WO2023182528A1 - α1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びラクト-N-フコペンタオースI(LNFPI)の製造方法 - Google Patents

α1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びラクト-N-フコペンタオースI(LNFPI)の製造方法 Download PDF

Info

Publication number
WO2023182528A1
WO2023182528A1 PCT/JP2023/012042 JP2023012042W WO2023182528A1 WO 2023182528 A1 WO2023182528 A1 WO 2023182528A1 JP 2023012042 W JP2023012042 W JP 2023012042W WO 2023182528 A1 WO2023182528 A1 WO 2023182528A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
dna
strain
base sequence
protein
Prior art date
Application number
PCT/JP2023/012042
Other languages
English (en)
French (fr)
Inventor
彩花 釜井
智惇 杉田
史 山▲崎▼
和貴 中村
Original Assignee
キリンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンホールディングス株式会社 filed Critical キリンホールディングス株式会社
Publication of WO2023182528A1 publication Critical patent/WO2023182528A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds

Definitions

  • the present invention relates to a protein having ⁇ 1,2-fucosyltransferase activity and a method for producing lacto-N-fucopentaose I (LNFPI).
  • HMO Human milk oligosaccharide
  • Lacto-N-fucopentaose I (hereinafter referred to as LNFPI) is a type of HMO, and is a pentasaccharide HMO in which fucose is ⁇ 1,2-linked to the galactose 2 position of lacto-N-tetraose (hereinafter referred to as LNT). .
  • LNFPI is abundant in breast milk next to 2'-fucosyllactose (hereinafter referred to as 2'FL) and lacto-N-difucohexaose (hereinafter referred to as LNDFHI), and is also a pentasaccharide. It is known that the content in breast milk is higher than that of lacto-N-fucopentaose II (hereinafter referred to as LNFPII) and lacto-N-fucopentaose III (hereinafter referred to as LNFPII), which are known as Patent Document 2).
  • LNFPII lacto-N-fucopentaose II
  • LNFPII lacto-N-fucopentaose III
  • Non-Patent Documents 3 and 4 Bifidobacterium infantis, which has a high occupancy rate in the intestines of newborns, is attracting attention for its function as a prebiotic, as it has been found to grow preferentially in LNFPI.
  • Patent Documents 1 and 2 and Non-Patent Documents 4, 5 and 6 include Thermosynechococcus elongatus, Sideroxydans lithotrophicus, or Helicobacter.
  • oligosaccharides such as LNFPI are produced by overexpressing ⁇ 1,2-fucosyltransferase in Escherichia coli and using LNT and GDP-fucose as substrates by fermentation or continuous enzymatic reaction.
  • Methods for reducing by-products include an enzymatic reaction method using purified, highly pure LNT as a substrate (Patent Document 1, Non-Patent Document 5), and a method using ⁇ 1,2-fucosyltransferase when the initial raw material lactose is depleted.
  • a method for producing LNFPI by inducing the expression of LNFPI has been disclosed (Non-Patent Document 6).
  • an object of the present invention is to provide a protein having ⁇ 1,2-fucosyltransferase activity and a method for producing LNFPI with excellent LNFPI productivity.
  • LNFPI can be produced more efficiently than conventional methods by using a microorganism that has the ability to produce a protein with ⁇ 1,2-fucosyltransferase activity consisting of a specific amino acid sequence.
  • the present invention has been completed. Furthermore, we have discovered for the first time a fucosyltransferase derived from the genus Neisseria or Francisella that is suitable for the production of fucosylated oligosaccharides such as LNFPI or fucosyllactose.
  • the present invention is as follows. 1. The protein according to any one of [1] to [3] below, which has fucosyl group transfer activity to lacto-N-tetraose (LNT). [1] A protein consisting of the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 14, 18 or 26. [2] The amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 14, 18 or 26 consists of an amino acid sequence in which 1 to 20 amino acids are deleted, substituted, inserted or added, and a mutant protein having ⁇ 1,2-fucosyltransferase activity.
  • [3] Consists of an amino acid sequence having 90% or more identity with the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 14, 18 or 26, and has ⁇ 1,2-fucosyltransferase activity Homologous protein.
  • 4. A transformant obtained by transforming a host cell with the recombinant DNA described in 3 above. 5. 4.
  • the transformant according to 4 above which is a microorganism in which the activity of the protein according to any one of [1] to [3] described in 1 above and the productivity of fucose-containing carbohydrates are enhanced. 6. 5. The transformant according to 5 above, wherein the microorganism is E. coli. 7. A method for producing a fucose-containing saccharide, which comprises preparing the transformant according to any one of 4 to 6 above, and producing a fucose-containing saccharide in a culture using the transformant. 8. 7. The production method according to 7 above, wherein the fucose-containing carbohydrate is lacto-N-fucopentaose I (LNFPI).
  • LNFPI lacto-N-fucopentaose I
  • the protein of the present invention has an ⁇ 1,2-fucosyltransferase activity that can transfer sugars to the non-reducing terminal galactose site of LNT due to its specific amino acid sequence.
  • FIG. 1 shows the biosynthetic pathway of LNFPI in one embodiment of the present invention.
  • FIG. 2 shows the results of the total LNFPI production amount of the supernatant and intracellular fraction (Example 2).
  • the protein of the present invention is a protein according to any one of [1] to [3] below, which has an activity of transferring a fucosyl group to lacto-N-tetraose (LNT).
  • a protein consisting of the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 14, 18 or 26.
  • the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 14, 18 or 26 consists of an amino acid sequence in which 1 to 20 amino acids are deleted, substituted, inserted or added, and a mutant protein having ⁇ 1,2-fucosyltransferase activity.
  • proteins consisting of the amino acid sequence represented by SEQ ID NO: 4, 6, 8, 14, 18 or 26 are preferred, and more Preferably, it is a protein consisting of the amino acid sequence represented by SEQ ID NO: 4 or 18.
  • the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 is derived from Gramella sp., which will be described later in Examples. This is ⁇ 1,2-fucosyltransferase GsFucT derived from the MAR_2010_147 strain.
  • the protein consisting of the amino acid sequence represented by SEQ ID NO: 4 is derived from Francisella sp., which will be described later in Examples. This is ⁇ 1,2-fucosyltransferase FsFucT derived from FSC1006 strain.
  • the protein consisting of the amino acid sequence represented by SEQ ID NO: 6 is ⁇ 1,2-fucosyltransferase NbFucT1 derived from Neisseriaceae bacterium DSM 100970 strain, which will be described later in the Examples.
  • the protein consisting of the amino acid sequence represented by SEQ ID NO: 8 is ⁇ 1,2-fucosyltransferase MtFucT derived from Methylobacter tundripaludum strain, which will be described later in the Examples.
  • the protein consisting of the amino acid sequence represented by SEQ ID NO: 10 is ⁇ 1,2-fucosyltransferase AjFucT derived from Amphritea japonica strain, which will be described later in the Examples.
  • the protein consisting of the amino acid sequence represented by SEQ ID NO: 14 is ⁇ 1,2-fucosyltransferase SbFucT derived from Sterolibacteriaceae bacterium J5B strain, which will be described later in the Examples.
  • the protein consisting of the amino acid sequence represented by SEQ ID NO: 18 is ⁇ 1,2-fucosyltransferase NbFucT2 derived from Neisseriales bacterium strain, which will be described later in the Examples.
  • the protein consisting of the amino acid sequence represented by SEQ ID NO: 26 is ⁇ 1,2-fucosyltransferase HMFT derived from Helicobacter mustelae ATCC43772 strain, which will be described later in the Examples.
  • mutant protein refers to a protein obtained by artificially deleting or substituting an amino acid residue in a source protein, or inserting or adding an amino acid residue into the protein.
  • deletion, substitution, insertion, or addition of amino acids means that 1 to 20 amino acids are deleted, substituted, inserted, or added at any position in the same sequence. Good too.
  • the number of amino acids to be deleted, substituted, inserted or added is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 8, and most preferably 1 to 5.
  • the amino acids to be deleted, substituted, inserted, or added may be natural or non-natural.
  • Natural amino acids include L-alanine, L-asparagine, L-aspartic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-arginine, L- - Methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine and the like.
  • Group A Leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine
  • Group B aspartic acid, glutamic acid, isoaspartic acid, Isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid
  • Group C asparagine, glutamine
  • D Lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid
  • Group E Proline, 3 -Hydroxyproline, 4-hydroxyproline
  • F group serine, threonine, homoserine
  • G group phenylalanine
  • examples of the amino acid residue to be substituted include the 17th asparagine residue.
  • a homologous protein is a protein whose structure and function are similar to that of the original protein, so that the gene encoding the protein is thought to have the same evolutionary origin as the gene encoding the original protein.
  • Homologous proteins include, for example, amino acid sequences that preferably have an identity of 90% or more, more preferably 93% or more, still more preferably 95% or more, particularly preferably 97% or more, with the amino acid sequence of the target protein. Can be mentioned.
  • the fucosyl group transfer activity to LNT refers to the N-acetyl group transfer activity of LNT from the donor substrate GDP-fucose to the receptor substrate carbohydrate (hereinafter referred to as "acceptor carbohydrate"). Refers to the activity of transferring fucose residues to glucosamine hydroxyl groups.
  • LNFPI is generated by transferring a fucose residue from GDP-fucose to the N-acetylglucosamine hydroxyl group.
  • the biosynthetic pathway of LNFPI in one embodiment of the present invention is shown in FIG.
  • ⁇ 1,2-fucosyltransferase activity refers to transferring a fucose residue from GDP-fucose, a donor substrate, to the N-acetylglucosamine hydroxyl group of an acceptor carbohydrate through an ⁇ 1,2-linkage.
  • LNT is preferred as the receptor carbohydrate.
  • LNFPI is preferred as the fucose-containing carbohydrate.
  • the above-mentioned mutant protein or homologous protein has ⁇ 1,2-fucosyltransferase activity, for example, by the following method.
  • a recombinant DNA containing DNA encoding a mutant protein or homologous protein whose activity is to be confirmed is prepared by the method described below.
  • a transformant having higher activity of the protein than the parent strain is produced, and the fucose produced and accumulated in the culture medium of the parent strain or the transformant is This can be confirmed by comparing the amount of carbohydrates contained.
  • a specific example of the fucose-containing carbohydrate is LNFPI.
  • parent strain refers to the original strain that is subject to genetic modification, transformation, etc.
  • the parent strain is preferably a prokaryotic or yeast strain, more preferably Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Pseudomonas, etc.
  • Escherichia coli MG1655 Escherichia coli XL1 -Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli erichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No.
  • Prokaryotes such as D-0110, or Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Yeast strains such as Schwanniomyces alluvius, Pichia pastoris, or Candida utilis can be mentioned.
  • the parent strain may be a wild strain as long as it is a microorganism that produces GDP-fucose and/or LNT. If the wild strain does not have the ability to produce GDP-fucose and/or LNT, a bred strain may be artificially endowed with the ability to supply GDP-fucose and/or LNT.
  • microorganisms used as parent strains include the following 1) and 2). 1) A microorganism that has been artificially endowed with or enhanced the ability to supply GDP-fucose, which is a reaction substrate for ⁇ 1,2-fucosyltransferase.2) A microorganism that has an artificial ability to supply LNT, which is a reaction substrate for ⁇ 1,2-fucosyltransferase. Microorganisms that have been endowed with or enhanced by microorganisms will be explained below.
  • a microorganism used as a parent strain that has been artificially endowed with or enhanced the ability to supply GDP-fucose which is a reaction substrate for ⁇ 1,2-fucosyltransferase.
  • a parent strain preferably, a reaction substrate for ⁇ 1,2-fucosyltransferase is used.
  • Examples include microorganisms that have been artificially endowed or enhanced with the ability to supply GDP-fucose.
  • Specific examples of methods for imparting or enhancing the ability to supply GDP-fucose in a microorganism used as a parent strain include known methods such as various genetic manipulation methods (Metabolic Engineering (2017) 41:23-38). .
  • the ability to supply GDP-fucose includes the ability to produce GDP-fucose from sugar.
  • methods for artificially imparting or enhancing the ability to produce GDP-fucose from sugar to a microorganism used as a parent strain include the following methods (1a) to (1d). These methods may be used alone or in combination.
  • (1a) A method for relaxing or canceling at least one of the mechanisms controlling the biosynthetic pathway that generates GDP-fucose from sugar (1b) At least one of the enzymes involved in the biosynthetic pathway that generates GDP-fucose from sugar (1c) A method for increasing the copy number of at least one gene encoding an enzyme involved in the biosynthetic pathway that produces GDP-fucose from sugar.
  • (1d) A method for enhancing the expression of a biosynthetic pathway that produces GDP-fucose from sugar.
  • mechanisms that control the biosynthetic pathway that generates GDP-fucose from sugars include known mechanisms such as control mechanisms by transcriptional regulatory factors (e.g., RcsA, etc.) involved in controlling the biosynthetic pathway. It will be done.
  • RcsA is a regulatory factor that upregulates the entire colanic acid biosynthetic pathway with GDP-fucose as an intermediate. As described below, by strengthening rcsA while blocking the pathway downstream of GDP-fucose in the colanic acid biosynthesis pathway, a large amount of GDP-fucose can be accumulated.
  • enzymes involved in the biosynthetic pathway that generates GDP-fucose from sugar include mannose-6-phosphate isomerase, phosphomannomutase, mannose-1-phosphate guanylyltransferase, and GDP-mannose- Known enzymes include 4,6-dehydratase and GDP-L-fucose synthase.
  • the supply of GDP-fucose can be increased by blocking WcaJ, WzxC, WcaK, WcaL, or WcaM, which are downstream of GDP-fucose in the colanic acid biosynthesis pathway.
  • the microorganism used as a parent strain may be modified to promote the import of exogenous L-fucose across its cell membrane. For example, by expressing or overexpressing the base sequence encoding FucP (accession number AIZ90162), the uptake of exogenous L-fucose across the cell membrane into cells can be improved, thereby producing GDP-fucose. can increase the amount of fucose.
  • the microorganism used as a parent strain has a deletion of the genes fucI and/or fucK encoding L-fucose isomerase and L-fucrose kinase, respectively, and the nucleotide sequence of fucI and/or fucK inhibits the enzymatic activity of the corresponding polypeptide. It may be modified to irreversibly inactivate it or to impair expression of fucI and/or fucK. Eliminating intracellular synthesis of FucI and/or FucK abolishes fucose metabolism in the cell, which may increase the amount of fucose for producing GDP-fucose.
  • a microorganism used as a parent strain that is artificially endowed or enhanced with the ability to supply LNT, which is a reaction substrate for ⁇ 1,2-fucosyltransferase A method for artificially imparting the ability to supply LNT to a microorganism used as a parent strain Examples of the method include methods (2a) to (2h) below, and these methods can be used alone or in combination.
  • enzymes involved in the biosynthetic pathway that generates LNT from sugar include ⁇ 1,4-galactosyltransferase (hereinafter referred to as galT) activity, which is involved in the biosynthetic pathway that generates LNT from glucose and lactose. and enzymes having ⁇ 1,3-N-acetylglucosamine transferase (hereinafter referred to as lgtA) activity.
  • galT ⁇ 1,4-galactosyltransferase
  • lgtA enzymes having ⁇ 1,3-N-acetylglucosamine transferase
  • Specific examples of the mechanism for decomposing LNT or its substrate sugar include known enzymes such as ⁇ -galactosidase, which catalyzes the hydrolysis of lactose, which is a substrate of LNT, to produce glucose and galactose.
  • ⁇ -galactosidase which catalyzes the hydrolysis of lactose, which is a substrate of LNT, to produce glucose and galactose.
  • lacZ ⁇ -galactosidase
  • enzymes involved in the cellular uptake of LNT or its substrate sugar include known enzymes such as lactose permease, which is involved in the cellular uptake of lactose, which is the substrate of LNT.
  • the microorganism to which the ability to supply LNT has been imparted or enhanced has, for example, lactose permease (hereinafter referred to as lacY) activity, ⁇ 1,4-galactosyltransferase (galT) activity, ⁇ 1,3-N-acetylglucosamine transferase (lgtA) activity, glutamine fructose-6-phosphate transaminase (hereinafter referred to as glmS) activity, phosphoglucosamine mutase (hereinafter referred to as glmM) activity and N-acetylglucosamine-1-phosphate Acid uridyltransferase/glucosamine-1-phosphate acetyltransferase (hereinafter referred to as glmU) activity, phosphoglucomutase (hereinafter referred to as pgm) activity, UTP glucose-1-phosphate uridylyltransfera
  • lacY is a membrane protein that takes lactose, a substrate of LNT, into cells.
  • galT is an enzyme involved in the production of LNT from lacto-N-triose II (LNTII).
  • LNT is a precursor of LNFPI.
  • LgtA is an enzyme involved in the production of LNTII from lactose and uridine diphosphate-N-acetylglucosamine (hereinafter referred to as UDP-GlcNAc).
  • LNTII is a precursor of LNT.
  • glmS, glmM, and glmU are enzymes involved in the biosynthetic pathway that produces LNTII.
  • Pgm, galU, galE, and galF are enzymes involved in the pathway that produces uridine diphosphate galactose (hereinafter referred to as UDP-Gal).
  • Pgi is an enzyme involved in the pathway that produces LNTII.
  • microorganism is a microorganism capable of producing GDP-fucose and/or LNT means that the microorganism is cultured in a medium, and the GDP-fucose and/or LNT accumulated in the culture is analyzed using a sugar analyzer or a high-speed liquid liquid as described below. This can be confirmed by detection using a general technique such as a chromatography mass spectrometer.
  • the microorganism used as the parent strain of the present invention is preferably a microorganism to which the ability to supply GDP-fucose and/or LNT, which is a reaction substrate for ⁇ 1,2-fucosyltransferase, is artificially imparted or enhanced.
  • the base sequence encoding rcsA (accession number BAA15776.1), the base sequence encoding mannose-6-phosphate isomerase (accession number BAA15361.1), phosphoman Base sequence encoding Nomutase (accession number BAA15901.1), base sequence encoding mannose-1-phosphate guanylyltransferase (accession number BAA15905.1), encoding GDP mannose-4,6-dehydratase (accession number BAA15909.1), a base sequence that encodes GDP-L-fucose synthase (accession number BAA15908.1), a base sequence that encodes lacY (accession number BAE76125.1), and a base sequence that encodes galT.
  • rcsA accession number BAA15776.1
  • the base sequence encoding mannose-6-phosphate isomerase (accession number BAA15361.1)
  • phosphoman Base sequence encoding Nomutase (ac
  • nucleotide sequence encoding lgtA (SEQ ID NO: 29), nucleotide sequence encoding lgtA (SEQ ID NO: 31), nucleotide sequence encoding glmS (accession number BAE77559.1), nucleotide sequence encoding glmM (accession number BAE77220.1) , a base sequence encoding glmU (accession number BAE77558.1), a base sequence encoding Pgm (accession number BAA35337.1), a base sequence encoding galU (accession number BAA36104.1), a base sequence encoding galE At least one base sequence selected from the base sequence (accession number BAA35421.1), the base sequence encoding galF (accession number BAA15896.1), and the base sequence encoding pgi (accession number BAE78027.1). It is preferable to use a genetically modified microorganism containing the parent strain as
