WO2018186360A1 - 繊維強化複合体用芯材、及びそれを用いた繊維強化複合体 - Google Patents

繊維強化複合体用芯材、及びそれを用いた繊維強化複合体 Download PDF

Info

Publication number
WO2018186360A1
WO2018186360A1 PCT/JP2018/014149 JP2018014149W WO2018186360A1 WO 2018186360 A1 WO2018186360 A1 WO 2018186360A1 JP 2018014149 W JP2018014149 W JP 2018014149W WO 2018186360 A1 WO2018186360 A1 WO 2018186360A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforced composite
bead foam
resin
core material
Prior art date
Application number
PCT/JP2018/014149
Other languages
English (en)
French (fr)
Inventor
裕美子 加藤
晋太郎 脇村
祐一郎 坂本
智幸 谷口
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2019511236A priority Critical patent/JPWO2018186360A1/ja
Priority to SG11201909355W priority patent/SG11201909355WA/en
Priority to CN201880022048.9A priority patent/CN110461924B/zh
Priority to KR1020197023131A priority patent/KR102281962B1/ko
Priority to EP18781116.1A priority patent/EP3608354B1/en
Priority to US16/500,894 priority patent/US11034814B2/en
Publication of WO2018186360A1 publication Critical patent/WO2018186360A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/034Post-expanding of foam beads or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent

