WO2024043103A1 - 発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体 - Google Patents

発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体 Download PDF

Info

Publication number
WO2024043103A1
WO2024043103A1 PCT/JP2023/029135 JP2023029135W WO2024043103A1 WO 2024043103 A1 WO2024043103 A1 WO 2024043103A1 JP 2023029135 W JP2023029135 W JP 2023029135W WO 2024043103 A1 WO2024043103 A1 WO 2024043103A1
Authority
WO
WIPO (PCT)
Prior art keywords
bead
resin
beads
foamed
temperature
Prior art date
Application number
PCT/JP2023/029135
Other languages
English (en)
French (fr)
Inventor
智哉 吉田
辰昌 葛西
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2024043103A1 publication Critical patent/WO2024043103A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products

Definitions

  • the present invention relates to a method for producing foam beads, amorphous resin foam beads, crystalline resin foam beads, and foam molded articles.
  • Bead foaming methods and the like are known as techniques for producing resin foams.
  • resin particles having foamability are foamed to form foamed beads, and then the foamed beads are foamed and the foamed beads are fused together to obtain a foamed molded article.
  • the bead foaming method has the advantages of being able to freely set the product shape and easily obtaining foam molded products with a high expansion ratio, and is widely used in industry in the fields of automobile peripheral parts and electronic device peripheral parts. There is.
  • methods for manufacturing expanded beads used in the bead foaming method the methods described in Patent Documents 1 and 2 are known.
  • Patent Document 1 describes a method for controlling the crystallinity of a resin contained in a raw material composition for foamed beads as a method for producing foamed beads that have good foamability while having crystallinity.
  • Patent Document 2 describes that by heat treating an extruded foam to remove residual stress during extrusion foaming, it is possible to produce a foam that exhibits small dimensional changes even when used at high temperatures.
  • Patent Documents 1 and 2, etc. it is not possible to sufficiently remove the residual stress generated in the resin molding, so Dimensional stability after treatment was not sufficient.
  • the residual stress generated in the foamed beads cannot be removed by the conventional method, the expansion ability of the foamed beads is poor and the moldability is not sufficient.
  • an object of the present invention is to efficiently produce foamed beads that have excellent expansion ability when expanding from foamed beads to foamed molded products, and can produce foamed molded products with small dimensional changes after long-term high-temperature treatment.
  • the purpose is to provide a method.
  • the present invention is as follows.
  • a method for producing foam beads characterized by: [2] a bead foaming step in which a bead raw material containing a resin is foamed, and a bead annealing step in which the bead raw material is heat-treated at a temperature of (softening point temperature -30) °C or higher and (softening point temperature +30) °C or lower after the bead foaming step.
  • a method for producing foam beads characterized by: [3] The method for producing expanded beads according to [1] or [2], wherein the resin is an amorphous resin. [4] The method for producing foam beads according to [2], wherein the resin is a crystalline resin. [5] The method for producing expanded beads according to any one of [1] to [4], wherein in the bead annealing step, the heat treatment is performed using steam. [6] The method for producing foamed beads according to any one of [1] to [4], wherein in the bead annealing step, the heat treatment is performed using hot air.
  • Amorphous resin foam beads characterized by: [10] Foamed beads made by foaming a bead raw material containing a crystalline resin, the heat shrinkage rate of which is 25% or less when heated for 5 minutes at (softening point temperature -10) °C of the bead raw material, Crystalline resin foam beads characterized by: [11] The amorphous resin foam beads according to [9], which have an expansion capacity of 2.3 or more.
  • the method for producing foamed beads of the present invention has excellent expansion ability when expanding from foamed beads to a foamed molded product, and can efficiently produce a foamed molded product with small dimensional change after long-term high temperature treatment. can be manufactured efficiently.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • the present invention is not limited to the following description, and can be implemented with various modifications within the scope of the gist.
  • the method for producing foamed beads of this embodiment includes a bead foaming step in which a bead raw material containing resin is foamed, and a bead annealing step in which the beads are heat-treated at a predetermined temperature after the bead foaming step.
  • the method for manufacturing expanded beads of the present embodiment includes a bead foaming step of foaming bead raw material containing resin, and after the bead foaming step, (glass transition temperature -30) °C or higher (glass transition temperature +30) °C of the bead raw material.
  • a manufacturing method including a bead annealing step of heat-treating at the following temperature (herein sometimes referred to as “foamed bead manufacturing method A"), or a bead foaming step of foaming a bead raw material containing resin.
  • a manufacturing method (herein referred to as “ (sometimes referred to as “Method for producing expanded beads B”) is preferable.
  • the method for manufacturing expanded beads of this embodiment may be a method consisting only of the above-mentioned bead foaming step and bead annealing step, or may be a method including further other steps.
  • foamed particles obtained after the bead foaming step and before the bead annealing step may be referred to as "pre-foamed beads.” Further, “foamed beads” can be manufactured from pre-foamed beads through a bead annealing process.
  • the bead foaming step is a step in which the bead raw material is impregnated with a foaming agent and foamed to obtain pre-foamed beads.
  • the bead raw material contains a resin and may further contain other components.
  • the resin may be a crystalline resin, an amorphous resin, or a mixture thereof. Moreover, the above-mentioned resin may be used alone or in a mixture of two or more kinds.
  • the resin is preferably an amorphous resin
  • the resin is preferably an amorphous resin and/or a crystalline resin; It is more preferable that
  • the above-mentioned amorphous resin generally has a large dimensional change when subjected to long-term high-temperature treatment, and particularly excellent effects can be obtained by using the foamed beads obtained by the manufacturing method of this embodiment.
  • the main component is a resin, and more preferably, the mass ratio of the amorphous resin to 100% of the total mass of the resins contained in the bead raw material is 50% by mass or more, still more preferably 70% by mass or more, and The content is preferably 80% by mass or more, more preferably 90% by mass or more, particularly preferably 95% by mass or more, and it is particularly preferred that the resin consists of only amorphous resin.
  • the mass ratio of the crystalline resin to 100% of the total mass of the resins contained in the bead raw material may be 50% by mass or more, 70% by mass or more, or 80% by mass or more.
  • the content may be 90% by mass or more, 95% by mass or more, or the resin may be only a crystalline resin.
  • the amorphous resin is not particularly limited as long as it is amorphous, and examples include polyphenylene ether (PPE) resin, polyphenylene ether resin/polystyrene resin alloy, polyphenylene ether resin/high impact polystyrene resin alloy, Polyphenylene ether (PPE) resins such as polyphenylene ether resin/polystyrene resin/high-impact polystyrene resin alloy, polyphenylene ether resin/polypropylene resin alloy; polystyrene resin, rubber-reinforced polystyrene resin (high-impact polystyrene resin), acrylonitrile-butadiene - Polystyrene resins such as styrene copolymers (ABS resins); polycarbonate resins such as polycarbonate resins, polycarbonate resin/ABS resin alloys, polycarbonate resins/polybutylene terephthalate resin alloys; polyvin
  • polyphenylene ether resins or polystyrene resins are preferable from the viewpoints of further reducing the dimensional change of the foam molded product after long-term high-temperature treatment and further increasing the expansion ability of the foam beads. More preferred are polystyrene resin/high impact polystyrene resin alloy, modified polyphenylene ether resin, and polystyrene resin. By reducing the dimensional changes of these resins after long-term high-temperature treatment, resin foams can be applied to automotive applications and information communication applications.
  • polyphenylene ether resin-- examples include, as described above, polyphenylene ether resin, polyphenylene ether resin/polystyrene resin alloy, polyphenylene ether resin/high impact polystyrene resin alloy, or polyphenylene ether resin/polystyrene resin/high impact polystyrene resin. Examples include alloys. These may be used alone or in combination of two or more.
  • the polyphenylene ether resin of the polyphenylene ether-based resin refers to a polymer containing a repeating unit (structural unit) represented by the following formula (I).
  • a repeating unit structural unit represented by the following formula (I)
  • Examples include a polymer, a copolymer containing a repeating unit represented by the following general formula (I), and the like.
  • the above copolymer refers to a copolymer whose main repeating unit is a repeating unit represented by the following formula (I) (for example, a repeating unit represented by the following formula (I) based on 100% by mass of the copolymer).
  • the above polyphenylene ethers may be used alone or in combination of two or more.
  • the number of repeating units represented by the following formula (I) contained in the polyphenylene ether may be one or more.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a phenyl group, or a halogen atom in general formula (I).
  • n is an integer representing the degree of polymerization.
  • the number of carbon atoms in the alkyl group and alkoxy group may be 1 to 7.
  • polyphenylene ether resins include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, and poly(2-methyl-6-ethyl).
  • -1,4-phenylene) ether poly(2-methyl-6-propyl-1,4-phenylene) ether, poly(2,6-dipropyl-1,4-phenylene) ether, poly(2-ethyl-6) -propyl-1,4-phenylene) ether, poly(2,6-dibutyl-1,4-phenylene) ether, poly(2,6-dilauryl-1,4-phenylene) ether, poly(2,6-diphenyl) -1,4-diphenylene) ether, poly(2,6-dimethoxy-1,4-phenylene) ether, poly(2,6-diethoxy-1,4-phenylene) ether, poly(2-methoxy-6-ethoxy
  • the above-mentioned polyphenylene ether resin is not particularly limited, and can be produced by a known method, for example, using a complex of a cuprous salt and an amine by Hay described in U.S. Pat. No. 3,306,874 as a catalyst. For example, it can be easily produced by oxidative polymerization of 2,6-xylenol.
  • U.S. Patent No. 3,306,875, U.S. Pat. No. 3,257,357, U.S. Pat. Examples include the method described in Japanese Patent No. 152628 and the like.
  • polyphenylene ether resin a modified polyphenylene ether resin in which some or all of the constituent units constituting the polyphenylene ether resin are modified with an unsaturated or saturated carboxylic acid or a derivative thereof can be used.
  • modified polyphenylene ether resins are disclosed in JP-A-2-276,823 (US Pat. No. 5,159,027, US Reissue Patent No. 35,695) and JP-A-63-108,059 (US Pat. No. 5,214,109). Specifications, No. 5216089), JP-A No. 59-59724, and the like.
  • the modified polyphenylene ether resin is produced, for example, by melt-kneading and reacting an unsaturated or saturated carboxylic acid or a derivative thereof with a polyphenylene ether resin in the presence or absence of a radical initiator.
  • a radical initiator for example, it is produced by dissolving a polyphenylene ether resin and an unsaturated or saturated carboxylic acid or a derivative thereof in an organic solvent in the presence or absence of a radical initiator and reacting in solution.
  • Examples of unsaturated carboxylic acids or derivatives thereof include maleic acid, fumaric acid, itaconic acid, halogenated maleic acid, cis-4-cyclohexene 1,2-dicarboxylic acid, endo-cis-bicyclo(2,2,1)
  • Examples include -5-heptene-2,3-dicarboxylic acid, acid anhydrides, esters, amides, imides, etc. of these dicarboxylic acids, as well as acrylic acid, methacrylic acid, etc., and esters, amides, etc. of these monocarboxylic acids. It will be done.
  • saturated carboxylic acid or its derivative for example, a compound that can thermally decompose itself at the reaction temperature when producing the modified polyphenylene ether resin and become a derivative of the modified polyphenylene ether resin can be mentioned.
  • Specific examples include malic acid and citric acid.
  • the content of the polyphenylene ether resin is preferably 40 to 99% by mass, more preferably 50 to 99% by mass based on 100% by mass of the polymer alloy. It is 95% by mass, more preferably 70 to 90% by mass.
  • Polystyrene resins that can be used for polyphenylene ether resins include homopolymers of styrene compounds, copolymers of two or more styrene compounds, and rubber-like polymers in a matrix made of polymers of styrene compounds. Examples include rubber-modified styrene resin (high impact polystyrene resin) in which is dispersed in the form of particles.
  • styrenic compounds that produce these polymers include styrene, o-methylstyrene, p-methylstyrene, m-methylstyrene, ⁇ -methylstyrene, ethylstyrene, ⁇ -methyl-p-methylstyrene, 2,4- Examples include dimethylstyrene, monochlorostyrene, p-tert-butylstyrene, and the like.
  • the polystyrene resin contained in the polyphenylene ether resin may be a copolymer obtained by using two or more styrene compounds together or a high impact polystyrene resin.
  • polystyrene resin obtained by polymerizing styrene alone is preferred.
  • Polystyrene resins having a stereoregular structure such as atactic polystyrene and syndiotactic polystyrene can be effectively used as the polyphenylene ether resin.
  • the weight average molecular weight (Mw) of the polyphenylene ether resin is preferably 20,000 to 60,000.
  • the weight average molecular weight (Mw) is determined by measuring the resin by gel permeation chromatography (GPC), and comparing the molecular weight of the peak in the chromatogram with a calibration curve (of standard polystyrene) determined from measurements on commercially available standard polystyrene. (prepared using peak molecular weight).
  • the mass ratio of the polyphenylene ether resin to 100 mass% of the bead raw material is preferably 60 to 100 mass%, more preferably 70 to 99 mass%, and even more preferably 80 to 95 mass%.
  • the mass proportion of the polyphenylene ether resin is within the above range, it is easy to obtain foamed beads that yield a foamed molded article with small dimensional changes after long-term high temperature treatment.
  • the polystyrene resin refers to a homopolymer of styrene and a styrene derivative, or a copolymer containing styrene and a styrene derivative as a main component (a component contained in the polystyrene resin in an amount of 50% by mass or more).
  • styrene derivatives include o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, diphenylethylene, chlorostyrene, bromostyrene, and the like.
  • Examples of the homopolymer polystyrene resin include polystyrene, poly ⁇ -methylstyrene, polychlorostyrene, and the like.
  • Examples of the polystyrene resin copolymer include styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, styrene-maleimide copolymer, and styrene-maleic anhydride copolymer.
  • N-phenylmaleimide copolymer N-phenylmaleimide copolymer, styrene-N-alkylmaleimide copolymer, styrene-N-alkyl substituted phenylmaleimide copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methyl acrylate Copolymers, binary copolymers such as styrene-methyl methacrylate copolymers, styrene-n-alkyl acrylate copolymers, styrene-n-alkyl methacrylate copolymers, ethylvinylbenzene-divinylbenzene copolymers; ABS , butadiene-acrylonitrile- ⁇ -methylbenzene copolymer, and other terpolymers; styrene-grafted polyethylene, s
  • the polystyrene resin may be manufactured by any conventionally known manufacturing method.
  • polycarbonate resin-- examples include polycarbonate resin, polycarbonate resin/ABS resin alloy, polycarbonate resin/polybutylene terephthalate resin alloy, and the like. These may be used alone or in combination of two or more.
  • the polycarbonate resin may be a bisphenol A type polycarbonate polymerized using bisphenol A, or various polycarbonates having high heat resistance or low water absorption that are polymerized using other dihydric phenol compounds.
  • the other dihydric phenol compounds mentioned above include hydroquinone, 4,4'-dihydroxydiphenyl, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) ketone, Examples include bis(4-hydroxyphenyl) ether and halogenated bisphenols such as 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane.
  • the polycarbonate resin may also be a branched polycarbonate obtained by polymerizing trifunctional phenols, and may further contain aliphatic dicarboxylic acids, aromatic dicarboxylic acids, or divalent aliphatic or fatty acids.
  • a copolymerized polycarbonate obtained by copolymerizing a cyclic alcohol may also be used.
  • the polycarbonate resin may be manufactured by any conventionally known manufacturing method.
  • the bead raw material contains a resin containing a monomer unit having an aromatic group.
  • a resin containing a monomer unit having an aromatic group When a resin containing a monomer unit having an aromatic group is included, a foamed molded article having good flame retardancy tends to be obtained.
  • the resins containing aromatic monomer units include aromatic polyamide resins, polycarbonate resins, polyethylene terephthalate resins, polyimide resins, polyphenylene ether resins, and styrene resins.
  • the mass ratio of aromatic monomer units in the resin is determined by the fact that the resin tends to carbonize during combustion, so it is easy to suppress ignition and flame ignition of the resin, and it also suppresses the generation of flammable gas, making it non-flammable.
  • the mass proportion of the aromatic monomer unit can be calculated from the molecular structure contained in the constituent units if the molecular structure is known. Even when multiple resins are included, similar calculations are performed for each resin and additive, and the average is calculated according to the mass proportion to be mixed to calculate the aromatic monomer units in the entire resin. It is possible to calculate the mass percentage of Furthermore, if the structure is unknown, it is possible to estimate and calculate the monomer unit having an aromatic group using NMR, IR, etc.
  • the foamed molded product obtained from the foamed beads of this embodiment may be used in electronic devices, but for example, when used in a device that transmits and receives radio waves, it is required to reduce the relative dielectric constant and dielectric loss tangent.