  • a genetically modified microorganism as a parent strain, preferably containing a base sequence encoding lacY, a base sequence encoding rcsA, a base sequence encoding galT, and a base sequence encoding lgtA.
  • the genetically modified microorganism has an increased ability to produce GDP-fucose and/or LNT compared to a non-genetically modified parent strain.
  • microorganisms has at least one activity selected from lacY activity, rcsA activity, galT activity, lgtA activity, glmS activity, glmM activity and glmU activity, pgm activity, galU activity, galE activity, galF activity, pgi activity, or Any known method may be used to produce microorganisms with enhanced activity. Specific examples include methods using various genetic manipulations (Syst Microbiol Biomanufact, 2021, 1, 291).
  • the parent strain further has reduced or deleted lacZ activity and/or colanic acid synthesis activity as described above.
  • lacZ activity and/or colanic acid synthesis activity are preferably reduced or deleted, and more preferably, the base sequence encoding lacZ and/or the colanic acid production-related protein is encoded. It is preferable to use a genetically modified microorganism as a parent strain that does not contain a base sequence encoding the wcaJ, wzxC, wcaK, wcaL, or wcaM gene.
  • the genetically modified microorganism has an increased ability to produce GDP-fucose and/or LNT compared to a non-genetically modified parent strain.
  • E. coli in which ⁇ -galactosidase activity and/or colanic acid synthesis activity is reduced or lost.
  • Specific examples include methods using various genetic manipulations (Metabolic Engineering, 2017, 41:23-38).
  • the parent microorganism is transformed with a recombinant DNA containing DNA encoding the protein.
  • examples include microorganisms that have an increased number of copies of the gene than the parent strain, which are obtained by doing so.
  • the copy number of the gene is increased compared to the parent strain, which is obtained by transforming a parent strain microorganism with a recombinant DNA containing a DNA encoding the protein according to any one of [1] to [3] above.
  • a microorganism by transforming a parent microorganism with a recombinant DNA containing a DNA encoding the protein according to any one of [1] to [3] above, the number of copies of the gene can be determined on the chromosomal DNA. Examples include microorganisms in which the gene has been increased, and microorganisms in which the gene is carried outside of the chromosomal DNA as plasmid DNA.
  • the DNA encoding the protein according to any one of [1] to [3] above may be any DNA encoding a protein having the activity of the protein according to any one of [1] to [3] above.
  • any DNA may be used, a specific example is DNA 1 selected from the group consisting of [4] to [7] below.
  • DNA encoding the protein according to any one of [1] to [3] above [5] DNA consisting of the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9, 13, 17 or 25
  • hybridize means that DNA hybridizes to DNA having a specific base sequence or a part of the DNA. Therefore, DNA having the specific base sequence or a portion thereof can be used as a probe for Northern or Southern blot analysis, and can also be used as an oligonucleotide primer for PCR analysis.
  • DNA used as a probe examples include DNA with at least 100 bases or more, preferably 200 bases or more, and more preferably 500 bases or more.
  • the DNA used as a primer can be at least 10 bases or more, preferably 15 bases or more.
  • DNA that hybridizes under stringent conditions can also be obtained by following the instructions attached to a commercially available hybridization kit.
  • commercially available hybridization kits include the Random Primed DNA Labeling Kit (manufactured by Roche Diagnostics), which prepares probes by the random prime method and performs hybridization under stringent conditions.
  • the above stringent conditions mean that the DNA-immobilized filter and the probe DNA are mixed in 50% formamide, 5x SSC (750 mmol/L sodium chloride, 75 mmol/L sodium citrate), and 50 mmol/L phosphoric acid. After overnight incubation at 42°C in a solution containing sodium (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/L denatured salmon sperm DNA, e.g. Conditions for washing the filter in a 0.2 ⁇ SSC solution can be mentioned.
  • DNAs that can be hybridized under the above-mentioned stringent conditions include SEQ ID NOs: 1, 3, 5, 7, 9, 13, Examples include DNAs having at least 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more identity with DNA consisting of the base sequence represented by 17 or 25.
  • the DNA encoding the protein of [1] above can be produced using a microorganism, preferably a probe DNA that can be designed based on the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9, 13, 17 or 25. is obtained by Southern hybridization on a chromosomal DNA library of a microorganism or by PCR using the chromosomal DNA of the microorganism as a template [PCR Protocols, Academic Press (1990)] using primer DNA that can be designed based on the base sequence. can.
  • the origin of the chromosomal DNA of the microorganism used in the operation is not particularly limited, but for example, the genus Neisseria (Neisseriaceae, Neisseriales), the genus Francisella, the genus Methylobacter, the genus Amphritea, the genus Sterolibacteriaceae, or the genus He Examples include bacteria of the genus licobacter. Among these, Francisella sp.
  • FSC1006 strain Neisseriaceae bacterium DSM 100970 strain, Methylobacter tundripaludum strain, Amphritea japonica strain, Sterolibacte riaceae bacterium J5B strain, Neisseriales bacterium strain, or Helicobacter mustelae ATCC43772 strain.
  • strains are available from public institutions, for example, Francisella sp. Strain FSC1006 is available from the Swedish Defense Research Agency. Additionally, Neisseriaceae bacterium DSM 100970 strain is available from the University of Malaya. Furthermore, Methylobacter tundripaludum strain, Amphritea japonica strain, and Helicobacter mustelae ATCC43772 strain were collected from the American Type Culture Collection (American Type Cult. ure Collection, ATCC).
  • the DNA encoding the mutant protein of [2] above is subjected to error-prone PCR, etc. using, for example, DNA consisting of the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9, 13, 17, or 25 as a template. It can be obtained by
  • PCR using a pair of PCR primers each having a nucleotide sequence at the 5' end designed to introduce the desired mutation (deletion, substitution, insertion, or addition) [Gene, 77, 51 (1989 )] can also obtain DNA encoding the mutant protein of [2] above.
  • the DNA can also be obtained by following the instructions attached to a commercially available partial-specific mutagenesis kit.
  • a commercially available part-specific mutagenesis kit for example, PrimeSTAR (registered trademark) Mutagenesis Basal Kit (manufactured by Takara Bio Inc.), which can introduce mutations (deletion, substitution, insertion, or addition) into the desired mutation position, is available. Can be mentioned.
  • a pair of mutation-introducing primers with 15 bases overlapping on the 5' side is designed. do. At this time, the overlapped portion contains the desired mutation.
  • PCR is performed using the mutation introduction primer and a plasmid having the nucleotide sequence into which the desired mutation is to be introduced as a template.
  • the DNA encoding the homologous protein in [3] above, and the DNA in [6] and [7] above are, for example, SEQ ID NO: 1, 3, 5, 7, 9, 13, 17 in various gene sequence databases. or search for a nucleotide sequence having an identity of 95% or more, preferably 97% or more, more preferably 98% or more, and most preferably 99% or more with the nucleotide sequence represented by 95% or more, preferably 97% or more, more preferably 98% or more, most preferably 99% or more with the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 14, 18 or 26.
  • a method for obtaining the above DNA using a probe DNA or primer DNA that can be designed based on the nucleotide sequence or amino acid sequence obtained by the search, and a microorganism having the DNA. can be obtained using the same method.
  • the obtained DNA according to any one of [4] to [7] above is inserted into a vector by a conventional method, either as it is or after being cut with an appropriate restriction enzyme, and the obtained recombinant DNA is introduced into a host cell.
  • a commonly used base sequence analysis method such as the dideoxy method [Proc. Natl. Acad. Sci. , USA, 74, 5463 (1977)] or by analysis using a base sequence analyzer such as Applied Biosystems 3500 Genetic Analyzer or Applied Biosystems 3730 DNA Analyzer (both manufactured by Thermo Fisher Scientific).
  • the base sequence of the DNA can be determined.
  • Any host cell that can be used to determine the base sequence of the DNA may be any cell that can be introduced with the vector and propagated; for example, Escherichia coli DH5 ⁇ , Escherichia coli HST08 Premium, Escherichia coli HST02.
  • Examples of the above vectors include pBluescript II KS (+), pPCR-Script Amp SK (+) (all manufactured by Agilent Technologies), pT7Blue (manufactured by Merck Millipore), and pCRII (manufactured by Thermo Fisher Scientific). ), pCR-TRAP (manufactured by Gene Hunter), and pDIRECT (Nucleic Acids Res., 18, 6069, 1990).
  • Any method for introducing recombinant DNA into host cells can be used, such as a method using calcium ions [Proc. Natl. Acad. Sci. , USA, 69, 2110 (1972)], protoplast method (Japanese Unexamined Patent Publication No. 63-248394), electroporation method [Nucleic Acids Res. , 16, 6127 (1988)].
  • full-length DNA can be obtained by Southern hybridization of a chromosomal DNA library using the partial-length DNA as a probe.
  • the desired DNA can also be prepared by chemical synthesis based on the determined DNA base sequence using an NTS M series DNA synthesizer manufactured by Nippon Techno Service Co., Ltd., or the like.
  • a recombinant DNA containing a DNA encoding a protein according to any one of [1] to [3] above means that the DNA is capable of autonomous replication or integration into the chromosome in the parent strain, and It refers to recombinant DNA that has been incorporated into an expression vector that contains a promoter at a location where the DNA can be transcribed.
  • the recombinant DNA is a recombinant DNA that can be integrated into the chromosome, it does not need to contain a promoter.
  • the copy number of the gene is increased compared to the parent strain, which is obtained by transforming a parent strain microorganism with a recombinant DNA containing a DNA encoding the protein according to any one of [1] to [3] above.
  • Microorganisms can be obtained by the following method.
  • a suitable length of DNA containing a portion encoding the protein is prepared.
  • bases in the base sequence of the portion encoding the protein so that it becomes the optimal codon for expression in the host cell, a transformant with improved production rate can be obtained.
  • Recombinant DNA is produced by inserting the DNA fragment downstream of the promoter of an appropriate expression vector.
  • the recombinant DNA is composed of a promoter, a ribosome binding sequence, the DNA described in any one of [4] to [7] above, and a transcription termination sequence.
  • a promoter a ribosome binding sequence
  • the DNA described in any one of [4] to [7] above and a transcription termination sequence.
  • it is a recombinant DNA.
  • a gene that controls a promoter may be included.
  • a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the start codon is adjusted to an appropriate distance (for example, 6 to 18 bases).
  • an appropriate distance for example, 6 to 18 bases.
  • a transcription termination sequence is not necessarily required for expression of the DNA, it is preferable to place the transcription termination sequence immediately below the structural gene.
  • expression of a protein with ⁇ 1,2-fucosyltransferase activity can be achieved by substituting bases in the base sequence of the part encoding the protein with ⁇ 1,2-fucosyltransferase activity so that it becomes the optimal codon for expression in the host. quantity can be improved.
  • proteins having ⁇ 1,2-fucosyltransferase activity include the proteins described in any one of [1] to [3] above. Information on codon usage in the parent strain used in the present invention is available through public databases.
  • the expression vector is not particularly limited as long as it is an appropriate nucleic acid molecule for introducing, propagating, and expressing the target DNA into a host, and includes not only plasmids but also artificial chromosomes, vectors using transposons, and cosmids. It's okay.
  • expression vectors such as pColdI, pSTV28, pSTV29, pUC118 (all manufactured by Takara Bio), pMW118, pMW119 (all manufactured by Nippon Gene), pET21a, pCOLADuet- 1, pCDFDuet-1, pCDF-1b, pRSF-1b (all manufactured by Merck Millipore), pMAL-c5x (manufactured by New England Biolabs), pGEX-4T-1, pTrc99A (all manufactured by GE Healthcare Biosciences) pTrcHis, pSE280 (all manufactured by Thermo Fisher Scientific), pGEMEX-1 (manufactured by Promega), pQE-30, pQE80L (all manufactured by Qiagen), pET-3, pBluescript II SK (+) , pBluescriptII
  • any promoter may be used as long as it functions in the cells of microorganisms belonging to the genus Escherichia.
  • promoters of genes involved in amino acid biosynthesis such as trp promoter and ilv promoter Promoters derived from Escherichia coli, phages, etc., such as , uspA promoter, lac promoter, PL promoter, PR promoter, and PSE promoter, can be used.
  • examples include promoters that have been artificially designed and modified, such as a promoter in which two trp promoters are arranged in series, a tac promoter, a trc promoter, a lacT7 promoter, and a letI promoter.
  • expression vectors such as pCG1 (Japanese Unexamined Patent Publication No. 57-134500), pCG2 (Japanese Unexamined Patent Publication No. 58-35197), pCG4 (Japanese Unexamined Patent Publication No. 57-183799), pCG11 (Japanese Unexamined Patent Application No. 57-134500), pCG116, pCE54, pCB101 (all Japanese Unexamined Patent Application No. 58-105999), pCE51, pCE52 , pCE53 [both Molecular and General Genetics, 196, 175 (1984)].
  • any promoter may be used as long as it functions in the cells of a microorganism belonging to the genus Corynebacterium.
  • the P54-6 promoter [Appl. Microbiol. Biotechnol. , 53, 674-679 (2000)] can be used.
  • examples of expression vectors include YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, pHS15, and the like.
  • any promoter may be used as long as it functions in the cells of the yeast strain, such as PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal1 promoter, gal10 promoter, heat promoter, etc.
  • promoters such as shock polypeptide promoter, MF ⁇ 1 promoter, and CUP1 promoter.
  • Recombinant DNA used in the production method of the present invention can be produced by inserting the DNA fragment described in any one of [4] to [7] above into the downstream of the promoter of an appropriate expression vector.
  • a method for introducing the recombinant DNA into the parent strain as a plasmid capable of autonomous replication for example, a method using calcium ions [Proc. Natl. Acad. Sci. , USA, 69, 2110 (1972)], the protoplast method (Japanese Unexamined Patent Publication No. 63-248394) and the electroporation method [Nucleic Acids Res. , 16, 6127 (1988)].
  • Examples of methods for integrating recombinant DNA into the chromosome of host cells include homologous recombination.
  • Examples of the homologous recombination method include a method using a plasmid for homologous recombination that can be prepared by ligating with plasmid DNA having a drug resistance gene that cannot autonomously replicate within the host cell into which the drug is to be introduced.
  • Examples of methods using homologous recombination frequently used in Escherichia coli include, for example, a method of introducing recombinant DNA using a lambda phage homologous recombination system [Proc. Natl. Acad. Sci. USA, 97, 6640-6645 (2000)].
  • the recombinant DNA has been introduced into the parent strain as a plasmid capable of autonomous replication or has been integrated into the chromosome of the parent strain means that, for example, the microorganism amplifies the gene originally contained in the chromosomal DNA.
  • the gene introduced by transformation can be confirmed by a method such as confirming the amplification product by PCR using an amplifiable primer set.
  • an increase in the amount of transcription of the DNA or the amount of production of the protein encoded by the DNA can be determined by measuring the amount of transcription of the gene of the microorganism by Northern blotting or by Western blotting of the amount of production of the protein by the microorganism. This can be confirmed by comparing it with that of the parent strain.
  • the microorganism created by the above method is a microorganism in which the activity of the protein according to any one of [1] to [3] above is enhanced and the productivity of LNFPI is improved compared to the parent strain
  • the culture solution is appropriately diluted and centrifuged, and the LNFPI contained in the supernatant or the bacterial cells is analyzed using a sugar analyzer or high-performance liquid chromatograph mass spectrometer described below, and compared with that of the parent strain. This can be confirmed by
  • the above-mentioned microorganism selectively transfers fucose to the N-acetylglucosamine site of LNT by enhancing the activity of the protein described in any one of [1] to [3] above compared to the parent strain, The productivity of LNFPI can be improved.
  • Such microorganisms include, for example, the NNN/pGsFucT strain with enhanced expression of the GsFucT gene, which will be described later in Examples, the NNN/pFsFucT strain with enhanced expression of the FsFucT gene, the NNN/pNbFucT1 strain with enhanced expression of the NbFucT1 gene, NNN/pMtFucT strain with enhanced expression of MtFucT gene, NNN/pAjFucT strain with enhanced expression of AjFucT gene, NNN/pSbFucT strain with enhanced expression of SbFucT gene, NNN/pPsFucT strain with enhanced expression of PsFucT gene, NbFucT2 gene Examples include the NNN/pNbFucT2 strain with enhanced expression of the HMFT gene, and the NNN/pHMFT strain with enhanced expression of the HMFT gene.
  • microorganisms such as microorganisms with enhanced expression of GsFucT, FsFucT, NbFucT1, MtFucT, AjFucT, SbFucT, NbFucT2, or HMFT
  • ⁇ 1,2- which can selectively transfer fucose to N-acetylglucosamine sites. Fucose transferase activity is enhanced and LNFPI productivity can be improved. Therefore, LNFPI can be efficiently produced by using these microorganisms.
  • these microorganisms can also be used to produce fucosylated oligosaccharides other than LNFPI, such as fucosyllactose such as 2'FL and 3'FL.
  • the method for producing a fucose-containing carbohydrate of the present invention includes preparing the above-described transformant, and producing oligosaccharides in a culture using the transformant. Examples include a method for producing a fucose-containing carbohydrate.
  • the fucose-containing carbohydrate is preferably LNFPI.
  • the method for culturing the transformant described above can be carried out according to the usual methods used for culturing microorganisms.
  • the medium for culturing the transformant may be a natural medium, as long as it contains carbon sources, nitrogen sources, inorganic salts, etc. that can be assimilated by the microorganism, and can efficiently culture the transformant.
  • Either a synthetic medium or a synthetic medium may be used.
  • the carbon source may be anything that can be assimilated by microorganisms, such as glucose, fructose, sucrose, molasses containing these, sugars such as starch or starch hydrolysates, organic acids such as acetic acid or propionic acid, or , alcohols such as glycerol, ethanol, and propanol.