Definitions

  • the present invention relates to a core material for a fiber-reinforced composite that is lightweight and has excellent processability when combined with a fiber reinforced layer or the like.
  • fiber reinforced synthetic resin reinforced with fibers is lightweight and has high mechanical strength, in recent years, light weight and high mechanical strength are required in the automotive field, ship field, aviation field, medical field, etc. The use is expanding in the fields that are being used.
  • Patent Document 3 discloses a polypropylene (PP) resin foam or a composite of a polymethacrylimide (PMI) resin foam and a fiber-reinforced composite material. The rigidity was low, and the composite conditions with the fiber reinforcement were limited.
  • PP polypropylene
  • PMI polymethacrylimide
  • the polymethacrylimide (PMI) resin foam is excellent in heat resistance, since its production method is special, the shape of the foam is limited to a flat plate, and the desired shape cannot be obtained. There were also problems with poor appearance.
  • the present inventors have found a core material that is excellent in workability when combined with a fiber reinforcing material by using a resin having a specific high temperature characteristic, and have made the present invention.
  • the present invention is as follows.
  • thermoplastic resin contains a thermoplastic resin, has a thermal shrinkage starting temperature of 80 ° C. or higher, a linear expansion coefficient of 10 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C. or lower, and a heating dimensional change rate at 130 ° C. of ⁇ 4.
  • a core material for a fiber-reinforced composite comprising a bead foam molded body of 0 to 0%.
  • thermoplastic resin contains 30 to 75% by mass of a polyphenylene ether resin.
  • thermoplastic resin 3% by mass or less with respect to 100% by mass of the thermoplastic resin. Core material.
  • a fiber reinforcement characterized in that a skin material containing a fiber and a resin is disposed on at least a part of the surface of the core material for a fiber-reinforced composite according to any one of (1) to (5) Complex.
  • the core material for a fiber reinforced composite of the present invention is excellent in processability when combined with a fiber reinforced material.
  • the present embodiment a mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
  • the core material for a fiber-reinforced composite according to the present embodiment includes a bead foam molded body, and may consist only of a bead foam molded body.
  • the core material may contain a member other than the bead foam molded body depending on the purpose and application.
  • the bead foam molded body includes a thermoplastic resin, and optionally includes a trace amount of gas, an additive, and the like.
  • the content of the thermoplastic resin in the bead foam molded body is preferably 50 to 100% by mass, and may be a bead foam molded body made of only a thermoplastic resin.
  • the thermoplastic resin is not particularly limited, and the temperature at which the loss tangent tan ⁇ is maximum at 70 ° C. to 200 ° C. is Tp, and the storage elastic modulus (G′1) at (Tp ⁇ 30) ° C. and the storage elasticity at 150 ° C.
  • the ratio (G′2 / G′1) of the rate (G′2) is preferably 0.25 to 0.95.
  • G′2 / G′1 is more preferably 0.30 to 0.90, still more preferably 0.30 to 0.85.
  • the thermoplastic resin preferably contains a polyphenylene ether resin from the viewpoint of adhesiveness to the fiber reinforcement, and may further contain a resin (other resin) other than the polyphenylene ether resin.
  • the polyphenylene ether resin refers to a polymer containing a repeating unit represented by the following general formula (1).
  • the polyphenylene ether resin is not particularly limited.
  • R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms
  • R 3 and R 4 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms.
  • Polymers containing units are preferred.
  • Polyphenylene ether resins may be used alone or in combination of two or more.
  • the weight average molecular weight of the polyphenylene ether resin is preferably 20,000 to 60,000.
  • the content of the polyphenylene ether (PPE) resin in the present embodiment is preferably 30 to 75% by mass, more preferably 100% by mass with respect to 100% by mass of the thermoplastic resin contained in the bead foam molded product. Is 35 to 65% by mass, more preferably 35 to 50% by mass. When the PPE content is 30% by mass or more, excellent heat resistance is easily obtained, and when the PPE content is 75% by mass or less, excellent workability is easily obtained.
  • thermoplastic resins and the like for example, polyolefin resins such as polyethylene, polypropylene, EVA (ethylene-vinyl acetate copolymer); polyvinyl alcohol; polyvinyl chloride; polyvinylidene chloride; ABS (acrylonitrile).
  • polyolefin resins such as polyethylene, polypropylene, EVA (ethylene-vinyl acetate copolymer); polyvinyl alcohol; polyvinyl chloride; polyvinylidene chloride; ABS (acrylonitrile).
  • -Butadiene-styrene resin resin; AS (acrylonitrile-styrene) resin; polystyrene resin; methacrylic resin; polyamide resin; polycarbonate resin; polyimide resin; polyacetal resin; Styrene, polyvinyl chloride, polyurethane, polyester, polyamide, 1,2-polybutadiene, fluoroelastomer, etc .; polyamide, polyacetal, polyester, fluorine And the like are; thermoplastic engineering plastics.
  • a modified and crosslinked resin may be used as long as the object of the present invention is not impaired.
  • polystyrene resins are preferable from the viewpoint of compatibility. These may be used alone or in combination of two or more.
  • polystyrene-based resin examples include homopolymers of styrene or styrene derivatives, copolymers having styrene and / or styrene derivatives as main components, and the like.
  • the styrene derivative is not particularly limited. For example, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, diphenylethylene, chlorostyrene, bromostyrene. Etc.
  • Examples of homopolymers of styrene or styrene derivatives include polystyrene, poly ⁇ -methyl styrene, polychlorostyrene, and the like.
  • Examples of the copolymer having styrene and / or styrene derivative as a main component include, for example, styrene- ⁇ -olefin copolymer; styrene-butadiene copolymer; styrene-acrylonitrile copolymer; styrene-maleic acid copolymer; Styrene-maleic anhydride copolymer; styrene-maleimide copolymer; styrene-N-phenylmaleimide copolymer; styrene-N-alkylmaleimide copolymer; styrene-N-alkyl-substituted phenylmaleimide copoly
  • a rubber component such as butadiene may be added to the polystyrene resin as necessary.
  • the content of the rubber component is preferably 1.0 to 20% by mass and more preferably 3.0 to 18% by mass with respect to 100% by mass of the polystyrene resin.
  • the content of the other resin in the present embodiment is preferably 25 to 70% by mass with respect to 100% by mass of the thermoplastic resin contained in the bead foam molded body, from the viewpoint of the workability of the foam. Preferably, the content is 35 to 65% by mass.
  • the gas is included in the manufacturing process (described later) of the bead foam molded body. Although it does not specifically limit as gas, Air, a carbon dioxide gas, the various gas used as a foaming agent, an aliphatic hydrocarbon gas, etc. are mentioned. Specific examples of the aliphatic hydrocarbon gas include butane and pentane.
  • the concentration (content) of the aliphatic hydrocarbon gas in the bead foam molded body is preferably 500 ppm by volume or less, more preferably 200 volumes, based on the volume of the bead foam molded body. ppm or less.
  • the concentration (content) of the aliphatic hydrocarbon gas in the core material is preferably 500 ppm by volume or less, more preferably 200 ppm by volume or less, based on the volume of the core material. It is.
  • the content of the aliphatic hydrocarbon gas can be measured by gas chromatography.
  • the content of the aliphatic hydrocarbon gas is 500 ppm by volume or less, it becomes easy to suppress the expansion of the bead foam molded body due to heating at the time of compounding, so it becomes easy to obtain excellent surface smoothness, adhesiveness, and strength. Also, the reproducibility of the dimensions is good, and it becomes easy to suppress the back swelling. Moreover, it becomes easy to perform compounding with a more complicated shape such as a shape with a portion having a different thickness.
  • additives include flame retardants, rubber components, antioxidants, heat stabilizers, lubricants, pigments, dyes, light resistance improvers, antistatic agents, impact modifiers, talc and other nucleating agents, glass beads , Inorganic fillers, anti-blocking agents and the like.
  • the flame retardant examples include organic flame retardants such as halogen compounds such as bromine compounds, non-halogen compounds such as phosphorus compounds and silicone compounds; metal hydroxides represented by aluminum hydroxide and magnesium hydroxide, three And inorganic flame retardants such as antimony oxides and antimony compounds represented by antimony pentoxide.
  • organic flame retardants such as halogen compounds such as bromine compounds, non-halogen compounds such as phosphorus compounds and silicone compounds
  • metal hydroxides represented by aluminum hydroxide and magnesium hydroxide metal hydroxides represented by aluminum hydroxide and magnesium hydroxide
  • three And inorganic flame retardants such as antimony oxides and antimony compounds represented by antimony pentoxide.
  • the content of the flame retardant is preferably 3% by mass or less, more preferably 1% by mass or less with respect to 100% by mass of the thermoplastic resin.
  • the content of the flame retardant is in this range, it becomes easier to maintain heat resistance and rigidity during composite processing, and good adhesiveness is easily exhibited.
  • the dimensions of the resulting composite are closer to the desired dimensions, and the reproducibility of the dimensions tends to be better.
  • the thermal shrinkage starting temperature of the bead foam molded body is 80 ° C. or higher. If the heat shrinkage start temperature is lower than 80 ° C., the bead foam molded body contained in the core material shrinks at an early stage when heated when combined with the fiber reinforcement, so that the fiber reinforcement cannot follow the change and wrinkles. Etc. occur and the appearance deteriorates. More preferably, it is 85 ° C. or higher.
  • heat shrink start temperature can be measured by the method as described in the below-mentioned Example.
  • the linear expansion coefficient of the bead foam molding is 10 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C. or less.
  • the linear expansion coefficient is greater than 10 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C.
  • the bead foam molded body contained in the core material expands during the heating process when combined with the fiber reinforcement, whereas the fiber reinforcement does not expand. Inability to follow, resin withering, wrinkles, etc. occur, the appearance deteriorates, and the adhesiveness also decreases. More preferably, it is 5 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C. or less.
  • a linear expansion coefficient can be measured by the method as described in the below-mentioned Example.
  • the rate of change in dimensional heating at 130 ° C. of the bead foam molding is ⁇ 4.0 to 0%. Note that minus means contraction and plus means expansion. If the heating dimensional change rate is smaller than -4.0%, that is, the shrinkage rate is larger than 4.0%, the density of the bead foam molded body contained in the core material increases, and the lightening effect is reduced. Therefore, a desired dimension cannot be obtained, or the reproducibility of the dimension is lowered. If the shrinkage is further increased, the adhesion between the bead foam molded product and the fiber reinforcing material is deteriorated, the adhesiveness and appearance are deteriorated, and finally the bead foam molded product is melted so that a composite product cannot be obtained. .
  • the heating dimensional change rate is greater than 0%, that is, when the bead foam molded body expands, it becomes difficult to reduce the thickness.
  • the dimensional reproducibility is deteriorated, and it is impossible to combine in a complicated shape.
  • unevenness occurs on the surface of the bead foam molded product, not only the surface smoothness of the composite is deteriorated, but also the adhesiveness thereof is lowered.
  • it is -3.5 to 0%, more preferably -3.0 to 0%.
  • the heating dimensional change rate at 130 ° C. can be measured by the method described in Examples described later.
  • the expansion ratio of the bead foam molding is not particularly limited, but is preferably 1.5 cm 3 / g or more, more preferably 2 cm 3 / g or more, and 40 cm 3 / g or less. Is more preferable, and more preferably 25 cm 3 / g or less. Within this range, it is easy to maintain excellent heat resistance and high-temperature rigidity while taking advantage of weight reduction.
  • the expansion ratio can be measured by the method described in Examples described later.
  • the bead foam molded body can be obtained by a bead foaming method.
  • a bead foam molded product since it is excellent in moldability and can be molded into various shapes, there is an advantage that the degree of freedom of design becomes wider when used for structural members such as members.
  • the foamed beads used in the present invention can be obtained, for example, by containing (impregnating) a foaming agent in a thermoplastic resin (impregnation step) and foaming the resin component (foaming step), but are not limited thereto. is not.
  • the method of adding the foaming agent to the base resin is not particularly limited, and a generally performed method can be applied.
  • a method of containing a foaming agent a method using an aqueous medium using a suspension system such as water (suspension impregnation), or a method using a thermally decomposable foaming agent such as sodium deuterium hydrogen (foaming agent decomposition method)
  • a method of bringing the gas into contact with the base resin in a gas phase under a high pressure atmosphere below the critical pressure (gas phase) Impregnation) and the like a method of containing a foaming agent.
  • the method of vapor phase impregnation in a high-pressure atmosphere below the critical pressure is particularly preferable.
  • the method of impregnating in the gas phase has better solubility of the gas in the resin than the suspension impregnation carried out under a high temperature condition, and makes it easy to increase the content of the foaming agent. Therefore, it is easy to achieve a high expansion ratio, and the bubble size in the base resin is likely to be uniform.
  • the blowing agent decomposition method is not only carried out under high temperature conditions, but not all of the added pyrolytic foaming agent becomes gas, so that the amount of gas generation tends to be relatively small. Therefore, the vapor phase impregnation has an advantage that the foaming agent content can be easily increased.
  • facilities such as a pressure device and a cooling device are likely to be more compact, and the facility cost can be easily suppressed.
  • the vapor phase impregnation conditions are not particularly limited, but the atmospheric pressure is preferably 0.5 to 6.0 MPa.
  • the atmospheric temperature is preferably 5 to 30 ° C, more preferably 7 to 20 ° C.
  • gas dissolution in the base resin is more likely to proceed more efficiently.