  • a method to lower the relative permittivity and dielectric loss tangent it is possible to select a resin with low density, low polarity, or a resin with few terminal polar groups in the molecular chain as the resin before foaming in the bead raw material. Can be mentioned.
  • resins include polyolefin resins, polystyrene resins, polyphenylene ether resins, polyimide resins, fluorine resins, liquid crystal polymers, polyphenylene sulfide resins, and the like.
  • polyolefin resins, polystyrene resins, and polyphenylene ether resins are preferred from the viewpoint of processability, cost, and flame retardancy.
  • methods for lowering the water absorption of the bead raw material include lowering the polarity of the constituent units in the resin as a resin in the bead raw material; Examples include reducing chain terminal polar groups.
  • suitable resins include polyolefin resins, polystyrene resins, polyphenylene ether resins, polyimide resins, fluorine resins, liquid crystal polymers, polyphenylene sulfide resins, and the like.
  • polyolefin resins, polystyrene resins, and polyphenylene ether resins are preferred from the viewpoint of processability, cost, and flame retardancy.
  • the crystalline resin is not particularly limited as long as it has crystallinity, such as polyethylene resin, polypropylene resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene sulfide resin, Examples include polyetheretherketone resin, liquid crystal polymer, polytetrafluoroethylene resin, and the like.
  • polyamide resins, polyacetal resins, polybutylene terephthalate resins, and polyphenylene sulfide resins are preferred from the viewpoints of heat resistance, flame retardancy, and moldability.
  • the polyamide resin is not particularly limited, and any known polyamide resin can be used.
  • the polyamide resin include polyamide homopolymers, polyamide copolymers, and the like.
  • polyamide homopolymers include nylon 66, nylon 610, nylon 612, nylon 46, and nylon 1212 obtained by polycondensation of diamine and dicarboxylic acid; nylon 6 and nylon 12 obtained by ring-opening polymerization of lactam. etc.
  • Examples of the polyamide copolymer include nylon 6/66, nylon 66/6, nylon 66/610, and nylon 66/612.
  • As the polyamide resin aliphatic polyamide is preferable, and nylon 6, nylon 66, nylon 6/66, nylon 66/6, etc. are more preferable.
  • the glass transition temperature of the resin is preferably 80 to 250°C, more preferably 100 to 230°C, still more preferably 120 to 220°C, from the viewpoint of reducing dimensional changes during long-term high temperature treatment.
  • the glass transition temperature of the bead raw material is preferably 80 to 180°C, more preferably 100 to 170°C, still more preferably 120 to 160°C, from the viewpoint of reducing dimensional changes during long-term high temperature treatment.
  • the highest glass transition temperature is taken as the glass transition temperature of the bead raw material.
  • the glass transition temperature can be measured by the method described in Examples below.
  • the softening point temperature of the resin is preferably 80 to 250°C, more preferably 100 to 230°C, and even more preferably 120 to 220°C, from the viewpoint of reducing dimensional changes during long-term high temperature treatment.
  • the softening point temperature of the bead raw material is preferably 80 to 180°C, more preferably 100 to 170°C, and even more preferably 120 to 160°C, from the viewpoint of reducing dimensional changes during long-term high temperature treatment.
  • the softening point temperature Tm is the melting peak temperature measured by differential scanning calorimetry (DSC) in accordance with JIS K7121. When multiple melting peaks appear, the temperature of the peak appearing on the highest temperature side is defined as Tm.
  • Tm be the temperature at which the observed loss tangent tan ⁇ becomes maximum.
  • Tm the temperature on the highest temperature side is set as Tm. Specifically, it can be measured by the method described in Examples below.
  • the mass ratio of the resin in 100% by mass of the bead raw material is preferably 50 to 100% by mass, more preferably 60 to 95% by mass, even more preferably 70 to 92% by mass, particularly preferably 80 to 90% by mass. Mass%.
  • Other components mentioned above include flame retardants, flame retardant aids, heat stabilizers, antioxidants, antistatic agents, inorganic fillers, anti-dripping agents, ultraviolet absorbers, light absorbers, plasticizers, mold release agents, Dyes and pigments, rubber components, resins other than the above-mentioned base resins, and the like can be added within a range that does not impair the effects of the present invention.
  • the other components mentioned above may be components other than the resin.
  • the mass proportion of the other components in the bead raw material is preferably 0 to 40 parts by mass, more preferably 5 to 30 parts by mass, still more preferably 10 to 20 parts by mass, based on 100 parts by mass of the resin. Department.
  • the mass proportion of the other components in 100 mass% of the bead raw material is preferably more than 0 mass% and 50 mass% or less, more preferably 5 to 40 mass%, still more preferably 8 to 30 mass%, especially Preferably it is 10 to 20% by mass.
  • Examples of the flame retardant include organic flame retardants and inorganic flame retardants.
  • Examples of organic flame retardants include halogen compounds represented by bromine compounds, phosphorus compounds, and non-halogen compounds represented by silicone compounds.
  • Examples of inorganic flame retardants include metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and antimony compounds such as antimony trioxide and antimony pentoxide. These may be used alone or in combination of two or more.
  • non-halogen flame retardants that are organic flame retardants are preferred, and phosphorus-based or silicone-based flame retardants are more preferred.
  • phosphorus-based flame retardant one containing phosphorus or a phosphorus compound can be used.
  • phosphorus include red phosphorus.
  • the phosphorus compound include phosphoric acid esters, phosphazene compounds having a bond between a phosphorus atom and a nitrogen atom in the main chain, trialkylphosphine oxide, triphenylphosphine oxide, and the like.
  • Examples of phosphoric acid esters include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate, tricylenyl phosphate, cresyl diphenyl.
  • phosphoric acid esters modified with various substituents. Also included are compounds, various condensed type phosphoric ester compounds, and phosphoric ester compounds having a cyclic structure.
  • phosphazene compounds such as bisphenol A bisphosphate, condensation type phosphoric acid ester compounds, and phosphoric acid ester compounds having a cyclic structure are preferred from the viewpoint of heat resistance, flame retardance, and foamability. These may be used alone or in combination of two or more.
  • silicone flame retardants include (mono- or poly)organosiloxanes.
  • examples of (mono- or poly)organosiloxanes include monoorganosiloxanes such as dimethylsiloxane and phenylmethylsiloxane; polydimethylsiloxanes and polyphenylmethylsiloxanes obtained by polymerizing these; organopolysiloxanes such as copolymers thereof; etc.
  • the bonding groups of the main chain and branched side chains are hydrogen, alkyl groups, and phenyl groups, preferably phenyl groups, methyl groups, ethyl groups, and propyl groups, but are not limited thereto.
  • the terminal linking group may be a hydroxyl group, an alkoxy group, an alkyl group, or a phenyl group.
  • shape of the silicone There is no particular restriction on the shape of the silicone, and any shape such as oil, gum, varnish, powder, pellet, etc. can be used. These may be used alone or in combination of two or more.
  • the mass proportion of the flame retardant in 100 mass% of the bead raw material is preferably 1 to 30 mass%, more preferably 5 to 25 mass%, and even more preferably 10 to 20 mass%. Further, the mass ratio of the flame retardant to 100 parts by mass of the resin is preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass.
  • the rubber component examples include, but are not limited to, butadiene, isoprene, 1,3-pentadiene, and the like. These are preferably dispersed in the form of particles in a continuous phase made of polystyrene resin.
  • the rubber component itself may be added, or a resin such as a styrene elastomer or a styrene-butadiene copolymer may be used as a rubber component supply source.
  • the content of the rubber component is preferably 0.3 to 15 parts by mass, more preferably 0.5 to 8 parts by mass, and 1 to 5 parts by mass based on 100 parts by mass of the resin. More preferred.
  • the amount is 0.3 parts by mass or more, the resin has excellent flexibility and elongation, the foamed cell membrane is difficult to rupture during foaming, and a foamed product with excellent moldability and mechanical strength is easily obtained.
  • a rubber component is suitably used to impart foamability to the bead raw material.
  • the above-mentioned rubber component is important in bead foaming, in which the temperature is gradually raised from room temperature to foam the resin in an unmolten state.
  • inorganic fillers examples include fibrous inorganic fillers such as glass fiber, potassium titanate fiber, gypsum fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, and boron whisker fiber; mica, talc, kaolin, and calcined Examples include plate-like inorganic fillers such as kaolin and glass flakes; granular inorganic fillers such as titanium oxide, apatite, glass beads, silica, calcium carbonate, and carbon black; acicular inorganic fillers such as wollastonite and xonotrite; and the like.
  • fibrous inorganic fillers such as glass fiber, potassium titanate fiber, gypsum fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, and boron whisker fiber
  • mica, talc, kaolin, and calcined Examples include plate-like inorganic fillers such as kaolin and glass flakes; granular inorganic fillers such as titanium oxide, apatite, glass beads, silic
  • fibrous inorganic fillers are preferred, and glass fibers, glass flakes, mica, and talc are more preferred.
  • the above inorganic fillers may be used alone or in combination of two or more.
  • the mass proportion of the inorganic filler in 100 mass% of the bead raw material is preferably 0.01 to 10 mass%, more preferably 0.1 to 5 mass%, and still more preferably 0.5 to 3 mass%. %.
  • blowing agent commonly used gases can be used.
  • gases such as air, carbon dioxide gas, nitrogen gas, oxygen gas, ammonia gas, hydrogen gas, argon gas, helium gas, neon gas; trichlorofluoromethane (R11), dichlorodifluoromethane (R12), chlorodifluoromethane Fluorocarbons such as (R22), tetrachlorodifluoroethane (R112), dichlorofluoroethane (R141b), chlorodifluoroethane (R142b), difluoroethane (R152a), HFC-245fa, HFC-236ea, HFC-245ca, HFC-225ca; propane, n- Saturated hydrocarbons such as butane, i-butane, n-pentane, i-pentane, neopentane; dimethyl ether, diethyl
  • an inorganic gas is preferable from the viewpoint of maintaining moldability and excellent flame retardancy.
  • inorganic gases are less soluble in resin than organic gases such as hydrocarbons, and gas easily escapes from the resin after the bead foaming process or foam molding process, so the dimensional stability of the molded foam over time may be affected. There are even better benefits.
  • plasticization of the resin due to residual gas is less likely to occur, and there is also the advantage that excellent heat resistance is easily exhibited from an earlier stage after molding.
  • inorganic gases are less soluble in resins than organic gases such as hydrocarbons, and are more likely to dissipate from the pellet surface during foaming, making it easier to form a skin layer and less likely to cause bubbles to break.
  • organic gases such as hydrocarbons
  • carbon dioxide gas is preferred from the viewpoint of solubility in resin and ease of handling.
  • the method of incorporating (impregnating) a foaming agent into the bead raw material and foaming it includes, for example, the method described in Example 1 of JP-A-4-372630.
  • bead raw materials pellets, beads, etc.
  • a blowing agent gas
  • the pressure is released and the bead raw material pellets are transferred from the pressure vessel to the foaming furnace, and the bead raw material pellets are heated and foamed with pressurized steam while rotating the stirring blade in the foaming furnace.
  • Examples include methods for producing pre-expanded beads.
  • a method for incorporating a foaming agent into the bead raw material commonly used methods can be applied, such as a method using an aqueous medium using a suspension system such as water (suspension impregnation), and a method using a suspension system such as water (suspension impregnation);
  • a method using a pyrolytic blowing agent such as sodium hydrogen (foaming agent decomposition method) a method in which the gas is brought into an atmosphere above the critical pressure, brought into a liquid phase, and brought into contact with the bead raw material (liquid phase impregnation), a method in which the gas is brought into contact with the bead material under the critical pressure.
  • Examples include a method of contacting the bead raw material in a gaseous state under a high-pressure atmosphere (vapor phase impregnation).
  • vapor phase impregnation a method in which gas is impregnated in a gas phase under a high-pressure atmosphere below the critical pressure is particularly preferred.
  • the gas phase impregnation method has better solubility of gas in the resin than suspension impregnation performed under high temperature conditions, and it is easier to increase the blowing agent content. Therefore, it is easy to achieve a high expansion ratio, and the bubble size is also easy to become uniform.
  • the blowing agent decomposition method is not only carried out under high temperature conditions, but also not all of the added pyrolytic blowing agent turns into gas, so the amount of gas generated tends to be relatively small.
  • gas phase impregnation has the advantage of making it easier to increase the blowing agent content.
  • equipment such as a pressure-resistant device and a cooling device can be made more compact than in liquid phase impregnation, making it easier to keep equipment costs low.
  • the gas phase impregnation conditions are not particularly limited, but the atmospheric pressure is preferably 0.5 to 6.0 MPa, more preferably 1.0 to 5.0 MPa. Further, the ambient temperature is preferably 5 to 30°C, more preferably 7 to 15°C. Further, the impregnation time is preferably 0.5 to 48 hours, more preferably 1 to 24 hours. When the atmospheric pressure, atmospheric temperature, and impregnation time are within the above ranges, gas dissolution into the bead raw material tends to proceed more efficiently. In particular, if the ambient temperature is low, the amount of impregnation increases but the impregnation rate slows down, and if the ambient temperature is high, the amount of impregnation decreases but the impregnation rate increases. It is preferable to set the above ambient temperature for the process to proceed.
  • the amount of the blowing agent impregnated is preferably 3 to 13% by mass, more preferably 3.5 to 10% by mass based on the resin contained in the bead raw material.
  • the impregnated amount of the blowing agent for example, carbon dioxide gas
  • the impregnated amount of the blowing agent is 3% by mass or more, it becomes easier to achieve a higher expansion ratio, and the variation in the bubble size is reduced, making it easier to suppress the variation in the expansion ratio.
  • the content is 13% by mass or less, the bubble size becomes appropriate, and it becomes easy to suppress a decrease in the closed cell ratio due to overfoaming.
  • the method for foaming the bead raw material in the bead foaming process is not particularly limited, but examples include a method in which the foaming agent (e.g., gas) dissolved in the resin is expanded from a high-pressure condition to a low-pressure atmosphere, and a method in which a foaming agent (e.g., gas) dissolved in the resin is expanded. Examples include a method in which a blowing agent (for example, gas) dissolved in a resin is expanded by heating with hot air or the like. Among these, the method of heating and foaming is particularly preferred. This is because the size of the bubbles inside the resin tends to be more uniform compared to a method in which the resin is exposed to a low-pressure atmosphere all at once from a high-pressure condition.
  • the foaming agent e.g., gas
  • the heat source for heating and foaming is not particularly limited, such as steam, hot air, or a heater, but heat treatment using steam (preferably pressure steam) is preferred from the viewpoint of shortening the foaming time by taking advantage of its high thermal conductivity. preferable.
  • steam preferably pressure steam
  • residual stress occurs inside the beads after foaming, so the heat shrinkage rate of foamed beads tends to increase.
  • the residual stress small foam beads can be obtained.
  • it is preferable to heat and foam using hot air, especially from the viewpoint of obtaining a foamed molded product with excellent heat shrinkage.
  • Steam here refers to pressurized steam that is pressurized and heated above atmospheric pressure.
  • Hot air refers to dry air heated to 50°C or higher and with a relative humidity of less than 10%.
  • the foaming temperature in the bead foaming step is preferably at least the glass transition temperature Tg of the bead raw material - 25°C, more preferably at least the glass transition temperature Tg - 20°C of the bead raw material. Further, the foaming temperature is preferably below the glass transition temperature Tg of the bead raw material + 30°C, more preferably below the glass transition temperature Tg + 20°C of the bead raw material.
  • the temperature of the pressure steam is set at (glass transition temperature Tg of bead raw material Tg - 30°C) from the viewpoint of efficiently obtaining pre-foamed beads with a magnification higher than that of foamed beads. It is preferable that the glass transition temperature of the bead raw material Tg + 10°C, more preferably (the glass transition temperature Tg of the bead raw material Tg - 20) °C to (the glass transition temperature Tg + 5 of the bead raw material) °C, and even more preferably (the glass transition temperature Tg of the bead raw material Tg + 5) °C.
  • the foaming temperature in the bead foaming step is preferably at least the softening point temperature Tm of the bead raw material - 25°C, more preferably at least the softening point temperature Tm - 20°C of the bead raw material. Further, the foaming temperature is preferably below the softening point temperature Tm+30°C of the bead raw material, and more preferably below the softening point temperature Tm+20°C of the bead raw material.
  • the temperature of the pressure steam is (softening point temperature of bead raw material Tm - 30)°C from the viewpoint of efficiently obtaining pre-foamed beads with a magnification higher than that of foamed beads. It is preferably from (softening point temperature of bead raw material Tm + 10) °C, more preferably (softening point temperature of bead raw material Tm - 20) °C to (softening point temperature of bead raw material Tm + 5) °C, even more preferably (bead raw material softening point temperature Tm + 5) °C.
