WO2022085522A1 - 液状樹脂組成物及びその硬化物 - Google Patents

液状樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2022085522A1
WO2022085522A1 PCT/JP2021/037787 JP2021037787W WO2022085522A1 WO 2022085522 A1 WO2022085522 A1 WO 2022085522A1 JP 2021037787 W JP2021037787 W JP 2021037787W WO 2022085522 A1 WO2022085522 A1 WO 2022085522A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
mass
less
epoxy
resin composition
Prior art date
Application number
PCT/JP2021/037787
Other languages
English (en)
French (fr)
Inventor
孝憲 小西
匡規 石垣
玄太 土井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022557018A priority Critical patent/JPWO2022085522A1/ja
Priority to CN202180070761.2A priority patent/CN116390967A/zh
Publication of WO2022085522A1 publication Critical patent/WO2022085522A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present disclosure relates to a liquid resin composition and a cured product of the liquid resin composition, and more particularly, a liquid resin composition containing an epoxy resin, a curing agent, and a ceramic filler, and a cured product of the liquid resin composition. Regarding.
  • the encapsulant used for encapsulation in semiconductor packages such as AiP is required to have a small warp after molding in pressure molding of a substrate.
  • AiP Antenna in Package
  • silicone, acrylic rubber or the like As a method for exhibiting low warpage, it is common to use silicone, acrylic rubber or the like as a low stress agent.
  • an epoxy-silicone hybrid resin composition containing an organopolysiloxane and an epoxy resin is known (see Patent Document 1).
  • such encapsulants In addition to low warpage, such encapsulants have heat resistance, chemical resistance to alkalis and polar solvents, and wettability of heat-resistant insulating coats such as photosensitive polyimide to the surface after curing and grinding. It is required to be excellent in various characteristics. However, the conventional resin composition cannot satisfy these characteristics.
  • An object of the present disclosure is to provide a liquid resin composition having excellent heat resistance, chemical resistance and wettability of a heat-resistant insulating coat while maintaining low warpage, and a cured product of the liquid resin composition.
  • the liquid resin composition according to one aspect of the present disclosure contains an epoxy resin, a curing agent, and a ceramic filler.
  • the epoxy resin includes a first epoxy resin and a second epoxy resin.
  • the first epoxy resin has a polyalkylene glycol skeleton.
  • the second epoxy resin has an aromatic ring and has three or more epoxy groups in one molecule.
  • the curing agent contains a compound having two or more phenolic hydroxyl groups in one molecule.
  • the ratio of the first epoxy resin in the epoxy resin is 10% by mass or more and 25% by mass or less.
  • the cured product according to one aspect of the present disclosure is a cured product of the liquid resin composition.
  • the liquid resin composition of the present embodiment contains an epoxy resin, a curing agent, and a ceramic filler.
  • the epoxy resin includes a first epoxy resin and a second epoxy resin.
  • the first epoxy resin has a polyalkylene glycol skeleton.
  • the second epoxy resin has an aromatic ring and has three or more epoxy groups in one molecule.
  • the curing agent contains a compound having two or more phenolic hydroxyl groups in one molecule.
  • the ratio of the first epoxy resin in the epoxy resin is 10% by mass or more and 25% by mass or less.
  • the inventors use two specific epoxy resins, a first epoxy resin and a second epoxy resin, and the specific curing agent, and determine the ratio of the first epoxy resin in the epoxy resin. It has been found that the above-mentioned specific range can satisfy all of the low warpage property, heat resistance, chemical resistance and wettability of the heat-resistant insulating coat. As described above, according to the present disclosure, it is possible to provide a liquid resin composition having excellent heat resistance, chemical resistance and wettability of a heat-resistant insulating coat while maintaining low warpage.
  • liquid resin composition of the present embodiment has the above-mentioned effect is not necessarily clear, but can be inferred as follows, for example. That is, by using a first epoxy resin having a polyalkylene glycol skeleton and setting the ratio to 10% by mass or more, it is possible to contribute to the reduction of warpage, and by setting it to 25% by mass or less, the wettability is deteriorated. Is considered to be able to be suppressed. Further, by using a second epoxy resin having an aromatic ring and having 3 or more epoxy groups in one molecule, heat resistance is improved due to the presence of the aromatic ring and the formation of a crosslinked structure of the epoxy resin.
  • the chemical resistance can be improved by using a curing agent having two or more phenolic hydroxyl groups in one molecule.
  • the liquid composition of the present embodiment can be made excellent in all of low warpage, heat resistance, chemical resistance and wettability of the heat-resistant insulating coat.
  • Epoxy resin is a compound having two or more epoxy groups in one molecule.
  • the epoxy resin includes a first epoxy resin and a second epoxy resin.
  • the epoxy resin may contain a third epoxy resin different from the first epoxy resin and the second epoxy resin.
  • the epoxy resin is preferably liquid at 25 ° C.
  • the first epoxy resin is an epoxy resin having a polyalkylene glycol skeleton.
  • the first epoxy resin preferably has two epoxy groups.
  • the first epoxy resin is preferably liquid at 25 ° C.
  • the first epoxy resin one kind or two or more kinds can be used.
  • the polyalkylene glycol skeleton refers to a skeleton including a structure in which two or more alkylene glycol units are linked, for example, a skeleton represented by (-RO-) n (R is an alkylene group, n is an integer of 2 or more). To say.
  • Examples of the first epoxy resin include compounds represented by the following formula (1).
  • RA is an alkylene group having 2 to 10 carbon atoms.
  • R 1 and R 2 are independently single-bonded or divalent organic groups having 1 to 20 carbon atoms.
  • E 1 and E 2 are independently monovalent groups containing an epoxy group.
  • n is an integer of 2 or more and 1000 or less.
  • Examples of the alkylene group having 2 to 10 carbon atoms represented by R 1 include an ethanediyl group, a propanediyl group, a butanjiyl group, a pentandiyl group, a hexanediyl group, an octanediyl group, a decandyl group and the like.
  • Organic group means a group containing at least one carbon atom.
  • Examples of the divalent organic group having 1 to 20 carbon atoms represented by R 1 and R 2 include a substituted or unsubstituted divalent hydrocarbon group.
  • Examples of the substituent include a hydroxy group, an alkoxy group, a halogen atom and the like.
  • Examples of the monovalent group including the epoxy group represented by E 1 and E 2 include a substituted or unsubstituted epoxy group, a substituted or unsubstituted glycidyl group and the like.
  • Examples of the substituent include an alkyl group such as a methyl group.
  • N is preferably 2 or more and 500 or less, more preferably 5 or more and 300 or less, and further preferably 10 or more and 200 or less.
  • Examples of the first epoxy resin include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polytrimethylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, and polyhexamethylene glycol diglycidyl ether.
