WO2021125245A1 - 改変されたラクトースパーミアーゼを有する微生物及びラクトース含有オリゴ糖の製造法 - Google Patents

改変されたラクトースパーミアーゼを有する微生物及びラクトース含有オリゴ糖の製造法 Download PDF

Info

Publication number
WO2021125245A1
WO2021125245A1 PCT/JP2020/047049 JP2020047049W WO2021125245A1 WO 2021125245 A1 WO2021125245 A1 WO 2021125245A1 JP 2020047049 W JP2020047049 W JP 2020047049W WO 2021125245 A1 WO2021125245 A1 WO 2021125245A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
lactose
acid sequence
dna
seq
Prior art date
Application number
PCT/JP2020/047049
Other languages
English (en)
French (fr)
Inventor
健一郎 田畑
進介 内谷
Original Assignee
協和発酵バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵バイオ株式会社 filed Critical 協和発酵バイオ株式会社
Priority to US17/785,813 priority Critical patent/US20240279696A1/en
Priority to EP20901336.6A priority patent/EP4079862A4/en
Priority to CN202080086672.2A priority patent/CN114829579A/zh
Priority to JP2021565632A priority patent/JPWO2021125245A1/ja
Publication of WO2021125245A1 publication Critical patent/WO2021125245A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)