  • the softening point temperature Tm of the bead raw material can be determined by the method described in Examples below.
  • the foaming temperature may be the maximum temperature in the bead foaming step.
  • the foaming time in the bead foaming step is not particularly limited as it depends on the foaming temperature, but generally it is preferably 5 seconds to 120 seconds, more preferably 10 seconds to 60 seconds, even more preferably 15 seconds. It is from seconds to 45 seconds.
  • the foaming may be performed in one step to the desired expansion ratio, or it may be foamed to the desired expansion ratio in multiple stages such as secondary foaming and tertiary foaming.
  • foaming is performed in multiple stages, it is preferable to provide a bead annealing process described below after each stage.
  • the conditions of the bead annealing step after each stage may be the same or different.
  • the gas used before each stage may be the same gas or different gases in each stage, but it is preferable that the gas is the same gas.
  • the foaming conditions before each stage may be the same or different at each stage.
  • the bead foaming process refers to a process in which the bulk density gradually increases after foaming of the bead raw material begins, and includes the period immediately before the bulk density changes or shifts to a state where it gradually decreases.
  • the bead foaming step is a step in which the bulk ratio per second increases in the range of 0.1 cm 3 /g to 100 cm 3 /g.
  • the pre-foamed beads obtained in the above bead foaming step can be heat-treated in a bead annealing step to produce foamed beads.
  • the bead annealing step may be provided consecutively to the bead foaming step, or may be performed after a period of time after the bead foaming step.
  • the bead annealing process is a process intended to remove residual stress inside the pre-foamed beads by heat-treating the pre-foamed beads after foaming, and is a process of leaving the beads without foaming or intentional heat treatment. This is a different process.
  • the bead annealing process refers to a process that includes the bead foaming process and the bead annealing process, but excludes the part corresponding to the bead foaming process.
  • the rate of change in bulk ratio per second of the pre-foamed beads is preferably -0.5 to -0.001 cm 3 /g from the viewpoint of obtaining excellent expansion ability, and - It is more preferably from 0.2 to -0.005 cm 3 /g, and even more preferably from -0.08 to -0.01 cm 3 /g.
  • Examples of the above-mentioned heat treatment include heating with steam (preferably pressure steam or water vapor), heating with hot air, heating with a heater, and the like.
  • steam preferably pressure steam or water vapor
  • heat treatment using hot air is preferred from the viewpoint of good thermal conductivity and ability to anneal in a short time.
  • the temperature of the heat treatment is preferably at least ⁇ 30° C. to the glass transition temperature of the bead raw material and at most +30° C., and more preferably from the viewpoint of excellent dimensional change after long-term high-temperature treatment and better expansion ability.
  • the temperature may be constant or may be varied. When changing the temperature, it is preferable to change the temperature within the above range.
  • the temperature of the heat treatment is preferably -30°C or more, the softening point temperature of the bead raw material, and +30°C or less, and more preferably from the viewpoint of excellent dimensional change after long-term high-temperature treatment and better expansion ability.
  • the temperature may be constant or may be varied. When changing the temperature, it is preferable to change the temperature within the above range.
  • the temperature of the heat treatment is preferably from -30°C to the glass transition temperature of the bead raw material and +30°C to the glass transition temperature of the bead raw material, and long-term high temperature treatment.
  • the glass transition temperature is more preferably -25°C or more and the glass transition temperature +25°C or less, and even more preferably the glass transition temperature is -20°C or more and the glass transition temperature +20°C or less.
  • the temperature may be constant or may be varied. When changing the temperature, it is preferable to change the temperature within the above range.
  • the time for the above heat treatment is preferably 10 seconds to 600 seconds, more preferably 20 seconds to 300 seconds, still more preferably 30 seconds to It is 120 seconds. If the heat treatment time is less than 10 seconds, the effect of removing residual stress will not be sufficiently obtained, the heat shrinkage rate of the foamed beads will increase, and the dimensional change rate of the resulting foamed molded product will increase, which is preferable. do not have. If the heat treatment time exceeds 600 seconds, the foamed beads will shrink significantly, leading to an extreme decrease in expansion ratio, which is not preferable.
  • the temperature of the steam used in the heat treatment is preferably -30°C or higher, the glass transition temperature of the bead raw material and 30°C or lower, and more preferably -25°C or higher, and 10°C or lower than the glass transition temperature of the bead raw material. More preferably, the glass transition temperature is -20°C or higher and the glass transition temperature is +5°C or lower. Further, the softening point temperature of the bead raw material is preferably -30°C or more and softening point temperature +30°C or less, more preferably softening point temperature -25°C or more and softening point temperature +10°C or less, and even more preferably softening point temperature -20°C.
  • the temperature of the hot air used in the heat treatment is preferably from -30°C to glass transition temperature +30°C, more preferably from -20°C to glass transition temperature +20°C, more preferably from glass transition temperature -20°C to glass transition temperature +20°C. More preferably, the glass transition temperature is ⁇ 10° C. or higher and the glass transition temperature is +10° C. or lower.
  • the softening point temperature of the bead raw material is preferably -30°C or more and softening point temperature +30°C or less, more preferably softening point temperature -20°C or more and softening point temperature +20°C or less, and even more preferably softening point temperature -10°C. °C or higher and softening point temperature +10°C or lower.
  • the temperature of the steam and the temperature of the hot air may be constant or may be changed. When changing the temperature, it is preferable to change the temperature within the above range.
  • the heat treatment temperature is determined from the viewpoint of excellent dimensional change after long-term high-temperature treatment and even better expansion ability. Temperature) is preferably lower, more preferably 2°C or more, and even more preferably 4°C or more.
  • the heat treatment temperature is preferably kept at a constant temperature, gradually raised from a low temperature to a high temperature, or a combination thereof. In particular, a temperature program in which the temperature is gradually raised during the bead annealing process is preferable because it can be expected to shorten the process time.
  • the temperature of the heat treatment is preferably below the foaming temperature in the bead foaming step, from the viewpoint of excellent dimensional change after long-term high temperature treatment and better expansion ability. It is more preferable to lower the temperature by 2°C or more, and even more preferably by 4°C or more. If the temperature of the heat treatment in the bead annealing step is 20° C. or more lower than the foaming temperature in the bead foaming step, it is not preferable because an extremely long time is required for the annealing.
  • the temperature of the heat treatment in the bead annealing step may be lower than the foaming temperature at the end of the bead foaming step. Further, the heat treatment temperature in the bead annealing step may be lower than the maximum foaming temperature in the bead foaming step.
  • the bulk factor of the pre-foamed beads obtained in the bead foaming step may be reduced after the bead annealing step.
  • the ratio of the bulk magnification of the foamed beads after the bead annealing step to 100% of the bulk magnification of the pre-foamed beads before the bead annealing step is preferably 30 to 99%, more preferably 40 to 95%.
  • the lower limit of the final bulk ratio after the bead foaming step is preferably 2 cc/g or more from the viewpoint of weight reduction, more preferably 3 cc/g or more, and even more preferably 5 cc/g or more. preferable.
  • the upper limit of the final bulk ratio after the bead foaming step is preferably 30 cc/g or less, more preferably 20 cc/g or less, and 15 cc/g or less. It is more preferable that During the bead annealing step, the bulk factor of the expanded beads may be gradually decreased.
  • the bead annealing step may be a step in which the bulk factor of the beads remains the same or decreases (preferably decreases) during the process.
  • the bulk density of the pre-foamed beads and foamed beads can be measured by the method described in Examples below.
  • the bulk ratio of the pre-foamed beads is reduced through the bead annealing step. Therefore, in consideration of the decrease in bulk ratio in the bead annealing process, it is preferable to foam the beads in the bead foaming process until the volume ratio becomes higher than the intended volume ratio of the foamed beads.
  • a step may be provided in which the proportion of the bulk factor reduced in the beer annealing step is measured in advance and the planned bulk factor after the bead foaming step is determined.
  • the bead foaming step and the bead annealing step may be performed in different devices or in the same device.
  • continuous bead annealing without taking the pre-foamed beads out of the equipment simplifies the process and makes it easier to control the bulk ratio of the foamed beads obtained, so it is preferable to perform the process in the same equipment. preferable.
  • the foam molding step is a step of manufacturing a foam molded product from the foam beads obtained in the bead annealing step.
  • a foamed molded product can be obtained by filling a mold with foamed beads obtained in a bead annealing process, expanding the foamed beads by heating with water vapor, etc., and simultaneously thermally fusing the foamed beads together.
  • a mold having a desired shape is prepared and foamed beads are filled into the mold and molded, so that the foamed molded product can be easily molded into finer or more complex shapes.
  • the bead foaming method easily increases the expansion ratio of the foamed molded product, and the obtained foamed molded product easily exhibits flexibility in addition to heat insulation properties.
  • the foamed beads obtained in the bead annealing step may be used continuously in the foam molding step, or may be used in the foam molding step at intervals.
  • Filling methods for foamed beads include, for example, the cracking method, in which the mold is left slightly open during filling, the compression method, in which the mold is kept closed and pressurized and filled with compressed beads, and the compressed bead filling method. Examples include compression cracking methods in which cracking is performed afterwards.
  • a pressurization process in which a pressure treatment is performed under an inorganic gas atmosphere before filling the foamed beads. This is because by applying the pressure treatment, a constant gas pressure can be applied to the bubbles within the foam beads, making it easier to foam and mold them more uniformly.
  • the pressure source for performing the pressure treatment is not particularly limited, it is preferable to use the above-mentioned inorganic gas.
  • inorganic gases include air, carbon dioxide gas, nitrogen gas, oxygen gas, ammonia gas, hydrogen gas, argon gas, helium gas, neon gas, etc. From the viewpoint of ease of handling and economic efficiency, carbon dioxide gas and air are preferable.
  • the method of pressure treatment is also not particularly limited, but foamed beads are filled in a pressurized tank, inorganic gas is supplied into the tank, and the pressure is increased to a maximum pressure of 0.1 to 20 MPa over 10 minutes to 96 hours. Examples include a method of pressurizing by doing so.
  • the foamed beads obtained by the manufacturing method of this embodiment are used, it is possible to manufacture foamed molded articles with fine shapes or complicated shapes by a known in-mold molding method, and the range of possible uses is expanded. is also a feature.
  • the foam beads do not expand sufficiently in the corners of the mold or in the thin cavity space (thin molded product space), so the mold is opened slightly and filled with more foam beads to perform foam molding. Many cracking methods have been used.
  • the foamed beads obtained by the production method of the present invention have high expansion ability, so even if the amount of foamed beads filled is small, it can fill the gaps between beads and the corners in the mold, and the mold can be closed to form the foam. It can be performed.
  • the foamed beads obtained by the manufacturing method of this embodiment have excellent expansion ability, so the number of foamed beads filled in the mold can be reduced, allowing molding to be performed with the mold completely closed, and the thickness accuracy is also excellent.
  • a foam molded article can be obtained. Furthermore, even in a foam molded product having portions with different thicknesses, there is an advantage that a foam molded product with small variations in expansion ratio can be obtained. In addition, it is possible to achieve both weight reduction and freedom in shape design, which are the advantages of foam.
  • the foamed beads obtained by the manufacturing method of this embodiment for example, a pair of molds for molding conventional foamed beads in the mold is used, and the foamed beads are placed in the mold cavity under pressurized atmospheric pressure or reduced pressure. Fill the tee and close the mold to compress the mold cavity volume by 0 to 70%, then supply a heat medium such as steam into the mold to heat it and heat-fuse the foamed beads.
  • the vacuum molding method for example, Japanese Patent Publication No. 46-38359
  • the secondary foamability of the foamed beads is increased by pre-pressurizing the foamed beads with pressurized gas to increase the pressure inside the foamed beads.
  • a heating medium such as steam into the mold.
  • Examples include a pressure molding method (for example, Japanese Patent Publication No. 51-22951) that involves fusing.
  • a heating medium such as steam is supplied into the cavity to heat the foamed beads. It can also be molded by a compression filling molding method (Japanese Patent Publication No. 4-46217) in which the materials are heated and fused.
  • the secondary foaming power of foamed beads is increased under special conditions, and after the foamed beads are filled into the cavities of a pair of molds under atmospheric pressure or reduced pressure, a heating medium such as steam is supplied. Molding can also be performed by a normal pressure filling molding method (Japanese Patent Publication No. 6-49795) in which foamed beads are heated and fused by heating, or a method combining the above methods (Japanese Patent Publication No. 6-22919). can.
  • the maximum vapor pressure of the pressurized steam in the mold is preferably 30 to 700 kPa from the viewpoint of easily obtaining the desired magnification and improving the appearance.
  • the foamed beads of this embodiment can be manufactured by the manufacturing method of this embodiment described above.
  • Examples of the foamed beads include amorphous resin foamed beads and crystalline resin foamed beads, which will be described later.
  • the foamed beads mentioned above are preferably foamed beads made by foaming a bead raw material containing an amorphous resin. It is preferable to use amorphous resin foam beads that have a heat shrinkage rate of 25% or less when heated for 5 minutes at the glass transition temperature of the bead raw material containing an amorphous resin plus 10° C. Examples of the amorphous resin include those mentioned above, and the same amorphous resins as mentioned above are preferred.
  • the bead raw materials include those mentioned above, and those similar to those mentioned above are preferred.
  • the foamed beads described above are preferably foamed beads made by foaming a bead raw material containing a crystalline resin.
  • the foamed beads are preferably crystalline resin foamed beads having a heat shrinkage rate of 25% or less when heated for 5 minutes at a softening point temperature of -10° C. of the bead raw material containing a crystalline resin.
  • Examples of the amorphous resin include those mentioned above, and the same amorphous resins as mentioned above are preferred.
  • the bead raw materials include those mentioned above, and those similar to those mentioned above are preferred.
  • the heat shrinkage rate of the foamed beads is preferably 25% or less, more preferably 20% or less, still more preferably 18% or less, from the viewpoint of excellent dimensional stability after long-term high temperature treatment.
  • the heating shrinkage rate can be adjusted by adjusting the conditions of the bead annealing process (for example, the type of medium used for heating, heating temperature, heating time, pressure, etc.).
  • the heat shrinkage rate can be measured by the method described in Examples below.
  • the expansion ability of the foamed beads is preferably 2.3 or more, more preferably 2.5 to 10, from the viewpoint of excellent moldability. .0, more preferably 3.0 to 5.0.
  • the expansion ability can be adjusted by adjusting the conditions of the bead annealing process (for example, the type of medium used for heating, heating temperature, heating time, pressure, etc.). The expansion ability can be measured by the method described in Examples below.
  • the foamed molded article of this embodiment can be obtained by foam-molding the foamed beads of this embodiment described above.
  • the above-mentioned foamed molded product is a foamed product made by molding amorphous resin foam beads that have a heat shrinkage rate of 25% or less when heated for 5 minutes at "glass transition temperature of bead raw material containing amorphous resin + 10" °C.
  • the above-mentioned foamed molded product can be suitably used for, for example, peripheral parts of automobiles, peripheral parts of electronic devices, and the like.
  • the melting peak temperature (° C.) of the bead raw material was measured using a differential scanning calorimeter (“DSC8500” manufactured by PerkinElmer) under the following conditions, and was defined as the softening point temperature.
  • Sample amount 10mg
  • Pan Aluminum crimp pan
  • Atmosphere Nitrogen Measurement temperature: 50°C to 220°C
  • Temperature increase/decrease rate 10° C./min Measurement cycle: 2 cycles
  • a change in melting enthalpy of 1 J/g or more during the temperature increase process in the 2nd run was defined as the softening point temperature.
  • the glass transition temperature measured by the following evaluation method was taken as the softening point temperature (Tm).
  • the dynamic viscoelasticity of the bead raw material was measured using a rheometer (Physica MCR301 manufactured by Anton Paar) under the following conditions, and the peak temperature (°C) of the loss tangent (tan ⁇ ) was determined by the glass transition temperature (°C) of the bead raw material. Tg) and softening point temperature (Tm).
  • Heating shrinkage rate of amorphous resin foam beads 20 cm 3 of foamed beads were placed on a metal tray so as not to overlap, placed in an oven set to the glass transition temperature Tg of the bead raw material + 10°C, and taken out after 5 minutes. After cooling to room temperature, the bulk ratio after heating was determined, and the heating shrinkage rate (%) was calculated using the following formula. (1-Xb/Xa) ⁇ 100(%) Xa: Bulk magnification before heating (cm 3 /g) Xb: Bulk magnification after heating (cm 3 /g)
  • the above-mentioned predetermined pressure was determined according to the following formula, taking into account the glass transition temperature when the resin contained in the bead raw material is an amorphous resin, and the softening point temperature when it is a crystalline resin.