  • the first epoxy resin examples include, for example, SR-4PG and SR-TPG manufactured by Sakamoto Pharmaceutical Co., Ltd., PG-207 and PG-207GS manufactured by Nittetsu Chemical & Materials Co., Ltd., YX7400 manufactured by Mitsubishi Chemical Corporation, and Yokkaichi Chemical Company Limited.
  • Epoxy PT made by Epogosei PT and the like can be mentioned.
  • the proportion of the first epoxy resin in the entire epoxy resin is 10% by mass or more and 25% by mass or less.
  • the ratio of the first epoxy resin in this range, it is possible to achieve both low warpage and wettability of the heat-resistant insulating coat. If the proportion of the first epoxy resin is less than 10% by mass, the warp increases. If this ratio exceeds 25% by mass, the wettability deteriorates.
  • the ratio of the first epoxy resin is preferably 13% by mass or more, and more preferably 15% by mass or more.
  • the ratio of the first epoxy resin is preferably 22% by mass or less, more preferably 20% by mass or less.
  • the ratio of the first epoxy resin to the composition (X) is preferably 1% by mass or more and 10% by mass or less, more preferably 2% by mass or more and 6% by mass or less, and 3% by mass or more and 5% by mass or less. The following is more preferable.
  • the second epoxy resin is an epoxy resin having an aromatic ring and having three or more epoxy groups in one molecule.
  • the second epoxy resin is preferably liquid at 25 ° C.
  • the number of epoxy groups in the second epoxy resin is preferably 3 or more and 10 or less, more preferably 3 or more and 6 or less, and further preferably 3 or 4.
  • As the second epoxy resin one kind or two or more kinds can be used.
  • aromatic ring examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a tetracene ring, a pentacene ring, an indene ring, a fluorene ring, a perylene ring and the like.
  • Examples of the second epoxy resin include compounds represented by the following formula (2).
  • Ar 1 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 38 carbon atoms.
  • R 3 and R 4 are independently single bonds, oxygen atoms, -NH-, nitrogen atoms or 2- to 5-valent organic groups having 1 to 20 carbon atoms.
  • E 3 and E 4 are independently monovalent groups containing an epoxy group. If R 3 is a single bond, an oxygen atom or -NH-, x is 1, if R 3 is a nitrogen atom, x is 2, and if R 3 is a 2-5 valent organic group, x is. It is an integer of 1 to 4.
  • R 4 is a single bond, an oxygen atom or -NH-, y is 1, if R 4 is a nitrogen atom, y is 2, and if R 4 is a 2-5 valent organic group, y is. It is an integer of 1 to 4.
  • x is 2 or more, the plurality of E3s may be the same or different from each other, and when y is 2 or more, the plurality of E4s may be the same or different from each other.
  • x + y is 3 or more.
  • Examples of the divalent aromatic hydrocarbon group represented by Ar 1 include a benzenediyl group, a toluenediyl group, a xylendyl group, a naphthalenediyl group, an anthracendyl group, a phenanthrendiyl group, a pyrenidyl group, a tetrasendyl group and a pentacene.
  • Examples thereof include a diyl group, an indendiyl group, a fluorinatedyl group, a perylenediyl group, a biphenyldiyl group, a terphenyldiyl group and the like.
  • Examples of the substituent of the aromatic hydrocarbon group include a hydroxy group, a halogen atom, and a monovalent group containing an epoxy group.
  • Examples of the second epoxy resin include N, N, N', N'-tetraglycidyl-4,4'-methylenebisbenzeneamine, p-aminophenol-diglycidyl ether and the like.
  • Examples of commercially available second epoxy resins include Araldite MY510, MY600, MY720, MY721, MY725 manufactured by HUNTSMAN, 630 manufactured by Mitsubishi Chemical Corporation, and EP3900 manufactured by ADEKA.
  • the ratio of the second epoxy resin in the entire epoxy resin is preferably 5% by mass or more and 80% by mass or less.
  • the heat resistance of the composition (X) can be further improved. This ratio is more preferably 10% by mass or more and 70% by mass or less, and further preferably 20% by mass or more and 60% by mass or less.
  • the ratio of the second epoxy resin to the composition (X) is preferably 2% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less, and 5% by mass or more and 10% by mass or less. The following is more preferable.
  • the third epoxy resin other than the first epoxy resin and the second epoxy resin is preferably liquid at 25 ° C.
  • the third epoxy resin include bisphenol F type epoxy resin, bisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin, biphenyl type epoxy resin, naphthalene ring-containing epoxy resin, alicyclic epoxy resin, and dicyclopentadiene type epoxy resin. , Phenol novolak type epoxy resin, cresol novolak type epoxy resin, triphenylmethane type epoxy resin, aliphatic epoxy resin, glycidyl group-containing silicone resin, glycidylamine type epoxy resin, etc., which have two epoxy groups. And so on.
  • the third epoxy resin preferably contains a bisphenol F type epoxy resin (one having two epoxy groups) from the viewpoint of further improving heat resistance.
  • the proportion of the third epoxy resin in the entire epoxy resin is preferably 10% by mass or more and 80% by mass or less.
  • the heat resistance of the composition (X) can be further improved.
  • This ratio is more preferably 15% by mass or more and 70% by mass or less, and further preferably 20% by mass or more and 60% by mass or less.
  • the ratio of the third epoxy resin to the composition (X) is preferably 1% by mass or more and 20% by mass or less, more preferably 2% by mass or more and 15% by mass or less, and 3% by mass or more and 10% by mass or less. The following is more preferable.
  • the curing agent contains a compound having two or more phenolic hydroxyl groups in one molecule (hereinafter, also referred to as curing agent A).
  • the curing agent A is preferably liquid at 25 ° C.
  • the curing agent may contain a curing agent other than the curing agent A.
  • the curing agent one kind or two or more kinds can be used.
  • Examples of the curing agent A include novolak-type resins such as phenol novolac resin, cresol novolak resin, and naphthol novolak resin; and aralkyl-type resins such as phenol aralkyl resin having a phenylene skeleton or biphenylene skeleton, and naphthol aralkyl resin having a phenylene skeleton or biphenylene skeleton.
  • Polyfunctional phenol resin such as triphenol methane type resin; Dicyclopentadiene type phenol resin such as dicyclopentadiene type phenol novolac resin, dicyclopentadiene type naphthol novolac resin; Terpen modified phenol resin; Bisphenol A, bisphenol F, etc.
  • Bisphenol type resin; Triazine-modified novolak resin and the like can be mentioned.
  • the ratio of the curing agent A to the entire curing agent is preferably 50% by mass or more.
  • the chemical resistance of the composition (X) can be further improved.
  • This ratio is more preferably 80% by mass or more, and further preferably 95% by mass or more.
  • the ratio of the curing agent A may be 100% by mass.
  • the ratio of the curing agent A to 100 parts by mass of the epoxy resin is preferably 30 parts by mass or more and 100 parts by mass or less.
  • the chemical resistance of the composition (X) can be further improved. This ratio is more preferably 40 parts by mass or more and 80 parts by mass or less, and further preferably 50 parts by mass or more and 70 parts by mass or less.
  • the ratio of the curing agent A to the composition (X) is preferably 2% by mass or more and 30% by mass or less, more preferably 4% by mass or more and 20% by mass or less, and 8% by mass or more and 15% by mass or less. Is more preferable.