Definitions

  • the present invention relates to a method for producing a lactose-containing oligosaccharide, which can produce a lactose-containing oligosaccharide with high efficiency.
  • Non-Patent Document 1 Milk oligosaccharides (HMOs) contained in human breast milk have been reported to have an infection-protecting effect against pathogenic bacteria and a function as prebiotics, and due to their physiological activity, they are additives for infant formula.
  • HMOs lactose-containing oligosaccharides having a free lactose unit at the reducing end.
  • Non-Patent Document 2 a method of adding relatively inexpensive lactose as a substrate is known. Further, it is known that the uptake of lactose from the outside of microbial cells is carried out via lactose permease (Non-Patent Document 3).
  • An object of the present invention is to provide a method for producing a lactose-containing oligosaccharide by more efficient fermentation production.
  • the present invention relates to the following.
  • 1. In the amino acid sequence of the protein according to any one of [1] to [3] below, the amino acid residue corresponding to the 319th position of the amino acid sequence represented by SEQ ID NO: 2 is replaced with another amino acid residue. It is a microorganism having a protein consisting of an amino acid sequence containing the amino acid, and A microorganism that has a higher ability to produce lactose-containing oligosaccharides than its parent strain.
  • [1] Protein consisting of the amino acid sequence represented by SEQ ID NO: 2
  • [2] Amino acid sequence in which 1 to 20 amino acids are deleted, substituted, inserted and / or added in the amino acid sequence represented by SEQ ID NO: 2.
  • amino acid sequence of the protein according to any one of [1] to [3] above an amino acid containing a substitution from the amino acid residue corresponding to position 319 of the amino acid sequence represented by SEQ ID NO: 2 to L-glutamic acid.
  • the microorganism according to 1 or 2 above which has a protein consisting of a sequence. 4.
  • substitution of the amino acid residue corresponding to the 319th position of the amino acid sequence represented by SEQ ID NO: 2 with another amino acid residue is made.
  • the microorganism according to any one of 1 to 3 above which is obtained by transforming a parent strain with a recombinant DNA containing a DNA encoding a protein consisting of an amino acid sequence containing the amino acid. 5.
  • substitution of the amino acid residue corresponding to the 319th position of the amino acid sequence represented by SEQ ID NO: 2 with another amino acid residue is made.
  • the microorganism according to 4 above which is obtained by incorporating a recombinant DNA containing a DNA encoding a protein consisting of an amino acid sequence containing the amino acid into a chromosome. 6.
  • the microorganism according to any one of 1 to 5 above which is obtained by transforming a parent strain with a recombinant DNA containing a DNA having the nucleotide sequence represented by SEQ ID NO: 3. 7.
  • the microorganism according to 6 above which is obtained by incorporating a recombinant DNA containing a DNA having the nucleotide sequence represented by SEQ ID NO: 3 into a chromosome.
  • a method for producing a lactose-containing oligosaccharide which comprises culturing the microorganism according to any one of 1 to 8 in a medium to produce a lactose-containing oligosaccharide in the culture. 10. 9. The production method according to 9 above, wherein the lactose-containing oligosaccharide is 2'-fucosyl lactose.
  • a method for producing a lactose-containing oligosaccharide capable of producing a lactose-containing oligosaccharide with high efficiency.
  • microorganism of the present invention is a microorganism having the protein described in (1) or (2) below, and has a higher ability to produce lactose-containing oligosaccharides than the parent strain.
  • (1) In the amino acid sequence of the protein according to any one of the following [1] to [3], from the amino acid residue corresponding to the 319th position of the amino acid sequence represented by SEQ ID NO: 2 to another amino acid residue.
  • a protein consisting of an amino acid sequence containing a substitution of.
  • the amino acid residue corresponding to the 319th position of the amino acid sequence represented by SEQ ID NO: 2 is the source protein. Refers to an amino acid residue that is aligned at the same position as the 319th amino acid residue in the amino acid sequence of SEQ ID NO: 2 when the amino acid sequence of SEQ ID NO: 2 is aligned with the amino acid sequence of SEQ ID NO: 2.
  • amino acid residue corresponding to position 319 of the amino acid sequence represented by SEQ ID NO: 2 is replaced with another amino acid residue.
  • amino acid sequence of the protein according to (1) or (2) for which an amino acid residue is to be confirmed and the amino acid sequence of the original protein according to any one of [1] to [3]. Can be confirmed by aligning.
  • Amino acid sequence alignment can be created using, for example, the known alignment program ClustalW [Nucelic Acids Research 22,4673, (1994)].
  • ClustalW is, for example, http: // www. ebi.ac. It can be used from uk / lustalw / (European Bioinformatics Institute). For example, default values can be used as parameters when creating an alignment using ClustalW.
  • the other amino acid residues described in (1) above may be of the natural type or the non-natural type.
  • Natural amino acids include L-alanine, L-aspartin, L-aspartic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-arginine, L. -Methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valin, L-cysteine and the like can be mentioned.
  • amino acids contained in the same group can be replaced with each other.
  • Amino acids contained in the same group can be replaced with each other.
  • Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, o-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine
  • Group B aspartic acid, glutamic acid, isoaspartic acid, Isoglutamic acid, 2-aminoadiponic acid, 2-aminosveric acid
  • Group C aspartic acid, glutamic acid D group: lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid
  • Group E proline, 3 -Hydroxyproline, 4-hydroxyproline
  • F group serine, threonine, homos
  • the amino acid residue described in (1) preferably, the amino acid residue described in Group B (aspartic acid, glutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadiponic acid, 2-aminosverine) 1 selected from (acid) is preferable, and the amino acid residue is more preferably L-form.
  • the other amino acid residue described in (1) above is more preferably L-glutamic acid.
  • a mutant protein is a protein obtained by artificially deleting or substituting an amino acid residue in the original protein, or artificially inserting or adding an amino acid residue in the protein.
  • amino acids are deleted, substituted, inserted or added, and 1 to 20 amino acids may be deleted, substituted, inserted or added at arbitrary positions in the same sequence.
  • Amino acids that are deleted, substituted, inserted or added may be natural or non-natural.
  • natural amino acids include the above-mentioned natural amino acids.
  • amino acids that can be replaced with each other are as described above. Amino acids contained in the same group can be replaced with each other.
  • Homological proteins are proteins possessed by living organisms in nature, and refer to a group of proteins derived from proteins having the same evolutionary origin. Homological proteins are similar in structure and function to each other.
  • the identity of the amino acid sequence and the base sequence is determined by the algorithm BLAST [Pro. Nat. Acad. Sci. USA, 90,5873 (1993)] and FASTA [Methods Enzymol. , 183, 63 (1990)].
  • programs called BLASTN and BLASTX have been developed [J. Mol. Biol. , 215,403 (1990)].
  • the above-mentioned mutant protein or homologous protein has lactose-permase activity by the following method.
  • a recombinant DNA having a DNA encoding a mutant protein or a homologous protein whose activity is to be confirmed is prepared by the method described later.
  • the recombinant DNA is transformed with a microorganism having no lactose permease activity, for example, Escherichia coli W3110 strain lacking lactose permiase.
  • mutant protein or homologous protein has lactose-permase activity by culturing the microorganism in a medium containing lactose as a glycogen and confirming that the growth is improved as compared with the parent strain. Can be confirmed.
  • a specific protein containing a substitution from the amino acid residue corresponding to the 319th amino acid residue of the amino acid sequence represented by SEQ ID NO: 2 to another amino acid residue is a protein consisting of the amino acid sequence represented by SEQ ID NO: 32.
  • the parent strain is the original strain that is the target of genetic modification and transformation.
  • the original strain to be transformed by gene transfer is also called a host strain.
  • the parent strain of the microorganism of the present invention may be any microorganism as long as it has the ability to produce lactose-containing oligosaccharides.
  • lactose-containing oligosaccharide refers to an oligosaccharide having a lactose unit at the reducing end.
  • lactose-containing oligosaccharides include 2'-fucosyl lactose, 3-fucosyl lactose, 2', 3-difucosyl lactose, 3'-sialyl lactose, 6'-sialyl lactose, and 3'-sialyl-3-fucosyl lactose. And so on.
  • a breeding strain artificially imparted or enhanced with the ability to produce lactose-containing oligosaccharides can be preferably used.
  • Method of enhancing expression (b) Method of increasing the number of copies of at least one of genes encoding enzymes involved in the biosynthetic pathway to produce lactose-containing oligosaccharide from sugar, (c) Method of producing lactose-containing oligosaccharide from sugar A method of relaxing or canceling at least one of the mechanisms controlling the biosynthetic pathway, (d) at least one of the metabolic pathways that branch from the biosynthetic pathway that produces lactose-containing oligosaccharides from sugar to metabolites other than the target substance. Examples thereof include a method of weakening or blocking one of them, and the above-mentioned known methods can be used alone or in combination.
  • ⁇ 1,2-fucosyltransferase activity for producing 2'-fucosyllactoce using GDP-fucos and lactose as substrates is used.
  • ⁇ 1,3-fucosyl transferase that produces 3-fucosyl lactose using GDP-fucos and lactose as substrates ⁇ 2,3- that produces 3'-sialyl lactose using CMP-sialic acid and lactose as substrates
  • Known enzymes include an enzyme having sialyl transferase activity and an enzyme having ⁇ 2,6-sialyl transferase activity that produces 6'-sialyl lactose using CMP-sialic acid and lactose as substrates.
  • a method of increasing the number of copies (d) a method of relaxing or releasing at least one of the mechanisms for degrading lactose, (e) branching from a biosynthetic pathway for producing lactose from sugar to a metabolite other than the target substance. Examples thereof include a method of weakening or blocking at least one of the metabolic pathways involved, and the above-mentioned known methods can be used alone or in combination.
  • enzymes involved in the biosynthetic pathway for producing lactose from sugar include known enzymes such as an enzyme having lactose synthase activity for producing lactose using glucose and UDP-galactose as substrates.
  • Specific examples of the method for imparting or enhancing the ability to supply lactose include a method for reducing or inactivating the activity of ⁇ -galactosidase involved in the decomposition of lactose (Metabolic Engineering (2017) 41: 23-38) and the like. Known methods can be mentioned.
  • the microorganism capable of producing lactose-containing oligosaccharides may be any microorganism, but preferably a prokaryotic or yeast strain, more preferably Escherichia, Seratia, Bacillus, Brevibacterium. , Corinebacterium, Microbacterium, Pseudomonas, etc., or Escherichia, Escherichia, Escherichia, Escherichia, Escherichia, Escherichia, Escherichia, Escherichia, Escherichia, Escherichia, etc.
  • the yeast strains are most preferably Escherichia colli BL21 codon plus, Escherichia colli XL1-Blue, Escherichia colli XL2-Blue (all manufactured by Escherichia technology), Escherichia coli (manufactured by Agilent Technology), Escherichia coli (manufactured by Azilent Technology), Escherichia col.
  • the above Escherichia coli KY3591 is a patented microorganism deposit center of the National Institute of Technology and Evaluation (NITE) located in Room 122 (postal code 292-0818), 2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan. Deposited at (NPMD).
  • the date of receipt (deposit date) is November 18, the first year of Reiwa (2019 AD), and the deposit number is NITE BP-0362.
  • a microorganism imparted with or enhanced with lactose and having a higher ability to produce lactose-containing oligosaccharides than the parent strain is also a microorganism of the present invention.
  • the parent strain is transformed with a recombinant DNA having the DNA according to any one of (3) to (6) below.
  • a recombinant DNA having the DNA according to any one of (3) to (6) below examples thereof include the obtained microorganism and the microorganism obtained by incorporating the recombinant DNA into the chromosome.
  • DNA encoding the protein according to (1) or (2) above In the amino acid sequence of the protein encoded by the DNA according to any one of [4] to [6] below, from the amino acid residue corresponding to the 319th position of the amino acid sequence represented by SEQ ID NO: 2, the other DNA encoding a protein consisting of an amino acid sequence containing substitutions for amino acid residues of [4] DNA having the base sequence represented by SEQ ID NO: 1 [5] A DNA that hybridizes with a DNA having a base sequence complementary to the base sequence represented by SEQ ID NO: 1 under stringent conditions and encodes a homologous protein having lactose permease activity.