  • Pressure 8 x (glass transition temperature Tg or softening point temperature Tm of the bead raw material) - 756 (kPa) (wherein, Tg if the resin contained in the bead raw material is an amorphous resin, and Tg if the resin contained in the bead raw material is a crystalline resin) Tm)
  • Expansion ability Xc/Xa Xa: bulk ratio of foamed beads before heating (before expansion) (cm 3 /g)
  • Xc Bulk ratio of expanded foam beads (cm 3 /g)
  • a test piece of a foamed molded product measuring 150 mm x 150 mm x 3 mm in thickness was prepared by the method described in Examples and Comparative Examples described below. This test piece was dried for 24 hours using a 60°C drying oven (Satake Safe Bend Dryer N50-S5) to remove moisture contained in the test piece. Regarding this test piece, referring to the dimensional stability test at high temperature (Method B) described in JIS K6767, three pieces of length 100 mm were placed in the center of the test piece parallel to each other in the vertical and horizontal directions in a grid pattern.
  • the foam was tested for flame retardancy in accordance with the UL-94 vertical method (10 mm vertical combustion test) of the U.S. UL standard. Details of the measurement method are shown below. With reference to the methods of Examples and Comparative Examples described below, five test pieces each having a length of 125 mm, a width of 13 mm, and a thickness of 10 mm were prepared and used. The test piece was attached vertically to a clamp, and indirect flame was applied twice for 10 seconds using a 10 mm flame, and V-0, V-1, and V-2 were determined based on the combustion behavior.
  • V-0 Both the first and second flaming combustion durations are within 10 seconds, the total of the second flaming combustion duration and non-flame combustion time is within 30 seconds, and 5 test pieces are flammable. Total combustion time is less than 50 seconds, no sample burns to the position of the fixing clamp, and no cotton ignites due to falling objects.
  • V-1 Both the first and second flaming combustion durations are within 30 seconds, and the total of the second flaming combustion duration and non-flame combustion time is within 60 seconds, and 5 test pieces are flammable. Total combustion time is within 250 seconds, no sample burns to the position of the fixing clamp, and no cotton ignites due to falling objects.
  • V-2 Both the first and second flaming combustion durations are within 30 seconds, and the total of the second flaming combustion duration and non-flame combustion time is within 60 seconds, and five test pieces are flammable. The total combustion time was less than 250 seconds, there was no sample that burned to the position of the fixing clamp, and the cotton was ignited by falling objects. Cases that corresponded to any of the above V-0, V-1, and V-2 were judged as good (A), and cases that did not fall under any of them were judged as bad (B).
  • Bead raw material pellet E PA 100 parts by mass of a copolymer of nylon 6 and nylon 66 (trade name: Novamid 2430A, manufactured by DSM) as a polyamide resin and 0.8 parts by mass of talc as a nucleating agent were heated, melted and kneaded in an extruder, and then extruded. Bead raw material pellets E were produced.
  • Bead raw material pellet F PLA To 100 parts by weight of polylactic acid (manufactured by Cargill Japan) with an L-form/D-form ratio of 88.5/11.5, 2.0 parts by weight of an isocyanate compound (Millionate MR-200, manufactured by Nippon Polyurethane Industries), and talc (LMP- 100 (manufactured by Fuji Talc Industries) was heated, melted, kneaded, and extruded using an extruder to produce bead raw material pellets F.
  • polylactic acid manufactured by Cargill Japan
  • an isocyanate compound manufactured by Nippon Polyurethane Industries
  • talc LMP- 100 (manufactured by Fuji Talc Industries) was heated, melted, kneaded, and extruded using an extruder to produce bead raw material pellets F.
  • Example 1 According to the method described in Example 1 of JP-A-4-372630, the bead raw material pellets shown in Table 1 were placed in a pressure-resistant container, and after replacing the gas in the pressure-resistant container with dry air, carbon dioxide was added as a blowing agent. After injecting carbon (gas) and impregnating the bead raw material pellet with carbon dioxide for 3 hours under the conditions of a pressure of 3.0 MPa and a temperature of 10°C, the bead raw material pellet was taken out from the pressure vessel and immediately transferred.
  • carbon dioxide carbon dioxide
  • the bead raw material pellets were foamed with pressurized steam using the pressure program shown in Table 2 while rotating a stirring blade at 77 rpm in a foaming furnace to perform a bead foaming process and an annealing bead process to obtain foamed beads.
  • the hydrocarbon gas content of the foamed beads was measured by gas chromatography immediately after foaming, and was found to be below the detection limit (0.01% by mass).
  • the increase in bulk ratio per second was 0.1 cm 3 /g or more and 100 cm 3 /g or less, but the bulk ratio decreased in the bead annealing process.
  • the expanded beads were placed in a container, and pressurized air was introduced (the pressure was increased to 0.4 MPa over 4 hours, and then maintained at 0.4 MPa for 16 hours) to perform a pressure treatment.
  • This is filled into an in-mold mold with steam holes (cracking rate 0%), heated with steam to expand and fuse the foamed beads to each other, cooled, and taken out from the mold.
  • a foamed molded article made of foamed beads was obtained. Table 1 shows the measurement and evaluation results of each physical property.
  • Example 2-5, 16-17, Comparative Example 2 A foamed molded body was obtained in the same manner as in Example 1, except that the pressure program of pressurized steam for producing foamed beads from bead raw materials was set as shown in Table 2. Table 1 shows the measurement and evaluation results of each physical property. In addition, in Examples 2 to 5, 16 to 17 and Comparative Example 2, in the bead foaming process shown in Table 2, the increase in bulk ratio per second was 0.1 cm 3 /g or more and 100 cm 3 /g or less. , the bulk factor decreased in the bead annealing process.
  • Examples 6 to 10 According to the method described in Example 1 of JP-A-4-372630, the bead raw material pellets shown in Table 1 were placed in a pressure-resistant container, and after replacing the gas in the container with dry air, carbon dioxide ( After injecting carbon dioxide into the bead raw material pellets for 3 hours under the conditions of a pressure of 3.0 MPa and a temperature of 10 ° C., the bead raw material pellets were taken out from the pressure vessel and immediately transferred. The bead raw material pellets were foamed with pressurized steam using the pressure program shown in Table 2 while rotating the stirring blade at 77 rpm in a foaming furnace to perform a foaming process to obtain pre-foamed beads.
  • the hydrocarbon gas content of the foamed beads was measured by gas chromatography immediately after foaming, and was found to be below the detection limit (0.01% by mass).
  • the obtained pre-foamed beads were put into a hot air dryer and heated at the temperature and time shown in Table 3 to obtain foamed beads.
  • the increase in bulk ratio per second was 0.1 cm 3 /g or more and 100 cm 3 /g or less, but in the bead annealing process, the bulk ratio increased decreased.
  • the expanded beads were placed in a container, and pressurized air was introduced (the pressure was increased to 0.4 MPa over 4 hours, and then maintained at 0.4 MPa for 16 hours) to perform a pressure treatment.
  • Examples 11-12, 14 According to the method described in Example 1 of JP-A-4-372630, the bead material resin pellets shown in Table 1 were placed in a pressure-resistant container, and after replacing the gas in the container with dry air, carbon dioxide was added as a blowing agent. (gas) was injected, and the bead material resin pellets were impregnated with carbon dioxide over a period of 3 hours under conditions of a pressure of 3.0 MPa and a temperature of 10°C. Subsequently, the bead raw material resin pellets were put into a mesh basket, heated with hot air under the conditions shown in Table 4 while stirring, and foamed and annealed to obtain foamed beads.
  • gas gas
  • the expanded beads were placed in a container, and pressurized air was introduced (the pressure was increased to 0.4 MPa over 4 hours, and then maintained at 0.4 MPa for 16 hours) to perform a pressure treatment.