  • curing agents examples include acid anhydride-based curing agents, aromatic amine-based curing agents, imidazole-based curing agents, hydrazide-based curing agents, polypeptide-based curing agents, Lewis acid-amine complex-based curing agents, and the like. ..
  • the equivalent of the curing agent to 1 equivalent of the epoxy resin is, for example, 0.6 or more and 1.4 or less.
  • the ratio of the curing agent to 100 parts by mass of the epoxy resin is preferably 30 parts by mass or more and 100 parts by mass or less, more preferably 40 parts by mass or more and 80 parts by mass or less, and 50 parts by mass or more and 70 parts by mass or less. It is more preferable to have.
  • the ratio of the curing agent to the composition (X) is preferably 2% by mass or more and 30% by mass or less, more preferably 4% by mass or more and 20% by mass or less, and 8% by mass or more and 15% by mass or less. It is more preferable to have.
  • composition (X) can contain a curing accelerator.
  • curing accelerator examples include imidazoles such as 2-methylimidazole, 2-ethyl imidazole, 2-phenyl imidazole, and 2-ethyl-4-methyl imidazole; 1,8-diazabicyclo [5.4.0] undecene-7.
  • the ratio of the curing accelerator to 100 parts by mass of the epoxy resin is preferably 0.1 part by mass or more and 10 parts by mass or less, and more preferably 1 part by mass or more and 5 parts by mass or less.
  • the ratio of the curing accelerator to the composition (X) is, for example, 0.05% by mass or more and 1% by mass or less.
  • Ceramic filler examples include silica, alumina, aluminum nitride, silicon nitride and the like. Examples of silica include crystalline silica, non-crystalline silica, amorphous silica, fused silica, and crushed silica. The ceramic filler may be used by blending two or more of these.
  • Examples of the shape of the particles of the ceramic filler include spherical shape, chain shape, cocoon shape, irregular shape, and irregular shape.
  • the average particle size of the ceramic filler is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the ceramic filler one kind of filler may be used, or two or more kinds of fillers having different average particle sizes may be used.
  • the ceramic filler preferably contains two types of fillers having different average particle sizes.
  • the average particle size of the ceramic filler is the median diameter (D50) obtained from the particle size distribution obtained from the measurement results by the laser diffraction / scattering method.
  • the ceramic filler When the ceramic filler contains two types of filler, the ceramic filler has an average particle size of 1 ⁇ m or more and 50 ⁇ m or less (hereinafter, also referred to as filler 1) and an average particle size of 0.1 ⁇ m or more and 1 ⁇ m. It is preferable to include a filler (hereinafter, also referred to as filler 2) which is less than or equal to. In this case, the content of the ceramic filler can be further increased.
  • the average particle size of the filler 1 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the ratio of the filler 1 in the entire ceramic filler is preferably 50% by mass or more and 99% by mass or less, more preferably 60% by mass or more and 90% by mass or less, and 70% by mass or more and 85% by mass or less. It is more preferable to have.
  • the average particle size of the filler 2 is preferably 0.2 ⁇ m or more and 0.9 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 0.7 ⁇ m or less.
  • the ratio of the filler 2 in the entire ceramic filler is preferably 1% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 40% by mass or less, and 15% by mass or more and 30% by mass or less. It is more preferable to have.
  • the mass ratio of the filler 2 to the filler 1 is preferably 0.1 or more and 1 or less, and preferably 0.2 or more and 0.5 or less.
  • the proportion of the ceramic filler in the composition (X) is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more. This ratio is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less.
  • the ceramic filler is preferably surface-treated with, for example, a coupling agent. Since the ceramic filler is surface-treated, the affinity with the epoxy resin can be improved.
  • a coupling agent include a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, an aluminum / zirconium coupling agent, and the like.
  • the silane coupling include glycidoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane; N.
  • Aminosilanes such as - ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane; alkylsilanes; ureidosilanes; vinylsilanes and the like can be mentioned.
  • the ratio of the coupling agent to the total amount of the ceramic filler and the coupling agent is, for example, 0.01% by mass or more and 1% by mass or less.
  • composition (X) may contain additives other than the above-mentioned components as long as the effects of the present embodiment are not impaired.
  • the additive include a flame retardant, a flame retardant aid, an ion trapping agent, a colorant, a low stress agent, a tackifier, a silicone flexible agent and the like.
  • Examples of the flame retardant include magnesium hydroxide, aluminum hydroxide, red phosphorus and the like.
  • colorant examples include carbon black, red iron oxide, titanium oxide, phthalocyanine, perylene black and the like.
  • Examples of the low stress agent include silicone elastomers, silicone resins, silicone oils, and butadiene rubbers.
  • examples of the butadiene rubber include methyl acrylate-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer and the like.
  • composition (X) is excellent in low warpage, heat resistance, chemical resistance and wettability of the heat-resistant insulating coat, it can be suitably used for encapsulation in a semiconductor package such as AiP.
  • the cured product of this embodiment is a cured product of the composition (X).
  • the cured product of the present embodiment can be obtained by heat-molding the composition (X) on a ceramic substrate such as, for example, alumina ceramics by a vacuum press molding machine or the like.
  • the temperature of the heat molding is, for example, 100 ° C. or higher and 180 ° C. or lower, and preferably 120 ° C. or higher and 150 ° C. or lower.
  • the heat molding time is, for example, 10 seconds or more and 1 hour or less, preferably 1 minute or more and 20 minutes or less.
  • ⁇ Preparation of liquid resin composition The raw materials shown in Table 1 were blended and uniformly mixed and dispersed with a mixer to obtain a liquid resin composition.
  • the details of the raw materials are as follows.
  • -Second epoxy resin "Araldite MY720" manufactured by HUNTSMAN. N, N, N'N'-tetraglycidyl-4,4'-methylenebisbenzeneamine.
  • -Third epoxy resin Bisphenol F type epoxy resin. "806” manufactured by Mitsubishi Chemical Corporation.
  • -Curing agent / phenolic curing agent "MEH8000H” manufactured by Meiwa Kasei Co., Ltd.
  • -Acid anhydride-based curing agent "Ricacid MH-700” manufactured by Shin Nihon Rika Co., Ltd.
  • -Aromatic amine-based curing agent "Kayahard AA” manufactured by Nippon Kayaku Co., Ltd. 4,4'-Diamino-3,3'-diethyldiphenylmethane.
  • -Curing accelerator / imidazole-based curing accelerator “2E4MZ” manufactured by Shikoku Chemicals Corporation
  • -Ceramic filler / filler 1 "FB-3SDX” manufactured by Denka. Fused silica.
  • Tg glass transition temperature
  • DMA dynamic viscoelasticity measuring device
  • A No coating film defects or wavy patterns of 1.0 mm 2 or more were observed.
  • B No film defect of 1.0 mm 2 or more was observed, but a wavy pattern was observed.
  • C A coating film defect of 1.0 mm 2 or more was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