  • [6] It consists of a base sequence having at least 95% or more, preferably 97% or more, more preferably 98% or more, most preferably 99% or more identity with the base sequence represented by SEQ ID NO: 1, and lactose.
  • DNA encoding a homologous protein with permase activity (5) The DNA according to (4) above, which comprises the substitution of the amino acid residue corresponding to the 319th position of the amino acid sequence represented by SEQ ID NO: 2 with L-glutamic acid in the amino acid sequence encoded by the DNA.
  • DNA encoding a protein consisting of an amino acid sequence (6) DNA having the base sequence represented by SEQ ID NO: 3
  • hybridization is a step in which DNA hybridizes to DNA having a specific base sequence or a part of the DNA. Therefore, a DNA having a specific base sequence or a base sequence of a DNA that hybridizes to a part of the DNA is useful as a probe for Northern or Southern blot analysis, or can be used as an oligonucleotide primer for PCR analysis. It may be DNA.
  • Examples of the DNA used as the probe include DNA of at least 100 bases or more, preferably 200 bases or more, and more preferably 500 bases or more.
  • Examples of the DNA used as the primer include DNA having at least 10 bases or more, preferably 15 bases or more.
  • DNA that hybridizes under stringent conditions can be obtained.
  • commercially available hybridization kits include a random primed DNA labeling kit (manufactured by Roche Diagnostics) in which a probe is prepared by a random prime method and hybridization is performed under stringent conditions.
  • the above stringent conditions are, for example, 50% formamide, 5 ⁇ SSC (750 mM sodium chloride, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6) of a filter with DNA immobilized and probe DNA. ), Incubated overnight at 42 ° C. in a solution containing 5 ⁇ Denhardt solution, 10% dextran sulfate, and 20 ⁇ g / L denatured salmon sperm DNA, and then in a 0.2 ⁇ SSC solution at, for example, about 65 ° C. The conditions for cleaning the filter can be mentioned.
  • the various conditions described above can also be set by adding or changing the blocking reagent used to suppress the background of the hybridization experiment.
  • the addition of the blocking reagent described above may be accompanied by a change in hybridization conditions in order to match the conditions.
  • the DNA that can be hybridized under the stringent conditions described above is at least 95 with the base sequence represented by SEQ ID NO: 1 when calculated based on the above parameters using, for example, a program such as BLAST or FASTA described above. % Or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more of DNA having a base sequence identity.
  • a microorganism obtained by transforming a parent strain with a recombinant DNA having the DNA according to any one of (3) to (6) above, and a microorganism obtained by incorporating the recombinant DNA into a chromosome. Can be created by the following method.
  • the DNA according to any one of (3) to (6) above is, for example, a DNA encoding a protein consisting of the amino acid sequence represented by SEQ ID NO: 2, with SEQ ID NO: 2 located on the DNA.
  • SEQ ID NO: 2 located on the DNA.
  • the base sequence of the portion encoding the amino acid residue corresponding to the 319th amino acid residue of the represented amino acid sequence for example, Molecular Cloning 4th Edition (Cold Spring Harbor Laboratory Press (2012)) and Current Protocols in Molecular -It can be obtained by introducing a mutation by a site-specific mutagenesis method described in Biology (JOHN WILEY & SONS, INC.), Etc., and substituting an arbitrary amino acid residue with a base sequence encoding.
  • the DNA of the present invention can also be obtained by using PrimeSTAR Mutagenesis Basic Kit (manufactured by Takara Bio Inc.).
  • amino acids represented by SEQ ID NO: 2 1 to 20 amino acids are a mutant protein consisting of a deleted, substituted, inserted and / or added amino acid sequence, and lactose permease activity is exhibited.
  • amino acid sequence represented by SEQ ID NO: 2 and the amino acid sequence of the mutant protein are aligned by the above method using the DNA encoding the mutant protein, the amino acid sequence of the mutant protein is represented by SEQ ID NO: 2. It can also be obtained by introducing a mutation into the base sequence of the portion encoding the amino acid residue corresponding to the 319th amino acid sequence of the represented amino acid sequence.
  • the amino acid sequence and SEQ ID NO of the homologous protein are used.
  • the amino acid sequence represented by 2 is aligned by the above method, the base sequence of the portion encoding the amino acid residue corresponding to the 319th position of the amino acid sequence represented by SEQ ID NO: 2 in the amino acid sequence of the homologous protein. It can also be obtained by introducing a mutation into.
  • the DNA encoding the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 is, for example, a microorganism using a probe that can be designed based on the base sequence of the DNA encoding the protein consisting of the amino acid sequence represented by SEQ ID NO: 2.
  • Primer DNA that can be designed by Southern hybridization to the chromosomal DNA library of the Escherichia genus, more preferably Escherichia coli W3110 strain, or based on the DNA encoding the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 was used.
  • Escherichia coli W3110 strain can be obtained by PCR [PCR Proteins, Academic Press (1990)] using the chromosomal DNA of the strain as a template.
  • the Escherichia coli W3110 (ATCC27325) strain is available from the American Type Culture Collection (ATCC).
  • Examples of the DNA encoding the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 include the DNA consisting of the base sequence represented by SEQ ID NO: 1.
  • mutant protein consisting of the amino acid sequence in which 1 to 20 amino acids are deleted, substituted, inserted and / or added in the amino acid sequence represented by SEQ ID NO: 2 described in [2] above, and is a lactose permease.
  • the DNA encoding the mutant protein having activity can be obtained, for example, by subjecting the DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 to error prone PCR or the like as a template.
  • PCR using a set of PCR primers having a base sequence designed to introduce the desired mutation (deletion, substitution, insertion or addition) at each 5'end [Gene, 77, 51 (1989). )]
  • a mutant protein consisting of an amino acid sequence in which 1 to 20 amino acids have been deleted, substituted, inserted or added in the amino acid sequence represented by SEQ ID NO: 2 in [2] above, and which has lactose-permase activity.
  • the DNA encoding the above can be obtained.
  • the DNA can also be obtained by following the instructions attached to a commercially available partially specific mutation introduction kit.
  • a commercially available partially specific mutation introduction kit for example, PrimeSTAR (registered trademark) Mutagenesis Basal Kit (manufactured by Takara Bio Inc.) capable of introducing a mutation (deletion, substitution, insertion or addition) at a position where a desired mutation is to be introduced is available.
  • PrimeSTAR registered trademark
  • Mutagenesis Basal Kit manufactured by Takara Bio Inc.
  • a pair of mutation introduction primers with 15 bases overlapped on the 5'side is designed using a plasmid having a base sequence designed to introduce the desired mutation (deletion, substitution, insertion or addition) as a template. To do. At this time, the overlapping portion contains the desired mutation.
  • PCR is performed using a plasmid having a base sequence in which the desired mutation is to be introduced as a template. By transforming the amplified fragment thus obtained into Escherichia coli, a plasmid having a base sequence into which the desired mutation has been introduced can be obtained.
  • the DNA encoding the homologous protein having 80% or more identity with the amino acid sequence represented by SEQ ID NO: 2 and having lactose permease activity described in [3] above is, for example, various genes.
  • a base sequence having 80% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% or more identity with the base sequence represented by SEQ ID NO: 2 is searched for in the sequence database, and the search is performed.
  • the probe DNA or primer DNA that can be designed based on the nucleotide sequence or amino acid sequence obtained in the above, and the microorganism having the DNA, obtain the DNA encoding the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 above. It can be obtained by the same method as the method.
  • the identity of the base sequence and the amino acid sequence can be determined by the same method as described above.
  • the recombinant DNA having the DNA according to any one of the above (3) to (6) is, for example, a DNA in which the DNA can autonomously replicate in the parent strain, and the above (3) to (6).
  • Recombinant DNA in which the DNA described in any one or more of (3) to (6) above is incorporated into an expression vector containing a promoter at a position where the DNA described in any one can be transcribed.
  • the recombinant DNA according to any one of (3) to (6) above which is a DNA that can be incorporated into a chromosome in the parent strain, is also any one of (3) to (6) above. It is a recombinant DNA having the DNA described in 1.
  • the recombinant DNA is a recombinant DNA that can be incorporated into a chromosome, it does not have to contain a promoter.
  • the recombinant DNA capable of autonomous replication in the parent strain is a promoter, a ribosome binding sequence, or the DNA according to any one or more of (3) to (6) above.
  • a recombinant DNA composed of a transcription termination sequence is preferable. It may contain genes that control promoters.
  • the distance between the Shine-Dalgarno sequence, which is a ribosome-binding sequence, and the start codon is preferable to adjust the distance between the Shine-Dalgarno sequence, which is a ribosome-binding sequence, and the start codon to an appropriate distance, for example, 6 to 18 bases.
  • the transcription termination sequence is not always necessary for the expression of the DNA, but it is preferable to place the transcription termination sequence directly under the structural gene.
  • a microorganism belonging to the genus Escherichia is used as the parent strain, as expression vectors, for example, pColdI, pSTV28, pUC118 (all manufactured by Takara Bio), pET21a, pCDF-1b, pRSF-1b (all manufactured by Merck Millipore), pMAL-c5x (manufactured by New England Biolabs), pGEX-4T-1, pTrc99A (all manufactured by GE Healthcare Bioscience), pTrcHis, pSE280 (all manufactured by Thermo Fisher Scientific), pGEMEX-1 (Promega), pQE-30, pQE-60, pQE80L (all manufactured by Qiagen), pET-3, pBluescriptII SK (+), pBluescriptII KS (-) (all manufactured by Agilent Technologies), pKYP10 (all manufactured by Agilent Technologies) Japanese Patent Application Laid-Open No.
  • any promoter may be used as long as it functions in the cells of a microorganism belonging to the genus Escherichia, and for example, a trp promoter, a gapA promoter, a lac promoter, a PL promoter, a PR promoter, and a PSE.
  • Promoters derived from Escherichia coli, phages, etc., such as promoters, can be used.
  • artificially modified promoters such as a promoter in which two trp promoters are serialized, a tac promoter, a trc promoter, a lacT5 promoter, a lacT7 promoter, and a letI promoter can also be used.
  • the expression vectors include, for example, pCG1 (Japanese Patent Laid-Open No. 57-134500), pCG2 (Japanese Patent Application Laid-Open No. 58-35197), and pCG4 (Japanese Patent Laid-Open No. 58-35197).
  • 57-183799 Japanese Patent Laid-Open No. 57-183799
  • pCG11 Japanese Patent Application Laid-Open No. 57-134500
  • pCG116, pCE54, pCB101 all are Japanese Patent Application Laid-Open No. 58-105999
  • pCE51, pCE52, pCE53 [all Molecular and General Genetics, 196, 175 (1984)] and the like.
  • any promoter may be used as long as it functions in the cells of coryneform bacteria.
  • the P54-6 promoter [Appl. Microbiol. Biotechnol. , 53, p674-679 (2000)] can be used.
  • examples of the expression vector include YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, pHS15 and the like.
  • any promoter may be used as long as it functions in the cells of the yeast strain.
  • PHO5 promoter PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal1 promoter, gal10 promoter, heat Examples thereof include promoters such as a shock polypeptide promoter, an MF ⁇ 1 promoter, and a CUP1 promoter.
  • a microorganism obtained by transforming a parent strain with the recombinant DNA is obtained by introducing the recombinant DNA as an autonomously replicableable plasmid in the parent strain or by incorporating the recombinant DNA into the chromosome of the parent strain.
  • a microorganism from which the DNA has been transcribed to produce the protein encoded by the DNA is obtained by introducing the recombinant DNA as an autonomously replicableable plasmid in the parent strain or by incorporating the recombinant DNA into the chromosome of the parent strain.
  • the transcription amount of the DNA is Northern blotting. This can be confirmed by measuring the amount of the protein produced by Western blotting.
  • the obtained DNAs described in (3) to (6) above are cleaved as they are or with an appropriate restriction enzyme or the like, incorporated into a vector by a conventional method, and the obtained recombinant DNA is introduced into a host cell.
