WO2018214681A1 - 一种环氧树脂吸波复合材料及其制备方法 - Google Patents

一种环氧树脂吸波复合材料及其制备方法 Download PDF

Info

Publication number
WO2018214681A1
WO2018214681A1 PCT/CN2018/083677 CN2018083677W WO2018214681A1 WO 2018214681 A1 WO2018214681 A1 WO 2018214681A1 CN 2018083677 W CN2018083677 W CN 2018083677W WO 2018214681 A1 WO2018214681 A1 WO 2018214681A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
carbon black
hollow glass
preparation
mixture
Prior art date
Application number
PCT/CN2018/083677
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
尹苗
张璐
侯燕
张运湘
丘忠豪
李雪
Original Assignee
洛阳尖端技术研究院
洛阳尖端装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳尖端技术研究院, 洛阳尖端装备技术有限公司 filed Critical 洛阳尖端技术研究院
Priority to JP2020515802A priority Critical patent/JP6899034B2/ja
Priority to EP18806757.3A priority patent/EP3617269B1/en
Publication of WO2018214681A1 publication Critical patent/WO2018214681A1/zh
Priority to US16/695,352 priority patent/US11279822B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass

Definitions

  • the invention relates to the field of materials, and more particularly to an epoxy resin absorbing composite material and a preparation method thereof.
  • absorbing composite materials often need to minimize material density and cost while maintaining the performance of composite materials.
  • the main disadvantages of traditional absorbing composite materials are high density, narrow absorbing band, etc., which can not meet the requirements of absorbing materials: thin, light, wide and strong.
  • the invention adopts epoxy resin as the base body, carbon black with excellent electromagnetic shielding performance and surface treated hollow glass microbead as absorbing agent, which can make the composite material have good electromagnetic shielding performance; in addition, the surface is used in the absorbing agent
  • the treated hollow glass microspheres can not only reduce the material density, but also achieve strong absorption of electromagnetic waves in a wide frequency band; at the same time, the treatment of the hollow glass microbeads with the silane coupling agent is advantageous for the hollow glass microbeads in the epoxy resin matrix.
  • the uniform dispersion in the epoxy resin can form a good interface with the hollow glass microspheres, effectively solving the shortcomings of the conventional microwave absorbing composite material, such as high density and narrow absorption band.
  • the invention provides a preparation method of an epoxy resin absorbing composite material, comprising the following steps:
  • the epoxy resin is heated to a temperature T 1 , carbon black is added to obtain an epoxy resin/carbon black mixture; the epoxy resin/carbon black mixture is heated to a temperature T 2 , a curing agent is added, and the mixture is stirred and dissolved to obtain an epoxy resin. / carbon black / curing agent mixture; and surface treatment of hollow glass microspheres in epoxy resin / carbon black / curing agent mixture, curing, to obtain epoxy resin absorbing composite.
  • the method further comprises: adding glacial acetic acid to the ethanol-water mixed solution to adjust the pH; adding a silane coupling agent to prepare a silane coupling agent solution; and adding the hollow glass microbead to prepare the insulating glass.
  • the microbead solution was heated to 80 to 100 ° C, stirred, filtered, washed, and vacuum dried to obtain surface-treated hollow glass microbeads.
  • the ethanol-water solution is a solution prepared by mixing anhydrous ethanol and deionized water in a mass ratio of 8 to 10:0.5 to 2, preferably made of anhydrous ethanol having a mass ratio of 9:1 and deionized water.
  • the solution is a solution prepared by mixing anhydrous ethanol and deionized water in a mass ratio of 8 to 10:0.5 to 2, preferably made of anhydrous ethanol having a mass ratio of 9:1 and deionized water.
  • the pH of the ethanol-water mixed solution after pH adjustment is 3 to 4.
  • the silane coupling agent is A-1100 ( ⁇ -aminopropyltriethoxysilane), A-187 ( ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane. And one or more of A-172 (vinyl-tris(2-methoxyethoxy)silane).
  • the mass fraction of the silane coupling agent in the silane coupling agent solution is 2 to 3%.
  • the vacuum drying temperature is 100 to 110 ° C, and the vacuum drying time is 2 to 3 hours.
  • the mass ratio of the epoxy resin, the carbon black, the curing agent, and the surface-treated hollow glass microspheres is from 80 to 120:20 to 30:30 to 34:25 to 35.
  • the mass ratio of the epoxy resin, the carbon black, the curing agent, and the surface-treated hollow glass microbeads is 100:25:32:30.
  • T 1 is 50 to 70 ° C; and T 2 is 100 to 120 ° C.
  • the surface-treated hollow glass microbeads are added to the epoxy resin/carbon black/curing agent mixture, ultrasonically dispersed, vacuum degassed, and solidified to obtain an epoxy resin absorbing composite material.
  • the curing is performed by vacuum drying at 110 to 130 ° C for 1 to 3 hours and vacuum curing at 170 to 190 ° C for 3 to 5 hours.
  • the invention also provides an epoxy resin absorbing composite material prepared according to the above preparation method.
  • the method for preparing an epoxy resin absorbing composite material provides a good electromagnetic shielding performance and reduces the composite material by using carbon black and surface treated hollow glass microbeads as absorbing agents.
  • the density, the density is as low as 0.85g/cm 3
  • the surface treated hollow glass microbeads are thoroughly mixed with the epoxy resin/carbon black/curing agent mixture by ultrasonic dispersion, vacuum degassing, etc., and then vacuum cured.
  • the prepared epoxy resin absorbing composite material achieves strong absorption in a wide frequency band of 0.5 to 18 GHz, and the reflectance is less than -5 dB, which effectively solves the defects of high density and narrow absorbing band of the conventional absorbing composite material.
  • FIG. 1 is a schematic view showing a preparation process of an epoxy resin absorbing composite material.
  • Example 2 is a schematic view showing a preparation flow of the epoxy resin absorbing composite material of Example 1.
  • the invention selects the epoxy resin as the matrix, the carbon black and the surface treated hollow glass microbead as the absorbing agent, and obtains the absorbing material with small density, absorbing waveband bandwidth and high strength, and the specific steps are as follows:
  • ethanol-water mixed solution is prepared by using anhydrous ethanol and deionized water with a mass ratio of 8-10:0.5-2, glacial acetic acid is added to adjust the pH to 3 ⁇ 4; silane coupling is added.
  • the agent is formulated into a silane coupling agent solution with a mass fraction of 2 to 3%; and then the hollow glass microbeads are added to prepare a hollow glass microbead solution having a mass fraction of 5% to 15%, and the temperature is raised to 80 to 100 ° C, and the mixture is stirred.
  • silane coupling agent is A One or more of -1100, A-187, and A-172.
