WO2018190398A1 - テアニンの製造方法 - Google Patents

テアニンの製造方法 Download PDF

Info

Publication number
WO2018190398A1
WO2018190398A1 PCT/JP2018/015372 JP2018015372W WO2018190398A1 WO 2018190398 A1 WO2018190398 A1 WO 2018190398A1 JP 2018015372 W JP2018015372 W JP 2018015372W WO 2018190398 A1 WO2018190398 A1 WO 2018190398A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
microorganism
activity
protein
theanine
Prior art date
Application number
PCT/JP2018/015372
Other languages
English (en)
French (fr)
Inventor
田畑 和彦
翔登 大野
Original Assignee
協和発酵バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵バイオ株式会社 filed Critical 協和発酵バイオ株式会社
Priority to JP2019512569A priority Critical patent/JP7035024B2/ja
Priority to CN201880024038.9A priority patent/CN110494553B/zh
Priority to US16/603,827 priority patent/US11155845B2/en
Priority to EP18784844.5A priority patent/EP3611253A4/en
Publication of WO2018190398A1 publication Critical patent/WO2018190398A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)
    • C12Y603/04012Glutamate--methylamine ligase (6.3.4.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01002Glutaminase (3.5.1.2)

Definitions

  • the present invention relates to a microorganism that produces theanine, and an efficient method for producing theanine using the microorganism without adding ethylamine from the outside and accumulating and remaining ethylamine as a by-product.
  • Theanine is a kind of amino acid contained in tea and is known as a main component of umami, and is an important substance as a flavor component of food (Patent Document 1).
  • Patent Document 1 Theanine is a kind of amino acid contained in tea and is known as a main component of umami, and is an important substance as a flavor component of food.
  • Patent Document 2 a method in which glutaminase obtained from Pseudomonas bacteria is allowed to act on glutamine and ethylamine
  • Patent Document 3 a method in which glutaminase or a glutaminase-producing bacterium is allowed to act on glutamine and an ethylamine derivative
  • ATP a method in which ⁇ -glutamylmethylamide synthase possessed by methylotrophic bacteria is allowed to act on glutamic acid and ethylamine
  • Patent Document 3 a method in which ⁇ -glutamylmethylamide synthase possessed by methylotrophic bacteria is allowed to act on glutamic acid and ethylamine
  • the protein consisting of the amino acid sequence represented by SEQ ID NO: 2, 4, 6 or 8 (corresponding to PP — 5182, PP — 0596, JM49 — 01725 and RFLU — RS03325 in FIGS. 1 and 2, respectively) is a protein possessed by Pseudomonas bacteria.
  • SEQ ID NO: 2, 4, 6 or 8 are registered as aminotransferases in the database (NCBI Reference Sequence ACCESSION NO .: NP_747283, NP_742759, WP_012722053, GenBank ACCESSION NO .: AIS10430).
  • NCBI Reference Sequence ACCESSION NO .: NP_747283, NP_742759, WP_012722053, GenBank ACCESSION NO .: AIS10430 However, there is no experimental verification that these proteins actually function as aminotransferases, and there is no knowledge about their substrates and the chemical reactions they catalyze.
  • this invention makes it a subject to provide the efficient manufacturing method of theanine which does not add an ethylamine from the outside.
  • the present invention relates to the following (1) to (10).
  • Acetaldehyde, alanine, glutamic acid and ATP are produced from a carbon source, and the activity of the protein according to any one of the following [1] to [3] and ⁇ -glutamethylamide synthase from the parent strain Microorganisms with enhanced activity.
  • theanine is produced and accumulated in the aqueous medium, and theanine is collected from the aqueous medium.
  • the protein according to any one of [1] to [3] of (1) and glutaminase are allowed to coexist so that theanine is mixed with the aqueous medium.
  • a method for producing theanine characterized in that theanine is produced and accumulated therein and collected from the aqueous medium.
  • Production of theanine comprising culturing the microorganism according to (1) or (2) above in a medium, producing and accumulating theanine in the culture, and collecting theanine from the culture Method.
  • microorganism according to (1) or (2) above wherein the microorganism belongs to the genus Escherichia or Corynebacterium.
  • the carbon source is sugar.
  • the present invention provides a microorganism for producing theanine and an efficient method for producing theanine using the microorganism without adding ethylamine from the outside and accumulating and remaining ethylamine as a by-product.
  • FIG. 2 is a schematic diagram of a possible metabolic pathway in a microorganism in a method for producing theanine by fermentation using ⁇ -glutarmethylamide synthase.
  • AdhE alcohol dehydrogenase
  • YqhD aldehyde reductase
  • EutE aldehyde dehydrogenase
  • Ald L-alanine dehydrogenase
  • Citric acid cycle The schematic diagram of the assumed metabolic pathway in microorganisms in the manufacturing method of theanine by the fermentation method using glutaminase is represented.
  • AdhE alcohol dehydrogenase
  • YqhD aldehyde reductase
  • EutE aldehyde dehydrogenase
  • Ald L-alanine dehydrogenase
  • PP — 5182, PP — 0596, JM49 — 01725 and PFLU — RS03325 protein having ethylamine generating activity
  • TCA circuit citrate circuit
  • Microorganism of the present invention and method for producing the microorganism 1-1.
  • Microorganism having enhanced ethylamine-forming activity and ⁇ -glutarmethylamide synthase activity and method for producing the microorganism Microorganism with Enhanced Ethylamine Production Activity The microorganism of the present invention produces acetaldehyde, alanine, glutamic acid and ATP from a carbon source, and the protein according to any one of [1] to [3] below from the parent strain: And ⁇ -glutamethylamide synthase activity.
  • a protein having an amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8 [2] 1 to 20, preferably 1 to 1 in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8 Activity consisting of an amino acid sequence in which 10 amino acids, most preferably 1 to 5 amino acids are deleted, substituted, inserted or added, and generates ethylamine using acetaldehyde and alanine as substrates (hereinafter referred to as ethylamine generating activity). [3] 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more identity with the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8.
  • Homologous protein comprising an amino acid sequence having an ethylamine-forming activity
  • a mutated protein refers to a protein obtained by artificially deleting or substituting amino acid residues in the original protein, or artificially inserting or adding amino acid residues into the protein.
  • Homologous proteins refer to a group of proteins derived from proteins having the same evolutionary origin, which are proteins possessed by organisms existing in nature. Homologous proteins are similar in structure and function to each other.
  • an amino acid is deleted, substituted, inserted or added, wherein 1 to 20 amino acids may be deleted, substituted, inserted or added at any position in the same sequence.
  • Natural amino acids include L-alanine, L-asparagine, L-aspartic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-arginine, L -Methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine and the like.
  • amino acids included in the same group can be substituted for each other.
  • Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, 4.000-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine
  • B group aspartic acid, glutamic acid, isoaspartic acid, Isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid group
  • C asparagine, glutamine group
  • D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid group
  • E proline, 3 -Hydroxyproline, 4-hydroxyproline
  • F group serine, threonine, homoserine
  • G group phenyl-N-methylsine
  • the above-mentioned mutant protein or homologous protein has an ethylamine-producing activity.
  • a recombinant DNA having a DNA encoding the protein is prepared by the method described below, and the recombinant DNA has an ethylamine-producing activity.
  • a non-existing microorganism for example, a microorganism obtained by transforming Escherichia coli W3110 strain is cultured, a cell extract containing the protein is prepared from the obtained culture, and the fraction contains acetaldehyde and alanine as substrates. It can be confirmed by contacting with an aqueous solution and detecting the resulting ethylamine by high performance liquid chromatography (HPLC) or gas chromatography.
  • HPLC high performance liquid chromatography
  • microorganisms with enhanced ethylamine production activity examples include, for example, a recombinant having the DNA according to any one of [4] to [7] below. Mention may be made of microorganisms obtained by transforming a parent strain with body DNA and having enhanced ethylamine production activity than the parent strain.
  • DNA encoding the protein according to any one of [1] to [3] above [5] DNA consisting of the base sequence represented by SEQ ID NO: 1, 3, 5, or 7 [6] It encodes a homologous protein that hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence represented by SEQ ID NO: 1, 3, 5, or 7 and has ethylamine-forming activity.
  • DNA [7] A nucleotide sequence having at least 95%, preferably 97%, more preferably 98%, most preferably 99% or more identity with the nucleotide sequence represented by SEQ ID NO: 1, 3, 5, or 7. And a DNA encoding a homologous protein having an ethylamine-forming activity
  • hybridization refers to a step in which DNA hybridizes to DNA having a specific base sequence or a part of the DNA. Therefore, the base sequence of the DNA having the specific base sequence or the DNA hybridizing to a part of the DNA is useful as a probe for Northern or Southern blot analysis, or can be used as an oligonucleotide primer for PCR analysis. It may be DNA. Examples of DNA used as a probe include DNA of at least 100 bases, preferably 200 bases or more, more preferably 500 bases or more, and DNA used as a primer is at least 10 bases, preferably 15 bases or more. Can be mentioned.
  • DNA that hybridizes under stringent conditions can be obtained by following the instructions attached to the commercially available hybridization kit.
  • a commercially available hybridization kit for example, a random primed DNA labeling kit (Roche Diagnostics Co., Ltd.) that prepares a probe by a random prime method and performs hybridization under stringent conditions can be exemplified.
  • the above stringent conditions include, for example, a filter in which DNA is immobilized and probe DNA, 50% formamide, 5 ⁇ SSC (750 mM sodium chloride, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6). ) After overnight incubation at 42 ° C. in a solution containing 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g / L denatured salmon sperm DNA, for example in a 0.2 ⁇ SSC solution at about 65 ° C. The conditions for washing the filter can be mentioned.
  • the various conditions described above can also be set by adding or changing a blocking reagent used to suppress the background of the hybridization experiment.
  • the addition of the blocking reagent described above may be accompanied by a change in hybridization conditions in order to adapt the conditions.
  • DNA that can hybridize under the above stringent conditions for example, when calculated based on the above parameters using a program such as BLAST or FASTA described above, SEQ ID NO: 1, 3, 5, or 7 Examples thereof include DNA comprising a base sequence having at least 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more identity with the represented base sequence.
  • the recombinant DNA having the DNA described in any one of [4] to [7] above is, for example, DNA that can autonomously replicate in a parent strain, and includes the above [4] to [7].
  • the DNA according to any one of the above [4] to [7] is incorporated into an expression vector containing a promoter at a position where the DNA according to any one can be transcribed.
  • a DNA that can be integrated into a chromosome in a parent strain and has a DNA according to any one of the above [4] to [7], is also a DNA of the above [4] to [7].
  • the parent strain refers to the original strain that is the subject of genetic modification and transformation.
  • the original strain to be transformed by gene transfer is also called a host strain.
  • the parent strain may be any microorganism, but is preferably a prokaryotic or yeast strain, more preferably Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, or Prokaryotic organisms belonging to the genus Pseudomonas, etc., or yeast strains belonging to the genus Saccharomyces, Schizosaccharomyces, Kluyveromyces, Trichosporon, Siwaniomyces, Pichia, Candida, etc., most preferably Escherichia coli BL21 codon plus Escherichia coli XL1-Blue, Escherichia coli XL2-Blue (both manufactured by Agilent Technologies), Escherichia coli BL21 (DE3) pLys S (Merck Millipore), Escherichia coli DH5 ⁇ , Escherichia coli HST08 Premium, Escherichia coli HST02, Escherichia
  • a recombinant DNA capable of autonomous replication in the parent strain is a promoter, a ribosome binding sequence, the DNA according to any one of [4] to [7] above, and A recombinant DNA constituted by a transcription termination sequence is preferred.
  • a gene that controls the promoter may also be included.
  • a recombinant DNA in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (eg, 6 to 18 bases).
  • a transcription termination sequence is not necessarily required for expression of the DNA, but it is preferable to place a transcription termination sequence immediately below the structural gene.
  • examples of expression vectors include pColdI, pSTV28, pUC118 (all manufactured by Takara Bio Inc.), pET21a, pCDF-1b, pRSF-1b (all manufactured by Merck Millipore) PMAL-c2x (manufactured by New England Biolabs), pGEX-4T-1, pTrc99A (all from GE Healthcare Bioscience), pTrcHis, pSE280 (all from Thermo Fisher Scientific), pGEMEX- 1 (manufactured by Promega), pQE-30, pQE80L (all manufactured by Qiagen), pET-3, pBluescript II SK (+), pBluescript II KS (-) (all Agilent Technologies) Ltd.), JP PKYP10 (JP 58-110600), pKYP200 [Agric.
  • any promoter when using the above expression vector, any promoter can be used as long as it functions in cells of microorganisms belonging to the genus Escherichia.
  • promoters of genes involved in amino acid biosynthesis such as trp promoter and ilv promoter. it can be used lac promoter, P L promoter, P R promoter, promoters derived from Escherichia coli or phage such as P SE promoter.
  • An artificially designed and modified promoter such as a promoter in which two trp promoters are connected in series, a tac promoter, a trc promoter, a lacT7 promoter, and a let I promoter can also be used.
  • examples of expression vectors include pCG1 (Japanese Patent Laid-Open No. 57-134500), pCG2 (Japanese Unexamined Patent Publication No. 58-35197), pCG4 (Japanese Unexamined Patent Publication No. 57-183799), pCG11 (Japanese Unexamined Patent Publication No. 57-134500), pCG116, pCE54, and pCB101 (all of which are Japanese Unexamined Patent Publication No. 58-105999). Gazette), pCE51, pCE52, pCE53 [all are Molecular and General Genetics, 196, 175 (1984)].
  • any promoter in the case of using the expression vector, any promoter may be used as long as it functions in cells of coryneform bacteria such as a microorganism belonging to the genus Corynebacterium, Brevibacterium, or Microbacterium,
  • the P54-6 promoter [Appl. Microbiol. Biotechnol. 53, 674-679 (2000)].
  • examples of the expression vector include YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, pHS15 and the like.
  • any promoter in the case of using the above expression vector, any promoter can be used as long as it functions in yeast strain cells.
  • PHO5 promoter PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal1 promoter, gal10 promoter, heat Examples include promoters such as shock polypeptide promoter, MF ⁇ 1 promoter, CUP1 promoter and the like.
  • a microorganism obtained by transforming a parent strain with the recombinant DNA and having enhanced ethylamine-generating activity than the parent strain is 1) the recombinant DNA is introduced as a plasmid capable of autonomous replication in the parent strain. Or by integrating into the chromosome of the parent strain, thereby increasing the transcription amount of the DNA or the production amount of the protein encoded by the DNA, or 2) producing the mutant protein of [2] above, This refers to a microorganism in which the specific activity of a protein having ethylamine production activity is enhanced.
  • the transcription amount of the DNA is changed to Northern.
  • -It can be confirmed by measuring the amount of production of the protein by blotting or by Western blotting and comparing it with that of the parent strain.
  • Examples of a method for confirming that the specific activity of a protein having ethylamine production activity is enhanced include, for example, purifying the mutant protein from a transformant obtained by transforming a parent strain with a DNA encoding the mutant protein, A protein having an ethylamine-producing activity without mutation introduced by measuring the specific activity from the amount of ethylamine produced and accumulated in the aqueous medium and the amount of the protein in the presence of acetaldehyde and alanine in the aqueous medium. This can be confirmed by comparing with the specific activity.
  • a microorganism obtained by transforming a parent strain with a recombinant DNA having the DNA according to any one of the above [4] to [7] and having enhanced ethylamine production activity than the parent strain is obtained by the following method: Can be built with.
  • the DNA encoding the protein of [1] and the DNA of [5] should be designed based on the base sequence represented by SEQ ID NO: 1, 3, 5, or 7, for example.
  • Pseudomonas putida KT2440 strain, Pseudomonas chlororaphis and Pseudomonas fluorescens SBW strains can be obtained from the National Institute of Technology and Evaluation Biotechnology Center (NITE Biologic Resource Center) or American Type Culture.
  • the DNAs encoding the homologous proteins of [3] above and the DNAs of [6] and [7] above are, for example, SEQ ID NOS: 1, 3, 5 against various gene sequence databases.
  • the probe DNA or primer DNA that can be designed based on the base sequence or amino acid sequence obtained by the search and the search, and the DNA That microorganisms using, can be obtained by a method or the like using a similar Southern hybridization or PCR and methods to get the above DNA.
  • the DNA encoding the mutant protein of [2] is subjected to error-prone PCR or the like using, for example, a DNA consisting of the base sequence represented by SEQ ID NO: 1, 3, 5, or 7 as a template. Can be obtained.
  • PCR [Gene, 77, 51 (1989) using a set of PCR primers each having a base sequence designed to introduce a target mutation (deletion, substitution, insertion or addition) at the 5 ′ end thereof. )]
  • the DNA of [2] above can be obtained. That is, first, a sense primer corresponding to the 5 ′ end of the DNA and an antisense primer corresponding to the sequence immediately before the mutation introduction site (5 ′ side) having a sequence complementary to the mutation sequence at the 5 ′ end.
  • PCR is performed using the DNA as a template to amplify a fragment A (a mutation is introduced at the 3 ′ end) from the 5 ′ end to the mutation introduction site of the DNA.
  • the obtained DNA according to any one of the above [4] to [7] is directly or cleaved with an appropriate restriction enzyme and incorporated into a vector by a conventional method, and the obtained recombinant DNA is used as a host.
  • a commonly used base sequence analysis method such as the dideoxy method [Proc. Natl. Acad. Sci. , USA, 74, 5463 (1977)] or 3700 DNA analyzer (Applied Biosystems) and other base sequence analyzers can be used to determine the base sequence of the DNA.
  • Examples of the host cell e.g., Escherichia coli XL1-Blue, Escherichia coli XL2-Blue (all manufactured by Agilent Technologies), Escherichia coli DH5 ⁇ , Escherichia coli HST08 Premium, Escherichia coli HST02, Escherichia coli HST04 dam - / dcm -, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli CJ236, Escherichia coli BMH71-18 mutS, Escherichia coli MV1184, Escherichia coli TH2 ( both Takara Io Co., Ltd.), Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli W1485, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli
  • the above vectors include pBluescript II KS (+), pPCR-Script Amp SK (+) (all manufactured by Agilent Technologies), pT7Blue (manufactured by Merck Millipore), pCRII (manufactured by Thermo Fisher Scientific), pCR-TRAP (manufactured by Gene Hunter) and pDIRECT [Nucleic Acids Res. , 18, 6069 (1990)].
  • any method can be used as long as it is a method for introducing DNA into a host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]
  • protoplast method Japanese Patent Laid-Open No. 63-248394
  • electroporation method [Nucleic Acids Res. 16, 6127 (1988)].
  • the full-length DNA can be obtained by Southern hybridization or the like for a chromosomal DNA library using the partial length DNA as a probe.
  • the target DNA can also be prepared by chemical synthesis using an 8905 type DNA synthesizer manufactured by Perceptive Biosystems.
  • the expression level of the protein encoded by the DNA can also be improved by replacing the base sequence of the DNA so that the codon is optimal for expression in the host.
  • Information on codon usage in the parent strain used in the production method of the present invention can be obtained through a public database.
  • the recombinant DNA possessed by the microorganism used in the production method of the present invention can be produced by inserting the DNA fragment prepared as described above downstream of the promoter of an appropriate expression vector.
  • Examples of such recombinant DNA include pTrc99A_Psyr — 2273_PP — 5182, pTrc99A_Psyr — 2273_PP — 0596, pTrc99A_Psyr — 2273 — JM49 — 01725, and pTrc99A — Psyr — 2273 — PFLURS, which will be described later in the Examples.
  • Examples of methods for introducing the recombinant DNA as a plasmid capable of autonomous replication in the parent strain include methods using the above calcium ions, protoplast methods, electroporation methods, and the like.
  • a homologous recombination method can be mentioned as a method for incorporating the recombinant DNA into the chromosome of the parent strain.
  • Examples of the homologous recombination method include a method using a plasmid for homologous recombination that can be prepared by ligating with a plasmid DNA having a drug resistance gene that cannot autonomously replicate in the host cell to be introduced.
  • a method using homologous recombination frequently used in Escherichia coli a method of introducing recombinant DNA using a lambda phage homologous recombination system [Proc. Natl. Acad. Sci. USA, 97, 6641-6645 (2000)].
  • a selection method utilizing the fact that Escherichia coli becomes sucrose-sensitive by Bacillus subtilis levanshuclase integrated on the chromosome together with the recombinant DNA, or the incorporation of the wild-type rpsL gene into E. coli having a mutant rpsL gene resistant to streptomycin.
  • a selection method using the fact that Escherichia coli becomes streptomycin sensitive by [Mol. Microbiol. , 55, 137 (2005), Biosci. Biotechnol. Biochem. , 71, 2905 (2007)], etc., can be used to obtain a microorganism in which the target region on the chromosomal DNA of the parent strain is replaced with recombinant DNA.
  • the microorganism produced by the method described above is a microorganism having an ethylamine-producing activity enhanced from that of the parent strain.
  • the amount of DNA transferred according to any one of the above [4] to [7] is determined by the method described above. Alternatively, it can be confirmed by measuring the production amount of the protein encoded by the DNA by Northern blotting or Western blotting, or by measuring the specific activity of the protein and comparing it with that of the parent strain.
  • microorganisms examples include the W3110 / pTrc99A_Psyr_2273_PP_5182 strain, the W3110 / pTrc99A_Psyr_2273_PP_0596 strain, the W3110 / pTrc99A_Psyr_2273_JM49_01725 strain, and the W3110Ap3_S3_P3_P3_25_P3_R3_P3_P3_P3_P_3_P_3_P_3_P_3_P_3_P_3_P_3_P_3_P_3_P_3_P_3_P_3_P_3_P_3_P_3_P_P_3_P_P_3_P_P_3_P_P_3_P_P_3_P_P_3_P_P_3_P_P_3_P_P_3_P_P_3_P_P_3
  • Microorganism with enhanced ⁇ -glutarmethylamide synthase activity The microorganism of the present invention has enhanced activity of the protein according to any one of the above [1] to [3], and at the same time with ⁇ -glutarmethyl. It is a microorganism with enhanced amide synthase activity.
  • the ⁇ -glutamethylamide synthase activity refers to the activity possessed by ⁇ -glutamethylamide synthase, and specifically refers to the activity of producing theanine using ethylamine, glutamic acid and ATP as substrates.
  • the protein having ⁇ -glutamethylamide synthase activity may be any protein as long as the protein has such activity.
  • the method disclosed in Japanese Patent Application Laid-Open No. 2009-225705 for example, Methylovorus mays TGMS No. ⁇ -glutarmethylamide synthase possessed by 9 strains or the protein described in any one of [8] to [10] below can be mentioned.
  • Protein consisting of the amino acid sequence represented by SEQ ID NO: 10 [9] The amino acid sequence represented by SEQ ID NO: 10 lacks 1 to 20, preferably 1 to 10, most preferably 1 to 5 amino acids.
  • microorganisms with enhanced ⁇ -glutamethylamide synthase activity include, for example, the above-mentioned Mylovolous mays TGMS No. Obtained by transforming the parent strain with DNA encoding ⁇ -glutamethylamide synthase possessed by 9 strains or recombinant DNA having the DNA according to any one of [11] to [14] below And microorganisms with enhanced ⁇ -glutamethylamide synthase activity over the parent strain.
  • DNA encoding the protein according to any one of [8] to [10] above [12] DNA comprising the base sequence represented by SEQ ID NO: 9 [13] A DNA that hybridizes with a DNA comprising a base sequence complementary to the base sequence represented by SEQ ID NO: 9 under stringent conditions and encodes a homologous protein having ⁇ -glutamethylamide synthase activity [14] It consists of a base sequence having at least 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more identity with the base sequence represented by SEQ ID NO: 9, and ⁇ - DNA encoding a homologous protein having glutarmethylamide synthase activity
  • the DNA that can hybridize under stringent conditions includes, for example, at least 95 of the base sequence represented by SEQ ID NO: 9 when calculated based on the above parameters using the above programs such as BLAST and FASTA. %, Preferably 97% or more, more preferably 98% or more, and most preferably 99% or more.
  • DNA encoding a protein having ⁇ -glutamethylamide synthase activity is, for example, a probe DNA that can be designed based on the base sequence represented by SEQ ID NO: 9, using Pseudomonas syringae pv. It can be obtained by the same method as described above using Southern hybridization or PCR using the genomic DNA of Syringae B728a strain as a template.
  • the recombinant DNA containing the DNA can be obtained according to the same method as described above.
  • a microorganism obtained by transforming a parent strain with the recombinant DNA and having enhanced ⁇ -glutamethylamide synthase as compared to the parent strain can be produced according to the same method as described above.
  • the microorganism produced by the above method is a microorganism having enhanced ⁇ -glutamethylamide synthase activity compared to the parent strain.
  • the amount of transcription of DNA encoding ⁇ -glutamethylamide synthase and the amount of production of the protein Alternatively, the specific activity of the protein can be confirmed by comparing it with that of the parent strain.
  • the transcription amount of the DNA is determined by Northern blotting or the production amount of the protein is determined by Western blotting. -It can be confirmed by measuring by blotting and comparing with that of the parent strain.
  • the specific activity of the protein is, for example, purifying the protein from a transformant obtained by transforming a parent strain with DNA encoding the protein, and allowing the protein, ethylamine, glutamic acid and ATP to be present in an aqueous medium, This can be confirmed by measuring the specific activity from theanine produced and accumulated in the aqueous medium and the amount of the protein.
  • the DNA encoding the protein having the activity of producing ethylamine and the DNA encoding ⁇ -glutarmethylamide synthase may be present on the same recombinant DNA or on different recombinant DNAs. You may do it.
  • the microorganism of the present invention has an increased activity of ⁇ -glutamethylamide synthase and also has a reduced or lost activity for decomposing theanine from the viewpoint of suppressing degradation of the produced theanine. It is preferable.