低反り性を維持しつつ、耐熱性、耐薬品性及び耐熱絶縁コートの濡れ性に優れる液状樹脂組成物を提供する。液状樹脂組成物は、エポキシ樹脂と、硬化剤と、セラミック充填材とを含有する。前記エポキシ樹脂は、第1エポキシ樹脂と、第2エポキシ樹脂とを含む。前記第1エポキシ樹脂は、ポリアルキレングリコール骨格を有する。前記第2エポキシ樹脂は、芳香環を有し、かつエポキシ基を1分子中に3以上有する。前記硬化剤は、フェノール性水酸基を1分子中に2以上有する化合物を含む。前記エポキシ樹脂における前記第1エポキシ樹脂の割合は、10質量%以上25質量%以下である。

Description

液状樹脂組成物及びその硬化物
 本開示は、液状樹脂組成物及び液状樹脂組成物の硬化物に関し、詳しくは、エポキシ樹脂と、硬化剤と、セラミック充填材とを含有する液状樹脂組成物、及びこの液状樹脂組成物の硬化物に関する。
 AiP(Antenna in Package)等の半導体パッケージにおける封止に用いられる封止材には、基板の加圧成形におけるモールド後の反りが小さいことが求められる。低反り性を発揮させる手法としては、低応力化剤としてのシリコーン、アクリルゴム等を用いることが一般的である。このような組成物として、オルガノポリシロキサンとエポキシ樹脂とを含有するエポキシ・シリコーンハイブリッド樹脂組成物が知られている(特許文献1参照)。
 このような封止材には、低反り性に加え、さらに耐熱性、アルカリや極性溶剤に対する耐薬品性、並びに硬化し研削した後の表面に対する感光性ポリイミド等の耐熱絶縁コートの濡れ性など、種々の特性に優れることが求められる。しかし、前記従来の樹脂組成物では、これらの特性を満たすことはできていない。
特開2018-145377号公報
 本開示の課題は、低反り性を維持しつつ、耐熱性、耐薬品性及び耐熱絶縁コートの濡れ性に優れる液状樹脂組成物、及びこの液状樹脂組成物の硬化物を提供することにある。
 本開示の一態様に係る液状樹脂組成物は、エポキシ樹脂と、硬化剤と、セラミック充填材とを含有する。前記エポキシ樹脂は、第1エポキシ樹脂と、第2エポキシ樹脂とを含む。前記第1エポキシ樹脂は、ポリアルキレングリコール骨格を有する。前記第2エポキシ樹脂は、芳香環を有し、エポキシ基を1分子中に3以上有する。前記硬化剤は、フェノール性水酸基を1分子中に2以上有する化合物を含む。前記エポキシ樹脂における前記第1エポキシ樹脂の割合は、10質量%以上25質量%以下である。
 本開示の一態様に係る硬化物は、前記液状樹脂組成物の硬化物である。
<液状樹脂組成物>
 本実施形態の液状樹脂組成物(以下、組成物(X)ともいう)は、エポキシ樹脂と、硬化剤と、セラミック充填材とを含有する。エポキシ樹脂は、第1エポキシ樹脂と、第2エポキシ樹脂とを含む。第1エポキシ樹脂は、ポリアルキレングリコール骨格を有する。第2エポキシ樹脂は、芳香環を有し、かつエポキシ基を1分子中に3以上有する。硬化剤は、フェノール性水酸基を1分子中に2以上有する化合物を含む。エポキシ樹脂における第1エポキシ樹脂の割合は、10質量%以上25質量%以下である。
 発明者らは、液状樹脂組成物において、第1エポキシ樹脂及び第2エポキシ樹脂の2種の特定のエポキシ樹脂と、前記特定の硬化剤とを用い、かつエポキシ樹脂における第1エポキシ樹脂の割合を前記特定範囲とすることにより、低反り性、耐熱性、耐薬品性及び耐熱絶縁コートの濡れ性について全て満たすことができることを見出した。このように、本開示によれば、低反り性を維持しつつ、耐熱性、耐薬品性及び耐熱絶縁コートの濡れ性に優れる液状樹脂組成物を提供することができる。
 本実施形態の液状樹脂組成物が前記構成を備えることで、前記効果を奏する理由については、必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、ポリアルキレングリコール骨格を有する第1エポキシ樹脂を用い、その割合を10質量%以上とすることにより、反りの低減に寄与することができ、25質量%以下とすることにより、濡れ性の悪化を抑制することができると考えられる。また、芳香環を有し、かつエポキシ基を1分子中に3以上有する第2エポキシ樹脂を用いることで、芳香環の存在、及びエポキシ樹脂の架橋構造の形成により、耐熱性が向上し、また、フェノール性水酸基を1分子中に2以上有する硬化剤を用いることで、耐薬品性を向上させることができると考えられる。これらにより、本実施形態の液状組成物は、低反り性、耐熱性、耐薬品性及び耐熱絶縁コートの濡れ性の全てを優れたものとすることができる。
 以下、組成物(X)の各成分について説明する。
 [エポキシ樹脂]
 エポキシ樹脂は、1分子中に2以上のエポキシ基を有する化合物である。エポキシ樹脂は、第1エポキシ樹脂と、第2エポキシ樹脂とを含む。エポキシ樹脂は、第1エポキシ樹脂及び第2エポキシ樹脂とは異なる第3エポキシ樹脂を含んでいてもよい。エポキシ樹脂は、25℃において液状であることが好ましい。
 (第1エポキシ樹脂)
 第1エポキシ樹脂は、ポリアルキレングリコール骨格を有するエポキシ樹脂である。第1エポキシ樹脂は、エポキシ基を2個有することが好ましい。第1エポキシ樹脂は、25℃において液状であることが好ましい。第1エポキシ樹脂は、1種又は2種以上を用いることができる。
 ポリアルキレングリコール骨格とは、アルキレングリコール単位が2以上連結した構造を含む骨格をいい、例えば(-R-O-)nで表される骨格(Rは、アルキレン基、nは2以上の整数)をいう。
 第1エポキシ樹脂としては、例えば下記式(1)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは、炭素数2~10のアルキレン基である。R及びRは、それぞれ独立して、単結合又は炭素数1~20の2価の有機基である。E及びEは、それぞれ独立して、エポキシ基を含む1価の基である。nは、2以上1000以下の整数である。
 Rで表される炭素数2~10のアルキレン基としては、例えばエタンジイル基、プロパンジイル基、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基、オクタンジイル基、デカンジイル基等が挙げられる。
 「有機基」とは、少なくとも1個の炭素原子を含む基をいう。R及びRで表される炭素数1~20の2価の有機基としては、例えば置換又は非置換の2価の炭化水素基などが挙げられる。置換基としては、ヒドロキシ基、アルコキシ基、ハロゲン原子等が挙げられる。
 E及びEで表されるエポキシ基を含む1価の基としては、例えば置換又は非置換のエポキシ基、置換又は非置換のグリシジル基等が挙げられる。置換基としては、例えばメチル基等のアルキル基などが挙げられる。
 nは、2以上500以下であることが好ましく、5以上300以下であることがより好ましく、10以上200以下であることがさらに好ましい。
 第1エポキシ樹脂としては、例えばポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリトリメチレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ポリヘキサメチレングリコールジグリシジルエーテル等が挙げられる。
 第1エポキシ樹脂の市販品としては、例えば阪本薬品工業社製のSR-4PG、SR-TPG、日鉄ケミカル&マテリアル社製のPG-207、PG-207GS、三菱ケミカル社のYX7400、四日市合成社製のエポゴーセーPT等が挙げられる。
 エポキシ樹脂全体における第1エポキシ樹脂の割合は、10質量%以上25質量%以下であることが重要である。第1エポキシ樹脂の割合をこの範囲とすることにより、低反り性と、耐熱絶縁コートの濡れ性とを両立させることができる。第1エポキシ樹脂の割合が10質量%未満であると、反りが増大する。この割合が25質量%を超えると、濡れ性が悪化する。
 第1エポキシ樹脂の割合は、13質量%以上であることが好ましく、15質量%以上であることがより好ましい。第1エポキシ樹脂の割合は、22質量%以下であることが好ましく、20質量%以下であることがより好ましい。
 組成物(X)に対する第1エポキシ樹脂の割合は、1質量%以上10質量%以下であることが好ましく、2質量%以上6質量%以下であることがより好ましく、3質量%以上5質量%以下であることがさらに好ましい。
 (第2エポキシ樹脂)