  • Preparation of epoxy resin absorbing composite heating epoxy resin to 50 ⁇ 70 ° C, adding carbon black, ultrasonic dispersion for 30 ⁇ 60min, to obtain epoxy / carbon black mixture; epoxy / carbon black mixture Heating to 100-120 ° C, adding curing agent, stirring and dissolving to obtain epoxy resin / carbon black / curing agent mixture; adding surface-treated hollow glass beads to epoxy resin / carbon black / curing agent mixture, ultrasonic Disperse for 30 to 60 minutes, vacuum degas with vacuum oven or vacuum degasser until the mixture is free of bubbles, pour into the mold, vacuum dry at 110-130 ° C for 1-3 h and vacuum cure at 170-190 ° C for 3 to 5 h to obtain epoxy resin.
  • the absorbing composite material wherein the mass ratio of the epoxy resin, the carbon black, the curing agent and the surface treated hollow glass microbead is 80 to 120:20 to 30:30 to 34:25 to 35, preferably 100:25:32 : 30, the curing agent is one or more of 4,4 diaminodiphenyl sulfone (DDS), dipropylene triamine (DPTA), and trimethylethylenediamine.
  • DDS 4,4 diaminodiphenyl sulfone
  • DPTA dipropylene triamine
  • trimethylethylenediamine trimethylethylenediamine
  • ethanol-water mixed solution is prepared with anhydrous ethanol and deionized water at a mass ratio of 8:0.5, glacial acetic acid is added to adjust the pH to 3 to 4; silane coupling agent A-187 is added. , prepared into a mass fraction of 3% silane coupling agent solution; then added hollow glass microspheres, prepared into hollow glass microbead solution, heated to 80 ° C, stirred for 80 min, filtered, washed with deionized water until the solution was neutral, Drying at 100 ° C for 2.5 h under vacuum to obtain surface treated hollow glass microbeads;
  • Preparation of epoxy resin absorbing composite heating 100 parts of epoxy resin to 70 ° C, adding 30 parts of carbon black, ultrasonic dispersion for 35 min, to obtain epoxy resin / carbon black mixture; epoxy / carbon black mixture Warming up to 100 ° C, adding 32 parts of curing agent, stirring and dissolving to obtain epoxy resin / carbon black / curing agent mixture; adding 25 parts of surface treated hollow glass beads in epoxy resin / carbon black / curing agent mixture Ultrasonic dispersion for 40min, vacuum degassing into the mixture without vacuum, poured into the mold, vacuum drying at 110 ° C for 3 h and 170 ° C vacuum curing for 5 h, to obtain epoxy resin absorbing composite material; press molding, cutting the composite material The reflectance was measured in a standard of 300 mm * 300 mm * 1 mm, and the density was further measured.
  • Preparation of epoxy resin absorbing composite 80 parts of epoxy resin is heated to 50 ° C, 25 parts of carbon black is added, ultrasonic dispersion for 40 min, to obtain epoxy resin / carbon black mixture; epoxy / carbon black mixture Warming up to 110 ° C, adding 30 parts of curing agent, stirring and dissolving to obtain epoxy resin / carbon black / curing agent mixture; adding 35 parts of surface treated hollow glass beads in epoxy resin / carbon black / curing agent mixture Ultrasonic dispersion for 60min, vacuum degassing into the mixture without vacuum, poured into the mold, vacuum drying at 130 ° C for 1 h and 180 ° C vacuum curing for 4 h, to obtain epoxy resin absorbing composite material; press composite molding, cutting The reflectance was measured in a standard of 300 mm * 300 mm * 1 mm, and the density was further measured.
  • Preparation of epoxy resin absorbing composite heating 100 parts of epoxy resin to 60 ° C, adding 20 parts of carbon black, ultrasonic dispersion for 50 min, to obtain epoxy resin / carbon black mixture; epoxy / carbon black mixture Warming to 120 ° C, adding 32 parts of curing agent, stirring and dissolving to obtain epoxy resin / carbon black / curing agent mixture; adding 30 parts of surface treated hollow glass beads in epoxy resin / carbon black / curing agent mixture Ultrasonic dispersion for 30min, vacuum degassing into the mixture without vacuum, poured into the mold, vacuum drying at 120 ° C for 3 h and vacuum curing at 190 ° C for 3 h, to obtain epoxy resin absorbing composite material; press molding, cutting the composite material The reflectance was measured in a standard of 300 mm * 300 mm * 1 mm, and the density was further measured.
  • Preparation of epoxy resin absorbing composite heating 100 parts of epoxy resin to 65 ° C, adding 30 parts of carbon black, ultrasonic dispersion for 60 min, to obtain epoxy resin / carbon black mixture; epoxy / carbon black mixture Raise to 115 ° C, add 32 parts of curing agent, stir to dissolve, to obtain epoxy resin / carbon black / curing agent mixture; add 25 parts of surface treated hollow glass beads in epoxy / carbon black / curing agent mixture Ultrasonic dispersion for 35min, vacuum degassing into the mixture without vacuum, poured into the mold, vacuum drying at 120 ° C for 2 h and 180 ° C vacuum curing for 4 h, to obtain epoxy resin absorbing composite material; press composite molding, cutting The reflectance was measured in a standard of 300 mm * 300 mm * 1 mm, and the density was further measured.
  • Preparation of epoxy resin absorbing composite heating 100 parts of epoxy resin to 60 ° C, adding 25 parts of carbon black, ultrasonic dispersion for 30 min, to obtain epoxy resin / carbon black mixture; epoxy / carbon black mixture Heating to 110 ° C, adding 32 parts of curing agent, stirring and dissolving to obtain epoxy resin / carbon black / curing agent mixture; adding 30 parts of surface treated hollow glass beads in epoxy resin / carbon black / curing agent mixture Ultrasonic dispersion for 50min, vacuum degassing into the mixture without vacuum, poured into the mold, vacuum drying at 120 ° C for 2 h and 170 ° C vacuum curing for 4 h, to obtain epoxy resin absorbing composite material; press composite molding, cutting The reflectance was measured in a standard of 300 mm * 300 mm * 1 mm, and the density was further measured.
  • the above stirring speed is 800 to 900 r/min.
  • the present invention treats hollow glass microspheres by using an acidic ethanol-water mixed solution to obtain surface-treated hollow glass microspheres having good absorbing properties, and the surface-treated hollow glass microbeads and carbon black are used as
  • the absorbing agent prepares the epoxy resin absorbing composite material, and the obtained epoxy resin absorbing composite material has a reflectance of less than -5 dB in the absorption frequency range of 0.5 to 18 GHz, and the lowest is -32.7 dB, which effectively enhances the epoxy resin.
  • the absorbing property of the absorbing composite material, and the surface treated hollow glass microbeads are thoroughly mixed with the epoxy resin/carbon black/curing agent mixture by ultrasonic dispersion, vacuum degassing, etc., and then vacuum-cured to prepare the prepared ring.
  • the oxy-resin absorbing composite broadens the absorbing band of the composite; at the same time, the combination of the surface treated hollow glass beads and the epoxy/carbon black/curing agent mixture effectively reduces the density of the composite,
  • the density of the composite material is as low as 0.85 g/cm 3 , which satisfies the requirements of thin, light, wide and strong absorbing composite materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Epoxy Resins (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种环氧树脂吸波复合材料及其制备方法,包括:将环氧树脂升温至50~70℃,加入炭黑,得到环氧树脂/炭黑混合液;将环氧树脂/炭黑混合液升温至100~120℃,加入固化剂,搅拌溶解,得到环氧树脂/炭黑/固化剂混合液;在环氧树脂/炭黑/固化剂混合液中加入表面处理的中空玻璃微珠,固化,得到环氧树脂吸波复合材料。