  • the ambient temperature is low, the amount of impregnation increases, but the impregnation rate is slow, and if the ambient temperature is high, the amount of impregnation decreases, but the impregnation rate tends to increase. In order to proceed, it is preferable to set the above atmospheric temperature.
  • a foaming agent is not specifically limited,
  • the gas generally used can be used. Examples thereof include air, carbon dioxide gas, nitrogen gas, oxygen gas, ammonia gas, hydrogen gas, argon gas, helium gas, neon gas and other inorganic gases, trichlorofluoromethane (R11), dichlorodifluoromethane (R12), chlorodifluoromethane.
  • R22 tetrachlorodifluoroethane (R112) dichlorofluoroethane (R141b) chlorodifluoroethane (R142b), difluoroethane (R152a), fluorocarbons such as HFC-245fa, HFC-236ea, HFC-245ca, HFC-225ca, propane, n -Saturated hydrocarbons such as butane, i-butane, n-pentane, i-pentane, neopentane, dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether Ethers such as tellurium, diisopropyl ether, furan, furfural, 2-methylfuran, tetrahydrofuran, tetrahydropyran, dimethyl ketone, methyl ethyl ketone, diethyl ket
  • Inorganic gas is preferred from the viewpoint of gas safety.
  • the inorganic gas is less soluble in the resin than the organic gas such as hydrocarbon, and the gas is likely to escape from the resin after the foaming process or the molding process, so that there is an advantage that the dimensional stability of the molded product over time is further improved. Further, the plasticization of the resin by the residual gas hardly occurs, and there is an advantage that excellent heat resistance is easily expressed from an earlier stage after molding.
  • carbon dioxide gas is preferable from the viewpoint of solubility in the resin and ease of handling, and the impregnation amount is preferably 0.5 to 10% by mass with respect to the resin. More preferably, the content is 1.0 to 9% by mass.
  • the carbon dioxide impregnation amount is 0.5% by mass or more, it becomes easy to achieve a higher expansion ratio, the bubble size in the base resin is less likely to vary, and the variation in the expansion ratio among the base resins is reduced. It is a trend. When the amount is 10% by mass or less, the bubble size becomes appropriate, and the closed cell ratio tends to be easily maintained.
  • the foaming method for foaming beads in the foaming process is not particularly limited.
  • the foamed beads are released from a high-pressure condition in a low-pressure atmosphere at once, and the gas dissolved in the base resin is expanded or heated by pressurized steam.
  • a method of expanding the gas dissolved in the base resin is particularly preferable. This is because the bubble size inside the base resin is likely to be uniform as compared with a method in which a low pressure atmosphere is opened from a high pressure condition.
  • the introduction pressure of the steam supplied to the foaming machine is preferably 6.0 to 15.0 kg / cm 2 ⁇ G, more preferably 6.1 to 12.0 kg / cm 2 ⁇ G.
  • the introduction pressure is low, the ability to heat the pre-foaming machine is low, so that the time required to raise the temperature to a predetermined temperature is long when pre-foaming is performed.
  • a phenomenon called “blocking” in which the surface of the pre-expanded particles is once melted and integrated with the adjacent pre-expanded particles easily occurs.
  • the vapor pressure in the pre-foaming machine rises rapidly, and it becomes easy to obtain good pre-foamed particles that are not blocked.
  • the steam can be more uniformly and efficiently foamed by introducing the steam from a large number of steam holes from the bottom of the foaming furnace and stirring the resin with stirring blades.
  • the rotation speed of the stirring blade is preferably 20 to 120 rpm, more preferably 50 to 90 rpm. If the rotational speed is 20 rpm or less, the pressurized water vapor does not hit uniformly and foaming control is difficult or problems such as blocking tend to occur. If it is 120 rpm or more, the foamed beads are damaged by the stirring blades. , The closed cell ratio tends to decrease, or the desired foaming ratio tends to be difficult to obtain.
  • one-stage foaming may be performed, or multi-stage foaming including secondary foaming, tertiary foaming, or the like may be performed.
  • multistage foaming there is an advantage that it is easy to prepare pre-expanded particles having a high expansion ratio.
  • the gas used for the pressure treatment is not particularly limited as long as it is inert to the resin, but inorganic gases and hydrofluoroolefins having high gas safety and low gas global warming potential are preferred.
  • the inorganic gas include air, carbon dioxide gas, nitrogen gas, oxygen gas, ammonia gas, hydrogen gas, argon gas, helium gas, and neon gas.
  • the hydrofluoroolefin include HFO-1234y, HFO-1234ze (E) and the like can be mentioned, and air and carbon dioxide gas are particularly preferable from the viewpoint of ease of handling and economy.
  • a technique for the pressure treatment is not particularly limited, and examples thereof include a technique of filling pre-expanded particles in a pressurized tank and supplying gas into the tank.
  • the shape of the foam beads obtained in the foaming step is not particularly limited, and examples thereof include cylindrical, rectangular parallelepiped, spherical, and irregular pulverized products.
  • the size (particle size) of the expanded beads is preferably 0.2 to 3 mm.
  • the pre-foamed particles have an appropriate size and are easy to handle, and the filling during molding tends to be denser.
  • size of a foam bead can be measured with a caliper.
  • the expansion ratio of the expanded beads obtained in the foaming process are not particularly limited, preferably 1.5 ⁇ 40cm 3 / g, and more preferably 2 ⁇ 25cm 3 / g. Within this range, it becomes easy to obtain a bead foam molded article having excellent heat resistance and high-temperature rigidity while utilizing the advantages of weight reduction.
  • the primary foaming magnification is preferably 1.4 to 10 cm 3 / g. Within this range, the cell size in the bead foam molded product tends to be uniform, and secondary foaming ability is easily imparted.
  • the expansion ratio of the expanded beads refers to the ratio of the expanded beads volume Vp to the expanded beads weight Wp (Vp / Wp). Moreover, in this specification, the volume of a foam bead says the volume measured by the submergence method.
  • a bead foam molding can be obtained (molding process) using a general molding method.
  • foamed beads are filled in a mold and foamed by heating, and at the same time, the beads are fused together, and then solidified by cooling, and then molded.
  • the filling method of the expanded beads is not particularly limited.
  • a compression cracking method in which cracking is performed after filling with the compressed beads may be used.
  • the pressure source for performing the pressure treatment is not particularly limited, but it is preferable to use an inorganic gas from the viewpoints of flame retardancy, heat resistance and dimensional stability described above.
  • inorganic gas include air, carbon dioxide gas, nitrogen gas, oxygen gas, ammonia gas, hydrogen gas, argon gas, helium gas, neon gas, etc. From the viewpoint of ease of handling and economy, carbon dioxide gas and air are Although it is preferable, it is not limited thereto.
  • the method of the pressure treatment is not particularly limited, and examples thereof include a method in which foaming beads are filled in a pressure tank and an inorganic gas is supplied into the tank to pressurize the tank.
  • the foam beads are filled into the mold cavity under pressurized atmospheric pressure or reduced pressure, the mold is closed, and the mold cavity volume is reduced to 0 to Compressed so as to decrease by 70%, and then heated by supplying a heating medium such as steam into the mold, and heat-fused foam beads (for example, Japanese Patent Publication No. 46-38359), Expanding the foam beads with pressurized gas in advance to increase the pressure inside the foam beads, increasing the secondary foamability of the foam beads, and maintaining the secondary foamability while maintaining the secondary foam performance. Is filled in a mold cavity and the mold is closed, and then a heating medium such as steam is supplied into the mold and heated to heat and fuse the foam beads (for example, Japanese Patent Publication No. 51-22951). Molding)
  • a heating medium such as steam is supplied into the cavities and heated, and the expanded beads It can also be molded by a compression filling molding method (Japanese Patent Publication No. 4-46217).
  • a heating medium such as steam is then supplied. It can also be molded by a normal pressure filling molding method (Japanese Patent Publication No. 6-49795) or a combination of the above methods (Japanese Patent Publication No. 6-22919) or the like in which heating and fusing of foam beads are performed. .
  • Expansion ratio of the molded article using the expanded beads of the present embodiment is not particularly limited, preferably 1.5 ⁇ 40cm 3 / g, and more preferably 2 ⁇ 25cm 3 / g. Within this range, it becomes easy to obtain a bead foam molded article having excellent heat resistance and high-temperature rigidity while utilizing the advantages of weight reduction.
  • the expansion ratio of the bead foam molded body refers to the ratio (Vb / Wb) of the volume Vb of the bead foam molded body to the weight Wb of the bead foam molded body.
  • the volume of a bead foam molding says the volume measured by the submergence method.
  • Fiber reinforced composite Using the core material of the present embodiment, it can be combined with a fiber reinforcing material (for example, a skin material) to obtain a fiber reinforced composite.
  • a fiber reinforcing material for example, a skin material
  • the fiber reinforced composite is a composite in which a skin material containing fibers and resin is disposed on at least a part of the surface of the core material including the bead foam molded product.
  • the core material may be a core material made only of a bead foam molded body.
  • the portion on the surface of the core material where the skin material is disposed may be appropriately determined according to the shape of the core material. In the case of a lump, it may be the whole or part of the surface that can be seen from a specific direction in a stationary state. In the case of a line, the surface of a predetermined length in the extending direction from one end It may be all or part of.
  • the skin material in the fiber-reinforced composite of the present embodiment includes fibers and a resin, and optionally includes additives and the like.
  • fiber--- examples of the fiber include high-strength and high-modulus fiber, and specifically, carbon fiber, glass fiber, and organic fiber (for example, “Kevlar (registered trademark)” manufactured by DuPont, USA). Polyaramid fibers), alumina fibers, silicon carbide fibers, boron fibers, silicon carbide fibers and the like.
  • those having a high specific elastic modulus which is a ratio of elastic modulus and density, specifically, carbon fibers and glass fibers are preferable, and carbon fibers are more preferable. These fibers may be used alone or in combination of two or more.
  • the tensile elastic modulus of the fiber in the present embodiment measured in accordance with JIS-K7127, is preferably 200 to 850 GPa from the viewpoint of ensuring high rigidity.
  • the fiber content in the present embodiment is preferably 40 to 80% by mass with respect to 100% by mass of the skin material.
  • the rigidity, in terms of weight reduction, the surface of the skin material preferably 50 ⁇ 4000g / m 2, more preferably 100 ⁇ 1000g / m 2, for example, 200g / M 2 may be used.
  • thermosetting resins examples include thermoplastic resins.
  • thermosetting resins that are cured by external energy addition such as heat, light, and electron beam are preferable, and specifically, epoxy resins are preferable. These resins may be used alone or in combination of two or more.
  • the glass transition temperature of the resin is preferably 80 to 250 ° C., more preferably 80 to 180 ° C., from the viewpoints of adhesion to the core material, deformation and warpage.
  • the glass transition temperature can be measured by the midpoint method according to ASTM-D-3418.
  • the resin is a thermosetting resin
  • its curing temperature is preferably 80 to 250 ° C., more preferably 80 to 150 ° C., from the viewpoints of adhesion to the core material, deformation and warpage.
  • the resin content in the present embodiment is preferably 20 to 60% by mass, more preferably 30 to 30% by mass with respect to 100% by mass of the skin material from the viewpoint of adhesiveness to the core material, deformation and warpage. 50% by mass.
  • An example of the method for manufacturing a fiber reinforced composite in the present embodiment is a method for forming a fiber reinforced composite by adding a core material including a bead foam molded body and a skin material including a fiber and a resin to a molding machine. A way to get a body.
  • the shape of the core material is not particularly limited and can be appropriately determined according to the purpose and application. Examples thereof include a molded product, a particle shape, a sheet shape, a linear shape (thread shape), and a lump shape.
  • the fiber is immersed in the molten resin, or the molten resin is sprayed onto the fiber to impregnate the fiber with the resin to obtain the skin material.
  • the skin material may be prepared as a cross prepreg. Note that after the resin is impregnated with fibers, the resin may be cured by light or heat.
  • the shape of the fiber reinforced composite is also a sheet, it may be as described for the fiber reinforced composite of this embodiment.
  • the core material for example, a bead foam molded body
  • the skin material may be filled in a molding machine in a desired arrangement state and simultaneously molded.
  • the bead foam molded body may be further foamed in the molding step.
  • the sheet-like bead foam molded body is positioned between the two sheet-like skin materials. These may be filled into the molding machine.
  • these are placed in the molding machine so that the lump bead foam molding is wrapped with the sheet skin material.
  • these are filled into a molding machine so that the linear bead foam molding is wrapped with a sheet-like skin material. It's okay.
  • the pressure is maintained at a temperature of 80 to 150 ° C., preferably 100 to 120 ° C. for 0 to 5 minutes, preferably 1 to 3 minutes without applying pressure, and thereafter 0 to 3 MPa.
  • the pressure is preferably maintained at a pressure of 0.1 to 1 MPa and a temperature of 80 to 150 ° C., preferably 100 to 120 ° C. for 5 to 30 minutes, preferably 10 to 20 minutes.
  • the apparent density of the fiber-reinforced composite of this embodiment is preferably 0.05 to 1 g / cm 3 .
  • the apparent density of the fiber reinforced composite refers to the ratio (W / V) of the weight of the fiber reinforced composite to the volume V of the fiber reinforced composite.
  • the dimensions of the fiber reinforced composite of this embodiment may be appropriately determined according to the purpose and application.
  • the thickness of the skin material may be 0.1 to 2 mm.
  • the evaluation method of the core material for fiber reinforced composite (bead foam molding) and the fiber reinforced composite is as follows.