  • Specific examples of such microorganisms include microorganisms in which the activity of ⁇ -glutamyl transpeptidase is reduced or lost.
  • Microorganism that produces acetaldehyde, alanine, glutamic acid, and ATP from a carbon source The microorganism of the present invention produces acetaldehyde, alanine, glutamic acid, and ATP from a carbon source, and any one of the above [1] to [3] rather than the parent strain A microorganism in which the activity of the protein described in 1 and the activity of ⁇ -glutamethylamide synthase are enhanced.
  • a microorganism that produces acetaldehyde, alanine, glutamic acid, and ATP from a carbon source means that when the microorganism is cultured in a medium by the method described below, the acetaldehyde, alanine, glutamic acid, and ATP are used as starting materials when the microorganism is cultured in a medium.
  • a microorganism that forms in a microorganism means that when the microorganism is cultured in a medium by the method described below, the acetaldehyde, alanine, glutamic acid, and ATP are used as starting materials when the microorganism is cultured in a medium.
  • Such a microorganism is not limited as long as it is a microorganism that produces acetaldehyde, alanine, glutamic acid and ATP using a carbon source as a starting material.
  • a microorganism having enhanced ethylamine production activity and ⁇ -glutamethylamide synthase activity obtained using any parent strain can be mentioned.
  • microorganism described in any one of the following (A) to (D) is formed as a parent strain, the microorganism having enhanced ethylamine production activity and ⁇ -glutamethylamide synthase activity, or the above ethylamine production Examples include the microorganisms described in any one of the following (A) to (D), in which a microorganism having enhanced activity and ⁇ -glutamethylamide synthase activity is constructed as a parent strain.
  • A Microorganism in which the activity of at least one protein selected from the group consisting of alcohol dehydrogenase (AdhE) and aldehyde reductase (YqhD) is reduced or lost compared to the parent strain
  • B Activity of aldehyde dehydrogenase (EutE) than the parent strain
  • C Microorganism having enhanced activity of L-alanine dehydrogenase (Ald) as compared with the parent strain
  • C Microorganism having the above-mentioned microorganism characteristics (A) to (C) in any combination
  • the trait (B) or (C) preferably the traits (B) and (C).
  • Alcohol dehydrogenase refers to a protein having alcohol dehydrogenase activity.
  • Alcohol dehydrogenase activity refers to the activity of reducing acetaldehyde to ethanol using nicotinamide adenine dinucleotide as a coenzyme.
  • Aldehyde reductase refers to a protein having aldehyde reductase activity.
  • Aldehyde reductase activity refers to the activity of reducing acetaldehyde to ethanol using nicotinamide adenine dinucleotide phosphate as a coenzyme.
  • microorganism in which the activity of at least one protein selected from the group consisting of alcohol dehydrogenase and aldehyde reductase is reduced or lost as compared with the parent strain, it encodes the wild-type protein not containing a mutation present on chromosomal DNA.
  • the following microorganisms (a) and (b) obtained by introducing a base deletion, substitution, insertion or addition into a DNA base sequence can be exemplified.
  • the specific activity of the protein is 80% or less, preferably 50% or less, more preferably 30% or less, even more preferably 20% or less, particularly preferably 10% or less, and most preferably 0%, compared to the parent strain.
  • the amount of transcription of the DNA or the production amount of the protein is 80% or less, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, particularly preferably 10%, compared to the reduced microorganism (b) %, And most preferably, microorganisms reduced to 0%. More preferable examples include microorganisms in which a part or all of the DNA is deleted.
  • the DNA encoding alcohol dehydrogenase may be any DNA that encodes a protein having alcohol dehydrogenase activity of the parent strain.
  • the DNA described in any one of [15] to [18] below may be used.
  • [15] DNA encoding a protein comprising the amino acid sequence represented by SEQ ID NO: 12 [16] It comprises an amino acid sequence having 95% or more, preferably 97% or more, more preferably 98% or more, most preferably 99% or more identity with the amino acid sequence represented by SEQ ID NO: 12, and alcohol dehydrogenase activity DNA encoding a homologous protein having [17] DNA comprising the base sequence represented by SEQ ID NO: 11 [18]
  • the DNA encoding aldehyde reductase may be any DNA as long as it encodes a protein having aldehyde reductase activity possessed by the parent strain.
  • DNA encoding a protein comprising the amino acid sequence represented by SEQ ID NO: 14 [20] An amino acid sequence having 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more identity with the amino acid sequence represented by SEQ ID NO: 14, and aldehyde reductase activity
  • DNA encoding a homologous protein having [21] DNA consisting of the base sequence represented by SEQ ID NO: 13 [22] An aldehyde reductase comprising a nucleotide sequence having at least 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more identity with the base sequence represented by SEQ ID NO: 13 DNA encoding a homologous protein having activity
  • a microorganism in which the activity of at least one protein selected from the group consisting of alcohol dehydrogenase and aldehyde reductase is reduced or lost as compared with the parent strain is, for example, a microorganism in which the above-mentioned ethylamine production activity and ⁇ -glutamethylamide synthase activity are enhanced
  • the activity of at least one protein selected from the group consisting of an alcohol dehydrogenase and an aldehyde reductase of the parent strain using a normal mutation treatment method or a gene replacement method using recombinant DNA technology, or the like. It can be obtained by loss.
  • NTG N-methyl-N′-nitro-N-nitrosoguanidine
  • the gene replacement method using the recombinant DNA technique includes, for example, subjecting DNA encoding at least one protein selected from the group consisting of alcohol dehydrogenase and aldehyde reductase to a mutation treatment using a mutation agent in a test tube or error-prone.
  • a method of substituting the DNA encoding the protein present on the chromosomal DNA of the parent strain using a homologous recombination method, or selected from the group consisting of alcohol dehydrogenase and aldehyde reductase After introducing a deletion, substitution, insertion or addition of one or more bases into the DNA encoding at least one protein, the protein present on the chromosomal DNA of the parent strain is encoded using homologous recombination.
  • a method of replacing with DNA can be mentioned.
  • the DNA encoding alcohol dehydrogenase and aldehyde reductase is, for example, a probe DNA that can be designed based on the nucleotide sequence represented by SEQ ID NO: 11 or 13, respectively, and using, for example, Escherichia coli W3110 strain genomic DNA as a template. It can be obtained by the same method using Southern hybridization or PCR.
  • a method of introducing one or more base deletions, substitutions, insertions or additions into DNA encoding at least one protein selected from the group consisting of alcohol dehydrogenase and aldehyde reductase, and homologous DNA prepared by the above method The method of replacing the target region on the chromosomal DNA of the parent strain by recombination or the like is the same as described above.
  • a microorganism in which the activity of at least one protein selected from the group consisting of alcohol dehydrogenase and aldehyde reductase is reduced or lost compared to the parent strain is, for example, that the parent strain and the microorganism are cultured in a medium containing acetaldehyde, This can be confirmed by comparing the ratio of ethanol in the microbial cells.
  • a microorganism in which the transcription amount of DNA encoding at least one protein selected from the group consisting of alcohol dehydrogenase and aldehyde reductase than the parent strain or the production amount of the protein is reduced or lost is, for example, that of the microorganism.
  • the amount of gene transcription can be confirmed by Northern blotting or the production of the protein of the microorganism by Western blotting and compared with that of the parent strain.
  • microorganisms in which the transcription amount of DNA encoding at least one protein selected from the group consisting of alcohol dehydrogenase and aldehyde reductase than the parent strain or the production amount of the protein is reduced or lost include alcohol dehydrogenase and aldehyde reductase Examples include microorganisms in which a part or all of DNA encoding at least one protein selected from the group is deleted. Specific examples include the W3110A strain and the W3110AE strain described later in the Examples.
  • Aldehyde dehydrogenase refers to a protein having aldehyde dehydrogenase activity. Aldehyde dehydrogenase activity refers to the activity of producing acetaldehyde using acetyl CoA as a substrate.
  • microorganism having enhanced aldehyde dehydrogenase activity as compared with the parent strain examples include the following microorganisms (c) and (d).
  • C obtained by modifying DNA encoding a protein having aldehyde dehydrogenase activity on the chromosomal DNA of the parent strain, i) a microorganism having a higher specific activity of the protein than the parent strain, or ii) a microorganism in which the transcription amount of the DNA or the production amount of the protein is increased as compared with the parent strain;
  • a microorganism having a higher specific activity of the protein than the parent strain has An amino acid sequence in which 1 to 20 amino acids, preferably 1 to 10 amino acids, most preferably 1 to 5 amino acids are deleted, substituted, inserted or added in the amino acid sequence of a protein having aldehyde dehydrogenase activity. Examples thereof include a microorganism having a mutant protein whose specific activity is enhanced as compared with the parent strain.
  • Examples of the mutation treatment method include the above methods.
  • Examples of the gene replacement method using recombinant DNA technology include the above methods.
  • the DNA encoding the protein having aldehyde dehydrogenase activity is, for example, a probe DNA that can be designed based on the base sequence represented by SEQ ID NO: 15, using the genomic DNA of Escherichia coli W3110 strain as a template, for example, the above-mentioned Southern It can be obtained by a method using hybridization or PCR.
  • the fact that the specific activity of the protein having aldehyde dehydrogenase activity is higher than that of the parent strain means that, for example, the mutant protein is purified from the microorganism having the mutant protein, and the mutant protein, acetyl CoA and other substrates are purified in an aqueous medium.
  • the specific activity of the protein having aldehyde dehydrogenase activity obtained from the parent strain, in which the specific activity is measured from the acetaldehyde produced and accumulated in the aqueous medium and the amount of the protein and the mutation measured in the same manner is not introduced. This can be confirmed by comparison.
  • the base sequence of the transcriptional regulatory region or promoter region of the DNA encoding the protein having aldehyde dehydrogenase activity present on the chromosomal DNA of the parent strain is 1 base or more, preferably 1 to 20 bases, more preferably 1 to 10 bases More preferably, since it has a promoter region in which 1 to 5 bases are deleted, substituted, inserted or added, the microorganism in which the expression level of the DNA is increased as compared with the parent strain, or the chromosomal DNA of the parent strain Replacing the promoter region of the DNA present above with a known strong promoter sequence Obtained can be mentioned a microorganism expression amount of the DNA is increased than the parent
  • the transcription amount of the protein having the aldehyde dehydrogenase activity of the parent strain or the production amount of the protein can It can be obtained by enhancement using a mutation treatment method or a gene replacement method using recombinant DNA technology.
  • Examples of the mutation treatment method include the above methods.
  • the gene replacement method using recombinant DNA technology has a transcriptional regulatory region and a promoter region of DNA encoding a protein having aldehyde dehydrogenase activity possessed by the parent strain, for example, a base sequence of 200 bp upstream of the start codon of the protein, preferably 100 bp.
  • a mutation treatment for example, a base sequence of 200 bp upstream of the start codon of the protein, preferably 100 bp.
  • the replacement method include a recombinant method.
  • promoters examples include the above promoters.
  • the microorganism obtained by the above method is a microorganism in which the transcription amount of DNA encoding a protein having aldehyde dehydrogenase activity or the production amount of the protein is higher than that of the parent strain, for example, the transcription amount of the DNA of the microorganism Can be confirmed by Northern blotting or by measuring the protein production of the microorganism by Western blotting and comparing it with that of the parent strain.
  • Microorganisms obtained by transforming a parental microorganism with a recombinant DNA containing a DNA encoding a protein having aldehyde dehydrogenase activity and having an increased copy number of the DNA compared to the parental strain include aldehyde dehydrogenase activity.
  • the microorganism has an increased copy number of the DNA on the chromosomal DNA, and possesses the DNA outside the chromosomal DNA as a plasmid DNA Can be mentioned.
  • the protein having aldehyde dehydrogenase activity may be any protein as long as it has the activity, and examples thereof include the proteins described in any one of [23] to [25] below.
  • a protein having the amino acid sequence represented by SEQ ID NO: 16 [24] The amino acid sequence represented by SEQ ID NO: 16 lacks 1 to 20, preferably 1 to 10, most preferably 1 to 5 amino acids.
  • amino acid sequence consisting of a deleted, substituted, inserted or added amino acid sequence and having a aldehyde dehydrogenase activity [25] SEQ ID NO: 16
  • a homologous protein comprising an amino acid sequence having an identity of 99% or more and having an aldehyde dehydrogenase activity
  • a mutation comprising an amino acid sequence in which 1 to 20, preferably 1 to 10, most preferably 1 to 5 amino acid residues are deleted, substituted, inserted or added, and having aldehyde dehydrogenase activity
  • the protein can be obtained by introducing a mutation into DNA encoding the protein having the amino acid sequence represented by SEQ ID NO: 16, for example, using the above error-prone PCR or site-specific mutagenesis method.
  • amino acid sequence represented by SEQ ID NO: 16 1 to 20, preferably 1 to 10, most preferably 1 to 5 or more amino acids are deleted, substituted, inserted or added is any sequence in the same sequence. At the position, one or more amino acid residues may be deleted, substituted or added.
  • the above mutant protein or homologous protein is a protein having aldehyde dehydrogenase activity.
  • a transformant expressing a protein whose activity is to be confirmed using a DNA recombination method is prepared and cultured in a medium. It can be confirmed by measuring the amount of acetaldehyde in it.
  • the DNA encoding a protein having aldehyde dehydrogenase activity may be any DNA as long as it encodes a protein having the activity.
  • the DNA described in any one of [26] to [29] below may be used. Can be mentioned.
  • DNA encoding the protein according to any one of [23] to [25] above [27] DNA having the base sequence represented by SEQ ID NO: 15 [28] A DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence represented by SEQ ID NO: 15 and encodes a homologous protein having aldehyde dehydrogenase activity [29] An aldehyde dehydrogenase comprising a nucleotide sequence having at least 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more identity with the base sequence represented by SEQ ID NO: 15 DNA encoding a homologous protein having activity
  • the DNA that can hybridize under stringent conditions includes, for example, at least a DNA comprising the base sequence represented by SEQ ID NO: 15 when calculated based on the above parameters using the above BLAST, FASTA, etc.
  • a DNA having 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more can be mentioned.
  • the DNA encoding the protein having aldehyde dehydrogenase activity is, for example, a probe DNA that can be designed based on the base sequence represented by SEQ ID NO: 15, using the genomic DNA of Escherichia coli W3110 strain as a template, for example, the above-mentioned Southern It can be obtained by a method using hybridization or PCR.
  • a DNA fragment having an appropriate length containing a portion encoding the protein is prepared as necessary.
  • a transformant with an improved production rate can be obtained by substituting the base sequence of the portion encoding the protein so that the codon is optimal for expression in a host cell.
  • a recombinant DNA capable of autonomous replication in the parent strain is prepared by inserting the DNA fragment downstream of the promoter of an appropriate expression vector.
  • a microorganism having an increased copy number of DNA encoding the protein than the parent strain is obtained by transforming the above-mentioned recombinant DNA with a microorganism having enhanced ethylamine-producing activity and ⁇ -glutamethylamide synthase activity. be able to.
  • the parent strain can be transformed with a recombinant DNA having the prepared DNA fragment and capable of being integrated into the chromosome, and DNA encoding aldehyde dehydrogenase can be incorporated at any position of the chromosome.
  • a microorganism having an increased number of copies of DNA encoding a protein can be obtained.
  • the recombinant DNA may not contain a promoter.
  • the recombinant DNA capable of autonomous replication in the parent strain is preferably a recombinant DNA composed of a promoter, a ribosome binding sequence, the DNA, and a transcription termination sequence. It may contain DNA that controls the promoter.
  • examples of the expression vector and the promoter in the case of using the expression vector include the same expression vectors and promoters as described above.
  • a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the start codon is adjusted to an appropriate distance is used. It is preferable to use it.
  • a transcription termination sequence is not necessarily required, but it is preferable to arrange the transcription termination sequence immediately below the structural gene.
  • the microorganism obtained by the above method is a microorganism having an increased number of copies of DNA encoding a protein having aldehyde dehydrogenase activity as compared with the parent strain.
  • the amount of transcription of the DNA of the microorganism can be determined by Northern blotting or The production amount of the protein of the microorganism can be confirmed by measuring by Western blotting and comparing it with that of the parent strain.
  • microorganisms examples include the W3110AE strain described later in the Examples.
  • L-alanine dehydrogenase refers to a protein having L-alanine dehydrogenase activity.
  • L-alanine dehydrogenase activity refers to the activity of producing L-alanine using pyruvic acid as a substrate.
  • the number of copies of the DNA is higher than that of the parent strain, which is obtained by transforming the parent strain with a recombinant DNA containing DNA encoding the protein. Can be mentioned.
  • a microorganism obtained by transforming a parental microorganism with a recombinant DNA containing a DNA encoding a protein having L-alanine dehydrogenase activity and having an increased copy number of the DNA than the parental strain includes L-alanine dehydrogenase.
  • the protein having L-alanine dehydrogenase activity may be any protein having such activity, and examples thereof include the proteins described in any one of [30] to [32] below.
  • Protein having the amino acid sequence represented by SEQ ID NO: 18 [31] The amino acid sequence represented by SEQ ID NO: 18 lacks 1 to 20, preferably 1 to 10, most preferably 1 to 5 amino acids.
  • amino acid sequence represented by SEQ ID NO: 18 Homologous protein comprising an amino acid sequence having 98% or more, most preferably 99% or more identity, and having L-alanine dehydrogenase activity
  • mutant protein possessed can be obtained by introducing a mutation into the DNA encoding the protein having the amino acid sequence represented by SEQ ID NO: 18, for example, using the above error-prone PCR or site-directed mutagenesis method.
  • amino acid sequence represented by SEQ ID NO: 18, 1 to 20, preferably 1 to 10, most preferably 1 to 5 or more amino acids are deleted, substituted, inserted or added is any sequence in the same sequence. At the position, one or more amino acid residues may be deleted, substituted, inserted or added.
  • the above-mentioned mutant protein or homologous protein is a protein having L-alanine dehydrogenase activity.
  • a transformant expressing a protein whose activity is to be confirmed using a DNA recombination method is prepared and cultured in a medium. This can be confirmed by measuring the amount of alanine in the culture.
  • the DNA encoding a protein having L-alanine dehydrogenase activity may be any DNA as long as it encodes a protein having the activity.
  • the DNA that can hybridize under stringent conditions includes, for example, a DNA comprising the base sequence represented by SEQ ID NO: 17 when calculated based on the above parameters using the above BLAST, FASTA, etc.
  • a DNA having 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more can be mentioned.
  • the DNA encoding a protein having L-alanine dehydrogenase activity is, for example, a probe DNA that can be designed based on the base sequence represented by SEQ ID NO: 17, using, for example, the genomic DNA of Bacillus subtilis strain 168 as a template as described above. This method can be obtained by Southern hybridization or a method using PCR.
  • a microorganism obtained by transforming a parental microorganism with a recombinant DNA containing a DNA encoding a protein having L-alanine dehydrogenase activity, wherein the number of copies of the gene encoding the protein is higher than that of the parental strain, Can be obtained in the same way.
  • the microorganism obtained by the above method is a microorganism having an increased number of copies of DNA encoding a protein having L-alanine dehydrogenase activity as compared with the parent strain.
  • the amount of transcription of the DNA of the microorganism is Northern blotted.
  • microorganisms examples include the W3110A strain and the W3110AE strain described later in the Examples.
  • microorganism having enhanced ethylamine production activity and glutaminase activity and method for producing the microorganism Microorganism with Enhanced Ethylamine Production Activity includes the microorganism of 1-1 above, produces acetaldehyde, alanine and glutamine from a carbon source, and has the above-mentioned [1] to [3]. Mention may be made of microorganisms having enhanced protein activity and glutaminase activity as described in any one of them.
  • microorganism having enhanced activity of the protein described in any one of [1] to [3] above the parent strain and the method for producing the microorganism are the same as in 1-1.
  • the microorganism 1-2 of the present invention which is the microorganism 1-2 having enhanced glutaminase activity, has enhanced activity of the protein according to any one of the above [1] to [3], and at the same time has enhanced glutaminase activity. It is.
  • Glutaminase refers to a protein having glutaminase activity.
  • Glutaminase activity refers to the activity of producing theanine using ethylamine and glutamine as substrates.
  • glutaminase examples include glutaminase possessed by microorganisms belonging to the genus Pseudomonas, more specifically, Pseudomonas nitroreducens IFO 12694 (JP-A-11-225789).
  • Examples of microorganisms with enhanced glutaminase activity over the parent strain include microorganisms with enhanced glutaminase activity over the parent strain obtained by transforming the parent strain with a recombinant DNA having a DNA encoding glutaminase. Can do.
  • the DNA encoding glutaminase is preferably DNA derived from prokaryotic organisms such as bacteria or yeast, more preferably from prokaryotic organisms, particularly preferably Pseudomonas nitroreducens IFO 12694 strain (Japanese Patent Laid-Open No. 11-225789). Can be mentioned.
  • the DNA encoding the glutaminase can be obtained according to the same method as described in 1-1 above.
  • the recombinant DNA having the DNA can be obtained according to the same method as described in 1-1 above.
  • a microorganism obtained by transforming a parent strain with the recombinant DNA and having enhanced glutaminase activity compared to the parent strain can be produced according to the same method as described in 1-1 above.
  • the microorganism constructed by the above method is a microorganism having enhanced glutaminase activity as compared with the parent strain. This means that the transcription amount of DNA encoding glutaminase, the production amount of the protein, or the specific activity of the protein is different from that of the parent strain. This can be confirmed by comparison.
  • the transcription amount of the DNA is determined by Northern blotting or the production amount of the protein is determined by Western blotting. -It can be confirmed by measuring by blotting and comparing with that of the parent strain.
  • the specific activity of glutaminase is, for example, by purifying the protein from a transformant obtained by transforming a parent strain with DNA encoding the protein, and allowing the protein, ethylamine and glutamine to be present in the aqueous medium. This can be confirmed by measuring the specific activity from theanine produced and accumulated therein and the amount of the protein.
  • the microorganism of the present invention of 1-2 may have reduced or lost theanine degrading activity from the viewpoint of suppressing the decomposition of the produced theanine in addition to the enhanced glutaminase activity. preferable. Specific examples of such microorganisms include microorganisms in which the activity of ⁇ -glutamyl transpeptidase is reduced or lost.
  • the microorganism 1-2 of the present invention which is a microorganism 1-2 that produces acetaldehyde, alanine, and glutamine from a carbon source, produces acetaldehyde, alanine, and glutamine from a carbon source, and any one of the above [1] to [3] than the parent strain.
  • a microorganism that produces acetaldehyde, alanine, and glutamine from a carbon source means that when the microorganism is cultured in a medium by the method 2-1 described later, the acetaldehyde, alanine, and glutamine are contained in the microorganism using the carbon source as a starting material. This refers to the microorganisms that are produced.
  • Such a microorganism is not limited as long as it is a microorganism that produces acetaldehyde, alanine and glutamine using a carbon source as a starting material.
  • a microorganism having enhanced ethylamine production activity and glutaminase activity obtained using any parent strain can be mentioned.
  • the microorganism described in any one of the following (E) to (H) is created as a parent strain, the microorganism having enhanced ethylamine production activity and glutaminase activity, or the above ethylamine production activity and glutaminase activity is enhanced.
  • microorganisms described in any one of the following (E) to (H), which are created using the prepared microorganism as a parent strain can be mentioned.
  • E Microorganism in which the activity of at least one protein selected from the group consisting of alcohol dehydrogenase (AdhE) and aldehyde reductase (YqhD) is reduced or lost compared to the parent strain
  • F Activity of aldehyde dehydrogenase (EutE) than the parent strain
  • H a microorganism having the traits of the microorganisms (E) to (G) in any combination
  • the microorganism of the present invention preferably has the trait (F) or (G), preferably the traits (F) and (G).
  • E a microorganism in which the activity of at least one protein selected from the group consisting of alcohol dehydrogenase and aldehyde reductase is reduced or lost as compared with the parent strain of (E), and (F) a microorganism in which the activity of aldehyde dehydrogenase is enhanced compared to the parent strain.
  • G a method for producing a microorganism having an enhanced activity of L-alanine dehydrogenase than the parent strain, and (H) a microorganism having any combination of the traits of the microorganisms (E) to (G) above. The same as 1-1.