  • This is filled into an in-mold mold with steam holes (cracking rate 0%), heated with steam to expand and fuse the foamed beads to each other, cooled, and taken out from the mold.
  • a foamed molded article made of foamed beads was obtained. Table 1 shows the measurement and evaluation results of each physical property.
  • Example 13 A foamed molded body was obtained in the same manner as in Example 1, except that the bead raw material was changed as shown in Table 1, and the pressure program of pressurized steam for producing foamed beads from the bead raw material was set as shown in Table 2.
  • Table 1 shows the measurement and evaluation results of each physical property.
  • the increase in bulk ratio per second was 0.1 cm 3 /g or more and 100 cm 3 /g or less, but the bulk ratio decreased in the bead annealing process.
  • Resin pellet E was made to contain carbon dioxide gas as a blowing agent in the bead raw material resin pellet according to the method described in Examples of JP-A-2011-105879. Then, foamed beads were obtained by heating and foaming the bead raw material resin pellets containing carbon dioxide gas. This is filled into an in-mold mold with steam holes (cracking rate 0%), heated with steam to expand and fuse the foamed beads to each other, cooled, and taken out from the mold. A foamed molded article made of foamed beads was obtained. Table 1 shows the measurement and evaluation results of each physical property. In addition, in the bead foaming process shown in Table 4, the increase in bulk ratio per second was 0.1 cm 3 /g or more and 100 cm 3 /g or less, but the bulk ratio decreased in the bead annealing process.
  • Example 4 To 100 parts by weight of the same bead material resin pellets as in Example 1, 10 parts by weight of n-pentane (boiling point 36.1°C) was added as a blowing agent, and the mixture was heated and kneaded in an extruder to obtain unfoamed particles. The resin particles were heated with pressurized steam in a foaming furnace while rotating a stirring blade at 77 rpm, and foamed to obtain foamed beads. The foaming temperature at this time was 155°C. Thereafter, pressure treatment and molding were attempted in the same manner as in Example 1 without bead annealing, but a foamed molded product could not be obtained due to insufficient fusion of the beads. Table 1 shows the measurement and evaluation results of each physical property.
  • the foamed molded article obtained from the foamed beads produced by the production method of the present embodiment can be suitably used for automobile peripheral parts, electronic device peripheral parts, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明の目的は、発泡ビーズから発泡成形体へ膨張する際の膨張能に優れ、長期高温処理後の寸法変化が小さい発泡成形体を製造することができる、発泡ビーズを効率よく製造する方法を提供することにある。本発明の発泡ビーズの製造方法は、樹脂を含むビーズ原料を発泡させるビーズ発泡工程と、前記ビーズ発泡工程後に、前記ビーズ原料の(ガラス転移温度-30)℃以上(ガラス転移温度+30)℃以下の温度で熱処理するビーズアニール工程と、を含む、ことを特徴としている。

Description

発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体
 本発明は、発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体に関する。
 樹脂の発泡体を製造する技術として、ビーズ発泡法等が知られている。ビーズ発泡法は、発泡性を有する樹脂粒子を発泡させて発泡ビーズとした後に、該発泡ビーズを発泡させて発泡ビーズ同士を融着させ、発泡成形体を得るものである。ビーズ発泡法は、製品形状を自由に設定しやすく、高発泡倍率の発泡成形体を得やすい等の利点があり、自動車周辺部材や電子機器周辺部材等の分野において、広く産業界に普及している。
 ビーズ発泡法に用いられる発泡ビーズの製造方法として、特許文献1、2に記載の方法等が知られている。
特開2020-164676号公報 特開2006-265305号公報
 近年、自動車周辺部材や電子機器周辺部材等の分野において、高出力化、大容量化、大型化に伴い、長期高温熱処理しても寸法が変化しにくい樹脂発泡体の需要が高まっている。また、部品の薄肉化、複雑形状化に伴い、樹脂発泡体には、寸法精度や薄肉成形性等の加工性の要求も高まっている。
 本発明者らが検討を進めたところ、樹脂発泡体の中でも優れた賦形性・加工性を有するビーズ発泡体(発泡成形体)においては、成形プロセスで発生する成形品の残留応力が原因で、寸法変化が大きくなりやすい(収縮しやすい)という課題があった。
 特許文献1には、結晶性を有しながらも発泡性が良好な発泡ビーズの製造方法として、発泡ビーズの原料組成物中に含まれる樹脂の結晶性を制御する方法が記載されている。特許文献2には、押出発泡体を熱処理して、押出発泡時の残留応力を取り除き、高温下で使用しても寸法変化が小さい発泡体が製造できることが記載されている。
 しかしながら、特許文献1、2等に記載の発泡体の原料や製造後の発泡体を調整する従来の方法では、樹脂成形体中に発生した残留応力を十分に除去することができないため、長期高温処理後の寸法安定性が十分ではなかった。また、従来の方法では発泡ビーズに発生した残留応力を除去できないことから、発泡ビーズの膨張能が劣り、成形性が十分とはいえなかった。
 従って、本発明の目的は、発泡ビーズから発泡成形体へ膨張する際の膨張能に優れ、長期高温処理後の寸法変化が小さい発泡成形体を製造することができる、発泡ビーズを効率よく製造する方法を提供することにある。
 すなわち、本発明は以下の通りである。
[1]
 樹脂を含むビーズ原料を発泡させるビーズ発泡工程と、
 前記ビーズ発泡工程後に、前記ビーズ原料の(ガラス転移温度-30)℃以上(ガラス転移温度+30)℃以下の温度で熱処理するビーズアニール工程と、を含む、
ことを特徴とする発泡ビーズの製造方法。
[2]
 樹脂を含むビーズ原料を発泡させるビーズ発泡工程と、前記ビーズ発泡工程後に前記ビーズ原料の(軟化点温度-30)℃以上(軟化点温度+30)℃以下の温度で熱処理するビーズアニール工程と、を含む、
ことを特徴とする発泡ビーズの製造方法。
[3]
 前記樹脂が非晶性樹脂である、[1]または[2]に記載の発泡ビーズの製造方法。
[4]
 前記樹脂が結晶性樹脂である、[2]に記載の発泡ビーズの製造方法。
[5]
 前記ビーズアニール工程において、蒸気を用いて前記熱処理をする、[1]~[4]のいずれかに記載の発泡ビーズの製造方法。
[6]
 前記ビーズアニール工程において、熱風を用いて前記熱処理をする、[1]~[4]いずれかに記載の発泡ビーズの製造方法。
[7]
 前記ビーズ発泡工程と前記ビーズアニール工程とを同一機器内で行う、[1]~[6]のいずれかに記載の発泡ビーズの製造方法。
[8]
 前記熱処理の時間が10秒以上600秒以下である、[1]~[7]に記載の発泡ビーズの製造方法。
[9]
 非晶性樹脂を含むビーズ原料を発泡させた発泡ビーズであって、前記ビーズ原料の(ガラス転移温度+10)℃で5分間加熱した際の加熱収縮率が25%以下である、
ことを特徴とする非晶性樹脂発泡ビーズ。
[10]
 結晶性樹脂を含むビーズ原料を発泡させた発泡ビーズであって、前記ビーズ原料の(軟化点温度-10)℃で5分間加熱した際の加熱収縮率が25%以下である、
ことを特徴とする結晶性樹脂発泡ビーズ。
[11]
 膨張能が2.3以上である、[9]に記載の非晶性樹脂発泡ビーズ。
[12]
 膨張能が2.3以上である、[10]に記載の結晶性樹脂発泡ビーズ
[13]
 [9]又は[11]に記載の非晶性樹脂発泡ビーズを成形してなる、
ことを特徴とする発泡成形体。
[14]
 [10]又は[12]に記載の結晶性樹脂発泡ビーズを成形してなる、
ことを特徴とする発泡成形体。
 本発明の発泡ビーズの製造方法では、発泡ビーズから発泡成形体へ膨張する際の膨張能に優れると共に、長期高温処理後の寸法変化が小さい発泡成形体を効率良く製造することができる、発泡ビーズを効率よく製造することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
〔発泡ビーズの製造方法〕
 本実施形態の発泡ビーズの製造方法は、樹脂を含むビーズ原料を発泡させるビーズ発泡工程と、上記ビーズ発泡工程後に、所定の温度で熱処理するビーズアニール工程と、を含む。
 本実施形態の発泡ビーズの製造方法は、樹脂を含むビーズ原料を発泡させるビーズ発泡工程と、上記ビーズ発泡工程後に、上記ビーズ原料の(ガラス転移温度-30)℃以上(ガラス転移温度+30)℃以下の温度で熱処理するビーズアニール工程と、を含む製造方法(本明細書において、「発泡ビーズの製造方法A」と称する場合がある)、又は、樹脂を含むビーズ原料を発泡させるビーズ発泡工程と、上記ビーズ発泡工程後に、上記ビーズ原料の(軟化点温度-30)℃以上(軟化点温度+30)℃以下の温度で熱処理するビーズアニール工程と、を含む、製造方法(本明細書において、「発泡ビーズの製造方法B」と称する場合がある)、であることが好ましい。
 本実施形態の発泡ビーズの製造方法は、上記ビーズ発泡工程とビーズアニール工程のみからなる方法であってもよいし、さらに他の工程を含む方法であってもよい。
 本明細書において、ビーズ発泡工程後に得られる、ビーズアニール工程前の発泡粒子を「プレ発泡ビーズ」と称する場合がある。また、ビーズアニール工程を経てプレ発泡ビーズから「発泡ビーズ」を製造することができる。
[ビーズ発泡工程]
 上記ビーズ発泡工程は、上記ビーズ原料に発泡剤を含浸させて発泡させてプレ発泡ビーズを得る工程である。
<ビーズ原料>
 上記ビーズ原料は、樹脂を含み、さらに他の成分を含んでいてもよい。
(樹脂)
 上記樹脂としては、結晶性樹脂であってもよいし、非晶性樹脂であってもよいし、これらの混合物であってもよい。また、上記樹脂は、一種を単独で用いてもよいし、複数種の混合物であってもよい。発泡ビーズの製造方法Aにおいて上記樹脂は非晶性樹脂であることが好ましく、発泡ビーズの製造方法Bにおいて、上記樹脂は非晶性樹脂及び/又は結晶性樹脂であることが好ましく、結晶性樹脂であることがより好ましい。
 上記非晶性樹脂は、一般的に長期高温処理した際の寸法変化が大きく、本実施形態の製造方法により得られる発泡ビーズを用いると特に優れた効果が得られるため、上記樹脂は非晶性樹脂を主成分とすることが好ましく、より好ましくは上記ビーズ原料中に含まれる上記樹脂の合計質量100%に対する非晶性樹脂の質量割合が50質量%以上、さらに好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上であり、上記樹脂が非晶性樹脂のみからなることが特に好ましい。
 また、上記ビーズ原料中に含まれる上記樹脂の合計質量100%に対する結晶性樹脂の質量割合が50質量%以上であってもよいし、70質量%以上であってもよいし、80質量%以上であってもよいし、90質量%以上であってもよいし、95質量%以上であってもよいし、上記樹脂が結晶性樹脂のみであってもよい。
-非晶性樹脂-
 上記非晶性樹脂としては、非晶性を有する樹脂であれば特に限定されず、例えば、ポリフェニレンエーテル(PPE)樹脂、ポリフェニレンエーテル樹脂/ポリスチレン樹脂アロイ、ポリフェニレンエーテル樹脂/ハイインパクト-ポリスチレン樹脂アロイ、ポリフェニレンエーテル樹脂/ポリスチレン樹脂/ハイインパクト-ポリスチレン樹脂アロイ、ポリフェニレンエーテル樹脂/ポリプロピレン樹脂アロイ等のポリフェニレンエーテル(PPE)系樹脂;ポリスチレン樹脂、ゴム補強のポリスチレン樹脂(ハイインパクト-ポリスチレン樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等のポリスチレン系樹脂;ポリカーボネート樹脂、ポリカーボネート樹脂/ABS樹脂アロイ、ポリカーボネート樹脂/ポリブチレンテレフタレート樹脂アロイ等のポリカーボネート系樹脂;ポリ塩化ビニル;ポリメチルメタクリレート;ポリエーテルスルホン、ポリエーテルイミド;ポリアミドイミド;等が挙げられる。
 中でも、発泡成形体の長期高温処理後の寸法変化を一層小さくすることができ、発泡ビーズの膨張能が一層高まる観点から、ポリフェニレンエーテル系樹脂又はポリスチレン系樹脂であることが好ましく、ポリフェニレンエーテル樹脂/ポリスチレン樹脂/ハイインパクト-ポリスチレン樹脂アロイ、変性ポリフェニレンエーテル樹脂及びポリスチレン樹脂であることがより好ましい。これらの樹脂の長期高温処後の寸法変化が小さくなることで、樹脂発泡体が車載用途や情報通信用途へ適用可能となる。
--ポリフェニレンエーテル系樹脂--
 ポリフェニレンエーテル系樹脂としては、例えば、上述のように、ポリフェニレンエーテル樹脂、ポリフェニレンエーテル樹脂/ポリスチレン樹脂アロイ、ポリフェニレンエーテル樹脂/ハイインパクト-ポリスチレン樹脂アロイ、又はポリフェニレンエーテル樹脂/ポリスチレン樹脂/ハイインパクト-ポリスチレン樹脂アロイ等が挙げられる。
 これらは一種単独で用いても、二種以上を組み合わせて用いてもよい。
 ポリフェニレンエーテル系樹脂のポリフェニレンエーテル樹脂は、下記式(I)で表される繰り返し単位(構造ユニット)を含む重合体をいい、例えば、下記式(I)で表される繰り返し単位のみからなる単独重合体、下記一般式(I)で表される繰り返し単位を含む共重合体等が挙げられる。上記共重合体とは、下記式(I)で表される繰り返し単位を主たる繰返し単位とする共重合体(例えば、共重合体100質量%に対して、下記式(I)で表される繰り返し単位の質量割合が50質量%超(好ましくは70質量%以上)である共重合体)である。上記ポリフェニレンエーテルは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。上記ポリフェニレンエーテル中に含まれる下記式(I)で表される繰り返し単位は、1種であってもよいし複数種であってもよい。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、アルコキシ基、フェニル基、又はハロゲン原子と一般式(I)中のベンゼン環との間に少なくとも2個の炭素原子を有するハロアルキル基若しくはハロアルコキシ基で第3α-炭素原子を含まないもの、を示す。また、一般式(I)中、nは、重合度を表す整数である。上記アルキル基、アルコキシ基中の炭素数としては、1~7個であってよい。
 ポリフェニレンエーテル樹脂の具体例としては、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジプロピル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジブチル-1,4-フェニレン)エーテル、ポリ(2,6-ジラウリル-1,4-フェニレン)エーテル、ポリ(2,6-ジフェニル-1,4-ジフェニレン)エーテル、ポリ(2,6-ジメトキシ-1,4-フェニレン)エーテル、ポリ(2,6-ジエトキシ-1,4-フェニレン)エーテル、ポリ(2-メトキシ-6-エトキシ-1,4-フェニレン)エーテル、ポリ(2-エチル-6-ステアリルオキシ-1,4-フェニレン)エーテル、ポリ(2,6-ジクロロ-1,4-フェニレン)エーテル、ポリ(2-メチル-6-フェニル-1,4-フェニレン)エーテル、ポリ(2,6-ジベンジル-1,4-フェニレン)エーテル、ポリ(2-エトキシ-1,4-フェニレン)エーテル、ポリ(2-クロロ-1,4-フェニレン)エーテル、ポリ(2,6-ジブロモ-1,4-フェニレン)エーテル等が挙げられるが、これらに限定されるものではない。この中でも特に、一般式(I)においてR及びRが炭素数1~4のアルキル基であり、R及びRが水素又は炭素数1~4のアルキル基であるものが好ましい。
 上記ポリフェニレンエーテル樹脂は、特に限定されるものではなく、公知の方法により製造することができ、例えば、米国特許第3306874号明細書に記載のHayによる第一銅塩とアミンのコンプレックスを触媒として用い、例えば、2,6-キシレノールを酸化重合することにより容易に製造できる。その他にも米国特許第3306875号明細書、米国特許第3257357号明細書、米国特許第3257358号明細書、特公昭52-17880号公報、特開昭50-51197号公報、及び特開昭63-152628号公報等に記載された方法が挙げられる。