  • Thermal shrinkage start temperature A plate-shaped bead foam molded body of 300 mm ⁇ 100 mm ⁇ thickness 10 mm was allowed to stand for 24 hours in an environment adjusted to 23 ° C. Three 200 mm straight lines were drawn in parallel to this bead foam molded body at intervals of 20 mm, and the length (mm) of the line was measured with calipers. Thereafter, the length of the wire (mm) was measured after the bead foam molding was put into an oven at 30 ° C. for 2 hours and then left at 23 ° C. for 1 hour. This measurement was repeated by raising the oven temperature in increments of 5 ° C., and the temperature when all three lines were measured at 23 ° C. was taken as the heat shrinkage start temperature (° C.).
  • linear expansion coefficient (dimension B ⁇ dimension C) / (dimension A ⁇ 35)
  • Heating dimensional change rate at 130 ° C. Measurement was performed according to the dimensional stability test B method at high temperature of JIS K6767 except that the heating temperature was 130 ° C. and the heating time was 1.5 minutes. The heating time was 1.5 minutes after the temperature in the dryer reached 130 ° C. after the test piece was put into the hot air circulating dryer.
  • Viscoelasticity measurement About the resin before foaming, viscoelasticity measurement was performed on the following conditions using ARES-G2 by TA Instruments. The measurement is performed while the temperature is lowered from 300 ° C., but when the resin is solidified and cannot be measured, data up to that temperature is used. From the obtained data, the temperature at which the loss tangent tan ⁇ reaches the maximum from 70 ° C. (when the measurement becomes impossible in the middle) to 200 ° C. is Tp, and the storage elastic modulus at (Tp-30) ° C. and 150 ° C. G′1 and G′2 were obtained, and G′2 / G′1 was calculated.
  • the storage elastic modulus at the temperature at which measurement becomes impossible is defined as G′1.
  • Measurement jig Cone and plate Measurement mode: Melting Sweep category: Temperature sweep Distortion amount: 10% Frequency: 10 rad / sec Temperature range: 70-300 ° C Temperature drop rate: 2 ° C / min Plate diameter: 25 ⁇ mm Gap interval: 1mm Automatic mode: Axial force ... 10g Sensitivity... 2.0g
  • Residual gas concentration An appropriate amount of the bead foam molded body obtained in the examples and comparative examples was charged into a head space bottle and heated at a temperature equal to or higher than the softening point of the bead foam molded body sample. Thereafter, the gas in the headspace bottle was quantified by gas chromatography (manufactured by Shimadzu Corporation, GC14B). Helium (He) was used as a carrier gas and controlled in a constant flow rate mode (about 30 mL / min). In addition, the column (Porapak Q, 80/100 mesh, 3.2 mm ⁇ ⁇ 2.1 m) was heated and held at 50 to 150 ° C. and detected by a thermal conductivity type detector (TCD).
  • TCD thermal conductivity type detector
  • the volume of the aliphatic hydrocarbon gas was calculated from the detected area area and the calibration curve created with the standard gas sample. Then, the concentration (volume ppm) of the aliphatic hydrocarbon gas was calculated by dividing the volume of the aliphatic hydrocarbon gas by the volume of the bead foam molded product sample.
  • Thickness The thickness (mm) of the fiber reinforced composites obtained in Examples and Comparative Examples and the thickness (mm) of the skin material were measured using calipers.
  • Example 1 A cross prepreg composed of carbon fiber having a tensile modulus of 250 GPa and an epoxy resin having a curing temperature of 80 ° C. and having a fiber basis weight of 200 g / m 2 and a carbon fiber content of 60% by mass is used as a skin material. Two sheets were prepared. Further, 73% by mass of polyphenylene ether resin (PPE) and 12% by mass of impact-resistant polystyrene resin (HIPS) having a rubber concentration of 6% by mass (the content of the rubber component in the base resin is 0.6% by mass).
  • PPE polyphenylene ether resin
  • HIPS impact-resistant polystyrene resin
  • Base resin pellets were prepared. When the viscoelasticity measurement of this base resin was implemented, Tp was 153 degreeC and G'2 / G'1 was 0.40. According to the method described in Example 1 of JP-A-4-372630, the base resin pellets are accommodated in a pressure-resistant container, the gas in the container is replaced with dry air, and then carbon dioxide (gas) is used as a blowing agent.
  • PS general-purpose polystyrene resin
  • the base resin pellet was impregnated with 7% by mass of carbon dioxide over 3 hours under conditions of a pressure of 3.2 MPa and a temperature of 11 ° C. Thereafter, the base resin pellets were foamed with pressurized steam while rotating the stirring blades at 77 rpm in a preliminary foaming machine to obtain foam beads.
  • the foamed beads were pressurized to 0.5 MPa over 1 hour, then held at 0.5 MPa for 8 hours, and subjected to pressure treatment. This is filled into an in-mold molding die having water vapor holes, heated with pressurized steam to expand and fuse the foam beads together, cooled, taken out from the molding die, and 300 mm ⁇ 300 mm ⁇ 10 mm thick.
  • a bead foam molded body (foam) having an expansion ratio of 10 cm 3 / g was obtained. It was 85 degreeC when the heat shrink start temperature of the obtained bead foaming molding was measured. When the linear expansion coefficient of the obtained bead foam molded product was measured, it was 5 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C. The dimensional change rate at 130 ° C. of the obtained bead foam molding was ⁇ 3.6%. When the concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume).
  • the obtained bead foam molded product was used as a core material, and the skin material prepared as described above was laminated one by one on the upper and lower surfaces of the core material, and this laminate was then subjected to 3 at 100 ° C. without applying pressure. After holding for 1 minute, the skin material and the core material were simultaneously molded by holding for 15 minutes while pressing at a surface pressure of 0.4 MPa to obtain a fiber-reinforced composite. Details of the conditions are shown in Table 1. The appearance of the fiber reinforced composite of Example 1 was excellent without wrinkles or bubbles. Although there was a gap between the skin material and the core material, there was no problem in practical use. In addition, the dimensional reproducibility was at a level with no problem in actual use although there was some dimensional variation.
  • Example 2 A polyphenylene ether-based resin (PPE) 40% by mass and a polystyrene-based resin (PS) 60% by mass were heated, melted and kneaded by an extruder, and then extruded to prepare a base resin pellet as a core material.
  • PPE polyphenylene ether-based resin
  • PS polystyrene-based resin
  • the dimensional change rate at 130 ° C. of the obtained bead foam molded product was a shrinkage of 0.1% or less.
  • concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume).
  • This was combined with a skin material in the same manner as in Example 1, and evaluated using the obtained fiber-reinforced composite. Details of the conditions are shown in Table 1.
  • the fiber reinforced composite of Example 2 was excellent in appearance, adhesiveness, and dimensional reproducibility.
  • Example 3 Using the thermoplastic resin of Example 2, a bead foam molded article having an expansion ratio of 5 cm 3 / g was produced. It was 95 degreeC when the heat shrink start temperature of the obtained bead foam molding was measured. When the linear expansion coefficient of the obtained bead foam molded product was measured, it was 4 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C. The dimensional change rate at 130 ° C. of the obtained bead foam molded product was a shrinkage of 0.1% or less. When the concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume). This was combined with a skin material in the same manner as in Example 1, and evaluated using the obtained fiber-reinforced composite. Details of the conditions are shown in Table 1. The fiber reinforced composite of Example 3 had excellent appearance, adhesiveness, and dimensional reproducibility as in Example 2.
  • Example 4 Using the thermoplastic resin of Example 2, a bead foam molded article having an expansion ratio of 15 cm 3 / g was produced. It was 95 degreeC when the heat shrink start temperature of the obtained bead foam molding was measured. When the linear expansion coefficient of the obtained bead foam molded product was measured, it was 4 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C. The dimensional change rate at 130 ° C. of the obtained bead foam molded product was a shrinkage of 0.1% or less. When the concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume). This was combined with a skin material in the same manner as in Example 1, and evaluated using the obtained fiber-reinforced composite. Details of the conditions are shown in Table 1. The fiber reinforced composite of Example 4 had excellent appearance, adhesiveness, and dimensional reproducibility as in Example 2.
  • Example 5 A polyphenylene ether resin (PPE) 50 mass% and a polystyrene resin (PS) 50 mass% were heated, melted and kneaded by an extruder and then extruded to prepare a base resin pellet as a core material.
  • PPE polyphenylene ether resin
  • PS polystyrene resin
  • the dimensional change rate at 130 ° C. of the obtained bead foam molded product was a shrinkage of 0.1% or less.
  • concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume).
  • This was combined with a skin material in the same manner as in Example 1, and evaluated using the obtained fiber-reinforced composite. Details of the conditions are shown in Table 1.
  • the fiber reinforced composite of Example 5 had excellent appearance, adhesiveness, and dimensional reproducibility as in Example 2.
  • Example 6 A polyphenylene ether-based resin (PPE) 60 mass% and a polystyrene-based resin (PS) 40 mass% were heated, melted and kneaded by an extruder, and then extruded to produce a base resin pellet as a core material.
  • PPE polyphenylene ether-based resin
  • PS polystyrene-based resin
  • the coefficient of linear expansion of the obtained bead foam molded product was measured to be 2 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C.
  • the dimensional change rate at 130 ° C. of the obtained bead foam molded product was a shrinkage of 0.1% or less.
  • concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume).
  • This was combined with a skin material in the same manner as in Example 1, and evaluated using the obtained fiber-reinforced composite. Details of the conditions are shown in Table 1.
  • the fiber reinforced composite of Example 6 had excellent appearance, adhesiveness, and dimensional reproducibility as in Example 2.
  • Example 7 A polyphenylene ether-based resin (PPE) 35 mass% and a polystyrene-based resin (PS) 65 mass% were heated, melted and kneaded by an extruder and then extruded to prepare a base resin pellet as a core material.
  • PPE polyphenylene ether-based resin
  • PS polystyrene-based resin
  • the dimensional change rate at 130 ° C. of the obtained bead foam molded product was a shrinkage of 0.1% or less.
  • concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume).
  • This was combined with a skin material in the same manner as in Example 1, and evaluated using the obtained fiber-reinforced composite. Details of the conditions are shown in Table 1.
  • the fiber reinforced composite of Example 7 had excellent appearance, adhesiveness, and dimensional reproducibility as in Example 2.
  • Example 8 30 mass% of polyphenylene ether resin (PPE) and 70 mass% of polystyrene resin (PS) were heated, melted and kneaded by an extruder, and then extruded to prepare a base resin pellet as a core material.
  • PPE polyphenylene ether resin
  • PS polystyrene resin
  • Tp 150 degreeC
  • G'2 / G'1 was 0.28.
  • a bead foam molding was produced in the same manner as in Example 1. It was 80 degreeC when the heat shrink start temperature of the obtained bead foam molding was measured.
  • the linear expansion coefficient of the obtained bead foam molded product was measured, it was 5 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C.
  • the dimensional change rate at 130 ° C. of the obtained bead foam molding was ⁇ 0.3%.
  • concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume).
  • This was combined with a skin material in the same manner as in Example 1, and evaluated using the obtained fiber-reinforced composite. Details of the conditions are shown in Table 1. Although the fiber-reinforced composite of Example 8 was slightly wrinkled in appearance, it was at a level where there was no practical problem. Further, the composite was slightly thinner and the apparent density was higher than that of Example 1.
  • Example 1 The concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume). This was combined with the skin material in the same manner as in Example 1. Details of the conditions are shown in Table 1. In Comparative Example 1, the core material was melted at the time of composite, and a fiber-reinforced composite could not be obtained.
  • Example 2 a fiber-reinforced composite can be obtained, and although the thickness and the apparent density are good, the appearance of the resin is often withered and wrinkled due to the large linear expansion coefficient. There were many gaps between them, which could not withstand actual use.
  • the dimensional change rate at 130 ° C. of the obtained bead foam molding was ⁇ 5.0%.
  • concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume).
  • This was combined with a skin material in the same manner as in Example 1, and evaluated using the obtained fiber-reinforced composite. Details of the conditions are shown in Table 1.
  • Comparative Example 4 a fiber-reinforced composite could be obtained, but the core material was greatly shrunk and was not a material that could withstand actual use.
  • the dimensional change rate at 130 ° C. of the obtained bead foam molding was ⁇ 2.7%.
  • concentration of the aliphatic hydrocarbon gas in the obtained bead foam molded product was measured, it was below the detection limit (50 ppm by volume).
  • This was combined with a skin material in the same manner as in Example 1, and evaluated using the obtained fiber-reinforced composite. Details of the conditions are shown in Table 1.
  • Comparative Example 5 as a result of shrinkage of the molded product, wrinkles were observed on the surface due to the small thickness, high apparent density, and low shrinkage start temperature, and the product was not durable.
  • a bead foam molded article was produced in the same manner as in Example 2 except that the foaming gas was pentane. It was 90 degreeC when the heat shrink start temperature of the obtained bead foam molding was measured. When the linear expansion coefficient of the obtained bead foam molded product was measured, it was 5 ⁇ 10 ⁇ 5 mm / mm ⁇ ° C. The dimensional change rate at 130 ° C. of the obtained bead foam molding was + 1.5%. It was 1500 volume ppm when the density
  • Comparative Example 6 was slightly inferior to the surface smoothness as compared with Example 2, but the appearance was at a level that could withstand use. However, due to the expansion of the bead foam molding, there were many gaps between the skin material and the core material, and the adhesiveness was not a thing that could withstand actual use. In addition, it was difficult to control the expansion, resulting in poor dimensional reproducibility.
  • the core material for a fiber reinforced composite of the present invention is excellent in processability when combined with a fiber reinforced material, and the fiber reinforced composite using the fiber reinforced composite is particularly used in the automobile field (for example, an automobile roof, bonnet, fender, etc.). Member).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

