本開示の封止用液状樹脂組成物の硬化物についてのDMA法により測定されるガラス転移温度未満の温度での弾性率は、20GPa以下であることが好ましく、16GPa以下であることがより好ましい。
 本開示の封止用液状樹脂組成物の硬化物についてのガラス転移温度未満の温度での線膨張係数は、15ppm/℃以下であることが好ましく、12ppm/℃以下であることがより好ましい。
 本開示の封止用液状樹脂組成物の25℃における粘度は、1000Pa・s未満であることが好ましく、800Pa・s以下であることがより好ましく、500Pa・s以下であることがさらに好ましい。
<電子部品装置>
 本開示の電子部品装置は、本開示の封止用液状樹脂組成物により封止された素子を備えたものである。
 電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハー等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などの電子部品を搭載し、必要な部分を本開示の封止用液状樹脂組成物で封止して得られる電子部品装置が挙げられる。
 中でも、本開示の封止用液状樹脂組成物は低反り性及び高信頼性を要求される電子部品装置に有効であり、特にウエハーレベルチップサイズパッケージに好適である。本開示の封止用液状樹脂組成物を用いて素子を封止する方法としては、ディスペンス方式、注型方式、印刷方式等が挙げられ、特に印刷方式が好適である。
 本発明について、実施例により説明するが、本発明は下記実施例に限定されるものではない。なお、以下の実施例において、部及び%はことわりのない限り、質量部及び質量%を示す。
(実施例1、2及び比較例1)
 表1に示す各材料を、プラネタリーミキサーを用いて2時間混合し、さらにハードミキサーを用いて真空度が80Pa~90Paで1時間撹拌脱泡して封止用液状樹脂組成物を製造した。表1において(A)成分、(B)成分、(C)成分及び(D)成分は、各々、(A)脂肪族エポキシ化合物、(B)分子中に芳香環を有するエポキシ化合物、(C)含窒素複素環化合物及び(D)無機充填剤を意味する。また、表1に記載の各成分の組成の単位は質量部である。
 製造した封止用液状樹脂組成物を、次の各試験により評価した。得られた結果を表1にまとめて示す。
(粘度及び揺変指数)
 Brookfield社のHB型粘度計を用いて、製造した封止用液状樹脂組成物について25℃、10回転/分の条件で粘度を測定した。25℃における粘度が1000Pa・s未満であると、通常のコンプレッションモールド装置を使用して高い生産性を得ることができる。また、封止用液状樹脂組成物を25℃、1回転/分の条件で測定した粘度の測定値を25℃、10回転/分の条件で測定した粘度の測定値で除した値を揺変指数とした。
(線膨張係数)
 封止用液状樹脂組成物を150℃、60分間加熱硬化させた硬化物についてブルカーASX社のTMA4000SAシリーズを用いてTMA(Thermomechanical Analysis、熱機械分析)法により、50℃~70℃と180℃~200℃においてそれぞれ線膨張係数を測定した。Tg未満の温度での線膨張係数が12ppm/℃以下であると、半導体ウエハーの反りを十分に小さくすることができる。
(ガラス転移温度(Tg)及び弾性率)
 封止用液状樹脂組成物を150℃、60分間加熱硬化させた硬化物についてSII社のDMS6100を用いてDMA(Dynamic Mechanical Analysis、動的粘弾性測定)法によりガラス転移温度及び弾性率を測定した。ガラス転移温度が140℃以上であると、信頼性の高い半導体装置を得ることができる。また、Tg未満の温度での弾性率が20GPa以下であると、反りの小さな半導体ウエハーを得るのに好適である。
(反り)
 直径300mm、厚み300μmのシリコンウエハーに、金型を用いて、直径292mm、厚み300μmの封止用液状樹脂組成物層を形成し、150℃で60分間加熱硬化させて試料とした。硬化後、定規を用いて、シリコンウエハー中心部と端部の高低差を反りとして測定した。
Figure JPOXMLDOC01-appb-T000004
 表1において、(1)~(12)の各材料の詳細は、以下の通りである。また、表1において「-」は、該当する材料を使用しなかったことを意味する。
(1) 四日市合成株式会社、ポリテトラメチレングリコールジグリシジルエーテル(品名:エポゴーセーPT(一般グレード)、エポキシ当量440g/eq、平均分子量880)
(2) 三菱ケミカル株式会社、アミノフェノール型エポキシ化合物(品名:jER 630、エポキシ当量95g/eq、平均分子量285、25℃の粘度:700mPa・s、化合物名:N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン)
(3) 株式会社ADEKA、トルイジン型エポキシ化合物(品名:EP3980S、エポキシ当量135g/eq、平均分子量270、25℃の粘度:50mPa・s、化合物名:N,N-ジグリシジルオルトトルイジン)
(4) DIC株式会社、ナフタレン型エポキシ化合物(品名:HP4032D、エポキシ当量140g/eq、平均分子量280)
(5) 四国化成株式会社、イミダゾール化合物(品名:キュアゾール2P4MZ)
(6) 日立化成株式会社、メチルヘキサヒドロフタル酸無水物(品名:HN2200)
(7) 新日鉄住金マテリアル株式会社、球状シリカ(品名:STW7010-20、平均粒径10μm)
(8) 株式会社アドマテックス、球状シリカ(品名:SE2300、平均粒径0.6μm)
(9) 株式会社アドマテックス、球状シリカ(品名:2umSM-E4、平均粒径2μm)
(10) 信越化学工業株式会社、シランカップリング剤(品名:KBM403、化合物名:γ-グリシドキシプロピルトリメトキシシラン)
(11) オリオン エンジニアドカーボンズ株式会社、カーボンブラック(品名:Special Black 4)
(12) 東レ・ダウコーニング株式会社、シリコーンオイル(品名:SF8421)
 なお、実施例2及び比較例1に含まれる全シリカフィラーの平均粒径は、8μmであった。
 表1からわかるように、実施例1及び2では粘度、ガラス転移温度、線膨張係数及び弾性率が実用的な範囲でありながらシリコンウエハーの反りが0mmであった。これに対して、従来の酸無水物硬化剤を用いた比較例1では、反りが8mmと大きかった。
 上記のように、本開示の封止用液状樹脂組成物を用いることにより、より一層薄いシリコンウエハー又は12インチサイズ若しくはそれよりも大型のシリコンウエハーに対しても多数の素子を一括して封止することができる。さらには、SiC(シリコンカーバイド)ウエハー、サファイアウエハー、GaAs(ヒ化ガリウム)ウエハー等の化合物半導体ウエハーなどに本開示の封止用液状樹脂組成物を適用した場合にも、半導体ウエハーの反りの発生を抑制することができると考えられる。
 2017年5月31日に出願された日本国特許出願2017-108715号の開示は、その全体が参照により本明細書に取り込まれる。
 また、本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1.  (A)脂肪族エポキシ化合物、(B)分子中に芳香環を有するエポキシ化合物、(C)含窒素複素環化合物及び(D)無機充填剤を含み、前記(D)無機充填剤の含有率が、77質量%以上である封止用液状樹脂組成物。
  2.  前記(A)脂肪族エポキシ化合物が、下記一般式(I)で示される化合物を含む請求項1に記載の封止用液状樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