Description

一种环氧树脂吸波复合材料及其制备方法 技术领域
本发明涉及材料领域,更具体地,涉及一种环氧树脂吸波复合材料及其制备方法。
背景技术
随着科技的进步,电子化、信息化技术的应用得到迅速发展,各种现代电子设备如无线电广播、电视、手机等快速普及,使得更多的电子和电气设备相继进入到日常办公和生活环境中,造成的电磁辐射污染严重影响人们的身体健康,因此对吸波复合材料的电磁屏蔽的需求与日俱增。
同时,吸波复合材料在航空航天、建筑材料、车辆、兵器等领域的应用中,往往需要在保持复合材料性能的基础上尽量降低材料密度、成本等。而传统的吸波复合材料(如铁氧体、石墨、陶瓷类等)主要缺点是密度大、吸波频带窄等,因而不能满足吸波材料:薄、轻、宽、强的要求。
发明内容
本发明采用以环氧树脂为基体,电磁屏蔽性能优良的炭黑和表面处理的中空玻璃微珠为吸波剂,可以使得该复合材料具有良好的电磁屏蔽性能;此外,吸波剂中采用表面处理的中空玻璃微珠不仅可以降低材料密度,还可以实现在较宽的频带内对电磁波的强吸收;同时,使用硅烷偶联剂处理中空玻璃微珠有利于中空玻璃微珠在环氧树脂基体中的均匀分散,使得环氧树脂可以与中空玻璃微珠之间形成良好的界面结合,有效解决了传统吸波复合材料的密度大、吸波频带窄等缺点。
本发明提供了一种环氧树脂吸波复合材料的制备方法,包括以下步骤:
将环氧树脂升温至温度T 1,加入炭黑,得到环氧树脂/炭黑混合液;将环氧树脂/炭黑混合液升温至温度T 2,加入固化剂,搅拌溶解,得到环氧树脂/炭 黑/固化剂混合液;以及在环氧树脂/炭黑/固化剂混合液中加入表面处理的中空玻璃微珠,固化,得到环氧树脂吸波复合材料。
在上述制备方法中,还包括:在乙醇-水混合溶液中加入冰醋酸,调节pH;再加入硅烷偶联剂,配制成硅烷偶联剂溶液;以及再加入中空玻璃微珠,配制成中空玻璃微珠溶液,升温至80~100℃,搅拌、过滤、洗涤、真空干燥,得到表面处理的中空玻璃微珠。
在上述制备方法中,乙醇-水溶液是质量比为8~10:0.5~2的无水乙醇和去离子水配制成的溶液,优选质量比为9:1的无水乙醇和去离子水配制成的溶液。
在上述制备方法中,调节pH后的乙醇-水混合溶液的pH值为3~4。
在上述制备方法中,硅烷偶联剂为A-1100(γ-氨丙基三乙氧基硅烷)、A-187(γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷)和A-172(乙烯基-三(2-甲氧基乙氧基)硅烷)的一种或多种。
在上述制备方法中,硅烷偶联剂溶液中的硅烷偶联剂的质量分数为2~3%。
在上述制备方法中,真空干燥的温度为100~110℃,真空干燥的时间为2~3h。
在上述制备方法中,环氧树脂、炭黑、固化剂和表面处理的中空玻璃微珠的质量比为80~120:20~30:30~34:25~35。
在上述制备方法中,环氧树脂、炭黑、固化剂和表面处理的中空玻璃微珠的质量比为100:25:32:30。
在上述制备方法中,T 1为50~70℃;T 2为100~120℃。
在上述制备方法中,在环氧树脂/炭黑/固化剂混合液中加入表面处理的中空玻璃微珠,超声分散,真空脱气,固化,得到环氧树脂吸波复合材料。
在上述制备方法中,固化为110~130℃真空干燥1~3h以及170~190℃真空固化3~5h。
本发明还提供了一种根据以上制备方法制备的环氧树脂吸波复合材料。
通过本发明提供的制备环氧树脂吸波复合材料的方法,通过使用炭黑和表面处理的中空玻璃微珠为吸波剂,使得该复合材料具有良好的电磁屏蔽性能,并且降低了该复合材料的密度,密度最低至0.85g/cm 3,进一步通过超声分散、真空脱气等步骤使得表面处理的中空玻璃微珠与环氧树脂/炭黑/固化 剂混合液充分混合,之后再真空固化使得制备的环氧树脂吸波复合材料实现了对0.5~18GHz的宽频带的强吸收,反射率均小于-5dB,有效解决了传统吸波复合材料的密度大、吸波频带窄等缺点。
附图说明
图1是环氧树脂吸波复合材料的制备流程示意图。
图2是实施例1的环氧树脂吸波复合材料的制备流程示意图。
具体实施方式
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。
本发明选用环氧树脂为基体、炭黑和表面处理的中空玻璃微珠为吸波剂,得到了密度小、吸波频带宽、强度大的吸波材料,具体步骤如下:
中空玻璃微珠的表面处理:选用质量比为8~10:0.5~2的无水乙醇和去离子水配制成乙醇-水混合溶液,加入冰醋酸,调节pH为3~4;加入硅烷偶联剂,配制成质量分数为2~3%硅烷偶联剂溶液;再加入中空玻璃微珠,配制成质量分数为5%~15%的中空玻璃微珠溶液,升温至80~100℃,搅拌60~80min、用聚丙烯微孔滤膜过滤、使用去离子水洗涤至溶液呈中性、100~110℃真空干燥2~3h,得到表面处理的中空玻璃微珠;其中,硅烷偶联剂为A-1100、A-187和A-172的一种或多种。
环氧树脂吸波复合材料的制备:将环氧树脂升温至50~70℃,加入炭黑,超声分散30~60min,得到环氧树脂/炭黑混合液;将环氧树脂/炭黑混合液升温至100~120℃,加入固化剂,搅拌溶解,得到环氧树脂/炭黑/固化剂混合液;在环氧树脂/炭黑/固化剂混合液中加入表面处理的中空玻璃微珠,超声分散30~60min,使用真空烘箱或真空脱气机真空脱气至混合液无气泡,倒入模具,110~130℃真空干燥1~3h以及170~190℃真空固化3~5h,得到环氧树脂吸波复合材料,其中,环氧树脂、炭黑、固化剂和表面处理的中空玻璃微珠的质量比为80~120:20~30:30~34:25~35,优选100:25:32:30,固化剂为4,4二氨基二苯砜(DDS)、二丙烯三胺(DPTA)、三甲基乙二胺中的一种或多种。
实施例一
中空玻璃微珠的表面处理:用质量比为9:1的无水乙醇和去离子水配制成乙醇-水混合溶液,加入冰醋酸,调节pH为3~4;加入硅烷偶联剂A-1100,配制成质量分数为2.5%硅烷偶联剂溶液;再加入中空玻璃微珠,配制成中空玻璃微珠溶液,升温至90℃,搅拌60min、过滤、使用去离子水洗涤至溶液呈中性、105℃真空干燥2h,得到表面处理的中空玻璃微珠;
环氧树脂吸波复合材料的制备:将120份环氧树脂升温至60℃,加入20份炭黑,超声分散30min,得到环氧树脂/炭黑混合液;将环氧树脂/炭黑混合液升温至110℃,加入34份固化剂,搅拌溶解,得到环氧树脂/炭黑/固化剂混合液;在环氧树脂/炭黑/固化剂混合液中加入30份表面处理的中空玻璃微珠,超声分散30min,使用真空烘箱真空脱气至混合液无气泡,倒入模具,120℃真空干燥2h和180℃真空固化4h,得到环氧树脂吸波复合材料,以上制备步骤如下图2所示;将该复合材料压制成型,切割成300mm*300mm*1mm的标准测试反射率,并且进一步测定其密度。