  • the production method of theanine of the present invention is the method described in the following 2-1 and 2-2.
  • the method for producing theanine of the present invention comprises culturing the microorganism of 1-1 or 1-2 above in a medium, producing and accumulating theanine in the culture, and from the culture.
  • a method for producing theanine, which is characterized by collecting theanine, can be mentioned.
  • the method of culturing the microorganisms 1-1 and 1-2 can be carried out according to a usual method used for culturing microorganisms.
  • any of a natural medium and a synthetic medium can be used as long as it contains a carbon source, a nitrogen source, inorganic salts, and the like that can be assimilated by the microorganism, and can efficiently culture the microorganism. It may be used.
  • Any carbon source may be used as long as the microorganism can assimilate, glucose, fructose, sucrose, molasses containing them, sugar such as starch or starch hydrolysate, organic acid such as acetic acid or propionic acid, or Alcohols such as glycerol, ethanol or propanol can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate and other inorganic acids, organic acid ammonium salts, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysis Product, soybean meal, soybean meal hydrolyzate, various fermented bacterial cells and digested products thereof, and the like.
  • monopotassium phosphate dipotassium phosphate
  • magnesium phosphate magnesium sulfate
  • sodium chloride ferrous sulfate
  • manganese sulfate copper sulfate
  • calcium carbonate calcium carbonate
  • Cultivation can usually be performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is usually 15 to 40 ° C., and the culture time is usually 5 hours to 7 days.
  • the pH of the culture solution during culture is usually maintained at 3.0 to 9.0.
  • the pH can be adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.
  • antibiotics such as ampicillin and tetracycline may be added to the medium as needed during the culture.
  • an inducer may be added to the medium as necessary.
  • cultivating a microorganism transformed with an expression vector using the lac promoter cultivate a microorganism transformed with isopropyl- ⁇ -D-thiogalactopyranoside (IPTG) or the like with an expression vector using the trp promoter.
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • indoleacrylic acid or the like may be added to the medium.
  • Theanine can be produced by producing and accumulating theanine in the culture and collecting theanine from the culture by the above culture.
  • the produced theanine can be derivatized with 9-fluorenylmethyl chloroformate (Tokyo Chemical Industry Co., Ltd., hereinafter referred to as Fmoc) and analyzed by HPLC.
  • Fmoc 9-fluorenylmethyl chloroformate
  • HPLC HPLC
  • Theanine can be collected from the culture by combining an ion exchange resin method, a precipitation method and other known methods.
  • theanine can be collected from the supernatant obtained by crushing the microbial cells with ultrasonic waves and removing the microbial cells by centrifugation, etc., by an ion exchange resin method or the like.
  • a method for producing theanine using acetaldehyde, alanine, glutamic acid and ATP or acetaldehyde, alanine and glutamine as substrates As a method for producing theanine of the present invention, acetaldehyde, alanine, glutamic acid and ATP, or acetaldehyde, alanine and glutamine A method for producing theanine using as a substrate can also be mentioned.
  • the protein according to any one of the above [1] to [3] and ⁇ -glutamethylamide synthase in an aqueous medium containing acetaldehyde, alanine, glutamic acid and ATP.
  • Theanine can be produced and accumulated in the aqueous medium, and theanine can be collected from the aqueous medium.
  • theanine is produced and accumulated in the aqueous medium by allowing the protein and glutaminase described in any one of the above [1] to [3] to coexist in an aqueous medium containing acetaldehyde, alanine and glutamine.
  • Theanine can also be collected from the aqueous medium.
  • concentrations of the protein according to any one of [1] to [3], ⁇ -glutamethylamide synthase, and glutaminase used in the method for producing theanine of the present invention in an aqueous medium are usually 0. 0.001 to 500 g / L, preferably 0.01 to 300 g / L.
  • concentrations of acetaldehyde, alanine, glutamic acid, ATP, and glutamine in the aqueous medium are usually 0.1 mM to 10 M, preferably 1 mM to 1 M, respectively.
  • aqueous media examples include buffers such as water, phosphate, carbonate, acetate, borate, citrate, and tris, alcohols such as methanol and ethanol, esters such as ethyl acetate, and ketones such as acetone. And amides such as acetamide.
  • buffers such as water, phosphate, carbonate, acetate, borate, citrate, and tris
  • alcohols such as methanol and ethanol
  • esters such as ethyl acetate
  • ketones such as acetone.
  • amides such as acetamide.
  • the culture solution of the microorganism used as an enzyme source mentioned later can also be used as an aqueous medium.
  • a chelating agent such as phytic acid, a surfactant, or an organic solvent may be added as necessary.
  • the surfactant include nonionic surfactants such as polyoxyethylene / octadecylamine (for example, Nimine S-215, manufactured by NOF Corporation), cetyltrimethylammonium / bromide and alkyldimethyl / benzylammonium chloride (for example, cationic F2-40E).
  • anionic surfactants such as lauroyl / sarcosinate, etc., tertiary amines such as alkyldimethylamine (eg, tertiary amine FB, manufactured by Nippon Oil & Fats), etc. Any one may be used as long as it promotes the production, and one kind or a mixture of several kinds may be used.
  • the surfactant can be used usually at a concentration of 0.1 to 50 g / L.
  • the organic solvent examples include xylene, toluene, aliphatic alcohol, acetone, ethyl acetate, and the like, and can usually be used at a concentration of 0.1 to 50 ml / L.
  • the theanine production reaction can be carried out in an aqueous medium under the conditions of usually pH 5 to 10, preferably pH 6 to 8, 20 to 50 ° C. for 1 to 96 hours.
  • adenine, adenosine-5′-monophosphate (AMP), ADP, ATP, magnesium sulfate, magnesium chloride and the like can be added.
  • Adenine and AMP can be used usually at a concentration of 0.01 to 100 mmol / L.
  • Examples of the protein, ⁇ -glutamethylamide synthase, and glutaminase described in any one of [1] to [3] above include, for example, the microorganism of 1-1 or the culture of the microorganism of 1-2. A purified product can be used.
  • the acetaldehyde, alanine, glutamic acid, ATP and glutamine used as the substrate are not particularly limited, and for example, commercially available acetaldehyde, alanine, glutamic acid, ATP and glutamine can be used.
  • a culture of one or more microorganisms of the microorganisms 1-1 and 1-2 or a treated product of the culture is used as an enzyme source, and the enzyme source and the energy donor are present in an aqueous medium. It is also possible to use acetaldehyde, alanine, glutamic acid, ATP and glutamine which are obtained by accumulating, producing and accumulating in the microbial cells or in the aqueous medium.
  • the energy donor include the carbon source described in 2-1.
  • any microorganism culture that produces or accumulates a substance selected from the group consisting of acetaldehyde, alanine, glutamic acid, ATP, and glutamine or a treated product of the culture is used as an enzyme source, and the enzyme source and energy donor are used.
  • Acetaldehyde, alanine, glutamic acid, ATP, and glutamine obtained by allowing them to exist in an aqueous medium and producing and accumulating in the microbial cells or in the aqueous medium may be used.
  • ⁇ -glutamethylamide synthase, and glutaminase described in any one of [3] a culture of the microorganism according to 1-1 and 1-2 or a treatment product of the culture is used. You can also.
  • the method for culturing microorganisms and the medium for culturing microorganisms are the same as in 2-1.
  • the enzyme source acetaldehyde, alanine, glutamic acid and ATP, or acetaldehyde, alanine and glutamine are present in an aqueous medium.
  • Theanine can be produced by producing and accumulating theanine in the aqueous medium and collecting theanine from the medium.
  • a concentrate of the culture, a dried product of the culture, a cell obtained by centrifuging or filtering the culture, a dried product of the cell, the cell The same function as the culture as an enzyme source, such as a lyophilized product, a surfactant-treated product of the cell, a solvent-treated product of the cell, an enzyme-treated product of the cell, and an immobilized product of the cell , A sonicated product of the microbial cell, a mechanically ground product of the microbial cell, a crude enzyme extract obtained from the treated microbial cell, and the processed
  • the purified enzyme obtained from the microbial cells is preferably a concentrate of the culture, a dried product of the culture, a microbial cell obtained by centrifuging or filtering the culture, a dried product of the microbial cells, Lyophilized product of the bacterial cell, surfactant-treated product of the bacterial cell, solvent-treated product of the bacterial cell, enzyme-treated product of the bacterial cell,
  • Preferred embodiments of the present invention include the following.
  • (I) Acetaldehyde, alanine, glutamic acid and ATP are produced from sugar, and the activity and ⁇ -glutamethylamide synthase activity of the protein according to any one of [1] to [3] below from the parent strain: Is an enhanced microorganism that belongs to the genus Escherichia.
  • a mutant protein consisting of a substituted, inserted or added amino acid sequence and having an activity of producing ethylamine using acetaldehyde and alanine as substrates (hereinafter referred to as ethylamine producing activity)
  • SEQ ID NOs: 2, 4, 6, Or a homologous protein comprising an amino acid sequence having 95% or more identity with the amino acid sequence represented by 8 and having an ethylamine-forming activity (II) A microorganism of the above (I), which is more L-alanine dehydrogenase than the parent strain A microorganism having enhanced activity and reduced or lost aldehyde reductase activity.
  • (III) A microorganism according to the above (I) or (II), wherein the aldehyde dehydrogenase activity is enhanced as compared with the parent strain, and the alcohol dehydrogenase activity is reduced or lost.
  • IV) The microorganism according to (I) above, wherein the aldehyde dehydrogenase activity and / or L-alanine dehydrogenase activity is enhanced as compared with the parent strain.
  • (V) A microorganism according to (IV) above, wherein the alcohol dehydrogenase activity and / or aldehyde reductase activity is reduced or lost as compared with the parent strain.
  • a microorganism of any one of (I) to (V) above is cultured in a medium, theanine is produced and accumulated in the culture, and theanine is collected from the culture. Production method.
  • a culture of the microorganism according to any one of (I) to (V) above or a treated product thereof, acetaldehyde, alanine, glutamic acid and ATP coexist in an aqueous medium to produce theanine in the aqueous medium.
  • a method for producing theanine characterized in that theanine is accumulated and collected from the aqueous medium.
  • VIII A microorganism which produces acetaldehyde, alanine and glutamine from a sugar and has enhanced activity of the protein and glutaminase of any one of [1] to [3] of (I) above than the parent strain.
  • IX A microorganism according to the above (VIII), wherein the L-alanine dehydrogenase activity is enhanced as compared with the parent strain, and the aldehyde reductase activity is reduced or lost.
  • (X) A microorganism according to (VIII) or (IX) above, wherein the aldehyde dehydrogenase activity is enhanced as compared with the parent strain, and the alcohol dehydrogenase activity is reduced or lost.
  • (XI) A microorganism according to (VIII) above, wherein the aldehyde dehydrogenase activity and / or L-alanine dehydrogenase activity is enhanced as compared with the parent strain.
  • (XII) A microorganism according to (XI) above, wherein alcohol dehydrogenase activity and / or aldehyde reductase activity is reduced or lost as compared with the parent strain.
  • a microorganism of any of the above (VIII) to (XII) is cultured in a medium, theanine is produced and accumulated in the culture, and theanine is collected from the culture. Production method.
  • (XIV) A culture of the microorganism according to any one of (VIII) to (XII) above or a treated product thereof, acetaldehyde, alanine and glutamine are allowed to coexist in an aqueous medium to produce and accumulate theanine in the aqueous medium. And theanine is collected from the aqueous medium.
  • Example 1 Production of theanine using acetaldehyde, alanine, glutamic acid and ATP as substrates (1) Production of microorganisms with enhanced ethylamine production activity and ⁇ -glutamethylamide synthase activity Pseudomonas syringae pv. Syringae B728a strain was cultured by a well-known culture method, and the chromosomal DNA of the microorganism was isolated and purified.
  • PCR was carried out using the oligonucleotide consisting of the nucleotide sequence represented by SEQ ID NOs: 19 and 20 as a primer set and the chromosomal DNA as a template, and ⁇ -glutarmethylamide synthase Psyr — 2273 (protein consisting of the amino acid sequence represented by SEQ ID NO: 10) A DNA fragment encoding was amplified.
  • chromosomal DNA was isolated and purified from Pseudomonas putida KT2440 strain by the same method as described above.
  • oligonucleotide consisting of the nucleotide sequence represented by SEQ ID NOs: 21 and 22 as a primer set
  • PCR is performed using the chromosomal DNA as a template, and a protein PP_5182 (protein consisting of the amino acid sequence represented by SEQ ID NO: 2) having ethylamine generating activity is obtained.
  • the encoding DNA fragment was amplified.
  • PCR is carried out using the oligonucleotide consisting of the nucleotide sequence represented by SEQ ID NOs: 23 and 24 as a primer set and the chromosomal DNA as a template, and a protein PP_0596 having the activity of producing ethylamine (protein consisting of the amino acid sequence represented by SEQ ID NO: 4) ) Was amplified.
  • chromosomal DNA was isolated and purified from Pseudomonas chlororaphis by the same method as described above. PCR was performed using the oligonucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 25 and 26 as primer sets and the chromosomal DNA as a template, and a protein JM49 — 01725 (protein consisting of the amino acid sequence represented by SEQ ID NO: 6) having ethylamine production activity was obtained. The encoding DNA fragment was amplified.
  • chromosomal DNA was isolated and purified from the Pseudomonas fluorescens SBW25 strain by the same method as described above.
  • PCR is carried out using the oligonucleotide consisting of the nucleotide sequence represented by SEQ ID NOs: 27 and 28 as a primer set and the chromosomal DNA as a template, and a protein PFLU_RS03325 (protein consisting of the amino acid sequence represented by SEQ ID NO: 8) having ethylamine production activity is obtained.
  • the encoding DNA fragment was amplified.
  • test tube production medium [glucose 30 g / L, magnesium sulfate heptahydrate 2 g / L, casamino acid 5 g / L, ammonium sulfate 2 g / L, citric acid 1 g / L, potassium dihydrogen phosphate 14 g / L, phosphorus Dipotassium hydrogen oxyhydrate 16 g / L, thiamine hydrochloride 10 mg / L, ferrous sulfate heptahydrate 50 mg / L, manganese sulfate pentahydrate 10 mg / L (except for glucose and magnesium sulfate heptahydrate, The pH was adjusted to 7.2 with an aqueous sodium oxide solution and then autoclaved.
  • glucose and magnesium sulfate heptahydrate an aqueous solution containing glucose and magnesium sulfate heptahydrate was separately prepared and then autoclaved, and then cooled and mixed. ] was inoculated into a large test tube containing 5 mL, and cultured at 30 ° C. for 5 hours. Degrees 1mM of IPTG, at a final concentration of 10mM alanine, was added to a final concentration of 10mM acetaldehyde, 21 hours at 30 ° C., and cultured with shaking.
  • the W3110 / pTrc99A strain did not produce theanine, whereas the W3110 / pTrc99A_Psyr_2273_PP_5182 strain, the W3110 / pTrc99A_Psyr_2273_PP_0596 strain, the W3110 / pTrc99A_Psr_2173_JT49_013
  • a recombinant DNA having a DNA encoding a protein having an activity to produce ethylamine (PP — 5182, PP — 0596, JM49
  • Example 2 Construction of microorganisms used in the production of theanine by fermentation (1) Acquisition of DNA fragments used as markers for gene deletion and gene replacement DNA comprising the base sequence represented by "Primer set” in Table 2 As a primer set, PCR was performed using the DNA described in “Template” in Table 2 as a template to amplify each DNA fragment.
  • the genomic DNA of Bacillus subtilis 168 strain was prepared by a conventional method.
  • the cat of the amplified DNA fragment contains about 200 bp upstream to about 100 bp downstream of the cat gene.
  • the amplified DNA fragment sacB contains about 300 bp upstream to about 100 bp downstream of the sacB gene.
  • a SalI recognition site is given to DNA consisting of the base sequences represented by SEQ ID NOs: 30 and 31.
  • cat and sacB of the amplified DNA fragment were cut with the restriction enzyme SalI, and DNA ligation Kit Ver. 2 (manufactured by Takara Bio Inc.). PCR is performed using the ligation reaction solution as a template and DNAs having the nucleotide sequences represented by SEQ ID NOs: 29 and 32 as primer sets, and a DNA fragment containing a cat gene and a sacB gene (hereinafter referred to as cat-sacB) is obtained. Obtained.
  • a DNA encoding aldehyde reductase (hereinafter referred to as yqhD gene) is a promoter that controls the expression of the ilvGMEDA operon (hereinafter referred to as ilv promoter).
  • E. coli substituted with a DNA encoding L-alanine dehydrogenase derived from Bacillus subtilis (hereinafter referred to as the ald gene) attached upstream is constructed by the following method.
  • Bacillus subtilis 168 genomic DNA was used as a template, and for other DNA fragments, Escherichia coli W3110 strain genomic DNA was used as a template, and DNA consisting of the nucleotide sequence shown in “Primer set” in Table 3 was used as a primer set. PCR was performed and amplified.
  • YqhD upstream 1 and yqhD upstream 2 contain about 1500 bp upstream from the start codon of the yqhD gene.
  • yqhD downstream 1 and yqhD downstream 2 contain about 1500 bp downstream from the stop codon of the yqhD gene.
  • PCR was performed using as a template a mixture of equimolar ratios of one yqhD upstream fragment, one yqhD downstream fragment, and a cat-sacB fragment, and a DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 35 and 38 as a primer set.
  • a DNA fragment (hereinafter referred to as yqhD :: cat-sacB) containing the region around the yqhD gene into which the cat-sacB fragment was inserted was obtained.
  • yqhD a DNA fragment containing the region surrounding the yqhD gene into which the ald gene with the ilv promoter attached was inserted was obtained.
  • YqhD :: cat-sacB fragment was transformed into plasmid pKD46 containing the gene encoding ⁇ recombinase [Datsenko, K. et al. A. Warner, B .; L. , Proc. Natl. Acad. Sci. USA, Vol. 97, 6640-6645 (2000)], which was introduced into Escherichia coli strain W3110 by electroporation and showed chloramphenicol resistance and sucrose sensitivity (yqhD gene was yqhD :: cat-sacB Transformant) was obtained.
  • the yqhD :: Pilv-ald fragment was introduced into the transformant by electroporation, and the transformant (yqhD :: cat-sacB was replaced with Pilv-ald which showed chloramphenicol sensitivity and sucrose resistance. Transformant) was obtained. Furthermore, a transformant from which pKD46 was eliminated was obtained.
  • the microorganism was named W3110A strain.
  • adhE gene DNA encoding alcohol dehydrogenase with an ilv promoter attached upstream
  • adhE gene Escherichia coli substituted with euE gene
  • PCR was carried out using the Escherichia coli W3110 strain genomic DNA prepared by a conventional method as a template and DNA consisting of the nucleotide sequence represented by “Primer Set” in Table 4 as a primer set to amplify each DNA fragment.
  • AdhE upstream 1 and adhE upstream 2 contain about 1000 bp upstream from the start codon of the adhE gene.
  • AdhE downstream 1 and adhE downstream 2 contain about 1500 bp downstream from the stop codon of the adhE gene.
  • PCR was carried out using as a template a mixture of an adhE upstream fragment, an adhE downstream fragment, and a cat-sacB fragment at equimolar ratios, and a DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 43 and 46 as a primer set.
  • adhE a DNA fragment containing the region surrounding the adhE gene into which the cat-sacB fragment was inserted was obtained.
  • PCR was carried out using DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 43 and 46 as a primer set, using as a template a mixture of 2 adhE upstream fragments, 2 adhE downstream fragments, ilv promoter fragment, and utE fragment in equimolar ratio. Then, a DNA fragment (hereinafter referred to as adhE :: Pilv-eutE) containing the region surrounding the adhE gene with the eutE gene inserted with the ilv promoter upstream was obtained.
  • adhE a DNA fragment containing the region surrounding the adhE gene with the eutE gene inserted with the ilv promoter upstream was obtained.
  • the adhE :: cat-sacB fragment was introduced into Escherichia coli W3110A strain carrying plasmid pKD46 containing the gene encoding ⁇ recombinase by electroporation, and a transformant showing chloramphenicol resistance and sucrose sensitivity (A transformant in which the adhE gene was replaced with adhE :: cat-sacB) was obtained.
  • Example 3 Production of theanine from glucose by fermentation-1
  • Each of the microorganisms was cultured overnight on an LB plate at 30 ° C., inoculated into a large test tube containing 5 mL of LB medium containing 100 mg / L ampicillin, and cultured with shaking at 30 ° C. for 12 hours.
  • test tube production media [glucose 30 g / L, magnesium sulfate heptahydrate 2 g / L, casamino acid 5 g / L, ammonium sulfate 2 g / L, citric acid 1 g / L, potassium dihydrogen phosphate 14 g / L, phosphorus Dipotassium hydrogen oxyhydrate 16 g / L, thiamine hydrochloride 10 mg / L, ferrous sulfate heptahydrate 50 mg / L, manganese sulfate pentahydrate 10 mg / L (except for glucose and magnesium sulfate heptahydrate, The pH was adjusted to 7.2 with an aqueous sodium oxide solution and then autoclaved.
  • glucose and magnesium sulfate heptahydrate an aqueous solution containing glucose and magnesium sulfate heptahydrate was separately prepared and then autoclaved, and then cooled and mixed. ] was inoculated into a large test tube containing 5 mL, and cultured at 30 ° C. for 5 hours. It was added degree 1mM of IPTG, 21 hours at 30 ° C., and cultured with shaking.
  • the W3110AE / pTrc99A strain did not produce theanine, while the W3110AE / pTrc99A_Psyr — 2273_PP — 5182 strain, the W3110AE / pTrc99A_Psyr_2296_ strain, the W3110AE / pTrc99A strain, the W3110AE / pTrc99A strain.
  • Example 4 Production of theanine using acetaldehyde, alanine, and glutamine as substrates (1) Production of microorganisms with enhanced ethylamine production activity and glutaminase activity Pseudomonas nitroreducens IFO 12694 strain (Japanese Patent Laid-Open No. 11-225789) is well known Culturing is performed by a culture method, and the chromosomal DNA of the microorganism is isolated and purified.
  • Primers are designed based on the base sequence of the glutaminase-encoding DNA disclosed in JP-A-11-225789, and PCR is performed using the chromosomal DNA as a template in accordance with the method described in 1-2 above, to encode glutaminase GLN. Amplify the DNA fragment to be
  • the DNA fragment encoding PP_0596 obtained in GLN and Example 1 (1) was transferred to the expression vector pTrc99A (manufactured by GE Healthcare Bioscience) using In-Fusion HD Cloning Kit (manufactured by Takara Bio Inc.). By ligating, the expression plasmid pTrc99A_GLN_PP_0596 is obtained.
  • Example 1 (1) the DNA fragment encoding GLN and JM49 — 01725 obtained in Example 1 (1) is expressed in the expression vector pTrc99A (manufactured by GE Healthcare Biosciences) using In-Fusion HD Cloning Kit (manufactured by Takara Bio Inc.). By ligating, the expression plasmid pTrc99A_GLN_JM49 — 01725 is obtained.
  • Example 1 (1) the DNA fragment encoding GLN and PFLU_RS03325 obtained in Example 1 (1) is expressed in the expression vector pTrc99A (GE Healthcare Bioscience) using In-Fusion HD Cloning Kit (Takara Bio). By ligating, the expression plasmid pTrc99A_GLN_PFLU_RS03325 is obtained.
  • pTrc99A_GLN_PP_5182, pTrc99A_GLN_PP_0596, pTrc99A_GLN_JM49_01725, pTrc99A_GLN_PFLU_RS03325, or Escherichia coli W3110 strain was transformed with pTrc99A, the recombinant E.
  • test tube production media [glucose 30 g / L, magnesium sulfate heptahydrate 2 g / L, casamino acid 5 g / L, ammonium sulfate 2 g / L, citric acid 1 g / L, potassium dihydrogen phosphate 14 g / L, phosphorus Dipotassium hydrogen oxyhydrate 16 g / L, thiamine hydrochloride 10 mg / L, ferrous sulfate heptahydrate 50 mg / L, manganese sulfate pentahydrate 10 mg / L (except for glucose and magnesium sulfate heptahydrate, The pH is adjusted to 7.2 with an aqueous sodium oxide solution and then autoclaved.
  • glucose and magnesium sulfate heptahydrate an aqueous solution containing glucose and magnesium sulfate heptahydrate is separately prepared, then autoclaved, and cooled and mixed. ] was inoculated into a large test tube containing 5 mL, and cultured at 30 ° C. for 5 hours. Degrees 1mM of IPTG, final concentration 10mM of alanine, was added to a final concentration of 10mM acetaldehyde, further 21 hours at 30 ° C., shaking culture.
  • the culture solution is centrifuged to remove the cells, and theanine contained in the supernatant is derivatized with Fmoc (manufactured by Tokyo Chemical Industry Co., Ltd.) and analyzed by HPLC.
  • Fmoc manufactured by Tokyo Chemical Industry Co., Ltd.
  • HPLC HPLC
  • ethylamine-producing activity is obtained by transforming W3110 strain with a recombinant DNA having DNA encoding ethylamine-producing activity (PP — 5182, PP — 0596, JM49 — 01725, or PFLU_RS03325) and glutaminase GLN.
  • theanine can be produced using microorganisms having enhanced glutaminase activity without adding ethylamine from the outside.
  • Example 5 Production of theanine from glucose by fermentation-2
  • Each of the microorganisms is cultured overnight on an LB plate at 30 ° C., inoculated into a large test tube containing 5 mL of LB medium containing 100 mg / L ampicillin, and cultured with shaking at 30 ° C. for 12 hours.
  • test tube production media [glucose 30 g / L, magnesium sulfate heptahydrate 2 g / L, casamino acid 5 g / L, ammonium sulfate 2 g / L, citric acid 1 g / L, potassium dihydrogen phosphate 14 g / L, phosphorus Dipotassium hydrogen oxyhydrate 16 g / L, thiamine hydrochloride 10 mg / L, ferrous sulfate heptahydrate 50 mg / L, manganese sulfate pentahydrate 10 mg / L (except for glucose and magnesium sulfate heptahydrate, The pH is adjusted to 7.2 with an aqueous sodium oxide solution and then autoclaved.
  • glucose and magnesium sulfate heptahydrate an aqueous solution containing glucose and magnesium sulfate heptahydrate is separately prepared, then autoclaved, and cooled and mixed. ] was inoculated into a large test tube containing 5 mL, and cultured at 30 ° C. for 5 hours. It was added degree 1mM of IPTG, 21 hours at 30 ° C., shaking culture.
  • the culture solution is centrifuged to remove the cells, and theanine contained in the supernatant is derivatized with Fmoc (manufactured by Tokyo Chemical Industry Co., Ltd.) and analyzed by HPLC.
  • Fmoc manufactured by Tokyo Chemical Industry Co., Ltd.
  • HPLC HPLC
  • ethylamine-producing activity is obtained from the W3110AE strain obtained by transforming the W3110AE strain with a recombinant DNA having DNA encoding ethylamine-producing protein (PP — 5182, PP — 0596, JM49 — 01725, or PFLU_RS03325) and glutaminase GLN.
  • PP — 5182, PP — 0596, JM49 — 01725, or PFLU_RS03325 DNA encoding ethylamine-producing protein
  • glutaminase GLN glutaminase GLN
  • the method produces theanine without adding ethylamine externally and without accumulating ethylamine as a by-product in the medium. I understand that I can do it.
  • the present invention provides a microorganism for producing theanine and an efficient method for producing theanine using the microorganism without adding ethylamine from the outside and accumulating and remaining ethylamine as a by-product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明によれば、アセトアルデヒドとアラニンを基質としてエチルアミンを生成する活性、及びγ-グルタルメチルアミド合成酵素活性又はグルタミナーゼ活性が増強した微生物を用いることにより、外部からエチルアミンを添加せず、副生物としてエチルアミンが蓄積、残存することなく、効率的にテアニンを製造することができる。

