WO2018194096A1 - 繊維ボードの製造方法 - Google Patents

繊維ボードの製造方法 Download PDF

Info

Publication number
WO2018194096A1
WO2018194096A1 PCT/JP2018/016013 JP2018016013W WO2018194096A1 WO 2018194096 A1 WO2018194096 A1 WO 2018194096A1 JP 2018016013 W JP2018016013 W JP 2018016013W WO 2018194096 A1 WO2018194096 A1 WO 2018194096A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
core
sheath
component
type composite
Prior art date
Application number
PCT/JP2018/016013
Other languages
English (en)
French (fr)
Inventor
花谷 和俊
赤尾 昌哉
裕介 永塚
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to KR1020197030290A priority Critical patent/KR102242628B1/ko
Priority to CN201880025367.5A priority patent/CN110520562A/zh
Priority to US16/605,385 priority patent/US11525220B2/en
Publication of WO2018194096A1 publication Critical patent/WO2018194096A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard
    • D21J1/04Pressing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/485Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with weld-bonding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/24Polyesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/10Composite fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • the present invention relates to a method for manufacturing a fiber board having excellent rigidity, and more particularly to a method for manufacturing a fiber board having high rigidity and high bending strength without strictly controlling manufacturing conditions.
  • a core-sheath composite fiber composed of a core component made of a high-melting polymer and a sheath component made of a low-melting polymer is used, and only the sheath component is melted to melt the core-sheath composite fiber. It is known to wear and produce a relatively high rigidity fiberboard (Patent Document 1).
  • Patent Document 1 a core-sheath type composite fiber employing polyethylene terephthalate as a core component and polyethylene as a sheath component is used.
  • a method of manufacturing a board is disclosed.
  • the present invention relates to an improvement of the invention described in Patent Document 1, and by using a specific polymer as a core component and a sheath component, a wide range of heating temperatures and a wide range of heating and pressurizing times can be used.
  • An object of the present invention is to provide a production method capable of obtaining a fiber board having rigidity and high bending strength.
  • the present invention is a core-sheath type in which the core component is composed of a copolymer composed of ethylene glycol and terephthalic acid, and the sheath component is composed of a copolymer composed of ethylene glycol, adipic acid, terephthalic acid, isophthalic acid and / or diethylene glycol.
  • the fiber web is compressed in the thickness direction and heated to soften or melt the sheath component and fuse the core-sheath composite fibers together to form a flat plate. It is related with the manufacturing method of the fiber board whose initial bending elastic modulus by a three-point bending test is 300 Mpa or more by shape
  • the specific core-sheath type composite fiber is a copolymer composed of a copolymer of ethylene glycol and terephthalic acid as a core component and ethylene glycol, adipic acid, terephthalic acid, isophthalic acid and / or diethylene glycol as a sheath component. It consists of coalescence.
  • the copolymer constituting the core component is a polyester obtained by dehydration condensation using ethylene glycol as a diol component and terephthalic acid as a dicarboxylic acid component.
  • the dicarboxylic acid component a very small amount of other dicarboxylic acid components such as isophthalic acid may be mixed.
  • the melting point of the copolymer constituting the core component is about 260 ° C., and the glass transition point is about 70-80 ° C.
  • the copolymer constituting the sheath component is a copolymerized polyester obtained by dehydration condensation using ethylene glycol and optionally diethylene glycol as a diol component and adipic acid, terephthalic acid and optionally isophthalic acid as a dicarboxylic acid component, respectively.
  • diethylene glycol and / or isophthalic acid are mixed in the diol component.
  • the melting point and glass transition point of the copolymer constituting the sheath component are arbitrary, but the melting point is preferably about 200 ° C. in consideration of the fusing property between the sheath components, the compressibility of the fiber web, and the like.
  • the transition point is preferably about 40-50 ° C.
  • the core component and the sheath component may be arranged concentrically or may be arranged eccentrically. However, since it will become easy to produce shrinkage at the time of heating if it is arranged eccentrically, it is more preferable to arrange it concentrically.
  • the core-sheath type composite fiber is obtained by a known method in which a high melting point polyester serving as a core component and a low melting point copolymer polyester serving as a sheath component are supplied to a spinning apparatus having a composite spinning hole and melt-spun. Can do.
  • the core-sheath type composite fiber may be a core-sheath type composite long fiber or a core-sheath type composite short fiber, but a fiber board having higher rigidity can be obtained by using the core-sheath type composite long fiber. .
  • a so-called spunbond method is generally used.
  • the core-sheath type composite continuous fibers obtained by melt spinning can be immediately accumulated in a sheet form to obtain a fiber web.
  • the core-sheath type composite short fibers may be opened through a card machine and accumulated in a sheet form.
  • the weight of the fiber web is at least 150 g / m 2 or more, preferably 300 g / m 2 or more. When the weight of the fiber web is too low, the thickness is reduced and the rigidity of the fiber board is lowered.
  • there is no upper limit in the weight of a fiber web generally it is about 2000 g / m ⁇ 2 >, and when it exceeds this, it will become heavy and will become difficult to handle.
  • the obtained fiber web may be compressed as it is in the thickness direction and heated, or may be temporarily bonded between the core-sheath type composite fibers and then compressed and heated in the thickness direction. Moreover, after giving a needle punch, you may heat while compressing in the thickness direction.
  • needle punching may be performed in a state where the core-sheath type composite fibers are not temporarily bonded to each other, or needle punching may be performed in a state of being temporarily bonded.
  • the former method is preferable because the fibers are not temporarily bonded to each other, so that the fibers are hardly damaged when the needle punch is applied, and the rigidity is not easily lowered due to yarn breakage or the like.
  • Needle punching is performed by a known method, whereby a core-sheath composite fiber is entangled three-dimensionally, and a dense nonwoven fabric in which core-sheath composite fibers are arranged in the thickness direction is obtained. Even if the core-sheath type composite fibers are temporarily bonded to each other, the temporary adhesion is broken by the needle punch, and the core-sheath type composite fibers are entangled three-dimensionally.
  • the punch density is about 10 to 200 / cm 2 .
  • any conventionally known method can be adopted as a method of compressing and heating the fiber web in the thickness direction.