  • a commonly used base sequence analysis method for example, the dideoxy method [Proc. Nat. Acad. Sci. , USA, 74,5463 (1977)], or use a nucleotide sequence analyzer such as Applied Biosystems 3500 Genetic Analyzer or Applied Biosystems 3730 DNA Analyzer (both manufactured by Thermo Fisher Scientific). Can determine the base sequence of the DNA.
  • Examples of host cells that can be used in determining the base sequence of the DNA of the present invention include Escherichia coli DH5 ⁇ , Escherichia coli HST08 Premium, Escherichia coli HST02, Escherichia coli HST04d. E.
  • Examples of the above vectors include pBluescriptII KS (+), pPCR-Script Amp SK (+) (all manufactured by Agilent Technologies), pT7Blue (manufactured by Merck Millipore), pCRII (manufactured by Thermo Fisher Scientific), and pCRII (manufactured by Thermo Fisher Scientific).
  • pCR-TRAP manufactured by Gene Hunter
  • pDIRECT [Nucleic Acids Res. , 18, 6069 (1990)] and the like.
  • any method for introducing DNA into a host cell can be used.
  • a method using calcium ions [Proc. Natl. Acad. Sci. , USA, 69, 2110 (1972)], Protoplast method (Japanese Patent Laid-Open No. 63-248394), Electroporation method [Nucleic Acids Res. , 16, 6127 (1988)] and the like.
  • the full-length DNA can be obtained by a Southern hybridization method or the like for a chromosomal DNA library using the partial length DNA as a probe.
  • the target DNA can be prepared by chemically synthesizing the determined DNA base sequence using an 8905 type DNA synthesizer manufactured by Perceptive Biosystems.
  • the expression level of the protein encoded by the DNA is improved by substituting the base sequence of the DNA described in (3) to (6) above with a base so as to be an optimal codon for the expression of the parent strain. You can also. Information on codon usage in host cells is available through public databases.
  • the recombinant DNA possessed by the microorganism of the present invention can be prepared.
  • Examples of such recombinant DNA include pYHA2, which will be described later in Examples.
  • Examples of the method for introducing the recombinant DNA into the parent strain as a plasmid capable of autonomous replication include the above-mentioned method using calcium ions, protoplast method, electroporation method and the like.
  • Examples of the method for incorporating recombinant DNA into the chromosome of the parent strain include a homologous recombination method.
  • Examples of the homologous recombination method include a method using a plasmid for homologous recombination that can be prepared by linking with a plasmid DNA having a drug resistance gene that cannot autonomously replicate in the host cell to be introduced.
  • a method using homologous recombination frequently used in Escherichia coli for example, a method of introducing recombinant DNA using a homologous recombination system of lambda phage [Proc. Natl. Acad. Sci. USA, 97, 6641-6645 (2000)].
  • Selection method utilizing the fact that Escherichia coli becomes sensitive to streptomycin due to [Mol. Microbiol. , 55, 137 (2005), Biosci. Biotechnol. Biochem. , 71,295 (2007)] and the like can be used to obtain Escherichia coli in which the target region on the chromosomal DNA of the host cell is replaced with recombinant DNA.
  • microorganisms include the KFL / pYHA2 strain described later in the examples.
  • the method for producing a fucose-containing oligosaccharide of the present invention is characterized by culturing the above-mentioned microorganism 1 in a medium to produce a fucose-containing oligosaccharide in the culture. Examples thereof include a method for producing a fucose-containing oligosaccharide.
  • the method for culturing the microorganism in 1 above can be carried out according to the usual method used for culturing the microorganism.
  • a natural medium and a synthetic medium are used as long as they contain a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the microorganism and can efficiently culture the microorganism. Any of the above may be used.
  • the carbon source may be any assimilated by the microorganism, for example, glucose, fructose, sucrose, molasses containing these, sugars such as starch or starch hydrolysate, organic acids such as acetic acid or propionic acid, and the like.
  • sugars such as starch or starch hydrolysate
  • organic acids such as acetic acid or propionic acid, and the like.
  • alcohols such as glycerol, ethanol or propanol can be used.
  • nitrogen sources include ammonium salts of inorganic or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate or ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract and corn steep liquor. , Casein hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented bacterial cells and digested products thereof and the like can be used.
  • inorganic salt examples include primary potassium phosphate, secondary potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like.
  • the culture is usually preferably carried out under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is usually 15 to 40 ° C., and the culture time is usually 5 hours to 7 days.
  • the pH of the culture solution during culturing is usually maintained at 3.0 to 9.0.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.
  • antibiotics such as ampicillin and tetracycline may be added to the medium as needed during culturing.
  • an inducer may be added to the medium as needed.
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • lactose-containing oligosaccharides such as lactose and N-acetyllactosamine may be added to the medium.
  • Lactose-containing oligosaccharides can be produced by producing and accumulating lactose-containing oligosaccharides in the culture by the above culture and collecting lactose-containing oligosaccharides from the culture.
  • the produced lactose-containing oligosaccharide can be analyzed by a usual method using sugar ion chromatography or the like.
  • the lactose-containing oligosaccharide can be collected from the above-mentioned culture or the processed product of the culture by a usual method using activated carbon, an ion exchange resin or the like.
  • lactose-containing oligosaccharides accumulate in the cells, for example, lactose-containing oligosaccharides are used from the supernatant obtained by crushing the cells by ultrasonic waves and removing the cells by centrifugation using activated carbon or an ion exchange resin. Can collect sugar.
  • Example 1 Creation of microorganisms used for producing 2'-fucosyllactose (1) Acquisition of DNA fragment used as a marker in the case of gene deletion A DNA consisting of the base sequence represented by the "primer set” in Table 1 is used as a primer set. Then, PCR was performed using the DNAs listed in "Templates" in Table 1 as templates to obtain each amplified DNA fragment.
  • Genomic DNA of Bacillus subtilis 168 strain was prepared by a conventional method.
  • the cat of the amplified DNA fragment comprises from about 200 bp upstream to about 50 bp downstream of the cat gene on pHSG396.
  • the amplified DNA fragment sacB comprises from about 300 bp upstream to about 100 bp downstream of the sacB gene on the genomic DNA of the Bacillus satills strain 168.
  • PCR was performed using the amplified DNA fragments cat and sacB as templates and the DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 3 and 6 as a primer set, and DNA containing the cat gene and the sacB gene (hereinafter, cat). -SacB.) Fragments were obtained.
  • lacZ and lacY (hereinafter referred to as lacZY), and wcaJ, wzxC, wcaK, wcaL, and wcaM (hereinafter referred to as wcaJ-wzxC-wcaKLM) form operons on the E. coli genome, respectively.
  • PCR was performed using the genomic DNA of the Escherichia coli KY3591 strain prepared by a conventional method as a template and the DNA consisting of the nucleotide sequence represented by the "primer set" in Table 2 as a primer set to obtain each amplified DNA fragment.
  • LacZ upstream 1 and lacZ upstream 2 contain about 900 bp upstream from the start codon of the lacZ gene.
  • lacY downstream 1 and lacY downstream 2 contain about 800 bp downstream from the stop codon of the lacY gene.
  • PCR was performed using a mixture of lacZ upstream 1, lacY downstream 1, and cat-sacB fragments at an equimolar ratio as a template and DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 8 and 10 as a primer set.
  • a DNA hereinafter referred to as lacZY :: cat-sacB) fragment consisting of a sequence in which a cat-sacB fragment was inserted into the sequences of the lacZ and lacY gene peripheral regions was obtained.
  • PCR was performed using DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 8 and 10 as a primer set, and lacZ and lacY were not included.
  • a DNA (hereinafter referred to as ⁇ lacZY) fragment consisting of a sequence in which the upstream lacZ and the downstream lacY are directly linked was obtained.
  • LacZY cat-sacB fragment, plasmid pKD46 [Datsenko, K. et al., Containing a gene encoding a ⁇ recombinase. A. , Warner, B.I. L. , Proc. Natl. Acad. Sci. , USA, Vol. 97, 6640-6645 (2000)] was introduced into the Escherichia coli W3110 strain by the electroporation method, and a transformant showing chloramphenicol resistance and sucrose sensitivity (lacZ and lacY genes were lacZY). :: A transformant substituted with cat-sacB) was obtained.
  • the ⁇ lacZY fragment was introduced into the transformant by an electroporation method to obtain a transformant exhibiting chloramphenicol-sensitive and sucrose-resistant (transformant in which lacZY :: cat-sacB was replaced with ⁇ lacZY). .. From them, a transformant showing ampicillin sensitivity (transformant from which pKD46 was shed) was further obtained.
  • the transformant was named W3110 ⁇ lacZY.
  • PCR was performed using the genomic DNA of the Escherichia coli KY3591 strain (accession number is NITE BP-0362) as a template and the DNA consisting of the base sequences represented by the "primer set" in Table 3 as a primer set. Amplified DNA fragments were obtained.
  • WcaJ upstream 1 and wcaJ upstream 2 contain about 900 bp upstream from the start codon of the wcaJ gene.
  • wcaM downstream 1 and wcaM downstream 2 contain about 800 bp downstream from the stop codon of the wcaM gene.
  • PCR was performed using a mixture of wcaJ upstream 1, wcaM downstream 1, and cat-sacB fragments at an equimolar ratio as a template and DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 14 and 16 as a primer set.
  • a DNA fragment (hereinafter referred to as wcaJ-wzxC-wcaKLM :: cat-sacB) consisting of a sequence in which a cat-sacB fragment was inserted into the sequence of the wcaJ-wzxC-wcaKLM operon peripheral region was obtained.
  • PCR was performed using DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 14 and 16 as a primer set to obtain wcaJ-wzxC-wcaKLM.
  • a DNA hereinafter referred to as ⁇ wcaJ-wzxC-wcaKLM) fragment consisting of a sequence in which the upstream of wcaJ and the downstream of wcaM were directly linked without containing the DNA was obtained.
  • the wcaJ-wzxC-wcaKLM :: cat-sacB fragment was introduced into the W3110 ⁇ lacZY strain prepared above by an electroporation method, and a transformant (wcaJ-wzxC-) showing chloramphenicol resistance and sucrose sensitivity was exhibited.
  • a transformant in which wcaKLM was replaced with wcaJ-wzxC-wcaKLM :: cat-sacB) was obtained.
  • the ⁇ wcaJM fragment was introduced into the transformant by an electroporation method, and the transformant (wcaJ-wzxC-wcaKLM :: cat-sacB) exhibiting chloramphenicol sensitivity and sucrose resistance was replaced with ⁇ wcaJ-wzxC-wcaKLM. Transformant) was obtained. Furthermore, a transformant showing ampicillin sensitivity (transformant from which pKD46 was shed) was obtained. The transformant was named KFL strain.
  • the genomic DNA of the Escherichia coli W3110 strain was prepared by a conventional method.
  • the base sequences represented by SEQ ID NOs: 2 and 3 and SEQ ID NOs: 4 and 5 include a sequence complementary to the 5'end of each.
  • PCR was performed using the DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 27 and 28 as a primer set and the plasmid pPE167 (Appl. Environ. Microbiol. 2007, 73: 6378-6385) as a template to obtain a vector fragment of about 4.4 kb. Obtained.
  • the nucleotide sequences represented by SEQ ID NOs: 25 and 28 and SEQ ID NOs: 26 and 27 contain a complementary sequence at the 5'end of each.
  • the expression plasmid pYHA1 was obtained by ligating the lacY-HMFT-rcsA fragment obtained above and the vector fragment using In-Fusion HD Cloning Kit (manufactured by Takara Bio Inc.).
  • the KFL strain prepared in the above (2) was transformed to obtain a KFL / pYHA1 strain and a KFL / pYHA2 strain.
  • Example 2 Production of 2'-fucosyl lactoose by a fermentation method using a microorganism expressing mutant LacY
  • the KFL / pYHA1 strain and the KFL / pYHA2 strain obtained in Example 1 were brought to 30 ° C. on an LB plate.
  • the cells were cultured for 24 hours, inoculated into a large test tube containing 5 mL of LB medium containing 100 mg / L kanamycin, and cultured with shaking at 30 ° C. for 16 hours.
  • the obtained culture solution was used as a production medium containing 100 mg / L of canamycin [glucose 30 g / L, lactose monohydrate 5 g / L, magnesium sulfate heptahydrate 2 g / L, dipotassium hydrogen phosphate 16 g / L.
  • the Japanese product and the magnesium sulfate heptahydrate-containing aqueous solution were separately prepared, autoclaved, cooled and then mixed)] in 0.1 mL in a large test tube containing 5 mL, and shake-cultured at 30 ° C. for 30 hours. did.
  • the KFL / pYHA2 strain showed higher 2'-fucosyl lactose productivity than the KFL / pYHA1 strain.
  • the present invention provides a method for producing a lactose-containing oligosaccharide using a microorganism capable of producing a modified protein having lactose-permase activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、より効率的な発酵生産によるラクトース含有オリゴ糖の製造法の提供を目的とする。本発明によれば、特定のアミノ酸残基が他のアミノ酸残基に置換するよう改変されたラクトースパーミアーゼ活性を有する蛋白質を生産する能力を有する微生物を用いることにより、野生型のラクトースパーミアーゼ活性を有する蛋白質を生産する能力を有する微生物を用いた場合に比べて、より効率的に2'-フコシルラクトースなどのラクトース含有オリゴ糖を製造できる。