 第2エポキシ樹脂は、芳香環を有し、かつエポキシ基を1分子中に3以上有するエポキシ樹脂である。第2エポキシ樹脂は、25℃において液状であることが好ましい。第2エポキシ樹脂のエポキシ基の数は、3以上10以下であることが好ましく、3以上6以下であることがより好ましく、3又は4であることがさらに好ましい。第2エポキシ樹脂は、1種又は2種以上を用いることができる。
 芳香環としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、テトラセン環、ペンタセン環、インデン環、フルオレン環、ペリレン環等が挙げられる。
 第2エポキシ樹脂としては、例えば下記式(2)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Arは、置換又は非置換の炭素数6~38の2価の芳香族炭化水素基である。R及びRは、それぞれ独立して、単結合、酸素原子、-NH-、窒素原子又は炭素数1~20の2~5価の有機基である。E及びEは、それぞれ独立して、エポキシ基を含む1価の基である。Rが単結合、酸素原子又は-NH-の場合、xは1であり、Rが窒素原子の場合、xは2であり、Rが2~5価の有機基の場合、xは1~4の整数である。Rが単結合、酸素原子又は-NH-の場合、yは1であり、Rが窒素原子の場合、yは2であり、Rが2~5価の有機基の場合、yは1~4の整数である。xが2以上の場合、複数のEは互いに同一でも異なっていてもよく、yが2以上の場合、複数のEは互いに同一でも異なっていてもよい。但し、x+yは、3以上である。
 Arで表される2価の芳香族炭化水素基としては、例えばベンゼンジイル基、トルエンジイル基、キシレンジイル基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ピレンジイル基、テトラセンジイル基、ペンタセンジイル基、インデンジイル基、フルオレンジイル基、ペリレンジイル基、ビフェニルジイル基、ターフェニルジイル基等が挙げられる。芳香族炭化水素基の置換基としては、例えばヒドロキシ基、ハロゲン原子、エポキシ基を含む1価の基などが挙げられる。
 第2エポキシ樹脂としては、例えばN,N,N’,N’-テトラグリシジル-4,4’-メチレンビスベンゼンアミン、p-アミノフェノール-ジグリシジルエーテル等が挙げられる。
 第2エポキシ樹脂の市販品としては、例えばHUNTSMAN社製のAralditeMY510、MY600、MY720、MY721、MY725、三菱ケミカル社製の630、ADEKA社製のEP3900などが挙げられる。
 エポキシ樹脂全体における第2エポキシ樹脂の割合は、5質量%以上80質量%以下であることが好ましい。この場合、組成物(X)の耐熱性をより向上させることができる。この割合は、10質量%以上70質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
 組成物(X)に対する第2エポキシ樹脂の割合は、2質量%以上30質量%以下であることが好ましく、3質量%以上20質量%以下であることがより好ましく、5質量%以上10質量%以下であることがさらに好ましい。
 (第3エポキシ樹脂)
 第1エポキシ樹脂及び第2エポキシ樹脂以外の第3エポキシ樹脂は、25℃において液状であることが好ましい。第3エポキシ樹脂としては、例えばビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、脂肪族系エポキシ樹脂、グリシジル基含有シリコーン樹脂、グリシジルアミン型エポキシ樹脂等であって、2個のエポキシ基を有するものなどが挙げられる。第3エポキシ樹脂は、耐熱性をより向上させる観点から、ビスフェノールF型エポキシ樹脂(2個のエポキシ基を有するもの)を含むことが好ましい。
 エポキシ樹脂全体における第3エポキシ樹脂の割合は、10質量%以上80質量%以下であることが好ましい。この場合、組成物(X)の耐熱性をより向上させることができる。この割合は、15質量%以上70質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
 組成物(X)に対する第3エポキシ樹脂の割合は、1質量%以上20質量%以下であることが好ましく、2質量%以上15質量%以下であることがより好ましく、3質量%以上10質量%以下であることがさらに好ましい。
 [硬化剤]
 硬化剤は、フェノール性水酸基を1分子中に2以上有する化合物(以下、硬化剤Aともいう)を含む。硬化剤Aは、25℃において液状であることが好ましい。硬化剤は、硬化剤A以外の他の硬化剤を含んでいてもよい。硬化剤は、1種又は2種以上を用いることができる。
 硬化剤Aとしては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等のノボラック型樹脂;フェニレン骨格又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;トリフェノールメタン型樹脂等の多官能型フェノール樹脂;ジシクロペンタジエン型フェノールノボラック樹脂、ジシクロペンタジエン型ナフトールノボラック樹脂等のジシクロペンタジエン型フェノール樹脂;テルペン変性フェノール樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール型樹脂;トリアジン変性ノボラック樹脂などが挙げられる。
 硬化剤全体における硬化剤Aの割合は、50質量%以上であることが好ましい。この場合、組成物(X)の耐薬品性をより向上させることができる。この割合は、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。硬化剤Aの割合は、100質量%であってもよい。
 エポキシ樹脂100質量部に対する硬化剤Aの割合は、30質量部以上100質量部以下であることが好ましい。この場合、組成物(X)の耐薬品性をより向上させることができる。この割合は、40質量部以上80質量部以下であることがより好ましく、50質量部以上70質量部以下であることがさらに好ましい。
 組成物(X)に対する硬化剤Aの割合は、2質量%以上30質量%以下であることが好ましく、4質量%以上20質量%以下であることがより好ましく、8質量%以上15質量%以下であることがさらに好ましい。
 他の硬化剤としては、例えば酸無水物系硬化剤、芳香族アミン系硬化剤、イミダゾール系硬化剤、ヒドラジド系硬化剤、ポリメルカプタン系硬化剤、ルイス酸-アミン錯体系硬化剤などが挙げられる。
 エポキシ樹脂1当量に対する硬化剤の当量は、例えば0.6以上1.4以下である。
 エポキシ樹脂100質量部に対する硬化剤の割合は、30質量部以上100質量部以下であることが好ましく、40質量部以上80質量部以下であることがより好ましく、50質量部以上70質量部以下であることがさらに好ましい。
 組成物(X)に対する硬化剤の割合は、2質量%以上30質量%以下であることが好ましく、4質量%以上20質量%以下であることがより好ましく、8質量%以上15質量%以下であることがさらに好ましい。
 [硬化促進剤]
 組成物(X)は、硬化促進剤を含有することができる。
 硬化促進剤としては、例えば2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7、1,5-ジアザビシクロ[4.3.0]ノネン-5、5,6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデセン-7等のシクロアミジン類;2-(ジメチルアミノメチル)フェノール、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン類;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、トリフェニルホスフィンとパラベンゾキノンの付加反応物、フェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ボレート以外の対アニオンを持つ4級ホスホニウム塩;2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。
 エポキシ樹脂100質量部に対する硬化促進剤の割合は、0.1質量部以上10質量部以下であることが好ましく、1質量部以上5質量部以下であることがより好ましい。
 組成物(X)に対する硬化促進剤の割合は、例えば0.05質量%以上1質量%以下である。
 [セラミック充填材]