 上記ポリフェニレンエーテル系樹脂として、ポリフェニレンエーテル樹脂を構成する構成単位の一部又は全部が不飽和若しくは飽和カルボン酸又はその誘導体で変性された変性ポリフェニレンエーテル樹脂を用いることができる。
 上記変性ポリフェニレンエーテル樹脂としては、特開平2-276823号公報(米国特許第5159027号明細書、米国再発行特許発明第35695号明細書)、特開昭63-108059号公報(米国特許第5214109号明細書、第5216089号明細書)、特開昭59-59724号公報等に記載されているものが挙げられる。
 変性ポリフェニレンエーテル樹脂は、例えば、ラジカル開始剤の存在下又は非存在下において、ポリフェニレンエーテル樹脂に不飽和若しくは飽和カルボン酸又はその誘導体を溶融混練して反応させることによって製造される。あるいは、ポリフェニレンエーテル樹脂と、不飽和若しくは飽和カルボン酸又はその誘導体とをラジカル開始剤存在下又は非存在下で有機溶剤に溶かし、溶液下で反応させることによって製造される。
 不飽和カルボン酸又はその誘導体としては、例えば、マレイン酸、フマル酸、イタコン酸、ハロゲン化マレイン酸、シス-4-シクロヘキセン1,2-ジカルボン酸、エンド-シス-ビシクロ(2,2,1)-5-ヘプテン-2,3-ジカルボン酸等や、これらジカルボン酸の酸無水物、エステル、アミド、イミド等、さらにはアクリル酸、メタクリル酸等や、これらモノカルボン酸のエステル、アミド等が挙げられる。
 また、飽和カルボン酸又はその誘導体としては、例えば、変性ポリフェニレンエーテル樹脂を製造する際の反応温度でそれ自身が熱分解し、変性ポリフェニレンエーテル樹脂の誘導体となり得る化合物が挙げられる。具体的には、リンゴ酸、クエン酸等が挙げられる。
 ポリフェニレンエーテル系樹脂は、ポリマーアロイである場合、発泡成形加工性の観点から、ポリマーアロイ100質量%において、ポリフェニレンエーテル樹脂の含有量が40~99質量%であることが好ましく、より好ましくは50~95質量%、さらに好ましくは70~90質量%である。
 ポリフェニレンエーテル系樹脂に用いることができるポリスチレン系樹脂としては、スチレン系化合物の単独重合体、2種以上のスチレン系化合物の共重合体、スチレン系化合物の重合体よりなるマトリックス中にゴム状重合体が粒子状に分散してなるゴム変性スチレン樹脂(ハイインパクト-ポリスチレン樹脂)等が挙げられる。これら重合体をもたらすスチレン系化合物としては、例えばスチレン、o-メチルスチレン、p-メチルスチレン、m-メチルスチレン、α-メチルスチレン、エチルスチレン、α-メチル-p-メチルスチレン、2,4-ジメチルスチレン、モノクロルスチレン、p-tert-ブチルスチレン等が挙げられる。
 ポリフェニレンエーテル系樹脂として上述のようなポリマーアロイを用いる場合、ポリフェニレンエーテル樹脂に含有させるポリスチレン系樹脂は、2種以上のスチレン系化合物を併用して得られる共重合体やハイインパクト-ポリスチレン樹脂でもよいが、中でもスチレンを単独で用いて重合して得られるポリスチレン樹脂が好ましい。ポリフェニレンエーテル系樹脂には、アタクチックポリスチレン、シンジオタクチックポリスチレン等の立体規則構造を有するポリスチレン樹脂が有効に利用できる。
 ポリフェニレンエーテル系樹脂の重量平均分子量(Mw)としては、20000~60000であることが好ましい。
 なお、重量平均分子量(Mw)は、樹脂についてゲルパーミュエーションクロマトグラフィー(GPC)による測定を行い、クロマトグラムのピークの分子量を、市販の標準ポリスチレンについての測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して求めた重量平均分子量をいう。
 上記ビーズ原料100質量%に対するポリフェニレンエーテル系樹脂の質量割合は、60~100質量%であることが好ましく、より好ましくは70~99質量%であり、さらに好ましくは80~95質量%である。ポリフェニレンエーテル系樹脂の質量割合が上記範囲であると、長期高温処理後の寸法変化が小さい発泡成形体が得られる発泡ビーズが得られやすい。
--ポリスチレン系樹脂--
 ポリスチレン系樹脂とは、スチレン及びスチレン誘導体の単独重合体、スチレン及びスチレン誘導体を主成分(ポリスチレン系樹脂中に50質量%以上含まれる成分)とする共重合体をいう。
 スチレン誘導体としては、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン、α-メチルスチレン、β-メチルスチレン、ジフェニルエチレン、クロロスチレン、ブロモスチレン等が挙げられる。
 単独重合体のポリスチレン系樹脂としては、例えば、ポリスチレン、ポリα-メチルスチレン、ポリクロロスチレン等が挙げられる。
 共重合体のポリスチレン系樹脂としては、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、スチレン-マレイミド共重合体、スチレン-N-フェニルマレイミド共重合体、スチレン-N-アルキルマレイミド共重合体、スチレン-N-アルキル置換フェニルマレイミド共重合体、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メチルアクリレート共重合体、スチレン-メチルメタクリレート共重合体、スチレン-n-アルキルアクリレート共重合体、スチレン-n-アルキルメタクリレート共重合体、エチルビニルベンゼン-ジビニルベンゼン共重合体等の二元共重合体;ABS、ブタジエン-アクリロニトリル-α-メチルベンゼン共重合体等の三元共重合体;スチレングラフトポリエチレン、スチレングラフトエチレン-酢酸ビニル共重合体、(スチレン-アクリル酸)グラフトポリエチレン、スチレングラフトポリアミド等のグラフト共重合体;等が挙げられる。
 これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
 ポリスチレン系樹脂は、従来公知のいかなる製造方法によって製造されたものでもよい。
--ポリカーボネート系樹脂--
 ポリカーボネート系樹脂としては、例えば、ポリカーボネート樹脂、ポリカーボネート樹脂/ABS樹脂アロイ、ポリカーボネート樹脂/ポリブチレンテレフタレート樹脂アロイ等が挙げられる。
 これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
 ポリカーボネート樹脂は、ビスフェノールAを用いて重合された、ビスフェノールA型ポリカーボネートや、他の二価フェノール系化合物を用いて重合された、高耐熱性又は低吸水率の各種のポリカーボネートであってもよい。
 上記他の二価フェノール系化合物としては、例えば、ハイドロキノン、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エーテルや、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン等のハロゲン化ビスフェノール等が挙げられる。
 また、ポリカーボネート系樹脂は、線状ポリカーボネートの他に、3官能フェノール類を重合させた分岐ポリーボネートであってもよく、更に脂肪族ジカルボン酸、芳香族ジカルボン酸、又は二価の脂肪族もしくは脂環族アルコールを共重合させた共重合ポリカーボネートであってもよい。
 ポリカーボネート系樹脂は、従来公知のいかなる製造方法によって製造されたものでもよい。
 上記ビーズ原料は、芳香族を有する単量体単位を含む樹脂を樹脂として含むことが好ましい。芳香族を有する単量体単位を含む樹脂を含むと、良好な難燃性を有する発泡成形体が得られる傾向にある。
 芳香族を有する単量体単位を含む上記樹脂としては、例えば、芳香族ポリアミド樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート樹脂、ポリイミド樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂等が挙げられる。
 上記樹脂中の芳香族を有する単量体単位の質量割合は、燃焼時に樹脂が炭化しやすいため樹脂への着火・着炎を抑えやすく、また、可燃性ガスの発生を抑制することで、不燃性が一層向上しやすくなる観点から、樹脂100質量%に対して、20質量%以上であることが好ましく、より好ましくは25~100質量%、さらに好ましくは30~100質量%であり、さらにより好ましくは50~100質量%である。
 上記芳香族を有する単量体単位の質量割合は、分子構造が分かる場合には構成単位に含まれる分子構造から算出できる。複数の樹脂が含まれる場合であっても、それぞれの樹脂や添加剤に対して同様の計算を行い、混合する質量割合に応じて平均化することで樹脂全体における芳香族を有する単量体単位の質量割合を算出可能である。また、構造が不明な場合には、NMRやIR等を用いて芳香族を有する単量体単位を推定し、算出することが可能である。
 また、本実施形態の発泡ビーズから得られる発泡成形体は、電子機器に用いられることがあるが、例えば電波を送受信する装置に用いられる場合、比誘電率や誘電正接を小さくすることが求められる場合がある。この場合、比誘電率及び誘電正接を下げる方法として、ビーズ原料中の発泡前の樹脂として、密度が低いもの、極性が低いもの、分子鎖末端極性基が少ないもの等を樹脂として選定することが挙げられる。この観点から特に好適な樹脂としては、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリイミド系樹脂、フッ素系樹脂、液晶ポリマー、ポリフェニレンサルファイド系樹脂等が挙げられる。中でも、加工性、コスト、難燃性の観点も考慮すると、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂が好ましい。
 また、発泡ビーズや発泡成形体を製造する際の吸水を避けるために、上記ビーズ原料の吸水性を下げる方法としては、ビーズ原料中の樹脂として、樹脂中の構成単位の極性を下げること、分子鎖末端極性基を低減すること等が挙げられる。この観点から好適な樹脂としては、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリイミド系樹脂、フッ素系樹脂、液晶ポリマー、ポリフェニレンサルファイド系樹脂等が挙げられる。中でも、加工性、コスト、難燃性の観点も考慮すると、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂が好ましい。
-結晶性樹脂-
 上記結晶性樹脂としては、結晶性を有する樹脂であれば特に限定されず、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニリデン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマー、ポリテトラフルオロエチレン樹脂、等が挙げられる。中でも、耐熱性、難燃性、成形性の観点から、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂が好ましい。
--ポリアミド系樹脂--
 ポリアミド樹脂としては、特に限定されず、公知のポリアミド樹脂を用いることができる。ポリアミド樹脂としては、例えば、ポリアミド単独重合体、ポリアミド共重合体などが挙げられる。
 ポリアミド単独重合体としては、例えば、ジアミンとジカルボン酸との重縮合により得られる、ナイロン66、ナイロン610、ナイロン612、ナイロン46、ナイロン1212等;ラクタムの開環重合により得られるナイロン6、ナイロン12等が挙げられる。
 ポリアミド共重合体としては、例えば、ナイロン6/66、ナイロン66/6、ナイロン66/610、ナイロン66/612等が挙げられる。
 ポリアミド樹脂としては、脂肪族ポリアミドが好ましく、ナイロン6、ナイロン66、ナイロン6/66、ナイロン66/6等がより好ましい。
 上記樹脂のガラス転移温度は、長期高温処理下の寸法変化を小さくする観点から、80~250℃であることが好ましく、より好ましくは100~230℃、さらに好ましくは120~220℃である。
 ビーズ原料のガラス転移温度は、長期高温処理下の寸法変化を小さくする観点から、80~180℃であることが好ましく、より好ましくは100~170℃、さらに好ましくは120~160℃である。
 ビーズ原料とした際に複数のガラス転移温度が観測される場合は、最も高いガラス転移温度を、ビーズ原料のガラス転移温度とする。
 上記ガラス転移温度は、後述の実施例に記載の方法で測定できる。
 上記樹脂の軟化点温度は、長期高温処理下の寸法変化を小さくする観点から、80~250℃であることが好ましく、より好ましくは100~230℃、さらに好ましくは120~220℃である。
 ビーズ原料の軟化点温度は、長期高温処理下の寸法変化を小さくする観点から、80~180℃であることが好ましく、より好ましくは100~170℃、さらに好ましくは120~160℃である。
 軟化点温度Tmは、JIS K7121に準拠し、示差走査熱量測定(DSC)にて測定して得られた融解ピーク温度とする。融解ピークが複数表れた場合は、最も高温側に出たピークの温度をTmとする。また、非晶性樹脂を含む場合等、DSCにおいて明確な融解ピークが得られない場合(すなわち融解エンタルピー変化が1J/g以上のピークが確認できない場合)は、動的粘弾性測定においてガラス転移時に観測される損失正接tanδが極大となる温度をTmとする。動的粘弾性測定においてガラス転移時に観測される損失正接tanδが極大となる温度が複数存在する場合は最も高温側の温度をTmとする。具体的には、後述の実施例に記載の方法により測定することができる。
 上記ビーズ原料100質量%中の上記樹脂の質量割合は、50~100質量%であることが好ましく、より好ましくは60~95質量%、さらに好ましくは70~92質量%、特に好ましくは80~90質量%である。
(他の成分)
 上記他の成分としては、難燃剤、難燃助剤、熱安定剤、酸化防止剤、帯電防止剤、無機充填剤、滴下防止剤、紫外線吸収剤、光吸収剤、可塑剤、離型剤、染顔料、ゴム成分、上記基材樹脂以外の樹脂等が挙げられ、本発明の効果を損なわない範囲で添加することができる。上記他の成分は、樹脂以外の成分であってよい。
 上記ビーズ原料中の上記他の成分の質量割合としては、上記樹脂を100質量部として、0~40質量部であることが好ましく、より好ましくは5~30質量部、さらに好ましくは10~20質量部である。
 上記ビーズ原料100質量%中の上記他の成分の質量割合は、0質量%超50質量%以下であることが好ましく、より好ましくは5~40質量%、さらに好ましくは8~30質量%、特に好ましくは10~20質量%である。
 上記難燃剤としては、有機系難燃剤、無機系難燃剤が挙げられる。
 有機系難燃剤としては、臭素化合物に代表されるハロゲン系化合物、リン系化合物、及びシリコーン系化合物に代表される非ハロゲン系化合物等が挙げられる。
 無機系難燃剤としては、水酸化アルミニウム、水酸化マグネシウムに代表される金属水酸化物、三酸化アンチモン、五酸化アンチモンに代表されるアンチモン系化合物等が挙げられる。
 これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
 上記難燃剤の中でも、環境負荷の観点から、有機系難燃剤の非ハロゲン系難燃剤が好ましく、リン系又はシリコーン系の難燃剤がより好ましい。
 リン系の難燃剤には、リン又はリン化合物を含むものを用いることができる。リンとしては赤リンが挙げられる。また、リン化合物として、リン酸エステル、リン原子と窒素原子の結合を主鎖に有するホスファゼン化合物、トリアルキルホスフィンオキシド、トリフェニルホスフィンオキシド、等が挙げられる。
 リン酸エステルとしては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリシクロヘキシルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、ジメチルエチルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、ヒドロキシフェニルジフェニルホスフェート、レゾルシノールビスジフェニルホスフェート等が挙げられ、また、これらを各種の置換基で変性したタイプのリン酸エステル化合物、各種の縮合タイプのリン酸エステル化合物、環状構造を有するリン酸エステル化合物も挙げられる。
 この中でも、耐熱性、難燃性、発泡性の観点から、ホスファゼン化合物、ビスフェノールAビスホスフェート等のトリフェニルホスフェート、及び縮合タイプのリン酸エステル化合物、環状構造を有するリン酸エステル化合物が好ましい。
 これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
 また、シリコーン系難燃剤としては、(モノ又はポリ)オルガノシロキサンが挙げられる。
 (モノ又はポリ)オルガノシロキサンとしては、例えば、ジメチルシロキサン、フェニルメチルシロキサン等のモノオルガノシロキサン;これらを重合して得られるポリジメチルシロキサン、ポリフェニルメチルシロキサン;これらの共重合体等のオルガノポリシロキサン等が挙げられる。
 オルガノポリシロキサンの場合、主鎖及び分岐した側鎖の結合基は、水素、アルキル基、フェニル基であり、好ましくはフェニル基、メチル基、エチル基、プロピル基であるが、これに限定されない。末端結合基は、水酸基、アルコキシ基、アルキル基、フェニル基であってよい。シリコーン類の形状にも特に制限はなく、オイル状、ガム状、ワニス状、粉体状、ペレット状等の任意のものが利用可能である。
 これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
 上記ビーズ原料100質量%中の上記難燃剤の質量割合は、1~30質量%であることが好ましく、より好ましくは5~25質量%、さらに好ましくは10~20質量%である。
また、上記樹脂100質量部に対する上記難燃剤の質量割合は、5~30質量部であることが好ましく、より好ましくは10~25質量部である。
 上記ゴム成分としては、例えば、ブタジエン、イソプレン、1,3-ペンタジエン等が挙げられるが、これに限定されるものではない。これらは、ポリスチレン系樹脂からなる連続相中に粒子状に分散しているものが好ましい。これらゴム成分を添加する方法として、ゴム成分そのものを加えてもよく、スチレン系エラストマーやスチレン-ブタジエン共重合体等の樹脂をゴム成分供給源として用いてもよい。
 ゴム成分を添加する場合、ゴム成分の含有量は、上記樹脂100質量部に対して、0.3~15質量部が好ましく、0.5~8質量部がより好ましく、1~5質量部が更に好ましい。0.3質量部以上であると、樹脂の柔軟性、伸びに優れ、発泡時に発泡セル膜が破膜しにくく、成形加工性や機械強度に優れる発泡体が得られやすい。
 上記発泡ビーズを成形して得られる発泡成形体の難燃性を向上させるためには、ビーズ原料に難燃剤をより多く添加する方が好ましいが、難燃剤の添加量が増えると発泡性に悪影響を与える。そのような場合において、ビーズ原料に発泡性を付与させるのにゴム成分は好適に用いられる。特に、常温から徐々に温度を上げ、非溶融状態で樹脂を発泡させるビーズ発泡において、上記ゴム成分は重要である。