  • a method in which a preheated fiber web is sandwiched between normal metal plates and compressed in the thickness direction and a method in which a normal temperature fiber web is sandwiched between heated metal plates and compressed in the thickness direction.
  • the heating condition and the pressing condition for compressing in the thickness direction may be performed under the condition that the sheath component of the core-sheath composite fiber is softened or melted and the core-sheath composite fiber is fused.
  • the heating temperature is about 100 ° C. to 200 ° C.
  • the pressing condition is about 1 to 500 kg / cm 2 in terms of surface pressure.
  • the heating and pressurizing time is about 10 to 150 seconds.
  • the sheath component is compressed and heated in the thickness direction, the sheath component is softened or melted, and the core-sheath type composite fibers are fused together to form a flat plate. Then, it cools by standing_to_cool etc. and obtains a fiber board.
  • the flat form does not need to be a flat plate as a whole, the flat plate is almost flat, and other parts may be curved or bent.
  • the fiber board obtained by the method according to the present invention is obtained by firmly bonding fibers together by fusing the sheath component of the core-sheath composite fiber.
  • the sheath component is used as a base material, and the fiber board is in a state in which the core component remains in the fiber form. Further, when the sheath component is only softened or partially melted, the sheath component does not become a matrix, and a fiber board having a large number of voids between core-sheath composite fibers is obtained.
  • the fiber board obtained by the method according to the present invention has an initial bending elastic modulus of 300 MPa or more by a three-point bending test and is highly rigid. The initial bending elastic modulus is calculated based on the initial gradient of the strain-bending load curve in the three-point bending test.
  • the fiber board obtained by the method according to the present invention can be suitably used for various applications.
  • it can be used as a sound absorbing material, an interior member, etc., and can also be used as a substitute for a conventional plastic plate.
  • the method according to the present invention uses a specific polyester copolymer as the sheath component of the core-sheath type composite fiber, both of a wide range of heating temperature and a wide range of pressure and heating time are used. A highly rigid fiber board can be obtained. Therefore, there is an effect that a fiber board having high rigidity and high bending strength can be obtained without strictly controlling or setting heating and pressing conditions.
  • Example 1 As a core component, a copolymer of ethylene glycol and terephthalic acid (melting point: 260 ° C.) was prepared. As a sheath component, a copolymer of ethylene glycol, diethylene glycol, adipic acid, terephthalic acid and isophthalic acid (melting point: 200 ° C.) was prepared. In addition, ethylene glycol as a diol component is 99 mol% and diethylene glycol is 1 mol%, adipic acid as a dicarboxylic acid component is 19 mol%, terephthalic acid is 78 mol%, and isophthalic acid is 3 mol%.
  • Both the core component and the sheath component described above were supplied to a spinning device having a composite spinning hole, and melt spinning was performed to obtain a core-sheath type composite continuous fiber.
  • This fiber web was conveyed to a needle punch device and subjected to needle punching at a punch density of 90 / cm 2 and a needle depth of 10 mm to obtain a needle punched nonwoven fabric having a weight of 900 g / m 2 .
  • the needle punched nonwoven fabric was set between a pair of metal flat plates heated to 200 ° C., and pressed for 60 seconds with a 3 mm spacer sandwiched between the pair of metal flat plates. Thereafter, the needle punched nonwoven fabric was taken out from between a pair of metal flat plates and allowed to cool at room temperature to obtain a fiber board.
  • Example 2 A fiber board was obtained by the same method as in Example 1 except that a pair of metal flat plates heated to 180 ° C. was used instead of the pair of metal flat plates heated to 200 ° C.
  • Example 3 A fiber board was obtained in the same manner as in Example 1 except that instead of pressing for 60 seconds, pressing was performed for 15 seconds.
  • Example 4 A fiber board was obtained in the same manner as in Example 1 except that the pressurization was performed for 30 seconds instead of the pressurization for 60 seconds.
  • Example 5 A fiber board was obtained in the same manner as in Example 1 except that instead of pressing for 60 seconds, pressing was performed for 45 seconds.
  • Comparative Example 1 As a core component, the copolymer used in Example 1 was prepared.
  • a sheath component a copolymer of ethylene glycol, diethylene glycol, terephthalic acid and isophthalic acid (melting point: 200 ° C.) was prepared.
  • the copolymer constituting the sheath component was 99 mol% ethylene glycol as the diol component and 1 mol% diethylene glycol, 80 mol% terephthalic acid as the dicarboxylic acid component, and 20 mol% isophthalic acid. .
  • Both the polymers were supplied to a spinning device having a composite spinning hole, and melt spinning was performed to obtain a core-sheath type composite continuous fiber.
  • the needle punched nonwoven fabric was set between a pair of metal flat plates heated to 200 ° C., and pressed for 60 seconds with a 3 mm spacer sandwiched between the pair of metal flat plates. Thereafter, the needle punched nonwoven fabric was taken out from between a pair of metal flat plates and allowed to cool at room temperature to obtain a fiber board.
  • each test piece having a length of 150 mm and a width of 50 mm was collected from each of the fiber boards obtained in Examples 1 to 5 and Comparative Example 1.
  • the thickness of each test piece is about 3 mm ⁇ 0.4 mm because a 3 mm spacer is sandwiched between a pair of metal flat plates, but rounded off to the nearest 3 mm.
  • Each fiber board tends to have core-sheath type composite long fibers arranged in the machine direction (fiber web conveyance direction), so the highest bending strength is obtained when the machine direction is taken in the length direction of the specimen. Is obtained. Therefore, the machine direction of each fiber board is the length direction of each test piece.
  • Table 1 shows the initial flexural modulus calculated from the initial gradient from the strain-bending load curve obtained by measuring the maximum bending strength by the three-point bending test. The calculation was performed according to the following formula.
  • Initial flexural modulus MPa [initial gradient ⁇ (100 mm) 3 ] / [4 ⁇ 50 mm ⁇ (3 mm) 3 ]
  • the fiber boards obtained in each Example are the fiber boards obtained in Comparative Example 1. It can be seen that both have high bending strength, high flexural modulus and excellent rigidity. Further, when comparing the maximum bending strength and the initial bending elastic modulus of the fiber boards obtained in Examples 1 to 5, even if the heating temperature and the pressing time are slightly changed, the high bending elastic modulus and the high bending elastic modulus are high. It can be seen that a fiber board is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