  • microorganisms such as glucose, fructose, sucrose, molasses containing these, sugars such as starch or starch hydrolysates, organic acids such as acetic acid or propionic acid, or , alcohols such as glycerol, ethanol, and propanol.
  • nitrogen sources include ammonium salts of inorganic or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate or ammonium phosphate, other nitrogen-containing compounds, as well as peptone, meat extract, yeast extract, corn steep liquor. , casein hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented microbial cells and digested products thereof, and the like.
  • inorganic salts include primary potassium phosphate, secondary potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.
  • a microorganism having the ability to produce glucose, lactose, lactose monohydrate, etc. may be used as a transformant in the method for producing a fucose-containing carbohydrate.
  • glucose, lactose, lactose monohydrate, etc. may be added to the medium during culturing.
  • GDP-fucose or LNT may be added to the medium.
  • glucose, lactose, lactose monohydrate, or LNT is added from the sugar to glucose, lactose, lactose monohydrate, or LNT.
  • Glucose, lactose, lactose monohydrate, LNT, etc. may be supplied to the transformant of the present invention by culturing a microorganism capable of producing the same as the transformant of the present invention. .
  • ⁇ -galactosidase and WcaJ are not present in the medium.
  • Cultivation is usually preferably carried out under aerobic conditions such as shaking culture, deep aeration agitation culture, or jar fermenter.
  • the culture temperature is usually 30 to 37°C, and the culture time is usually 24 hours to 3 days.
  • the pH of the culture solution during cultivation is usually maintained at 6.0 to 8.0.
  • the pH is adjusted using an inorganic or organic acid, alkaline solution, urea, calcium carbonate, ammonia, or the like.
  • a fucose-containing carbohydrate can be produced by producing a fucose-containing carbohydrate in the culture.
  • fucose-containing carbohydrates can be collected from the supernatant.
  • fucose-containing carbohydrates accumulate in the bacterial cells, for example, the bacterial cells are disrupted by ultrasonication, and the cells are removed by centrifugation, and then the resulting supernatant is extracted using an ion exchange resin method. Carbohydrates can be collected.
  • a desired fucose-containing carbohydrate can also be produced by further adding other sugars to the fucose-containing carbohydrate in the culture or the collected fucose-containing carbohydrate.
  • [Analysis example] (1) Analysis and quantification of LNFPI, 2'FL, or lactose
  • analysis and quantification of LNFPI, 2'FL, or lactose were performed according to the procedures shown below.
  • the culture solution containing the microorganisms after culturing was centrifuged, and the supernatant was collected.
  • the precipitated bacterial cells were suspended in the same amount of water as the original culture solution, and an equal amount of chloroform was added to disrupt the bacterial cells, followed by centrifugation, and the resulting supernatant water phase was used as the bacterial intracellular fraction.
  • Example 1 Creation of microorganisms expressing various ⁇ 1,2-fucosyltransferases (1) Creation of host strains ⁇ Obtaining DNA fragments to be used as markers in gene deletion> PCR was performed using DNA consisting of the base sequences represented by SEQ ID NOs: 37 and 38 as a primer set and pCatSac (Appl Environ Microbiol (2013) 79, 3033-3039) as a template to detect the chloramphenicol resistant cat gene and sucrose sensitivity. A cat-sacB fragment containing the sacB gene was obtained.
  • DNA encoding ⁇ -galactosidase (hereinafter referred to as lacZ gene), DNA encoding lactose permease (hereinafter referred to as lacY gene), and DNA encoding colanic acid production-related proteins (hereinafter referred to as wcaJ, wzxC, wcaK). , wcaL or wcaM gene) was created by the following method.
  • lacZ and lacY (hereinafter referred to as lacZY), and wcaJ, wzxC, wcaK, wcaL, and wcaM (hereinafter referred to as wcaJ-wzxC-wcaKLM) each form an operon on the E. coli genome.
  • PCR was performed using DNA consisting of the base sequence shown in "Primer set" in Table 1 as a primer set, and each DNA fragment was amplified.
  • lacZ upstream 1 and lacZ upstream 2 include a region from the start codon of the lacZ gene to about 1000 bp upstream of the start codon.
  • lacY downstream 1 and lacY downstream 2 include a region from about 50 bp to about 1000 bp downstream of the stop codon of the lacY gene.
  • lacZY::cat-sacB A DNA fragment (hereinafter referred to as lacZY::cat-sacB) consisting of a sequence in which a cat-sacB fragment was inserted into the sequences surrounding the lacZ and lacY genes was obtained.
  • PCR was performed using DNA consisting of the base sequences represented by SEQ ID NOs: 40 and 42 as a primer set, and lacZ A DNA fragment (hereinafter referred to as ⁇ lacZY) consisting of a sequence in which upstream and lacY downstream were directly linked was obtained.
  • ⁇ lacZY lacZ A DNA fragment
  • lacZY::cat-sacB fragment was transferred to plasmid pKD46, which contains the gene encoding lambda recombinase [Datsenko, K. et al. A. , Warner, B. L. , Proc. Natl. Acad. Sci. , USA, Vol. 97, 6640-6645 (2000)] into the W3110S3GK strain (NBRC114657) by electroporation, and a transformant (lacZY gene is lacZY::cat) that showed chloramphenicol resistance and sucrose sensitivity -sacB transformant) was obtained.
  • the ⁇ lacZY fragment was introduced into the transformant by electroporation to obtain a transformant exhibiting chloramphenicol sensitivity and sucrose resistance (a transformant in which lacZY::cat-sacB was replaced with ⁇ lacZY). Among them, transformants exhibiting ampicillin sensitivity (transformants in which pKD46 was eliminated) were obtained.
  • the transformant was named W3110S3GK ⁇ lacZY.
  • PCR was performed using the W3110 strain genomic DNA as a template and DNA consisting of the base sequence shown in "Primer Set" in Table 2 as a primer set to obtain each amplified DNA fragment.
  • wcaJ upstream 1 and wcaJ upstream 2 include a region from the start codon of the wcaJ gene to about 1000 bp upstream of the start codon.
  • wcaM downstream 1 and wcaM downstream 2 include a region from the stop codon of the wcaM gene to about 1000 bp downstream of the stop codon.
  • PCR was performed using DNA consisting of the base sequences represented by SEQ ID NOs: 46 and 48 as a primer set, and wcaJ A DNA fragment consisting of a cat-sacB fragment inserted into the sequence surrounding the -wzxC-wcaKLM operon (hereinafter referred to as wcaJ-wzxC-wcaKLM::cat-sacB) was obtained.
  • PCR was performed using DNA consisting of the base sequences represented by SEQ ID NOs: 46 and 48 as a primer set, and wcaJ-wzxC-wcaKLM was obtained.
  • a DNA fragment (hereinafter referred to as ⁇ wcaJ-wzxC-wcaKLM) consisting of a sequence in which wcaJ upstream and wcaM downstream were directly linked was obtained.
  • the wcaJ-wzxC-wcaKLM::cat-sacB fragment was introduced into the W3110S3GK ⁇ lacZY constructed above by electroporation, and a transformant (wcaJ-wzxC-wcaKLM) that showed chloramphenicol resistance and sucrose sensitivity was obtained.
  • a transformant in which wcaJ-wzxC-wcaKLM::cat-sacB was substituted was obtained.
  • the ⁇ wcaJ-wzxC-wcaKLM fragment was introduced into the transformant by electroporation, and a transformant showing chloramphenicol sensitivity and sucrose resistance (wcaJ-wzxC-wcaKLM::cat-sacB is ⁇ wcaJ-wzxC -wcaKLM) was obtained. Furthermore, a transformant exhibiting ampicillin sensitivity (transformant in which pKD46 was eliminated) was obtained. The transformant was named W3110S3GK ⁇ lacZY ⁇ wcaJM.
  • Cv ⁇ 3GalT Chromobacterium violaceum ATCC553 strain consisting of the amino acid sequence represented by SEQ ID NO: 34, and Neisseria polysaccharea ATCC represented by SEQ ID NO: 36.
  • Escherichia coli containing a plasmid for gene expression in which the gene encoding ⁇ 1,3-N-acetylglucosamine transferase (hereinafter referred to as NpLgtA) derived from the W3110 strain and the lacY gene derived from the W3110 strain were arranged was constructed by the following method.
  • PCR was performed using DNA consisting of the base sequence shown in “Primer Set” in Table 3 as a primer set and the DNA listed in “Template” in Table 3 as a template to obtain each amplified DNA fragment.
  • the DNA represented by SEQ ID NO: 33 was obtained from ACS Catal. 2019, 9(12), 10721-10726, the base sequence of the gene encoding ⁇ 1,3-galactosyltransferase Cv ⁇ 3GalT derived from Chromobacterium violaceum ATCC553 is codon-optimized for expression in E. coli, and is an artificial DNA. Prepared by synthesis.
  • the DNA represented by SEQ ID NO: 35 is obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,3-N-acetylglucosamine transferase NpLgtA derived from Neisseria polysaccharea ATCC 43768 strain represented by SEQ ID NO: 36 in order to express it in E. coli. This DNA was prepared by artificial synthesis.
  • the base sequences represented by SEQ ID NOs: 52 and 53 and SEQ ID NOs: 54 and 55 include complementary sequences at their respective 5' ends.
  • Cv ⁇ 3galT-NplgtA-lacY DNA consisting of the base sequences represented by SEQ ID NOs: 51 and 56 as a primer set, and the three fragments were ligated.
  • a DNA hereinafter referred to as Cv ⁇ 3galT-NplgtA-lacY
  • PCR was performed using plasmid pUAKQE31 (Appl. Environ. Microbiol. 2007, 73:6378-6385) as a template to obtain an approximately 4.7 kb vector. Got the pieces.
  • the base sequences represented by SEQ ID NOs: 51 and 57 and SEQ ID NOs: 56 and 58 include complementary sequences at their respective 5' ends.
  • the expression plasmid pUAKQE-Cv ⁇ 3galT-NplgtA-lacY was obtained by ligating the Cv ⁇ 3galT-NplgtA-lacY fragment obtained above and the vector fragment using In-Fusion HD Cloning Kit (manufactured by Takara Bio Inc.).
  • E. coli having pUAKQE-Cv ⁇ 3galT-NplgtA-lacY was created and named strain NNN.
  • PCR was performed using DNA consisting of the base sequences represented by SEQ ID NOs: 59 and 60 as a primer set and W3110 strain prepared by a conventional method as a template to obtain an rcsA fragment.
  • PCR was performed using plasmid pSTV29 (manufactured by Takara Bio Inc.) as a template and DNA consisting of the base sequences represented by SEQ ID NOs: 61 and 62 as a primer set to obtain a vector fragment of approximately 2.9 kb.
  • the base sequences represented by SEQ ID NOs: 59 and 61 and SEQ ID NOs: 60 and 62 include complementary sequences at their respective 5' ends.
  • the expression vector pSTV-rcsA was obtained by ligating the rcsA fragment obtained above and the vector fragment using In-Fusion HD Cloning Kit (manufactured by Takara Bio Inc.).
  • PCR was performed using DNA consisting of the base sequence shown in "Primer set” in Table 4 as a primer set and the DNA listed in "Template” in Table 4 as a template to obtain each amplified DNA fragment.
  • the DNA represented by SEQ ID NO: 1 is Gramella sp. represented by SEQ ID NO: 2. This is a DNA in which the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase GsFucT derived from the MAR_2010_147 strain has been codon-optimized for expression in E. coli, and was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 3 is Francisella sp. represented by SEQ ID NO: 4. This is a DNA in which the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase FsFucT derived from the FSC1006 strain has been codon-optimized for expression in E. coli, and was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 5 is a DNA obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase NbFucT1 derived from Neisseriaceae bacterium DSM strain 100970 represented by SEQ ID NO: 6 in E. coli. and was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 7 is a DNA obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase MtFucT derived from Methylobacter tundripaludum strain represented by SEQ ID NO: 8 in order to express it in E. coli. , prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 9 is a DNA obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase AjFucT derived from Amphritea japonica strain represented by SEQ ID NO: 10 in order to express it in Escherichia coli. , prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 11 is a DNA obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase PaFucT derived from Pseudohalocynthiibacter aestuariivens strain represented by SEQ ID NO: 12 in E. coli. , prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 13 is a DNA obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase SbFucT derived from Sterolibacteriaceae bacteria J5B strain represented by SEQ ID NO: 14 in order to express it in Escherichia coli. Yes, it was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 15 is derived from Pedobacter sp. represented by SEQ ID NO: 16.
  • This DNA is a DNA in which the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase PsFucT derived from strain CF074 is codon-optimized for expression in E. coli, and was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 17 is a DNA obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase NbFucT2 derived from Neisseriales bacterium strain represented by SEQ ID NO: 18 in order to express it in E. coli. , prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 19 is a DNA in which the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase CMfFucT derived from Candidatus Methylobacter favarea strain represented by SEQ ID NO: 20 is codon-optimized for expression in E. coli. Yes, it was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 21 is a DNA obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase WbwK derived from Escherichia coli O86 strain represented by SEQ ID NO: 22 in order to express it in Escherichia coli. Yes, it was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 23 is a DNA obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase WbiQ derived from Escherichia coli O127 strain represented by SEQ ID NO: 24 in order to express it in Escherichia coli. Yes, it was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 25 is the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase HMFT derived from Helicobacter mustelae ATCC43772 strain represented by SEQ ID NO: 26, and was prepared by artificial synthesis.
  • PCR was performed to obtain a vector fragment of approximately 3.5 kb.
  • the base sequences represented by 82, 84, 86, 88 and 95 include complementary sequences at their respective 5' ends.
  • plasmids expressing various ⁇ 1,2-fucosyltransferases pGsFucT, pFsFucT, pNbFucT1, pMtFucT, pAjFucT, pPaFucT, pSbFucT, pPsFucT, pNbFucT2, pCMfFucT, pWbwK, pWbiQ and pHMFT were constructed.
  • NNN/pGsFucT strain NNN/pFsFucT strain, NNN/pNbFucT1 strain, NNN/pMtFucT strain, NNN/pAjFucT strain, NNN/pPaFucT strain, NNN/pSbFucT strain, NNN/pPsFucT strain, NNN/pNbFucT2.
  • strain NNN/pCMfFucT The strains were named NNN/pWbwK strain, NNN/pWbiQ strain, NNN/pHMFT strain, and NNN/pCtrl strain.
  • PCR was performed using DNA consisting of the base sequence shown in "Primer set” in Table 5 as a primer set and the DNA listed in “Template” in Table 5 as a template to obtain each amplified DNA fragment.
  • the DNA represented by SEQ ID NO: 27 is obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase FucT54 derived from Sideroxydans lithotrophicus ES-11 strain represented by SEQ ID NO: 28 for expression in E. coli. It is DNA and was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 29 is obtained by codon-optimizing the base sequence of the gene encoding ⁇ 1,2-fucosyltransferase Te2FT derived from Thermosynechococcus elongatus BP-1 strain represented by SEQ ID NO: 30 for expression in E. coli. It is DNA and was prepared by artificial synthesis.
  • the DNA represented by SEQ ID NO: 31 is the base sequence of the gene encoding the ⁇ 1,2-fucosyltransferase FutC derived from Helicobacter pylori strain 26695 represented by SEQ ID NO: 32, and was prepared by artificial synthesis.
  • PCR was performed using DNA consisting of the base sequences represented by SEQ ID NOs: 61 and 95 as a primer set, and a vector fragment of approximately 3.5 kb was obtained. Obtained.
  • the base sequences represented by SEQ ID NOs: 89, 91, 93, and 61, and SEQ ID NOs: 90, 92, 94, and 95 each include a complementary sequence at their 5' ends.
  • Example 1 (1) By using the ⁇ 1,2-fucosyltransferase expression plasmid obtained above to transform the NNN strain constructed in Example 1 (1), Escherichia coli having various plasmids were constructed, and NNN/pFucT54 strain, NNN/pFucT54 strain, and The strains were named NNN/pTe2FT strain and NNN/pFutC strain.
  • Example 2 Productivity evaluation of LNFPI NNN/pGsFucT strain, NNN/pFsFucT strain, NNN/pNbFucT1 strain, NNN/pMtFucT strain, NNN/pAjFucT strain, NNN/pPaFucT strain, obtained in Example 1 (2) above, The productivity of LNFPI was evaluated for the NNN/pSbFucT strain, NNN/pPsFucT strain, NNN/pNbFucT2 strain, NNN/pCMfFucT strain, NNN/pWbwK strain, NNN/pWbiQ strain, and NNN/pHMFT strain. As positive controls, the NNN/pTe2FT strain and NNN/pFutC strain constructed in the comparative example were used. As a negative control, the NNN/pCtrl strain constructed in Example 1 (2) was used.
  • Each strain was cultured at 37°C for 18 hours on LB plates containing 100 mg/L kanamycin and 25 mg/L chloramphenicol.
  • the cells were inoculated into a plastic test tube containing 2 mL of culture medium and cultured with shaking at 30° C. for 15 hours. Thereafter, the obtained culture solution was transferred to a production medium containing 100 mg/L kanamycin and 25 mg/L chloramphenicol [glucose 30 g/L, lactose monohydrate 10 g/L, magnesium sulfate heptahydrate 2 g/L].
  • the culture solution was centrifuged and diluted appropriately, and LNFPI, LNTII, or LNT contained in the supernatant and intracellular fraction was analyzed using UFLC & LCMS-8040. The results are shown in Table 6. Further, the results of the total LNFPI production amount of the supernatant and intracellular fraction are shown in FIG. 2.
  • NNN/pGsFucT strain compared to the strain expressing FutC or Te2FT, which is known as ⁇ 1,2-fucosyltransferase capable of producing LNFPI
  • NNN/pGsFucT strain compared to the strain expressing FutC or Te2FT, which is known as ⁇ 1,2-fucosyltransferase capable of producing LNFPI
  • NNN/pGsFucT strain NNN/pFsFucT strain
  • NNN/pNbFucT1 strain NNN/pMtFucT strain
  • NNN/pAjFucT strain NNN/pAjFucT strain It was found that the NNN/pSbFucT strain, NNN/pNbFucT2 strain, and NNN/pHMFT strain were able to accumulate a large amount of LNFPI both in the supernatant and within the bacterial cells.
  • FsFucT from FSC1006 and NbFucT2 from Neisseriales bacterium were selected as candidates for ⁇ 1,2-fucosyltransferase useful for LNFPI production.
  • Example 3 Production of LNFPI
  • the NNN/pFsFucT strain and the NNN/pNbFucT2 strain selected in Example 2, and the NNN/pFucT54 strain created in the comparative example as a positive control were treated with 100 mg/L of kanamycin and 25 mg/L, respectively.
  • a 2 L baffled Erlenmeyer flask containing 250 mL of sodium 5 g/L] was inoculated and cultured with shaking at 30° C. for 17 hours.
  • the obtained culture solution was transferred to a production medium containing 100 mg/L of kanamycin and 25 mg/L of chloramphenicol [glucose 20 g/L, ferrous sulfate heptahydrate 0.2 g/L, magnesium sulfate heptahydrate.
  • IPTG IPTG was added to a final concentration of 0.5 mM, and in subsequent cultures, 1-6 mL of 480 g/L glucose solution and 4 g/L lactose monohydrate were added. /h.
  • the NNN/pFsFucT strain and the NNN/pNbFucT2 strain produce fucosylated oligosaccharides 2'FL and LNFPI, indicating the possibility that FsFucT and NbFucT2 can be used for the production of these oligosaccharides.
  • the NNN/pFsFucT strain and the NNN/pNbFucT2 strain accumulate significantly more LNFPI in both the supernatant and inside the bacterial cells than the NNN/pFucT54 strain, which is a known ⁇ 1,2-fucosyltransferase-expressing strain.
  • NNN/pNbFucT2 strain produced about twice as much LNFPI as the NNN/pFucT54 strain.
  • the production of the byproduct 2'FL was significantly reduced in the NNN/pNbFucT2 strain compared to other strains, suggesting that NbFucT2 may be able to preferentially use LNT as a substrate. .
  • SEQ ID NO: 1 Gramella sp.
  • Base sequence of GsFucT derived from MAR_2010_147 SEQ ID NO: 2 Gramella sp.
  • Amino acid sequence of GsFucT derived from MAR_2010_147 SEQ ID NO: 3 Francisella sp.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