 上記無機充填剤としては、例えば、ガラス繊維、チタン酸カリウム繊維、石膏繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミックス繊維、及びボロンウィスカ繊維等の繊維状無機フィラー;マイカ、タルク、カオリン、焼成カオリン、ガラスフレーク等の板状無機フィラー;酸化チタン、アパタイト、ガラスビーズ、シリカ、炭酸カルシウム、カーボンブラック等の粒状無機フィラー;ウォラストナイト、ゾノトライト等の針状無機フィラー;等が挙げられる。これらの中でも、好ましくは繊維状無機フィラー、板状無機フィラー、及び針状無機フィラーであり、より好ましくはガラス繊維、ガラスフレーク、マイカ、タルクである。
 上記無機充填剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記ビーズ原料100質量%中の上記無機充填剤の質量割合は、0.01~10質量%であることが好ましく、より好ましくは0.1~5質量%、さらに好ましくは0・5~3質量%である。
<発泡剤>
 上記発泡剤としては、一般的に用いられているガスを使用することができる。
 その例として、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等の無機ガス;トリクロロフルオロメタン(R11)、ジクロロジフルオロメタン(R12)、クロロジフルオロメタン(R22)、テトラクロロジフルオロエタン(R112)ジクロロフルオロエタン(R141b)クロロジフルオロエタン(R142b)、ジフルオロエタン(R152a)、HFC-245fa、HFC-236ea、HFC-245ca、HFC-225ca等のフルオロカーボン;プロパン、n-ブタン、i-ブタン、n-ペンタン、i-ペンタン、ネオペンタン等の飽和炭化水素;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2-メチルフラン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチルn-プロピルケトン、メチルn-ブチルケトン、メチルi-ブチルケトン、メチルn-アミルケトン、メチルn-ヘキシルケトン、エチルn-プロピルケトン、エチルn-ブチルケトン等のケトン類;メタノール、エタノール、プロピルアルコール、i-プロピルアルコール、ブチルアルコール、i-ブチルアルコール、t-ブチルアルコール等のアルコール類;蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステル等のカルボン酸エステル類;塩化メチル、塩化エチル等の塩素化炭化水素類;等が挙げられる。
 これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
 上記発泡剤としては、成形加工性及び優れた難燃性を維持する観点から、無機ガスが好ましい。また、無機ガスは炭化水素等の有機ガスに比べて樹脂に溶けにくく、ビーズ発泡工程又は発泡体成形工程の後に樹脂からガスが抜けやすいので、成形後の発泡体の経時での寸法安定性がより優れる利点もある。更に、無機ガスを用いた場合、残存ガスによる樹脂の可塑化も起こりにくく、成形後、より早い段階から優れた耐熱性を発現しやすいメリットもある。また、無機ガスは炭化水素等の有機ガスに比べて樹脂に溶けにくく、発泡時にペレット表面から散逸しやすいので、スキン層を形成しやすく破泡しにくくなることからも好ましい。無機ガスの中でも、樹脂への溶解性、取り扱いの容易さの観点から、炭酸ガスが好ましい。
 ビーズ発泡工程において、ビーズ原料に発泡剤を含有(含浸)させて、発泡させる方法(すなわち、プレ発泡ビーズを得る方法)としては、例えば、特開平4-372630号公報の実施例1に記載の方法に準じ、ビーズ原料(ペレット状、ビーズ状等)を耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤(ガス)を圧入してビーズ原料に発泡剤(ガス)を含浸させた後、圧力を開放して圧力容器から発泡炉にビーズ原料ペレットを移送し、ビーズ原料ペレットを発泡炉内で攪拌羽を回転させながら加圧水蒸気により加温して発泡させることにより、プレ発泡ビーズを製造する方法が挙げられる。
 ビーズ原料に発泡剤を含有させる方法としては、一般的に行われている方法が適用でき、例えば、水等の懸濁系を利用して水性媒体で行う方法(懸濁含浸)や、重炭素水素ナトリウム等の熱分解型発泡剤を用いる方法(発泡剤分解法)、ガスを臨界圧力以上の雰囲気にし、液相状態にしてビーズ原料に接触させる方法(液相含浸)、ガスを臨界圧力未満の高圧雰囲気下で、気相状態でビーズ原料に接触させる方法(気相含浸)等が挙げられる。
 この中でも特に、ガスを臨界圧力未満の高圧雰囲気下で気相含浸させる方法が好ましい。
 気相含浸させる方法は、高温条件下で実施される懸濁含浸に比べてガスの樹脂への溶解度がより良好で、発泡剤の含有量を高くしやすい。そのため、高発泡倍率を達成しやすく、気泡サイズも均一になりやすい。発泡剤分解法は高温条件下で実施されるだけでなく、加えた熱分解型発泡剤全てがガスになる訳ではないため、ガス発生量が相対的に少なくなりやすい。そのため、気相含浸の方がより発泡剤含有量を高くしやすい利点がある。また、気相含浸は、液相含浸と比べると、耐圧装置や冷却装置等の設備がよりコンパクトになりやすく、設備費が低く抑えやすくなる。
 気相含浸条件は、特には限定されないが、雰囲気圧力として0.5~6.0MPaが好ましく、1.0~5.0MPaがより好ましい。また、雰囲気温度は5~30℃が好ましく、7~15℃がより好ましい。また、含浸時間は、0.5~48時間が好ましく、1~24時間がより好ましい。雰囲気圧力、雰囲気温度、含浸時間が上記範囲であると、より効率的にビーズ原料へのガス溶解が進行しやすくなる。特に、雰囲気温度は低ければ含浸量が増えるが含浸速度は遅くなり、雰囲気温度が高ければ含浸量は減るが含浸速度は速くなる傾向であり、その兼ね合いから効率的にビーズ原料へのガス溶解を進行するために上記の雰囲気温度を設定するのが好ましい。
 発泡剤の含浸量としては、ビーズ原料に含まれる樹脂に対して3~13質量%あることが好ましく、より好ましくは3.5~10質量%である。
 発泡剤(例えば炭酸ガス)の含浸量が3質量%以上であると、より高い発泡倍率を達成しやすくなる上、気泡サイズのばらつきが少なくなり、発泡倍率のばらつきを抑えやすくなる。また、13質量%以下であると、気泡サイズが適度な大きさとなり、過発泡による独立気泡率の低下を抑制しやすくなる。
 ビーズ発泡工程におけるビーズ原料の発泡方法は特に限定されないが、例えば、高圧条件下から一気に低圧雰囲気下に開放し、樹脂内に溶解している発泡剤(例えばガス)を膨張させる方法や、圧力蒸気や熱風等により加熱し、樹脂内に溶解した発泡剤(例えばガス)を膨張させる方法、等が挙げられる。この中でも特に、加熱発泡させる方法が好ましい。これは、高圧条件下から一気に低圧雰囲気下に開放する方法に比べると、樹脂内部の気泡サイズが均一になりやすいからである。また、発泡倍率の制御、特に低発泡倍率の制御が行いやすい利点がある。
 さらに、高圧条件下から一気に低圧雰囲気下に開放した場合、全箇所から同時に発泡が始まる為、スキン層が形成されにくいという欠点がある。一方、加熱発泡では、樹脂が発泡開始温度まで加熱される間に、ビーズ原料の表層から発泡ガスが散逸する為、スキン層を形成しやすい。また、加熱速度や加熱温度を調整する事により、スキン層の厚みを調整できる利点があり、加熱速度が速いほど、また、加熱温度が高いほど、スキン層の厚みは薄くなる傾向にある。
 ビーズ発泡工程において、加熱発泡における熱源は、蒸気や熱風、ヒーター等、特に制限は無いが高い熱伝導率を活かして発泡時間の時短ができる観点から蒸気(好ましくは圧力蒸気)を用いた熱処理が好ましい。一般的に、発泡後のビーズ内部には残留応力が発生するため、発泡ビーズの加熱収縮率が高くなる傾向にあるが、本実施形態の方法によれば、ビーズアニール工程を設けるため、残留応力の小さい発泡ビーズを得ることができる。
 ビーズ発泡工程において、特に加熱収縮率に優れた発泡成形品を得る観点からは、熱風を用いて加熱発泡することが好ましい。
 ここでいう蒸気とは、大気圧以上に加圧・加熱された圧力水蒸気を指す。熱風とは50℃以上に加熱された相対湿度10%未満の乾燥空気を指す。
 ビーズ発泡工程における発泡温度は、ビーズ原料のガラス転移温度Tg-25℃以上であることが好ましく、ビーズ原料のガラス転移温度Tg-20℃以上であることがより好ましい。また、発泡温度は、ビーズ原料のガラス転移温度Tg+30℃以下であることが好ましく、ビーズ原料のガラス転移温度Tg+20℃以下であることがより好ましい。上記発泡温度で発泡することにより、ビーズ原料がより発泡、膨張しやすくなる。
 ビーズ発泡工程において、加熱発泡に蒸気を用いる場合、その圧力蒸気の温度としては、発泡ビーズ以上の倍率となるプレ発泡ビーズを効率よく得る観点から、(ビーズ原料のガラス転移温度Tg-30)℃~(ビーズ原料のガラス転移温度Tg+10)℃であることが好ましく、より好ましくは(ビーズ原料のガラス転移温度Tg-20)℃~(ビーズ原料のガラス転移温度Tg+5)℃、さらに好ましくは(ビーズ原料のガラス転移温度Tg-10)℃~ビーズ原料のガラス転移温度Tgである。
 ビーズ発泡工程における発泡温度は、ビーズ原料の軟化点温度Tm-25℃以上であることが好ましく、ビーズ原料の軟化点温度Tm-20℃以上であることがより好ましい。また、発泡温度は、ビーズ原料の軟化点温度Tm+30℃以下であることが好ましく、ビーズ原料の軟化点温度Tm+20℃以下であることがより好ましい。上記発泡温度で発泡することにより、ビーズ原料がより発泡、膨張しやすくなる。
 ビーズ発泡工程において、加熱発泡に蒸気を用いる場合、その圧力蒸気の温度としては、発泡ビーズ以上の倍率となるプレ発泡ビーズを効率よく得る観点から、(ビーズ原料の軟化点温度Tm-30)℃~(ビーズ原料の軟化点温度Tm+10)℃であることが好ましく、より好ましくは(ビーズ原料の軟化点温度Tm-20)℃~(ビーズ原料の軟化点温度Tm+5)℃、さらに好ましくは(ビーズ原料の軟化点温度Tm-10)℃~ビーズ原料の軟化点温度Tmである。
 なお、ビーズ原料のガラス転移温度及び軟化点温度は、後述の実施例に記載の方法で決定できる。
 上記発泡温度は、ビーズ発泡工程における最高温度としてよい。
 ビーズ発泡工程における発泡時間は、発泡させる温度にも依存するため特に制限は無いが、一般的には5秒~120秒であることが好ましく、より好ましくは10秒~60秒、さらに好ましくは15秒~45秒である。
 発泡ビーズを所望の発泡倍率まで発泡させる際、一段階で所望の発泡倍率まで発泡させてもよいし、二次発泡、三次発泡等の多段階で所望の発泡倍率まで発泡させてもよい。多段階で発泡させる場合、各段階後に後述のビーズアニール工程を設けることが好ましい。また、各段階での発泡前に予備ビーズ(最終段階の発泡を行っていないビーズ等をいう)に無機ガス等で加圧処理を行うことが好ましい。
 多段階発泡の場合、各段階後のビーズアニール工程の条件は同じであってもよいし異なっていてもよい。また、各段階前に用いるガスは、各段階で同じガスであってもよいし、異なるガスであってもよいが、同じガスであることが好ましい。また、各段階前の発泡の条件は、各段階で同じであってもよいし異なっていてもよい。
 本明細書において、ビーズ発泡工程とは、ビーズ原料の発泡が開始されたのち、嵩密度が漸増する工程を指し、嵩密度が変化しないあるいは漸減する状態へ移行する直前までの期間を含む。
 本発明において、ビーズ発泡工程とは1秒当たりの嵩倍率が0.1cm/g以上100cm/g以下の範囲で増加する工程のことである。
[ビーズアニール工程]
 上記ビーズ発泡工程で得られたプレ発泡ビーズを、ビーズアニール工程で熱処理して発泡ビーズを製造することができる。
 上記ビーズアニール工程は、ビーズ発泡工程に連続して設けてもよいし、ビーズ発泡工程後に時間を空けてもよい。
 上記ビーズアニール工程は、発泡が終わったプレ発泡ビーズを熱処理してプレ発泡ビーズ内部の残存応力を除くことを意図する工程であり、発泡させる工程や、意図的な熱処理を伴わずに放置する工程とは異なる工程である。
 ビーズや発泡成形体に加工する際、樹脂が引き延ばされて冷却固定化されるため、ビーズや発泡成形体には残留応力が残りやすい。そのため発泡成形体を軟化点付近まで加熱すると分子鎖が動き出し、自由エネルギーの小さい分子配列へ再配列しようとし、結果として成形品が収縮する。特に、非晶性樹脂は結晶性樹脂と比較して、残留応力が残りやすく、発泡成形体を加熱した際の寸法変化率がより大きくなるため、ビーズアニール工程により、残留応力の低減が期待でき好ましい。一方で、結晶化樹脂は結晶化する際に一部の残留応力が緩和し得るが、特に結晶性樹脂の結晶化度が低い程ビーズアニール工程の残留応力低減効果が期待でき好ましい。
 上記ビーズアニール工程は、ビーズ発泡工程とビーズアニール工程を含む工程から、ビーズ発泡工程に該当する部分を除いた工程を指す。
 上記ビーズアニール工程において、プレ発泡ビーズの1秒当たりの嵩倍率の変化率としては、優れた膨張能を得る観点から、-0.5~-0.001cm/gであることが好ましく、-0.2~-0.005cm/gであることがより好ましく、-0.08~-0.01cm/gであることがさらに好ましい。
 上記熱処理としては、例えば、蒸気(好ましくは圧力水蒸気、水蒸気)による加熱、熱風による加熱、ヒーターによる加熱等が挙げられる。中でも、熱伝導率が良く、短時間でアニールできる観点から、蒸気を用いて熱処理をすることが好ましい。一方で、特に加熱収縮率に優れた発泡成形品を得る観点からは、熱風を用いて熱処理することが好ましい。
 上記熱処理の温度としては、上記ビーズ原料のガラス転移温度-30℃以上ガラス転移温度+30℃以下であることが好ましく、長期高温処理後の寸法変化に優れ、膨張能に一層優れる観点から、より好ましくはガラス転移温度-25℃以上ガラス転移温度+25℃以下、さらに好ましくはガラス転移温度-20℃以上ガラス転移温度+20℃以下である。
 上記熱処理は、温度が一定であってもよいし、変化させてもよい。温度を変化させる場合、上記範囲内で温度を変化させることが好ましい。
 上記熱処理の温度としては、上記ビーズ原料の軟化点温度-30℃以上軟化点温度+30℃以下であることが好ましく、長期高温処理後の寸法変化に優れ、膨張能に一層優れる観点から、より好ましくは軟化点温度-25℃以上軟化点温度+25℃以下、さらに好ましくは軟化点温度-20℃以上軟化点温度+20℃以下である。上記熱処理は、温度が一定であってもよいし、変化させてもよい。温度を変化させる場合、上記範囲内で温度を変化させることが好ましい。
 特に、ビーズ原料に含まれる上記樹脂が非晶性樹脂の場合、上記熱処理の温度としては、上記ビーズ原料のガラス転移温度-30℃以上ガラス転移温度+30℃以下であることが好ましく、長期高温処理後の寸法変化に優れ、膨張能に一層優れる観点から、より好ましくはガラス転移温度-25℃以上ガラス転移温度+25℃以下、さらに好ましくはガラス転移温度-20℃以上ガラス転移温度+20℃以下である。上記熱処理は、温度が一定であってもよいし、変化させてもよい。温度を変化させる場合、上記範囲内で温度を変化させることが好ましい。
 上記熱処理の時間は、長期高温処理後の寸法変化に優れ、膨張能に一層優れる観点から、10秒~600秒であることが好ましく、より好ましくは20秒~300秒、さらに好ましくは30秒~120秒である。
 上記熱処理の時間が10秒未満であると、残留応力を除去する効果が十分に得られず、発泡ビーズの加熱収縮率が大きくなり、結果として得られる発泡成形体の寸法変化率が大きく、好ましくない。
 上記熱処理の時間が600秒超であると、発泡ビーズが著しく収縮し発泡倍率の極端な低下を招くため好ましくない。
 上記熱処理に用いる蒸気の温度としては、上記ビーズ原料のガラス転移温度-30℃以上ガラス転移温度+30℃以下であることが好ましく、より好ましくはガラス転移温度-25℃以上ガラス転移温度+10℃以下、さらに好ましくはガラス転移温度-20℃以上ガラス転移温度+5℃以下である。また、上記ビーズ原料の軟化点温度-30℃以上軟化点温度+30℃以下であることが好ましく、より好ましくは軟化点温度-25℃以上軟化点温度+10℃以下、さらに好ましくは軟化点温度-20℃以上軟化点温度+5℃以下である。
 上記熱処理に用いる熱風の温度としては、上記ビーズ原料のガラス転移温度-30℃以上ガラス転移温度+30℃以下であることが好ましく、より好ましくはガラス転移温度-20℃以上ガラス転移温度+20℃以下、さらに好ましくはガラス転移温度-10℃以上ガラス転移温度+10℃以下である。また、上記ビーズ原料の軟化点温度-30℃以上軟化点温度+30℃以下であることが好ましく、より好ましくは軟化点温度-20℃以上軟化点温度+20℃以下、さらに好ましくは軟化点温度-10℃以上軟化点温度+10℃以下である。
 上記蒸気の温度及び熱風の温度は、一定であってもよいし、変化させてもよい。温度を変化させる場合、上記範囲内で温度を変化させることが好ましい。
 上記ビーズアニール工程を圧力蒸気にて行う場合の熱処理の温度は、長期高温処理後の寸法変化に優れ、膨張能に一層優れる観点から、上記ビーズ発泡工程における発泡温度(例えば、ビーズ発泡工程における最高温度)より低いことが好ましく、2℃以上低いことがより好ましく、4℃以上低いことがさらに好ましい。ビーズアニール工程を圧力蒸気に行う場合の熱処理の温度は、常に一定温度に保つ方法、低温から高温に徐々に昇温させる方法、又はこれらの組み合わせることが好ましい。特にビーズアニール工程の途中で徐々に昇温する温度プログラムとすることで、工程の時短が期待できるため好ましい。
 上記ビーズアニール工程を熱風にて行う場合の熱処理の温度は、長期高温処理後の寸法変化に優れ、膨張能に一層優れる観点から、上記ビーズ発泡工程における発泡温度以下であることが好ましく、発泡温度より2℃以上低いことがより好ましく、4℃以上低いことがさらに好ましい。
 ビーズアニール工程における熱処理の温度がビーズ発泡工程における発泡温度よりも20℃以上低いと、アニールに時間が極端に必要となるため好ましくない。
 上記ビーズアニール工程における熱処理の温度は、上記ビーズ発泡工程終了時の発泡温度より低くてよい。また、上記ビーズアニール工程における熱処理の温度は、上記ビーズ発泡工程の最高発泡温度より低くてよい。
 ビーズ発泡工程で得られたプレ発泡ビーズの嵩倍率は、ビーズアニール工程後に低下していてよい。ビーズアニール工程前のプレ発泡ビーズの嵩倍率100%に対する、ビーズアニール工程後の発泡ビーズの嵩倍率の割合は、30~99%であることが好ましく、より好ましくは40~95%である。
 ビーズ発泡工程後の最終的な嵩倍率の下限としては、軽量化の観点から2cc/g以上であることが好ましく、3cc/g以上であることがより好ましく、5cc/g以上であることがさらに好ましい。ビーズ発泡工程後の最終的な嵩倍率の上限としては、成形品の強度を維持する観点から、30cc/g以下であることが好ましく、20cc/g以下であることがより好ましく、15cc/g以下であることがさらに好ましい。
 上記ビーズアニール工程中、発泡ビーズの嵩倍率は漸減してよい。ビーズアニール工程は、工程中にビーズの嵩倍率が同じ又は低下する(好ましくは低下する)工程であってよい。
 なお、プレ発泡ビーズ及び発泡ビーズの嵩密度は、後述の実施例に記載の方法で測定できる。