Description

テアニンの製造方法
 本発明は、テアニンを生成する微生物及び該微生物を用いた、外部からエチルアミンを添加せず、副生物としてエチルアミンが蓄積、残存しない、テアニンの効率的な製造方法に関する。
 テアニンは、茶に含まれるアミノ酸の一種で旨味の主成分として知られ、食品の香味成分として重要な物質である(特許文献1)。また、近年、リラックス作用、カフェイン興奮抑制作用、及び血圧降下作用等の様々な生理作用を有することが明らかになってきており、食品添加物としての需要が拡大している。
 テアニンの製造方法として、シュードモナス属細菌から得られるグルタミナーゼをグルタミンとエチルアミンに作用させる方法(特許文献2)、グルタミンとエチルアミン誘導体にグルタミナーゼ又はグルタミナーゼ産生菌を作用させる方法(特許文献3)、ATP存在下、メチロトローフ細菌が有するγ-グルタミルメチルアミド合成酵素をグルタミン酸とエチルアミンに作用させる方法(特許文献1)等が開示されているが、これらの方法では、その製造工程で反応基質としてエチルアミンを添加する必要がある。しかし、エチルアミンは沸点が非常に低いため、製造中にエチルアミンが揮発することは避けられず、揮発したエチルアミンが周辺環境や作業員の身体に悪影響を及ぼす可能性がある。また、例えば反応効率の向上を目的として沸点以上の温度でエチルアミンを反応させようとすると特別な設備が必要とり、上記の方法は、安全面、コスト面で問題がある(特許文献1)。よって、外部から基質としてエチルアミンを添加せず、副生物としてエチルアミンが蓄積、残存しないテアニンの製造方法が求められている。
 後述の、配列番号2、4、6又は8で表わされるアミノ酸配列からなる蛋白質(それぞれ、図1及び図2中の、PP_5182、PP_0596、JM49_01725及びRFLU_RS03325に該当)はシュードモナス属細菌が有する蛋白質であり、いずれもデータベース上にはアミノトランスフェラーゼとして登録されている(NCBI Reference Sequence ACCESSION NO.:NP_747283、NP_742759、WP_012722053、GenBank ACCESSION NO.:AIS10430)。しかし、これらの蛋白質が実際にアミノトランスフェラーゼとして機能することの実験的な検証はされておらず、また、その基質及び触媒する化学反応に関する知見もない。
特開2009-225705号公報 特開平05-68578号公報 特開平11-225789号公報
 上記のとおり、エチルアミンを使用する既存のテアニンの製造方法は、安全面、コスト面で問題があった。
 そこで、本発明は、外部からエチルアミンを添加しない、テアニンの効率的な製造方法を提供することを課題とする。
 本発明は、以下の(1)~(10)に関する。
(1)炭素源からアセトアルデヒド、アラニン、グルタミン酸及びATPを生成し、かつ親株よりも、以下の[1]~[3]のいずれか1つに記載の蛋白質の活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物。
[1]配列番号2、4、6、又は8で表わされるアミノ酸配列からなる蛋白質
[2]配列番号2、4、6、又は8で表わされるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつ、アセトアルデヒドとアラニンを基質としてエチルアミンを生成する活性(以下、エチルアミン生成活性という。)を有する変異蛋白質
[3]配列番号2、4、6、又は8で表わされるアミノ酸配列と95%以上の同一性を有するアミノ酸配列からなり、かつ、エチルアミン生成活性を有する相同蛋白質
(2)炭素源からアセトアルデヒド、アラニン及びグルタミンを生成し、かつ親株よりも、上記(1)の[1]~[3]のいずれか1つに記載の蛋白質の活性及びグルタミナーゼ活性が増強した微生物。
(3)アセトアルデヒド、アラニン、グルタミン酸及びATPを含有する水性媒体中に、上記(1)の[1]~[3]のいずれか1つに記載の蛋白質及びγ-グルタルメチルアミド合成酵素を共存させることにより、テアニンを該水性媒体中に生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
(4)アセトアルデヒド、アラニン及びグルタミンを含有する水性媒体中に、上記(1)の[1]~[3]のいずれか1つに記載の蛋白質及びグルタミナーゼを共存させることにより、テアニンを該水性媒体中に生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
(5)上記(1)又は(2)に記載の微生物を培地に培養し、培養物中にテアニンを生成、蓄積させ、該培養物中からテアニンを採取することを特徴とする、テアニンの製造方法。
(6)上記(1)に記載の微生物の培養物又は該培養物の処理物、アセトアルデヒド、アラニン、グルタミン酸及びATPを水性媒体中に共存せしめ、該水性媒体中にテアニンを生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
(7)上記(2)に記載の微生物の培養物又は該培養物の処理物、アセトアルデヒド、アラニン及びグルタミンを水性媒体中に共存せしめ、該水性媒体中にテアニンを生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
(8)微生物が、エシェリヒア属又はコリネバクテリウム属に属する微生物である、上記(1)又は(2)に記載の微生物。
(9)微生物が、エシェリヒア属又はコリネバクテリウム属に属する微生物である、上記(5)~(7)のいずれか1に記載のテアニンの製造方法。
(10)炭素源が糖である、上記(1)又は(2)に記載の微生物。
 本発明により、テアニンを生成する微生物及び該微生物を用いた、外部からエチルアミンを添加せず、副生物としてエチルアミンが蓄積、残存しない、テアニンの効率的な製造方法が提供される。
γ-グルタルメチルアミド合成酵素を用いた発酵法によるテアニンの製造方法における、微生物内での想定代謝経路の概略図を表わす。AdhE:アルコールデヒドロゲナーゼ、YqhD:アルデヒドレダクターゼ、EutE:アルデヒドデヒドロゲナーゼ、Ald:L-アラニンデヒドロゲナーゼ、Psyr_2273:γ-グルタルメチルアミド合成酵素、PP_5182、PP_0596、JM49_01725及びPFLU_RS03325:エチルアミン生成活性を有する蛋白質、TCA回路:クエン酸回路 グルタミナーゼを用いた発酵法によるテアニンの製造方法における、微生物内での想定代謝経路の概略図を表わす。AdhE:アルコールデヒドロゲナーゼ、YqhD:アルデヒドレダクターゼ、EutE:アルデヒドデヒドロゲナーゼ、Ald:L-アラニンデヒドロゲナーゼ、PP_5182、PP_0596、JM49_01725及びPFLU_RS03325:エチルアミン生成活性を有する蛋白質、TCA回路:クエン酸回路
1.本発明の微生物及び該微生物の造成方法
1-1.エチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物及び該微生物の造成方法
エチルアミン生成活性が増強した微生物
 本発明の微生物は、炭素源からアセトアルデヒド、アラニン、グルタミン酸及びATPを生成し、かつ親株よりも、以下の[1]~[3]のいずれか1つに記載の蛋白質の活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物である。
[1]配列番号2、4、6、又は8で表わされるアミノ酸配列を有する蛋白質
[2]配列番号2、4、6、又は8で表わされるアミノ酸配列において、1~20個、好ましくは1~10個、最も好ましくは1~5個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつ、アセトアルデヒドとアラニンを基質としてエチルアミンを生成する活性(以下、エチルアミン生成活性という。)を有する変異蛋白質
[3]配列番号2、4、6、又は8で表わされるアミノ酸配列と95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつ、エチルアミン生成活性を有する相同蛋白質
 変異蛋白質とは、元となる蛋白質中のアミノ酸残基を人為的に欠失若しくは置換、又は該蛋白質中に人為的にアミノ酸残基を挿入若しくは付加して得られる蛋白質をいう。
 相同蛋白質とは、自然界に存在する生物が有する蛋白質であって、進化上の起源が同一の蛋白質に由来する一群の蛋白質をいう。相同蛋白質は、互いに構造及び機能が類似している。
 変異蛋白質において、アミノ酸が欠失、置換、挿入又は付加されたとは、同一配列中の任意の位置において、1~20個のアミノ酸が欠失、置換、挿入又は付加されていてもよい。
 欠失、置換、挿入又は付加されるアミノ酸は天然型と非天然型とを問わない。天然型アミノ酸としては、L-アラニン、L-アスパラギン、L-アスパラギン酸、L-グルタミン、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-アルギニン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリン、L-システイン等が挙げられる。
 以下に、相互に置換可能なアミノ酸の例を示す。同一群に含まれるアミノ酸は相互に置換可能である。
A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、о-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン
B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸
C群:アスパラギン、グルタミン
D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸
E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン
F群:セリン、スレオニン、ホモセリン
G群:フェニルアラニン、チロシン
 アミノ酸配列や塩基配列の同一性は、Karlin and AltschulによるアルゴリズムBLAST[Pro.Natl.Acad.Sci.USA,90,5873(1993)]やFASTA[Methods Enzymol.,183,63(1990)]を用いて決定することができる。このアルゴリズムBLASTに基づいて、BLASTNやBLASTXとよばれるプログラムが開発されている[J.Mol.Biol.,215,403(1990)]。BLASTに基づいてBLASTNを使用して塩基配列を解析する場合には、パラメータは、例えばScore=100、wordlength=12とする。また、BLASTに基づいてBLASTXを使用してアミノ酸配列を解析する場合には、パラメータは、例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である。
 上記の変異蛋白質又は相同蛋白質がエチルアミン生成活性を有していることは、後述の方法により該蛋白質をコードするDNAを有する組換え体DNAを作製し、該組換え体DNAで、エチルアミン生成活性を有さない微生物、例えばEscherichia coli W3110株を形質転換して得られる微生物を培養し、得られる培養物から該蛋白質を含む細胞抽出液を調製し、該画分を基質であるアセトアルデヒド及びアラニンを含む水溶液と接触させ、結果として生成するエチルアミンを高速液体クロマトグラフィー(HPLC)又はガスクロマトグラフィーによって検出することで確認することができる。
(エチルアミン生成活性が増強した微生物の具体例)
 上記の[1]~[3]のいずれか1つに記載の蛋白質の活性が増強した微生物としては、例えば以下の[4]~[7]のいずれか1つに記載のDNAを有する組換え体DNAで親株を形質転換して得られる、該親株よりもエチルアミン生成活性が増強された微生物を挙げることができる。
[4]上記[1]~[3]のいずれか1つに記載の蛋白質をコードするDNA
[5]配列番号1、3、5、又は7で表わされる塩基配列からなるDNA
[6]配列番号1、3、5、又は7で表わされる塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、エチルアミン生成活性を有する相同蛋白質をコードするDNA
[7]配列番号1、3、5、又は7で表わされる塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなり、かつ、エチルアミン生成活性を有する相同蛋白質をコードするDNA
 上記において、ハイブリダイズするとは、特定の塩基配列を有するDNA又は該DNAの一部にDNAがハイブリダイズする工程である。したがって、該特定の塩基配列を有するDNA又は該DNAの一部にハイブリダイズするDNAの塩基配列は、ノーザン又はサザンブロット解析のプローブとして有用であるか、又はPCR解析のオリゴヌクレオチドプライマーとして使用できる長さのDNAであってもよい。プローブとして用いるDNAとしては、少なくとも100塩基以上、好ましくは200塩基以上、より好ましくは500塩基以上のDNAを挙げることができ、プライマーとして用いられるDNAとしては、少なくとも10塩基以上、好ましくは15塩基以上のDNAを挙げることができる。
 DNAのハイブリダイゼーション実験の方法はよく知られており、例えばモレキュラー・クローニング第4版(Cold Spring Harbor Laboratory Press(2012))、Methods for General and Molecular Bacteriology(ASM Press(1994))、Immunology methods manual(Academic press(1997))の他、多数の他の標準的な教科書に従ってハイブリダイゼーションの条件を決定し、実験を行うことができる。
 また、市販のハイブリダイゼーションキットに付属した説明書に従うことによっても、ストリンジェントな条件下でハイブリダイズするDNAを取得することができる。市販のハイブリダイゼーションキットとしては、例えばランダムプライム法によりプローブを作製し、ストリンジェントな条件でハイブリダイゼーションを行うランダムプライムドDNAラベリングキット(ロシュ・ダイアグノスティックス社製)等を挙げることができる。
 上記のストリンジェントな条件とは、例えばDNAを固定化したフィルターとプローブDNAとを50%ホルムアミド、5×SSC(750mMの塩化ナトリウム、75mMのクエン酸ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5×デンハルト溶液、10%の硫酸デキストラン、及び20μg/Lの変性させたサケ精子DNAを含む溶液中で42℃で一晩インキュベートした後、例えば約65℃の0.2×SSC溶液中で該フィルターを洗浄する条件を挙げることができる。
 上記した様々な条件は、ハイブリダイゼーション実験のバックグラウンドを抑えるために用いるブロッキング試薬を添加又は変更することにより設定することもできる。上記したブロッキング試薬の添加は、条件を適合させるために、ハイブリダイゼーション条件の変更を伴ってもよい。
 上記したストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えば上記したBLASTやFASTA等のプログラムを用いて、上記パラメータに基づいて計算したときに、配列番号1、3、5、又は7で表わされる塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなるDNAを挙げることができる。
 上記の[4]~[7]のいずれか1つに記載のDNAを有する組換え体DNAとは、例えば、親株において自律複製可能なDNAであって、上記の[4]~[7]のいずれか1つに記載のDNAを転写できる位置にプロモーターを含有している発現ベクターに、上記の[4]~[7]のいずれか1つに記載のDNAが組み込まれているDNAである。
 親株において染色体中への組込が可能なDNAであって、上記の[4]~[7]のいずれか1つに記載のDNAを有するDNAもまた、上記の[4]~[7]のいずれか1つに記載のDNAを有する組換え体DNAである。
 組換え体DNAが、親株の染色体DNAへの組込が可能なDNAである場合は、プロモーターを含有していなくてもよい。
 親株とは、遺伝子改変及び形質転換等の対象となる元株のことをいう。遺伝子導入による形質転換の対象となる元株は宿主株ともいう。
 親株は、いずれの微生物であってもよいが、好ましくは原核生物又は酵母菌株を、より好ましくはエシェリヒア属、セラチア属、バチルス属、ブレビバクテリウム属、コリネバクテリウム属、ミクロバクテリウム属、若しくはシュードモナス属等に属する原核生物、又はサッカロマイセス属、シゾサッカロマイセス属、クルイベロミセス属、トリコスポロン属、シワニオミセス属、ピチア属、若しくはキャンディダ属等に属する酵母菌株を、最も好ましくはEscherichia coli BL21 codon plus、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue(いずれもアジレント・テクノロジー社製)、Escherichia coli BL21(DE3)pLysS(メルクミリポア社製)、Escherichia coli DH5α、Escherichia coli HST08 Premium、Escherichia coli HST02、Escherichia coli HST04 dam/dcm、Escherichia coli JM109、Escherichia coli HB101、Escherichia coli CJ236、Escherichia coli BMH71-18 mutS、Escherichia coli MV1184、Escherichia coli TH2(いずれもタカラバイオ社製)、Escherichia coli W、Escherichia coli JM101、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli MG1655、Escherichia coli W1485、Escherichia coli No.49、Escherichia coli W3110、Escherichia coli NY49、Serratia ficaria、Serratia fonticola、Serratia liquefaciens、Serratia marcescens、Bacillus subtilis、Bacillus amyloliquefaciens、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharolyticum ATCC14066、Corynebacterium ammoniagenes、Corynebacterium glutamicum ATCC13032、Corynebacterium glutamicum ATCC14067、Corynebacterium glutamicum ATCC13869、Corynebacterium acetoacidophilum ATCC13870、Microbacterium ammoniaphilum ATCC15354、若しくはPseudomonas sp.D-0110等の原核生物、又はSaccharomyces cerevisiae、Schizosaccharomyces pombe、Kluyveromyces lactis、Trichosporon pullulans、Schwanniomyces alluvius、Pichia pastoris、若しくはCandida utilis等の酵母菌株を挙げることができる。
 細菌等の原核生物を親株として用いる場合は、親株において自律複製可能な組換え体DNAは、プロモーター、リボソーム結合配列、上記の[4]~[7]のいずれか1つに記載のDNA、及び転写終結配列により構成された組換え体DNAであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。
 リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節した組換え体DNAを用いることが好ましい。
 また、親株において自律複製可能な組換え体DNAにおいては、該DNAの発現には転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。
 親株にエシェリヒア属に属する微生物を用いる場合は、発現ベクターとしては、例えば、pColdI、pSTV28、pUC118(いずれもタカラバイオ社製)、pET21a、pCDF-1b、pRSF-1b(いずれもメルクミリポア社製)、pMAL-c2x(ニューイングランドバイオラブス社製)、pGEX-4T-1、pTrc99A(いずれもジーイーヘルスケアバイオサイエンス社製)、pTrcHis、pSE280(いずれもサーモフィッシャー・サイエンティフィック社製)、pGEMEX-1(プロメガ社製)、pQE-30、pQE80L(いずれもキアゲン社製)、pET-3、pBluescriptII SK(+)、pBluescriptII KS(-)(いずれもアジレント・テクノロジー社製)、pKYP10(特開昭58-110600号公報)、pKYP200[Agric.Biol.Chem.,48,669(1984)]、pLSA1[Agric.Biol.Chem.,53,277(1989)]、pGEL1[Proc.Natl.Acad.Sci.,USA,82,4306(1985)]、pTrS30[Escherichia coli JM109/pTrS30(FERM BP-5407)より調製]、pTrS32[Escherichia coli JM109/pTrS32(FERM BP-5408)より調製]、pTK31[APPLIED AND ENVIRONMENTAL MICROBIOLOGY、2007、Vol.73、No.20、p.6378-6385]、pPAC31(国際公開第98/12343号)、pUC19[Gene,33,103(1985)]、pPA1(特開昭63-233798号公報)等を挙げることができる。
 上記発現ベクターを用いる場合のプロモーターとしては、エシェリヒア属に属する微生物の細胞中で機能するものであればいかなるものでもよいが、例えば、trpプロモーターやilvプロモーター等のアミノ酸生合成に関与する遺伝子のプロモーター、lacプロモーター、Pプロモーター、Pプロモーター、PSEプロモーター等のEscherichia coliやファージ等に由来するプロモーターを用いることができる。また、trpプロモーターを2つ直列させたプロモーター、tacプロモーター、trcプロモーター、lacT7プロモーター、let Iプロモーターのように人為的に設計改変されたプロモーターも用いることもできる。
 親株にコリネバクテリウム属、ブレビバクテリウム属、又はミクロバクテリウム属に属する微生物等のコリネ型細菌を用いる場合は、発現ベクターとしては、例えば、pCG1(特開昭57-134500号公報)、pCG2(特開昭58-35197号公報)、pCG4(特開昭57-183799号公報)、pCG11(特開昭57-134500号公報)、pCG116、pCE54、pCB101(いずれも特開昭58-105999号公報)、pCE51、pCE52、pCE53[いずれもMolecular and General Genetics,196,175(1984)]等を挙げることがきる。
 上記発現ベクターを用いる場合のプロモーターとしては、コリネバクテリウム属、ブレビバクテリウム属、又はミクロバクテリウム属に属する微生物等のコリネ型細菌の細胞中で機能するものであればいかなるものでもよいが、例えば、P54-6プロモーター[Appl.Microbiol.Biotechnol.,53,674-679(2000)]を用いることができる。
 親株に酵母菌株を用いる場合には、発現ベクターとしては、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)、YCp50(ATCC37419)、pHS19、pHS15等を挙げることができる。
 上記発現ベクターを用いる場合のプロモーターとしては、酵母菌株の細胞中で機能するものであればいかなるものでもよいが、例えば、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal1プロモーター、gal10プロモーター、ヒートショックポリペプチドプロモーター、MFα1プロモーター、CUP1プロモーター等のプロモーターを挙げることができる。
 親株を該組換え体DNAで形質転換して得られる、該親株よりもエチルアミン生成活性が増強された微生物とは、1)該組換え体DNAが、親株において自律複製可能なプラスミドとして導入されることにより、又は親株の染色体中に組み込まれることにより、該DNAの転写量若しくは該DNAがコードする蛋白質の生産量が増大した微生物、又は2)上記[2]の変異蛋白質を生産することにより、エチルアミン生成活性を有する蛋白質の比活性が増強した微生物をいう。
 上記[4]~[7]のいずれか1つに記載のDNAの転写量若しくは該DNAがコードする蛋白質の生産量が増大したことを確認する方法としては、例えば、該DNAの転写量をノーザン・ブロッティングにより又は該蛋白質の生産量をウェスタン・ブロッティングにより測定し、親株のそれと比較することにより確認することができる。
 エチルアミン生成活性を有する蛋白質の比活性が増強したことを確認する方法としては、例えば、変異蛋白質をコードするDNAで親株を形質転換して得られる形質転換株から該変異蛋白質を精製し、該蛋白質、アセトアルデヒド及びアラニンを水性媒体中に存在せしめ、該水性媒体中に生成、蓄積したエチルアミンと該蛋白質量から比活性を測定し、同様に測定した、変異が導入されていないエチルアミン生成活性を有する蛋白質の比活性と比較することにより確認することができる。
(エチルアミン生成活性が増強した微生物の造成方法)
 親株を上記[4]~[7]のいずれか1つに記載のDNAを有する組換え体DNAで形質転換して得られる、該親株よりもエチルアミン生成活性が増強された微生物は、以下の方法で造成することができる。
 上記[4]のDNAのうち上記[1]の蛋白質をコードするDNA、及び上記[5]のDNAは、例えば、配列番号1、3、5、又は7で表わされる塩基配列に基づき設計することができるプローブDNAを用いた、微生物、好ましくはシュードモナス属、より好ましくはPseudomonas putida KT2440株、Pseudomonas chlororaphis及びPseudomonas fluorescens SBW株からなる群より選ばれる微生物の染色体DNAライブラリーに対するサザンハイブリダイゼーション、又は該塩基配列に基づき設計することができるプライマーDNAを用いた上記微生物の染色体DNAを鋳型としたPCR[PCR Protocols,Academic Press(1990)]により取得することができる。
 Pseudomonas putida KT2440株、Pseudomonas chlororaphis及びPseudomonas fluorescens SBW株は、独立行政法人製品評価技術基盤機構バイオテクノロジーセンター(NITE Biological Resource Center)又はアメリカン・タイプ・カルチャー・コレクション(ATCC)から入手することができる。
 上記[4]のDNAのうち上記[3]の相同蛋白質をコードするDNA、並びに上記[6]及び[7]のDNAは、例えば、各種の遺伝子配列データベースに対して配列番号1、3、5、又は7で表わされる塩基配列と95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列を検索し、又は、各種の蛋白質配列データベースに対して配列番号2、4、6、又は8で表わされるアミノ酸配列と95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有するアミノ酸配列を検索し、該検索によって得られた塩基配列又はアミノ酸配列に基づいて設計することができるプローブDNA又はプライマーDNA、及び当該DNAを有する微生物を用いて、上記のDNAを取得する方法と同様のサザンハイブリダイゼーション又はPCRを用いた方法等によって取得することができる。
 上記[4]のDNAのうち上記[2]の変異蛋白質をコードするDNAは、例えば、配列番号1、3、5、又は7で表わされる塩基配列からなるDNAを鋳型としてエラープローンPCR等に供することにより取得することができる。