 セラミック充填材としては、例えばシリカ、アルミナ、窒化アルミニウム、窒化ケイ素等が挙げられる。シリカとしては、例えば結晶シリカ、非結晶シリカ、アモルファスシリカ、溶融シリカ、破砕状シリカなどが挙げられる。セラミック充填材は、これらの2種以上をブレンドして用いてもよい。
 セラミック充填材の粒子の形状としては、例えば球状、鎖状、繭状、異形状、不定形状等が挙げられる。
 セラミック充填材の平均粒径は、0.5μm以上10μm以下であることが好ましく、0.5μm以上5μm以下であることがより好ましい。セラミック充填材は、1種の充填材を用いてもよく、平均粒径が互いに異なる2種以上の充填材を用いてもよい。セラミック充填材は、平均粒径が異なる2種の充填材を含むことが好ましい。
 セラミック充填材の平均粒径は、レーザー回折・散乱法による測定結果から得られる粒度分布から求められるメディアン径(D50)である。
 セラミック充填材が2種の充填材を含む場合、セラミック充填材は、平均粒径が1μm以上50μm以下である充填材(以下、充填材1ともいう)と、平均粒径が0.1μm以上1μm未満である充填材(以下、充填材2ともいう)とを含むことが好ましい。この場合、セラミック充填材の含有量をより高めることができる。
 充填材1の平均粒径は、0.5μm以上10μm以下であることが好ましく、0.5μm以上5μm以下であることがより好ましい。
 セラミック充填材全体における充填材1の割合は、50質量%以上99質量%以下であることが好ましく、60質量%以上90質量%以下であることがより好ましく、70質量%以上85質量%以下であることがさらに好ましい。
 充填材2の平均粒径は、0.2μm以上0.9μm以下であることが好ましく、0.5μm以上0.7μm以下であることがより好ましい。
 セラミック充填材全体における充填材2の割合は、1質量%以上50質量%以下であることが好ましく、10質量%以上40質量%以下であることがより好ましく、15質量%以上30質量%以下であることがさらに好ましい。
 充填材1に対する充填材2の質量比(充填材2/充填材1)は、0.1以上1以下であることが好ましく、0.2以上0.5以下であることが好ましい。
 組成物(X)におけるセラミック充填材の割合は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。この割合は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、75質量%以下であることがさらに好ましい。
 セラミック充填材は、例えばカップリング剤等により表面処理されていることが好ましい。セラミック充填材は、表面処理されていることで、エポキシ樹脂との親和性を向上させることができる。カップリング剤としては、例えばシランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等が挙げられる。シランカップリングとしては、例えばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のグリシドキシシラン;N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン;アルキルシラン;ウレイドシラン;ビニルシランなどが挙げられる。セラミック充填材及びカップリング剤の合計量に対するカップリング剤の割合は、例えば0.01質量%以上1質量%以下である。
 [添加剤]
 組成物(X)は、本実施形態の効果を損なわない範囲内において、前記成分以外の添加剤を含有していてもよい。添加剤としては、例えば難燃剤、難燃助剤、イオントラップ剤、着色剤、低応力化剤、粘着付与剤、シリコーン可撓剤などが挙げられる。
 難燃剤としては、例えば水酸化マグネシウム、水酸化アルミニウム、赤リン等が挙げられる。
 着色剤としては、例えばカーボンブラック、ベンガラ、酸化チタン、フタロシアニン、ペリレンブラック等が挙げられる。
 低応力化剤としては、例えばシリコーンエラストマー、シリコーンレジン、シリコーンオイル、ブタジエン系ゴム等が挙げられる。ブタジエン系ゴムとしては、例えばアクリル酸メチル-ブタジエン-スチレン共重合体、メタクリル酸メチル-ブタジエン-スチレン共重合体等が挙げられる。
 組成物(X)は、低反り性、耐熱性、耐薬品性及び耐熱絶縁コートの濡れ性に優れるので、例えばAiP等の半導体パッケージにおける封止用に好適に用いることができる。
 <硬化物>
 本実施形態の硬化物は、組成物(X)の硬化物である。本実施形態の硬化物は、組成物(X)を、例えばアルミナセラミクス等のセラミック基板上で、真空プレス成形機等により、加熱成形することによって得ることができる。加熱成形の温度は、例えば100℃以上180℃以下であり、120℃以上150℃以下であることが好ましい。加熱成形の時間は、例えば10秒以上1時間以下であり、1分以上20分以下であることが好ましい。
 以下、本開示を実施例によってさらに詳しく説明するが、本開示はこれらの実施例に何ら限定されるものではない。
 <液状樹脂組成物の調製>
 表1に示す原料を配合し、ミキサーで均一に混合分散し、液状樹脂組成物を得た。なお、原料の詳細は下記の通りである。
-エポキシ樹脂
・第1エポキシ樹脂:日鉄ケミカル&マテリアル社製の「PG207」。ポリプロピレングリコールジグリシジルエーテル。
・第2エポキシ樹脂:HUNTSMAN社製の「Araldite MY720」。N,N,N’N’-テトラグリシジル-4,4’-メチレンビスベンゼンアミン。
・第3エポキシ樹脂:ビスフェノールF型エポキシ樹脂。三菱ケミカル社製の「806」。
-硬化剤
・フェノール系硬化剤:明和化成社製の「MEH8000H」。
・酸無水物系硬化剤:新日本理化社製の「リカシッド MH-700」。
・芳香族アミン系硬化剤:日本化薬社製の「カヤハードA-A」。4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン。
-硬化促進剤
・イミダゾール系硬化促進剤:四国化成社製の「2E4MZ」
-セラミック充填材
・充填材1:デンカ社製の「FB-3SDX」。溶融シリカ。球状。平均粒径3.3μm。
・充填材2:アドマテックス社製の「SO25H」。球状シリカ。平均粒径0.6μm。-カップリング剤:
・シランカップリング剤:モメンティブ社製の「A187」。エポキシシラン(γ-グリシドキシプロピルトリメトキシシラン)。
-着色剤
・カーボンブラック:三菱ケミカル社製の「MA-100」。
 <特性評価>
[低反り性]
 寸法70mm×60mm、厚さ0.2mmのアルミナセラミックスを用い、モールド厚さ0.5mで、真空プレス成形機にて、135℃、5分の条件で成形を行い、成形後の反り量を測定した。
A:反り量が0.5mm未満であった。
B:反り量が0.5mm以上1mm未満であった。
C:反り量が1mm以上であった。
 [耐熱性]
 動的粘弾性測定装置(DMA)によりガラス転移温度(Tg)を測定した。
A:Tgが150℃以上であった。
B:Tgが125℃以上150℃未満であった。
C:Tgが125℃未満であった。
 [耐熱絶縁コートの濡れ性]
 液状樹脂組成物の硬化物の研削表面への富士フイルムエレクトロニクスマテリアルズ社製の「ポリイミドLTC9320」のスピンコーティング膜の形成性により評価した。研削はディスコ社製のグラインダーを用い、研削ホイールはSD3000を用い、研削狙い深さ5μmで表面研削を行った。コーティング膜は、ミカサ社製のスピンコーターを用い、テーブル回転数2000rpm、コーティング狙い厚み3μmでコーティングを行った。試験片外周から5mm内側は評価対象外とした。
A:1.0mm以上の塗膜欠損及び波模様が認められなかった。
B:1.0mm以上の塗膜欠損が認められなかったが、波模様が認められた。
C:1.0mm以上の塗膜欠損が認められた。
 [耐薬品性]
 液状樹脂組成物の硬化物(寸法50mm×50mm、厚さ0.3mm)の薬品液中における40℃、12時間処理後の質量変化を測定した。薬品として、10質量%KOH水溶液、及びN-メチルピロリドン(NMP)を用いた。
A:両薬品において、質量変化が±0.5質量%未満であった。
B:両薬品において、質量変化が±1質量%未満であった(但し、両薬品において、質量変化が±0.5質量%未満である場合を除く)。
C:いずれかの薬品において、質量変化が±1質量%以上であった。
Figure JPOXMLDOC01-appb-T000003
 