LNFPIの生産性に優れるα1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びLNFPIの製造法の提供を目的とする。ラクト-N-テトラオース(LNT)へのフコシル基転移活性を有する、配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列からなる蛋白質、又はその変異蛋白質若しくは相同蛋白質。

Description

α1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びラクト-N-フコペンタオースI(LNFPI)の製造方法
 本発明は、α1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びラクト-N-フコペンタオースI(LNFPI)の製造方法に関する。
 ヒトの母乳中に含まれるオリゴ糖(Human Milk Oligosaccharide、HMO)はプレバイオティクス素材として注目されており、乳幼児の認知機能発達や感染防御、腸内環境の改善などに有効であることが示されている(非特許文献1)。
 ラクト-N-フコペンタオースI(以下、LNFPIという。)はHMOの一種であり、ラクト-N-テトラオース(以下、LNTという。)のガラクトース2位にフコースがα1,2-結合した5糖HMOである。
 LNFPIは、2’-フコシルラクトース(以下、2’FLという。)やラクト-N-ジフコヘキサオース(以下、LNDFHIという。)に次いで母乳中に多く含まれ、同じく5糖で、LNFPIの異性体として知られるラクト-N-フコペンタオースII(以下、LNFPIIという。)やラクト-N-フコペンタオースIII(以下、LNFPIIIという。)と比較して、母乳中の含量が高いことが知られている(非特許文献2)。
 LNFPIの機能性としては、髄膜炎起因菌グループBストレプトコッカス(GBS)に対する阻害効果やノロウイルス阻害効果などが知られている(非特許文献3、4)。また、新生児の腸内において占有率の高いBifidobacterium infantis(ビフィドバクテリウム・インファンティス)は、LNFPI選択的に優位に生育が認められるという結果から、プレバイオティクスとしての機能も注目されている(非特許文献5)。
 LNFPIの製造方法としては、α1,2-フコシルトランスフェラーゼを使用した微生物発酵法や酵素反応法[One-pot multienzyme(OPME) system]が広く使用されている。特許文献1および2並びに非特許文献4、5および6には、Thermosynechococcus elongatus(サーモシネココッカス・エロンゲータス)、Sideroxydans lithotrophicus(シデロキシダンス・リトトロピクス)又はHelicobacter pylori (ヘリコバクター・ピロリ)などの微生物に由来するα1,2-フコシルトランスフェラーゼを大腸菌で過剰発現させ、LNTおよびGDP-フコースを基質として、発酵法または連続酵素反応法によりLNFPIなどのオリゴ糖を生産する方法が開示されている。
 しかしながら、前記発酵法または連続酵素反応法では、LNFPI生産において、α1,2-フコシルトランスフェラーゼが所望の基質であるLNTだけではなく共存するラクトースにも反応し副生物として2’FLが生成することが課題となっている。
 副生物を低減させる方法としては、精製された高純度のLNTを基質として用いる酵素反応法(特許文献1,非特許文献5)や、初発原料のラクトースが枯渇したタイミングでα1,2-フコシルトランスフェラーゼの発現を誘導することでLNFPIを生産させる方法が開示されている(非特許文献6)。
国際公開第2017/106864号 国際公開第2019/008133号
Int.J.Pediatrics(2019),Article ID 2390240 Nutr.Rev.(2017)75,920-933 J.Biol.Chem.(2017)292(27)11243-11249 J.Biotechnol.(2020)318,31-38 Chem.Commun.(2016)52,3899-3902 Bioorganic&Medicinal Chemistry 23(2015)6799-6806
 上述のように、α1,2-フコシルトランスフェラーゼを使用した微生物発酵法や酵素反応法が知られている。しかしながら、特許文献1、2および非特許文献4、5、6に記載の微生物由来のα1,2-フコシルトランスフェラーゼは広範な糖基質を許容しうるため、LNFPI生産において副生物として2’FLが生成することが課題となる。
 一方で、より効率的にラクトースを初発原料としてLNFPIを生産させるためには、ラクトースには糖転移せず、LNTの非還元末端ガラクトース部位に対し選択的に糖転移可能なα1,2-フコシルトランスフェラーゼが求められる。
 したがって、本発明は、LNFPIの生産性に優れるα1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びLNFPIの製造方法の提供を目的とする。
 本発明者らは、特定のアミノ酸配列からなるα1,2-フコシルトランスフェラーゼ活性を有する蛋白質を生産する能力を有する微生物を用いることにより、従来の方法と比して、効率的にLNFPIを製造できることを見出し、本発明を完成させた。
 また、LNFPI又はフコシルラクトース等のフコシル化オリゴ糖の製造に適したNeisseria属又はFrancisella属由来のフコシルトランスフェラーゼを初めて見出した。
 すなわち、本発明は以下の通りである。
1.ラクト-N-テトラオース(LNT)へのフコシル基転移活性を有する、下記[1]~[3]のいずれか1に記載の蛋白質。
[1]配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列からなる蛋白質。
[2]配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつα1,2-フコシルトランスフェラーゼ活性を有する変異蛋白質。
[3]配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、かつα1,2-フコシルトランスフェラーゼ活性を有する相同蛋白質。
2.配列番号1、3、5、7、9、13、17又は25で表される塩基配列又はその相同配列からなり、かつ前記1に記載の[1]~[3]のいずれか1に記載の蛋白質をコードするDNA。
3.前記2に記載のDNAを含有する組換え体DNA。
4.前記3に記載の組換え体DNAで宿主細胞を形質転換して得られる形質転換体。
5.前記1に記載の[1]~[3]のいずれか1の蛋白質の活性及びフコース含有糖質の生産性が増強された微生物である、前記4に記載の形質転換体。
6.前記微生物が大腸菌である、前記5に記載の形質転換体。
7.前記4~6のいずれか1に記載の形質転換体を調製すること、および該形質転換体を用いて培養物中にフコース含有糖質を生成することを含む、フコース含有糖質の製造方法。
8.前記フコース含有糖質がラクト-N-フコペンタオースI(LNFPI)である、前記7に記載の製造方法。
 本発明の蛋白質は、特定のアミノ酸配列からなることにより、LNTの非還元末端ガラクトース部位に対し糖転移可能なα1,2-フコシルトランスフェラーゼ活性を有する。本発明の蛋白質を生産する能力を有する微生物を用いることにより、従来と比して、副生物の生成を抑制し、効率的にLNFPIを製造できる。
図1は、本発明の一実施形態におけるLNFPIの生合成経路を示す。 図2は、上清および菌体内画分のLNFPI生産量の合算値の結果を示す(実施例2)。
<蛋白質、DNA、形質転換体>
 本発明の蛋白質は、ラクト-N-テトラオース(LNT)へのフコシル基転移活性を有する以下の[1]~[3]のいずれか1に記載の蛋白質である。
[1]配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列からなる蛋白質。
[2]配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、かつα1,2-フコシルトランスフェラーゼ活性を有する変異蛋白質。
[3]配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、かつα1,2-フコシルトランスフェラーゼ活性を有する相同蛋白質。
 LNTへのフコシル基転移活性をより高める観点から、前記[1]に記載の蛋白質の中でも、配列番号4、6、8、14、18又は26で表されるアミノ酸配列からなる蛋白質が好ましく、より好ましくは配列番号4又は18で表されるアミノ酸配列からなる蛋白質である。
 配列番号2で表されるアミノ酸配列からなる蛋白質は、実施例において後述するGramella sp. MAR_2010_147株由来α1,2-フコシルトランスフェラーゼGsFucTである。
 配列番号4で表されるアミノ酸配列からなる蛋白質は、実施例において後述するFrancisella sp. FSC1006株由来α1,2-フコシルトランスフェラーゼFsFucTである。
 配列番号6で表されるアミノ酸配列からなる蛋白質は、実施例において後述するNeisseriaceae bacterium DSM 100970株由来α1,2-フコシルトランスフェラーゼNbFucT1である。
 配列番号8で表されるアミノ酸配列からなる蛋白質は、実施例において後述するMethylobacter tundripaludum株由来α1,2-フコシルトランスフェラーゼMtFucTである。
 配列番号10で表されるアミノ酸配列からなる蛋白質は、実施例において後述するAmphritea japonica株由来α1,2-フコシルトランスフェラーゼAjFucTである。
 配列番号14で表されるアミノ酸配列からなる蛋白質は、実施例において後述するSterolibacteriaceae bacterium J5B株由来α1,2-フコシルトランスフェラーゼSbFucTである。
 配列番号18で表されるアミノ酸配列からなる蛋白質は、実施例において後述するNeisseriales bacterium株由来α1,2-フコシルトランスフェラーゼNbFucT2である。
 配列番号26で表されるアミノ酸配列からなる蛋白質は、実施例において後述するHelicobacter mustelae ATCC43772株由来α1,2-フコシルトランスフェラーゼHMFTである。
 本明細書において、変異蛋白質とは、元となる蛋白質中のアミノ酸残基を人為的に欠失若しくは置換、または該蛋白質中にアミノ酸残基を挿入若しくは付加して得られる蛋白質をいう。
 上記[2]の変異蛋白質において、アミノ酸が欠失、置換、挿入または付加されたとは、同一配列中の任意の位置において、1~20個のアミノ酸が欠失、置換、挿入または付加されていてもよい。欠失、置換、挿入または付加されるアミノ酸の数は好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~8個、最も好ましくは1~5個である。
 欠失、置換、挿入または付加されるアミノ酸は天然型と非天然型とを問わない。天然型アミノ酸としては、L-アラニン、L-アスパラギン、L-アスパラギン酸、L-グルタミン、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-アルギニン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリン、L-システインなどが挙げられる。
 以下に、相互に置換可能なアミノ酸の例を示す。同一群に含まれるアミノ酸は相互に置換可能である。
A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、O-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン
B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸
C群:アスパラギン、グルタミン
D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸
E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン
F群:セリン、スレオニン、ホモセリン
G群:フェニルアラニン、チロシン
 上記[2]の変異蛋白質において、置換されるアミノ酸残基として、例えば、17番目のアスパラギン残基が挙げられる。
 本明細書において、相同蛋白質とは、元となる蛋白質と構造および機能が類似することにより、その蛋白質をコードする遺伝子が進化上の起源を元の蛋白質をコードする遺伝子と同一にすると考えられる蛋白質であって、自然界に存在する生物が有する蛋白質をいう。
 相同蛋白質としては、例えば、対象となる蛋白質が有するアミノ酸配列と好ましくは90%以上、より好ましくは93%以上、さらに好ましくは95%以上、特に好ましくは97%以上の同一性を有するアミノ酸配列が挙げられる。
 アミノ酸配列および塩基配列の同一性は、Karlin and AltschulによるアルゴリズムBLAST[Pro. Natl. Acad. Sci. USA, 90, 5873(1993)]やFASTA[Methods Enzymol., 183, 63 (1990)]を用いて決定できる。このアルゴリズムBLASTに基づいて、BLASTNやBLASTXとよばれるプログラムが開発されている[J. Mol. Biol., 215, 403(1990)]。BLASTに基づいてBLASTNによって塩基配列を解析する場合には、パラメータは例えばScore=100、wordlength=12とする。また、BLASTに基づいてBLASTXによってアミノ酸配列を解析する場合には、パラメータは例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である。
 本明細書において、LNTへのフコシル基転移活性とは、ドナー基質であるGDP-フコースから、受容体基質である糖質(以下、「受容体糖質」という。)であるLNTのN-アセチルグルコサミン水酸基にフコース残基を転移する活性をいう。
 GDP-フコースからN-アセチルグルコサミン水酸基にフコース残基が転移することにより、LNFPIが生成する。本発明の一実施形態におけるLNFPIの生合成経路を図1に示す。
 本明細書において、α1,2-フコシルトランスフェラーゼ活性とは、ドナー基質であるGDP-フコースから、受容体糖質のN-アセチルグルコサミン水酸基にα1,2-結合でフコース残基を転移し、フコース含有糖質を生成する活性をいう。受容体糖質としては、LNTが好ましい。フコース含有糖質としては、LNFPIが好ましい。
 上記した変異蛋白質又は相同蛋白質が、α1,2-フコシルトランスフェラーゼ活性を有することは、例えば以下の方法により確認できる。
 まず、後述の方法により、上記活性を確認しようとする変異蛋白質又は相同蛋白質をコードするDNAを有する組換え体DNAを作製する。次に、該組換え体DNAで、親株を形質転換することにより該親株より該蛋白質の活性が高い形質転換体を作製し、該親株又は該形質転換体の培養液中に生成、蓄積したフコース含有糖質の量を比較することによって確認できる。フコース含有糖質としては、具体的には、LNFPIが挙げられる。
 本明細書において、「親株」とは、遺伝子改変及び形質転換等の対象となる元株をいう。
 本明細書において、親株としては、好ましくは原核生物または酵母菌株を、より好ましくは、エシェリヒア属、セラチア属、バチルス属、ブレビバクテリウム属、コリネバクテリウム属、ミクロバクテリウム属、若しくはシュードモナス属等に属する原核生物、またはサッカロマイセス属、シゾサッカロマイセス属、クルイベロミセス属、トリコスポロン属、シワニオミセス属、ピチア属、若しくはキャンディダ属等に属する酵母菌株を、最も好ましくは、Escherichia coli MG1655、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli KY3276、Escherichia coli W1485、Escherichia coli JM109、Escherichia coli HB101、Escherichia coli No.49、Escherichia coli W3110、Escherichia coli NY49、Escherichia coli BL21 codon plus(ストラタジーン社製)、Escherichia coli W3110S3GK(NBRC114657)、Serratia ficaria、Serratia fonticola、Serratia liquefaciens、Serratiamarcescens、Bacillus subtilis、Bacillus amyloliquefaciens、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharolyticum ATCC14066、Corynebacterium ammoniagenes、Corynebacterium glutamicum ATCC13032、Corynebacterium glutamicum ATCC14067、Corynebacterium glutamicum ATCC13869、Corynebacterium acetoacidophilum ATCC13870、Microbacterium ammoniaphilum ATCC15354、若しくはPseudomonas sp. D-0110等の原核生物、またはSaccharomyces cerevisiae、Schizosaccharomyces pombe、Kluyveromyces lactis、Trichosporon pullulans、Schwanniomyces alluvius、Pichia pastoris、若しくはCandida utilis等の酵母菌株を挙げることができる。
 親株は、GDP-フコース及び/又はLNTを生成する微生物であれば、野生株であってもよい。野生株がGDP-フコース及び/又はLNTを生成する能力を有しない場合は、GDP-フコース及び/又はLNTを供給する能力を人工的に付与した育種株であってもよい。
 親株として用いる微生物としては、例えば、以下の1)及び2)が挙げられる。
1)α1,2-フコシルトランスフェラーゼの反応基質であるGDP-フコースを供給する能力が人工的に付与又は増強された微生物
2)α1,2-フコシルトランスフェラーゼの反応基質であるLNTを供給する能力を人工的に付与又は増強された微生物
 以下、説明する。
1)α1,2-フコシルトランスフェラーゼの反応基質であるGDP-フコースを供給する能力が人工的に付与又は増強された、親株として用いる微生物
 親株としては、好ましくは、α1,2-フコシルトランスフェラーゼの反応基質であるGDP-フコースを供給する能力を人工的に付与又は増強された微生物が挙げられる。親株として用いる微生物において、GDP-フコースを供給する能力を付与又は増強する方法の具体例としては、各種遺伝子操作による方法(Metabolic Engineering(2017)41:23-38)等、公知の方法が挙げられる。
 GDP-フコースを供給する能力としては、糖からGDP-フコースを生産する能力が挙げられる。親株として用いる微生物に、糖からGDP-フコースを生産する能力を人工的に付与又は増強する方法としては、例えば、以下の(1a)~(1d)の方法が挙げられる。これらの方法は単独または組み合わせて用いてもよい。
(1a)糖からGDP-フコースを生成する生合成経路を制御する機構の少なくとも1つを緩和又は解除する方法
(1b)糖からGDP-フコースを生成する生合成経路に関与する酵素の少なくとも1つについて発現を増強する方法
(1c)糖からGDP-フコースを生成する生合成経路に関与する酵素をコードする遺伝子の少なくとも1つのコピー数を増加させる方法
(1d)糖からGDP-フコースを生成する生合成経路から該目的物質以外の代謝産物へ分岐する代謝経路の少なくとも1つを弱化又は遮断する方法
 糖からGDP-フコースを生成する生合成経路を制御する機構の具体例としては、例えば、当該生合成経路の制御に関わる転写調節因子(例えば、RcsA等)による制御機構等、公知の機構が挙げられる。RcsAは、GDP-フコースを中間体とするコラン酸生合成経路全体をアップレギュレートする調節因子である。後述のようにコラン酸生合成経路のうちGDP-フコースより下流の経路を遮断した状態でrcsAを強化することで、GDP-フコースを多く蓄積させることができる。
 糖からGDP-フコースを生成する生合成経路に関与する酵素の具体例としては、例えば、マンノース-6-リン酸イソメラーゼ、ホスホマンノムターゼ、マンノース-1-リン酸グアニリルトランスフェラーゼ、GDPマンノース-4,6-デヒドラターゼ、GDP-L-フコースシンターゼ等、公知の酵素が挙げられる。
 糖からGDP-フコースを生成する生合成経路から該目的物質以外の代謝産物へ分岐する代謝経路の具体例としては、例えば、GDP-フコースからコラン酸への代謝経路等、公知の代謝経路が挙げられる。特にコラン酸生合成経路のうちGDP-フコースより下流の経路であるWcaJ、WzxC、WcaK、WcaL又はWcaMを遮断することで、GDP-フコースの供給を高めることができる。
 親株として用いる微生物は、その細胞膜を横断する外因性L-フコースの移入を促進するように改変されていてもよい。例えば、FucPをコードする塩基配列(アクセッション番号AIZ90162)を発現又は過剰発現させることにより、細胞膜を横断する外因性L-フコースの細胞への取り込みを向上し、これによりGDP-フコースを生産するためのフコース量を高め得る。
 親株として用いる微生物は、それぞれL-フコースイソメラーゼ及びL-フクロースキナーゼをコードする遺伝子fucI及び/又はfucKが欠失していて、fucI及び/又はfucKのヌクレオチド配列が対応するポリペプチドの酵素活性を不可逆的に不活性化するように変更されているか、又はfucI及び/又はfucKの発現が損なわれているように改変されていてもよい。FucI及び/又はFucKの細胞内合成を消失させると、該細胞におけるフコース代謝が消失し、これによりGDP-フコースを生産するためのフコースの量を高め得る。
2)α1,2-フコシルトランスフェラーゼの反応基質であるLNTを供給する能力を人工的に付与又は増強された、親株として用いる微生物
 親株として用いる微生物に、LNTを供給する能力を人工的に付与する方法としては、例えば、下記(2a)~(2h)などの方法を挙げることができ、これらの方法は単独又は組み合わせて用いることができる。
(2a)糖からLNTを生成する生合成経路を制御する機構の少なくとも1つを緩和又は解除する方法
(2b)糖からLNTを生成する生合成経路に関与する酵素の少なくとも1つを発現強化する方法
(2c)糖からLNTを生成する生合成経路に関与する酵素遺伝子の少なくとも1つのコピー数を増加させる方法
(2d)LNT又はその基質となる糖を分解する機構の少なくとも1つを緩和又は解除する方法
(2e)LNT又はその基質となる糖の細胞内取り込みに関与する酵素の少なくとも1つについて発現を増強する方法