 また、目的の変異(欠失、置換、挿入又は付加)が導入されるように設計した塩基配列をそれぞれの5’端に持つ1組のPCRプライマーを用いたPCR[Gene,77,51(1989)]によっても、上記の[2]のDNAを取得することができる。すなわち、まず該DNAの5’端に対応するセンスプライマーと、5’端に変異の配列と相補的な配列を有する、変異導入部位の直前(5’側)の配列に対応するアンチセンスプライマーで該DNAを鋳型にしてPCRを行い、該DNAの5’端から変異導入部位までの断片A(3’端に変異が導入されている)を増幅する。次いで、5’端に変異の配列を有する、変異導入部位の直後(3’側)の配列に対応するセンスプライマーと、該DNAの3’端に対応するアンチセンスプライマーで該DNAを鋳型にしてPCRを行い、5’端に変異が導入された該DNAの変異導入部位から3’端までの断片Bを増幅する。これらの増幅断片同士を精製後、混合して鋳型やプライマーを加えずにPCRを行うと、増幅断片Aのセンス鎖と増幅断片Bのアンチセンス鎖は変異導入部位が共通しているのでハイブリダイズし、プライマー兼鋳型としてPCRの反応が進行し、変異が導入されたDNAが増幅する。
 取得した上記の[4]~[7]のいずれか1つに記載のDNAは、そのまま、あるいは適当な制限酵素等で切断し、常法によりベクターに組み込み、得られた組換え体DNAを宿主細胞に導入した後、通常用いられる塩基配列解析方法、例えばジデオキシ法[Proc.Natl.Acad.Sci.,USA,74,5463(1977)]又は3700DNAアナライザー(アプライドバイオシステムズ社製)等の塩基配列分析装置を用いて分析することにより、該DNAの塩基配列を決定することができる。
 上記の宿主細胞としては、例えば、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue(いずれもアジレント・テクノロジーズ社製)、Escherichia coli DH5α、Escherichia coli HST08 Premium、Escherichia coli HST02、Escherichia coli HST04 dam/dcm、Escherichia coli JM109、Escherichia coli HB101、Escherichia coli CJ236、Escherichia coli BMH71-18 mutS、Escherichia coli MV1184、Escherichia coli TH2(いずれもタカラバイオ社製)、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli W1485、Escherichia coli No.49、Escherichia coli W3110、Escherichia coli NY49、Escherichia coli MP347、Escherichia coli NM522等を挙げることができる。
 上記のベクターとしては、pBluescriptII KS(+)、pPCR-Script Amp SK(+)(いずれもアジレント・テクノロジーズ社製)、pT7Blue(メルクミリポア社製)、pCRII(サーモフィッシャー・サイエンティフィック社製)、pCR-TRAP(ジーンハンター社製)、及びpDIRECT[Nucleic Acids Res.,18,6069(1990)]等を挙げることができる。
 組換え体DNAの導入方法としては、宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法[Proc.Natl.Acad.Sci.,USA,69,2110(1972)]、プロトプラスト法(特開昭63-248394号公報)、エレクトロポレーション法[Nucleic Acids Res.,16,6127(1988)]等を挙げることができる。
 塩基配列を決定した結果、取得されたDNAが部分長であった場合は、該部分長DNAをプローブに用いた染色体DNAライブラリーに対するサザンハイブリダイゼーション法等により、全長DNAを取得することができる。
 更に、決定されたDNAの塩基配列に基づいて、パーセプティブ・バイオシステムズ社製8905型DNA合成装置等を用いて化学合成することにより目的とするDNAを調製することもできる。
 ここで、該DNAの塩基配列を宿主での発現に最適なコドンとなるように塩基を置換することにより、該DNAがコードする蛋白質の発現量を向上させることもできる。本発明の製造方法に用いられる親株におけるコドン使用頻度の情報は、公共のデータベースを通じて入手することができる。
 上記のようにして調製したDNA断片を適当な発現ベクターのプロモーターの下流に挿入することにより、本発明の製造方法に用いられる微生物が有する組換え体DNAを作製することができる。
 このような組換え体DNAの例としては、実施例において後述するpTrc99A_Psyr_2273_PP_5182、pTrc99A_Psyr_2273_PP_0596、pTrc99A_Psyr_2273_JM49_01725、及びpTrc99A_Psyr_2273_PFLU_RS03325を挙げることができる。
 組換え体DNAを親株において自律複製可能なプラスミドとして導入させる方法としては、例えば、上記のカルシウムイオンを用いる方法、プロトプラスト法、エレクトロポレーション法等の方法を挙げることができる。
 組換え体DNAを親株の染色体中に組み込む方法としては、相同組換え法を挙げることができる。相同組換え法としては、例えば導入したい宿主細胞内では自律複製できない薬剤耐性遺伝子を有するプラスミドDNAと連結して作製できる相同組換え用プラスミドを用いる方法を挙げることができる。また、例えばEscherichia coliで頻用される相同組換えを利用した方法としては、ラムダファージの相同組換え系を利用して、組換え体DNAを導入する方法[Proc.Natl.Acad.Sci.USA,97,6641-6645(2000)]を挙げることができる。
 さらに、組換え体DNAと共に染色体上に組み込まれた枯草菌レバンシュークラーゼによって大腸菌がスクロース感受性となることを利用した選択法や、ストレプトマイシン耐性の変異rpsL遺伝子を有する大腸菌に野生型rpsL遺伝子を組み込むことによって大腸菌がストレプトマイシン感受性となることを利用した選択法[Mol.Microbiol.,55,137(2005),Biosci.Biotechnol.Biochem.,71,2905(2007)]等を用いて、親株の染色体DNA上の目的の領域が組換え体DNAに置換された微生物を取得することができる。
 上記の方法で造成した微生物が、親株よりもエチルアミン生成活性が増強された微生物であることは、上述の方法により、上記[4]~[7]のいずれか1つに記載のDNAの転写量又は該DNAがコードする蛋白質の生産量をノーザン・ブロッティング又はウェスタン・ブロッティングにより測定し、又は該蛋白質の比活性を測定し、親株のそれと比較することにより確認することができる。
 このような微生物の例としては、実施例において後述するW3110/pTrc99A_Psyr_2273_PP_5182株、W3110/pTrc99A_Psyr_2273_PP_0596株、W3110/pTrc99A_Psyr_2273_JM49_01725株、及びW3110/pTrc99A_Psyr_2273_PFLU_RS03325株を挙げることができる。
γ-グルタルメチルアミド合成酵素活性が増強した微生物
 本発明の微生物は、上記[1]~[3]のいずれか1つに記載の蛋白質の活性が増強しているのと同時に、γ-グルタルメチルアミド合成酵素活性が増強した微生物である。
 γ-グルタルメチルアミド合成酵素活性とは、γ-グルタルメチルアミド合成酵素が有する活性をいい、具体的には、エチルアミン、グルタミン酸及びATPを基質としてテアニンを生成する活性をいう。
 γ-グルタルメチルアミド合成酵素活性を有する蛋白質としては、該活性を有する蛋白質であればいずれのものでもよいが、例えば、特開2009-225705号公報にて開示されているMethylovorus mays TGMS No.9株が有するγ-グルタルメチルアミド合成酵素、又は以下の[8]~[10]のいずれか1つに記載の蛋白質を挙げることができる。
[8]配列番号10で表わされるアミノ酸配列からなる蛋白質
[9]配列番号10で表わされるアミノ酸配列において、1~20個、好ましくは1~10個、最も好ましくは1~5個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつ、γ-グルタルメチルアミド合成酵素活性を有する変異蛋白質
[10]配列番号10で表わされるアミノ酸配列と95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上%以上の同一性を有するアミノ酸配列からなり、かつ、γ-グルタルメチルアミド合成酵素活性を有する相同蛋白質
(γ-グルタルメチルアミド合成酵素活性が増強した微生物の具体例)
 γ-グルタルメチルアミド合成酵素活性が増強した微生物としては、例えば上記Methylovorus mays TGMS No.9株が有するγ-グルタルメチルアミド合成酵素をコードするDNA、又は以下の[11]~[14]のいずれか1つに記載のDNAを有する組換え体DNAで親株を形質転換して得られる、該親株よりもγ-グルタルメチルアミド合成酵素活性が増強された微生物を挙げることができる。
[11]上記[8]~[10]のいずれか1つに記載の蛋白質をコードするDNA
[12]配列番号9で表わされる塩基配列からなるDNA
[13]配列番号9で表わされる塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、γ-グルタルメチルアミド合成酵素活性を有する相同蛋白質をコードするDNA
[14]配列番号9で表わされる塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなり、かつ、γ-グルタルメチルアミド合成酵素活性を有する相同蛋白質をコードするDNA
 ハイブリダイゼーション及びストリンジェントな条件に関する記載は、上記と同じである。
 上記ストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えば、上記のBLAST及びFASTA等のプログラムを用いて上記のパラメータに基づいて計算したときに、配列番号9で表わされる塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列を挙げることができる。
 γ-グルタルメチルアミド合成酵素活性を有する蛋白質をコードするDNAは、例えば、配列番号9で表わされる塩基配列に基づき設計することができるプローブDNAを用いて、Pseudomonas syringae pv.Syringae B728a株のゲノムDNAを鋳型として、上記と同様のサザンハイブリダーゼーション又はPCRを用いた方法等により取得することができる。
 該DNAを有する組換え体DNAは、上記と同様の方法に従って取得することができる。
(γ-グルタルメチルアミド合成酵素活性が増強した微生物の造成方法)
 該組換え体DNAで親株を形質転換して得られる、該親株よりもγ-グルタルメチルアミド合成酵素が増強された微生物は、上記と同様の方法に従って造成することができる。
 上記の方法で造成した微生物が、親株よりもγ-グルタルメチルアミド合成酵素活性が増強された微生物であることは、γ-グルタルメチルアミド合成酵素をコードするDNAの転写量、該蛋白質の生産量又は該蛋白質の比活性を、親株のそれと比較することにより確認することができる。
 当該蛋白質をコードするDNAの転写量若しくは該DNAがコードする蛋白質の生産量が増大したことを確認する方法としては、例えば、該DNAの転写量をノーザン・ブロッティングにより又は該蛋白質の生産量をウェスタン・ブロッティングにより測定し、親株のそれと比較することにより確認することができる。
 当該蛋白質の比活性は、例えば、該蛋白質をコードするDNAで親株を形質転換して得られる形質転換株から該蛋白質を精製し、該蛋白質、エチルアミン、グルタミン酸及びATPを水性媒体中に存在せしめ、該水性媒体中に生成、蓄積したテアニンと該蛋白質量から比活性を測定することにより確認することができる。
 上記エチルアミン生成活性を有する蛋白質をコードするDNA及びγ-グルタルメチルアミド合成酵素をコードするDNAは、同一の組換え体DNA上に存在していてもよいし、別々の組換え体DNA上に存在していてもよい。
 また、本発明の微生物は、γ-グルタルメチルアミド合成酵素活性が増強しているのに加え、生成したテアニンが分解されるのを抑制する観点から、テアニンの分解活性が低下又は喪失していることが好ましい。そのような微生物としては、具体的には、γ-グルタミルトランスペプチダーゼの活性が低下又は喪失した微生物を挙げることができる。
炭素源からアセトアルデヒド、アラニン、グルタミン酸及びATPを生成する微生物
 本発明の微生物は、炭素源からアセトアルデヒド、アラニン、グルタミン酸及びATPを生成し、かつ親株よりも、上記[1]~[3]のいずれか1つに記載の蛋白質の活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物である。
 炭素源からアセトアルデヒド、アラニン、グルタミン酸及びATPを生成する微生物とは、後述2-1の方法で該微生物を培地に培養したときに、炭素源を出発物質として、アセトアルデヒド、アラニン、グルタミン酸及びATPを該微生物内に生成する微生物をいう。
 そのような微生物としては、炭素源を出発物質としてアセトアルデヒド、アラニン、グルタミン酸及びATPを生成する微生物である限りにおいて制限はない。
 例えば、任意の親株を用いて取得したエチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物を挙げることができる。また、以下の(A)~(D)のいずれか1つに記載の微生物を親株として造成した、上記のエチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物、又は上記のエチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物を親株として造成した、以下の(A)~(D)のいずれか1つに記載の微生物を挙げることができる。
(A)親株よりもアルコールデヒドロゲナーゼ(AdhE)及びアルデヒドレダクターゼ(YqhD)からなる群より選ばれる少なくとも1つ以上の蛋白質の活性が低下又は喪失した微生物
(B)親株よりもアルデヒドデヒドロゲナーゼ(EutE)の活性が増強した微生物
(C)親株よりもL-アラニンデヒドロゲナーゼ(Ald)の活性が増強した微生物
(D)上記(A)~(C)の微生物の形質を任意の組み合わせで有する微生物
 本発明の微生物は、アセトアルデヒドやアラニンの供給量を増やす観点から、上記(B)又は(C)の形質を、好ましくは(B)及び(C)の形質を有することが好ましい。
 その上で、アセトアルデヒドがエタノールに代謝されるのを抑制する観点から、上記(A)の形質を有することがさらに好ましい。
(アルコールデヒドロゲナーゼ(AdhE)及びアルデヒドレダクターゼ(YqhD)からなる群より選ばれる少なくとも1つ以上の蛋白質の活性が低下又は喪失した微生物)
 アルコールデヒドロゲナーゼとは、アルコールデヒドロゲナーゼ活性を有する蛋白質をいう。アルコールデヒドロゲナーゼ活性とは、ニコチンアミドアデニンジヌクレオチドを補酵素としてアセトアルデヒドをエタノールに還元する活性をいう。
 アルデヒドレダクダーゼとは、アルデヒドレダクダーゼ活性を有する蛋白質をいう。アルデヒドレダクダーゼ活性とは、ニコチンアミドアデニンジヌクレオチドリン酸を補酵素としてアセトアルデヒドをエタノールに還元する活性をいう。
 親株よりもアルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質の活性が低下又は喪失した微生物としては、染色体DNA上に存在する変異が入っていない野生型の該蛋白質をコードするDNAの塩基配列に、塩基の欠失、置換、挿入又は付加を導入することにより得られる、以下の(a)及び(b)の微生物を挙げることができる。
(a)親株よりも、該蛋白質の比活性が80%以下、好ましくは50%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは10%以下、最も好ましくは0%に低下した微生物
(b)親株よりも、該DNAの転写量又は該蛋白質の生産量が80%以下、好ましくは50%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは10%以下、最も好ましくは0%に低下した微生物
 より好ましくは、該DNAの一部又は全部が欠損した微生物を挙げることができる。
 アルコールデヒドロゲナーゼをコードするDNAとしては、親株が有するアルコールデヒドロゲナーゼ活性を有する蛋白質をコードするDNAであればいずれでもよいが、例えば以下の[15]~[18]のいずれか1つに記載のDNAを挙げることができる。
[15]配列番号12で表わされるアミノ酸配列からなる蛋白質をコードするDNA
[16]配列番号12で表わされるアミノ酸配列と95%以上、好ましくは97%以上、より好ましくは98%以上、最も好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつ、アルコールデヒドロゲナーゼ活性を有する相同蛋白質をコードするDNA
[17]配列番号11で表わされる塩基配列からなるDNA
[18]配列番号11で表わされる塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなり、かつ、アルコールデヒドロゲナーゼ活性を有する相同蛋白質をコードするDNA
 アルデヒドレダクターゼをコードするDNAとしては、親株が有するアルデヒドレダクターゼ活性を有する蛋白質をコードするDNAであればいずれでもよいが、例えば以下の[19]~[22]のいずれか1つに記載のDNAを挙げることができる。
[19]配列番号14で表わされるアミノ酸配列からなる蛋白質をコードするDNA
[20]配列番号14で表わされるアミノ酸配列と95%以上、好ましくは97%以上、より好ましくは98%以上、最も好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつ、アルデヒドレダクターゼ活性を有する相同蛋白質をコードするDNA
[21]配列番号13で表わされる塩基配列からなるDNA
[22]配列番号13で表わされる塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなり、かつ、アルデヒドレダクターゼ活性を有する相同蛋白質をコードするDNA
 親株よりもアルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質の活性が低下又は喪失した微生物は、例えば、上記のエチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物を親株として、該親株のアルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質の活性を、通常の突然変異処理法又は組換えDNA技術による遺伝子置換法等を用いて、低下又は喪失させることにより得ることができる。
 突然変異処理法としては、例えば、N-メチル-N’-ニトロ-N-ニトロソグアニジン(NTG)を用いる方法(微生物実験マニュアル、1986年、131頁、講談社サイエンティフィック社)、紫外線照射法等を挙げることができる。
 組換えDNA技術による遺伝子置換法は、例えば、アルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質をコードするDNAに、試験管内における変異剤を用いた変異処理を施し又はエラープローンPCRなどに供することにより変異を導入した後、親株の染色体DNA上に存在する該蛋白質をコードするDNAと相同組換え法を用いて置換する方法、又は、アルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質をコードするDNAに1以上の塩基の欠失、置換、挿入又は付加を導入した後、相同組換え法を用いて親株の染色体DNA上に存在する該蛋白質をコードするDNAと置換する方法、を挙げることができる。
 アルコールデヒドロゲナーゼ及びアルデヒドレダクターゼをコードするDNAは、例えば、それぞれ配列番号11又は13で表わされる塩基配列に基づき設計することができるプローブDNAを用いて、例えばEscherichia coli W3110株のゲノムDNAを鋳型として、上記と同様のサザンハイブリダイゼーション又はPCRを用いた方法等により取得することができる。
 アルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質をコードするDNAに1以上の塩基の欠失、置換、挿入又は付加を導入する方法、及び上記の方法で調製したDNAを相同組換え等により親株の染色体DNA上の目的の領域と置換する方法は、上記と同じである。
 親株よりもアルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質の活性が低下又は喪失した微生物であることは、例えば、親株及び該微生物をアセトアルデヒドを含む培地で培養し、培養液中と微生物細胞内のエタノールの比を比較することにより確認することができる。
 親株よりもアルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質をコードするDNAの転写量又は該蛋白質の生産量が低下又は喪失した微生物であることは、例えば、該微生物の該遺伝子の転写量をノーザン・ブロッティングにより又は該微生物の該蛋白質の生産量をウェスタン・ブロッティングにより測定し、親株のそれと比較することにより確認することができる。
 親株よりもアルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質をコードするDNAの転写量又は該蛋白質の生産量が低下又は喪失した微生物の例としては、アルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質をコードするDNAの一部又は全部が欠損した微生物を挙げることができる。具体的には、実施例において後述するW3110A株及びW3110AE株を挙げることができる。
(アルデヒドデヒドロゲナーゼ(EutE)の活性が増強した微生物)
 アルデヒドデヒドロゲナーゼとは、アルデヒドデヒドロゲナーゼ活性を有する蛋白質をいう。アルデヒドデヒドロゲナーゼ活性とは、アセチルCoAを基質としてアセトアルデヒドを生成する活性をいう。
 親株よりもアルデヒドデヒドロゲナーゼ活性が増強した微生物としては、以下の(c)及び(d)の微生物が挙げられる。
(c)親株の染色体DNA上にあるアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを改変することにより得られる、
i)親株よりも該蛋白質の比活性が増強した微生物、又は、
ii)親株よりも該DNAの転写量又は該蛋白質の生産量が増大した微生物
(d)該蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより得られる、親株よりも該DNAのコピー数が増大した微生物
 上記(c)の親株の染色体DNA上にあるアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを改変することにより得られる、i)親株よりも該蛋白質の比活性が増強した微生物としては、親株が有するアルデヒドデヒドロゲナーゼ活性を有する蛋白質のアミノ酸配列において1~20個のアミノ酸、好ましくは1~10個のアミノ酸、最も好ましくは1~5個のアミノ酸が欠失、置換、挿入又は付加しているアミノ酸配列を有する蛋白質を有しているため、親株の該蛋白質と比較して、その比活性が増強した変異型蛋白質を有する微生物を挙げることができる。
 上記(c)の親株の染色体DNA上にあるアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを改変することにより得られる、i)親株よりも該蛋白質の比活性が増強した微生物は、例えば、上記のエチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物を親株として、該親株のアルデヒドデヒドロゲナーゼ活性を有する蛋白質の比活性を、通常の突然変異処理法又は組換えDNA技術による遺伝子置換法等を用いて増強させることにより得ることができる。
 突然変異処理法は、上記の方法を挙げることができる。
 組換えDNA技術による遺伝子置換法は、上記の方法を挙げることができる。
 アルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAは、例えば、配列番号15で表わされる塩基配列に基づき設計することができるプローブDNAを用いて、例えばEscherichia coli W3110株のゲノムDNAを鋳型として、上記のサザンハイブリダイゼーション又はPCRを用いた方法等により取得することができる。
 親株よりもアルデヒドデヒドロゲナーゼ活性を有する蛋白質の比活性が増強した微生物であることは、例えば、変異蛋白質を有する微生物から該変異蛋白質を精製し、該変異蛋白質、アセチルCoA及びその他の基質を水性媒体中に存在せしめ、該水性媒体中に生成、蓄積したアセトアルデヒドと該蛋白質量から比活性を測定し、同様に測定した変異が導入されていない、親株から取得したアルデヒドデヒドロゲナーゼ活性を有する蛋白質の比活性と比較することにより確認することができる。
 上記(c)の親株の染色体DNA上にあるアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを改変することにより得られる、ii)親株よりも該DNAの転写量又は該蛋白質の生産量が増大した微生物としては、親株の染色体DNA上に存在するアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAの転写調節領域又はプロモーター領域の塩基配列において1塩基以上、好ましくは1~20塩基、より好ましくは1~10塩基、さらに好ましくは1~5塩基の塩基が欠失、置換、挿入又は付加しているプロモーター領域を有しているため、親株よりも該DNAの発現量が増大した微生物、若しくは、親株の染色体DNA上に存在する該DNAのプロモーター領域を公知の強力なプロモーター配列と置換して得られる、親株よりも該DNAの発現量が増大した微生物を挙げることができる。
 上記(c)の親株の染色体DNA上にあるアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを改変することにより得られる、ii)親株よりも該DNAの転写量又は該蛋白質の生産量が増大した微生物は、例えば、上記のエチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物を親株として、該親株のアルデヒドデヒドロゲナーゼ活性を有する蛋白質のDNAの転写量又は該蛋白質の生産量を、通常の突然変異処理法又は組換えDNA技術による遺伝子置換法等を用いて増強させることにより、得ることができる。
 突然変異処理法は、上記の方法を挙げることができる。
 組換えDNA技術による遺伝子置換法は、親株が有するアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAの転写調節領域及びプロモーター領域、例えば該蛋白質の開始コドンの上流側200bp、好ましくは100bpの塩基配列を有するDNAを試験管内における変異処理を施し又はエラープローンPCR等に供することにより該DNAに変異を導入した後、親株の染色体DNA上に存在するアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAと、上記の相同組換え法を用いて置換する方法を挙げることができる。
 また、親株のアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAのプロモーター領域を公知の強力なプロモーター配列と置換することによっても、親株よりもアルデヒドデヒドロゲナーゼ活性を有する蛋白質の生産量が向上した微生物を取得することができる。
 そのようなプロモーターとしては、上記のプロモーターを挙げることができる。
 上記方法にて取得した微生物が、親株よりもアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAの転写量又は該蛋白質の生産量が増大した微生物であることは、例えば、該微生物の該DNAの転写量をノーザン・ブロッティングにより又は該微生物の該蛋白質の生産量をウェスタン・ブロッティングにより測定し、親株のそれと比較することにより確認することができる。
 (d)アルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより得られる、親株よりも該DNAのコピー数が増大した微生物としては、アルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより、染色体DNA上において前記DNAのコピー数が増大した微生物、及びプラスミドDNAとして染色体DNA外に前記DNAを保有させた微生物を挙げることができる。