繊維強化材と複合する際の加工性に優れた繊維強化複合体用芯材を提供することを目的とする。本発明の繊維強化複合体用芯材は、熱可塑性樹脂を含み、熱収縮開始温度が80℃以上であり、線膨張係数が10×10-5mm/mm・℃以下であり、130℃での加熱寸法変化率が-4.0~0%であるビーズ発泡成形体を含むことを特徴としている。

Description

繊維強化複合体用芯材、及びそれを用いた繊維強化複合体
 本発明は、軽量であり繊維強化層等との複合時の加工性に優れた繊維強化複合体用芯材に関する。
 繊維で強化された繊維強化合成樹脂は、軽量で且つ高い機械的強度を有していることから、近年、自動車分野、船舶分野、航空分野、医療分野等の軽量性及び高い機械的強度が求められている分野において、使用が拡大されている。
 上述の要求を満たすものとして、芯材に発泡体を用い、芯材の表面に繊維強化樹脂を積層一体化させてなる繊維強化複合体が提案されている(特許文献1~3参照)。
特許第6067473号公報 特開2015-47757号公報 特開2015-83365号公報
 しかしながら、特許文献1、2に記載の繊維強化複合体の製造方法は非常に特殊な方法がとられており、芯材となる発泡体が膨張する必要がある。その結果、薄肉化が困難であったり、また、厚みの異なる箇所に対して発泡体の膨張量の制御ができず、形状が制約されたり、発泡体の膨張斑が原因で、外観平滑性が劣る等、まだ課題が残るものであった。特許文献3は、ポリプロピレン(PP)樹脂発泡体や、ポリメタクリルイミド(PMI)樹脂発泡体と繊維強化複合材との複合体が開示されているが、ポリプロピレン(PP)樹脂発泡体は、熱時剛性が低く、繊維強化材との複合条件は限られた物であった。また、ポリメタクリルイミド(PMI)樹脂発泡体は、耐熱性に優れるものの、その製法が特殊であるため、発泡体の形状が平板に限られ、所望の形状とすることができず、複合体の外観が悪い問題点もあった。
 本発明者らは、上記課題を解決するため、特定の高温特性を持つ樹脂を用いることによって、繊維強化材との複合時の加工性に優れる芯材を見出し、本発明をなすに至った。
 すなわち、本発明は以下の通りである。
(1)熱可塑性樹脂を含み、熱収縮開始温度が80℃以上であり、線膨張係数が10×10-5mm/mm・℃以下であり、130℃での加熱寸法変化率が-4.0~0%であるビーズ発泡成形体を含むことを特徴とする繊維強化複合体用芯材。
(2)前記熱可塑性樹脂が、70℃~200℃において損失正接tanδが最大となる温度をTpとし、(Tp-30)℃の貯蔵弾性率(G’1)と150℃の貯蔵弾性率(G’2)の比(G’2/G’1)が0.25~0.95である、(1)に記載の繊維強化複合体用芯材。
(3)前記ビーズ発泡成形体中の脂肪族炭化水素系ガスの濃度が500体積ppm以下である、(1)又は(2)に記載の繊維強化複合体用芯材。
(4)前記熱可塑性樹脂が、ポリフェニレンエーテル系樹脂を30~75質量%含む、(1)~(3)のいずれかに記載の繊維強化複合体用芯材。
(5)前記熱可塑性樹脂中の難燃剤の含有量が、前記熱可塑性樹脂100質量%に対して3質量%以下である、(1)~(4)のいずれかに記載の繊維強化複合体用芯材。
(6)(1)~(5)のいずれかに記載の繊維強化複合体用芯材の表面の少なくとも一部に、繊維及び樹脂を含む表皮材が配置されたことを特徴とする、繊維強化複合体。
 本発明の繊維強化複合体用芯材は、繊維強化材と複合する際の加工性に優れる。
 以下、本発明を実施するための形態(以下、「本実施形態」ともいう。)について詳細に説明する。以下の実施形態は、本発明を説明するための例示であり、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態の繊維強化複合体用芯材は、ビーズ発泡成形体を含むものであり、ビーズ発泡成形体のみからなっていてもよい。芯材には、目的や用途に応じて、ビーズ発泡成形体以外の部材が含まれていてもよい。
--ビーズ発泡成形体--
 ビーズ発泡成形体は、熱可塑性樹脂を含み、任意選択的に、微量のガス、添加剤等を含む。
 上記ビーズ発泡成形体中の熱可塑性樹脂の含有量は、50~100質量%であることが好ましく、熱可塑性樹脂のみからなるビーズ発泡成形体であってもよい。
---熱可塑性樹脂---
 熱可塑性樹脂は、特には限定されないが、70℃~200℃において損失正接tanδが最大となる温度をTpとし、(Tp-30)℃の貯蔵弾性率(G’1)と150℃の貯蔵弾性率(G’2)の比(G’2/G’1)が0.25~0.95であることが好ましい。G’2/G’1がこの範囲にあると、高温での剛性を適度に維持しやすくなり、複合時の変形を抑制しやすく、また、繊維強化材と馴染みやすくなり、接着強度を発現しやすくなる。G’2/G’1は、より好ましくは0.30~0.90、さらに好ましくは0.30~0.85である。
 熱可塑性樹脂は、繊維強化材との接着性の観点から、ポリフェニレンエーテル系樹脂を含むことが好ましく、ポリフェニレンエーテル系樹脂以外の樹脂(他の樹脂)をさらに含んでいてよい。
----ポリフェニレンエーテル系樹脂----
 ポリフェニレンエーテル系樹脂は、下記一般式(1)で表される繰り返し単位を含む重合体をいい、例えば、下記一般式(1)で表される繰り返し単位からなる単独重合体、下記一般式(1)で表される繰り返し単位を含む共重合体等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
[式中、R、R、R、及びRは、それぞれ独立して、水素原子;ハロゲン原子;アルキル基;アルコキシ基;フェニル基;ハロゲン原子と一般式(1)中のベンゼン環との間に少なくとも2個の炭素原子を有するハロアルキル基又はハロアルコキシ基で第3α-炭素を含まない基;からなる群から選択される一価の基である。]
 ポリフェニレンエーテル系樹脂としては、特に限定されないが、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジプロピル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジブチル-1,4-フェニレン)エーテル、ポリ(2,6-ジラウリル-1,4-フェニレン)エーテル、ポリ(2,6-ジフェニル-1,4-ジフェニレン)エーテル、ポリ(2,6-ジメトキシ-1,4-フェニレン)エーテル、ポリ(2,6-ジエトキシ-1,4-フェニレン)エーテル、ポリ(2-メトキシ-6-エトキシ-1,4-フェニレン)エーテル、ポリ(2-エチル-6-ステアリルオキシ-1,4-フェニレン)エーテル、ポリ(2,6-ジクロロ-1,4-フェニレン)エーテル、ポリ(2-メチル-6-フェニル-1,4-フェニレン)エーテル、ポリ(2,6-ジベンジル-1,4-フェニレン)エーテル、ポリ(2-エトキシ-1,4-フェニレン)エーテル、ポリ(2-クロロ-1,4-フェニレン)エーテル、ポリ(2,6-ジブロモ-1,4-フェニレン)エーテル等が挙げられる。中でも、特に、上記一般式(1)において、R及びRが炭素原子数1~4のアルキル基であり、R及びRが水素原子又は炭素数1~4のアルキル基である繰り返し単位を含む重合体が好ましい。
 ポリフェニレンエーテル系樹脂は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
 ポリフェニレンエーテル系樹脂の重量平均分子量としては、20,000~60,000が好ましい。
 本実施形態におけるポリフェニレンエーテル(PPE)系樹脂の含有量は、好ましくは、ビーズ発泡成形体中に含まれる熱可塑性樹脂100質量%に対して、30~75質量%であることが好ましく、より好ましくは35~65質量%であり、さらに好ましくは35~50質量%である。PPE含有量が30質量%以上の場合、優れた耐熱性を得やすくなり、また、PPE含有量が75質量%以下の場合、優れた加工性を得やすくなる。
----ポリフェニレンエーテル系樹脂以外の樹脂(他の樹脂)----
 他の樹脂としては、熱可塑性樹脂等が挙げられ、例えば、ポリエチレン、ポリプロピレン、EVA(エチレン-酢酸ビニル共重合体)等のポリオレフィン系樹脂;ポリビニルアルコール;ポリ塩化ビニル;ポリ塩化ビニリデン;ABS(アクリロニトリル-ブタジエン-スチレン)樹脂;AS(アクリロニトリル-スチレン)樹脂;ポリスチレン系樹脂;メタクリル系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリイミド系樹脂;ポリアセタール系樹脂;ポリエステル系樹脂;アクリル系樹脂;セルロース系樹脂;スチレン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、1,2-ポリブタジエン系、フッ素ゴム系等の熱可塑性エラストマー;ポリアミド系、ポリアセタール系、ポリエステル系、フッ素系の熱可塑性エンジニアリングプラスチック;等が挙げられる。また本発明の目的を損なわない範囲で、変性、架橋された樹脂を用いてもよい。中でも、相溶性の観点から、ポリスチレン系樹脂が好ましい。
 これらは、1種単独で用いても、2種以上を組み合わせて用いてもよい。
 ポリスチレン系樹脂としては、スチレン又はスチレン誘導体の単独重合体、スチレン及び/又はスチレン誘導体を主成分とする共重合体等が挙げられる。
 スチレン誘導体としては、特に限定されないが、例えば、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン、α-メチルスチレン、β-メチルスチレン、ジフェニルエチレン、クロロスチレン、ブロモスチレン等が挙げられる。
 スチレン又はスチレン誘導体の単独重合体としては、例えば、ポリスチレン、ポリα-メチルスチレン、ポリクロロスチレン等が挙げられる。
 スチレン及び/又はスチレン誘導体を主成分とする共重合体としては、例えば、スチレン-α-オレフィン共重合体;スチレン-ブタジエン共重合体;スチレン-アクリロニトリル共重合体;スチレン-マレイン酸共重合体;スチレン-無水マレイン酸共重合体;スチレン-マレイミド共重合体;スチレン-N-フェニルマレイミド共重合体;スチレン-N-アルキルマレイミド共重合体;スチレン-N-アルキル置換フェニルマレイミド共重合体;スチレン-アクリル酸共重合体;スチレン-メタクリル酸共重合体;スチレン-メチルアクリレート共重合体;スチレン-メチルメタクリレート共重合体;スチレン-n-アルキルアクリレート共重合体;スチレン-n-アルキルメタクリレート共重合体;エチルビニルベンゼン-ジビニルベンゼン共重合体;ABS、ブタジエン-アクリロニトリル-α-メチルベンゼン共重合体等の三元共重合体;スチレングラフトポリエチレン、スチレングラフトエチレン-酢酸ビニル共重合体、(スチレン-アクリル酸)グラフトポリエチレン、スチレングラフトポリアミド等のグラフト共重合体;等が挙げられる。
 これらは、1種単独で用いても、2種以上を組み合わせて用いてもよい。
 さらに、ポリスチレン系樹脂には、必要に応じて、ブタジエン等のゴム成分を添加して使用してもよい。
 ゴム成分の含有量は、ポリスチレン系樹脂100質量%に対して、1.0~20質量%であることが好ましく、3.0~18質量%であることがより好ましい。
 本実施形態における他の樹脂の含有量は、発泡体の加工性の観点から、ビーズ発泡成形体に含まれる熱可塑性樹脂100質量%に対して、25~70質量%であることが好ましく、より好ましくは35~65質量%である。
---ガス---
 ガスとは、ビーズ発泡成形体の製造過程(後述)において含まれることとなるものである。
 ガスとしては、特に限定されないが、空気、炭酸ガス、発泡剤として用いられる各種ガス、脂肪族炭化水素系ガス等が挙げられる。
 脂肪族炭化水素系ガスとしては、具体的には、ブタン、ペンタン等が挙げられる。
 本実施形態では、ビーズ発泡成形体中の脂肪族炭化水素系ガスの濃度(含有量)は、ビーズ発泡成形体の体積を基準として、500体積ppm以下であることが好ましく、より好ましくは200体積ppm以下である。また、本実施形態では、芯材中の脂肪族炭化水素系ガスの濃度(含有量)は、芯材の体積を基準として、500体積ppm以下であることが好ましく、より好ましくは200体積ppm以下である。
 なお、脂肪族炭化水素系ガスの含有量は、ガスクロマトグラフィーにより測定することができる。
 脂肪族炭化水素系ガスの含有量を500体積ppm以下とすれば、複合時の加熱によるビーズ発泡成形体の膨張を抑制しやすくなる為、優れた表面平滑性、接着性、強度を得やすくなり、寸法の再現性も良く、後膨れも抑制しやすくなる。また、厚みの異なる箇所がある形状等、より複雑な形状での複合を行いやすくなる。
---添加剤---
 添加剤としては、例えば、難燃剤、ゴム成分、酸化防止剤、熱安定剤、滑剤、顔料、染料、耐光性改良剤、帯電防止剤、耐衝撃改質剤、タルク等の核剤、ガラスビーズ、無機充填剤、アンチブロッキング剤等が挙げられる。
 難燃剤としては、臭素化合物等のハロゲン系化合物、リン系化合物やシリコーン系化合物等の非ハロゲン系化合物等の有機系難燃剤;水酸化アルミニウム、水酸化マグネシウムに代表される金属水酸化物、三酸化アンチモン、五酸化アンチモンに代表されるアンチモン系化合物等の無機系難燃剤;等が挙げられる。
 難燃剤の含有量は、熱可塑性樹脂100質量%に対して3質量%以下が好ましく、より好ましくは1質量%以下である。難燃剤の含有量がこの範囲にあると、耐熱性や複合加工時の剛性をより維持しやすくなり、良好な接着性を発現しやすくなる。また、得られる複合体の寸法がより所望の寸法に近くなり、また、寸法の再現性もより良くなりやすい。
 以下、ビーズ発泡成形体の物性について記載する。
 ビーズ発泡成形体の熱収縮開始温度は80℃以上である。熱収縮開始温度が80℃より低いと、繊維強化材と複合時に加熱した際、芯材に含まれるビーズ発泡成形体が早い段階で収縮するので、繊維強化材がその変化に追随できず、しわなどが発生し、外観が悪くなる。より好ましくは85℃以上である。
 なお、熱収縮開始温度は、後述の実施例に記載の方法により測定することができる。
 ビーズ発泡成形体の線膨張係数は、10×10-5mm/mm・℃以下である。線膨張係数が10×10-5mm/mm・℃より大きいと、繊維強化材と複合時の加熱工程で、芯材に含まれるビーズ発泡成形体が膨張する一方、繊維強化材は膨張しないので追随できず、樹脂枯れやしわなどが発生し外観が悪くなり、接着性も低下する。より好ましくは5×10-5mm/mm・℃以下である。
 なお、線膨張係数は、後述の実施例に記載の方法により測定することができる。
 ビーズ発泡成形体の130℃での加熱寸法変化率は、-4.0~0%である。なお、マイナスは収縮を意味し、プラスは膨張を意味する。加熱寸法変化率が-4.0%より小さい、すなわち4.0%より収縮率が大きいと、芯材に含まれるビーズ発泡成形体の密度が増加し、軽量化効果が低減してしまうだけでなく、所望の寸法が得られなかったり、寸法の再現性が低下したりする。収縮がさらに大きくなると、ビーズ発泡成形体と繊維強化材との密着性が低下して、接着性や外観が悪化し、最終的には、ビーズ発泡成形体が溶融し、複合品が得られなくなる。加熱寸法変化率が0%より大きい、すなわちビーズ発泡成形体が膨張すると、薄肉化が困難になる。また、膨張量の制御が難しいので、寸法再現性が悪くなったり、複雑な形状での複合ができなくなったりする。また、ビーズ発泡成形体の表面に凹凸が発生する為、結果として複合体の表面平滑性が悪くなるだけでなく、その接着性も低下する。好ましくは、-3.5~0%であり、より好ましくは-3.0~0%である。
 なお、130℃での加熱寸法変化率は、後述の実施例に記載の方法により測定することができる。
 ビーズ発泡成形体の発泡倍率は、特には限定されないが、1.5cm/g以上であることが好ましく、2cm/g以上であることがより好ましく、また、40cm/g以下であることが好ましく、より好ましくは25cm/g以下である。この範囲であると、軽量化のメリットを活かしつつ、優れた耐熱性と高温剛性を維持しやすくなる。
 なお、発泡倍率は、後述の実施例に記載の方法により測定することができる。
 上記ビーズ発泡成形体は、ビーズ発泡法により得ることができる。ビーズ発泡成形体を用いると、付型性に優れ、様々な形に成形できる為、部材等の構造部材に使用する際、設計の自由度がより広くなるメリットがある。また、ビーズ発泡成形体の成形と、繊維強化材との複合を同時に行い、加工工程を省くことも可能となるメリットもある。
 本発明に用いる発泡ビーズは、例えば、熱可塑性樹脂に発泡剤を含有(含浸)させ(含浸工程)、樹脂成分を発泡させること(発泡工程)により得ることができるが、これに制限されるものではない。
 含浸工程において、基材樹脂に発泡剤を含有させる方法は特には限定せず、一般的に行われている方法が適用できる。発泡剤を含有させる方法として、水等の懸濁系を利用して水性媒体で行う方法(懸濁含浸)や、重炭素水素ナトリウム等の熱分解型発泡剤を用いる方法(発泡剤分解法)、ガスを臨界圧力以上の雰囲気にし、液相状態にして基材樹脂に接触させる方法(液相含浸)、臨界圧力未満の高圧雰囲気下で気相状態で基材樹脂に接触させる方法(気相含浸)等が挙げられる。この中でも特に、臨界圧力未満の高圧雰囲気下で気相含浸させる方法が好ましい。気相含浸させる方法は、高温条件下で実施される懸濁含浸に比べてガスの樹脂への溶解度がより良好で、発泡剤の含有量を高くしやすくなる。そのため、高発泡倍率を達成しやすく、基材樹脂内の気泡サイズも均一になりやすくなるからである。発泡剤分解法も同様に高温条件下で実施されるだけでなく、加えた熱分解型発泡剤全てがガスになる訳ではないため、ガス発生量が相対的に少なくなりやすい。そのため気相含浸の方がより発泡剤含有量を高くしやすい利点がある。また、液相含浸と比べると、耐圧装置や冷却装置等の設備がよりコンパクトになりやすく、設備費が低く抑えやすくなる。
 気相含浸条件は特には限定されないが、雰囲気圧力として0.5~6.0MPaが好ましい。また、雰囲気温度は5~30℃が好ましく、7~20℃がより好ましい。雰囲気圧力、雰囲気温度が上記範囲であると、より効率的に基材樹脂へのガス溶解が進行しやすくなる。特に、雰囲気温度は低ければ含浸量が増えるが含浸速度は遅くなり、雰囲気温度が高ければ含浸量は減るが含浸速度は速くなる傾向であり、その兼ね合いから効率的に基材樹脂へのガス溶解を進行するために上記の雰囲気温度を設定するのが好ましい。