Claims (7)

  1.  エポキシ樹脂と、硬化剤と、セラミック充填材とを含有し、
     前記エポキシ樹脂が、第1エポキシ樹脂と、第2エポキシ樹脂とを含み、
     前記第1エポキシ樹脂が、ポリアルキレングリコール骨格を有し、
     前記第2エポキシ樹脂が、芳香環を有し、かつエポキシ基を1分子中に3以上有し、
     前記硬化剤が、フェノール性水酸基を1分子中に2以上有する化合物を含み、
     前記エポキシ樹脂における前記第1エポキシ樹脂の割合が、10質量%以上25質量%以下である液状樹脂組成物。
  2.  硬化促進剤をさらに含有する請求項1に記載の液状樹脂組成物。
  3.  前記エポキシ樹脂が、前記第1エポキシ樹脂及び前記第2エポキシ樹脂とは異なる第3エポキシ樹脂を含む請求項1又は2に記載の液状樹脂組成物。
  4.  前記液状樹脂組成物における前記セラミック充填材の割合が、70質量%以上90質量%以下である請求項1から3のいずれか一項に記載の液状樹脂組成物。
  5.  前記セラミック充填材の平均粒径が、0.5μm以上10μm以下である請求項1から4のいずれか一項に記載の液状樹脂組成物。
  6.  前記セラミック充填材が、平均粒径が異なる2種の充填材を含む請求項1から5のいずれか一項に記載の液状樹脂組成物。
  7.  請求項1から6のいずれか一項に記載の液状樹脂組成物の硬化物。