(2f)LNT又はその基質となる糖の細胞内取り込みに関与する酵素をコードする遺伝子の少なくとも1つのコピー数を増加させる方法
(2g)糖からLNTを生成する生合成経路から該目的物質以外の代謝産物へ分岐する代謝経路の少なくとも1つを弱化又は遮断する方法
(2h)野生株に比べ、LNTのアナログに対する耐性度が高い細胞株を選択する方法
 糖からLNTを生成する生合成経路に関与する酵素の具体例としては、例えば、グルコース及びラクトースからLNTを生成する生合成経路に関与する、β1,4-ガラクトシルトランスフェラーゼ(以下、galTという)活性を有する酵素や、β1,3-N-アセチルグルコサミントランスフェラーゼ(以下、lgtAという)活性を有する酵素等、公知の酵素が挙げられる。
 LNT又はその基質となる糖を分解する機構の具体例としては、例えば、LNTの基質であるラクトースの加水分解を触媒しグルコース及びガラクトースを生成するβ-ガラクトシダーゼ等、公知の酵素が挙げられる。具体的には例えば、LNTの基質であるラクトースを加水分解するβ-ガラクトシダーゼ(以下、lacZという)が挙げられ、lacZの活性を喪失させることで、ラクトース供給の低下を抑制できる。
 LNT又はその基質となる糖の細胞内取り込みに関与する酵素の具体例としては、例えば、LNTの基質であるラクトースの細胞内取り込みに関与するラクトースパーミアーゼ等、公知の酵素が挙げられる。
 上記、LNTを供給する能力を付与又は増強された微生物は、具体的には例えばLNTを供給するために、ラクトースパーミアーゼ(以下、lacYという)活性、β1,4-ガラクトシルトランスフェラーゼ(galT)活性、β1,3-N-アセチルグルコサミントランスフェラーゼ(lgtA)活性、グルタミン・フルクトース-6-リン酸トランスアミナーゼ(以下、glmSという)活性、ホスホグルコサミンムターゼ(以下、glmMという)活性およびN-アセチルグルコサミン-1-リン酸ウリジルトランスフェラーゼ/グルコサミン-1-リン酸アセチルトランスフェラーゼ(以下、glmUという)活性、ホスホグルコムターゼ(以下、pgmという)活性、UTPグルコース-1-リン酸ウリジリルトランスフェラーゼ(以下、galUという)活性、UDPグルコース-4-エピメラーゼ(以下、galEという)活性、UTPグルコース-1-リン酸ウリジリルトランスフェラーゼ(以下、galFという)活性、グルコース-6-リン酸イソメラーゼ(以下、pgiという)活性から選ばれる少なくとも1の活性を有していることが好ましく、その活性が強化されていることがより好ましい。
 このうち、lacY、galTおよびlgtAの活性を有していることが好ましく、その活性が強化されていることがさらに好ましい。
 lacYは、LNTの基質であるラクトースを細胞内に取り込む膜タンパク質である。galTは、ラクト-N-トリオースII(LNTII)からのLNTの生成に関与する酵素である。LNTはLNFPIの前駆体である。LgtAは、ラクトースおよびウリジン二リン酸-N-アセチルグルコサミン(以下、UDP-GlcNAcという)からのLNTIIの生成に関与する酵素である。LNTIIはLNTの前駆体である。
 glmS、glmMおよびglmUは、LNTIIを生成する生合成経路に関与する酵素である。Pgm、galU、galE、galFは、ウリジン二リン酸ガラクトース(以下、UDP-Galという)を生成する経路に関与する酵素である。Pgiは、LNTIIを生成する経路に関与する酵素である。
 微生物がGDP-フコース及び/又はLNTを生成し得る微生物であることは、該微生物を培地に培養し、培養物中に蓄積したGDP-フコース及び/又はLNTを、後述の糖分析装置または高速液体クロマトグラフ質量分析計等の一般的な手法を用いて検出することにより確認できる。
 本発明の親株として用いる微生物は、α1,2-フコシルトランスフェラーゼの反応基質であるGDP-フコース及び/又はLNTを供給する能力が人工的に付与又は増強された微生物であることが好ましい。従って、本発明における1実施形態では、好ましくはrcsAをコードする塩基配列(アクセッション番号BAA15776.1)、マンノース-6-リン酸イソメラーゼをコードする塩基配列(アクセッション番号BAA15361.1)、ホスホマンノムターゼをコードする塩基配列(アクセッション番号BAA15901.1)、マンノース-1-リン酸グアニリルトランスフェラーゼをコードする塩基配列(アクセッション番号BAA15905.1)、GDPマンノース-4,6-デヒドラターゼをコードする塩基配列(アクセッション番号BAA15909.1)、GDP-L-フコースシンターゼをコードする塩基配列(アクセッション番号BAA15908.1)、lacYをコードする塩基配列(アクセッション番号BAE76125.1)、galTをコードする塩基配列(配列番号29)、lgtAをコードする塩基配列(配列番号31)、glmSをコードする塩基配列(アクセッション番号BAE77559.1)、glmMをコードする塩基配列(アクセッション番号BAE77220.1)、glmUをコードする塩基配列(アクセッション番号BAE77558.1)、Pgmをコードする塩基配列(アクセッション番号BAA35337.1)、galUをコードする塩基配列(アクセッション番号BAA36104.1)、galEをコードする塩基配列(アクセッション番号BAA35421.1)、galFをコードする塩基配列(アクセッション番号BAA15896.1)、およびpgiをコードする塩基配列(アクセッション番号BAE78027.1)から選ばれる少なくとも1の塩基配列を含む、遺伝的に改変された微生物を親株とすることが好ましい。
 特に、好ましくはlacYをコードする塩基配列、rcsAをコードする塩基配列、galTをコードする塩基配列およびlgtAをコードする塩基配列を含む、遺伝的に改変された微生物を親株とすることがより好ましい。本発明の1実施形態において、前記遺伝的に改変された微生物は、GDP-フコース及び/又はLNTの産生能が、遺伝的に改変されていない親株に比較して上昇していることが好ましい。
 lacY活性、rcsA活性、galT活性、lgtA活性、glmS活性、glmM活性およびglmU活性、pgm活性、galU活性、galE活性、galF活性、pgi活性から選ばれる少なくとも1の活性を有している、またはその活性が強化されている微生物を製造する方法としては公知の方法を用いればよい。具体的には例えば、各種遺伝子操作による方法(Syst Microbiol Biomanufact,2021,1,291)等が挙げられる。
 また、親株ではさらに、前述のようにlacZ活性および/またはコラン酸合成活性が低下又は欠失していることが好ましい。
 従って、本発明の一実施態様では、好ましくはlacZ活性および/またはコラン酸合成活性が低下または欠失しており、より好ましくはlacZをコードする塩基配列および/またはコラン酸生成関連蛋白質をコードする塩基配列であるwcaJ、wzxC、wcaK、wcaL又はwcaM遺伝子をコードする塩基配列を含まない、遺伝的に改変された微生物を親株とすることが好ましい。
 本発明の一実施形態において、前記遺伝的に改変された微生物は、GDP-フコース及び/又はLNTの産生能が、遺伝的に改変されていない親株に比較して上昇していることが好ましい。
 β-ガラクトシダーゼ活性および/またはコラン酸合成活性が低下または喪失した大腸菌を製造する方法としては公知の方法を用いればよい。具体的には例えば、各種遺伝子操作による方法(Metabolic Engineering,2017,41:23-38)等が挙げられる。
 親株の微生物に比べ前記[1]~[3]のいずれか1に記載の蛋白質の活性が増強された微生物としては、該蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより得られる、親株よりも該遺伝子のコピー数が増大した微生物が挙げられる。
 前記[1]~[3]のいずれか1に記載の蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより得られる、親株よりも該遺伝子のコピー数が増大した微生物としては、前記[1]~[3]のいずれか1に記載の蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより、染色体DNA上において前記遺伝子のコピー数が増大した微生物、およびプラスミドDNAとして染色体DNA外に前記遺伝子を保有させた微生物を挙げることができる。
 前記[1]~[3]のいずれか1に記載の蛋白質をコードするDNAとしては、前記[1]~[3]のいずれか1に記載の蛋白質の活性を有する蛋白質をコードするDNAであればいずれでもよいが、具体的には以下の[4]~[7]からなる群より選ばれる1のDNAが挙げられる。
[4]前記[1]~[3]のいずれか1に記載の蛋白質をコードするDNA
[5]配列番号1、3、5、7、9、13、17又は25で表される塩基配列からなるDNA
[6]配列番号1、3、5、7、9、13、17又は25で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつα1,2-フコシルトランスフェラーゼ活性を有する相同蛋白質をコードするDNA
[7]配列番号1、3、5、7、9、13、17又は25で表される塩基配列と95%以上、好ましくは97%以上、より好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列からなり、かつ、α1,2-フコシルトランスフェラーゼ活性を有する相同蛋白質をコードするDNA
 上記[6]において「ハイブリダイズする」とは、特定の塩基配列を有するDNAまたは該DNAの一部にDNAがハイブリダイズすることである。したがって、該特定の塩基配列を有するDNAまたはその一部は、ノーザンまたはサザンブロット解析のプローブとして用いることができ、またPCR解析のオリゴヌクレオチドプライマーとして使用できるDNAである。
 プローブとして用いられるDNAとしては、少なくとも100塩基以上、好ましくは200塩基以上、より好ましくは500塩基以上のDNAを挙げることができる。プライマーとして用いられるDNAとしては、少なくとも10塩基以上、好ましくは15塩基以上のDNAを上げることができる。
 DNAのハイブリダイゼーション実験の方法はよく知られており、例えば当業者であれば本明細書に従い、ハイブリダイゼーションの条件を決定できる。該ハイブリダイゼーションの条件は、モレキュラー・クローニング第4版(2012年)、Methods for General and Molecular Bacteriology, ASM Press(1994)、Immunology methods manual, Academic press(1996)に記載の他、多数の他の標準的な教科書に従っておこなうことができる。
 また、市販のハイブリダイゼーションキットに付属した説明書に従うことによっても、ストリンジェントな条件下でハイブリダイズするDNAを取得できる。市販のハイブリダイゼーションキットとしては、例えばランダムプライム法によりプローブを作製し、ストリンジェントな条件でハイブリダイゼーションを行うランダムプライムドDNAラベリングキット(ロシュ・ダイアグノスティックス社製)などを挙げることができる。
 上記のストリンジェントな条件とは、DNAを固定化したフィルターとプローブDNAとを50%ホルムアミド、5×SSC(750mmol/Lの塩化ナトリウム、75mmol/Lのクエン酸ナトリウム)、50mmol/Lのリン酸ナトリウム(pH7.6)、5×デンハルト溶液、10%の硫酸デキストラン、および20μg/Lの変性させたサケ精子DNAを含む溶液中で42℃にて一晩、インキュベートした後、例えば約65℃の0.2×SSC溶液中で該フィルターを洗浄する条件を挙げることができる。
 上記したストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えばBLASTやFASTA等を用いて上記したパラメータ等に基づいて計算したときに、配列番号1、3、5、7、9、13、17又は25で表される塩基配列からなるDNAと少なくとも95%以上、好ましくは97%以上、より好ましくは98%以上、最も好ましくは99%以上の同一性を有するDNAを挙げることができる。
 上記[1]の蛋白質をコードするDNAは、例えば、配列番号1、3、5、7、9、13、17又は25で表される塩基配列に基づき設計できるプローブDNAを用いた、微生物、好ましくは、微生物の染色体DNAライブラリーに対するサザンハイブリダイゼーション法、または該塩基配列に基づき設計できるプライマーDNAを用いた、上記微生物の染色体DNAを鋳型としたPCR[PCR Protocols, Academic Press (1990)]により取得できる。前記操作に用いる微生物の染色体DNAの由来は特に限定されないが、例えばNeisseria属(Neisseriaceae、Neisseriales)、Francisella属、Methylobacter属、Amphritea属、Sterolibacteriaceae属またはHelicobacter属の細菌が挙げられる。これらの中でも、Francisella sp. FSC1006株、Neisseriaceae bacterium DSM 100970株、Methylobacter tundripaludum株、Amphritea japonica株、Sterolibacteriaceae bacterium J5B株、Neisseriales bacterium株またはHelicobacter mustelae ATCC43772株が好ましい。
 これらの株は、公的機関等から入手が可能であり、例えば、Francisella sp. FSC1006株は、スウェーデン国防省研究機関(Swedish Defence Research Agency)から入手できる。また、Neisseriaceae bacterium DSM 100970株は、マラヤ大学 (University of Malaya)から入手できる。さらに、Methylobacter tundripaludum株、Amphritea japonica株及びHelicobacter mustelae ATCC43772株は、アメリカンタイプカルチャーコレクション(American Type Culture Collection、ATCC)から入手できる。
 上記[2]の変異蛋白質をコードするDNAは、例えば、配列番号1、3、5、7、9、13、17又は25で表される塩基配列からなるDNAを鋳型としてエラープローンPCR等に供することにより取得できる。
 または、目的の変異(欠失、置換、挿入または付加)が導入されるように設計した塩基配列をそれぞれの5’端に持つ1組のPCRプライマーを用いたPCR[Gene, 77, 51(1989)]によっても、上記[2]のの変異蛋白質をコードするDNAを取得できる。
 また、市販の部分特異的変異導入キットに付属した説明書に従うことによっても、該DNAを取得できる。市販の部分特異的変異導入キットとしては、例えば、目的の変異を導入したい位置に変異(欠失、置換、挿入又は付加)を導入できるPrimeSTAR(登録商標) Mutagenesis Basal Kit(タカラバイオ社製)が挙げられる。
 すなわち、まず、目的の変異(欠失、置換、挿入又は付加)が導入されるように設計した塩基配列を有するプラスミドを鋳型に、5’側が15塩基オーバーラップした一対の変異導入用プライマーを設計する。このとき、オーバーラップ部分には目的の変異を含む。次に、該変異導入用プライマーを用いて、目的の変異を導入したい塩基配列を有するプラスミドを鋳型にPCRを行う。これにより得られた増幅断片を大腸菌に形質転換すると、目的の変異が導入された塩基配列を有するプラスミドが得られる。
 上記[3]の相同蛋白質をコードするDNA、並びに上記[6]および[7]のDNAは、例えば、各種の遺伝子配列データベースに対して配列番号1、3、5、7、9、13、17又は25で表される塩基配列と95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有する塩基配列を検索し、または、各種の蛋白質配列データベースに対して配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列と95%以上、好ましくは97%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有するアミノ酸配列を検索し、該検索によって得られた塩基配列またはアミノ酸配列に基づいて設計できるプローブDNAまたはプライマーDNA、および当該DNAを有する微生物を用いて、上記のDNAを取得する方法と同様の方法によって取得できる。
 取得した上記の[4]~[7]のいずれか1に記載のDNAは、そのまま、または適当な制限酵素などで切断し、常法によりベクターに組み込み、得られた組換え体DNAを宿主細胞に導入した後、通常用いられる塩基配列解析方法、例えばジデオキシ法[Proc. Natl. Acad. Sci., USA, 74, 5463 (1977)]またはアプライド・バイオシステムズ3500ジェネティックアナライザやアプライド・バイオシステムズ3730DNAアナライザ(いずれもサーモフィッシャー・サイエンティフィック社製)等の塩基配列分析装置を用いて分析することにより、該DNAの塩基配列を決定できる。
 前記DNAの塩基配列を決定する際に用いることができる宿主細胞としては、前記ベクターを導入し増殖可能なものであれば何でもよいが、例えば、Escherichia coli DH5α、Escherichia coli HST08Premium、Escherichia coli HST02、Escherichia coli HST04 dam-/dcm-、Escherichia coli JM109、Escherichia coli HB101、Escherichia coliCJ236、Escherichia coli BMH71-18 mutS、Escherichia coli MV1184、Escherichia coli TH2(いずれもタカラバイオ社製)、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue(いずれもアジレント・テクノロジー社製)、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli W1485、Escherichia coli W3110、Escherichia coli MP347、Escherichia coli NM522等が挙げられる。
 上記のベクターとしては、例えば、pBluescriptII KS(+)、pPCR-Script Amp SK(+)(いずれもアジレント・テクノロジー社製)、pT7Blue(メルクミリポア社製)、pCRII(サーモフィッシャー・サイエンティフィック社製)、pCR-TRAP(ジーンハンター社製)、及びpDIRECT(Nucleic Acids Res.,18,6069,1990)等が挙げられる。
 組換え体DNAの導入方法としては、宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法[Proc. Natl. Acad. Sci.,USA, 69, 2110 (1972)]、プロトプラスト法(日本国特開昭63-248394号公報)、エレクトロポレーション法[Nucleic Acids Res., 16, 6127 (1988)]等が挙げられる。
 塩基配列を決定した結果、取得されたDNAが部分長であった場合は、該部分長DNAをプローブに用いた、染色体DNAライブラリーに対するサザンハイブリダイゼーション法等により、全長DNAを取得できる。
 更に、決定されたDNAの塩基配列に基づいて、日本テクノサービス社製NTS MシリーズDNA合成装置等を用いて化学合成することにより目的とするDNAを調製することもできる。
 前記[1]~[3]のいずれか1に記載の蛋白質をコードするDNAを含む組換え体DNAとは、該DNAが、親株において自律複製可能または染色体中への組込が可能で、該DNAを転写できる位置にプロモーターを含有している発現ベクターに組み込まれている組換え体DNAをいう。
 組換え体DNAが、染色体への組込が可能な組換え体DNAである場合は、プロモーターを含有していなくてもよい。
 前記[1]~[3]のいずれか1に記載の蛋白質をコードするDNAを含む組換え体DNAで親株の微生物を形質転換することにより得られる、親株よりも該遺伝子のコピー数が増大した微生物は、以下の方法で取得できる。
 上記の方法で得られる前記[1]~[3]のいずれか1に記載の蛋白質をコードするDNAをもとにして、必要に応じて、該蛋白質をコードする部分を含む適当な長さのDNA断片を調製する。また、該蛋白質をコードする部分の塩基配列を、宿主細胞での発現に最適なコドンとなるように、塩基を置換することにより、生産率が向上した形質転換体を取得できる。
 前記DNA断片を適当な発現ベクターのプロモーターの下流に挿入することにより、組換え体DNAを作製する。該組換え体DNAで親株を形質転換することにより、親株よりも該蛋白質をコードする遺伝子のコピー数が増大した微生物を取得できる。
 細菌等の原核生物を親株として用いる場合は、該組換え体DNAは、プロモーター、リボソーム結合配列、上記の[4]~[7]のいずれか1に記載のDNA、および転写終結配列により構成された組換え体DNAであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。
 リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミドを用いることが好ましい。該組換え体DNAにおいては、該DNAの発現には転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。
 また、α1,2-フコシルトランスフェラーゼ活性を有する蛋白質をコードする部分の塩基配列を宿主の発現に最適なコドンとなるように塩基を置換することにより、α1,2-フコシルトランスフェラーゼ活性を有する蛋白質の発現量を向上させることができる。α1,2-フコシルトランスフェラーゼ活性を有する蛋白質としては、例えば前記[1]~[3]のいずれか1に記載の蛋白質が挙げられる。本発明に用いられる親株におけるコドン使用頻度の情報は、公共のデータベースを通じて入手できる。
 発現ベクターとしては、目的DNAを宿主に導入し、増殖、発現させるための適当な核酸分子であれば特に限定されず、プラスミドのみならず、例えば、人工染色体、トランスポゾンを用いたベクター、コスミドを用いてもよい。