 アルデヒドデヒドロゲナーゼ活性を有する蛋白質としては、該活性を有する蛋白質であればいずれでもよいが、例えば以下の[23]~[25]のいずれか1つに記載の蛋白質を挙げることができる。
[23]配列番号16で表わされるアミノ酸配列を有する蛋白質
[24]配列番号16で表わされるアミノ酸配列において、1~20個、好ましくは1~10個、最も好ましくは1~5個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつ、アルデヒドデヒドロゲナーゼ活性を有する変異蛋白質
[25]配列番号16で表わされるアミノ酸配列と95%以上、好ましくは97%以上、より好ましくは98%以上、最も好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつ、アルデヒドデヒドロゲナーゼ活性を有する相同蛋白質
 上記において、1~20個、好ましくは1~10個、最も好ましくは1~5個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつ、アルデヒドデヒドロゲナーゼ活性を有する変異蛋白質は、上記のエラープローンPCRや部位特異的変異導入法を用いて、例えば配列番号16で表わされるアミノ酸配列を有する蛋白質をコードするDNAに変異を導入することにより取得することができる。
 配列番号16で表わされるアミノ酸配列において1~20個、好ましくは1~10個、最も好ましくは1~5個以上のアミノ酸が欠失、置換、挿入又は付加されたとは、同一配列中の任意の位置において、1個又は複数個のアミノ酸残基が欠失、置換又は付加されていてもよい。
 上記の変異蛋白質又は相同蛋白質がアルデヒドデヒドロゲナーゼ活性を有する蛋白質であることは、例えば、DNA組換え法を用いて活性を確認したい蛋白質を発現する形質転換体を作製して培地で培養し、培養物中のアセトアルデヒド量を測定することにより確認することができる。
 アルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAとしては、該活性を有する蛋白質をコードするDNAであればいずれでもよいが、例えば以下の[26]~[29]のいずれか1つに記載のDNAを挙げることができる。
[26]上記[23]~[25]のいずれか1つに記載の蛋白質をコードするDNA
[27]配列番号15で表わされる塩基配列を有するDNA
[28]配列番号15で表わされる塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ、アルデヒドデヒドロゲナーゼ活性を有する相同蛋白質をコードするDNA
[29]配列番号15で表わされる塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなり、かつ、アルデヒドデヒドロゲナーゼ活性を有する相同蛋白質をコードするDNA
 ハイブリダイゼーション及びストリンジェントな条件に関する記載は、上記と同じである。
 上記ストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えば上記のBLASTやFASTA等を用いて上記のパラメータ等に基づいて計算したときに、配列番号15で表わされる塩基配列からなるDNAと少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有するDNAを挙げることができる。
 アルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAは、例えば、配列番号15で表わされる塩基配列に基づき設計することができるプローブDNAを用いて、例えばEscherichia coli W3110株のゲノムDNAを鋳型として、上記のサザンハイブリダイゼーション又はPCRを用いた方法等により取得することができる。
 上記(d)のアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより得られる、親株よりも該蛋白質をコードする遺伝子のコピー数が増大した微生物は、以下の方法で取得することができる。
 上記の方法で得られるアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAをもとにして、必要に応じて該蛋白質をコードする部分を含む適当な長さのDNA断片を調製する。また、該蛋白質をコードする部分の塩基配列を、宿主細胞での発現に最適なコドンとなるように塩基を置換することにより、生産率が向上した形質転換体を取得することができる。
 前記DNA断片を適当な発現ベクターのプロモーターの下流に挿入することにより、親株において自律複製可能な組換え体DNAを作製する。該組換え体DNAで上記のエチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物を形質転換することにより、親株よりも該蛋白質をコードするDNAのコピー数が増大した微生物を取得することができる。
 また、調製したDNA断片を有し染色体への組込が可能な組換え体DNAで親株を形質転換し、アルデヒドデヒドロゲナーゼをコードするDNAを染色体の任意の位置に組み込むことによっても、親株よりも該蛋白質をコードするDNAのコピー数が増大した微生物を取得することができる。染色体へDNAを組み込む場合、組換え体DNAはプロモーターを含有していなくてもよい。
 原核生物を宿主細胞として用いる場合、親株において自律複製可能な組換え体DNAは、プロモーター、リボソーム結合配列、該DNA、転写終結配列より構成された組換え体DNAであることが好ましい。プロモーターを制御するDNAが含まれていてもよい。
 親株において自律複製可能な組換え体DNAを用いる場合、発現ベクター及び該発現ベクターを用いる場合のプロモーターは、上記と同様の発現ベクター及びプロモーターが挙げられる。
 親株において自律複製可能な組換え体DNAを用いる場合、リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミドを用いることが好ましい。
 親株において自律複製可能な組換え体DNAを用いる場合、転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。
 上記方法にて取得した微生物が、親株よりもアルデヒドデヒドロゲナーゼ活性を有する蛋白質をコードするDNAのコピー数が増大した微生物であることは、例えば、該微生物の該DNAの転写量をノーザン・ブロッティングにより又は該微生物の該蛋白質の生産量をウェスタン・ブロッティングにより測定し、親株のそれと比較することにより確認することができる。
 このような微生物の例としては、実施例において後述するW3110AE株を挙げることができる。
(L-アラニンデヒドロゲナーゼ(Ald)の活性が増強した微生物)
 L-アラニンデヒドロゲナーゼとは、L-アラニンデヒドロゲナーゼ活性を有する蛋白質をいう。L-アラニンデヒドロゲナーゼ活性とは、ピルビン酸を基質としてL-アラニンを生成する活性をいう。
 親株よりもL-アラニンデヒドロゲナーゼ活性が増強した微生物としては、該蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより得られる、親株よりも該DNAのコピー数が増大した微生物を挙げることができる。
 L-アラニンデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより得られる、親株よりも該DNAのコピー数が増大した微生物としては、L-アラニンデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより、染色体DNA上において前記DNAのコピー数が増大した微生物、及びプラスミドDNAとして染色体DNA外に前記DNAを保有させた微生物を挙げることができる。
 L-アラニンデヒドロゲナーゼ活性を有する蛋白質としては、該活性を有する蛋白質であればいずれでもよいが、例えば以下の[30]~[32]のいずれか1つに記載の蛋白質を挙げることができる。
[30]配列番号18で表わされるアミノ酸配列を有する蛋白質
[31]配列番号18で表わされるアミノ酸配列において、1~20個、好ましくは1~10個、最も好ましくは1~5個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつ、L-アラニンデヒドロゲナーゼ活性を有する変異蛋白質
[32]配列番号18で表わされるアミノ酸配列と95%以上、好ましくは97%以上、より好ましくは98%以上、最も好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつ、L-アラニンデヒドロゲナーゼ活性を有する相同蛋白質
 上記において、1~20個、好ましくは1~10個、最も好ましくは1~5個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつ、L-アラニンデヒドロゲナーゼ活性を有する変異蛋白質は、上記のエラープローンPCRや部位特異的変異導入法を用いて、例えば配列番号18で表わされるアミノ酸配列を有する蛋白質をコードするDNAに変異を導入することにより取得することができる。
 配列番号18で表わされるアミノ酸配列において1~20個、好ましくは1~10個、最も好ましくは1~5個以上のアミノ酸が欠失、置換、挿入又は付加されたとは、同一配列中の任意の位置において、1個又は複数個のアミノ酸残基が欠失、置換、挿入又は付加されていてもよい。
 上記の変異蛋白質又は相同蛋白質がL-アラニンデヒドロゲナーゼ活性を有する蛋白質であることは、例えば、DNA組換え法を用いて活性を確認したい蛋白質を発現する形質転換体を作製して培地で培養し、培養物中のアラニン量を測定することにより確認することができる。
 L-アラニンデヒドロゲナーゼ活性を有する蛋白質をコードするDNAとしては、該活性を有する蛋白質をコードするDNAであればいずれでもよいが、例えば以下の[33]~[36]のいずれか1つに記載のDNAを挙げることができる。
[33]上記[30]~[32]のいずれか1つに記載の蛋白質をコードするDNA
[34]配列番号17で表わされる塩基配列を有するDNA
[35]配列番号17で表わされる塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ、L-アラニンデヒドロゲナーゼ活性を有する相同蛋白質をコードするDNA
[36]配列番号17で表わされる塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなり、かつ、L-アラニンデヒドロゲナーゼ活性を有する相同蛋白質をコードするDNA
 ハイブリダイゼーション及びストリンジェントな条件に関する記載は、上記と同じである。
 上記ストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えば上記のBLASTやFASTA等を用いて上記のパラメータ等に基づいて計算したときに、配列番号17で表わされる塩基配列からなるDNAと少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有するDNAを挙げることができる。
 L-アラニンデヒドロゲナーゼ活性を有する蛋白質をコードするDNAは、例えば、配列番号17で表わされる塩基配列に基づき設計することができるプローブDNAを用いて、例えばBacillus subtilis 168株のゲノムDNAを鋳型として、上記のサザンハイブリダイゼーション又はPCRを用いた方法等により取得することができる。
 L-アラニンデヒドロゲナーゼ活性を有する蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより得られる、親株よりも該蛋白質をコードする遺伝子のコピー数が増大した微生物は、上記と同様の方法で取得することができる。
 上記の方法で取得した微生物が、親株よりもL-アラニンデヒドロゲナーゼ活性を有する蛋白質をコードするDNAのコピー数が増大した微生物であることは、例えば、該微生物の該DNAの転写量をノーザン・ブロッティングにより又は該微生物の該蛋白質の生産量をウェスタン・ブロッティングにより測定し、親株のそれと比較することにより確認することができる。
 このような微生物の例としては、実施例において後述するW3110A株及びW3110AE株を挙げることができる。
1-2.エチルアミン生成活性及びグルタミナーゼ活性が増強した微生物及び該微生物の造成方法
エチルアミン生成活性が増強した微生物
 本発明の微生物としては、上記1-1の微生物の他に、炭素源からアセトアルデヒド、アラニン及びグルタミンを生成し、かつ親株よりも、上記[1]~[3]のいずれか1つに記載の蛋白質の活性及びグルタミナーゼ活性が増強した微生物を挙げることができる。
 親株よりも上記[1]~[3]のいずれか1つに記載の蛋白質の活性が増強した微生物及び該微生物の造成方法については、上記1-1と同様である。
グルタミナーゼ活性が増強した微生物
 1-2の本発明の微生物は、上記[1]~[3]のいずれか1つに記載の蛋白質の活性が増強しているのと同時に、グルタミナーゼ活性が増強した微生物である。
 グルタミナーゼとは、グルタミナーゼ活性を有する蛋白質をいう。グルタミナーゼ活性とは、エチルアミンとグルタミンを基質としてテアニンを生成する活性をいう。
 グルタミナーゼとしては、例えばシュードモナス属に属する微生物、より具体的にはPseudomonas nitroreducens IFO 12694株(特開平11-225789号公報)が有するグルタミナーゼを挙げることができる。
 親株よりもグルタミナーゼの活性が増強した微生物の例としては、グルタミナーゼをコードするDNAを有する組換え体DNAで親株を形質転換して得られる、該親株よりもグルタミナーゼ活性が増強された微生物を挙げることができる。
 グルタミナーゼをコードするDNAは、好ましくは細菌等の原核生物又は酵母由来の、より好ましくは原核生物由来の、特に好ましくはPseudomonas nitroreducens IFO 12694株(特開平11-225789号公報)のグルタミナーゼをコードするDNAを挙げることができる。
 該グルタミナーゼをコードするDNAは、上記1-1と同様の方法に従って取得することができる。
 該DNAを有する組換え体DNAは、上記1-1と同様の方法に従って取得することができる。
 該組換え体DNAで親株を形質転換して得られる、該親株よりもグルタミナーゼ活性が増強された微生物は、上記1-1と同様の方法に従って造成することができる。
 上記の方法で造成した微生物が、親株よりもグルタミナーゼ活性が増強された微生物であることは、グルタミナーゼをコードするDNAの転写量、該蛋白質の生産量、又は該蛋白質の比活性を、親株のそれと比較することにより確認することができる。
 当該蛋白質をコードするDNAの転写量若しくは該DNAがコードする蛋白質の生産量が増大したことを確認する方法としては、例えば、該DNAの転写量をノーザン・ブロッティングにより又は該蛋白質の生産量をウェスタン・ブロッティングにより測定し、親株のそれと比較することにより確認することができる。
 グルタミナーゼの比活性は、例えば、該蛋白質をコードするDNAで親株を形質転換して得られる形質転換株から該蛋白質を精製し、該蛋白質、エチルアミン及びグルタミンを水性媒体中に存在せしめ、該水性媒体中に生成、蓄積したテアニンと該蛋白質量から比活性を測定することにより確認することができる。
 また、1-2の本発明の微生物は、グルタミナーゼ活性が増強しているのに加え、生成したテアニンが分解されるのを抑制する観点から、テアニンの分解活性が低下又は喪失していることが好ましい。そのような微生物としては、具体的には、γ-グルタミルトランスペプチダーゼの活性が低下又は喪失した微生物を挙げることができる。
炭素源からアセトアルデヒド、アラニン及びグルタミンを生成する微生物
 1-2の本発明の微生物は、炭素源からアセトアルデヒド、アラニン及びグルタミンを生成し、かつ親株よりも、上記[1]~[3]のいずれか1つに記載の蛋白質の活性及びグルタミナーゼ活性が増強した微生物である。
 炭素源からアセトアルデヒド、アラニン及びグルタミンを生成する微生物とは、後述の2-1の方法で該微生物を培地に培養したときに、炭素源を出発物質として、アセトアルデヒド、アラニン及びグルタミンを該微生物内に生成する微生物をいう。
 そのような微生物としては、炭素源を出発物質としてアセトアルデヒド、アラニン及びグルタミンを生成する微生物である限りにおいて制限はない。
 例えば、任意の親株を用いて取得したエチルアミン生成活性及びグルタミナーゼ活性が増強した微生物を挙げることができる。また、以下の(E)~(H)のいずれか1つに記載の微生物を親株として造成した、上記のエチルアミン生成活性及びグルタミナーゼ活性が増強した微生物、又は上記のエチルアミン生成活性及びグルタミナーゼ活性が増強した微生物を親株として造成した、以下の(E)~(H)のいずれか1つに記載の微生物を挙げることができる。
(E)親株よりもアルコールデヒドロゲナーゼ(AdhE)及びアルデヒドレダクターゼ(YqhD)からなる群より選ばれる少なくとも1つ以上の蛋白質の活性が低下又は喪失した微生物
(F)親株よりもアルデヒドデヒドロゲナーゼ(EutE)の活性が増強した微生物
(G)親株よりもL-アラニンデヒドロゲナーゼ(Ald)の活性が増強した微生物
(H)上記(E)~(G)の微生物が有する形質を任意の組み合わせで有する微生物
 1-2の本発明の微生物は、アセトアルデヒドやアラニンの供給量を増やす観点から、上記(F)又は(G)の形質を、好ましくは(F)及び(G)の形質を有することが好ましい。
 その上で、アセトアルデヒドがエタノールに代謝されるのを抑制する観点から、上記(E)の形質を有することがさらに好ましい。
 上記(E)の該親株よりもアルコールデヒドロゲナーゼ及びアルデヒドレダクターゼからなる群より選ばれる少なくとも1つ以上の蛋白質の活性が低下又は喪失した微生物、(F)該親株よりもアルデヒドデヒドロゲナーゼの活性が増強した微生物、(G)該親株よりもL-アラニンデヒドロゲナーゼの活性が増強した微生物、及び(H)上記(E)~(G)の微生物が有する形質を任意の組み合わせで有する微生物の造成方法については、上記1-1と同様である。
2.本発明のテアニンの製造方法
 本発明のテアニンの製造方法は、以下の2-1及び2-2に記載の方法である。
2-1.発酵法によるテアニンの製造方法
 本発明のテアニンの製造方法としては、上記1-1又は上記1-2の微生物を培地に培養し、培養物中にテアニンを生成、蓄積させ、該培養物中からテアニンを採取することを特徴とする、テアニンの製造方法を挙げることができる。
 上記1-1及び上記1-2の微生物を培養する方法は、微生物の培養に用いられる通常の方法に従って行うことができる。
 該微生物を培養する培地としては、該微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、該微生物の培養を効率的に行える培地であれば、天然培地と合成培地のいずれを用いてもよい。
 炭素源としては、該微生物が資化し得るものであればよく、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプン若しくはデンプン加水分解物等の糖、酢酸若しくはプロピオン酸等の有機酸、又は、グリセロール、エタノール若しくはプロパノール等のアルコール類等を用いることができる。
 窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸、有機酸のアンモニウム塩、その他の含窒素化合物、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕、大豆粕加水分解物、各種発酵菌体及びその消化物等を用いることができる。
 無機塩としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を用いることができる。
 培養は、通常、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、通常15~40℃であり、培養時間は、通常5時間~7日間である。培養中の培養液のpHは、通常3.0~9.0に保持する。pHの調整は、無機又は有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニア等を用いて行うことができる。
 また、培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド(IPTG)等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
 上記の培養により、培養物中にテアニンを生成、蓄積させ、該培養物中からテアニンを採取することにより、テアニンを製造することができる。
 生成したテアニンは、クロロギ酸9-フルオレニルメチル(東京化成工業社製、以下、Fmocという。)で誘導体化し、HPLCにて分析することができる。反応液中に生成したテアニンの採取は、活性炭やイオン交換樹脂などを用いる通常の方法によって行うことができる。
 該培養物中からのテアニンの採取は通常イオン交換樹脂法、沈殿法その他の公知の方法を組み合わせることにより実施できる。菌体内にテアニンが蓄積する場合には、例えば菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清からイオン交換樹脂法等によって、テアニンを採取することができる
2-2.アセトアルデヒド、アラニン、グルタミン酸及びATP、又は、アセトアルデヒド、アラニン及びグルタミンを基質として用いるテアニンの製造方法
 本発明のテアニンの製造方法としては、また、アセトアルデヒド、アラニン、グルタミン酸及びATP、又は、アセトアルデヒド、アラニン及びグルタミンを基質として用いるテアニンの製造方法を挙げることもできる。
 具体的には、アセトアルデヒド、アラニン、グルタミン酸及びATPを含有する水性媒体中に、上記[1]~[3]のいずれか1つに記載の蛋白質及びγ-グルタルメチルアミド合成酵素を共存させることにより、テアニンを該水性媒体中に生成、蓄積させ、該水性媒体中からテアニンを採取することができる。
 また、アセトアルデヒド、アラニン及びグルタミンを含有する水性媒体中に、上記[1]~[3]のいずれか1つに記載の蛋白質及びグルタミナーゼを共存させることにより、テアニンを該水性媒体中に生成、蓄積させ、該水性媒体中からテアニンを採取することもできる。
 本発明のテアニンの製造方法で用いる、上記[1]~[3]のいずれか1つに記載の蛋白質、γ-グルタルメチルアミド合成酵素、及びグルタミナーゼの水性媒体中の濃度は、それぞれ、通常0.001~500g/Lであり、好ましくは0.01~300g/Lである。
 アセトアルデヒド、アラニン、グルタミン酸、ATP、及びグルタミンの水性媒体中の濃度は、それぞれ、通常0.1mM~10Mであり、好ましくは1mM~1Mである。
 水性媒体としては、水、りん酸塩、炭酸塩、酢酸塩、ほう酸塩、クエン酸塩、トリス等の緩衝液、メタノール、エタノール等のアルコール類、酢酸エチル等のエステル類、アセトン等のケトン類、アセトアミド等のアミド類等を挙げることができる。また、後述する酵素源として用いた微生物の培養液を、水性媒体として用いることもできる。
 テアニンの生成反応においては、必要に応じてフィチン酸等のキレート剤、界面活性剤又は有機溶媒を添加してもよい。
 界面活性剤としては、ポリオキシエチレン・オクタデシルアミン(例えばナイミーンS-215、日本油脂社製)等の非イオン界面活性剤、セチルトリメチルアンモニウム・ブロマイドやアルキルジメチル・ベンジルアンモニウムクロライド(例えばカチオンF2-40E、日本油脂社製)等のカチオン系界面活性剤、ラウロイル・ザルコシネート等のアニオン系界面活性剤、アルキルジメチルアミン(例えば三級アミンFB、日本油脂社製)等の三級アミン類等、テアニンの生成を促進するものであればいずれでもよく、1種又は数種を混合して使用することもできる。界面活性剤は、通常0.1~50g/Lの濃度で用いることができる。
 有機溶剤としては、キシレン、トルエン、脂肪族アルコール、アセトン、酢酸エチル等が挙げられ、通常0.1~50ml/Lの濃度で用いることができる。
 テアニンの生成反応は、水性媒体中、通常pH5~10、好ましくはpH6~8、20~50℃の条件で1~96時間行うことができる。該生成反応を促進させるために、アデニン、アデノシン-5’-一リン酸(AMP)、ADP、ATP、硫酸マグネシウム、塩化マグネシウム等を添加することができる。アデニン、AMPは、通常0.01~100mmol/Lの濃度で用いることができる。
 上記[1]~[3]のいずれか1つに記載の蛋白質、γ-グルタルメチルアミド合成酵素、及びグルタミナーゼとしては、例えば、上記1-1の微生物又は上記1-2の微生物の培養物から精製したものを用いることができる。
 基質として用いられるアセトアルデヒド、アラニン、グルタミン酸、ATP及びグルタミンとしては、特に制限はなく、例えば、市販のアセトアルデヒド、アラニン、グルタミン酸、ATP及びグルタミンを用いることができる。
 また、上記1-1及び上記1-2の微生物のいずれか1種以上の微生物の培養物又は該培養物の処理物を酵素源として用い、該酵素源及びエネルギー供与体を水性媒体中に存在せしめ、該微生物菌体内又は該水性媒体中に生成、蓄積させて得られるアセトアルデヒド、アラニン、グルタミン酸、ATP及びグルタミンを用いてもよい。
 エネルギー供与体としては、上記2-1の炭素源を挙げることができる。
 また、アセトアルデヒド、アラニン、グルタミン酸、ATP及びグルタミンからなる群より選ばれる物質を生成、蓄積する任意の微生物の培養物又は該培養物の処理物を酵素源として用い、該酵素源及びエネルギー供与体を水性媒体中に存在せしめ、該微生物菌体内又は該水性媒体中に生成、蓄積させて得られるアセトアルデヒド、アラニン、グルタミン酸、ATP及びグルタミンを用いてもよい。
エチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性又はグルタミナーゼ活性が増強した微生物の培養物又は該培養物の処理物を用いたテアニンの製造方法
 また、酵素源として、精製した上記[1]~[3]のいずれか1つに記載の蛋白質、γ-グルタルメチルアミド合成酵素、及びグルタミナーゼにかえて、上記1-1及び上記1-2の微生物の培養物又は該培養物の処理物を用いることもできる。
 微生物を培養する方法及び微生物を培養する培地については、上記2-1と同様である。
 上記の培養により得られた微生物の培養物又は該培養物の処理物を酵素源に用い、該酵素源、アセトアルデヒド、アラニン、グルタミン酸及びATP、又は、アセトアルデヒド、アラニン及びグルタミンを水性媒体中に存在せしめ、該水性媒体中にテアニンを生成、蓄積させ、該媒体からテアニンを採取することにより、テアニンを製造することができる。
 培養物の処理物としては、上記の培養物の濃縮物、該培養物の乾燥物、該培養物を遠心分離、又は濾過等して得られる菌体、該菌体の乾燥物、該菌体の凍結乾燥物、該菌体の界面活性剤処理物、該菌体の溶媒処理物、該菌体の酵素処理物、及び該菌体の固定化物等の酵素源として該培養物と同様の機能を保持する生菌体を含んでいるもの、並びに該菌体の超音波処理物、該菌体の機械的摩砕処理物、当該処理した菌体から得られる粗酵素抽出物、及び当該処理した菌体から得られる精製酵素を、好ましくは上記の培養物の濃縮物、該培養物の乾燥物、該培養物を遠心分離、又は濾過等して得られる菌体、該菌体の乾燥物、該菌体の凍結乾燥物、該菌体の界面活性剤処理物、該菌体の溶媒処理物、該菌体の酵素処理物、及び該菌体の固定化物等の酵素源として該培養物と同様の機能を保持する生菌体を含んでいるもの、並びに該菌体の超音波処理物、該菌体の機械的摩砕処理物を、さらに好ましくは上記の培養物の濃縮物、該培養物の乾燥物、該培養物を遠心分離、又は濾過等して得られる菌体、該菌体の乾燥物、該菌体の凍結乾燥物、該菌体の界面活性剤処理物、該菌体の溶媒処理物、該菌体の酵素処理物、及び該菌体の固定化物等の酵素源として該培養物と同様の機能を保持する生菌体を含んでいるものを挙げることができる。
 生成したテアニンの分析及び採取については、上記2-1と同様である。
 本発明の好ましい実施形態として、以下のものが挙げられる。
(I)糖からアセトアルデヒド、アラニン、グルタミン酸及びATPを生成し、かつ親株よりも、以下の[1]~[3]のいずれか1つに記載の蛋白質の活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物であって、エシェリヒア属に属する微生物。
[1]配列番号2、4、6、又は8で表わされるアミノ酸配列からなる蛋白質
[2]配列番号2、4、6、又は8で表わされるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつ、アセトアルデヒドとアラニンを基質としてエチルアミンを生成する活性(以下、エチルアミン生成活性という。)を有する変異蛋白質
[3]配列番号2、4、6、又は8で表わされるアミノ酸配列と95%以上の同一性を有するアミノ酸配列からなり、かつ、エチルアミン生成活性を有する相同蛋白質