 発泡剤は特には限定されず、一般的に用いられているガスを使用することができる。その例として、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等の無機ガス、トリクロロフルオロメタン(R11)、ジクロロジフルオロメタン(R12)、クロロジフルオロメタン(R22)、テトラクロロジフルオロエタン(R112)ジクロロフルオロエタン(R141b)クロロジフルオロエタン(R142b)、ジフルオロエタン(R152a)、HFC-245fa、HFC-236ea、HFC-245ca、HFC-225ca等のフルオロカーボンや、プロパン、n-ブタン、i-ブタン、n-ペンタン、i-ペンタン、ネオペンタン等の飽和炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2-メチルフラン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類、ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチルn-プロピルケトン、メチルn―ブチルケトン、メチルi-ブチルケトン、メチルn-アミルケトン、メチルn-ヘキシルケトン、エチルn-プロピルケトン、エチルn-ブチルケトン等のケトン類、メタノール、エタノール、プロピルアルコール、i-プロピルアルコール、ブチルアルコール、i-ブチルアルコール、t-ブチルアルコール等のアルコール類、蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステル等のカルボン酸エステル類、塩化メチル、塩化エチル等の塩素化炭化水素類等が挙げられる。
 これらは、1種単独で用いてもよく、2種以上併用してもよい。
 ガスの安全性の観点から無機ガスが好ましい。また、無機ガスは炭化水素等の有機ガスに比べ樹脂に溶けにくく、発泡工程や成形工程の後、樹脂からガスが抜けやすいので、成形品の経時での寸法安定性がより優れる利点もある。さらに、残存ガスによる樹脂の可塑化も起こりにくく、成形後、より早い段階から優れた耐熱性を発現しやすいメリットもある。無機ガスの中でも、樹脂への溶解性、取り扱いの容易さの観点から、炭酸ガスが好ましく、その含浸量は樹脂に対して0.5~10質量%あることが好ましい。より好ましくは1.0~9質量%である。
 炭酸ガスの含浸量が0.5質量%以上であると、より高い発泡倍率を達成しやすくなり、基材樹脂内の気泡サイズがばらつきにくく、基材樹脂間での発泡倍率のばらつきが小さくなる傾向である。10質量%以下であると、気泡サイズが適度になるため独立気泡率が維持されやすくなる傾向にある。
 発泡工程における、発泡ビーズの発泡方法は特に限定されないが、例えば、高圧条件下から一気に低圧雰囲気下に開放し、基材樹脂内に溶解しているガスを膨張させる方法や、加圧水蒸気等により加熱し、基材樹脂内に溶解したガスを膨張させる方法等が挙げられる。この中でも特に、加熱発泡させる方法が好ましい。これは、高圧条件下から一気に低圧雰囲気下に開放する方法に比べると、基材樹脂内部の気泡サイズが均一になりやすいからである。また、発泡倍率の制御、特に低発泡倍率品の制御が行いやすい利点がある。
 発泡工程において、発泡機へと供給する蒸気の導入圧力は6.0~15.0kg/cm・Gが好ましく、より好ましくは6.1~12.0kg/cm・Gである。導入圧力が低いと、予備発泡機を加熱する能力が低くなるので、予備発泡する際、所定の温度まで昇温するのに必要な時間が長くなる。これにより、予備発泡粒子表面が一旦溶けて、隣の予備発泡粒子と一体化する「ブロッキング」と呼ばれる現象が起きやすくなる。導入蒸気圧が6.0kg/cm・G以上の場合、予備発泡機内の蒸気圧力が速やかに上昇し、ブロッキングしていない良好な予備発泡粒子を得やすくなる。また、蒸気は、例えば、発泡炉の下部から多数の蒸気孔より導入し、樹脂を攪拌羽により攪拌することで、より均一かつ効率的に発泡させることができる。攪拌羽の回転数は、20~120rpmが好ましく、50~90rpmがより好ましい。回転数が20rpm以下であると均一に加圧水蒸気が当たらず発泡制御が困難であったりブロッキング等の不具合が起こりやすくなる傾向であり、120rpm以上であると発泡時のビーズが攪拌羽によりダメージを受け、独立気泡率が低下したり、所望の発泡倍率が得られにくくなる傾向にある。
 発泡ビーズを所望の発泡倍率になるまで発泡させる際、一段階の発泡を行ってもよく、二次発泡、三次発泡等からなる多段階の発泡を行ってもよい。なお、多段階の発泡を行った場合、高発泡倍率の予備発泡粒子を調製しやすいメリットがある。
 多段階の発泡の場合、各段階での発泡前に予備発泡粒子に対してガスによる加圧処理を行うことが好ましい。加圧処理に用いるガスとしては、樹脂に対して不活性である限り、特には限定されないが、ガスの安全性が高く、ガスの地球温暖化係数の小さい、無機ガスやハイドロフルオロオレフィンが好ましい。無機ガスとしては、例えば、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等が挙げられ、また、ハイドロフルオロオレフィンとしては、例えば、HFO-1234y、HFO-1234ze(E)等が挙げられ、特に、取り扱い容易性及び経済性の観点から、空気や炭酸ガスが好ましい。加圧処理の手法としては、特には限定されないが、予備発泡粒子を加圧タンク内に充填し、該タンク内にガスを供給する手法等が挙げられる。
 発泡工程で得られる発泡ビーズの形状は、特に限定されないが、例えば、円柱状、直方体状、球状、不定型の粉砕品等が挙げられる。
 発泡ビーズの大きさ(粒径)は、0.2~3mmが好ましい。大きさがこの範囲にあると、予備発泡後の粒子が適度な大きさになり、取り扱い易く、また、成形時の充填がより密になりやすくなる。なお、発泡ビーズの大きさは、ノギスにより測定することができる。
 発泡工程で得られる発泡ビーズの発泡倍率は、特には限定されないが、1.5~40cm/gが好ましく、2~25cm/gがより好ましい。この範囲であると、軽量化のメリットを活かしつつ、優れた耐熱性と高温剛性を有するビーズ発泡成形体が得やすくなる。多段階で所望の倍率に調整する際には、一次発泡倍率は1.4~10cm/gが好ましい。この範囲であると、ビーズ発泡成形体中のセルサイズが均一になりやすく、二次発泡能を付与しやすくなる。
 なお、発泡ビーズの発泡倍率とは、発泡ビーズの重量Wpに対する、発泡ビーズの体積Vpの割合(Vp/Wp)をいう。また、本明細書において、発泡ビーズの体積は、水没法で測定した体積をいう。
 上記発泡ビーズから、一般的な成形加工方法を用いてビーズ発泡成形体を得る(成形工程)こともできる。
 成形加工方法の例として、成形工程において、成形型内に発泡ビーズを充填し、加熱することにより発泡させると同時にビーズ同士を融着させた後、冷却により固化させ、成形されることが挙げられるがこれに限定されない。発泡ビーズの充填方法は特には限定されないが、例として充填時に金型を多少開いた状態で充填するクラッキング法や、金型を閉じたままの状態で加圧して圧縮したビーズを充填する圧縮法、圧縮ビーズを充填後にクラッキングを行う圧縮クラッキング法等が挙げられる。
 発泡ビーズを充填する前に無機ガス雰囲気下で加圧処理を施す加圧工程を行うことが好ましい。加圧処理を施すことにより、発泡ビーズ内の気泡に一定のガス圧力を付与でき、より均一に発泡成形しやすくなるためである。加圧処理を実施する場合の圧力源は特には限定されないが、前述した難燃性や耐熱性、寸法安定性の観点から無機ガスを用いるのが好ましい。無機ガスの例として、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等が挙げられ、取り扱いの容易さと経済性の観点から、炭酸ガスや空気が好ましいが、それに限定されるものではない。加圧処理の方法も特には限定されないが、加圧タンク内に発泡ビーズを充填し、該タンク内に無機ガスを供給して加圧する方法等が挙げられる。
 上記発泡ビーズを使用すると、公知の型内成形方法により微細な形状や複雑な形状の成形体も製造することが可能であり、使用できる用途の幅が広がることも特徴である。
 例えば、従来の発泡ビーズを型内成形する一対の成形型を用い、加圧大気圧下又は減圧下に発泡ビーズを成形型キャビティー内に充填し、型閉めし成形型キャビティー体積を0~70%減少するように圧縮し、次いで型内にスチーム等の熱媒を供給して加熱を行い、発泡ビーズを加熱融着させる減圧成形法による方法(例えば、特公昭46-38359号公報)、発泡ビーズを加圧気体により、予め加圧処理して発泡ビーズ内の圧力を高めて、発泡ビーズの二次発泡性を高め、二次発泡性を維持しつつ大気圧下又は減圧下に発泡ビーズを成形型キャビティー内に充填し型閉めし、次いで型内にスチーム等の熱媒を供給して加熱を行い、発泡ビーズを加熱融着させる加圧成形法(例えば、特公昭51-22951号公報)などにより成形する。
 また、圧縮ガスにより大気圧以上に加圧したキャビティー内に、当該圧力以上に加圧した発泡ビーズを充填した後、キャビティー内にスチーム等の熱媒を供給して加熱を行い、発泡ビーズを加熱融着させる圧縮充填成型法(特公平4-46217号公報)により成形することもできる。その他に、特殊な条件にて得られる二次発泡力の高い発泡ビーズを、大気圧下又は減圧下の一対の成形型のキャビティー内に充填した後、次いでスチーム等の熱媒を供給して加熱を行い、発泡ビーズを加熱融着させる常圧充填成型法(特公平6-49795号公報)又は上記の方法を組み合わせた方法(特公平6-22919号公報)などによっても成形することができる。
 本実施形態の発泡ビーズを用いた成形体(ビーズ発泡成形体)の発泡倍率は、特には限定されないが、1.5~40cm/gが好ましく、2~25cm/gがより好ましい。この範囲であると、軽量化のメリットを活かしつつ、優れた耐熱性と高温剛性を有するビーズ発泡成形体が得やすくなる。
 なお、ビーズ発泡成形体の発泡倍率とは、ビーズ発泡成形体の重量Wbに対する、ビーズ発泡成形体の体積Vbの割合(Vb/Wb)をいう。また、本明細書において、ビーズ発泡成形体の体積は、水没法で測定した体積をいう。
(繊維強化複合体)
 本実施形態の芯材を用いて、繊維強化材(例えば、表皮材)と複合し、繊維強化複合体を得ることができる。繊維強化複合体は、ビーズ発泡成形体を含む芯材の表面の少なくとも一部に、繊維及び樹脂を含む表皮材が配置された複合体である。芯材は、ビーズ発泡成形体のみからなる芯材であってもよい。
 本実施形態の繊維強化複合体では、芯材の表面のうち表皮材を配置する部分は、芯材の形状に応じて適宜定められてよく、例えば、シート状の場合には、片面又は両面の全部又は一部としてよく、塊状の場合には、静置状態で特定方向から見える面の全部又は一部としてもよく、線状の場合には、一端から延在方向に所定長さについての表面の全部又は一部としてよい。
-表皮材-
 本実施形態の繊維強化複合体における表皮材は、繊維及び樹脂を含み、任意選択的に、添加剤等を含む。
--繊維--
 繊維としては、高強度、高弾性率の繊維が挙げられ、具体的には、炭素繊維、ガラス繊維、有機繊維(例えば、米国デュポン(株)社製の「ケブラー(登録商標)」に代表されるポリアラミド繊維)、アルミナ繊維、シリコンカーバイド繊維、ボロン繊維、炭化ケイ素繊維等が挙げられる。
 中でも、高い剛性を保持したまま軽量性を確保するために、弾性率と密度の比である比弾性率が高いもの、具体的には、炭素繊維やガラス繊維が好ましく、炭素繊維がより好ましい。
 これら繊維は、1種単独で用いてもよく、2種以上を併用してもよい。
 本実施形態における繊維の、JIS-K7127に準拠して測定される引張弾性率は、高い剛性を確保する観点から、200~850GPaであることが好ましい。
 本実施形態における繊維の含有量は、表皮材100質量%に対して、40~80質量%であることが好ましい。
 本実施形態における繊維の目付量は、剛性を高め、軽量化を図る観点から、表皮材の表面において、50~4000g/mが好ましく、より好ましくは100~1000g/mであり、例えば200g/mとしてよい。
--樹脂--
 樹脂としては、熱硬化性樹脂や熱可塑性樹脂が挙げられ、エポキシ樹脂、フェノール樹脂、シアネート樹脂、ベンゾオキサジン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ABS樹脂、ポリエチレンテレフタレート樹脂、ナイロン樹脂、マレイミド樹脂等が挙げられる。
 中でも、熱、光、電子線等の外部からのエネルギー付加により硬化する熱硬化性樹脂が好ましく、具体的には、エポキシ樹脂が好ましい。
 これら樹脂は、1種単独で用いてもよく、2種以上を併用してもよい。
 樹脂のガラス転移温度は、芯材との接着性、変形や反りの観点から、80~250℃であることが好ましく、より好ましくは、80~180℃である。
 なお、ガラス転移温度は、ASTM-D-3418に準拠して中点法により測定することができる。
 樹脂が熱硬化性樹脂である場合、その硬化温度は、芯材との接着性、変形や反りの観点から、80~250℃であることが好ましく、より好ましくは、80~150℃である。
 本実施形態における樹脂の含有量は、芯材との接着性、変形や反りの観点から、表皮材100質量%に対して、20~60質量%であることが好ましく、より好ましくは、30~50質量%である。
(繊維強化複合体の製造方法)
 以下、本実施形態の繊維強化複合体の製造方法について記載する。
 本実施形態における一例の繊維強化複合体の製造方法は、ビーズ発泡成形体を含む芯材と、繊維と樹脂とを含む表皮材とを、成形機内に加えて成形を行うことによって、繊維強化複合体を得る方法である。尚、芯材の形状は、特に限定されることなく、目的や用途に応じて適宜定めることができ、例えば、成形品、粒子状、シート状、線状(糸状)、塊状等が挙げられる。
((表皮材調製工程))
 表皮材調製工程では、溶融状態の樹脂中に繊維を浸漬させたり、溶融状態の樹脂を繊維に吹き付けたりして、樹脂に繊維を含浸させて、表皮材を得る。表皮材は、クロスプリプレグとして調製してよい。
 なお、樹脂に繊維を含浸させた後に、光や熱により樹脂の硬化を進ませておいてもよい。
 繊維強化複合体の形状もシート状である場合には、本実施形態の繊維強化複合体について記載した通りとしてもよい。
((成形工程))
 成形工程では、芯材(例えば、ビーズ発泡成形体)と表皮材とを、所望の配置状態で、成形機内に充填して、同時に成形を行ってよい。
 なお、ビーズ発泡成形体は、成形工程においてさらに発泡されてよい。
 この成形工程では、例えば、両面が表皮材で覆われたシート状の複合体を製造する場合には、2枚のシート状の表皮材の間にシート状のビーズ発泡成形体が位置するように、これらを成形機内に充填してよく、表皮材で覆われた塊状の複合体を製造する場合には、塊状のビーズ発泡成形体がシート状の表皮材で包まれるように、これらを成形機内に充填してよく、表皮材で覆われた線状の複合体を製造する場合には、線状のビーズ発泡成形体がシート状の表皮材で包まれるように、これらを成形機内に充填してよい。
 成形工程では、初めに、圧力をかけずに、80~150℃、好適には100~120℃の温度で、0~5分間、好適には1~3分間保持して、その後、0~3MPa、好適には0.1~1MPaの圧力、80~150℃、好適には100~120℃の温度で、5~30分間、好適には10~20分間保持することが好ましい。
 このように、加圧前に、圧力をかけずに高温条件下で保持することによって、表皮材に均一に熱を加えて、表面平滑性を得ることができる。
 以下、本実施形態の繊維強化複合体の物性について記載する。
 本実施形態の繊維強化複合体の見かけ密度は、0.05~1g/cmであることが好ましい。
 なお、繊維強化複合体の見かけ密度とは、繊維強化複合体の体積Vに対する、繊維強化複合体の重量の割合(W/V)をいう。
 本実施形態の繊維強化複合体の寸法は、目的や用途に応じて適宜定められてよい。
 表皮材の厚さとしては、概して、0.1~2mmとしてよい。
 以下、本発明を実施例及び比較例に基づいて説明するが、本発明はこれらに限定されるものではない。
 繊維強化複合体用芯材(ビーズ発泡成形体)及び繊維強化複合体の評価方法は、以下の通りである。
(1)熱収縮開始温度
 300mm×100mm×厚み10mmの平板状のビーズ発泡成形体を23℃に調整した環境に24時間静置した。このビーズ発泡成形体に200mmの直線を20mm間隔で平行に三本引き、ノギスで線の長さ(mm)を測定した。その後、30℃のオーブンにビーズ発泡成形体を2時間投入後、23℃で1時間静置した後の線の長さ(mm)を測定した。この測定を、5℃刻みにオーブンの温度を上げて繰り返し、23℃で測定した線の長さを三本全て下回ったときの温度を熱収縮開始温度(℃)とした。
(2)線膨張係数
 300mm×100mm×厚み10mmの平板状のビーズ発泡成形体を23℃に調整した環境に24時間静置した。このビーズ発泡成形体に200mmの直線を20mm間隔で平行に三本引き、ノギスで線の長さ(mm)を測定した(寸法A)。40℃に調整した環境にビーズ発泡成形体を2時間投入後、取り出した直後の線の長さ(mm)を測定した(寸法B)。同じビーズ発泡成形体を5℃に調整した環境に2時間投入後、取り出した直後の線の長さ(mm)を測定した(寸法C)。それぞれの線について、下記式にて線膨張係数を計算し、その平均値をビーズ発泡成形体の線膨張係数(mm/mm・℃)とした。
 線膨張係数=(寸法B-寸法C)/(寸法A×35)
(3)130℃での加熱寸法変化率
 加熱温度を130℃、加熱時間を1.5分とする以外は、JIS K6767の高温時の寸法安定性試験B法に準じて測定を行った。なお、加熱時間は、熱風循環式乾燥機内に試験片を投入後、乾燥機内温度が130℃に到達してから1.5分とした。
(4)粘弾性測定
 発泡前の樹脂について、TAインスツルメント社製ARES-G2を用いて、下記条件にて粘弾性測定を行った。尚、測定は300℃から降温しながら行うが、途中で樹脂が固化して測定不能となった場合は、その温度までのデータを用いることとした。得られたデータから、70℃(途中で測定不能となった場合はその温度)~200℃において損失正接tanδが最大となる温度をTpとし、(Tp-30)℃及び150℃の貯蔵弾性率、それぞれG’1及びG’2を求め、G’2/G’1を計算した。なお、途中で測定不能となり、(Tp-30℃)のデータが得られなかった場合は、測定不能となった温度の貯蔵弾性率をG’1とする。
 測定治具   :コーン&プレート
 測定モード  :溶融
 掃引カテゴリー:温度掃引
 歪み量    :10%
 周波数    :10rad/sec
 温度範囲   :70~300℃