Description

改変されたラクトースパーミアーゼを有する微生物及びラクトース含有オリゴ糖の製造法
 本発明は、ラクトース含有オリゴ糖を高効率に生産できる、ラクトース含有オリゴ糖の製造法に関する。
 ヒト母乳に含まれているミルクオリゴ糖(HMO)は病原性細菌からの感染防御作用やプレバイオティクスとしての機能を有することが報告されており、その生理活性から幼児用調製粉乳への添加剤として注目されている(非特許文献1)。
 HMOとしてはこれまでに130種以上が知られており、そのほとんどは還元末端に遊離ラクトース単位を有するラクトース含有オリゴ糖である。
 発酵生産によるラクトース含有オリゴ糖の製造法においては、基質として比較的安価なラクトースを添加する方法が知られている(非特許文献2)。また、微生物細胞外からのラクトースの取り込みは、ラクトースパーミアーゼを介して行われることが知られている(非特許文献3)。
 一方で、変異型ラクトースパーミアーゼを有する微生物を用いたラクトース含有オリゴ糖の製造法や、ラクトースパーミアーゼの変異がラクトース含有オリゴ糖の生産性に与える影響は知られていない。他方、ラクトース含有オリゴ糖はその注目度から、より効率的な製造方法が求められている。
J Biotechnol(2016)235:61-83 Curr Opin Biotechnol(2019)56:130-137 J Biotechnol(2015)210:107-115
 上記の通り、ラクトース含有オリゴ糖については、より効率的な製造方法が求められている。本発明は、より効率的な発酵生産によるラクトース含有オリゴ糖の製造法の提供を目的とする。
 本発明は、以下に関する。
1.下記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、他のアミノ酸残基への置換を含むアミノ酸配列からなる蛋白質を有する微生物であり、かつ、
 親株よりもラクトース含有オリゴ糖を生産する能力が高い微生物。
[1]配列番号2で表されるアミノ酸配列からなる蛋白質
[2]配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入及び/又は付加されたアミノ酸配列からなる蛋白質であり、かつ、ラクトースパーミアーゼ活性を有する変異蛋白質。
[3]配列番号2で表されるアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなる蛋白質であり、かつ、ラクトースパーミアーゼ活性を有する相同蛋白質。
2.前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、L-アスパラギン酸又はL-グルタミン酸への置換を含むアミノ酸配列からなる蛋白質を有する、前記1に記載の微生物。
3.前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、L-グルタミン酸への置換を含むアミノ酸配列からなる蛋白質を有する、前記1又は2に記載の微生物。
4.前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、他のアミノ酸残基への置換を含むアミノ酸配列からなる蛋白質をコードするDNAを含む組換え体DNAで親株を形質転換することにより得られる、前記1~3のいずれか1に記載の微生物。
5.前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、他のアミノ酸残基への置換を含むアミノ酸配列からなる蛋白質をコードするDNAを含む組換え体DNAを染色体中に組み込むことにより得られる、前記4に記載の微生物。
6.配列番号3で表される塩基配列を有するDNAを含む組換え体DNAで親株を形質転換することにより得られる、前記1~5のいずれか1に記載の微生物。
7.配列番号3で表される塩基配列を有するDNAを含む組換え体DNAを染色体中に組み込むことにより得られる、前記6に記載の微生物。
8.前記親株がラクトース含有オリゴ糖を生産する能力を有する微生物である、前記1~7のいずれか1に記載の微生物。
9.前記1~8のいずれか1に記載の微生物を培地に培養し、培養物中にラクトース含有オリゴ糖を生成させることを特徴とする、ラクトース含有オリゴ糖の製造法。
10.前記ラクトース含有オリゴ糖が2’-フコシルラクトースである、前記9に記載の製造法。
 本発明によれば、ラクトース含有オリゴ糖を高効率に生産できる、ラクトース含有オリゴ糖の製造法が提供される。
1.本発明の微生物
 本発明の微生物は、以下の(1)又は(2)に記載の蛋白質を有する微生物であり、かつ、親株よりもラクトース含有オリゴ糖を生産する能力が高い微生物である。
(1)下記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、他のアミノ酸残基への置換を含むアミノ酸配列からなる蛋白質。
[1]配列番号2で表されるアミノ酸配列からなる蛋白質
[2]配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入及び/又は付加されたアミノ酸配列からなる蛋白質であり、かつ、ラクトースパーミアーゼ活性を有する変異蛋白質。
[3]配列番号2で表されるアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなる蛋白質であり、かつ、ラクトースパーミアーゼ活性を有する相同蛋白質。
(2)前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、L-グルタミン酸への置換を含むアミノ酸配列からなる、前記(1)に記載の蛋白質。
 前記[1]~[3]のいずれか1に記載の元となる蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基とは、当該元となる蛋白質のアミノ酸配列と配列番号2のアミノ酸配列とをアライメントした時に、配列番号2のアミノ酸配列における319番目のアミノ酸残基と同じ位置にアライメントされるアミノ酸残基をいう。
 前記(1)又は(2)に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基が、他のアミノ酸残基に置換されていることは、例えば、アミノ酸残基を確認しようとする前記(1)又は(2)に記載の蛋白質のアミノ酸配列と、元となる前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列とをアライメントすることにより確認できる。
 アミノ酸配列のアライメントは、例えば、公知のアライメントプログラムClustalW[Nucelic Acids Research 22,4673,(1994)]を用いて作成できる。ClustalWは、例えば、http://www.ebi.ac.uk/clustalw/(European Bioinformatics Institute)より利用できる。ClustalWを用いてアライメントを作成する際のパラメータは、例えばデフォルトの値を用いることができる。
 前記(1)に記載の他のアミノ酸残基は、天然型と非天然型とを問わない。天然型アミノ酸としては、L-アラニン、L-アスパラギン、L-アスパラギン酸、L-グルタミン、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-アルギニン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリん、L-システイン等が挙げられる。
 以下に、相互に置換可能なアミノ酸の例を示す。同一群に含まれるアミノ酸は相互に置換可能である。
A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、o-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン
B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸
C群:アスパラギン、グルタミン
D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸
E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン
F群:セリン、スレオニン、ホモセリン
G群:フェニルアラニン、チロシン
 前記(1)に記載の他のアミノ酸残基としては、好ましくは、前記B群に記載のアミノ酸残基(アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸)から選ばれる1が好ましく、該アミノ酸残基はL体であることがより好ましい。前記(1)に記載の他のアミノ酸残基としては、L-グルタミン酸であることがさらに好ましい。
 変異蛋白質とは、元となる蛋白質中のアミノ酸残基を人為的に欠失若しくは置換、又は該蛋白質中に人為的にアミノ酸残基を挿入若しくは付加して得られる蛋白質をいう。
 変異蛋白質において、アミノ酸が欠失、置換、挿入又は付加されたとは、同一配列中の任意の位置において、1~20個のアミノ酸が欠失、置換、挿入又は付加されていてもよい。
 欠失、置換、挿入又は付加されるアミノ酸は天然型と非天然型とを問わない。天然型アミノ酸の例としては、前記の天然型アミノ酸が挙げられる。
 相互に置換可能なアミノ酸の例は前述の通りである。同一群に含まれるアミノ酸は相互に置換可能である。
 相同蛋白質とは、自然界に存在する生物が有する蛋白質であって、進化上の起源が同一の蛋白質に由来する一群の蛋白質をいう。相同蛋白質は、互いに構造及び機能が類似している。アミノ酸配列や塩基配列の同一性は、Karlin and AltschulによるアルゴリズムBLAST[Pro.Nat.Acad.Sci.USA,90,5873(1993)]やFASTA[Methods Enzymol.,183,63(1990)]を用いて決定できる。このアルゴリズムBLASTに基づいて、BLASTNやBLASTXとよばれるプログラムが開発されている[J.Mol.Biol.,215,403(1990)]。BLASTに基づいてBLASTNを使用して塩基配列を解析する場合には、パラメータは、例えばScore=100、wordlength=12とする。また、BLASTに基づいてBLASTXを使用してアミノ酸配列を解析する場合には、パラメータは、例えばscore=50、wordlength=3とする。BLASTとGap ped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメータを用いる。これらの解析方法の具体的な手法は公知である。
 上記の変異蛋白質又は相同蛋白質が、ラクトースパーミアーゼ活性を有していることは、例えば以下の方法により確認できる。まず、後述の方法により、上記活性を確認しようとする変異蛋白質又は相同蛋白質をコードするDNAを有する組換え体DNAを作製する。次に、該組換え体DNAで、ラクトースパーミアーゼ活性を有さない微生物、例えばラクトースパーミアーゼが欠失したEscherichia coli W3110株を形質転換する。最後に、該微生物を、糖原としてラクトースを含有する培地で培養し、親株と比較して生育が改善していることを確認することにより、変異蛋白質又は相同蛋白質がラクトースパーミアーゼ活性を有することを確認できる。
 上記(1)又は(2)に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、他のアミノ酸残基への置換を含む蛋白質の具体例としては、配列番号32で表されるアミノ酸配列からなる蛋白質が挙げられる。
 親株とは、遺伝子改変及び形質転換等の対象となる元株のことをいう。遺伝子導入による形質転換の対象となる元株は宿主株ともいう。
 本発明の微生物における親株は、ラクトース含有オリゴ糖を生産する能力を有する微生物であれば、いずれの微生物であってもよい。
 ラクトース含有オリゴ糖とは、還元末端にラクトース単位を有するオリゴ糖をいう。ラクトース含有オリゴ糖としては、例えば、2’-フコシルラクトース、3-フコシルラクトース、2’,3-ジフコシルラクトース、3’-シアリルラクトース、6’-シアリルラクトース、3’-シアリル-3-フコシルラクトース等が挙げられる。
 ラクトース含有オリゴ糖を生産する能力を有する微生物としては、好ましくは、ラクトース含有オリゴ糖を生産する能力を人工的に付与又は強化した育種株を用いることができる。
 親株として用いる微生物に、ラクトース含有オリゴ糖を生産する能力を人工的に付与又は強化する方法としては、(a)糖からラクトース含有オリゴ糖を生成する生合成経路に関与する酵素の少なくとも1つを発現強化する方法、(b)糖からラクトース含有オリゴ糖を生成する生合成経路に関与する酵素をコードする遺伝子の少なくとも1つのコピー数を増加させる方法、(c)糖からラクトース含有オリゴ糖を生成する生合成経路を制御する機構の少なくとも1つを緩和又は解除する方法、(d)糖からラクトース含有オリゴ糖を生成する生合成経路から該目的物質以外の代謝産物へ分岐する代謝経路の少なくとも1つを弱化又は遮断する方法、などが挙げられ、上記公知の方法は単独または組み合わせて用いることができる。
 上記、糖からラクトース含有オリゴ糖を生成する生合成経路に関与する酵素の具体例としては、例えば、GDP-フコース及びラクトースを基質として2’-フコシルラクトースを生成するα1,2-フコシルトランスフェラーゼ活性を有する酵素、GDP-フコース及びラクトースを基質として3-フコシルラクトースを生成するα1,3-フコシルトランスフェラーゼ活性を有する酵素、CMP-シアル酸及びラクトースを基質として3’-シアリルラクトースを生成するα2,3-シアリルトランスフェラーゼ活性を有する酵素、及びCMP-シアル酸及びラクトースを基質として6’-シアリルラクトースを生成するα2,6-シアリルトランスフェラーゼ活性を有する酵素等、公知の酵素が挙げられる。
 上記、ラクトース含有オリゴ糖を生産する能力を付与又は強化する方法の具体例としては、例えば、各種遺伝子操作により2’-フコシルラクトース又は3-フコシルラクトースを生産する能力を強化する方法(Metabolic Engineering(2017)41:23-38)等、公知の方法が挙げられる。
 また、ラクトース含有オリゴ糖を生産する能力を有する微生物に、前駆体であるラクトースを供給する能力を人工的に付与又は強化した育種株を用いることもできる。
 親株として用いる微生物に、糖からラクトースを供給する能力を人工的に付与又は強化する方法としては、(a)糖からラクトースを生成する生合成経路を制御する機構の少なくとも1つを緩和又は解除する方法、(b)糖からラクトースを生成する生合成経路に関与する酵素の少なくとも1つを発現強化する方法、(c)糖からラクトースを生成する生合成経路に関与する酵素をコードする遺伝子の少なくとも1つのコピー数を増加させる方法、(d)ラクトースを分解する機構の少なくとも1つを緩和又は解除する方法、(e)糖からラクトースを生成する生合成経路から該目的物質以外の代謝産物へ分岐する代謝経路の少なくとも1つを弱化又は遮断する方法、などが挙げられ、上記公知の方法は単独または組み合わせて用いることができる。
 上記、糖からラクトースを生成する生合成経路に関与する酵素の具体例としては、例えば、グルコース及びUDP-ガラクトースを基質としてラクトースを生成するラクトースシンターゼ活性を有する酵素等、公知の酵素が挙げられる。
 上記、ラクトースを供給する能力を付与又は強化する方法の具体例としては、ラクトースの分解に関わるβ-ガラクトシダーゼの活性を低下又は失活させる方法(Metabolic Engineering(2017)41:23-38)等、公知の方法が挙げられる。
 ラクトース含有オリゴ糖を生産する能力を有する微生物は、いずれの微生物であってもよいが、好ましくは、原核生物又は酵母菌株を、より好ましくは、エシェリヒア属、セラチア属、バチルス属、ブレビバクテリウム属、コリネバクテリウム属、ミクロバクテリウム属、若しくはシュードモナス属等に属する原核生物、又はサッカロマイセス属、シゾサッカロマイセス属、クルイベロミセス属、トリコスポロン属、シワニオミセス属、ピチア属、若しくはキャンディダ属等に属する酵母菌株を、最も好ましくは、Escherichia coli BL21 codon plus、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue(いずれもアジレント・テクノロジー社製)、Escherichia coli BL21(DE3)pLysS(メルクミリポア社製)、Escherichia coli DH5α、Escherichia coli HST08 Premium、Escherichia coli HST02、Escherichia coli HST04 dam/dcm、Escherichia coli JM109、Escherichia coli HB101、Escherichia coliCJ236、Escherichia coli BMH71-18 mutS、Escherichia coli MV1184、Escherichia coli TH2(いずれもタカラバイオ社製)、Escherichia coli W、Escherichia coli JM101、Escherichia coli W3110、Escherichia coli W3110S(Kyow34、ナショナルバイオリソースプロジェクト)、Escherichia coli MG1655、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli W1485、Escherichia coli MP347、Escherichia coli NM522、Escherichia coli ATCC9637、Escherichia coli KY3591(寄託番号:NITE BP-03062)、Serratia ficaria、Serratia fonticola、Serratia liquefaciens、Serratia marcescens、Bacillus subtilis、Bacillus amyloliquefaciens、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharolyticum ATCC14066、Corynebacterium ammoniagenes、Corynebacterium glutamicum ATCC13032、Corynebacterium glutamicum ATCC14067、Corynebacterium glutamicum ATCC13869、Corynebacterium acetoacidophilum ATCC13870、Microbacterium ammoniaphilum ATCC15354、若しくはPseudomonas sp.D-0110等の原核生物、又はSaccharomyces cerevisiae、Schizosaccharomyces pombe、Kluyveromyces lactis、Trichosporon pullulans、Schwanniomyces alluvius、Pichia pastoris、若しくはCandida utilis等の酵母菌株が挙げられる。