(II)上記(I)の微生物であって、親株よりもL-アラニンデヒドロゲナーゼ活性が増強し、かつ、アルデヒドレダクターゼ活性が低下又は喪失した微生物。
(III)上記(I)又は(II)の微生物であって、親株よりもアルデヒドデヒドロゲナーゼ活性が増強し、かつ、アルコールデヒドロゲナーゼ活性が低下又は喪失した微生物。
(IV)上記(I)の微生物であって、親株よりもアルデヒドデヒドロゲナーゼ活性及び/又はL-アラニンデヒドロゲナーゼ活性が増強した微生物。
(V)上記(IV)の微生物であって、親株よりもアルコールデヒドロゲナーゼ活性及び/又はアルデヒドレダクターゼ活性が低下又は喪失した微生物。
(VI)上記(I)~(V)のいずれかの微生物を培地に培養し、培養物中にテアニンを生成、蓄積させ、該培養物中からテアニンを採取することを特徴とする、テアニンの製造方法。
(VII)上記(I)~(V)のいずれかの微生物の培養物又は該培養物の処理物、アセトアルデヒド、アラニン、グルタミン酸及びATPを水性媒体中に共存せしめ、該水性媒体中にテアニンを生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
(VIII)糖からアセトアルデヒド、アラニン及びグルタミンを生成し、かつ親株よりも、上記(I)の[1]~[3]のいずれか1つに記載の蛋白質の活性及びグルタミナーゼ活性が増強した微生物であって、エシェリヒア属に属する微生物。
(IX)上記(VIII)の微生物であって、親株よりもL-アラニンデヒドロゲナーゼ活性が増強し、かつ、アルデヒドレダクターゼ活性が低下又は喪失した微生物。
(X)上記(VIII)又は(IX)の微生物であって、親株よりもアルデヒドデヒドロゲナーゼ活性が増強し、かつ、アルコールデヒドロゲナーゼ活性が低下又は喪失した微生物。
(XI)上記(VIII)の微生物であって、親株よりもアルデヒドデヒドロゲナーゼ活性及び/又はL-アラニンデヒドロゲナーゼ活性が増強した微生物。
(XII)上記(XI)の微生物であって、親株よりもアルコールデヒドロゲナーゼ活性及び/又はアルデヒドレダクターゼ活性が低下又は喪失した微生物。
(XIII)上記(VIII)~(XII)のいずれかの微生物を培地に培養し、培養物中にテアニンを生成、蓄積させ、該培養物中からテアニンを採取することを特徴とする、テアニンの製造方法。
(XIV)上記(VIII)~(XII)のいずれかの微生物の培養物又は該培養物の処理物、アセトアルデヒド、アラニン及びグルタミンを水性媒体中に共存せしめ、該水性媒体中にテアニンを生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
 以下に本発明の実施例を示すが、本発明はこれら実施例に限定されるものではない。
[実施例1]アセトアルデヒド、アラニン、グルタミン酸及びATPを基質として用いるテアニンの製造
(1)エチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物の造成
 Pseudomonas syringae pv.syringae B728a株を周知の培養方法により培養し、該微生物の染色体DNAを単離精製した。配列番号19及び20で表わされる塩基配列からなるオリゴヌクレオチドをプライマーセットとして、当該染色体DNAを鋳型としてPCRを行い、γ-グルタルメチルアミド合成酵素Psyr_2273(配列番号10で表わされるアミノ酸配列からなる蛋白質)をコードするDNA断片を増幅した。
 同様に、Pseudomonas putida KT2440株から上記と同じ方法により染色体DNAを単離精製した。配列番号21及び22で表わされる塩基配列からなるオリゴヌクレオチドをプライマーセットとして、当該染色体DNAを鋳型としてPCRを行い、エチルアミン生成活性を有する蛋白質PP_5182(配列番号2で表わされるアミノ酸配列からなる蛋白質)をコードするDNA断片を増幅した。また、配列番号23及び24で表わされる塩基配列からなるオリゴヌクレオチドをプライマーセットとして、当該染色体DNAを鋳型としてPCRを行い、エチルアミン生成活性を有する蛋白質PP_0596(配列番号4で表わされるアミノ酸配列からなる蛋白質)をコードするDNA断片を増幅した。
 同様に、Pseudomonas chlororaphisから上記と同じ方法により染色体DNAを単離精製した。配列番号25及び26で表わされる塩基配列からなるオリゴヌクレオチドをプライマーセットとして、当該染色体DNAを鋳型としてPCRを行い、エチルアミン生成活性を有する蛋白質JM49_01725(配列番号6で表わされるアミノ酸配列からなる蛋白質)をコードするDNA断片を増幅した。
 同様に、Pseudomonas fluorescens SBW25株から上記と同じ方法により染色体DNAを単離精製した。配列番号27及び28で表わされる塩基配列からなるオリゴヌクレオチドをプライマーセットとして、当該染色体DNAを鋳型としてPCRを行い、エチルアミン生成活性を有する蛋白質PFLU_RS03325(配列番号8で表わされるアミノ酸配列からなる蛋白質)をコードするDNA断片を増幅した。
 上記で得られたPsyr_2273及びPP_5182をコードするDNA断片を、In-Fusion HD Cloning Kit(タカラバイオ社製)を用いて発現ベクターpTrc99A(ジーイーヘルスケアバイオサイエンス社製)に連結することにより、発現プラスミドpTrc99A_Psyr_2273_PP_5182を得た。
 同様に、上記で得られたPsyr_2273及びPP_0596をコードするDNA断片を、In-Fusion HD Cloning Kit(タカラバイオ社製)を用いて発現ベクターpTrc99A(ジーイーヘルスケアバイオサイエンス社製)に連結することにより、発現プラスミドpTrc99A_Psyr_2273_PP_0596を得た。
 同様に、上記で得られたPsyr_2273及びJM49_01725をコードするDNA断片を、In-Fusion HD Cloning Kit(タカラバイオ社製)を用いて発現ベクターpTrc99A(ジーイーヘルスケアバイオサイエンス社製)に連結することにより、発現プラスミドpTrc99A_Psyr_2273_JM49_01725を得た。
 同様に、上記で得られたPsyr_2273及びPFLU_RS03325をコードするDNA断片を、In-Fusion HD Cloning Kit(タカラバイオ社製)を用いて発現ベクターpTrc99A(ジーイーヘルスケアバイオサイエンス社製)に連結することにより、発現プラスミドpTrc99A_Psyr_2273_ PFLU_RS03325を得た。
 取得した、pTrc99A_Psyr_2273_PP_5182、pTrc99A_Psyr_2273_PP_0596、pTrc99A_Psyr_2273_JM49_01725、pTrc99A_Psyr_2273_PFLU_RS03325、又はpTrc99AでEscherichia coli W3110株を形質転換し、それら発現プラスミドを保有する組換え大腸菌として、それぞれ、W3110/pTrc99A_Psyr_2273_PP_5182株、W3110/pTrc99A_Psyr_2273_PP_0596株、W3110/pTrc99A_Psyr_2273_JM49_01725株、W3110/pTrc99A_Psyr_2273_PFLU_RS03325株及びW3110/pTrc99A株を得た。
(2)アセトアルデヒド、アラニン、グルタミン酸及びATPを基質として用いるテアニンの製造
 実施例1(1)で得られたW3110/pTrc99A_Psyr_2273_PP_5182株、W3110/pTrc99A_Psyr_2273_PP_0596株、W3110/pTrc99A_Psyr_2273_JM49_01725株、W3110/pTrc99A_Psyr_2273_PFLU_RS03325株、及びW3110/pTrc99A株を、それぞれLBプレート上で30℃にて一晩培養し、100mg/Lのアンピシリンを含むLB培地5mLが入った太型試験管に植菌して、30℃で12時間、振盪培養した。
 その後、それぞれ試験管生産培地[グルコース30g/L、硫酸マグネシウム七水和物2g/L、カザミノ酸5g/L、硫酸アンモニウム2g/L、クエン酸1g/L、リン酸二水素カリウム14g/L、リン酸水素二カリウム16g/L、チアミン塩酸塩10mg/L、硫酸第一鉄七水和物50mg/L、硫酸マンガン五水和物10mg/L(グルコース及び硫酸マグネシウム七水和物以外については、水酸化ナトリウム水溶液によりpH7.2に調整した後オートクレーブし、グルコース及び硫酸マグネシウム七水和物については、グルコース及び硫酸マグネシウム七水和物含有水溶液を別途調製した後オートクレーブし、それぞれ冷却後、混合した)]が5mL入った太型試験管に0.05mL植菌し、30℃で5時間培養した後、終濃度1mMのIPTG、終濃度10mMのアラニン、終濃度10mMのアセトアルデヒドを添加して、さらに30℃で21時間、振盪培養した。
 培養終了後、培養液を遠心分離して菌体を除去し、上清に含まれるテアニンをFmoc(東京化成工業社製)にて誘導体化し、HPLCにて分析した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 その結果、W3110/pTrc99A株はテアニンを生産しなかったのに対し、W3110/pTrc99A_Psyr_2273_PP_5182株、W3110/pTrc99A_Psyr_2273_PP_0596株、W3110/pTrc99A_Psyr_2273_JM49_01725株、及びW3110/pTrc99A_Psyr_2273_PFLU_RS03325株はテアニンを生産した。
 以上より、エチルアミン生成活性を有する蛋白質(PP_5182、PP_0596、JM49_01725、又はPFLU_RS03325)及びγ-グルタルメチルアミド合成酵素(Psyr_2273)をコードするDNAを有する組換え体DNAでW3110株を形質転換して得られる、W3110株よりもエチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物を用いて、外部からエチルアミンを添加することなく、テアニンを製造できることがわかった。
[実施例2]発酵法によるテアニンの製造に用いる微生物の造成
(1)遺伝子欠損及び遺伝子置換の際にマーカーとして用いるDNA断片の取得
 表2の「プライマーセット」で表わされる塩基配列からなるDNAをプライマーセットとして、表2の「鋳型」に記載されたDNAを鋳型としてPCRを行い、各DNA断片を増幅した。
Figure JPOXMLDOC01-appb-T000002
 Bacillus subtilis 168株のゲノムDNAは定法により調製した。増幅DNA断片のcatは、cat遺伝子の上流約200bpから下流約100bpを含む。増幅DNA断片のsacBは、sacB遺伝子の上流約300bpから下流約100bpを含む。配列番号30及び31で表わされる塩基配列からなるDNAにはSalI認識サイトが付与されている。
 増幅DNA断片のcat及びsacBを制限酵素SalIで切断し、DNA ligation Kit Ver.2(タカラバイオ社製)を用いて連結した。該連結反応液を鋳型とし、配列番号29及び32で表わされる塩基配列からなるDNAをプライマーセットとして用いてPCRを行い、cat遺伝子及びsacB遺伝子を含むDNA(以下、cat-sacBという。)断片を得た。
(2)L-アラニンデヒドロゲナーゼ活性が増強し、アルデヒドレダクターゼ活性が喪失した微生物の造成
 アルデヒドレダクターゼをコードするDNA(以下、yqhD遺伝子という。)を、ilvGMEDAオペロンの発現を支配するプロモーター(以下、ilvプロモーターという。)を上流に付したBacillus subtilis由来のL-アラニンデヒドロゲナーゼをコードするDNA(以下、ald遺伝子という。)に置換した大腸菌を、以下の方法で造成した。
 ald遺伝子はBacillus subtilis 168株のゲノムDNAを鋳型として、その他のDNA断片はEscherichia coli W3110株のゲノムDNAを鋳型として、表3の「プライマーセット」で表わされる塩基配列からなるDNAをプライマーセットとして用いてPCRを行い、増幅した。
Figure JPOXMLDOC01-appb-T000003
 yqhD上流1及びyqhD上流2はyqhD遺伝子の開始コドンからその上流約1500bpを含む。yqhD下流1及びyqhD下流2は、yqhD遺伝子の終止コドンからその下流約1500bpを含む。
 yqhD上流1断片、yqhD下流1断片、及びcat-sacB断片を等モルの比率で混合したものを鋳型とし、配列番号35及び38で表わされる塩基配列からなるDNAをプライマーセットに用いてPCRを行い、cat-sacB断片が挿入されたyqhD遺伝子周辺領域を含むDNA(以下、yqhD::cat-sacBという。)断片を得た。
 yqhD上流2断片、yqhD下流2断片、ilvプロモーター断片、ald断片を等モルの比率で混合したものを鋳型とし、配列番号35及び38で表わされる塩基配列からなるDNAをプライマーセットに用いてPCRを行い、ilvプロモーターを上流に付したald遺伝子が挿入されたyqhD遺伝子周辺領域を含むDNA(以下、yqhD::Pilv-aldという。)断片を得た。
 yqhD::cat-sacB断片を、λリコンビナーゼをコードする遺伝子を含むプラスミドpKD46[Datsenko,K.A.,Warner,B.L.,Proc.Natl.Acad.Sci.,USA,Vol.97,6640-6645(2000)]を保持するEscherichia coli W3110株にエレクトロポレーション法により導入し、クロラムフェニコール耐性、かつスクロース感受性を示した形質転換体(yqhD遺伝子がyqhD::cat-sacBに置換された形質転換体)を得た。
 yqhD::Pilv-ald断片を当該形質転換体にエレクトロポレーション法により導入し、クロラムフェニコール感受性かつスクロース耐性を示した形質転換体(yqhD::cat-sacBがPilv-aldに置換された形質転換体)を得た。さらに、pKD46が脱落した形質転換体を得た。当該微生物をW3110A株と命名した。
(3)アルデヒドデヒドロゲナーゼ活性が増強し、アルコールデヒドロゲナーゼ活性が喪失した微生物の造成
 アルコールデヒドロゲナーゼをコードするDNA(以下、adhE遺伝子という。)を、ilvプロモーターを上流に付したアルデヒドデヒドロゲナーゼをコードする遺伝子(以下、eutE遺伝子という。)に置換した大腸菌を、以下の方法で造成した。
 常法により調製したEscherichia coli W3110株のゲノムDNAを鋳型として、表4の「プライマーセット」で表わされる塩基配列からなるDNAをプライマーセットとして用いてPCRを行い、各DNA断片を増幅した。
Figure JPOXMLDOC01-appb-T000004
 adhE上流1及びadhE上流2はadhE遺伝子の開始コドンからその上流約1000bpを含む。adhE下流1及びadhE下流2は、adhE遺伝子の終止コドンからその下流約1500bpを含む。
 adhE上流1断片、adhE下流1断片、及びcat-sacB断片を等モルの比率で混合したものを鋳型とし、配列番号43及び46で表わされる塩基配列からなるDNAをプライマーセットに用いてPCRを行い、cat-sacB断片が挿入されたadhE遺伝子周辺領域を含むDNA(以下、adhE::cat-sacBという。)断片を得た。
 adhE上流2断片、adhE下流2断片、ilvプロモーター断片、eutE断片を等モルの比率で混合したものを鋳型とし、配列番号43及び46で表わされる塩基配列からなるDNAをプライマーセットに用いてPCRを行い、ilvプロモーターを上流に付したeutE遺伝子が挿入されたadhE遺伝子周辺領域を含むDNA(以下、adhE::Pilv-eutEという。)断片を得た。
 adhE::cat-sacB断片を、λリコンビナーゼをコードする遺伝子を含むプラスミドpKD46を保持するEscherichia coli W3110A株にエレクトロポレーション法により導入し、クロラムフェニコール耐性、かつスクロース感受性を示した形質転換体(adhE遺伝子がadhE::cat-sacBに置換された形質転換体)を得た。
 adhE::Pilv-eutE断片を当該形質転換体にエレクトロポレーション法により導入し、クロラムフェニコール感受性かつスクロース耐性を示した形質転換体(adhE::cat-sacBがPilv-eutEに置換された形質転換体)を得た。さらに、pKD46が脱落した形質転換体を得た。当該微生物をW3110AE株と命名した。
[実施例3]発酵法によるグルコースからのテアニンの製造-1
 実施例2にて取得したW3110AE株を、実施例1に記載のpTrc99A_Psyr_2273_PP_5182、pTrc99A_Psyr_2273_PP_0596、pTrc99A_Psyr_2273_JM49_01725、pTrc99A_Psyr_2273_PFLU_RS03325、又はpTrc99Aで形質転換し、それぞれW3110AE/pTrc99A_Psyr_2273_PP_5182株、W3110AE/pTrc99A_Psyr_2273_PP_0596株、W3110AE/pTrc99A_Psyr_2273_JM49_01725株、W3110AE/pTrc99A_Psyr_2273_PFLU_RS03325株、及びW3110AE/pTrc99A株を得た。
 当該微生物をそれぞれLBプレート上で30℃にて一晩培養し、100mg/Lのアンピシリンを含むLB培地5mLが入った太型試験管に植菌して、30℃で12時間、振盪培養した。
 その後、それぞれ試験管生産培地[グルコース30g/L、硫酸マグネシウム七水和物2g/L、カザミノ酸5g/L、硫酸アンモニウム2g/L、クエン酸1g/L、リン酸二水素カリウム14g/L、リン酸水素二カリウム16g/L、チアミン塩酸塩10mg/L、硫酸第一鉄七水和物50mg/L、硫酸マンガン五水和物10mg/L(グルコース及び硫酸マグネシウム七水和物以外については、水酸化ナトリウム水溶液によりpH7.2に調整した後オートクレーブし、グルコース及び硫酸マグネシウム七水和物については、グルコース及び硫酸マグネシウム七水和物含有水溶液を別途調製した後オートクレーブし、それぞれ冷却後、混合した)]が5mL入った太型試験管に0.05mL植菌し、30℃で5時間培養した後、終濃度1mMのIPTGを添加し、さらに30℃で21時間、振盪培養した。
 培養終了後、培養液を遠心分離して菌体を除去し、上清に含まれるテアニンをFmoc(東京化成工業社製)にて誘導体化し、HPLCにて分析した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 その結果、W3110AE/pTrc99A株はテアニンを生産しなかったのに対し、W3110AE/pTrc99A_Psyr_2273_PP_5182株、W3110AE/pTrc99A_Psyr_2273_PP_0596株、W3110AE/pTrc99A_Psyr_2273_JM49_01725株、及びW3110AE/pTrc99A_Psyr_2273_PFLU_RS03325株はテアニンを生産した。
 以上より、エチルアミン生成活性を有する蛋白質(PP_5182、PP_0596、JM49_01725、又はPFLU_RS03325)及びγ-グルタルメチルアミド合成酵素(Psyr_2273)をコードするDNAを有する組換え体DNAでW3110AE株を形質転換して得られる、W3110AEよりもエチルアミン生成活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物を用いることにより、糖から効率的にテアニンを製造できることがわかった。
 また、このとき培地中にエチルアミンは残存しておらず、当該方法により、エチルアミンを外部から添加することなく、また、エチルアミンを副生物として培地中に蓄積することなくテアニンを製造できることがわかった。
[実施例4]アセトアルデヒド、アラニン、及びグルタミンを基質として用いるテアニンの製造
(1)エチルアミン生成活性及びグルタミナーゼ活性が増強した微生物の造成
 Pseudomonas nitroreducens IFO 12694株(特開平11-225789号公報)を周知の培養方法により培養し、該微生物の染色体DNAを単離精製する。特開平11-225789号公報のグルタミナーゼをコードするDNAの塩基配列をもとにプライマーを設計し、上記1-2に記載の方法にしたがって、当該染色体DNAを鋳型としてPCRを行い、グルタミナーゼGLNをコードするDNA断片を増幅する。
 GLN及び実施例1(1)で取得したPP_5182をコードするDNA断片を、In-Fusion HD Cloning Kit (タカラバイオ社製)を用いて発現ベクターpTrc99A(ジーイーヘルスケアバイオサイエンス社製)に連結することにより、発現プラスミドpTrc99A_GLN_PP_5182を得る。
 同様に、GLN及び実施例1(1)で取得したPP_0596をコードするDNA断片を、In-Fusion HD Cloning Kit (タカラバイオ社製)を用いて発現ベクターpTrc99A(ジーイーヘルスケアバイオサイエンス社製)に連結することにより、発現プラスミドpTrc99A_GLN_PP_0596を得る。
 同様に、GLN及び実施例1(1)で取得したJM49_01725をコードするDNA断片を、In-Fusion HD Cloning Kit (タカラバイオ社製)を用いて発現ベクターpTrc99A(ジーイーヘルスケアバイオサイエンス社製)に連結することにより、発現プラスミドpTrc99A_GLN_JM49_01725を得る。
 同様に、GLN及び実施例1(1)で取得したPFLU_RS03325をコードするDNA断片を、In-Fusion HD Cloning Kit (タカラバイオ社製)を用いて発現ベクターpTrc99A(ジーイーヘルスケアバイオサイエンス社製)に連結することにより、発現プラスミドpTrc99A_GLN_ PFLU_RS03325を得る。
 pTrc99A_GLN_PP_5182、pTrc99A_GLN_PP_0596、pTrc99A_GLN_JM49_01725、pTrc99A_GLN_PFLU_RS03325、又はpTrc99AでEscherichia coli W3110株を形質転換し、それら発現プラスミドを保有する組換え大腸菌として、それぞれ、W3110/pTrc99A_GLN_PP_5182株、W3110/pTrc99A_GLN_PP_0596株、W3110/pTrc99A_GLN_JM49_01725株、W3110/pTrc99A_GLN_PFLU_RS03325株及びW3110/pTrc99A株を得る。
(2)アセトアルデヒド、アラニン、及びグルタミンを基質として用いるテアニンの製造
 W3110/pTrc99A_GLN_PP_5182株、W3110/pTrc99A_GLN_PP_0596株、W3110/pTrc99A_GLN_JM49_01725株、W3110/pTrc99A_GLN_PFLU_RS03325株、及びW3110/pTrc99A株を、それぞれLBプレート上で30℃にて一晩培養し、100mg/Lのアンピシリンを含むLB培地5mLが入った太型試験管に植菌して、30℃で12時間、振盪培養する。
 その後、それぞれ試験管生産培地[グルコース30g/L、硫酸マグネシウム七水和物2g/L、カザミノ酸5g/L、硫酸アンモニウム2g/L、クエン酸1g/L、リン酸二水素カリウム14g/L、リン酸水素二カリウム16g/L、チアミン塩酸塩10mg/L、硫酸第一鉄七水和物50mg/L、硫酸マンガン五水和物10mg/L(グルコース及び硫酸マグネシウム七水和物以外については、水酸化ナトリウム水溶液によりpH7.2に調整した後オートクレーブし、グルコース及び硫酸マグネシウム七水和物については、グルコース及び硫酸マグネシウム七水和物含有水溶液を別途調製した後オートクレーブし、それぞれ冷却後、混合する)]が5mL入った太型試験管に0.05mL植菌し、30℃で5時間培養した後、終濃度1mMのIPTG、終濃度10mMのアラニン、終濃度10mMのアセトアルデヒドを添加して、さらに30℃で21時間、振盪培養する。
 培養終了後、培養液を遠心分離して菌体を除去し、上清に含まれるテアニンをFmoc(東京化成工業社製)にて誘導体化し、HPLCにて分析する。
 その結果、エチルアミン生成活性を有する蛋白質(PP_5182、PP_0596、JM49_01725、又はPFLU_RS03325)及びグルタミナーゼGLNをコードするDNAを有する組換え体DNAでW3110株を形質転換して得られる、W3110株よりもエチルアミン生成活性及びグルタミナーゼ活性が増強した微生物を用いて、外部からエチルアミンを添加することなく、テアニンを製造できることがわかる。
[実施例5]発酵法によるグルコースからのテアニンの製造-2
 実施例2にて取得したW3110AE株を、実施例4に記載のpTrc99A_GLN_PP_5182、pTrc99A_GLN_PP_0596、pTrc99A_GLN_JM49_01725、pTrc99A_GLN_PFLU_RS03325、又はpTrc99Aで形質転換し、それぞれW3110AE/pTrc99A_GLN_PP_5182株、W3110AE/pTrc99A_GLN_PP_0596株、W3110AE/pTrc99A_GLN_JM49_01725株、W3110AE/pTrc99A_GLN_PFLU_RS03325株、及びW3110AE/pTrc99A株を得る。
 当該微生物をそれぞれLBプレート上で30℃にて一晩培養し、100mg/Lのアンピシリンを含むLB培地5mLが入った太型試験管に植菌して、30℃で12時間、振盪培養する。
 その後、それぞれ試験管生産培地[グルコース30g/L、硫酸マグネシウム七水和物2g/L、カザミノ酸5g/L、硫酸アンモニウム2g/L、クエン酸1g/L、リン酸二水素カリウム14g/L、リン酸水素二カリウム16g/L、チアミン塩酸塩10mg/L、硫酸第一鉄七水和物50mg/L、硫酸マンガン五水和物10mg/L(グルコース及び硫酸マグネシウム七水和物以外については、水酸化ナトリウム水溶液によりpH7.2に調整した後オートクレーブし、グルコース及び硫酸マグネシウム七水和物については、グルコース及び硫酸マグネシウム七水和物含有水溶液を別途調製した後オートクレーブし、それぞれ冷却後、混合する)]が5mL入った太型試験管に0.05mL植菌し、30℃で5時間培養した後、終濃度1mMのIPTGを添加し、さらに30℃で21時間、振盪培養する。
 培養終了後、培養液を遠心分離して菌体を除去し、上清に含まれるテアニンをFmoc(東京化成工業社製)にて誘導体化し、HPLCにて分析する。
 その結果、エチルアミン生成活性を有する蛋白質(PP_5182、PP_0596、JM49_01725、又はPFLU_RS03325)及びグルタミナーゼGLNをコードするDNAを有する組換え体DNAでW3110AE株を形質転換して得られる、W3110AE株よりもエチルアミン生成活性及びグルタミナーゼ活性が増強した微生物を用いることにより、糖から効率的にテアニンを製造できることがわかる。
 また、このとき培地中にエチルアミンは残存していないことを確認することにより、当該方法により、エチルアミンを外部から添加することなく、また、エチルアミンを副生物として培地中に蓄積することなくテアニンを製造できることがわかる。
 本発明により、テアニンを生成する微生物及び該微生物を用いた、外部からエチルアミンを添加せず、副生物としてエチルアミンが蓄積、残存しない、テアニンの効率的な製造方法が提供される。
配列番号19-人工配列の説明:合成DNA
配列番号20-人工配列の説明:合成DNA
配列番号21-人工配列の説明:合成DNA
配列番号22-人工配列の説明:合成DNA
配列番号23-人工配列の説明:合成DNA
配列番号24-人工配列の説明:合成DNA
配列番号25-人工配列の説明:合成DNA
配列番号26-人工配列の説明:合成DNA
配列番号27-人工配列の説明:合成DNA
配列番号28-人工配列の説明:合成DNA
配列番号29-人工配列の説明:合成DNA
配列番号30-人工配列の説明:合成DNA
配列番号31-人工配列の説明:合成DNA
配列番号32-人工配列の説明:合成DNA
配列番号33-人工配列の説明:合成DNA
配列番号34-人工配列の説明:合成DNA
配列番号35-人工配列の説明:合成DNA
配列番号36-人工配列の説明:合成DNA
配列番号37-人工配列の説明:合成DNA
配列番号38-人工配列の説明:合成DNA
配列番号39-人工配列の説明:合成DNA
配列番号40-人工配列の説明:合成DNA
配列番号41-人工配列の説明:合成DNA
配列番号42-人工配列の説明:合成DNA
配列番号43-人工配列の説明:合成DNA
配列番号44-人工配列の説明:合成DNA
配列番号45-人工配列の説明:合成DNA
配列番号46-人工配列の説明:合成DNA
配列番号47-人工配列の説明:合成DNA
配列番号48-人工配列の説明:合成DNA
配列番号49-人工配列の説明:合成DNA
配列番号50-人工配列の説明:合成DNA