     
    [式中、nは、1~15の整数である。]
  3.  前記(A)脂肪族エポキシ化合物の数平均分子量が、200~10000である請求項1又は請求項2に記載の封止用液状樹脂組成物。
  4.  前記(B)分子中に芳香環を有するエポキシ化合物が、N,N-ジグリシジルオルトトルイジン及びN,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリンの少なくとも一方を含む請求項1~請求項3のいずれか一項に記載の封止用液状樹脂組成物。
  5.  (E)カップリング剤を含む請求項1~請求項4のいずれか一項に記載の封止用液状樹脂組成物。
  6.  請求項1~請求項5のいずれか一項に記載の封止用液状樹脂組成物により封止された素子を備えた電子部品装置。
PCT/JP2018/021059 2017-05-31 2018-05-31 封止用液状樹脂組成物及び電子部品装置 WO2018221681A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880036334.0A CN110785451A (zh) 2017-05-31 2018-05-31 密封用液状树脂组合物和电子部件装置
EP18809299.3A EP3620481B1 (en) 2017-05-31 2018-05-31 Liquid resin composition for sealing and electronic component apparatus
US16/618,697 US20200194325A1 (en) 2017-05-31 2018-05-31 Liquid resin composition for sealing and electronic component apparatus
JP2019521313A JP7148507B2 (ja) 2017-05-31 2018-05-31 封止用液状樹脂組成物及び電子部品装置
KR1020197038170A KR20200015584A (ko) 2017-05-31 2018-05-31 밀봉용 액상 수지 조성물 및 전자 부품 장치
JP2022151724A JP2022179534A (ja) 2017-05-31 2022-09-22 封止用液状樹脂組成物及び電子部品装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017108715 2017-05-31
JP2017-108715 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221681A1 true WO2018221681A1 (ja) 2018-12-06

Family

ID=64454806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021059 WO2018221681A1 (ja) 2017-05-31 2018-05-31 封止用液状樹脂組成物及び電子部品装置

Country Status (8)