 上記のEscherichia coli KY3591は、日本国千葉県木更津市かずさ鎌足2丁目5-8 122号室(郵便番号292-0818)に所在する、独立行政法人製品評価技術基盤機構(NITE)の特許微生物寄託センター(NPMD)に寄託された。受領日(寄託日)は令和元年(西暦2019年)11月18日であり、受託番号はNITE BP-03062である。
 上記宿主株を用いて作製した上記(1)又は(2)の蛋白質を有する微生物に、後からラクトース含有オリゴ糖を生産する能力を付与又は強化した微生物、及び当該微生物にさらにラクトースを供給する能力を付与又は強化した微生物であって、かつ、親株よりもラクトース含有オリゴ糖を生産する能力が高い微生物もまた、本発明の微生物である。
 上記(1)又は(2)に記載の蛋白質を有する微生物としては、例えば、以下の(3)~(6)のいずれか1に記載のDNAを有する組換え体DNAで親株を形質転換して得られる微生物、及び該組換え体DNAを染色体中に組み込むことにより得られる微生物が挙げられる。
(3)上記(1)又は(2)に記載の蛋白質をコードするDNA
(4)下記[4]~[6]のいずれか1に記載のDNAでコードされる蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、他のアミノ酸残基への置換を含むアミノ酸配列からなる蛋白質をコードするDNA
[4]配列番号1で表される塩基配列を有するDNA
[5]配列番号1で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、ラクトースパーミアーゼ活性を有する相同蛋白質をコードするDNA
[6]配列番号1で表される塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなり、かつ、ラクトースパーミアーゼ活性を有する相同蛋白質をコードするDNA
(5)上記(4)に記載のDNAであって、そのコードするアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、L-グルタミン酸への置換を含むアミノ酸配列からなる蛋白質をコードするDNA
(6)配列番号3で表される塩基配列を有するDNA
 上記において、ハイブリダイズするとは、特定の塩基配列を有するDNA又は該DNAの一部にDNAがハイブリダイズする工程である。従って、該特定の塩基配列を有するDNA又は該DNAの一部にハイブリダイズするDNAの塩基配列は、ノーザン又はサザンブロット解析のプローブとして有用であるか、又はPCR解析のオリゴヌクレオチドプライマーとして使用できる長さのDNAであってもよい。
 プローブとして用いるDNAとしては、例えば、少なくとも100塩基以上、好ましくは200塩基以上、より好ましくは500塩基以上のDNAが挙げられる。また、プライマーとして用いられるDNAとしては、例えば、少なくとも10塩基以上、好ましくは15塩基以上のDNAが挙げられる。
 DNAのハイブリダイゼーション実験の方法はよく知られており、例えばモレキュラー・クローニング第4版(Cold Spring Harbor Laboratory Press(2012))、Methods for General and Molecular Bacteriology(ASM Press(1994))、Immunology methods manual(Academic press(1997))の他、多数の他の標準的な教科書に従ってハイブリダイゼーションの条件を決定し、実験を行うことができる。
 また、市販のハイブリダイゼーションキットに付属した説明書に従うことによっても、ストリンジェントな条件下でハイブリダイズするDNAを取得できる。市販のハイブリダイゼーションキットとしては、例えばランダムプライム法によりプローブを作製し、ストリンジェントな条件でハイブリダイゼーションを行うランダムプライムドDNAラベリングキット(ロシュ・ダイアグノスティックス社製)が挙げられる。
 上記のストリンジェントな条件とは、例えばDNAを固定化したフィルターとプローブDNAとを50%ホルムアミド、5×SSC(750mMの塩化ナトリウム、75mMのクエン酸ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5×デンハルト溶液、10%の硫酸デキストラン、及び20μg/Lの変性させたサケ精子DNAを含む溶液中で42℃で一晩インキュベートした後、例えば約65℃の0.2×SSC溶液中で該フィルターを洗浄する条件が挙げられる。
 上記した様々な条件は、ハイブリダイゼーション実験のバックグラウンドを抑えるために用いるブロッキング試薬を添加又は変更することにより設定することもできる。上記したブロッキング試薬の添加は、条件を適合させるために、ハイブリダイゼーション条件の変更を伴ってもよい。
 上記したストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えば上記したBLASTやFASTA等のプログラムを用いて、上記パラメータに基づいて計算した時に、配列番号1で表される塩基配列と少なくとも95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなるDNAが挙げられる。
 親株を、上記(3)~(6)のいずれか1に記載のDNAを有する組換え体DNAで形質転換して得られる微生物、及び該組換え体DNAを染色体中に組み込むことにより得られる微生物は、以下の方法で造成できる。
 上記(3)~(6)のいずれか1に記載のDNAは、例えば、配列番号2で表されるアミノ酸配列からなる蛋白質をコードするDNAを用いて、該DNA上に位置する配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基をコードする部分の塩基配列に、例えば、モレキュラー・クローニング第4版(Cold Spring Harbor Laboratory Press(2012))及びカレント・プロトコールズ・イン・モレキュラー・バイオロジー(JOHN WILEY & SONS,INC.)等に記載された部位特異的変異導入法により変異を導入し、任意のアミノ酸残基をコードする塩基配列に置換することにより取得できる。あるいは、PrimeSTAR Mutagenesis Basal Kit(タカラバイオ社製)を用いることでも、本発明のDNAを得ることができる。
 同様の方法により、配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入及び/又は付加されたアミノ酸配列からなる変異蛋白質であり、かつラクトースパーミアーゼ活性を有する変異蛋白質をコードするDNAを用いて、配列番号2で表されるアミノ酸配列と該変異蛋白質のアミノ酸配列とを上述の方法によってアライメントしたときに、該変異蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基をコードする部分の塩基配列に変異を導入することによっても取得できる。 
 また、配列番号2で表わされるアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、かつラクトースパーミアーゼ活性を有する相同蛋白質をコードするDNAを用いて、該相同蛋白質のアミノ酸配列と配列番号2で表されるアミノ酸配列とを前記の方法によってアライメントした時に、該相同蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基をコードする部分の塩基配列に変異を導入することによっても取得できる。
 配列番号2で表されるアミノ酸配列からなる蛋白質をコードするDNAは、例えば、配列番号2で表されるアミノ酸配列からなる蛋白質をコードするDNAの塩基配列に基づいて設計できるプローブを用い、微生物、好ましくはエシェリヒア属、より好ましくはエシェリヒア・コリ W3110株の染色体DNAライブラリーに対するサザンハイブリダイゼーションにより、又は配列番号2で表されるアミノ酸配列からなる蛋白質をコードするDNAに基づき設計できるプライマーDNAを用いた、エシェリヒア・コリ W3110株の株の染色体DNAを鋳型としたPCR[PCR Protocols,Academic Press(1990)]により取得できる。
 エシェリヒア・コリ W3110(ATCC27325)株は、アメリカン・タイプ・カルチャー・コレクション(ATCC)から入手できる。
 配列番号2で表されるアミノ酸配列からなる蛋白質をコードするDNAとしては、例えば、配列番号1で表される塩基配列からなるDNAが挙げられる。
 上記[2]に記載の、配列番号2で表されるアミノ酸配列において1~20個のアミノ酸が欠失、置換、挿入及び/又は付加されたアミノ酸配列からなる変異蛋白質であり、かつラクトースパーミアーゼ活性を有する変異蛋白質をコードするDNAは、例えば、配列番号1で表される塩基配列からなるDNAを鋳型としてエラープローンPCR等に供することにより取得できる。
 又は、目的の変異(欠失、置換、挿入又は付加)が導入されるように設計した塩基配列をそれぞれの5'端に持つ1組のPCRプライマーを用いたPCR[Gene,77,51(1989)]によっても、上記[2]の配列番号2で表わされるアミノ酸配列において1~20個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつラクトースパーミアーゼ活性を有する変異蛋白質をコードするDNAを取得できる。
 また、市販の部分特異的変異導入キットに付属した説明書に従うことによっても、該DNAを取得できる。市販の部分特異的変異導入キットとしては、例えば、目的の変異を導入したい位置に変異(欠失、置換、挿入又は付加)を導入できるPrimeSTAR(登録商標) Mutagenesis Basal Kit(タカラバイオ社製)が挙げられる。
 すなわち、まず、目的の変異(欠失、置換、挿入又は付加)が導入されるように設計した塩基配列を有するプラスミドを鋳型に、5’側が15塩基オーバーラップした一対の変異導入用プライマーを設計する。このとき、オーバーラップ部分には目的の変異を含む。次に、該変異導入用プライマーを用いて、目的の変異を導入したい塩基配列を有するプラスミドを鋳型にPCRを行う。これにより得られた増幅断片を大腸菌に形質転換すると、目的の変異が導入された塩基配列を有するプラスミドを得ることができる。
 上記[3]に記載の、配列番号2で表わされるアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、かつラクトースパーミアーゼ活性を有する相同蛋白質をコードするDNAは、例えば、各種の遺伝子配列データベースに対して配列番号2で表わされる塩基配列と80%以上、好ましくは90%以上、より好ましくは95%以上、最も好ましくは99%以上の同一性を有する塩基配列を検索し、該検索によって得られた塩基配列又はアミノ酸配列に基づいて設計できるプローブDNA又はプライマーDNA、及び当該DNAを有する微生物を用いて、前記の配列番号2で表わされるアミノ酸配列からなる蛋白質をコードするDNAを取得する方法と同様の方法によって取得できる。塩基配列やアミノ酸配列の同一性は、上記と同様の方法で決定できる。
 上記(3)~(6)のいずれか1に記載のDNAを有する組換え体DNAとは、例えば、該DNAが親株において自律複製可能なDNAであって、上記(3)~(6)のいずれか1に記載のDNAを転写できる位置にプロモーターを含有している発現ベクターに、上記(3)~(6)のいずれか1つ以上に記載のDNAが組み込まれている組換え体DNAをいう。
 親株において染色体中への組込が可能なDNAであって、上記(3)~(6)のいずれか1に記載の組換え体DNAもまた、上記(3)~(6)のいずれか1に記載のDNAを有する組換え体DNAである。
 組換え体DNAが、染色体への組込が可能な組換え体DNAである場合は、プロモーターを含有していなくてもよい。
 細菌等の原核生物を宿主株として用いる場合は、親株において自律複製可能な組換え体DNAは、プロモーター、リボソーム結合配列、上記(3)~(6)のいずれか1つ以上に記載のDNA、及び転写終結配列により構成された組換え体DNAであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。
 リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンの間は、適当な距離、例えば6~18塩基に調節することが好ましい。
 親株にて自律複製可能な組換え体DNAにおいては、該DNAの発現には転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。
 親株としてエシェリヒア属に属する微生物を用いる場合、発現ベクターとしては、例えば、pColdI、pSTV28、pUC118(いずれもタカラバイオ社製)、pET21a、pCDF-1b、pRSF-1b(いずれもメルクミリポア社製)、pMAL-c5x(ニューイングランドバイオラブス社製)、pGEX-4T-1、pTrc99A (いずれもGEヘルスケアバイオサイエンス社製)、pTrcHis、pSE280(いずれもサーモフィッシャー・サイエンティフィック社製)、pGEMEX-1(プロメガ社製)、pQE-30、pQE-60、pQE80L(いずれもキアゲン社製)、pET-3、pBluescriptII SK(+)、pBluescriptII KS(-)(いずれもアジレント・テクノロジー社製)、pKYP10(日本国特開昭58-110600号公報)、pKYP200[Agric.Biol.Chem.,48,669(1984)]、pLSA1[Agric.Biol.Chem.,53,277(1989)]、pGEL1[Proc.Natl.Acad.Sci.,USA,82,4306(1985)]、pTrS30[エシェリヒア・コリ JM109/pTrS30(FERM BP-5407)より調整]、pTrS32[エシェリヒア・コリ JM109/pTrS32(FERM BP-5408)より調整]、pTK31[APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2007,Vol.73,No.20,p6378-6385]、pPE167(Appl.Environ.Microbiol.2007,73:6378-6385)、pPAC31(国際公開第98/12343号)、pUC19[Gene,33,103(1985)]、pPA1(日本国特開昭63-233798号公報)等が挙げられる。
 上記発現ベクターを用いる場合のプロモーターとしては、エシェリヒア属に属する微生物の細胞中で機能するものであればいかなるものでもよいが、例えば、trpプロモーター、gapAプロモーター、lacプロモーター、PLプロモーター、PRプロモーター、PSEプロモーター等の、エシェリヒア・コリやファージ等に由来するプロモーターを用いることができる。また、trpプロモーターを2つ直列させたプロモーター、tacプロモーター、trcプロモーター、lacT5プロモーター、lacT7プロモーター、let Iプロモーターのように人為的に設計改変されたプロモーターも用いることもできる。
 親株としてコリネ型細菌を用いる場合、発現ベクターとしては、例えば、pCG1(日本国特開昭57-134500号公報)、pCG2(日本国特開昭58-35197号公報)、pCG4(日本国特開昭57-183799号公報)、pCG11(日本国特開昭57-134500号公報)、pCG116、pCE54、pCB101(いずれも日本国特開昭58-105999号公報)、pCE51、pCE52、pCE53[いずれもMolecular and General Genetics,196,175(1984)]等を挙げることがきる。
 上記発現ベクターを用いる場合のプロモーターとしては、コリネ型細菌の細胞中で機能するものであればいかなるものでもよいが、例えば、P54-6プロモーター[Appl.Microbiol.Biotechnol.,53,p674-679(2000)]を用いることができる。
 親株として酵母菌株を用いる場合、発現ベクターとしては、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)、YCp50(ATCC37419)、pHS19、pHS15などが挙げられる。
 上記発現ベクターを用いる場合のプロモーターとしては、酵母菌株の細胞中で機能するものであればいかなるものでもよいが、例えば、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal1プロモーター、gal10プロモーター、ヒートショックポリペプチドプロモーター、MFα1プロモーター、CUP1プロモーター等のプロモーターが挙げられる。
 親株を該組換え体DNAで形質転換して得られる微生物とは、該組換え体DNAが、親株において自律複製可能なプラスミドとして導入されることにより、又は親株の染色体中に組み込まれることにより、該DNAが転写され、該DNAがコードする蛋白質を生産するようになった微生物をいう。
 上記(3)~(6)に記載のDNAが転写されること、及び該DNAがコードする蛋白質を生産するようになったことを確認する方法としては、例えば該DNAの転写量をノーザン・ブロッティングにより、又は該蛋白質の生産量をウエスタン・ブロッティングにより測定することで確認できる。
 取得した上記(3)~(6)に記載のDNAは、そのまま、あるいは適当な制限酵素等で切断し、常法によりベクターに組み込み、得られた組換え体DNAを宿主細胞に導入した後、通常用いられる塩基配列解析方法、例えばジデオキシ法[Proc.Nat.Acad.Sci.,USA,74,5463(1977)]、又はアプライド・バイオシステムズ3500ジェネティックアナライザやアプライド・バイオシステムズ3730DNAアナライザ(いずれもサーモフィッシャー・サイエンティフィック社製)等の塩基配列分析装置を用いて分析することにより、該DNAの塩基配列を決定できる。