实施例二
中空玻璃微珠的表面处理:用质量比为8:0.5的无水乙醇和去离子水配制成乙醇-水混合溶液,加入冰醋酸,调节pH为3~4;加入硅烷偶联剂A-187,配制成质量分数为3%硅烷偶联剂溶液;再加入中空玻璃微珠,配制成中空玻璃微珠溶液,升温至80℃,搅拌80min、过滤、使用去离子水洗涤至溶液呈中性、100℃真空干燥2.5h,得到表面处理的中空玻璃微珠;
环氧树脂吸波复合材料的制备:将100份环氧树脂升温至70℃,加入30份炭黑,超声分散35min,得到环氧树脂/炭黑混合液;将环氧树脂/炭黑混合液升温至100℃,加入32份固化剂,搅拌溶解,得到环氧树脂/炭黑/固化剂混合液;在环氧树脂/炭黑/固化剂混合液中加入25份表面处理的中空玻璃微珠,超声分散40min,使用真空烘箱真空脱气至混合液无气泡,倒入模具,110℃真空干燥3h和170℃真空固化5h,得到环氧树脂吸波复合材料;将该复合材料压制成型,切割成300mm*300mm*1mm的标准测试反射率,并且进一步测定其密度。
实施例三
中空玻璃微珠的表面处理:用质量比为10:1的无水乙醇和去离子水配制成乙醇-水混合溶液,加入冰醋酸,调节pH为3~4;加入硅烷偶联剂A-1100,配制成质量分数为2%硅烷偶联剂溶液;再加入中空玻璃微珠,配制成浓度为3M的中空玻璃微珠溶液,升温至100℃,搅拌70min、过滤、使用去离子水洗涤至溶液呈中性、110℃真空干燥3h,得到表面处理的中空玻璃微珠;
环氧树脂吸波复合材料的制备:将80份环氧树脂升温至50℃,加入25份炭黑,超声分散40min,得到环氧树脂/炭黑混合液;将环氧树脂/炭黑混合液升温至110℃,加入30份固化剂,搅拌溶解,得到环氧树脂/炭黑/固化剂混合液;在环氧树脂/炭黑/固化剂混合液中加入35份表面处理的中空玻璃微珠,超声分散60min,使用真空烘箱真空脱气至混合液无气泡,倒入模具,130℃真空干燥1h和180℃真空固化4h,得到环氧树脂吸波复合材料;将该复合材料压制成型,切割成300mm*300mm*1mm的标准测试反射率,并且进一步测定其密度。
实施例四
中空玻璃微珠的表面处理:用质量比为10:2的无水乙醇和去离子水配制成乙醇-水混合溶液,加入冰醋酸,调节pH为3~4;加入硅烷偶联剂A-172,配制成质量分数为2.5%硅烷偶联剂溶液;再加入中空玻璃微珠,配制成中空玻璃微珠溶液,升温至90℃,搅拌60min、过滤、使用去离子水洗涤至溶液呈中性、105℃真空干燥3h,得到表面处理的中空玻璃微珠;
环氧树脂吸波复合材料的制备:将100份环氧树脂升温至60℃,加入20份炭黑,超声分散50min,得到环氧树脂/炭黑混合液;将环氧树脂/炭黑混合液升温至120℃,加入32份固化剂,搅拌溶解,得到环氧树脂/炭黑/固化剂混合液;在环氧树脂/炭黑/固化剂混合液中加入30份表面处理的中空玻璃微珠,超声分散30min,使用真空烘箱真空脱气至混合液无气泡,倒入模具,120℃真空干燥3h和190℃真空固化3h,得到环氧树脂吸波复合材料;将该复合材料压制成型,切割成300mm*300mm*1mm的标准测试反射率,并且进一步测定其密度。
实施例五
中空玻璃微珠的表面处理:用质量比为9:2的无水乙醇和去离子水配制成 乙醇-水混合溶液,加入冰醋酸,调节pH为3~4;加入硅烷偶联剂A-1100,配制成质量分数为2.5%硅烷偶联剂溶液;再加入中空玻璃微珠,配制成中空玻璃微珠溶液,升温至100℃,搅拌60min、过滤、使用去离子水洗涤至溶液呈中性、105℃真空干燥2h,得到表面处理的中空玻璃微珠;
环氧树脂吸波复合材料的制备:将100份环氧树脂升温至65℃,加入30份炭黑,超声分散60min,得到环氧树脂/炭黑混合液;将环氧树脂/炭黑混合液升温至115℃,加入32份固化剂,搅拌溶解,得到环氧树脂/炭黑/固化剂混合液;在环氧树脂/炭黑/固化剂混合液中加入25份表面处理的中空玻璃微珠,超声分散35min,使用真空烘箱真空脱气至混合液无气泡,倒入模具,120℃真空干燥2h和180℃真空固化4h,得到环氧树脂吸波复合材料;将该复合材料压制成型,切割成300mm*300mm*1mm的标准测试反射率,并且进一步测定其密度。
实施例六
中空玻璃微珠的表面处理:用质量比为9:1的无水乙醇和去离子水配制成乙醇-水混合溶液,加入冰醋酸,调节pH为3~4;加入硅烷偶联剂A-187,配制成质量分数为2%硅烷偶联剂溶液;再加入中空玻璃微珠,配制成中空玻璃微珠溶液,升温至80℃,搅拌75min、过滤、使用去离子水洗涤至溶液呈中性、100℃真空干燥3h,得到表面处理的中空玻璃微珠;
环氧树脂吸波复合材料的制备:将100份环氧树脂升温至60℃,加入25份炭黑,超声分散30min,得到环氧树脂/炭黑混合液;将环氧树脂/炭黑混合液升温至110℃,加入32份固化剂,搅拌溶解,得到环氧树脂/炭黑/固化剂混合液;在环氧树脂/炭黑/固化剂混合液中加入30份表面处理的中空玻璃微珠,超声分散50min,使用真空烘箱真空脱气至混合液无气泡,倒入模具,120℃真空干燥2h和170℃真空固化4h,得到环氧树脂吸波复合材料;将该复合材料压制成型,切割成300mm*300mm*1mm的标准测试反射率,并且进一步测定其密度。
以上搅拌的转速为800~900r/min。
以上密度均采用GB/T 6343-2009测试;反射率均采用SFL-I反射率测定仪测定。
实施例一至六测试的反射率,得到的反射率及密度结果如下表1:
表1、测试结果
Figure PCTCN2018083677-appb-000001
由表1可见,本发明通过使用酸性乙醇-水混合溶液处理中空玻璃微珠,得到吸波性能较好的表面处理的中空玻璃微珠,并且将该表面处理的中空玻璃微珠和炭黑作为吸波剂制备环氧树脂吸波复合材料,得到的环氧树脂吸波复合材料在0.5~18GHz的吸收频率范围内的反射率都小于-5dB,最低至-32.7dB,有效增强了环氧树脂吸波复合材料的吸波性能,并且通过超声分散、真空脱气等步骤使得表面处理的中空玻璃微珠与环氧树脂/炭黑/固化剂混合液充分混合,之后再真空固化使得制备的环氧树脂吸波复合材料拓宽了复合材料的吸波频带;同时,表面处理的中空玻璃微珠与环氧树脂/炭黑/固化剂混合液的结合使用有效地降低了复合材料的密度,使得该复合材料的密度最低至0.85g/cm 3,满足了吸波复合材料的薄、轻、宽、强的要求。
本领域技术人员应理解,以上实施例仅是示例性实施例,在不背离本发明的精神和范围的情况下,可以进行多种变化、替换以及改变。