Country Link
US (1) US20200194325A1 (ja)
EP (1) EP3620481B1 (ja)
JP (2) JP7148507B2 (ja)
KR (1) KR20200015584A (ja)
CN (1) CN110785451A (ja)
PT (1) PT3620481T (ja)
TW (1) TWI786121B (ja)
WO (1) WO2018221681A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210100029A (ko) 2020-02-05 2021-08-13 아지노모토 가부시키가이샤 수지 조성물
WO2022085522A1 (ja) * 2020-10-21 2022-04-28 パナソニックIpマネジメント株式会社 液状樹脂組成物及びその硬化物
KR20230028272A (ko) 2020-06-23 2023-02-28 나믹스 가부시끼가이샤 액상 컴프레션 몰드재
WO2024075343A1 (ja) * 2022-10-07 2024-04-11 ナミックス株式会社 エポキシ樹脂組成物、半導体装置、及び半導体装置の製造方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335923A (ja) * 2002-05-21 2003-11-28 Sumitomo Bakelite Co Ltd 半導体用樹脂ペースト及び半導体装置
JP2006176678A (ja) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd エポキシ樹脂組成物及び電子部品
JP2007023272A (ja) 2005-06-15 2007-02-01 Hitachi Chem Co Ltd 封止用液状エポキシ樹脂組成物、電子部品装置及びウエハーレベルチップサイズパッケージ
JP2008045123A (ja) * 2006-08-10 2008-02-28 Natl Starch & Chem Investment Holding Corp 熱伝導性材料
JP2008150555A (ja) 2006-12-20 2008-07-03 Hitachi Chem Co Ltd 封止用液状エポキシ樹脂組成物、電子部品装置及びウエハーレベルチップサイズパッケージ
JP2009221424A (ja) 2008-03-18 2009-10-01 Sekisui Chem Co Ltd 電子部品用接着剤
JP2012060021A (ja) * 2010-09-10 2012-03-22 Sekisui Chem Co Ltd 半導体チップ実装体の製造方法及び半導体装置
JP2012074613A (ja) 2010-09-29 2012-04-12 Sumitomo Bakelite Co Ltd 半導体装置の製造方法及び半導体装置
JP2012077129A (ja) * 2010-09-30 2012-04-19 Namics Corp 樹脂組成物、および、それを用いた封止材
JP2012162585A (ja) 2011-02-03 2012-08-30 Namics Corp 半導体樹脂封止材
JP2014152314A (ja) 2013-02-13 2014-08-25 Namics Corp 液状モールド剤、および液状モールド剤の製造方法
JP2015013950A (ja) * 2013-07-05 2015-01-22 ナガセケムテックス株式会社 エポキシ樹脂組成物
JP2015174906A (ja) * 2014-03-14 2015-10-05 Dic株式会社 樹脂組成物、熱伝導性接着剤及び積層体
JP2017039802A (ja) * 2015-08-17 2017-02-23 積水化学工業株式会社 半導体素子保護用材料及び半導体装置
JP2017108715A (ja) 2015-12-18 2017-06-22 グローブライド株式会社 魚釣用スピニングリール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000053B2 (ja) * 2001-09-05 2012-08-15 三菱化学株式会社 液状エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP4047613B2 (ja) * 2002-03-29 2008-02-13 住友ベークライト株式会社 液状封止樹脂及びそれを用いた半導体装置
WO2009142065A1 (ja) * 2008-05-21 2009-11-26 ナガセケムテックス株式会社 電子部品封止用エポキシ樹脂組成物
JP2013155363A (ja) * 2012-02-01 2013-08-15 Shin-Etsu Chemical Co Ltd 液状エポキシ樹脂組成物及び半導体装置
CN105778409A (zh) * 2014-12-18 2016-07-20 北京首科化微电子有限公司 半导体封装用的环氧树脂组合物及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335923A (ja) * 2002-05-21 2003-11-28 Sumitomo Bakelite Co Ltd 半導体用樹脂ペースト及び半導体装置
JP2006176678A (ja) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd エポキシ樹脂組成物及び電子部品
JP2007023272A (ja) 2005-06-15 2007-02-01 Hitachi Chem Co Ltd 封止用液状エポキシ樹脂組成物、電子部品装置及びウエハーレベルチップサイズパッケージ
JP2008045123A (ja) * 2006-08-10 2008-02-28 Natl Starch & Chem Investment Holding Corp 熱伝導性材料
JP2008150555A (ja) 2006-12-20 2008-07-03 Hitachi Chem Co Ltd 封止用液状エポキシ樹脂組成物、電子部品装置及びウエハーレベルチップサイズパッケージ
JP2009221424A (ja) 2008-03-18 2009-10-01 Sekisui Chem Co Ltd 電子部品用接着剤
JP2012060021A (ja) * 2010-09-10 2012-03-22 Sekisui Chem Co Ltd 半導体チップ実装体の製造方法及び半導体装置
JP2012074613A (ja) 2010-09-29 2012-04-12 Sumitomo Bakelite Co Ltd 半導体装置の製造方法及び半導体装置
JP2012077129A (ja) * 2010-09-30 2012-04-19 Namics Corp 樹脂組成物、および、それを用いた封止材
JP2012162585A (ja) 2011-02-03 2012-08-30 Namics Corp 半導体樹脂封止材
JP2014152314A (ja) 2013-02-13 2014-08-25 Namics Corp 液状モールド剤、および液状モールド剤の製造方法
JP2015013950A (ja) * 2013-07-05 2015-01-22 ナガセケムテックス株式会社 エポキシ樹脂組成物
JP2015174906A (ja) * 2014-03-14 2015-10-05 Dic株式会社 樹脂組成物、熱伝導性接着剤及び積層体
JP2017039802A (ja) * 2015-08-17 2017-02-23 積水化学工業株式会社 半導体素子保護用材料及び半導体装置
JP2017108715A (ja) 2015-12-18 2017-06-22 グローブライド株式会社 魚釣用スピニングリール