 親株にエシェリヒア属に属する微生物を用いる場合は、発現ベクターとしては、例えば、pColdI、pSTV28、pSTV29、pUC118(いずれもタカラバイオ社製)、pMW118、pMW119(いずれもニッポンジーン社製)、pET21a、pCOLADuet-1、pCDFDuet-1、pCDF-1b、pRSF-1b(いずれもメルクミリポア社製)、pMAL-c5x(ニューイングランドバイオラブス社製)、pGEX-4T-1、pTrc99A(いずれもジーイーヘルスケアバイオサイエンス社製)、pTrcHis、pSE280(いずれもサーモフィッシャー・サイエンティフィック社製)、pGEMEX-1(プロメガ社製)、pQE-30、pQE80L(いずれもキアゲン社製)、pET-3、pBluescriptII SK(+)、pBluescriptII KS(-)(いずれもアジレント・テクノロジー社製)、pUAKQE31(Appl.Environ.Microbiol.2007,73:6378-6385)、pKYP10(日本国特開昭58-110600号公報)、pKYP200[Agric. Biol. Chem., 48, 669(1984)]、pLSA1[Agric. Biol. Chem., 53, 277 (1989)]、pGEL1[Proc. Natl. Acad. Sci., USA, 82, 4306 (1985)]、pBluescriptII SK(+)、pBluescript II KS(-)(ストラタジーン社製)、pTrS30[エシェリヒア・コリ JM109/pTrS30(FERM BP-5407)より調製]、pTrS32[エシェリヒア・コリJM109/pTrS32(FERM BP-5408)より調製]、pTK31[APPLIED AND ENVIRONMENTAL MICROBIOLOGY、 2007、 Vol. 73、No. 20、p.6378-6385]、pPAC31(国際公開第1998/12343号)、pUC19[Gene, 33, 103 (1985)]、pPA1(日本国特開昭63-233798号公報)pKD46[Proc.Natl.Acad.Sci.,USA,97,6640-6645(2000)]等を挙げることができる。
 上記発現ベクターを用いる場合のプロモーターとしては、エシェリヒア属に属する微生物の細胞中で機能するものであればいかなるものでもよいが、例えば、trpプロモーターやilvプロモーター等のアミノ酸生合成に関与する遺伝子のプロモーター、uspAプロモーター、lacプロモーター、PLプロモーター、PRプロモーター、PSEプロモーター等のEscherichia coliやファージ等に由来するプロモーターを用いることができる。また、例えば、trpプロモーターを2つ直列させたプロモーター、tacプロモーター、trcプロモーター、lacT7プロモーター、letIプロモーターのように人為的に設計改変されたプロモーターが挙げられる。
 親株にコリネバクテリウム属に属する微生物を用いる場合は、発現ベクターとしては、例えば、pCG1(日本国特開昭57-134500号公報)、pCG2(日本国特開昭58-35197号公報)、pCG4(日本国特開昭57-183799号公報)、pCG11(日本国特開昭57-134500号公報)、pCG116、pCE54、pCB101(いずれも日本国特開昭58-105999号公報)、pCE51、pCE52、pCE53〔いずれもMolecular and General Genetics, 196, 175 (1984)〕等を挙げることがきる。
 上記発現ベクターを用いる場合のプロモーターとしては、コリネバクテリウム属に属する微生物の細胞中で機能するものであればいかなるものでもよいが、例えば、P54-6プロモーター[Appl. Microbiol. Biotechnol., 53, 674-679 (2000)]を用いることができる。
 親株に酵母菌株を用いる場合には、発現ベクターとしては、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)、YCp50(ATCC37419)、pHS19、pHS15等を挙げることができる。
 上記発現ベクターを用いる場合のプロモーターとしては、酵母菌株の細胞中で機能するものであればいかなるものでもよいが、例えば、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal1プロモーター、gal10プロモーター、ヒートショックポリペプチドプロモーター、MFα1プロモーター、CUP1プロモーター等のプロモーターを挙げることができる。
 上記の[4]~[7]のいずれか1に記載のDNA断片を適当な発現ベクターのプロモーターの下流に挿入することにより、本発明の製造方法に用いられる組換え体DNAを作製できる。
 組換え体DNAを親株において自律複製可能なプラスミドとして導入させる方法としては、例えば、カルシウムイオンを用いる方法[Proc. Natl. Acad. Sci., USA, 69, 2110 (1972)]、プロトプラスト法(日本国特開昭63-248394号公報)およびエレクトロポレーション法[Nucleic Acids Res., 16, 6127 (1988)]等の方法が挙げられる。
 組換え体DNAを宿主細胞の染色体中に組み込む方法としては、例えば、相同組換え法が挙げられる。相同組換え法としては、例えば、導入したい宿主細胞内では自律複製できない薬剤耐性遺伝子を有するプラスミドDNAと連結して作製できる相同組換え用プラスミドを用いる方法が挙げられる。Escherichia coliで頻用される相同組換えを利用した方法としては、例えば、ラムダファージの相同組換え系を利用して、組換え体DNAを導入する方法[Proc.Natl.Acad.Sci.USA,97,6640-6645(2000)]が挙げられる。
 さらに、組換え体DNAと共に染色体上に組み込まれた枯草菌レバンシュークラーゼによって大腸菌がスクロース感受性となることを利用した選択法や、ストレプトマイシン耐性の変異rpsL遺伝子を有する大腸菌に野生型rpsL遺伝子を組み込むことによって大腸菌がストレプトマイシン感受性となることを利用した選択法[Mol.Microbiol.,55,137(2005)、Biosci.Biotechnol.Biochem.,71,2905(2007)]等を用いて、宿主細胞の染色体DNA上の目的の領域が組換え体DNAに置換された大腸菌を取得できる。
 該組換え体DNAが、親株において自律複製可能なプラスミドとして導入されたこと、または親株の染色体中に組み込まれたことは、例えば、微生物が元来、染色体DNA上に有する該遺伝子を増幅することはできないが、形質転換により導入された該遺伝子は増幅可能なプライマーセットを用いてPCRにより増幅産物を確認する方法等により確認できる。また、該DNAの転写量若しくは該DNAがコードする蛋白質の生産量が増大したことは、該微生物の該遺伝子の転写量をノーザン・ブロッティングにより、または該微生物の該蛋白質の生産量をウェスタン・ブロッティングにより、親株のそれと比較する方法等により確認できる。
 上記の方法で造成した微生物が、上記[1]~[3]のいずれか1に記載の蛋白質の活性が増強され、かつ親株に比べてLNFPIの生産性が向上した微生物であることは、該微生物の培養後、培養液を適宜希釈後に遠心分離し、上清又は菌体内に含まれるLNFPIを後述の糖分析装置または高速液体クロマトグラフ質量分析計にて分析することにより、親株のそれと比較することにより確認できる。
 上記した微生物は、親株よりも上記[1]~[3]のいずれか1に記載の蛋白質の活性が増強していることにより、LNTのN-アセチルグルコサミン部位へ選択的にフコースを転移し、LNFPIの生産性を向上し得る。このような微生物としては、例えば、実施例において後述するGsFucT遺伝子の発現を強化したNNN/pGsFucT株、FsFucT遺伝子の発現を強化したNNN/pFsFucT株、NbFucT1遺伝子の発現を強化したNNN/pNbFucT1株、MtFucT遺伝子の発現を強化したNNN/pMtFucT株、AjFucT遺伝子の発現を強化したNNN/pAjFucT株、SbFucT遺伝子の発現を強化したNNN/pSbFucT株、PsFucT遺伝子の発現を強化したNNN/pPsFucT株、NbFucT2遺伝子の発現を強化したNNN/pNbFucT2株、HMFT遺伝子の発現を強化したNNN/pHMFT株が挙げられる。
 このような微生物の例である、GsFucT、FsFucT、NbFucT1、MtFucT、AjFucT、SbFucT、NbFucT2、またはHMFTの発現を増強した微生物では、N-アセチルグルコサミン部位へ選択的にフコースを転移できるα1,2-フコーストランスフェラーゼ活性が増強され、LNFPIの生産性を向上し得る。よってこれらの微生物を用いることで効率的にLNFPIを製造することができる。また、これらの微生物を用いてLNFPI以外のフコシル化オリゴ糖、例えば2’FLや3’FL等のフコシルラクトースを製造することもできる。
<フコース含有糖質の製造方法>
 本発明のフコース含有糖質の製造方法(以下、本発明の方法とも略す)としては、上記した形質転換体を調製すること、および該形質転換体を用いて培養物中にオリゴ糖を生成することを含む、フコース含有糖質の製造方法が挙げられる。本発明の方法において、フコース含有糖質は、LNFPIであることが好ましい。
 上記した形質転換体を培養する方法は、微生物の培養に用いられる通常の方法に従って行うことができる。形質転換体を培養する培地としては、該微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、該形質転換体の培養を効率的に行うことができる培地であれば、天然培地と合成培地のいずれを用いてもよい。
 炭素源としては、微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプン若しくはデンプン加水分解物等の糖、酢酸若しくはプロピオン酸等の有機酸、又は、グリセロール、エタノール若しくはプロパノール等のアルコール類等が挙げられる。
 窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム又はリン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩、その他の含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕、大豆粕加水分解物、各種発酵菌体及びその消化物等が挙げられる。
 無機塩としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が挙げられる。
 フコース含有糖質の製造方法に用いる形質転換体として、グルコース、ラクトース、またはラクトース一水和物等を生成する能力を有する微生物を用いてもよい。
 フコース含有糖質の製造方法において、培養中に、グルコース、ラクトースまたはラクトース一水和物等を培地に添加してもよい。
 フコース含有糖質の製造方法に用いる形質転換体が、GDP-フコース及び/又はLNTを生成する能力を有していない場合は、GDP-フコースやLNTを培地に添加してもよい。
 また、フコース含有糖質の製造方法において、培養中に、グルコース、ラクトース、ラクトース一水和物、またはLNT等を培地に添加する代わりに、糖からグルコース、ラクトース、ラクトース一水和物、またはLNT等を生成する能力を有する微生物を、本発明の形質転換体と同時に培養することにより、本発明の形質転換体にグルコース、ラクトース、またはラクトース一水和物、またはLNT等を供給してもよい。
 フコース含有糖質の製造方法において、培地中にはβ-ガラクトシダーゼおよびWcaJが存在しないことが好ましい。
 培養は、通常、振盪培養、深部通気撹拌培養またはジャーファーメンター等の好気的条件下で行うことが好ましい。培養温度は、通常30~37℃であり、培養時間は、通常24時間~3日間である。培養中の培養液pHは、通常6.0~8.0に保持する。pHの調整は、無機又は有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニア等を用いて行う。
 上記の培養により、培養物中にフコース含有糖質を生成することにより、フコース含有糖質を製造できる。
 通常、該培養物の遠心分離後、上清よりフコース含有糖質を採取できる。なお、菌体内にフコース含有糖質が蓄積する場合には、例えば菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清からイオン交換樹脂法などによって、フコース含有糖質を採取できる。
 また、培養物中のフコース含有糖質又は採取したフコース含有糖質に、さらに他の糖を付加することにより所望のフコース含有糖質を製造することもできる。
[分析例]
(1)LNFPI、2’FL又はラクトースの分析、定量
 実施例において、LNFPI、2’FL又はラクトースの分析、定量は以下に示す手順で行った。
 培養後の微生物を含む培養液を遠心分離し、上清を回収した。また、沈殿菌体を元培養液と同量の水で懸濁し、さらに等量のクロロホルムを加えて菌体破砕した後に遠心分離し、得られた上清水相を菌体内画分とした。該上清又は菌体内画分に含まれるLNFPI、2’FL及びラクトースを糖分析装置ICS-5000(サーモフィッシャー・サイエンティフィック社製)にて分析した。
[分析条件]
カラム:CarboPAC PA1
カラム温度:25℃
移動相:
   (移動相A)水
   (移動相B)500mmol/L 水酸化ナトリウム
   (移動相C)300mmol/L 酢酸ナトリウム
移動相A、移動相B及び移動相C混合比:
   (0~10分)80:20:0
   (10~18分)80:20:0から70:20:10の勾配
   (18~35分)70:20:10から0:20:80の勾配
   (35~40分)0:20:80
   (40~50分)80:20:0
流速:1.0mL/mIn
検出器:パルスドアンペロメトリー検出器
(2)LNFPI、LNTII又はLNTの分析、定量
 施例において、LNFPI、LNTII又はLNTの分析、定量は以下に示す手順で行った。
 上記(1)と同様に、培養後の微生物を含む培養液から上清及び菌体内画分を調製した。該上清又は菌体内画分に含まれるLNFPI、LNTII及びLNTをUFLC&LCMS-8040(SHIMADZU社製)にて分析した。
[分析条件]
カラム:Coregel 87H3(7.8×300mm)
カラム温度:40℃
移動相:0.1%ギ酸水、イソクラティック溶離
測定時間:25分
流速:0.4mL/mIn
注入量:10μL
検出:SIMモード
 以下に本発明の実施例を示すが、本発明はこれら実施例に限定されるものではない。
[実施例1]各種α1,2-フコシルトランスフェラーゼを発現する微生物の造成
(1)宿主株の造成
<遺伝子欠損の際にマーカーとして用いるDNA断片の取得>
 配列番号37及び38で表される塩基配列からなるDNAをプライマーセットとして、pCatSac(Appl Environ Microbiol(2013)79,3033-3039)を鋳型としてPCRを行い、クロラムフェニコール耐性cat遺伝子およびスクロース感受性sacB遺伝子を含む、cat-sacB断片を得た。
<β-ガラクトシダーゼ活性、ラクトースパーミアーゼ活性、及びコラン酸合成活性が喪失した大腸菌の造成>
 β-ガラクトシダーゼをコードするDNA(以下、lacZ遺伝子という。)、ラクトースパーミアーゼをコードするDNA(以下、lacY遺伝子という。)、及びコラン酸生成関連蛋白質をコードするDNA(以下、wcaJ、wzxC、wcaK、wcaL又はwcaM遺伝子という。)を欠損した大腸菌を、以下の方法で造成した。なお、lacZ及びlacY(以下、lacZYという。)、ならびに、wcaJ、wzxC、wcaK、wcaL及びwcaM(以下、wcaJ-wzxC-wcaKLMという。)は大腸菌ゲノム上でそれぞれオペロンを形成している。
 常法により調製したEscherichia coli W3110株のゲノムDNAを鋳型として、表1の「プライマーセット」で表される塩基配列からなるDNAをプライマーセットとしてPCRを行い、各DNA断片を増幅した。
Figure JPOXMLDOC01-appb-T000001
 lacZ上流1およびlacZ上流2は、lacZ遺伝子の開始コドンから開始コドンの上流約1000bpまでの領域を含む。lacY下流1およびlacY下流2は、lacY遺伝子の終止コドン下流約50bpから約1000bpまでの領域を含む。
 lacZ上流1、lacY下流1、およびcat-sacB断片を等モルの比率で混合したものを鋳型とし、配列番号40及び42で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、lacZ及びlacY遺伝子周辺領域の配列にcat-sacB断片が挿入された配列からなるDNA(以下、lacZY::cat-sacBという。)断片を得た。
 lacZ上流2およびlacY下流2を等モルの比率で混合したものを鋳型とし、配列番号40及び42で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、lacZYを含まず、lacZ上流とlacY下流が直接連結した配列からなるDNA(以下、ΔlacZYという。)断片を得た。
 lacZY::cat-sacB断片を、λリコンビナーゼをコードする遺伝子を含むプラスミドpKD46[Datsenko,K.A.,Warner,B.L.,Proc.Natl.Acad.Sci.,USA,Vol.97,6640-6645(2000)]を保持するW3110S3GK株(NBRC114657)に、エレクトロポレーション法により導入し、クロラムフェニコール耐性かつシュクロース感受性を示した形質転換体(lacZY遺伝子がlacZY::cat-sacBに置換した形質転換体)を得た。
 ΔlacZY断片を、当該形質転換体にエレクトロポレーション法により導入し、クロラムフェニコール感受性かつシュクロース耐性を示す形質転換体(lacZY::cat-sacBがΔlacZYに置換した形質転換体)を得た。それらのうちからさらに、アンピシリン感受性を示す形質転換体(pKD46が脱落した形質転換体)を得た。当該形質転換体をW3110S3GKΔlacZYと命名した。
 同様に、W3110株のゲノムDNAを鋳型として、表2の「プライマーセット」で表わされる塩基配列からなるDNAをプライマーセットとして用いてPCRを行い、各増幅DNA断片を得た。
Figure JPOXMLDOC01-appb-T000002
 wcaJ上流1およびwcaJ上流2は、wcaJ遺伝子の開始コドンから開始コドン上流約1000bpまでの領域を含む。wcaM下流1およびwcaM下流2は、wcaM遺伝子の終止コドンから終止コドン下流約1000bpまでの領域を含む。
 wcaJ上流1、wcaM下流1およびcat-sacB断片を等モルの比率で混合したものを鋳型とし、配列番号46及び48で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、wcaJ-wzxC-wcaKLMオペロン周辺領域の配列にcat-sacB断片が挿入された配列からなるDNA(以下、wcaJ-wzxC-wcaKLM::cat-sacBという。)断片を得た。
 wcaJ上流2およびwcaM下流2を等モルの比率で混合したものを鋳型とし、配列番号46及び48で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、wcaJ-wzxC-wcaKLMを含まず、wcaJ上流とwcaM下流が直接連結した配列からなるDNA(以下、ΔwcaJ-wzxC-wcaKLMという。)断片を得た。
 wcaJ-wzxC-wcaKLM::cat-sacB断片を、上記で造成したW3110S3GKΔlacZYに、エレクトロポレーション法により導入し、クロラムフェニコール耐性、かつシュクロース感受性を示した形質転換体(wcaJ-wzxC-wcaKLMがwcaJ-wzxC-wcaKLM::cat-sacBに置換した形質転換体)を得た。
 ΔwcaJ-wzxC-wcaKLM断片を、当該形質転換体にエレクトロポレーション法により導入し、クロラムフェニコール感受性かつシュクロース耐性を示す形質転換体(wcaJ-wzxC-wcaKLM::cat-sacBがΔwcaJ-wzxC-wcaKLMに置換した形質転換体)を得た。さらに、アンピシリン感受性を示す形質転換体(pKD46が脱落した形質転換体)を得た。当該形質転換体をW3110S3GKΔlacZYΔwcaJMと命名した。
<β1,3-ガラクトシルトランスフェラーゼ及びβ1,3-N-アセチルグルコサミントランスフェラーゼの発現を強化した微生物の造成>
 uspAプロモーター下に、配列番号34で表されるアミノ酸配列からなるChromobacterium violaceum ATCC553株由来のβ1,3-ガラクトシルトランスフェラーゼ(以下、Cvβ3GalTという。)をコードする遺伝子、配列番号36で表されるNeisseria polysaccharea ATCC43768由来のβ1,3-N-アセチルグルコサミントランスフェラーゼ(以下、NpLgtAという。)をコードする遺伝子及びW3110株由来のlacY遺伝子を配置した、該遺伝子発現用プラスミドを有する大腸菌を、以下の方法で造成した。
 表3の「プライマーセット」で表される塩基配列からなるDNAをプライマーセットとして、表3の「鋳型」に記載されたDNAを鋳型としてPCRを行い、各増幅DNA断片を得た。
Figure JPOXMLDOC01-appb-T000003
 配列番号33で表されるDNAは、ACS Catal.2019,9(12),10721-10726に記載された、Chromobacterium violaceum ATCC553株由来β1,3-ガラクトシルトランスフェラーゼCvβ3GalTをコードする遺伝子の塩基配列を大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号35で表されるDNAは、配列番号36で表されるNeisseria polysaccharea ATCC43768株由来β1,3-N-アセチルグルコサミントランスフェラーゼNpLgtAをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。配列番号52及び53、配列番号54及び55で表される塩基配列は、それぞれの5’末端に相補的な配列を含む。
 Cvβ3galT断片、NplgtA断片およびlacY断片を等モルの比率で混合したものを鋳型とし、配列番号51及び56で表される塩基配列からなるDNAをプライマーセットに用いてPCRを行い、3断片を連結したDNA(以下、Cvβ3galT-NplgtA-lacYという。)断片を得た。
 配列番号57及び58で表される塩基配列からなるオリゴヌクレオチドをプライマーセットとして、プラスミドpUAKQE31(Appl.Environ.Microbiol.2007,73:6378-6385)を鋳型にPCRを行い、約4.7kbのベクター断片を得た。配列番号51及び57、配列番号56及び58で表される塩基配列は、それぞれの5’末端に相補的な配列を含む。
 上記で得られたCvβ3galT-NplgtA-lacY断片とベクター断片を、In-Fusion HD Cloning Kit(タカラバイオ社製)を用いて連結することにより、発現プラスミドpUAKQE-Cvβ3galT-NplgtA-lacYを得た。上記、発現プラスミドpUAKQE-Cvβ3galT-NplgtA-lacYを用いて、上記で造成したW3110S3GKΔlacZYΔwcaJM株を形質転換することで、pUAKQE-Cvβ3galT-NplgtA-lacYを有する大腸菌を造成し、NNN株と命名した。