 本発明のDNAの塩基配列を決定する際に用いることができる宿主細胞としては、例えば、Escherichia coli DH5α、Escherichia coli HST08 Premium、Escherichia coli HST02、Escherichia coli HST04 dam-/dcm-、Escherichia coli JM109、Escherichia coli HB101、Escherichia coliCJ236、Escherichia coli BMH71-18 mutS、Escherichia coli MV1184、Escherichia coli TH2(いずれもタカラバイオ社製)、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue(いずれもアジレント・テクノロジー社製)、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli W1485、Escherichia coli W3110、Escherichia coli MP347、Escherichia coli NM522等が挙げられる。
 上記のベクターとしては、pBluescriptII KS(+)、pPCR-Script Amp SK(+)(いずれもアジレント・テクノロジー社製)、pT7Blue(メルクミリポア社製)、pCRII(サーモフィッシャー・サイエンティフィック社製)、pCR-TRAP(ジーンハンター社製)、及びpDIRECT[Nucleic Acids Res.,18,6069(1990)]等が挙げられる。
 組換え体DNAの導入方法としては、宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法[Proc.Natl.Acad.Sci.,USA,69,2110(1972)]、プロトプラスト法(日本国特開昭63-248394号公報)、エレクトロポレーション法[Nucleic Acids Res.,16,6127(1988)]等が挙げられる。
 塩基配列を決定した結果、取得されたDNAが部分長であった場合は、該部分長DNAをプローブに用いた染色体DNAライブラリーに対するサザンハイブリダイゼーション法等により、全長DNAを取得できる。
 更に、決定されたDNAの塩基配列に基づいて、パーセプティブ・バイオシステムズ社製8905型DNA合成装置等を用いて化学合成することにより、目的とするDNAを調製することもできる。
 ここで、上記(3)~(6)に記載のDNAの塩基配列を親株の発現に最適なコドンとなるように塩基を置換することにより、該DNAがコードする蛋白質の発現量を向上させることもできる。宿主細胞におけるコドン使用頻度の情報は、公共のデータベースを通じて入手できる。
 上記のようにして調製したDNA断片を前記の適当な発現ベクターのプロモーターの下流に挿入することによって、本発明の微生物が有する組換え体DNAを作製できる。
 このような組換え体DNAの例としては、実施例において後述するpYHA2が挙げられる。
 組換え体DNAを親株において自律複製可能なプラスミドとして導入させる方法としては、例えば、上記のカルシウムイオンを用いる方法、プロトプラスト法、エレクトロポレーション法等の方法が挙げられる。
 組換え体DNAを親株の染色体中に組み込む方法としては、例えば、相同組換え法が挙げられる。相同組換え法としては、例えば、導入したい宿主細胞内では自律複製できない薬剤耐性遺伝子を有するプラスミドDNAと連結して作製できる相同組換え用プラスミドを用いる方法が挙げられる。また、エシェリヒア・コリで頻用される相同組換えを利用した方法としては、例えば、ラムダファージの相同組換え系を利用して、組換え体DNAを導入する方法[Proc.Natl.Acad.Sci.USA,97,6641-6645(2000)]が挙げられる。
 さらに、組換え体DNAと共に染色体上に組み込まれた枯草菌レバンシュークラーゼによって大腸菌がスクロース感受性となることを利用した選択法や、ストレプトマイシン耐性の変異rpsL遺伝子を有する大腸菌に野生型rpsL遺伝子を組み込むことによって大腸菌がストレプトマイシン感受性となることを利用した選択法[Mol.Microbiol.,55,137(2005)、Biosci.Biotechnol.Biochem.,71,2905(2007)]等を用いて、宿主細胞の染色体DNA上の目的の領域が組換え体DNAに置換された大腸菌を取得できる。
 上記の方法で造成した微生物が、親株よりもラクトース含有オリゴ糖を生産する能力が高い微生物であることは、例えば、親株と造成した微生物をそれぞれ培地に培養し、ラクトース含有オリゴ糖の生成量を比較することにより確認できる。このような微生物の例としては、実施例において後述するKFL/pYHA2株が挙げられる。
2.本発明のフコース含有オリゴ糖の製造法
 本発明のフコース含有オリゴ糖の製造法としては、上記1の微生物を培地に培養し、培養物中にフコース含有オリゴ糖を生成させることを特徴とする、フコース含有オリゴ糖の製造法が挙げられる。
 上記1の微生物を培養する方法は、微生物の培養に用いられる通常の方法に従って行うことができる。該微生物を培養する培地としては、該微生物が資化し得る炭素源、窒素原、無機塩類等を含有し、該微生物の培養を効率的に行うことができる培地であれば、天然培地と合成培地のいずれを用いてもよい。
 炭素源としては、該微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプン若しくはデンプン加水分解物等の糖、酢酸若しくはプロピオン酸等の有機酸、又は、グリセロール、エタノール若しくはプロパノール等のアルコール類等を用いることができる。
 窒素原としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム又はリン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩、その他の含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕、大豆粕加水分解物、各種発酵菌体及びその消化物等を用いることができる。
 無機塩としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が挙げられる。
 培養は、通常、振盪培養又は深部通気撹拌培養等の好気的条件下で行うことが好ましい。培養温度は、通常15~40℃であり、培養時間は、通常5時間~7日間である。培養中の培養液pHは、通常3.0~9.0に保持する。pHの調整は、無機又は有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニア等を用いて行う。
 また、培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド(IPTG)等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
 上記の培養において、必要に応じて、培地中にラクトースやN-アセチルラクトサミン等のラクトース含有オリゴ糖の生成に必要な前駆体を添加してもよい。
 上記の培養により、培養物中にラクトース含有オリゴ糖を生成、蓄積させ、該培養物中からラクトース含有オリゴ糖を採取することにより、ラクトース含有オリゴ糖を製造できる。
 生成したラクトース含有オリゴ糖は、糖質イオンクロマトグラフィーなどを用いる通常の方法によって分析できる。上記の培養物又は該培養物の処理物中からのラクトース含有オリゴ糖の採取は、活性炭やイオン交換樹脂などを用いる通常の方法によって行うことができる。菌体内にラクトース含有オリゴ糖が蓄積する場合には、例えば菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清から活性炭やイオン交換樹脂等によって、ラクトース含有オリゴ糖を採取できる。
[分析例]
 実施例において、2’-フコシルラクトースの分析、定量は以下に示す手順で行った。培養後の微生物を含む培養液を遠心分離し、上清を回収した。該上清に含まれる2’-フコシルラクトースを糖分析装置ICS-5000(サーモフィッシャーサイエンティフィック社製)にて分析した。
[分析条件]
カラム:CarboPAC PA1
カラム温度:25℃
移動相: (移動相A)水
(移動相B)500mmol/L 水酸化ナトリウム
(移動相C)300mmol/L 酢酸ナトリウム 
移動相A、移動相B及び移動相Cの混合比: 
(0~10分)  80:20:0から70:20:10の勾配
(10~18分) 70:20:10
(18~25分) 80:20:0
流速:0.8mL/min 
検出器:パルスドアンペロメトリー検出器
 以下に実施例の詳細を示すが、本発明はこれら実施例に限定されるものではない。
[実施例1]2’-フコシルラクトースの製造に用いる微生物の造成
(1)遺伝子欠損の際にマーカーとして用いるDNA断片の取得
 表1の「プライマーセット」で表わされる塩基配列からなるDNAをプライマーセットとして、表1の「鋳型」に記載されたDNAを鋳型としてPCRを行い、各増幅DNA断片を得た。
Figure JPOXMLDOC01-appb-T000001
 バチルス・サチルス168株のゲノムDNAは常法により調製した。増幅DNA断片のcatは、pHSG396上のcat遺伝子の上流約200bpから下流約50bpを含む。増幅DNA断片のsacBは、バチルス・サチルス168株のゲノムDNA上のsacB遺伝子の上流約300bpから下流約100bpを含む。
 次に、増幅DNA断片のcatおよびsacBを鋳型とし、配列番号3および6で表される塩基配列からなるDNAをプライマーセットとして用いてPCRを行い、cat遺伝子およびsacB遺伝子を含むDNA(以下、cat-sacBという。)断片を得た。
(2)β-ガラクトシダーゼ活性、ラクトースパーミアーゼ活性、及びコラン酸生成活性が喪失した大腸菌の造成
 β-ガラクトシダーゼをコードするDNA(以下、lacZ遺伝子という。)、ラクトースパーミアーゼをコードするDNA(以下、lacY遺伝子という。)、及びコラン酸生成関連蛋白質をコードするDNA(以下、wcaJ、wzxC、wcaK、wcaL、又はwcaM遺伝子という。)を欠損した大腸菌を、以下の方法で造成した。なお、lacZ及びlacY(以下、lacZYという。)、ならびに、wcaJ、wzxC、wcaK、wcaL、及びwcaM(以下、wcaJ-wzxC-wcaKLMという。)は大腸菌ゲノム上でそれぞれオペロンを形成している。
 常法により調製したエシェリヒア・コリ KY3591株のゲノムDNAを鋳型として、表2の「プライマーセット」で表わされる塩基配列からなるDNAをプライマーセットとして用いてPCRを行い、各増幅DNA断片を得た。
Figure JPOXMLDOC01-appb-T000002
 lacZ上流1およびlacZ上流2は、lacZ遺伝子の開始コドンからその上流約900bpを含む。lacY下流1およびlacY下流2は、lacY遺伝子の終止コドンからその下流約800bpを含む。
 lacZ上流1、lacY下流1、およびcat-sacB断片を等モルの比率で混合したものを鋳型とし、配列番号8および10で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、lacZ及びlacY遺伝子周辺領域の配列にcat-sacB断片が挿入された配列からなるDNA(以下、lacZY::cat-sacBという。)断片を得た。
 lacZ上流2およびlacY下流2を等モルの比率で混合したものを鋳型とし、配列番号8および10で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、lacZおよびlacYを含まず、lacZ上流とlacY下流が直接連結した配列からなるDNA(以下、ΔlacZYという。)断片を得た。
 lacZY::cat-sacB断片を、λリコンビナーゼをコードする遺伝子を含むプラスミドpKD46[Datsenko,K.A.,Warner,B.L.,Proc.Natl.Acad.Sci.,USA,Vol.97,6640-6645(2000)]を保持するエシェリヒア・コリ W3110株に、エレクトロポレーション法により導入し、クロラムフェニコール耐性、かつシュクロース感受性を示した形質転換体(lacZ及びlacY遺伝子がlacZY::cat-sacBに置換した形質転換体)を得た。
 ΔlacZY断片を、当該形質転換体にエレクトロポレーション法により導入し、クロラムフェニコール感受性かつシュクロース耐性を示す形質転換体(lacZY::cat-sacBがΔlacZYに置換した形質転換体)を得た。それらのうちからさらに、アンピシリン感受性を示す形質転換体(pKD46が脱落した形質転換体)を得た。当該形質転換体をW3110ΔlacZYと命名した。
 同様に、エシェリヒア・コリ KY3591株(受託番号はNITE BP-03062)のゲノムDNAを鋳型として、表3の「プライマーセット」で表わされる塩基配列からなるDNAをプライマーセットとして用いてPCRを行い、各増幅DNA断片を得た。
Figure JPOXMLDOC01-appb-T000003
 wcaJ上流1およびwcaJ上流2は、wcaJ遺伝子の開始コドンからその上流約900bpを含む。wcaM下流1およびwcaM下流2は、wcaM遺伝子の終止コドンからその下流約800bpを含む。
 wcaJ上流1、wcaM下流1、およびcat-sacB断片を等モルの比率で混合したものを鋳型とし、配列番号14および16で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、wcaJ-wzxC-wcaKLMオペロン周辺領域の配列にcat-sacB断片が挿入された配列からなるDNA(以下、wcaJ-wzxC-wcaKLM::cat-sacBという。)断片を得た。
 wcaJ上流2およびwcaM下流2を等モルの比率で混合したものを鋳型とし、配列番号14および16で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、wcaJ-wzxC-wcaKLMを含まず、wcaJ上流とwcaM下流が直接連結した配列からなるDNA(以下、ΔwcaJ-wzxC-wcaKLMという。)断片を得た。
 wcaJ-wzxC-wcaKLM::cat-sacB断片を、上記で造成したW3110ΔlacZY株に、エレクトロポレーション法により導入し、クロラムフェニコール耐性、かつシュクロース感受性を示した形質転換体(wcaJ-wzxC-wcaKLMがwcaJ-wzxC-wcaKLM::cat-sacBに置換した形質転換体)を得た。
 ΔwcaJM断片を、当該形質転換体にエレクトロポレーション法により導入し、クロラムフェニコール感受性かつシュクロース耐性を示す形質転換体(wcaJ-wzxC-wcaKLM::cat-sacBがΔwcaJ-wzxC-wcaKLMに置換した形質転換体)を得た。さらに、アンピシリン感受性を示す形質転換体(pKD46が脱落した形質転換体)を得た。当該形質転換体をKFL株と命名した。
(3)エシェリシア・コリ由来のラクトースパーミアーゼ(LacY)発現ベクターの調製
 表4の「プライマーセット」で表される塩基配列からなるDNAをプライマーセットとして、表4の「鋳型」に記載されたDNAを鋳型としてPCRを行い、各増幅DNA断片を得た。
Figure JPOXMLDOC01-appb-T000004
 エシェリヒア・コリW3110株のゲノムDNAは定法により調製した。また、配列番号2及び3、配列番号4及び5で表される塩基配列は、それぞれの5’末端に相補的な配列を含む。
 lacY、HMFT、及びrcsA断片を等モルの比率で混合したものを鋳型とし、配列番号25及び26で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、3断片を連結したDNA(以下、lacY-HMFT-rcsAという。)断片を得た。
 配列番号27及び28で表わされる塩基配列からなるDNAをプライマーセットとして、プラスミドpPE167(Appl.Environ.Microbiol.2007,73:6378-6385)を鋳型にPCRを行い、約4.4kbのベクター断片を得た。このとき、配列番号25及び28、配列番号26及び27で表される塩基配列は、それぞれの5’末端に相補的な配列を含む。
 上記で得られたlacY-HMFT-rcsA断片とベクター断片を、In-Fusion HD Cloning Kit(タカラバイオ社製)を用いて連結することにより、発現プラスミドpYHA1を得た。
(4)変異型LacYを発現する微生物の造成
 上記(2)で得られたプラスミドpYHA1を鋳型とし、Prime STAR Mutagenesis Basal Kit(タカラバイオ社製)を用いて、LacYのアミノ酸配列のうち319番目のL-リジン残基をL-グルタミン酸残基に置換したプラスミドpYHA2を作成した。プライマーセットには配列番号29及び30で表される塩基配列からなるDNAを用いた。
 (3)で得られたプラスミドpYHA1、及び上記pYHA2用いて、上記(2)で造成したKFL株を形質転換し、KFL/pYHA1株及びKFL/pYHA2株を得た。
[実施例2]変異型LacYを発現する微生物を用いた発酵法による2’-フコシルラクトースの製造
 実施例1で得られたKFL/pYHA1株及びKFL/pYHA2株を、LBプレート上で30℃にて24時間培養し、100mg/Lのカナマイシンを含むLB培地5mLが入った大型試験管に植菌して30℃で16時間、振盪培養した。その後、得られた培養液を100mg/Lのカナマイシンを含む生産培地[グルコース30g/L、ラクトース一水和物5g/L、硫酸マグネシウム七水和物2g/L、リン酸水素二カリウム16g/L、リン酸二水素カリウム14g/L、硫酸アンモニウム2g/L、クエン酸一水和物1g/L、カザミノ酸5g/L、チアミン塩酸塩10mg/L、硫酸第一鉄七水和物50mg/L、硫酸マンガン五水和物10mg/L(グルコース、ラクトース一水和物、及び硫酸マグネシウム七水和物以外については、水酸化ナトリウム水溶液によりpH7.2に調整した後オートクレーブした)(グルコース、ラクトース一水和物、及び硫酸マグネシウム七水和物含有水溶液は別途調製した後オートクレーブし、それぞれ冷却後、混合した)]が5mL入った大型試験管に0.1mL植菌し、30℃で30時間振盪培養した。
 培養終了後、培養液を適宜希釈後に遠心分離し、上清に含まれる2’-フコシルラクトースをHPLCにて分析した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 その結果、KFL/pYHA1株に比べ、KFL/pYHA2株はより高い2’-フコシルラクトース生産性を示した。
 以上より、変異型LacYを有する微生物を用いることで、野生型LacYを有する微生物よりも2’-フコシルラクトースの生産性が向上することが分かった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2019年12月16日付けで出願された日本特許出願(特願2019-226278)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明により、改変されたラクトースパーミアーゼ活性を有する蛋白質を生産する能力を有する微生物を用いた、ラクトース含有オリゴ糖の製造法が提供される。