広い範囲の加熱温度及び広い範囲の加圧及び加熱時間において、高曲げ強さ及び高剛性の繊維ボードを得ることのできる製造方法を提供することを目的とする。本発明は、芯成分がエチレングリコールとテレフタル酸からなる共重合体よりなり、鞘成分がエチレングリコールとアジピン酸とテレフタル酸とイソフタル酸及び/又はジエチレングリコールからなる共重合体よりなる芯鞘型複合繊維を集積して繊維ウェブを形成した後、該繊維ウェブを厚み方向に圧縮すると共に加熱して、該鞘成分を軟化又は溶融させ該芯鞘型複合繊維相互間を融着させて、平板状に成型することにより、三点曲げ試験による初期曲げ弾性率が300MPa以上の繊維ボードが得られる。

Description

繊維ボードの製造方法
 本発明は、剛性に優れた繊維ボードの製造方法に関し、特に、製造条件を厳密に管理しなくても、高剛性及び高曲げ強さの繊維ボードを得ることのできる製造方法に関するものである。
 従来より、高融点重合体よりなる芯成分と低融点重合体よりなる鞘成分とで構成されている芯鞘型複合繊維を用い、鞘成分のみを溶融させて芯鞘型複合繊維相互間を融着し、比較的高剛性の繊維ボードを製造することは知られている(特許文献1)。特許文献1の実施例では、芯成分としてポリエチレンテレフタレートを、鞘成分としてポリエチレンを採用した芯鞘型複合繊維を用い、これを溶融押出装置に投入した後、口金から吐出して、平板状の繊維ボードを製造する方法が開示されている。
特許第3725488号公報
 本発明は、特許文献1記載の発明の改良に係るものであり、芯成分及び鞘成分として特定の重合体を用いることにより、広い範囲の加熱温度並びに広い範囲の加熱及び加圧時間において、高剛性及び高曲げ強さの繊維ボードを得ることのできる製造方法を提供しようとするものである。
 すなわち、本発明は、芯成分がエチレングリコールとテレフタル酸からなる共重合体よりなり、鞘成分がエチレングリコールとアジピン酸とテレフタル酸とイソフタル酸及び/又はジエチレングリコールからなる共重合体よりなる芯鞘型複合繊維を集積して繊維ウェブを形成した後、該繊維ウェブを厚み方向に圧縮すると共に加熱して、該鞘成分を軟化又は溶融させ該芯鞘型複合繊維相互間を融着させて、平板状に成型することにより、三点曲げ試験による初期曲げ弾性率が300MPa以上の繊維ボードの製造方法に関するものである。
 本発明では、まず特定の芯鞘型複合繊維を構成繊維とする繊維ウェブを得る。ここで、特定の芯鞘型複合繊維とは、芯成分がエチレングリコールとテレフタル酸の共重合体よりなり、鞘成分がエチレングリコールとアジピン酸とテレフタル酸とイソフタル酸及び/又はジエチレングリコールからなる共重合体よりなるものである。芯成分を構成する共重合体は、エチレングリコールをジオール成分とし、テレフタル酸をジカルボン酸成分として脱水縮合して得られるポリエステルである。なお、ジカルボン酸成分として、ごく少量のイソフタル酸等の他のジカルボン酸成分が混合されていてもよい。芯成分を構成する共重合体の融点は約260℃であり、ガラス転移点は約70~80℃である。鞘成分を構成する共重合体は、エチレングリコールと必要によりジエチレングリコールをジオール成分とし、アジピン酸とテレフタル酸と必要によりイソフタル酸をジカルボン酸成分として脱水縮合して得られる共重合ポリエステルである。なお、ジエチレングリコールとイソフタル酸は、少なくともいずれか一方を用いる必要があり、好ましくは両者を用いる。ジエチレングリコール及び/又はイソフタル酸を混合するのは、得られる繊維相互間の融着性を向上させるためである。ジオール成分中にジエチレングリコールを混合する場合、一般にエチレングリコール:ジエチレングリコール=10:0.05~0.5(モル比)程度である。ジカルボン酸成分であるアジピン酸とテレフタル酸の混合割合は任意であるが、アジピン酸:テレフタル酸=1:1~10(モル比)程度である。また、ジカルボン酸成分中にイソフタル酸を混合する場合、一般にイソフタル酸:アジピン酸:テレフタル酸=0.04~0.6:1:1~10(モル比)程度である。鞘成分を構成する共重合体の融点及びガラス転移点は任意であるが、鞘成分同士の融着性や繊維ウェブの圧縮性等を考慮して、融点は約200℃が好適であり、ガラス転移点は約40~50℃が好適である。
 芯成分と鞘成分の重量割合は、芯成分:鞘成分=0.3~5:1(重量比)程度である。芯成分の重量割合が低すぎると、繊維ボードの剛性が低下する傾向となる。また、芯成分の重量割合が高すぎると、加熱時に鞘成分同士が融着しにくくなり、表面に毛羽立ちが生じやすくなる。芯成分と鞘成分は、同心に配置されていてもよいし、偏心して配置されていてもよい。しかしながら、偏心に配置されていると、加熱時に、収縮が生じやすくなるため、同心に配置されている方が好ましい。