(2)α1,2-フコシルトランスフェラーゼ活性を有する微生物の造成
 上記(1)で造成したNNN株を用いて、lacプロモーター下に各種α1,2-フコシルトランスフェラーゼをコードする遺伝子、W3110株由来のrcsAを配置した、該遺伝子発現用プラスミドを有する大腸菌を、以下の方法で造成した。
<発現ベクターの造成>
 配列番号59及び60で表される塩基配列からなるDNAをプライマーセットとして、常法により調製したW3110株を鋳型としてPCRを行い、rcsA断片を得た。プラスミドpSTV29(タカラバイオ社製)を鋳型に、配列番号61及び62で表される塩基配列からなるDNAをプライマーセットとしてPCRを行い、約2.9kbのベクター断片を得た。このとき、配列番号59及び61、配列番号60及び62で表される塩基配列は、それぞれの5’末端に相補的な配列を含む。
 上記で得られたrcsA断片とベクター断片を、In-Fusion HD Cloning Kit(タカラバイオ社製)を用いて連結することにより、発現ベクターpSTV-rcsAを得た。
<α1,2-フコシルトランスフェラーゼ発現用プラスミドの造成>
表4の「プライマーセット」で表される塩基配列からなるDNAをプライマーセットとして、表4の「鋳型」に記載されたDNAを鋳型としてPCRを行い、各増幅DNA断片を得た。
Figure JPOXMLDOC01-appb-T000004
 配列番号1で表されるDNAは、配列番号2で表されるGramella sp. MAR_2010_147株由来α1,2-フコシルトランスフェラーゼGsFucTをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号3で表されるDNAは、配列番号4で表されるFrancisella sp. FSC1006株由来α1,2-フコシルトランスフェラーゼFsFucTをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号5で表されるDNAは、配列番号6で表されるNeisseriaceae bacterium DSM 100970株由来α1,2-フコシルトランスフェラーゼNbFucT1をコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号7で表されるDNAは、配列番号8で表されるMethylobacter tundripaludum株由来α1,2-フコシルトランスフェラーゼMtFucTをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号9で表されるDNAは、配列番号10で表されるAmphritea japonica株由来α1,2-フコシルトランスフェラーゼAjFucTをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号11で表されるDNAは、配列番号12で表されるPseudohalocynthiibacter aestuariivivens株由来α1,2-フコシルトランスフェラーゼPaFucTをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号13で表されるDNAは、配列番号14で表されるSterolibacteriaceae bacterium J5B株由来α1,2-フコシルトランスフェラーゼSbFucTをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号15で表されるDNAは、配列番号16で表されるPedobacter sp.CF074株由来α1,2-フコシルトランスフェラーゼPsFucTをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号17で表されるDNAは、配列番号18で表されるNeisseriales bacterium株由来α1,2-フコシルトランスフェラーゼNbFucT2をコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号19で表されるDNAは、配列番号20で表されるCandidatus Methylobacter favarea株由来α1,2-フコシルトランスフェラーゼCMfFucTをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号21で表されるDNAは、配列番号22で表されるEscherichia coli O86株由来α1,2-フコシルトランスフェラーゼWbwKをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号23で表されるDNAは、配列番号24で表されるEscherichia coli O127株由来α1,2-フコシルトランスフェラーゼWbiQをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号25で表されるDNAは、配列番号26で表されるHelicobacter mustelae ATCC43772株由来α1,2-フコシルトランスフェラーゼHMFTをコードする遺伝子の塩基配列であり、人工合成により調製した。
 上記で造成した発現ベクターpSTV29-rcsAを鋳型として、配列番号61及び95で表される塩基配列からなるDNAをプライマーセットとして用いてPCRを行い、約3.5kbのベクター断片を得た。
 配列番号63、65、67、69、71、73、75、77、79、81、83、85、87及び61、配列番号64、66、68、70、72、74、76、78、80、82、84、86、88及び95で表される塩基配列は、それぞれの5’末端に相補的な配列を含む。
 得られた各増幅DNA断片とベクター断片を、In-Fusion HD Cloning Kit(タカラバイオ社製)を用いて連結することにより、各種α1,2-フコシルトランスフェラーゼを発現するプラスミド、pGsFucT、pFsFucT、pNbFucT1、pMtFucT、pAjFucT、pPaFucT、pSbFucT、pPsFucT、pNbFucT2、pCMfFucT、pWbwK、pWbiQ及びpHMFTを造成した。
<α1,2-フコシルトランスフェラーゼ発現用プラスミドを有する大腸菌の造成>
 上記で得られたα1,2-フコシルトランスフェラーゼ発現用プラスミド、および、ベクターコントロールとしてpSTV29-rcsAを用い、上記(1)で造成したNNN株を形質転換することで、各種プラスミドを有する大腸菌を造成し、それぞれNNN/pGsFucT株、NNN/pFsFucT株、NNN/pNbFucT1株、NNN/pMtFucT株、NNN/pAjFucT株、NNN/pPaFucT株、NNN/pSbFucT株、NNN/pPsFucT株、NNN/pNbFucT2株、NNN/pCMfFucT株、NNN/pWbwK株、NNN/pWbiQ株、NNN/pHMFT株及びNNN/pCtrl株と命名した。
[比較例]公知α1,2-フコシルトランスフェラーゼを発現する微生物の造成
 LNFPI生産が可能であることが知られているα1,2-フコシルトランスフェラーゼを発現する微生物を、下記の方法により造成した。
 表5の「プライマーセット」で表される塩基配列からなるDNAをプライマーセットとして、表5の「鋳型」に記載されたDNAを鋳型としてPCRを行い、各増幅DNA断片を得た。
Figure JPOXMLDOC01-appb-T000005
 配列番号27で表されるDNAは、配列番号28で表されるSideroxydans lithotrophicus ES-11株由来α1,2-フコシルトランスフェラーゼFucT54をコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号29で表されるDNAは、配列番号30で表されるThermosynechococcus elongatus BP-1株由来α1,2-フコシルトランスフェラーゼTe2FTをコードする遺伝子の塩基配列を、大腸菌で発現させるためにコドン最適化したDNAであり、人工合成により調製した。
 配列番号31で表されるDNAは、配列番号32で表されるHelicobacter pylori 26695株由来α1,2-フコシルトランスフェラーゼFutCをコードする遺伝子の塩基配列であり、人工合成により調製した。
 実施例1(2)で造成した発現ベクターpSTV-rcsAを鋳型として、配列番号61及び95で表される塩基配列からなるDNAをプライマーセットとして用いてPCRを行い、約3.5kbのベクター断片を得た。配列番号89、91、93及び61、配列番号90、92、94及び95で表される塩基配列は、それぞれの5’末端に相補的な配列を含む。
 上記で得られた各増幅DNA断片とベクター断片を、In-Fusion HD Cloning Kit(タカラバイオ社製)を用いて連結することにより、各種公知のα1,2-フコシルトランスフェラーゼを発現するプラスミド、pFucT54、pTe2FT及びpFutCを造成した。
 上記で得られたα1,2-フコシルトランスフェラーゼ発現用プラスミドを用い、実施例1(1)で造成したNNN株を形質転換することで、各種プラスミドを有する大腸菌を造成し、それぞれNNN/pFucT54株、NNN/pTe2FT株及びNNN/pFutC株と命名した。
[実施例2]LNFPIの生産性評価
 上記実施例1(2)で得たNNN/pGsFucT株、NNN/pFsFucT株、NNN/pNbFucT1株、NNN/pMtFucT株、NNN/pAjFucT株、NNN/pPaFucT株、NNN/pSbFucT株、NNN/pPsFucT株、NNN/pNbFucT2株、NNN/pCMfFucT株、NNN/pWbwK株、NNN/pWbiQ株及びNNN/pHMFT株について、LNFPIの生産性を評価した。ポジティブコントロールとして、比較例で造成した、NNN/pTe2FT株及びNNN/pFutC株を使用した。ネガティブコントロールとして、実施例1(2)で造成したNNN/pCtrl株を使用した。
 各菌株をそれぞれ100mg/Lのカナマイシン及び25mg/Lのクロラムフェニコールを含むLBプレート上にて37℃で18時間培養し、100mg/Lのカナマイシン及び25mg/Lのクロラムフェニコールを含むLB培地2mLが入ったプラスチック製試験管に植菌して30℃で15時間、振盪培養した。その後、得られた培養液を100mg/Lのカナマイシン及び25mg/Lのクロラムフェニコールを含む生産培地[グルコース30g/L、ラクトース一水和物10g/L、硫酸マグネシウム七水和物2g/L、リン酸水素二カリウム16g/L、リン酸二水素カリウム14g/L、硫酸アンモニウム2g/L、クエン酸1g/L、カザミノ酸5g/L、チアミン塩酸塩10mg/L、硫酸第一鉄七水和物50mg/L、硫酸マンガン五水和物10mg/L(グルコース、ラクトース一水和物及び硫酸マグネシウム七水和物以外については、水酸化ナトリウム水溶液によりpH7.2に調整した後オートクレーブした)(グルコース、ラクトース一水和物及び硫酸マグネシウム七水和物含有水溶液は別途調製した後オートクレーブし、それぞれ冷却後、混合した)]が4mL入った大型試験管に0.2mL植菌し、30℃で29時間振盪培養した。
 培養終了後、培養液を遠心分離後に適宜希釈し、上清及び菌体内画分に含まれるLNFPI、LNTII又はLNTをUFLC&LCMS-8040にて分析した。結果を表6に示す。また、上清および菌体内画分のLNFPI生産量の合算値の結果を図2に示す。
Figure JPOXMLDOC01-appb-T000006
 その結果、LNFPI生産が可能なα1,2-フコシルトランスフェラーゼとして知られるFutC又はTe2FT発現株と比較して、NNN/pGsFucT株、NNN/pFsFucT株、NNN/pNbFucT1株、NNN/pMtFucT株、NNN/pAjFucT株、NNN/pSbFucT株、NNN/pNbFucT2株及びNNN/pHMFT株は、上清及び菌体内のいずれにおいてもLNFPIを多く蓄積できることが分かった。
 このうち、LNFPIの生産性が顕著に高かったFrancisella sp.FSC1006由来のFsFucT及びNeisseriales bacterium由来のNbFucT2を、LNFPI生産に有用なα1,2-フコシルトランスフェラーゼの候補として選定した。
[実施例3]LNFPIの製造
 実施例2で選定したNNN/pFsFucT株及びNNN/pNbFucT2株、並びに、ポジティブコントロールとして比較例で造成したNNN/pFucT54株を、それぞれ100mg/Lのカナマイシン及び25mg/Lのクロラムフェニコールを含むLBプレート上にて30℃で24時間培養し、100mg/Lのカナマイシン及び25mg/Lのクロラムフェニコールを含む培地[酵母エキス5g/L、ペプトン10g/L、塩化ナトリウム5g/L]が250mL入った2Lバッフル付き三角フラスコに植菌して30℃で17時間、振盪培養した。
 その後、得られた培養液を100mg/Lのカナマイシン及び25mg/Lのクロラムフェニコールを含む生産培地[グルコース20g/L、硫酸第一鉄七水和物0.2g/L、硫酸マグネシウム七水和物2g/L、リン酸水素二ナトリウム6g/L、リン酸二水素カリウム3g/L、塩化ナトリウム5g/L、塩化アンモニウム1g/L、酵母エキス5g/L、硫酸マンガン五水和物10mg/L、チアミン塩酸塩10mg/L、(グルコース、硫酸第一鉄七水和物及び硫酸マグネシウム七水和物含有水溶液は別途調製した後オートクレーブし、それぞれ冷却後、混合した)]が760mL入った3Lジャーファーメンター(ミツワフロンテック社製)に40mL植菌し、30℃、800rpmで72時間振盪培養した。14%アンモニア水を添加して培養中pHを6.9に調整した。
 初発グルコースが全て消費された時点で、IPTGを終濃度が0.5mMとなるように添加し、以降の培養においては、480g/Lグルコース溶液及び4g/Lのラクトース一水和物を1~6mL/hの速度で添加した。
 培養終了後、培養液を遠心分離後に適宜希釈し、上清に含まれるLNFPI、2’FL、LNTII又はLNTを糖分析装置ICS-5000にて分析した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、NNN/pFsFucT株及びNNN/pNbFucT2株は、フコシル化オリゴ糖である2’FLおよびLNFPIを生産することから、FsFucTおよびNbFucT2をこれらのオリゴ糖の製造に使用できる可能性が示唆された。また、NNN/pFsFucT株およびNNN/pNbFucT2株は、公知のα1,2-フコシルトランスフェラーゼ発現株であるNNN/pFucT54株と比較して、上清及び菌体内のいずれにおいてもLNFPIを顕著に多く蓄積していることが分かった。特に、NNN/pNbFucT2株は、NNN/pFucT54株よりもLNFPI生産量が約2倍であった。加えてNNN/pNbFucT2株は、他の株と比べて副生物である2’FLの生産が大幅に低減されていたことから、NbFucT2はLNTを基質として優先的に使用できる可能性が示唆された。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加え得ることは、当業者にとって明らかである。なお、本出願は、2022年3月25日付けで出願された日本特許出願(特願2022-050798)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
配列番号1:Gramella sp. MAR_2010_147由来GsFucTの塩基配列
配列番号2:Gramella sp. MAR_2010_147由来GsFucTのアミノ酸配列
配列番号3:Francisella sp. FSC1006由来FsFucTの塩基配列
配列番号4:Francisella sp. FSC1006由来FsFucTのアミノ酸配列
配列番号5:Neisseriaceae bacterium DSM 100970由来NbFucT1の塩基配列
配列番号6:Neisseriaceae bacterium DSM 100970由来NbFucT1のアミノ酸配列
配列番号7:Methylobacter tundripaludum由来MtFucTの塩基配列
配列番号8:Methylobacter tundripaludum由来MtFucTのアミノ酸配列
配列番号9:Amphritea japonica由来AjFucTの塩基配列
配列番号10:Amphritea japonica由来AjFucTのアミノ酸配列
配列番号11:Pseudohalocynthiibacter aestuariivivens由来PaFucTの塩基配列
配列番号12:Pseudohalocynthiibacter aestuariivivens由来PaFucTのアミノ酸配列
配列番号13:Sterolibacteriaceae bacterium J5B由来SbFucTの塩基配列
配列番号14:Sterolibacteriaceae bacterium J5B由来SbFucTのアミノ酸配列
配列番号15:Pedobacter sp. CF074由来PsFucTの塩基配列
配列番号16:Pedobacter sp. CF074由来PsFucTのアミノ酸配列
配列番号17:Neisseriales bacterium由来NbFucT2の塩基配列
配列番号18:Neisseriales bacterium由来NbFucT2のアミノ酸配列
配列番号19:Candidatus Methylobacter favarea由来CMfFucTの塩基配列
配列番号20:Candidatus Methylobacter favarea由来CMfFucTのアミノ酸配列
配列番号21:Escherichia coli O86由来WbwKの塩基配列
配列番号22:Escherichia coli O86由来WbwKのアミノ酸配列
配列番号23:Escherichia coli O127由来wbiQの塩基配列
配列番号24:Escherichia coli O127由来wbiQのアミノ酸配列
配列番号25:Helicobacter mustelae ATCC43772由来HMFTの塩基配列
配列番号26:Helicobacter mustelae ATCC43772由来HMFTのアミノ酸配列
配列番号27:Sideroxydans lithotrophicus ES-11由来FucT54の塩基配列
配列番号28:Sideroxydans lithotrophicus ES-11由来FucT54のアミノ酸配列
配列番号29:Thermosynechococcus elongatus BP-1由来Te2FTの塩基配列
配列番号30:Thermosynechococcus elongatus BP-1由来Te2FTのアミノ酸配列
配列番号31:Helicobacter pylori 26695由来FutCの塩基配列
配列番号32:Helicobacter pylori 26695由来FutCのアミノ酸配列
配列番号33:Chromobacterium violaceum ATCC553由来Cvβ3galTの塩基配列
配列番号34:Chromobacterium violaceum ATCC553由来Cvβ3galTのアミノ酸配列
配列番号35:Neisseria polysaccharea ATCC43768由来NplgtAの塩基配列
配列番号36:Neisseria polysaccharea ATCC43768由来NplgtAのアミノ酸配列
配列番号37:catsacB断片増幅用プライマーの塩基配列
配列番号38:catsacB断片増幅用プライマーの塩基配列
配列番号39:lacZ上流1増幅用プライマーの塩基配列
配列番号40:lacZ上流1増幅用プライマーの塩基配列
配列番号41:lacY下流1増幅用プライマーの塩基配列
配列番号42:lacY下流1増幅用プライマーの塩基配列
配列番号43:lacZ上流2増幅用プライマーの塩基配列
配列番号44:lacY下流2増幅用プライマーの塩基配列
配列番号45:wcaJ上流1増幅用プライマーの塩基配列
配列番号46:wcaJ上流1増幅用プライマーの塩基配列
配列番号47:wcaM下流1増幅用プライマーの塩基配列
配列番号48:wcaM下流1増幅用プライマーの塩基配列
配列番号49:wcaJ上流2増幅用プライマーの塩基配列
配列番号50:wcaM下流2増幅用プライマーの塩基配列
配列番号51:Cvβ3galT断片増幅用プライマーの塩基配列
配列番号52:Cvβ3galT断片増幅用プライマーの塩基配列
配列番号53:NplgtA断片増幅用プライマーの塩基配列
配列番号54:NplgtA断片増幅用プライマーの塩基配列
配列番号55:lacY断片増幅用プライマーの塩基配列
配列番号56:lacY断片増幅用プライマーの塩基配列
配列番号57:pUAKQE断片増幅用プライマーの塩基配列
配列番号58:pUAKQE断片増幅用プライマーの塩基配列
配列番号59:rcsA断片増幅用プライマーの塩基配列
配列番号60:rcsA断片増幅用プライマーの塩基配列
配列番号61:pSTV29断片増幅用プライマーの塩基配列
配列番号62:pSTV29断片増幅用プライマーの塩基配列
配列番号63:GsFucT断片増幅用プライマーの塩基配列
配列番号64:GsFucT断片増幅用プライマーの塩基配列
配列番号65:FsFucT断片増幅用プライマーの塩基配列
配列番号66:FsFucT断片増幅用プライマーの塩基配列
配列番号67:NbFucT1断片増幅用プライマーの塩基配列
配列番号68:NbFucT1断片増幅用プライマーの塩基配列
配列番号69:MtFucT断片増幅用プライマーの塩基配列
配列番号70:MtFucT断片増幅用プライマーの塩基配列
配列番号71:AjFucT断片増幅用プライマーの塩基配列
配列番号72:AjFucT断片増幅用プライマーの塩基配列
配列番号73:PaFucT断片増幅用プライマーの塩基配列
配列番号74:PaFucT断片増幅用プライマーの塩基配列
配列番号75:SbFucT断片増幅用プライマーの塩基配列
配列番号76:SbFucT断片増幅用プライマーの塩基配列
配列番号77:PsFucT断片増幅用プライマーの塩基配列
配列番号78:PsFucT断片増幅用プライマーの塩基配列
配列番号79:NbFucT2断片増幅用プライマーの塩基配列
配列番号80:NbFucT2断片増幅用プライマーの塩基配列
配列番号81:CMfFucT断片増幅用プライマーの塩基配列
配列番号82:CMfFucT断片増幅用プライマーの塩基配列
配列番号83:WbwK断片増幅用プライマーの塩基配列
配列番号84:WbwK断片増幅用プライマーの塩基配列
配列番号85:WbiQ断片増幅用プライマーの塩基配列
配列番号86:WbiQ断片増幅用プライマーの塩基配列
配列番号87:HMFT断片増幅用プライマーの塩基配列
配列番号88:HMFT断片増幅用プライマーの塩基配列
配列番号89:FucT54断片増幅用プライマーの塩基配列
配列番号90:FucT54断片増幅用プライマーの塩基配列
配列番号91:Te2FT断片増幅用プライマーの塩基配列
配列番号92:Te2FT断片増幅用プライマーの塩基配列
配列番号93:FutC断片増幅用プライマーの塩基配列
配列番号94:FutC断片増幅用プライマーの塩基配列
配列番号95:pSTV-rcsA断片増幅用プライマーの塩基配列