Claims (10)

  1.  下記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、他のアミノ酸残基への置換を含むアミノ酸配列からなる蛋白質を有する微生物であり、かつ、
     親株よりもラクトース含有オリゴ糖を生産する能力が高い微生物。
    [1]配列番号2で表されるアミノ酸配列からなる蛋白質
    [2]配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入及び/又は付加されたアミノ酸配列からなる蛋白質であり、かつ、ラクトースパーミアーゼ活性を有する変異蛋白質。
    [3]配列番号2で表されるアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなる蛋白質であり、かつ、ラクトースパーミアーゼ活性を有する相同蛋白質。
  2.  前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、L-アスパラギン酸又はL-グルタミン酸への置換を含むアミノ酸配列からなる蛋白質を有する、請求項1に記載の微生物。
  3.  前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、L-グルタミン酸への置換を含むアミノ酸配列からなる蛋白質を有する、請求項1又は2に記載の微生物。
  4.  前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、他のアミノ酸残基への置換を含むアミノ酸配列からなる蛋白質をコードするDNAを含む組換え体DNAで親株を形質転換することにより得られる、請求項1~3のいずれか1項に記載の微生物。
  5.  前記[1]~[3]のいずれか1に記載の蛋白質のアミノ酸配列において、配列番号2で表されるアミノ酸配列の319番目に対応するアミノ酸残基から、他のアミノ酸残基への置換を含むアミノ酸配列からなる蛋白質をコードするDNAを含む組換え体DNAを染色体中に組み込むことにより得られる、請求項4に記載の微生物。
  6.  配列番号3で表される塩基配列を有するDNAを含む組換え体DNAで親株を形質転換することにより得られる、請求項1~5のいずれか1項に記載の微生物。
  7.  配列番号3で表される塩基配列を有するDNAを含む組換え体DNAを染色体中に組み込むことにより得られる、請求項6に記載の微生物。
  8.  前記親株がラクトース含有オリゴ糖を生産する能力を有する微生物である、請求項1~7のいずれか1項に記載の微生物。
  9.  請求項1~8のいずれか1項に記載の微生物を培地に培養し、培養物中にラクトース含有オリゴ糖を生成させることを特徴とする、ラクトース含有オリゴ糖の製造法。
  10.  前記ラクトース含有オリゴ糖が2’-フコシルラクトースである、請求項9に記載の製造法。
PCT/JP2020/047049 2019-12-16 2020-12-16 改変されたラクトースパーミアーゼを有する微生物及びラクトース含有オリゴ糖の製造法 WO2021125245A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/785,813 US20240279696A1 (en) 2019-12-16 2020-12-16 Microorganism having modified lactose permease, and method for producing lactose-containing oligosaccharide
EP20901336.6A EP4079862A4 (en) 2019-12-16 2020-12-16 MICROORGANISM HAVING MODIFIED LACTOSE PERMEASE, AND METHOD FOR PRODUCING LACTOSE-CONTAINING OLIGOSACCHARIDE
CN202080086672.2A CN114829579A (zh) 2019-12-16 2020-12-16 具有改造后的乳糖渗透酶的微生物和含乳糖寡糖的制造方法
JP2021565632A JPWO2021125245A1 (ja) 2019-12-16 2020-12-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-226278 2019-12-16
JP2019226278 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021125245A1 true WO2021125245A1 (ja) 2021-06-24

Family

ID=76477659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047049 WO2021125245A1 (ja) 2019-12-16 2020-12-16 改変されたラクトースパーミアーゼを有する微生物及びラクトース含有オリゴ糖の製造法

Country Status (5)

Country Link
US (1) US20240279696A1 (ja)
EP (1) EP4079862A4 (ja)
JP (1) JPWO2021125245A1 (ja)
CN (1) CN114829579A (ja)
WO (1) WO2021125245A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS58105999A (ja) 1981-12-17 1983-06-24 Kyowa Hakko Kogyo Co Ltd 新規ベクタ−プラスミド
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS63233798A (ja) 1986-10-09 1988-09-29 Kyowa Hakko Kogyo Co Ltd 5′−グアニル酸の製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
WO1998012343A1 (fr) 1996-09-17 1998-03-26 Kyowa Hakko Kogyo Co., Ltd. Procedes de production de nucleotides de sucre et de glucides complexes
WO2019025485A1 (en) * 2017-08-01 2019-02-07 Oligoscience Biotechnology Gmbh MICROORGANISM FOR THE PRODUCTION OF OLIGOSACCHARIDE OF HUMAN MILK

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533669A (ja) * 2007-07-20 2010-10-28 ビーエーエスエフ ソシエタス・ヨーロピア 輸送系を含む官能化ナノコンパートメント
CA3098403C (en) * 2011-02-16 2022-05-10 Glycosyn LLC Biosynthesis of human milk oligosaccharides in engineered bacteria
EP2791367B1 (en) * 2011-12-16 2019-04-24 Inbiose N.V. Mutant microorganisms to synthesize colanic acid, mannosylated and/or fucosylated oligosaccharides
KR101731263B1 (ko) * 2016-04-25 2017-05-02 서울대학교 산학협력단 코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법
PL3315610T3 (pl) * 2016-10-29 2021-06-14 Jennewein Biotechnologie Gmbh Sposób wytwarzania fukozylowanych oligosacharydów

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS58105999A (ja) 1981-12-17 1983-06-24 Kyowa Hakko Kogyo Co Ltd 新規ベクタ−プラスミド
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS63233798A (ja) 1986-10-09 1988-09-29 Kyowa Hakko Kogyo Co Ltd 5′−グアニル酸の製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
WO1998012343A1 (fr) 1996-09-17 1998-03-26 Kyowa Hakko Kogyo Co., Ltd. Procedes de production de nucleotides de sucre et de glucides complexes
WO2019025485A1 (en) * 2017-08-01 2019-02-07 Oligoscience Biotechnology Gmbh MICROORGANISM FOR THE PRODUCTION OF OLIGOSACCHARIDE OF HUMAN MILK

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
"Immunology methods manual", 1997, ACADEMIC PRESS
"Methods for General and Molecular Bacteriology", 1994, ASM PRESS
"Molecular Cloning", 2012, COLD SPRING HARBOR LABORATORY PRESS
AGRIC. BIOL. CHEM., vol. 48, 1984, pages 669
AGRIC. BIOL. CHEM., vol. 53, 1989, pages 277
APPL. ENVIRON. MICROBIOL., vol. 73, 2007, pages 6378 - 6385
APPL. MICROBIOL. BIOTECHNOL., vol. 53, 2000, pages 674 - 679
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 73, no. 20, 2007, pages 6378 - 6385
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 71, 2007, pages 2905
CURR OPIN BIOTECHNOL, vol. 56, 2019, pages 130 - 137
DATSENKO, K. A.WARNER, B. L., PROC. NATL. ACAD. SCI., USA, vol. 97, 2000, pages 6640 - 6645
J BIOTECHNOL, vol. 210, 2015, pages 107 - 115
J BIOTECHNOL, vol. 235, 2016, pages 61 - 83
J. MOL. BIOL., vol. 215, 1990, pages 403
METABOLIC ENGINEERING, vol. 41, 2017, pages 23 - 38
METHODS ENZYMOL., vol. 183, 1990, pages 63
MOL. MICROBIOL., vol. 55, 2005, pages 137
NUCLEIC ACIDS RES., vol. 16, 1988, pages 6127
NUCLEIC ACIDS RES., vol. 18, 1990, pages 6069
PRO. NAT. ACAD. SCI. USA, vol. 90, 1993, pages 5873
PROC. NAT. ACAD. SCI., USA, vol. 74, 1977, pages 5463
PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6641 - 6645
PROC. NATL. ACAD. SCI., USA, vol. 69, 1972, pages 2110
PROC. NATL. ACAD. SCI., USA, vol. 82, 1985, pages 4306
See also references of EP4079862A4

Also Published As

Publication number Publication date
US20240279696A1 (en) 2024-08-22
JPWO2021125245A1 (ja) 2021-06-24
EP4079862A4 (en) 2024-01-17
CN114829579A (zh) 2022-07-29
EP4079862A1 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
JP7244613B2 (ja) 希少糖の製造法
JP7035024B2 (ja) テアニンの製造方法
WO2022168992A1 (ja) 1,3-フコシルトランスフェラーゼ活性を有する蛋白質及びフコース含有糖質の製造法
WO2023238843A1 (ja) 3'-シアリルラクトースの生産性が向上した微生物および3'-シアリルラクトースの製造方法
WO2023120615A1 (ja) コア3糖としてラクト-n-トリオースiiを含む糖質の製造方法および該糖質の結晶の製造方法
WO2022168991A1 (ja) フコース含有糖質の輸送活性を有する蛋白質及びフコース含有糖質の製造法
WO2021125245A1 (ja) 改変されたラクトースパーミアーゼを有する微生物及びラクトース含有オリゴ糖の製造法
JP6441806B2 (ja) N−アセチルノイラミン酸及びn−アセチルノイラミン酸含有糖質の製造法
WO2023153461A1 (ja) ルイスx骨格を有するオリゴ糖の製造法
EP4400588A1 (en) Recombinant microorganism used for producing cdp-choline, and method for producing cdp-choline using said recombinant microorganism
WO2023182528A1 (ja) α1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びラクト-N-フコペンタオースI(LNFPI)の製造方法
WO2022176994A1 (ja) 改変されたα1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びフコース含有糖質の製造法
JP2022001556A (ja) 蛋白質及び3−ヒドロキシイソ吉草酸の製造方法
WO2023182527A1 (ja) ラクトジフコテトラオース(ldft)の製造法
CN118843691A (zh) 具有α1,2-岩藻糖基转移酶活性的蛋白质和乳糖-N-岩藻五糖I(LNFPI)的制造方法
WO2021261564A1 (ja) ジペプチドの製造法
JP2021191241A (ja) β−ポリリンゴ酸の製造法
WO2023210244A1 (ja) Nampt活性を有する蛋白質およびnmnの製造方法
WO2023058772A1 (ja) N-アセチルノイラミン酸及び/又はn-アセチルノイラミン酸含有糖質の生産能を有する微生物及び該微生物を用いたn-アセチルノイラミン酸及び/又はn-アセチルノイラミン酸含有糖質の製造方法
JP2022045001A (ja) バリオールアミン及びボグリボースの製造方法
JP2021019518A (ja) ビオラセイン又はデオキシビオラセインの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020901336

Country of ref document: EP

Effective date: 20220718