Claims (13)

  1. 一种环氧树脂吸波复合材料的制备方法,其特征在于,包括以下步骤:
    将环氧树脂升温至温度T 1,加入炭黑,得到环氧树脂/炭黑混合液;
    将所述环氧树脂/炭黑混合液升温至温度T 2,加入固化剂,搅拌溶解,得到环氧树脂/炭黑/固化剂混合液;以及
    在所述环氧树脂/炭黑/固化剂混合液中加入表面处理的中空玻璃微珠,固化,得到所述环氧树脂吸波复合材料。
  2. 根据权利要求1所述的制备方法,还包括:在乙醇-水混合溶液中加入冰醋酸,调节pH;再加入硅烷偶联剂,配制成硅烷偶联剂溶液;以及再加入中空玻璃微珠,配制成中空玻璃微珠溶液,升温至80~100℃,搅拌、过滤、洗涤、真空干燥,得到表面处理的中空玻璃微珠。
  3. 根据权利要求2所述的制备方法,其特征在于,所述乙醇-水混合溶液是质量比为8~10:0.5~2的无水乙醇和去离子水配制成的溶液。
  4. 根据权利要求2所述的制备方法,其特征在于,所述调节pH后的所述乙醇-水混合溶液的pH值为3~4。
  5. 根据权利要求2所述的制备方法,其特征在于,所述硅烷偶联剂为A-1100、A-187和A-172的一种或多种。
  6. 根据权利要求5所述的制备方法,其特征在于,所述硅烷偶联剂溶液中的所述硅烷偶联剂的质量分数为2~3%。
  7. 根据权利要求2所述的制备方法,其特征在于,所述真空干燥的温度为100~110℃,所述真空干燥的时间为2~3h。
  8. 根据权利要求1所述的制备方法,其特征在于,所述环氧树脂、所述炭黑、所述固化剂和所述表面处理的中空玻璃微珠的质量比为80~120:20~30:30~34:25~35。
  9. 根据权利要求8所述的制备方法,其特征在于,所述环氧树脂、所述炭黑、所述固化剂和所述表面处理的中空玻璃微珠的质量比为100:25:32:30。
  10. 根据权利要求1所述的制备方法,其特征在于,T 1为50~70℃;T 2 为100~120℃。
  11. 根据权利要求1所述的制备方法,其特征在于,在所述环氧树脂/炭黑/固化剂混合液中加入所述表面处理的中空玻璃微珠,超声分散,真空脱气,固化,得到所述环氧树脂吸波复合材料。
  12. 根据权利要求1所述的制备方法,其特征在于,所述固化为110~130℃真空干燥1~3h以及170~190℃真空固化3~5h。
  13. 一种根据权利要求1-12中任一项所述的制备方法制备的环氧树脂吸波复合材料。
PCT/CN2018/083677 2017-05-26 2018-04-19 一种环氧树脂吸波复合材料及其制备方法 WO2018214681A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020515802A JP6899034B2 (ja) 2017-05-26 2018-04-19 エポキシ樹脂電磁波吸収複合材料及びその作製方法
EP18806757.3A EP3617269B1 (en) 2017-05-26 2018-04-19 Epoxy resin wave-absorbing composite material and preparation method thereof
US16/695,352 US11279822B2 (en) 2017-05-26 2019-11-26 Epoxy resin wave-absorbing composite material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710386665.4A CN108929518B (zh) 2017-05-26 2017-05-26 一种环氧树脂吸波复合材料及其制备方法
CN201710386665.4 2017-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/695,352 Continuation US11279822B2 (en) 2017-05-26 2019-11-26 Epoxy resin wave-absorbing composite material and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2018214681A1 true WO2018214681A1 (zh) 2018-11-29

Family

ID=64395280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083677 WO2018214681A1 (zh) 2017-05-26 2018-04-19 一种环氧树脂吸波复合材料及其制备方法

Country Status (5)