 芯鞘型複合繊維は、芯成分となる高融点ポリエステルと、鞘成分となる低融点共重合ポリエステルとを、複合紡糸孔を持つ紡糸装置に供給して、溶融紡糸するという公知の方法で得ることができる。芯鞘型複合繊維は、芯鞘型複合長繊維であっても芯鞘型複合短繊維であってもよいが、芯鞘型複合長繊維を用いた方が、剛性の高い繊維ボードが得られる。芯鞘型複合長繊維を用いて繊維ウェブを得るには、いわゆるスパンボンド法を用いるのが一般的である。すなわち、溶融紡糸して得られた芯鞘型複合長繊維を、直ちにシート状に集積して、繊維ウェブを得ることができる。また、芯鞘型複合短繊維を用いて繊維ウェブを得るには、芯鞘型複合短繊維をカード機に通して開繊し、シート状に集積すればよい。繊維ウェブの重量は、少なくとも150g/m2以上であり、300g/m2以上であるのが好ましい。繊維ウェブの重量が低すぎると、厚みが薄くなり、繊維ボードの剛性が低下する。また、繊維ウェブの重量に上限はないが、一般に2000g/m2程度であり、これを超えると重くなって取り扱いにくくなる。
 得られた繊維ウェブは、そのまま厚み方向に圧縮すると共に加熱してもよいし、芯鞘型複合繊維相互間を仮接着させた後に、厚み方向に圧縮すると共に加熱してもよい。また、ニードルパンチを施した後に、厚み方向に圧縮すると共に加熱してもよい。ニードルパンチを施す場合、芯鞘型複合繊維相互間が仮接着されていない状態でニードルパンチを施してもよいし、仮接着された状態でニードルパンチを施してもよい。前者の方法であれば、繊維相互間が仮接着されていないため、ニードルパンチを施した際の繊維へのダメージが少なく、糸切れ等による剛性の低下が起こりにくいため好ましい。また、後者の方法であれば、繊維相互間が仮接着された状態の繊維ウェブであるため、取扱いしやすく、搬送しやすい。ニードルパンチは周知の方法で行われ、これによって、芯鞘型複合繊維相互間が三次元的に交絡され、芯鞘型複合繊維が厚み方向に配列した緻密な不織布が得られる。なお、芯鞘型複合繊維相互間が仮接着されていた場合であっても、ニードルパンチによってこの仮接着は破壊され、芯鞘型複合繊維相互間が三次元的に交絡される。パンチ密度は、10本~200本/cm2程度である。
 繊維ウェブを厚み方向に圧縮すると共に加熱する方法は、従来公知の任意の方法を採用することができる。代表的には、以下の二つの方法が挙げられる。すなわち、予め加熱された繊維ウェブを、常温の金属製板に挟んで、厚み方向に圧縮する方法と、常温の繊維ウェブを、加熱された金属製板に挟んで厚み方向に圧縮する方法である。加熱条件及び厚み方向に圧縮する加圧条件は、芯鞘型複合繊維の鞘成分が軟化又は溶融し、芯鞘型複合繊維相互間が融着する条件で行えばよい。具体的には、加熱温度は100℃~200℃程度であり、加圧条件は面圧で1~500kg/cm2程度である。また、加熱及び加圧時間は、10~150秒程度である。かかる条件で、厚み方向に圧縮すると共に加熱し、鞘成分を軟化又は溶融させ、芯鞘型複合繊維相互間を融着させて平板状に成型する。その後、放冷等により冷却して繊維ボードを得る。なお、平板状というのは、全体が完全に平板になっていなくてもよく、大略が平板になっており、その他の部位が湾曲又は折曲していてもよい。
 本発明に係る方法で得られる繊維ボードは、芯鞘型複合繊維の鞘成分の融着により、繊維相互間が強固に接合されてなるものである。鞘成分が十分に溶融した場合には、鞘成分を母体とし、その中に繊維形態を残した芯成分が存在する状態の繊維ボードになる。また、鞘成分が軟化しただけか又は一部溶融した場合には、鞘成分が母体とならず、芯鞘型複合繊維相互間に空隙を多数持つ状態の繊維ボードになる。いずれの状態であっても、本発明に係る方法で得られる繊維ボードは、三点曲げ試験による初期曲げ弾性率が300MPa以上となっており、高剛性である。なお、初期曲げ弾性率は、三点曲げ試験における歪-曲げ荷重曲線の初期勾配に基づいて算出されるものである。
 本発明に係る方法で得られる繊維ボードは、各種用途に好適に用いることができる。たとえば、吸音材やインテリア部材等として用いることができるし、また従来のプラスチック板の代替品としても用いることができる。
 本発明に係る方法は、芯鞘型複合繊維の鞘成分として、特定のポリエステル共重合体を用いているので、広い範囲の加熱温度並びに広い範囲の加圧及び加熱時間であっても、いずれも高剛性の繊維ボードを得ることができる。したがって、加熱及び加圧条件を厳密に管理又は設定しなくても、高剛性及び高曲げ強さの繊維ボードを得ることができるという効果を奏する。