Claims (10)

  1.  炭素源からアセトアルデヒド、アラニン、グルタミン酸及びATPを生成し、かつ親株よりも、以下の[1]~[3]のいずれか1つに記載の蛋白質の活性及びγ-グルタルメチルアミド合成酵素活性が増強した微生物。
    [1]配列番号2、4、6、又は8で表わされるアミノ酸配列からなる蛋白質
    [2]配列番号2、4、6、又は8で表わされるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつ、アセトアルデヒドとアラニンを基質としてエチルアミンを生成する活性(以下、エチルアミン生成活性という。)を有する変異蛋白質
    [3]配列番号2、4、6、又は8で表わされるアミノ酸配列と95%以上の同一性を有するアミノ酸配列からなり、かつ、エチルアミン生成活性を有する相同蛋白質
  2.  炭素源からアセトアルデヒド、アラニン及びグルタミンを生成し、かつ親株よりも、請求項1の[1]~[3]のいずれか1つに記載の蛋白質の活性及びグルタミナーゼ活性が増強した微生物。
  3.  アセトアルデヒド、アラニン、グルタミン酸及びATPを含有する水性媒体中に、請求項1の[1]~[3]のいずれか1つに記載の蛋白質及びγ-グルタルメチルアミド合成酵素を共存させることにより、テアニンを該水性媒体中に生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
  4.  アセトアルデヒド、アラニン及びグルタミンを含有する水性媒体中に、請求項1の[1]~[3]のいずれか1つに記載の蛋白質及びグルタミナーゼを共存させることにより、テアニンを該水性媒体中に生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
  5.  請求項1又は2に記載の微生物を培地に培養し、培養物中にテアニンを生成、蓄積させ、該培養物中からテアニンを採取することを特徴とする、テアニンの製造方法。
  6.  請求項1に記載の微生物の培養物又は該培養物の処理物、アセトアルデヒド、アラニン、グルタミン酸及びATPを水性媒体中に共存せしめ、該水性媒体中にテアニンを生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
  7.  請求項2に記載の微生物の培養物又は該培養物の処理物、アセトアルデヒド、アラニン及びグルタミンを水性媒体中に共存せしめ、該水性媒体中にテアニンを生成、蓄積させ、該水性媒体中からテアニンを採取することを特徴とする、テアニンの製造方法。
  8.  微生物が、エシェリヒア属又はコリネバクテリウム属に属する微生物である、請求項1又は2に記載の微生物。
  9.  微生物が、エシェリヒア属又はコリネバクテリウム属に属する微生物である、請求項5~7のいずれか1項に記載のテアニンの製造方法。
  10.  炭素源が糖である、請求項1又は2に記載の微生物。
PCT/JP2018/015372 2017-04-13 2018-04-12 テアニンの製造方法 WO2018190398A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019512569A JP7035024B2 (ja) 2017-04-13 2018-04-12 テアニンの製造方法
CN201880024038.9A CN110494553B (zh) 2017-04-13 2018-04-12 茶氨酸的制造方法
US16/603,827 US11155845B2 (en) 2017-04-13 2018-04-12 Method for producing theanine
EP18784844.5A EP3611253A4 (en) 2017-04-13 2018-04-12 METHOD FOR PRODUCING THEANINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-079893 2017-04-13
JP2017079893 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018190398A1 true WO2018190398A1 (ja) 2018-10-18

Family

ID=63793311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015372 WO2018190398A1 (ja) 2017-04-13 2018-04-12 テアニンの製造方法

Country Status (5)

Country Link
US (1) US11155845B2 (ja)
EP (1) EP3611253A4 (ja)
JP (1) JP7035024B2 (ja)
CN (1) CN110494553B (ja)
WO (1) WO2018190398A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014196A1 (ja) * 2020-07-14 2022-01-20 太陽化学株式会社 テアニン生産菌の作製法
WO2024005155A1 (ja) * 2022-06-30 2024-01-04 キリンホールディングス株式会社 4-(アミノメチル)シクロヘキサン-1-カルボン酸の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004742B (zh) * 2019-12-16 2021-11-05 浙江工业大学 具有二氯甲烷降解性能的微杆菌zy及其应用
CN111808829B (zh) * 2020-07-28 2022-01-11 浙江华睿生物技术有限公司 一种γ-谷氨酰甲胺合成酶突变体及其应用
CN115786286B (zh) * 2022-11-03 2024-06-18 大连医诺生物股份有限公司 一种γ-谷酰胺甲胺合成酶突变体、其重组体及其在连续催化中耦合ATP再生系统的应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS58105999A (ja) 1981-12-17 1983-06-24 Kyowa Hakko Kogyo Co Ltd 新規ベクタ−プラスミド
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS63233798A (ja) 1986-10-09 1988-09-29 Kyowa Hakko Kogyo Co Ltd 5′−グアニル酸の製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH0568578A (ja) 1991-09-14 1993-03-23 Taiyo Kagaku Co Ltd テアニンの製造方法
JPH0889266A (ja) * 1994-09-30 1996-04-09 Ajinomoto Co Inc L−γ−グルタミルアミド化合物の製造方法
WO1998012343A1 (fr) 1996-09-17 1998-03-26 Kyowa Hakko Kogyo Co., Ltd. Procedes de production de nucleotides de sucre et de glucides complexes
JPH11225789A (ja) 1998-02-13 1999-08-24 Taiyo Kagaku Co Ltd L−テアニンの製造方法
WO2005118719A2 (en) * 2003-12-04 2005-12-15 Cargill, Incorporated Production of 3-hydroxypropionic acid using beta-alanine/pyruvate aminotransferase
WO2006001296A1 (ja) * 2004-06-28 2006-01-05 Taiyokagaku Co., Ltd. テアニンの製造法
JP2007185132A (ja) * 2006-01-12 2007-07-26 Nippon Shokubai Co Ltd α−アミノ酸−ω−アミド化合物の製造方法
JP2009225705A (ja) 2008-03-21 2009-10-08 Taiyo Kagaku Co Ltd テアニンの製造法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797842B2 (en) * 2000-05-11 2004-09-28 Central Glass Company, Limited Process for producing optically active 1-(fluoro- or trifluoromethyl-substituted phenyl) ethylamine and process for purifying same
US20040248323A1 (en) * 2003-06-09 2004-12-09 Protometrix, Inc. Methods for conducting assays for enzyme activity on protein microarrays
RU2011123911A (ru) * 2008-11-11 2012-12-20 ДАНИСКО ЮЭс ИНК. Композиции, содержащие варианты сериновых протеаз, и способы
EP2557176A1 (en) * 2011-06-15 2013-02-13 Evonik Degussa GmbH Enzymatic amination
US9227916B2 (en) * 2011-09-12 2016-01-05 Kyowa Hakko Bio Co., Ltd. Process for producing amino acid
CN108473484B (zh) * 2015-10-01 2021-06-29 弗门尼舍公司 可用作trpm8调节剂的化合物
WO2017159555A1 (ja) * 2016-03-17 2017-09-21 協和発酵バイオ株式会社 還元型グルタチオンの結晶及びその製造方法
WO2018217168A1 (en) * 2017-05-23 2018-11-29 National University Of Singapore Bioproduction of phenethyl alcohol, aldehyde, acid, amine, and related compounds
CN113151198B (zh) * 2021-02-27 2023-04-11 大连医诺生物股份有限公司 一种γ-谷酰胺甲胺合成酶的突变体,其编码基因、氨基酸序列及其应用

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS58105999A (ja) 1981-12-17 1983-06-24 Kyowa Hakko Kogyo Co Ltd 新規ベクタ−プラスミド
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS63233798A (ja) 1986-10-09 1988-09-29 Kyowa Hakko Kogyo Co Ltd 5′−グアニル酸の製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH0568578A (ja) 1991-09-14 1993-03-23 Taiyo Kagaku Co Ltd テアニンの製造方法
JPH0889266A (ja) * 1994-09-30 1996-04-09 Ajinomoto Co Inc L−γ−グルタミルアミド化合物の製造方法
WO1998012343A1 (fr) 1996-09-17 1998-03-26 Kyowa Hakko Kogyo Co., Ltd. Procedes de production de nucleotides de sucre et de glucides complexes
JPH11225789A (ja) 1998-02-13 1999-08-24 Taiyo Kagaku Co Ltd L−テアニンの製造方法
WO2005118719A2 (en) * 2003-12-04 2005-12-15 Cargill, Incorporated Production of 3-hydroxypropionic acid using beta-alanine/pyruvate aminotransferase
WO2006001296A1 (ja) * 2004-06-28 2006-01-05 Taiyokagaku Co., Ltd. テアニンの製造法
JP2007185132A (ja) * 2006-01-12 2007-07-26 Nippon Shokubai Co Ltd α−アミノ酸−ω−アミド化合物の製造方法
JP2009225705A (ja) 2008-03-21 2009-10-08 Taiyo Kagaku Co Ltd テアニンの製造法

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. AIS10430
"Immunology methods manual", 1997, ACADEMIC PRESS
"Methods for General and Molecular Bacteriology", 1994, ASM PRESS
"Microbiology Laboratory Manual (in Japanese", 1986, KODANSHA SCIENTIFIC LTD., pages: 131
"Molecular Cloning", 2012, COLD SPRING HARBOR LABORATORY PRESS
AGRIC. BIOL. CHEM., vol. 48, 1984, pages 669
AGRIC. BIOL. CHEM., vol. 53, 1989, pages 277
APPL. MICROBIOL. BIOTECHNOL., vol. 53, 2000, pages 674 - 679
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 73, no. 20, 2007, pages 6378 - 6385
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 71, 2007, pages 2905
DATABASE GenBank [o] 1 October 2014 (2014-10-01), "aminotransferase [Pseudomonas chlororaphis subsp. aurantiaca", Database accession no. AIS10430. 1 *
DATABASE GenBank [o] 27 February 2015 (2015-02-27), "omega-amino acid--pyruvate aminotransferase [Pseudomonas fluorescens SBW25", Database accession no. CAY46943. 1 *
DATABASE GenBank [o] 3 August 2016 (2016-08-03), "polyamine: pyruvate transaminase [Pseudomonas putida KT2440", Database accession no. NP_747283. 1 *
DATSENKO, K.A.WARNER, B.L., PROC. NATL. ACAD. SCI., USA, vol. 97, 2000, pages 6640 - 6645
GENE, vol. 33, 1985, pages 103
GENE, vol. 77, 1989, pages 51
J. MOL. BIOL., vol. 215, 1990, pages 403
KARLINALTSCHUL, PRO. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873
METHODS ENZYMOL., vol. 183, 1990, pages 63
MOL. MICROBIOL., vol. 55, 2005, pages 137
MOLECULAR AND GENERAL GENETICS, vol. 196, 1984, pages 175
NUCLEIC ACIDS RES., vol. 16, 1988, pages 6127
NUCLEIC ACIDS RES., vol. 18, 1990, pages 6069
PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6641 - 6645
PROC. NATL. ACAD. SCI., USA, vol. 69, 1972, pages 2110
PROC. NATL. ACAD. SCI., USA, vol. 74, 1977, pages 5463
PROC. NATL. ACAD. SCI., USA, vol. 82, 1985, pages 4306
See also references of EP3611253A4
TACHIKI, TAKASHI: "Studies on Biosynthetic Systems of Glutamine and Glutamic Acid in Bacteria and Their Application in a New Fermentation Process", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, vol. 57, no. 11, 1983, pages 1155 (63) - 1164 (72), XP009517588, DOI: 10.1271/nogeikagaku1924.57.1155 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014196A1 (ja) * 2020-07-14 2022-01-20 太陽化学株式会社 テアニン生産菌の作製法
WO2024005155A1 (ja) * 2022-06-30 2024-01-04 キリンホールディングス株式会社 4-(アミノメチル)シクロヘキサン-1-カルボン酸の製造方法

Also Published As

Publication number Publication date
EP3611253A4 (en) 2020-12-23
JP7035024B2 (ja) 2022-03-14
CN110494553B (zh) 2023-07-04
US20200131546A1 (en) 2020-04-30
JPWO2018190398A1 (ja) 2020-02-27
US11155845B2 (en) 2021-10-26
CN110494553A (zh) 2019-11-22
EP3611253A1 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP7244613B2 (ja) 希少糖の製造法
WO2018190398A1 (ja) テアニンの製造方法
EP2489741B1 (en) Method for production of glutathione or gamma-glutamylcysteine
WO2022168992A1 (ja) 1,3-フコシルトランスフェラーゼ活性を有する蛋白質及びフコース含有糖質の製造法
US8067211B2 (en) Method for production of L-glutamine
JP2013081404A (ja) 新規ジペプチド合成酵素およびそれを用いたジペプチドの製造法
JP6441806B2 (ja) N−アセチルノイラミン酸及びn−アセチルノイラミン酸含有糖質の製造法
CN116848248A (zh) 具有含有岩藻糖的糖质的转运活性的蛋白和含有岩藻糖的糖质的制造方法
JP4074251B2 (ja) 変異型6−ホスホグルコン酸デヒドロゲナーゼ
WO2023038128A1 (ja) Cdp-コリンの製造に用いる組換え微生物及び該組換え微生物を用いるcdp-コリンの製造方法
WO2024005155A1 (ja) 4-(アミノメチル)シクロヘキサン-1-カルボン酸の製造方法
WO2021261564A1 (ja) ジペプチドの製造法
JP2021191241A (ja) β−ポリリンゴ酸の製造法
JP2013081406A (ja) 新規ジペプチド合成酵素およびそれを用いたジペプチドの製造法
WO2023153461A1 (ja) ルイスx骨格を有するオリゴ糖の製造法
WO2021125245A1 (ja) 改変されたラクトースパーミアーゼを有する微生物及びラクトース含有オリゴ糖の製造法
JP2022001556A (ja) 蛋白質及び3−ヒドロキシイソ吉草酸の製造方法
WO2023210244A1 (ja) Nampt活性を有する蛋白質およびnmnの製造方法
WO2022176994A1 (ja) 改変されたα1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びフコース含有糖質の製造法
JP2021019518A (ja) ビオラセイン又はデオキシビオラセインの製造法
CN118103494A (zh) 具有生产n-乙酰神经氨酸和/或含n-乙酰神经氨酸的糖质的能力的微生物以及使用该微生物的n-乙酰神经氨酸和/或含n-乙酰神经氨酸的糖质的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512569

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018784844

Country of ref document: EP

Effective date: 20191113