Claims (8)

  1.  ラクト-N-テトラオース(LNT)へのフコシル基転移活性を有する、下記[1]~[3]のいずれか1に記載の蛋白質。
    [1]配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列からなる蛋白質。
    [2]配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなり、
    かつα1,2-フコシルトランスフェラーゼ活性を有する変異蛋白質。
    [3]配列番号2、4、6、8、10、14、18又は26で表されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、かつα1,2-フコシルトランスフェラーゼ活性を有する相同蛋白質。
  2.  配列番号1、3、5、7、9、13、17又は25で表される塩基配列又はその相同配列からなり、かつ請求項1に記載の[1]~[3]のいずれか1に記載の蛋白質をコードするDNA。
  3.  請求項2に記載のDNAを含有する組換え体DNA。
  4.  請求項3に記載の組換え体DNAで宿主細胞を形質転換して得られる形質転換体。
  5.  請求項1に記載の[1]~[3]のいずれか1の蛋白質の活性及びフコース含有糖質の生産性が増強された微生物である、請求項4に記載の形質転換体。
  6.  前記微生物が大腸菌である、請求項5に記載の形質転換体。
  7.  請求項4~6のいずれか1項に記載の形質転換体を調製すること、および該形質転換体を用いて培養物中にフコース含有糖質を生成することを含む、フコース含有糖質の製造方法。
  8.  前記フコース含有糖質がラクト-N-フコペンタオースI(LNFPI)である、請求項7に記載の製造方法。
PCT/JP2023/012042 2022-03-25 2023-03-24 α1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びラクト-N-フコペンタオースI(LNFPI)の製造方法 WO2023182528A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022050798 2022-03-25
JP2022-050798 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182528A1 true WO2023182528A1 (ja) 2023-09-28

Family

ID=88101166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012042 WO2023182528A1 (ja) 2022-03-25 2023-03-24 α1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びラクト-N-フコペンタオースI(LNFPI)の製造方法

Country Status (1)

Country Link
WO (1) WO2023182528A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529453A (ja) * 2012-07-25 2015-10-08 グリコシン リミテッド ライアビリティー カンパニー フコシル化オリゴ糖の生産における使用に適したアルファ(1,2)フコシルトランスフェラーゼ
WO2022040411A2 (en) * 2020-08-19 2022-02-24 Conagen Inc. Biosynthetic production of 2-fucosyllactose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529453A (ja) * 2012-07-25 2015-10-08 グリコシン リミテッド ライアビリティー カンパニー フコシル化オリゴ糖の生産における使用に適したアルファ(1,2)フコシルトランスフェラーゼ
WO2022040411A2 (en) * 2020-08-19 2022-02-24 Conagen Inc. Biosynthetic production of 2-fucosyllactose

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE UNIPROTKB ANONYMOUS : "A0A097EN33 · A0A097EN33_9GAMM", XP093095467, retrieved from UNIPROT *
DATABASE UNIPROTKB ANONYMOUS : "A0A7R6P9T7 · A0A7R6P9T7_9GAMM", XP093095468, retrieved from UNIPROT *

Similar Documents

Publication Publication Date Title
JP7488937B2 (ja) フコシル化オリゴ糖の製造のための改良された方法
JP7069007B2 (ja) 取り込み/排出を改変した微生物宿主におけるヒトミルクオリゴ糖の生産
JP7244613B2 (ja) 希少糖の製造法
JP2024010049A (ja) シアリルトランスフェラーゼ及びシアリル化オリゴ糖の生産におけるその使用
US11155845B2 (en) Method for producing theanine
WO2022168992A1 (ja) 1,3-フコシルトランスフェラーゼ活性を有する蛋白質及びフコース含有糖質の製造法
WO2022168991A1 (ja) フコース含有糖質の輸送活性を有する蛋白質及びフコース含有糖質の製造法
WO2023182528A1 (ja) α1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びラクト-N-フコペンタオースI(LNFPI)の製造方法
KR20030066748A (ko) Udp-n-아세틸갈락토사민 및 n-아세틸갈락토사민 함유사카라이드의 제조법
JP6441806B2 (ja) N−アセチルノイラミン酸及びn−アセチルノイラミン酸含有糖質の製造法
WO2023153461A1 (ja) ルイスx骨格を有するオリゴ糖の製造法
WO2023238843A1 (ja) 3'-シアリルラクトースの生産性が向上した微生物および3'-シアリルラクトースの製造方法
JP5079272B2 (ja) シチジン‐5´‐一リン酸‐n‐アセチルノイラミン酸およびn‐アセチルノイラミン酸含有糖質の製造法
WO2023182527A1 (ja) ラクトジフコテトラオース(ldft)の製造法
WO2022176994A1 (ja) 改変されたα1,2-フコシルトランスフェラーゼ活性を有する蛋白質及びフコース含有糖質の製造法
WO2023120615A1 (ja) コア3糖としてラクト-n-トリオースiiを含む糖質の製造方法および該糖質の結晶の製造方法
WO2021125245A1 (ja) 改変されたラクトースパーミアーゼを有する微生物及びラクトース含有オリゴ糖の製造法
AU2022360817A1 (en) Microorganism having ability to produce n-acetylneuraminic acid and/or n-acetylneuraminic acid-containing carbohydrate and method for producing n-acetylneuraminic acid and/or n-acetylneuraminic acid-containing carbohydrate using said microorganism
WO2023038128A1 (ja) Cdp-コリンの製造に用いる組換え微生物及び該組換え微生物を用いるcdp-コリンの製造方法
JP2022001556A (ja) 蛋白質及び3−ヒドロキシイソ吉草酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775121

Country of ref document: EP

Kind code of ref document: A1