実施例1
 芯成分として、エチレングリコールとテレフタル酸の共重合体(融点260℃)を準備した。鞘成分として、エチレングリコール、ジエチレングリコール、アジピン酸、テレフタル酸及びイソフタル酸の共重合体(融点200℃)を準備した。なお、ジオール成分としてのエチレングリコールは99モル%でジエチレングリコールは1モル%であり、ジカルボン酸成分としてのアジピン酸は19モル%でテレフタル酸は78モル%でイソフタル酸は3モル%である。上記した芯成分と鞘成分の両者を、複合紡糸孔を持つ紡糸装置に供給して、溶融紡糸を行い、芯鞘型複合長繊維を得た。芯成分と鞘成分の重量割合は、芯成分:鞘成分=7:3であった。これを紡糸装置の下方に設けたエアーサッカーに導入し、高速で牽引細化した後、公知の開繊装置で開繊させ、移動するスクリーンコンベア上に捕集及び集積させて繊維ウェブを得た。この繊維ウェブをニードルパンチ装置に搬送し、パンチ密度90本/cm2及び針深度10mmでニードルパンチを施し、重量900g/m2のニードルパンチ不織布を得た。
 このニードルパンチ不織布を、200℃に加熱された一対の金属製平板の間にセットし、一対の金属製平板間に3mmのスペーサーを挟んだ状態で60秒間加圧した。その後、一対の金属製平板間からニードルパンチ不織布を取り出し、室温で放冷して繊維ボードを得た。
実施例2
 200℃に加熱された一対の金属製平板に代えて、180℃に加熱された一対の金属製平板を用いる他は、実施例1と同一の方法で繊維ボードを得た。
実施例3
 60秒間加圧するのに代えて、15秒間加圧した他は、実施例1と同一の方法で繊維ボードを得た。
実施例4
 60秒間加圧するのに代えて、30秒間加圧した他は、実施例1と同一の方法で繊維ボードを得た。
実施例5
 60秒間加圧するのに代えて、45秒間加圧した他は、実施例1と同一の方法で繊維ボードを得た。
比較例1
 芯成分として、実施例1で用いた共重合体を準備した。鞘成分として、エチレングリコールとジエチレングリコールとテレフタル酸とイソフタル酸の共重合体(融点200℃)を準備した。鞘成分を構成する共重合体は、ジオール成分としてのエチレングリコールは99モル%でジエチレングリコールは1モル%であり、ジカルボン酸成分としてのテレフタル酸は80モル%でイソフタル酸は20モル%であった。この両重合体を、複合紡糸孔を持つ紡糸装置に供給して、溶融紡糸を行い、芯鞘型複合長繊維を得た。芯成分と鞘成分の重量割合は、芯成分:鞘成分=6:4であった。これを紡糸装置の下方に設けたエアーサッカーに導入し、高速で牽引細化した後、公知の開繊装置で開繊させ、移動するスクリーンコンベア上に捕集及び集積させて繊維ウェブを得た。この繊維ウェブをニードルパンチ装置に搬送し、パンチ密度90本/cm2及び針深度10mmでニードルパンチを施し、重量900g/m2のニードルパンチ不織布を得た。
 このニードルパンチ不織布を、200℃に加熱された一対の金属製平板の間にセットし、一対の金属製平板間に3mmのスペーサーを挟んだ状態で60秒間加圧した。その後、一対の金属製平板間からニードルパンチ不織布を取り出し、室温で放冷して繊維ボードを得た。
[三点曲げ試験による最大曲げ強さ(MPa)の測定]
 実施例1~5及び比較例1で得られた各繊維ボードから、長さ150mmで幅50mmの各試験片を採取した。なお、各試験片の厚さは一対の金属製平板間に3mmのスペーサーを挟んでいるので、3mm±0.4mm程度となっているが、小数点以下を丸めて3mmとした。各繊維ボードは機械方向(繊維ウェブの搬送方向)に芯鞘型複合長繊維が配列している傾向にあるので、機械方向を試験片の長さ方向に採取した場合が、最も高い曲げ強さが得られる。したがって、各繊維ボードの機械方向が各試験片の長さ方向となっている。そして、支点間距離100mmとした支点の上に試験片を置き、支点間の中央に押圧板を速度20mm/minの速度で降下させ、荷重を負荷した。繊維ボードが破壊する際の最大荷重を測定して、最大曲げ強さを算出し表1に示した。なお、算出は次式により行った。最大曲げ強さMPa=[6×(最大荷重N)×50mm]/[50mm×(3mm)2
[初期曲げ弾性率(MPa)の測定]
 三点曲げ試験による最大曲げ強さの測定で得られた歪-曲げ荷重曲線から、初期勾配により初期曲げ弾性率を算出し表1に示した。なお、算出は次式により行った。初期曲げ弾性率MPa=[初期勾配×(100mm)3]/[4×50mm×(3mm)3