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210100029A (ko) 2020-02-05 2021-08-13 아지노모토 가부시키가이샤 수지 조성물
KR20230028272A (ko) 2020-06-23 2023-02-28 나믹스 가부시끼가이샤 액상 컴프레션 몰드재
WO2022085522A1 (ja) * 2020-10-21 2022-04-28 パナソニックIpマネジメント株式会社 液状樹脂組成物及びその硬化物
WO2024075343A1 (ja) * 2022-10-07 2024-04-11 ナミックス株式会社 エポキシ樹脂組成物、半導体装置、及び半導体装置の製造方法

Also Published As

Publication number Publication date
PT3620481T (pt) 2024-04-08
TW201902974A (zh) 2019-01-16
EP3620481A4 (en) 2020-12-09
EP3620481B1 (en) 2024-03-27
TWI786121B (zh) 2022-12-11
KR20200015584A (ko) 2020-02-12
EP3620481A1 (en) 2020-03-11
JP7148507B2 (ja) 2022-10-05
CN110785451A (zh) 2020-02-11
US20200194325A1 (en) 2020-06-18
JP2022179534A (ja) 2022-12-02
JPWO2018221681A1 (ja) 2020-07-09

Similar Documents

Publication Publication Date Title
JP7148508B2 (ja) 圧縮成型用液状樹脂組成物及び電子部品装置
JP7148507B2 (ja) 封止用液状樹脂組成物及び電子部品装置
JP2009097013A (ja) 封止用液状樹脂組成物、電子部品装置及びウエハーレベルチップサイズパッケージ
JP2010138384A (ja) 封止用液状エポキシ樹脂組成物、及びこの封止用液状エポキシ樹脂組成物で封止した素子を備えた電子部品装置およびウエハーレベルチップサイズパッケージ
JP2020200478A (ja) 樹脂組成物、硬化物、封止用フィルム及び封止構造体
JP5374818B2 (ja) 封止用液状エポキシ樹脂組成物、電子部品装置及びウエハーレベルチップサイズパッケージ
JP2018172599A (ja) 液状封止材、半導体装置の製造方法及び半導体装置
JP6540858B2 (ja) アンダーフィル材及び該アンダーフィル材により封止する電子部品とその製造方法
JPWO2019146617A1 (ja) 封止用樹脂組成物
WO2023089878A1 (ja) エポキシ樹脂組成物、液状コンプレッションモールド材、グラブトップ材および半導体装置
JP2016017121A (ja) 成形用樹脂シート及び電気・電子部品
WO2023062877A1 (ja) 液状封止剤、電子部品及びその製造方法、並びに半導体装置
JP7337462B2 (ja) エポキシ樹脂組成物
JP7167912B2 (ja) 液状封止樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2022060062A (ja) エポキシ樹脂組成物及び電子部品装置
TWI835960B (zh) 密封組成物及半導體裝置
JP2022060063A (ja) エポキシ樹脂組成物及び電子部品装置
JP2007146155A (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2017190396A (ja) 封止用樹脂シート及び電子部品装置の製造方法
JP2022063247A (ja) アンダーフィル用液状樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP6838345B2 (ja) 封止用エポキシ樹脂組成物、並びに半導体装置及びその製造方法
TW201934651A (zh) 密封組成物及半導體裝置
TW202035546A (zh) 密封組成物及半導體裝置
JP2020186397A (ja) アンダーフィル材、電子部品装置及び電子部品装置の製造方法
TW201930538A (zh) 密封組成物及其製造方法以及半導體裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018809299

Country of ref document: EP

Effective date: 20191205

ENP Entry into the national phase

Ref document number: 20197038170

Country of ref document: KR

Kind code of ref document: A