Country Link
US (1) US11279822B2 (zh)
EP (1) EP3617269B1 (zh)
JP (1) JP6899034B2 (zh)
CN (1) CN108929518B (zh)
WO (1) WO2018214681A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029050A (zh) * 2020-08-03 2020-12-04 江苏万华拓谷新材料科技有限公司 一种耐高温高损耗浇注吸波材料及其制备方法
CN113831686A (zh) * 2021-09-18 2021-12-24 安徽农业大学 一种兼具屏蔽与吸声功能的多孔网络复合材料的制备方法
CN114752184A (zh) * 2022-03-24 2022-07-15 华润电力(贺州)有限公司 一种环氧树脂玻璃纤维复合隔离防护材料及其在继电保护接线端子隔离防护中的应用
CN118306084A (zh) * 2024-06-07 2024-07-09 长沙林骏汽车内饰系统有限公司 一种车内吸隔音复合材料及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795185B (zh) * 2018-12-05 2021-09-03 广东炜田环保新材料股份有限公司 一种防电磁辐射防水透气薄膜材料及其制备方法和应用
CN111518501B (zh) * 2020-05-26 2022-04-15 中国电子科技集团公司第三十八研究所 一种高导热系数导电银胶的制备方法及导电银胶
CN114085041A (zh) * 2020-08-25 2022-02-25 深圳光启尖端技术有限责任公司 吸波玻璃微珠及其制备方法和应用
CN113201300A (zh) * 2021-03-26 2021-08-03 陕西黄河新兴设备有限公司 泡沫胶及其制备方法
CN113088038B (zh) * 2021-04-23 2023-06-16 无锡希亚诺新材料科技有限公司 一种硬度高耐腐蚀的合成树脂及其制备方法
CN113451783B (zh) * 2021-06-18 2022-12-09 西安交通大学 一种相变可控复合材料吸波体及其制备和性能调控方法
CN113462357B (zh) * 2021-07-02 2024-07-02 合肥工业大学 一种吸波粒子及其复合材料的制备方法和应用
CN116063723A (zh) * 2022-12-30 2023-05-05 湖南博翔新材料有限公司 一种电阻型吸波薄膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW469283B (en) * 1999-11-09 2001-12-21 Guo-Liang Chen Method for manufacturing dielectric material for absorbing electromagnetic waves
US20080311373A1 (en) * 2007-06-12 2008-12-18 Jen-Sung Hsu Electromagnetic wave absorbing material and method for preparing the same
CN102807801A (zh) * 2011-06-29 2012-12-05 深圳光启高等理工研究院 一种吸波涂料及其制备方法
CN106498757A (zh) * 2016-11-30 2017-03-15 航天科工武汉磁电有限责任公司 一种电磁屏蔽纤维布及其制备方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192412A (en) * 1981-05-21 1982-11-26 Chisso Corp Production of polyvinyl chloride composition
JPS60133048A (ja) * 1983-12-22 1985-07-16 Toshiba Corp 軽量電気絶縁材料組成物
US5879794A (en) * 1994-08-25 1999-03-09 W. L. Gore & Associates, Inc. Adhesive-filler film composite
US5837739A (en) * 1995-06-07 1998-11-17 Mcdonnell Douglas Corporation Loaded syntactic foam-core material
JP2961171B1 (ja) * 1998-06-05 1999-10-12 防衛庁技術研究本部長 広帯域シンタクチックフォーム電波吸収材料
JP2003031028A (ja) * 2001-07-17 2003-01-31 Shin Etsu Chem Co Ltd 導電性組成物
US20050070658A1 (en) * 2003-09-30 2005-03-31 Soumyadeb Ghosh Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions
US20100222487A1 (en) * 2006-03-08 2010-09-02 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow powder, process for producing the inorganic hollow powder, and composition comprising the inorganic hollow powder
JP5414027B2 (ja) * 2006-04-24 2014-02-12 電気化学工業株式会社 無機質中空粉体、その製造方法及びそれを用いた組成物
US8030376B2 (en) * 2006-07-12 2011-10-04 Minusnine Technologies, Inc. Processes for dispersing substances and preparing composite materials
GB0622060D0 (en) * 2006-11-06 2006-12-13 Hexcel Composites Ltd Improved composite materials
US20150210039A1 (en) * 2006-11-06 2015-07-30 Hexcel Composites Limited Composite materials
JP5143508B2 (ja) * 2007-09-04 2013-02-13 花王株式会社 樹脂組成物
US8734685B2 (en) * 2008-02-11 2014-05-27 Director General, Defence Reserch & Development Organization Electrically conducting syntactic foam and a process for preparing the same