[表1]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
       最大曲げ強さ(MPa) 初期曲げ弾性率(MPa)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
 実施例1     9.1          470
 実施例2     9.4          550
 実施例3     8.7          490
 実施例4    11.0          470
 実施例5     7.8          440
 比較例1     6.8          230
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
 実施例1~5及び比較例1で得られた繊維ボードの最大曲げ強さ及び初期曲げ弾性率を対比すると、各実施例で得られた各繊維ボードは、比較例1で得られた繊維ボードに比べて、いずれも高曲げ強さで高曲げ弾性率で剛性に優れていることが分かる。また、実施例1~5で得られた繊維ボードの最大曲げ強さ及び初期曲げ弾性率を対比すると、加熱温度及び加圧時間を多少変更しても、高曲げ強さで高曲げ弾性率の繊維ボードが得られることが分かる。

Claims (6)

  1.  芯成分がエチレングリコールとテレフタル酸からなる共重合体よりなり、鞘成分がエチレングリコールとアジピン酸とテレフタル酸とイソフタル酸及び/又はジエチレングリコールからなる共重合体よりなる芯鞘型複合繊維を集積して繊維ウェブを形成した後、該繊維ウェブを厚み方向に圧縮すると共に加熱して、該鞘成分を軟化又は溶融させ該芯鞘型複合繊維相互間を融着させて、平板状に成型することにより、三点曲げ試験による初期曲げ弾性率が300MPa以上の繊維ボードの製造方法。
  2.  予め加熱された繊維ウェブを、常温の金属製板に挟んで、厚み方向に圧縮する請求項1記載の繊維ボードの製造方法。
  3.  常温の繊維ウェブを、加熱された金属製板に挟んで厚み方向に圧縮する請求項1記載の繊維ボードの製造方法。
  4.  繊維ウェブにニードルパンチを施して、芯鞘型複合繊維相互間を三次元的に交絡させた後に、厚み方向に圧縮すると共に加熱する請求項1記載の繊維ボードの製造方法。
  5.  繊維ボードの三点曲げ試験による最大曲げ強さが7.3MPa以上である請求項1記載の繊維ボードの製造方法。
  6.  芯鞘型複合繊維が、芯鞘型複合長繊維又は芯鞘型複合短繊維である請求項1記載の繊維ボードの製造方法。
PCT/JP2018/016013 2017-04-19 2018-04-18 繊維ボードの製造方法 WO2018194096A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197030290A KR102242628B1 (ko) 2017-04-19 2018-04-18 섬유 보드의 제조 방법
CN201880025367.5A CN110520562A (zh) 2017-04-19 2018-04-18 纤维板的制造方法
US16/605,385 US11525220B2 (en) 2017-04-19 2018-04-18 Process for producing fibrous board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-082599 2017-04-19
JP2017082599A JP6671690B2 (ja) 2017-04-19 2017-04-19 繊維ボードの製造方法