 降温速度   :2℃/min
 プレート径  :25φmm
 ギャップ間隔 :1mm
 自動モード  :Axial force…10g
         Sensitivity…2.0g
(5)残存ガス濃度
 実施例及び比較例で得られたビーズ発泡成形体を試料として適量ヘッドスペースボトルに仕込み、ビーズ発泡成形体試料の軟化点以上の温度で約1時間加熱した。その後、ガスクロマトグラフィー(島津製作所製、GC14B)により、ヘッドスペースボトル内のガスを定量した。キャリアガスとしてヘリウム(He)を用い、定流量モード(約30mL/分)で制御した。また、カラム(Porapak Q、80/100mesh、3.2mmφ×2.1m)を50~150℃で昇温、保持を行い、熱伝導度型検出器(TCD)により検出を行った。検出したエリア面積と標準ガス試料で作成した検量線とから、脂肪族炭化水素系ガスの体積を算出した。そして、脂肪族炭化水素系ガスの体積をビーズ発泡成形体試料の体積で除して、脂肪族炭化水素系ガスの濃度(体積ppm)を算出した。
(6)ビーズ発泡成形体の発泡倍率
 ビーズ発泡成形体の重量W(g)を測定した後、水没法で体積V(cc)を測定し、その体積を重量で除した値V/W(cc/g)を発泡倍率(cm/g)とした。
(7)厚み
 実施例及び比較例で得られた繊維強化複合体の厚み(mm)及び表皮材の厚み(mm)をノギスを用いて測定した。
(8)見かけ密度
 実施例及び比較例で得られた繊維強化複合体の重量W(g)を測定した後、ノギスにてシート状の繊維強化複合体の3辺を測定し、その体積V(cm)を計算した。そして、体積Vに対する重量Wの割合(W/V)(g/cm)を見かけ密度とした。
(9)表面平滑性・外観
 実施例及び比較例で得られたビーズ発泡成形体を用いて表皮材と複合し、繊維強化複合体の表面を目視にて観察し、以下のように評価した。
 ◎(優れる):しわや気泡がなく、表面平滑性が良好なもの。
 ○(良好):しわや気泡が若干発生するが、実使用上は問題のないもの。
 ×(劣る):樹脂枯れもしくは、しわが多く実使用が不可なもの。
(10)接着性
 実施例及び比較例で得られたビーズ発泡成形体を用いて表皮材と複合し、繊維強化複合体の中心部及び端から10mmの箇所で切断し、その断面を目視にて観察し、表皮材と芯材との接着状態を以下のように評価した。
 ◎(優れる):表皮材と芯材との間に隙間はなく、接着性が良好なもの。
 ○(良好):表皮材と芯材との間に一部隙間があるが、実使用上は問題のないもの。
 ×(劣る):表皮材と芯材の間の隙間や剥離が多く、実使用が不可なもの。
(11)寸法再現性
 実施例及び比較例で得られたビーズ発泡成形体を用いて表皮材と複合し、繊維強化複合体30個について、それぞれ縦・横の長さをノギスを用いて測定し、測定値の3σ及び平均値を計算し、(3σ/平均値)×100をばらつき(%)とした。
 ◎(優れる):ばらつきが0.3%以下のもの
 ○(良好):ばらつきが0.3~0.5%のもの
 ×(劣る):ばらつきが0.5%より大きいもの
[実施例1]
 引張弾性率が250GPaの炭素繊維と硬化温度が80℃であるエポキシ樹脂とで構成される、繊維の目付量が200g/m、炭素繊維含有量が60質量%のクロスプリプレグを、表皮材として2枚用意した。
 また、ポリフェニレンエーテル系樹脂(PPE)を73質量%、ゴム濃度が6質量%の耐衝撃性ポリスチレン樹脂(HIPS)を12質量%(基材樹脂中のゴム成分含有量は0.6質量%)、汎用ポリスチレン樹脂(PS)を15質量%用い、これら熱可塑性樹脂100質量%に対し、非ハロゲン系難燃剤を22質量%添加し、押出機にて加熱溶融混練した後に押し出し、芯材としての基材樹脂ペレットを作製した。この基材樹脂の粘弾性測定を実施したところ、Tpは153℃、G’2/G’1は0.40であった。
 特開平4-372630号公報の実施例1に記載の方法に準じ、基材樹脂ペレットを耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤として二酸化炭素(気体)を注入し、圧力3.2MPa、温度11℃の条件下で3時間かけて、基材樹脂ペレットに対して二酸化炭素を7質量%含浸させた。
 その後、基材樹脂ペレットを予備発泡機内で攪拌羽を77rpmにて回転させながら、加圧水蒸気により発泡させて、発泡ビーズを得た。
 この発泡ビーズを0.5MPaまで1時間かけて昇圧し、その後0.5MPaで8時間保持し、加圧処理を施した。
 これを、水蒸気孔を有する型内成形金型内に充填し、加圧水蒸気で加熱して発泡ビーズ相互を膨張・融着させた後、冷却し、成形金型より取り出し、300mm×300mm×10mm厚み、発泡倍率10cm/gのビーズ発泡成形体(発泡体)を得た。
 得られたビーズ発泡成形体の熱収縮開始温度を測定すると85℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、5×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は-3.6%であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 得られたビーズ発泡成形体を芯材として用い、上述の通り用意した表皮材を芯材の上下両面に1枚ずつ積層し、次いで、この積層体を、圧力をかけずに、100℃で3分間保持した後、面圧0.4MPaで加圧しながら、15分間保持することによって、表皮材と芯材とを同時成形して繊維強化複合体を得た。
 諸条件の詳細を表1に示す。
 実施例1の繊維強化複合体の外観は、しわや気泡がなく、優れたものであった。接着性は、表皮材と芯材との間に一部隙間があるが、実使用上は問題のないレベルであった。また、寸法再現性も若干寸法変動はあるものの、実使用上は問題のないレベルであった。
[実施例2]
 ポリフェニレンエーテル系樹脂(PPE)40質量%、ポリスチレン系樹脂(PS)60質量%を、押出機にて加熱溶融混練した後に押出し、芯材としての基材樹脂ペレットを作製した。この基材樹脂の粘弾性測定を実施したところ、Tpは158℃、G’2/G’1は0.81であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。
 得られたビーズ発泡成形体の熱収縮開始温度を測定すると95℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、4×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は0.1%以下の収縮であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 実施例2の繊維強化複合体は、外観、接着性、寸法再現性共に優れていた。
[実施例3]
 実施例2の熱可塑性樹脂を用い、発泡倍率5cm/gのビーズ発泡成形体を作製した。
 得られたビーズ発泡成形体の熱収縮開始温度を測定すると95℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、4×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は0.1%以下の収縮であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 実施例3の繊維強化複合体は、実施例2同様に優れた外観、接着性、寸法再現性を有した。
[実施例4]
 実施例2の熱可塑性樹脂を用い、発泡倍率15cm/gのビーズ発泡成形体を作製した。
 得られたビーズ発泡成形体の熱収縮開始温度を測定すると95℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、4×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は0.1%以下の収縮であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 実施例4の繊維強化複合体は、実施例2同様に優れた外観、接着性、寸法再現性を有した。
[実施例5]
 ポリフェニレンエーテル系樹脂(PPE)50質量%、ポリスチレン系樹脂(PS)50質量%を、押出機にて加熱溶融混練した後に押出し、芯材としての基材樹脂ペレットを作製した。この基材樹脂の粘弾性測定を実施したところ、Tpは165℃、G’2/G’1は0.87であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。得られたビーズ発泡成形体の熱収縮開始温度を測定すると105℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、3×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は0.1%以下の収縮であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 実施例5の繊維強化複合体は、実施例2同様に優れた外観、接着性、寸法再現性を有した。
[実施例6]
 ポリフェニレンエーテル系樹脂(PPE)60質量%、ポリスチレン系樹脂(PS)40質量%を、押出機にて加熱溶融混練した後に押出し、芯材としての基材樹脂ペレットを作製した。この基材樹脂の粘弾性測定を実施したところ、Tpは173℃、G’2/G’1は0.93であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。得られたビーズ発泡成形体の熱収縮開始温度を測定すると115℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、2×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は0.1%以下の収縮であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 実施例6の繊維強化複合体は、実施例2同様に優れた外観、接着性、寸法再現性を有した。
[実施例7]
 ポリフェニレンエーテル系樹脂(PPE)35質量%、ポリスチレン系樹脂(PS)65質量%を、押出機にて加熱溶融混練した後に押出し、芯材としての基材樹脂ペレットを作製した。この基材樹脂の粘弾性測定を実施したところ、Tpは154℃、G’2/G’1は0.45であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。得られたビーズ発泡成形体の熱収縮開始温度を測定すると85℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、5×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は0.1%以下の収縮であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 実施例7の繊維強化複合体は、実施例2同様に優れた外観、接着性、寸法再現性を有した。
[実施例8]
 ポリフェニレンエーテル系樹脂(PPE)30質量%、ポリスチレン系樹脂(PS)70質量%を、押出機にて加熱溶融混練した後に押出し、芯材としての基材樹脂ペレットを作製した。この基材樹脂の粘弾性測定を実施したところ、Tpは150℃、G’2/G’1は0.28であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。得られたビーズ発泡成形体の熱収縮開始温度を測定すると80℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、5×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は-0.3%であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 実施例8の繊維強化複合体は、外観に若干しわが発生したものの、実用上の問題は無いレベルであった。また、若干複合体の厚みが薄く、見かけ密度も実施例1に比べて高くなる結果になった。
[比較例1]
 ポリスチレン系樹脂(PS)100質量%を押出機にて加熱溶融混練した後に押出し、芯材としての基材樹脂ペレットを作製した。この基材樹脂の粘弾性測定を実施したところ、Tpは118℃、G’2/G’1は0.01以下であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。得られたビーズ発泡成形体の熱収縮開始温度を測定すると70℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、7×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は-20%であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合した。
 諸条件の詳細を表1に示す。
 比較例1は、複合時に芯材が溶融し、繊維強化複合体を得ることができなかった。
[比較例2]
 ポリプロピレン系樹脂(PP)100質量%を押出機にて加熱溶融混練した後に押出し、芯材としての基材樹脂ペレットを作製した。この基材樹脂の粘弾性測定を実施したところ、Tpは153℃、G’2/G’1は0.14であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。得られたビーズ発泡成形体の熱収縮開始温度を測定すると95℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、12×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は-0.5%であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 比較例2は繊維強化複合体を得ることができ、厚みや見かけ密度は良好なものの、線膨張係数が大きい影響で外観に樹脂枯れやしわが多く見られ、またその影響で表皮材と芯材の間の隙間も多発しており、実使用には耐えないものであった。
[比較例3]
 ポリメチルメタクリレート系樹脂(PMMA)100質量%を押出機にて加熱溶融混練した後に押出し、ミニペレットを作成した。この基材樹脂の粘弾性測定を実施したところ、Tpは127℃、G’2/G’1は0.01以下であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。得られたビーズ発泡成形体の熱収縮開始温度を測定すると75℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、8×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は-15%であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
  これを実施例1と同様に表皮材と複合した。
 諸条件の詳細を表1に示す。
 比較例3は、比較例1と同様に芯材が溶融し、複合体を得ることができなかった。
[比較例4]
 ポリスチレン系樹脂(スチレン-メタクリル酸共重合体)(SMAA)100質量%を押出機にて加熱溶融混練した後に押出し、ミニペレットを作成した。この基材樹脂の粘弾性測定を実施したところ、Tpは145℃、G’2/G’1は0.17であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。得られたビーズ発泡成形体の熱収縮開始温度を測定すると80℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、7×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は-5.0%であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 比較例4は繊維強化複合体を得ることができたが、芯材の収縮が大きく、実使用に耐える物ではなかった。
[比較例5]
 ポリフェニレンエーテル系樹脂(PPE)20質量%、ポリスチレン系樹脂(PS)80質量%を、押出機にて加熱溶融混練した後に押出し、芯材としての基材樹脂ペレットを作製した。この基材樹脂の粘弾性測定を実施したところ、Tpは141℃、G’2/G’1は0.04であった。
 これを用い実施例1と同様にビーズ発泡成形体を作製した。得られたビーズ発泡成形体の熱収縮開始温度を測定すると75℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、6×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は-2.7%であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、検出限界(50体積ppm)以下であった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 比較例5は、成形品が収縮した結果、厚みが薄く、見かけ密度が高く、更に収縮開始温度が低い影響で、表面にしわが観察され、実使用に耐えないものであった。
[比較例6]
 発泡ガスをペンタンとする以外は実施例2と同様にビーズ発泡成形体を作製した。
 得られたビーズ発泡成形体の熱収縮開始温度を測定すると90℃であった。得られたビーズ発泡成形体の線膨張係数を測定すると、5×10-5mm/mm・℃であった。得られたビーズ発泡成形体の130℃での寸法変化率は+1.5%であった。得られたビーズ発泡成形体の脂肪族炭化水素系ガスの濃度を測定したところ、1500体積ppmであった。
 これを実施例1と同様に表皮材と複合し、得られた繊維強化複合体を用いて評価を行った。
 諸条件の詳細を表1に示す。
 比較例6は、実施例2に比べ若干表面平滑性に劣るが、外観は使用に耐えるレベルであった。しかし、ビーズ発泡成形体の膨張の影響で、表皮材と芯材の間の隙間が多く、接着性は実使用に耐える物ではなかった。また、膨張の制御が難しい影響で、寸法再現性も劣る物となった。
Figure JPOXMLDOC01-appb-T000002
 本発明の繊維強化複合体用芯材は、繊維強化材と複合する際の加工性に優れ、これを用いた繊維強化複合体は、特に自動車分野(例えば、自動車のルーフ、ボンネット、フェンダーなどの部材)で好適に利用できる。