JP2012179892A (ja) * 2010-10-19 2012-09-20 Nitto Denko Corp 高難燃ポリマー部材、難燃性物品及び難燃化方法
DE102010062669A1 (de) * 2010-12-08 2012-06-14 Tesa Se Verfahren zur Herstellung geschäumter Polymermassen, geschäumte Polymermassen und Klebeband damit
CN102168477A (zh) * 2011-03-23 2011-08-31 大连理工大学 用于电磁防护的吸波吊顶及其制备方法
CN103242623B (zh) * 2012-02-14 2016-08-03 深圳光启尖端技术有限责任公司 环氧树脂与吸波材料的制作方法
CN103290396B (zh) * 2012-03-02 2016-04-13 深圳光启尖端技术有限责任公司 一种吸波材料及其制备方法
BR112015004103A2 (pt) * 2012-08-29 2020-02-18 Hempel As composição de revestimento; kit de partes que contém uma composição de revestimento; estrutura revestida; e método para revestir uma estrutura de metal
KR102123475B1 (ko) * 2012-12-05 2020-06-26 사이텍 인더스트리스 인코포레이티드 합성 구조물용 전도성 표면재
CN103275591B (zh) * 2013-05-23 2016-03-23 浙江原邦材料科技有限公司 一种0.6-18GHz频段的吸波粉/环氧抗电磁干扰涂层材料及其制备方法
CN103642173A (zh) * 2013-11-30 2014-03-19 孙永平 空心玻璃微珠复合材料的制备方法
JP6144780B2 (ja) * 2013-12-26 2017-06-07 松本油脂製薬株式会社 熱膨張性微小球の製造方法およびその利用
US10011727B2 (en) * 2014-03-11 2018-07-03 The Chemours Company Fc, Llc Tailored dispersion and formation of integrated particle systems via pH responsive groups
PL2957584T3 (pl) * 2014-06-17 2017-08-31 3M Innovative Properties Company Szybko utwardzane epoksydowe kompozycje klejące
CN104479521A (zh) * 2014-11-21 2015-04-01 芜湖市鸿坤汽车零部件有限公司 一种导热性能优良的电磁屏蔽型防腐漆及其制备方法
CN108368395A (zh) * 2015-12-18 2018-08-03 3M创新有限公司 包括聚合物泡沫的粘合剂制品及其制备方法
CN105566857B (zh) * 2016-03-10 2018-12-04 四川大学 一种轻质环氧树脂复合材料及其制备方法
JP7005907B2 (ja) * 2017-02-23 2022-02-10 三菱ケミカル株式会社 硬化性組成物及び膜
KR102302380B1 (ko) * 2017-03-07 2021-09-15 후지필름 가부시키가이샤 조성물, 막, 광 센서 및 분산제
KR102667022B1 (ko) * 2018-01-08 2024-05-21 디디피 스페셜티 일렉트로닉 머티리얼즈 유에스, 엘엘씨 에폭시 수지 접착제 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW469283B (en) * 1999-11-09 2001-12-21 Guo-Liang Chen Method for manufacturing dielectric material for absorbing electromagnetic waves
US20080311373A1 (en) * 2007-06-12 2008-12-18 Jen-Sung Hsu Electromagnetic wave absorbing material and method for preparing the same
CN102807801A (zh) * 2011-06-29 2012-12-05 深圳光启高等理工研究院 一种吸波涂料及其制备方法
CN106498757A (zh) * 2016-11-30 2017-03-15 航天科工武汉磁电有限责任公司 一种电磁屏蔽纤维布及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAI, ZHANZHENG ET AL.: "Research on Preparation and Properties of Hollow Glass Bead Filled Epoxy Composites", THERMOSETTING RESIN, vol. 24, no. 2, 31 March 2009 (2009-03-31), pages 32 - 35, XP009517539, DOI: 10.13650/j.cnki.rgxsz.2009.02.009 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029050A (zh) * 2020-08-03 2020-12-04 江苏万华拓谷新材料科技有限公司 一种耐高温高损耗浇注吸波材料及其制备方法
CN112029050B (zh) * 2020-08-03 2022-08-09 江苏万华拓谷新材料科技有限公司 一种耐高温高损耗浇注吸波材料及其制备方法
CN113831686A (zh) * 2021-09-18 2021-12-24 安徽农业大学 一种兼具屏蔽与吸声功能的多孔网络复合材料的制备方法
CN113831686B (zh) * 2021-09-18 2024-05-24 安徽农业大学 一种兼具屏蔽与吸声功能的多孔网络复合材料的制备方法
CN114752184A (zh) * 2022-03-24 2022-07-15 华润电力(贺州)有限公司 一种环氧树脂玻璃纤维复合隔离防护材料及其在继电保护接线端子隔离防护中的应用
CN114752184B (zh) * 2022-03-24 2023-09-12 华润电力(贺州)有限公司 一种环氧树脂玻璃纤维复合隔离防护材料及其在继电保护接线端子隔离防护中的应用
CN118306084A (zh) * 2024-06-07 2024-07-09 长沙林骏汽车内饰系统有限公司 一种车内吸隔音复合材料及其制备方法