Publications (1)

Publication Number Publication Date
WO2018194096A1 true WO2018194096A1 (ja) 2018-10-25

Family

ID=63855789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016013 WO2018194096A1 (ja) 2017-04-19 2018-04-18 繊維ボードの製造方法

Country Status (5)

Country Link
US (1) US11525220B2 (ja)
JP (1) JP6671690B2 (ja)
KR (1) KR102242628B1 (ja)
CN (1) CN110520562A (ja)
WO (1) WO2018194096A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859059A4 (en) * 2018-09-29 2023-03-22 Unitika Ltd. PROCESSES FOR THERMAL FORMING OF FIBER PRODUCTS
JP7448194B2 (ja) 2020-03-23 2024-03-12 日本エステル株式会社 ポリエステル系芯鞘型複合繊維
CN113403754A (zh) * 2021-06-18 2021-09-17 四川亿耐特新材料有限公司 一种用于建筑材料的隔音毡
CN113912326B (zh) * 2021-10-29 2023-01-06 浙江晶通新材料集团有限公司 一种无卤改性高填充可回收塑胶板材及其成型方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188947A (ja) * 1995-01-06 1996-07-23 Ikeda Bussan Co Ltd フェルトおよびその製造方法
JP2004107860A (ja) * 2002-07-22 2004-04-08 Nippon Ester Co Ltd 熱接着性芯鞘型複合短繊維及び短繊維不織布
WO2006092835A1 (ja) * 2005-02-28 2006-09-08 Unitika Fibers Ltd. 自動車用天井材及びその成形方法
JP2018009256A (ja) * 2016-07-12 2018-01-18 ユニチカ株式会社 自動車装備材用半製品の製造方法
WO2018110524A1 (ja) * 2016-12-13 2018-06-21 ユニチカ株式会社 自動車装備材用半製品の製造方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437063A (en) 1965-07-06 1969-04-08 United Shoe Machinery Corp Methods for making container bodies using thermoplastic adhesive
SE431626B (sv) 1978-01-21 1984-02-20 Dunlop Ltd Sekerhetsanordning vid pneumatiska deck-hjulaggregat
JPS5915530A (ja) 1982-07-15 1984-01-26 日本エステル株式会社 ポリエステル紡績糸
JPS63270812A (ja) * 1987-04-28 1988-11-08 Nippon Ester Co Ltd ホツトメルト型複合バインダ−繊維
JP3534043B2 (ja) 1994-09-28 2004-06-07 東レ株式会社 プリーツ賦型加工されてなるフィルター材
US5591289A (en) 1995-06-29 1997-01-07 Davidson Textron Inc. Method of making a fibrous headliner by compression molding
JP3159361B2 (ja) 1995-10-26 2001-04-23 カネボウ株式会社 積層された起毛調不織布
JPH1025652A (ja) 1996-07-11 1998-01-27 Toray Ind Inc パイル布帛およびカーペット
JPH10298271A (ja) 1997-04-24 1998-11-10 Nippon Ester Co Ltd 低融点コポリエステルとその製造法
JPH10298828A (ja) 1997-04-24 1998-11-10 Nippon Ester Co Ltd 熱接着性複合バインダー繊維と不織布及び固綿
JP2000095227A (ja) 1998-09-25 2000-04-04 Teijin Ltd 容 器
JP2001172828A (ja) 1999-12-14 2001-06-26 Unitica Fibers Ltd 再生ポリエステル系熱接着性複合繊維
JP3778808B2 (ja) 2001-04-04 2006-05-24 帝人ファイバー株式会社 ポリエステル系熱接着性複合繊維およびその製造方法
JP2003166159A (ja) 2001-11-27 2003-06-13 Toyobo Co Ltd かさ高不織布
JP3790460B2 (ja) 2001-12-07 2006-06-28 大和紡績株式会社 熱接着性複合繊維とその製造方法、及びこれを用いた不織布
JP2003325411A (ja) 2002-03-06 2003-11-18 Kao Corp 掻き取り清掃用シート
JP3725488B2 (ja) 2002-04-25 2005-12-14 ユニチカ株式会社 プラスチック成型体の製造方法
JP3941745B2 (ja) 2003-06-03 2007-07-04 豊田合成株式会社 外装材を備えたアンダープロテクター
JP4485860B2 (ja) 2003-07-10 2010-06-23 日本エステル株式会社 不織布用短繊維及び短繊維不織布
AU2005212087B9 (en) * 2004-02-13 2011-01-06 Toray Industries, Inc. Leather-like sheeting and process for production thereof
KR100678169B1 (ko) * 2004-10-28 2007-02-02 삼성전자주식회사 서로 이격된 두 단말기 사이의 데이터 전송 시스템 및 방법
CN101680185B (zh) 2007-04-17 2011-11-23 帝人纤维株式会社 湿式无纺布及过滤器
CN101713109A (zh) 2008-10-06 2010-05-26 三芳化学工业股份有限公司 复合纤维及以该复合纤维作为基材的不织布
CN101445972B (zh) 2008-12-29 2010-12-22 浙江理工大学 一种皮芯型低熔点聚酯短纤维的生产方法
JP5535555B2 (ja) * 2009-08-27 2014-07-02 Esファイバービジョンズ株式会社 熱接着性複合繊維及びそれを用いた不織布
JP2012245925A (ja) 2011-05-30 2012-12-13 Howa Textile Industry Co Ltd 自動車用ボディーアンダーカバー
KR20130035414A (ko) * 2011-09-30 2013-04-09 코오롱인더스트리 주식회사 폴리에스테르계 부직포 및 그 제조 방법
JP5174980B1 (ja) 2012-06-12 2013-04-03 ニチアス株式会社 自動車用防音カバーおよび自動車用防音カバーの製造方法
KR101464597B1 (ko) 2012-08-31 2014-11-24 도레이케미칼 주식회사 내열성 공중합 폴리에스테르 및 이의 제조방법
JP6542571B2 (ja) 2015-04-28 2019-07-10 呉羽テック株式会社 一体成型用不織布及びこれより形成されるプリーツ−フランジ一体成型フィルターエレメント
CN105063797B (zh) 2015-07-16 2017-06-30 中国纺织科学研究院 连续聚合熔体直纺低熔点聚酯复合纤维的制备方法
CN105437699B (zh) 2015-12-22 2017-10-31 浙江华江科技股份有限公司 一种新型乘用车用外轮罩毛毡材料及其制备方法
US10563055B2 (en) * 2016-12-20 2020-02-18 Exxonmobil Chemical Patents Inc. Carpet compositions and methods of making the same
KR102390530B1 (ko) * 2017-04-12 2022-04-25 유니티카 가부시끼가이샤 니들 펀치 부직포의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188947A (ja) * 1995-01-06 1996-07-23 Ikeda Bussan Co Ltd フェルトおよびその製造方法
JP2004107860A (ja) * 2002-07-22 2004-04-08 Nippon Ester Co Ltd 熱接着性芯鞘型複合短繊維及び短繊維不織布
WO2006092835A1 (ja) * 2005-02-28 2006-09-08 Unitika Fibers Ltd. 自動車用天井材及びその成形方法
JP2018009256A (ja) * 2016-07-12 2018-01-18 ユニチカ株式会社 自動車装備材用半製品の製造方法
WO2018110524A1 (ja) * 2016-12-13 2018-06-21 ユニチカ株式会社 自動車装備材用半製品の製造方法