     
PCT/JP2021/037787 2020-10-21 2021-10-12 液状樹脂組成物及びその硬化物 WO2022085522A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022557018A JPWO2022085522A1 (ja) 2020-10-21 2021-10-12
CN202180070761.2A CN116390967A (zh) 2020-10-21 2021-10-12 液态树脂组合物及其固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-176908 2020-10-21
JP2020176908 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022085522A1 true WO2022085522A1 (ja) 2022-04-28

Family

ID=81290397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037787 WO2022085522A1 (ja) 2020-10-21 2021-10-12 液状樹脂組成物及びその硬化物

Country Status (4)

Country Link
JP (1) JPWO2022085522A1 (ja)
CN (1) CN116390967A (ja)
TW (1) TW202222976A (ja)
WO (1) WO2022085522A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173833A (ja) * 1990-11-07 1992-06-22 Natl Space Dev Agency Japan<Nasda> 軽量断熱性樹脂組成物
JPH09268221A (ja) * 1996-04-01 1997-10-14 Nippon Oil Co Ltd プリプレグ用樹脂組成物
JP2007138002A (ja) * 2005-11-17 2007-06-07 Yokohama Rubber Co Ltd:The 熱硬化性樹脂組成物
JP2007284474A (ja) * 2006-04-12 2007-11-01 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2007284467A (ja) * 2006-04-12 2007-11-01 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2010126702A (ja) * 2008-12-01 2010-06-10 Toray Ind Inc エポキシ樹脂組成物、繊維強化複合材料およびそれらの製造方法
JP2011168634A (ja) * 2010-02-16 2011-09-01 Shin-Etsu Chemical Co Ltd エポキシ樹脂組成物及び半導体装置
WO2015146149A1 (ja) * 2014-03-25 2015-10-01 パナソニックIpマネジメント株式会社 液状樹脂組成物、硬化物、配線構造体及びこの配線構造体を用いた実装体
WO2017191801A1 (ja) * 2016-05-06 2017-11-09 Dic株式会社 樹脂組成物、成形体、積層体及び接着剤
WO2018221681A1 (ja) * 2017-05-31 2018-12-06 日立化成株式会社 封止用液状樹脂組成物及び電子部品装置
WO2018221682A1 (ja) * 2017-05-31 2018-12-06 日立化成株式会社 圧縮成型用液状樹脂組成物及び電子部品装置
US20200088937A1 (en) * 2018-09-19 2020-03-19 Prysmian S.P.A. Optical fibre having a crosslinked secondary coating

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173833A (ja) * 1990-11-07 1992-06-22 Natl Space Dev Agency Japan<Nasda> 軽量断熱性樹脂組成物
JPH09268221A (ja) * 1996-04-01 1997-10-14 Nippon Oil Co Ltd プリプレグ用樹脂組成物
JP2007138002A (ja) * 2005-11-17 2007-06-07 Yokohama Rubber Co Ltd:The 熱硬化性樹脂組成物
JP2007284474A (ja) * 2006-04-12 2007-11-01 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2007284467A (ja) * 2006-04-12 2007-11-01 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2010126702A (ja) * 2008-12-01 2010-06-10 Toray Ind Inc エポキシ樹脂組成物、繊維強化複合材料およびそれらの製造方法
JP2011168634A (ja) * 2010-02-16 2011-09-01 Shin-Etsu Chemical Co Ltd エポキシ樹脂組成物及び半導体装置
WO2015146149A1 (ja) * 2014-03-25 2015-10-01 パナソニックIpマネジメント株式会社 液状樹脂組成物、硬化物、配線構造体及びこの配線構造体を用いた実装体
WO2017191801A1 (ja) * 2016-05-06 2017-11-09 Dic株式会社 樹脂組成物、成形体、積層体及び接着剤
WO2018221681A1 (ja) * 2017-05-31 2018-12-06 日立化成株式会社 封止用液状樹脂組成物及び電子部品装置
WO2018221682A1 (ja) * 2017-05-31 2018-12-06 日立化成株式会社 圧縮成型用液状樹脂組成物及び電子部品装置
US20200088937A1 (en) * 2018-09-19 2020-03-19 Prysmian S.P.A. Optical fibre having a crosslinked secondary coating

Also Published As

Publication number Publication date
CN116390967A (zh) 2023-07-04
TW202222976A (zh) 2022-06-16
JPWO2022085522A1 (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
US20170037238A1 (en) Heat-curable epoxy resin composition
EP2881414B1 (en) Epoxy resin composition and cured article
JP6870778B1 (ja) 成形用樹脂組成物及び電子部品装置
TW201607985A (zh) 電子構件用液狀樹脂組成物及其製造方法以及電子構件裝置
KR20080069264A (ko) 밀봉용 에폭시 수지 성형 재료, 및 전자 부품 장치
KR20150037843A (ko) 액상 봉지재, 그것을 사용한 전자부품
TW201627393A (zh) 四甲基聯苯酚型環氧樹脂、環氧樹脂組成物、硬化物及半導體密封材
TWI648335B (zh) 密封用樹脂組成物、及半導體裝置
JP7420559B2 (ja) 封止用樹脂組成物
TWI815816B (zh) 密封用樹脂組成物、密封用樹脂組成物的製造方法、半導體裝置及半導體裝置的製造方法
JP2021116331A (ja) 封止用樹脂組成物、電子部品装置、及び電子部品装置の製造方法
KR102428705B1 (ko) 대면적의 반도체 소자 탑재 기재를 밀봉하는 방법
WO2022085522A1 (ja) 液状樹脂組成物及びその硬化物
JPWO2020065872A1 (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2021116329A (ja) 封止用樹脂組成物、電子部品装置、及び電子部品装置の製造方法
CN109721948B (zh) 半导体封装树脂组合物和半导体器件
JP6953971B2 (ja) 硬化性樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2021084980A (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
WO2020255749A1 (ja) 封止用組成物、半導体装置及び半導体装置の製造方法
JP6953973B2 (ja) 硬化性樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP6953972B2 (ja) 硬化性樹脂組成物、電子部品装置及び電子部品装置の製造方法
WO2020189309A1 (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
TWI666260B (zh) 密封用樹脂組成物、及半導體裝置
WO2022124405A1 (ja) 成形用樹脂組成物及び高周波デバイス
WO2022124406A1 (ja) 成形用樹脂組成物及び電子部品装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882663

Country of ref document: EP

Kind code of ref document: A1