Also Published As

Publication number Publication date
US20200095419A1 (en) 2020-03-26
EP3617269A1 (en) 2020-03-04
EP3617269A4 (en) 2020-11-25
EP3617269B1 (en) 2023-08-16
JP6899034B2 (ja) 2021-07-07
US11279822B2 (en) 2022-03-22
CN108929518B (zh) 2022-11-25
CN108929518A (zh) 2018-12-04
JP2020521037A (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2018214681A1 (zh) 一种环氧树脂吸波复合材料及其制备方法
CN112029421A (zh) 一种吸波胶膜材料及其制备方法
CN108276773A (zh) 一种导热吸波材料及其制备方法
CN105176081A (zh) 一种阻燃耐热天线罩基材的制备方法
WO2018121048A1 (zh) 大功率led照明灯用耐高温封装胶及其制备方法
CN111285344B (zh) 一种磁性微孔碳复合薄膜及其制备方法
CN114524617B (zh) 一种碳化硅改性的高导热、低介电中空玻璃微珠及其制备方法
WO2020114092A1 (zh) 环氧橡胶吸波涂料及其制备方法
CN114316509B (zh) 一种peek基复合吸波3d打印丝材及其制备方法
CN110343276B (zh) 一种具有负介电性能的石墨烯/聚乙烯醇柔性复合薄膜及其制备方法
CN111349299A (zh) 一种高导热石墨烯-SiC-NiO改性丙烯酸树脂电磁屏蔽材料及其制法
CN111718549A (zh) 一种高频铜箔基板及其制备方法
CN113292861A (zh) 一种导热吸波复合磁片及其制备方法
CN109971300A (zh) 一种吸波涂层及其制备方法
CN104891924B (zh) 一种石膏基吸波复合材料及其制备方法
CN106633669A (zh) 一种制备覆铜板用低透射率的改性环氧树脂胶液及其制备方法
CN112143145B (zh) 一种低介电损耗型聚四氟乙烯微波板材及其制备方法
CN113698866A (zh) 一种建筑用吸波涂层及其制备方法
CN109251461B (zh) 一种功能化石墨烯/聚甲基丙烯酰亚胺复合吸波材料及制备方法
CN113637285A (zh) 一种气凝胶改性无机纤维胶粘剂及其制备工艺
CN108467568B (zh) 一种有机硅环氧树脂复合材料及其制备方法
CN117430919B (zh) 一种高功率尖劈吸波材料及其制备方法
CN117550898B (zh) 利用酚醛环氧树脂凝胶注模制备反应烧结碳化硅的方法
CN108484027A (zh) 一种具备电磁波吸收性能的混凝土材料及其制备方法
CN113278255B (zh) 一种具有导热性和吸波性的高频段导热吸波绝缘垫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018806757

Country of ref document: EP

Effective date: 20191128