Also Published As

Publication number Publication date
JP6671690B2 (ja) 2020-03-25
US20200123712A1 (en) 2020-04-23
KR102242628B1 (ko) 2021-04-20
KR20190135491A (ko) 2019-12-06
CN110520562A (zh) 2019-11-29
JP2018178325A (ja) 2018-11-15
US11525220B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2018194096A1 (ja) 繊維ボードの製造方法
KR102083054B1 (ko) 난연성 부직포, 성형체 및 컴포지트 적층체
KR102343534B1 (ko) 부직포, 및 이것을 표피재로서 이용한 복합 흡음재
JP4785774B2 (ja) 積層体およびその製造方法
KR102351767B1 (ko) 자동차 장비재용 반제품의 제조 방법
WO2014157205A1 (ja) 積層体及びその製造方法
JP2018043412A (ja) リブ成形用積層基材
JP2002061064A (ja) 溶融液晶性ポリエステル不織布及びその製造方法
JP4456938B2 (ja) ポリプロピレン系樹脂構造板
JP2017150098A (ja) 連続繊維不織布およびその製造方法
US20120124862A1 (en) Bi-component/binder fiber insole
JP4980099B2 (ja) 積層体およびその製造方法
JP2008069466A (ja) 接着シート
JP6357747B2 (ja) ポリフェニレンスルフィド繊維からなるメルトブロー不織布
JP2019151109A (ja) 恒温プレス用積層基材および成形体の製造方法
KR20090059306A (ko) 무엠보 폴리에스터 장섬유 부직포 및 그 제조 방법
JP2020157637A (ja) 中間材、中間材の製造方法、及び成型体の製造方法
JP7385902B2 (ja) 積層成型体の製造方法
JP2013203771A (ja) 擬似等方性複合板の製造方法
KR102280425B1 (ko) 다공성 섬유강화 복합재 및 이를 제조하는 방법
KR102678506B1 (ko) 폴리에스테르 저융점 핫멜트 파우더를 이용한 자동차 시트 및 제조방법
JP5829085B2 (ja) 固綿の製造方法
JP2024018739A (ja) 副木並びにその製造方法及びその使用方法
WO2017106468A1 (en) Carbon fiber nonwoven composite
JPH0574438A (ja) 電池用セパレータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197030290

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788327

Country of ref document: EP

Kind code of ref document: A1