Claims (6)

  1.  熱可塑性樹脂を含み、熱収縮開始温度が80℃以上であり、線膨張係数が10×10-5mm/mm・℃以下であり、130℃での加熱寸法変化率が-4.0~0%であるビーズ発泡成形体を含むことを特徴とする繊維強化複合体用芯材。
  2.  前記熱可塑性樹脂が、70℃~200℃において損失正接tanδが最大となる温度をTpとし、(Tp-30)℃の貯蔵弾性率(G’1)と150℃の貯蔵弾性率(G’2)の比(G’2/G’1)が0.25~0.95である、請求項1に記載の繊維強化複合体用芯材。
  3.  前記ビーズ発泡成形体中の脂肪族炭化水素系ガスの濃度が500体積ppm以下である、請求項1又は2に記載の繊維強化複合体用芯材。
  4.  前記熱可塑性樹脂が、ポリフェニレンエーテル系樹脂を30~75質量%含む、請求項1~3のいずれか1項に記載の繊維強化複合体用芯材。
  5.  前記熱可塑性樹脂中の難燃剤の含有量が、前記熱可塑性樹脂100質量%に対して3質量%以下である、請求項1~4のいずれか1項に記載の繊維強化複合体用芯材。
  6.  請求項1~5のいずれか1項に記載の繊維強化複合体用芯材の表面の少なくとも一部に、繊維及び樹脂を含む表皮材が配置されたことを特徴とする、繊維強化複合体。
PCT/JP2018/014149 2017-04-07 2018-04-02 繊維強化複合体用芯材、及びそれを用いた繊維強化複合体 WO2018186360A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019511236A JPWO2018186360A1 (ja) 2017-04-07 2018-04-02 繊維強化複合体用芯材、及びそれを用いた繊維強化複合体
SG11201909355W SG11201909355WA (en) 2017-04-07 2018-04-02 Core material for fiber reinforced composite and fiber reinforced composite having the same
CN201880022048.9A CN110461924B (zh) 2017-04-07 2018-04-02 纤维增强复合体用芯材以及使用了该芯材的纤维增强复合体
KR1020197023131A KR102281962B1 (ko) 2017-04-07 2018-04-02 섬유 강화 복합체용 심재, 및 그것을 사용한 섬유 강화 복합체
EP18781116.1A EP3608354B1 (en) 2017-04-07 2018-04-02 Fiber-reinforced composite using a core material
US16/500,894 US11034814B2 (en) 2017-04-07 2018-04-02 Core material for fiber reinforced composite and fiber reinforced composite having the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017076867 2017-04-07
JP2017-076867 2017-04-07
JP2017-095875 2017-05-12
JP2017095875 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018186360A1 true WO2018186360A1 (ja) 2018-10-11

Family

ID=63712460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014149 WO2018186360A1 (ja) 2017-04-07 2018-04-02 繊維強化複合体用芯材、及びそれを用いた繊維強化複合体

Country Status (8)

Country Link
US (1) US11034814B2 (ja)
EP (1) EP3608354B1 (ja)
JP (2) JPWO2018186360A1 (ja)
KR (1) KR102281962B1 (ja)
CN (1) CN110461924B (ja)
SG (1) SG11201909355WA (ja)
TW (1) TWI670170B (ja)
WO (1) WO2018186360A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093410A (ja) * 2018-12-10 2020-06-18 日産自動車株式会社 複合成形品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240011904A (ko) * 2022-07-19 2024-01-29 롯데케미칼 주식회사 샌드위치 패널 및 이의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310986A (ja) * 1992-05-13 1993-11-22 Sekisui Plastics Co Ltd 寸法安定性のよい合成樹脂発泡成形体の製造方法
JP2005350055A (ja) * 2004-05-14 2005-12-22 Kaneka Corp 自動車内装材用発泡積層シ−ト
JP2012166387A (ja) * 2011-02-10 2012-09-06 Asahi Kasei Chemicals Corp 多層構造体
JP2014208417A (ja) * 2013-03-29 2014-11-06 積水化成品工業株式会社 繊維強化複合体
JP2015047757A (ja) 2013-08-30 2015-03-16 積水化成品工業株式会社 繊維強化複合体の製造方法
JP2015083365A (ja) 2013-09-18 2015-04-30 東レプラスチック精工株式会社 サンドイッチ構造体およびその製造方法、ならびにサンドイッチ構造体を加工してなる構造体
JP6067473B2 (ja) 2013-03-29 2017-01-25 積水化成品工業株式会社 繊維強化複合体の製造方法及び繊維強化複合体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891180A (en) 1998-04-29 1999-04-06 Medtronic Inc. Interrogation of an implantable medical device using audible sound communication
GB2448468B (en) 2007-10-08 2009-09-30 Gurit Composite laminated article and manufacture thereof
GB2455043B (en) 2007-10-08 2010-01-06 Gurit Composite laminated article
JP2009145694A (ja) 2007-12-14 2009-07-02 Kaneka Corp 車両用吸音基材及びその製造方法
CN102471517B (zh) 2009-08-13 2015-05-13 旭化成化学株式会社 发泡珠粒、使用了该发泡珠粒的成型体和成型体的制造方法
JP5722066B2 (ja) 2011-02-10 2015-05-20 旭化成ケミカルズ株式会社 多層構造体
US9962904B2 (en) * 2013-08-30 2018-05-08 Toray Industries, Inc. Sandwich structure and integrally formed article using the same, and methods for production thereof
JP6488154B2 (ja) * 2015-03-02 2019-03-20 積水化成品工業株式会社 繊維強化複合体及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310986A (ja) * 1992-05-13 1993-11-22 Sekisui Plastics Co Ltd 寸法安定性のよい合成樹脂発泡成形体の製造方法
JP2005350055A (ja) * 2004-05-14 2005-12-22 Kaneka Corp 自動車内装材用発泡積層シ−ト
JP2012166387A (ja) * 2011-02-10 2012-09-06 Asahi Kasei Chemicals Corp 多層構造体
JP2014208417A (ja) * 2013-03-29 2014-11-06 積水化成品工業株式会社 繊維強化複合体
JP6067473B2 (ja) 2013-03-29 2017-01-25 積水化成品工業株式会社 繊維強化複合体の製造方法及び繊維強化複合体
JP2015047757A (ja) 2013-08-30 2015-03-16 積水化成品工業株式会社 繊維強化複合体の製造方法
JP2015083365A (ja) 2013-09-18 2015-04-30 東レプラスチック精工株式会社 サンドイッチ構造体およびその製造方法、ならびにサンドイッチ構造体を加工してなる構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608354A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093410A (ja) * 2018-12-10 2020-06-18 日産自動車株式会社 複合成形品の製造方法
JP7101606B2 (ja) 2018-12-10 2022-07-15 日産自動車株式会社 複合成形品の製造方法

Also Published As

Publication number Publication date
CN110461924A (zh) 2019-11-15
EP3608354B1 (en) 2023-06-14
EP3608354A1 (en) 2020-02-12
EP3608354A4 (en) 2020-03-04
TW201841724A (zh) 2018-12-01
US20200140644A1 (en) 2020-05-07
KR20190102264A (ko) 2019-09-03
JP2021020468A (ja) 2021-02-18
JP7084459B2 (ja) 2022-06-14
US11034814B2 (en) 2021-06-15
JPWO2018186360A1 (ja) 2019-11-07
KR102281962B1 (ko) 2021-07-26
TWI670170B (zh) 2019-09-01
SG11201909355WA (en) 2019-11-28
CN110461924B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
JP4712914B2 (ja) 発泡ビーズ、それを用いた成形体及び成形体の製造方法
JP5722066B2 (ja) 多層構造体
JP7084459B2 (ja) 繊維強化複合体用芯材、及びそれを用いた繊維強化複合体
JP2018144462A (ja) 繊維複合体及びその製造方法
JP5722067B2 (ja) 多層構造体
JP5642521B2 (ja) 発泡ビーズ成形体及びその製造方法
JP6668071B2 (ja) 繊維強化複合体
JP7457528B2 (ja) カバーおよびアンテナ装置
JP2019001004A (ja) 繊維複合体
JP7130407B2 (ja) 自動車天井基材用発泡芯材およびその製造方法
WO2023282198A1 (ja) 発泡ビーズ、その製造方法、及び成形体
JP2017088834A (ja) 発泡体
JP7158600B2 (ja) スペーサー及びその製造方法、並びに複合体
WO2022176591A1 (ja) カバー
WO2024043103A1 (ja) 発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体
JP2023043785A (ja) 発泡用熱可塑性樹脂ペレット群及びその製造方法
JP2004244440A (ja) 耐熱性スチレン系樹脂発泡成形体
JP2018065972A (ja) 発泡体及びそれを用いた成形体
JP2019182981A (ja) 衝撃吸収材
JP2016202753A (ja) 暖房便座用発泡体、暖房便座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511236

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197023131

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018781116

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018781116

Country of ref document: EP

Effective date: 20191107