 本実施形態の発泡ビーズの製造方法では、ビーズアニール工程を経てプレ発泡ビーズの嵩倍率は低下する。そのため、ビーズアニール工程における嵩倍率の低下を考慮して、ビーズ発泡工程では、予定する発泡ビーズの嵩倍率よりも高い嵩倍率となるまで発泡することが好ましい。例えば、ビールアニール工程で低減する嵩倍率の割合を事前に測定し、ビーズ発泡工程後の予定嵩倍率を決定する工程を設けてもよい。
 本実施形態の発泡ビーズの製造方法において、上記ビーズ発泡工程と上記ビーズアニール工程とは、異なる機器で行ってもよいし、同一の機器内で行ってもよい。中でも、プレ発泡ビーズを機器外に出さずに連続してビーズアニールすることで、工程を簡便にできると共に、得られる発泡ビーズの嵩倍率を制御しやすくなる観点から、同一機器内で行うことが好ましい。
 なお、多段階発泡を行う場合、すべての段階の発泡工程及びアニール工程を同一機器内で行うことが好ましい。
 本実施形態の発泡ビーズの製造方法において、生産性を上げる観点から、複数の含浸槽を並列に接続することが好ましい。これにより含浸工程を効率良く実施することができる。また、本実施形態の発泡ビーズの製造方法において、生産性を上げる観点から、複数の発泡槽を並列に接続することが好ましい。これによりビ―ズ発泡工程とビーズアニール工程を同一機器内で行う場合、発泡槽の律速を解消し、ビーズアニール工程を効率よく実施することが可能となる。
[発泡体成形工程]
 上記発泡体成形工程は、ビーズアニール工程で得られた発泡ビーズから、発泡成形体を製造する工程である。例えば、ビーズアニール工程で得られた発泡ビーズを型内に充填し、水蒸気等で加熱して発泡ビーズを膨張させると同時に発泡ビーズ同士を熱融着させること等によって、発泡成形体を得ることができる。
 ビーズ発泡法は、所望の形状の型を作製し、そこに発泡ビーズを充填させて成形するため、発泡成形体をより微細な形状や複雑な形状に成形しやすい。また、ビーズ発泡法は、発泡成形体の発泡倍率を高めやすく、得られた発泡成形体は断熱性に加えて柔軟性を発現しやすい。
 ビーズアニール工程で得られた発泡ビーズは、連続して発泡体成形工程に用いてもよいし、間隔をあけて発泡体成形工程に用いてもよい。
 発泡ビーズの充填方法は、例えば、充填時に金型を多少開いた状態で充填するクラッキング法や、金型を閉じたままの状態で加圧して圧縮したビーズを充填する圧縮法、圧縮ビーズを充填後にクラッキングを行う圧縮クラッキング法等が挙げられる。
 発泡ビーズを充填する前に無機ガス雰囲気下で加圧処理を施す加圧工程を行うことが好ましい。加圧処理を施すことにより、発泡ビーズ内の気泡に一定のガス圧力を付与でき、より均一に発泡成形しやすくなるためである。
 加圧処理を実施する場合の圧力源は特には限定されないが、上記無機ガスを用いるのが好ましい。無機ガスの例として、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等が挙げられ、取り扱いの容易さと経済性の観点から、炭酸ガスや空気が好ましい。
 加圧処理の方法も特には限定されないが、加圧タンク内に発泡ビーズを充填し、該タンク内に無機ガスを供給して、最大圧力0.1~20MPaまで10分~96時間かけて昇圧することにより、加圧する方法等が挙げられる。
 本実施形態の製造方法で得られる発泡ビーズを使用すると、公知の型内成形方法により微細な形状や複雑な形状の発泡成形体を製造することが可能であり、使用できる用途の幅が広がることも特徴である。
 従来の発泡体成形工程は、金型内の隅や薄いキャビティ空間(薄い成形体空間)において発泡ビーズが十分に膨張しないため、金型を少し開けて発泡ビーズを多く充填して発泡体成形を行うクラッキング法が多く使用されてきた。本発明の製造方法で得られる発泡ビーズは膨張能が高いため、発泡ビーズの充填量が少なくてもビーズ間の隙間や金型内の隅を埋めることができ、金型を閉じて発泡体成形を行うことができる。
 クラッキング法は金型を少し開けた状態でビーズ充填するため、金型内への発泡ビーズ充填量が多く、得られる発泡成形体の単位体積当たりの重量が増加し、予定した発泡倍率と異なる場合があった。金型を閉じてビーズを充填する(クラッキング率がゼロ)ことにより、薄肉部やリブ、隅等の金型内への発泡ビーズ充填が困難な箇所でも間隙が生じない、形状に優れた発泡成形体を得ることができる。
 また、板状の単純な成形体においても、成形面積の大きい大ボードを成形する際、クラッキングによりビーズの充填量を増やすと、その分金型を閉める際にビーズを圧縮するのに大きな力が必要になる為、金型が閉まりきらず、厚み精度が悪くなる問題がある。本実施形態の製造方法で得られる発泡ビーズは膨張能に優れる為、金型内に充填する発泡ビーズ数が少なくてすむため、金型を完全に閉じた状態で成形でき、厚み精度も優れた発泡成形体を得ることができる。さらに、厚みが異なる箇所を有する発泡成形体においても、発泡倍率のばらつきが小さい発泡成形体が得られる利点も有する。また、発泡体の利点である軽量化と形状設計の自由度を両立する事ができる。
 本実施形態の製造方法で得られる発泡ビーズを成形する方法として、例えば、従来の発泡ビーズを型内成形する一対の成形型を用い、加圧大気圧下又は減圧下に発泡ビーズを成形型キャビティー内に充填し、型閉めして成形型キャビティー体積を0~70%減少するように圧縮し、次いで型内にスチーム等の熱媒を供給して加熱を行い、発泡ビーズを加熱融着させる減圧成形法(例えば、特公昭46-38359号公報)、発泡ビーズを加圧気体により予め加圧処理して発泡ビーズ内の圧力を高めることにより発泡ビーズの二次発泡性を高め、二次発泡性を維持しつつ大気圧下又は減圧下に発泡ビーズを成形型キャビティー内に充填して型閉めし、次いで型内にスチーム等の熱媒を供給して加熱を行い、発泡ビーズを加熱融着させる加圧成形法(例えば、特公昭51-22951号公報)等が挙げられる。
 また、圧縮ガスにより大気圧以上に加圧したキャビティー内に、当該圧力以上に加圧した発泡ビーズを充填した後、キャビティー内にスチーム等の熱媒を供給して加熱を行い、発泡ビーズを加熱融着させる圧縮充填成形法(特公平4-46217号公報)により成形することもできる。その他に、特殊な条件にて発泡ビーズの二次発泡力を高め、大気圧下又は減圧下の一対の成形型のキャビティー内に該発泡ビーズを充填した後、スチーム等の熱媒を供給して加熱を行い、発泡ビーズを加熱融着させる常圧充填成形法(特公平6-49795号公報)又は上記の方法を組み合わせた方法(特公平6-22919号公報)等によっても成形することができる。
 発泡体成形工程において、型内(発泡炉内)の加圧水蒸気の最大蒸気圧は、所望の倍率を得やすく外観を良化する観点から、30~700kPaであることが好ましい。
〔発泡ビーズ〕
 本実施形態の発泡ビーズは、上述の本実施形態の製造方法により製造することができる。上記発泡ビーズとしては、後述の非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズが挙げられる。
 上記発泡ビーズとしては、非晶性樹脂を含むビーズ原料を発泡させた発泡ビーズであることが好ましい。非晶性樹脂を含む上記ビーズ原料のガラス転移温度+10℃で5分間加熱した際の加熱収縮率が25%以下である非晶性樹脂発泡ビーズが好ましい。上記非晶性樹脂としては、上述のものがあげられ、上述と同様の非晶性樹脂が好ましい。上記ビーズ原料としては、上述のものがあげられ、上述と同様のものが好ましい。
 上記発泡ビーズとしては、結晶性樹脂を含むビーズ原料を発泡させた発泡ビーズであることが好ましい。上記発泡ビーズとしては、結晶性樹脂を含む上記ビーズ原料の軟化点温度-10℃で5分間加熱した際の加熱収縮率が25%以下である結晶性樹脂発泡ビーズが好ましい。上記非晶性樹脂としては、上述のものがあげられ、上述と同様の非晶性樹脂が好ましい。上記ビーズ原料としては、上述のものがあげられ、上述と同様のものが好ましい。
 上記発泡ビーズの加熱収縮率は、長期高温処理後の寸法安定性に優れる観点から、25%以下であることが好ましく、より好ましくは20%以下、さらに好ましくは18%以下である。上記加熱収縮率は、ビーズアニール工程の条件(例えば、加熱に用いる媒体の種類、加熱温度、加熱時間、圧力など)等により調整することができる。
 上記加熱収縮率は、後述の実施例に記載の方法で測定することができる。
 上記発泡ビーズ(例えば、非晶性樹脂発泡ビーズ又は結晶性樹脂発泡ビーズ)の膨張能は、成形加工性に優れる観点から、2.3以上であることが好ましく、より好ましくは2.5~10.0、さらに好ましくは3.0~5.0である。
 上記膨張能は、ビーズアニール工程の条件(例えば、加熱に用いる媒体の種類、加熱温度、加熱時間、圧力など)等により調整することができる。
 上記膨張能は、後述の実施例に記載の方法で測定することができる。
〔発泡成形体〕
 本実施形態の発泡成形体は、上述の本実施形態の発泡ビーズを発泡成形して得ることができる。
 上記発泡成形体は、「非晶性樹脂を含むビーズ原料のガラス転移温度+10」℃で5分間加熱した際の加熱収縮率が25%以下である非晶性樹脂発泡ビーズを成形してなる発泡成形体、又は「結晶性樹脂を含むビーズ原料の軟化点温度-10」℃で5分間加熱した際の加熱収縮率が25%以下である結晶性樹脂発泡ビーズを成形してなる発泡成形体であることが好ましい。
 上記発泡成形体は、例えば、自動車周辺部材、電子機器周辺部材等に好適に用いることができる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例、比較例で用いた測定・評価方法について以下に説明する。
(ビーズ原料のガラス転移温度)
 ビーズ原料について、レオメーター(アントンパール社製「Physica MCR301」)を用いて下記条件にて動的粘弾性測定を行い、損失正接(tanδ)のピーク温度(℃)をビーズ原料のガラス転移温度(Tg)とした。
   測定治具    :SRF10
   測定モード   :振動φ、γ
   ひずみ     :振り角γ=0.015%
   周波数     :1Hz
   測定温度    :20℃~200℃
   昇温速度    :2℃/分
   ノーマルフォース:-0.3N
   測定点     :180
   時間単位    :s
(ビーズ原料の軟化点温度)
 ビーズ原料について、示差走査熱量測定装置(パーキンエルマー社製「DSC8500」)を用いて下記条件にて融解ピーク温度(℃)を測定し、軟化点温度とした。
   サンプル量  :10mg
   パン     :アルミニウムクリンプパン
   雰囲気    :窒素
   測定温度   :50℃~220℃
   昇降温速度  :10℃/分
   測定サイクル :2サイクル
 上記測定における、2nd runの昇温過程にて1J/g以上の融解エンタルピー変化を軟化点温度とした。2nd runの昇温過程にて1J/g以上の融解エンタルピー変化が観測されなかった場合は、以下の評価方法で測定したガラス転移温度を軟化点温度(Tm)とした。
 ビーズ原料について、レオメーター(アントンパール社製「Physica MCR301」)を用いて下記条件にて動的粘弾性測定を行い、損失正接(tanδ)のピーク温度(℃)をビーズ原料のガラス転移温度(Tg)かつ軟化点温度(Tm)とした。
   測定治具    :SRF10
   測定モード   :振動φ、γ
   ひずみ     :振り角γ=0.015%
   周波数     :1Hz
   測定温度    :20℃~200℃
   昇温速度    :2℃/分
   ノーマルフォース:-0.3N
   測定点     :180
   時間単位    :s
(プレ発泡ビーズ及び発泡ビーズの嵩倍率)
 プレ発泡ビーズ及び発泡ビーズの質量W(g)を測定した後、水没法で体積V(cc)を測定し、次式で与えられる値(V/0.63)/W(cm/g)を嵩倍率とした。
(非晶性樹脂発泡ビーズの加熱収縮率)
 発泡ビーズ20cmを、金属トレーの上に重ならない様に入れ、ビーズ原料のガラス転移温度Tg+10℃に設定したオーブンの中に投入し、5分後に取り出した。常温に冷却した後、加熱後の嵩倍率を求め、下記式にて加熱収縮率(%)を計算した。
    (1-Xb/Xa)×100(%)
     Xa:加熱前の嵩倍率(cm/g)
     Xb:加熱後の嵩倍率(cm/g)
(結晶性樹脂発泡ビーズの加熱収縮率)
 発泡ビーズ20cmを、金属トレーの上に重ならない様に入れ、ビーズ原料の軟化点温度(融点、Tm)-10℃に設定したオーブンの中に投入し、5分後に取り出した。常温に冷却した後、加熱後の嵩倍率を求め、下記式にて加熱収縮率(%)を計算した。
    (1-Xb/Xa)×100(%)
     Xa:加熱前の嵩倍率(cm/g)
     Xb:加熱後の嵩倍率(cm/g)
(発泡ビーズの膨張能)
 発泡ビーズ20cmを放圧バルブ付き耐圧容器内に入れ、加圧空気を導入(0.4MPaまで4時間かけて昇圧し、その後0.4MPaで16時間保持)することで、加圧処理を施した。放圧バルブを全開として発泡ビーズを耐圧容器から発泡機へ移動させ、上記放圧バルブを全開とした時刻から5分経過後に、蒸気を用いて0kPaから以下の式で決定される所定圧力まで20秒間かけて等速で昇圧し膨張させた。膨張させた発泡ビーズの嵩倍率を求め、下記式にて膨張能を計算した。上記所定圧力は、ビーズ原料中に含まれる樹脂が非晶性樹脂の場合はガラス転移温度を、結晶性樹脂の場合は軟化点温度を、考慮して以下の式の通り決定した。
     圧力:8×(ビーズ原料のガラス転移温度Tgまたは軟化点温度Tm)-756(kPa)(式中、ビーズ原料中に含まれる樹脂が非晶性樹脂の場合はTg、結晶性樹脂の場合はTmとする)
     膨張能:Xc/Xa
     Xa:加熱前の(膨張前の)発泡ビーズの嵩倍率(cm/g)
     Xc:膨張させた発泡ビーズの嵩倍率(cm/g)
(成形加工性)
 後述する実施例及び比較例に記載の方法で、クラッキング率0%の条件で150mm×150mm×厚み3mmの発泡成形体を作製した。得られた発泡成形体を目視で確認し、以下の判定基準で成形加工性を評価した。
 A:発泡成形体の端部に充填不良が認められない
 B:発泡成形体の端部に充填不良が認められる
(寸法変化率)
 後述する実施例及び比較例に記載の方法で、150mm×150mm×厚み3mmの発泡成形体の試験片を作製した。この試験片を、60℃の乾燥オーブン(サタケセーフベンドドライヤー N50-S5)を用いて24時間乾燥させ、試験片に含まれる水分を除去した。この試験片について、JIS K6767に記載の高温時の寸法安定性試験(B法)を参考に、試験片の中央部に、格子状に縦及び横方向にそれぞれ互いに平行に3本の長さ100mmの直線を50mm間隔になるように記入した後、乾燥オーブン(サタケセーフベンドドライヤー N50-S5)に入れ、ビーズ原料に含まれる樹脂が非晶性樹脂の場合は「ガラス転移温度Tg-32℃」、結晶性樹脂の場合は「軟化点温度Tm-32℃」で168時間の加熱を行った。加熱試験前と加熱試験後の試験片について、記入したそれぞれ縦、横3本ずつの線の長さを測定し、その平均値を求めたうえで、下記式に従って寸法変化率を算出した。
 寸法変化率(%)={(L2-L1)/L1}×100
(式中、L1は、加熱試験を行う前の線の寸法[mm]の平均値を示し、L2は、加熱試験を行った後の線の寸法[mm]の平均値を示す。)
(難燃性)
 発泡体について、米国UL規格のUL-94垂直法(10mm垂直燃焼試験)に準拠した試験を行い、難燃性の評価を行った。
 以下に測定方法の詳細を示す。
 以下に記載の実施例および比較例の方法を参考にして、長さ125mm、幅13mm、厚さ10mmの試験片を5本作製し、用いた。試験片をクランプに垂直に取付け、10mm炎による10秒間接炎を2回行い、その燃焼挙動によりV-0、V-1、V-2の判定を行った。
 V-0:1回目、2回目ともに有炎燃焼持続時間は10秒以内、更に2回目の有炎燃焼持続時間と無炎燃焼時間の合計が30秒以内、更に5本の試験片の有炎燃焼時間の合計が50秒以内、固定用クランプの位置まで燃焼する試料がない、燃焼落下物による綿着火なし。
 V-1:1回目、2回目ともに有炎燃焼持続時間は30秒以内、更に2回目の有炎燃焼持続時間と無炎燃焼時間の合計が60秒以内、更に5本の試験片の有炎燃焼時間の合計が250秒以内、固定用クランプの位置まで燃焼する試料がない、燃焼落下物による綿着火なし。
 V-2:1回目、2回目ともに有炎燃焼持続時間は30秒以内、更に2回目の有炎燃焼持続時間と無炎燃焼時間の合計が60秒以内、更に5本の試験片の有炎燃焼時間の合計が250秒以内、固定用クランプの位置まで燃焼する試料がない、燃焼落下物による綿着火有り。
 上記V-0、V-1、V-2のいずれかに該当する場合を良好(A)、いずれにも該当しない場合を不良(B)とした。
 実施例、比較例に用いた原料について以下に説明する。
(参考例1)
 変性ポリフェニレンエーテル樹脂(旭化成株式会社製「SX-101」)を87.5質量%と、非ハロゲン系難燃剤としてホスファゼン系難燃剤(伏見製薬所社製「ラビトルFP-110」)を12.5質量%とを、押出機にて加熱溶融混練の後に押出し、ビーズ原料ペレットAを作製した。
(参考例2)
 ポリフェニレンエーテル系樹脂(PPE)としてS201A(旭化成(株)製)73質量%、ゴム濃度が6質量%の耐衝撃性ポリスチレン樹脂(HIPS)12質量%(基材樹脂中のゴム成分含有量は0.6%)、汎用ポリスチレン樹脂(PS)としてGP685(PSジャパン(株)製)15質量%の熱可塑性樹脂100質量部に対し、非ハロゲン系難燃剤としてビスフェノールA-ビス(ジフェニルホスフェート)(BDP)を22質量部加え、押出機にて加熱溶融混練の後に押出し、ビーズ原料ペレットBを作製した。
(参考例3)
 ポリフェニレンエーテル系樹脂(PPE)としてS201A(旭化成)(株)製)40質量%と、汎用ポリスチレン樹脂(PS)としてGP685(PSジャパン(株)製)60質量%を、押出機にて加熱溶融混錬の後に押出し、ビーズ原料ペレットCを作製した。
(参考例4)
 汎用ポリスチレン樹脂(PS)GP685(PSジャパン(株)製)を、押出機にて加熱溶融混錬の後に押出し、ビーズ原料ペレットDを作製した。
(参考例5)
ビーズ原料ペレットE:PA
 ポリアミド樹脂としてナイロン6とナイロン66の共重合体(商品名:Novamid 2430A、DSM製)100質量部および核剤としてのタルク0.8質量部を、押出機にて加熱溶融混錬の後押出し、ビーズ原料ペレットEを作製した。
(参考例6)
ビーズ原料ペレットF:PLA
 L体/D体比=88.5/11.5のポリ乳酸(カーギルジャパン製)100重量部に、イソシアネート化合物(ミリオネートMR-200、日本ポリウレタン工業製)2.0重量部、タルク(LMP―100、富士タルク工業製)3.0重量部を押出機にて加熱溶融混錬の後押出し、ビーズ原料ペレット状Fを作製した。
(実施例1)
 特開平4-372630号公報の実施例1に記載の方法に準じ、表1に示すビーズ原料ペレットを耐圧容器に収容し、該耐圧容器内の気体を乾燥空気で置換した後、発泡剤として二酸化炭素(気体)を注入し、圧力3.0MPa、温度10℃の条件下で3時間かけてビーズ原料ペレットに対して二酸化炭素を含浸させた後、圧力容器から取り出してすぐにビーズ原料ペレットを移送し、ビーズ原料ペレットを発泡炉内で攪拌羽を77rpmにて回転させながら、表2に示す圧力プログラムで加圧水蒸気により発泡し、ビーズ発泡工程及びアニールビーズ工程を行い、発泡ビーズを得た。ここで、発泡ビーズの炭化水素ガスの含有量を発泡直後にガスクロマトグラフィーにより測定したが、検出限界(0.01質量%)以下であった。
 なお、表2に示すビーズ発泡工程では1秒当たりの嵩倍率の増加が0.1cm/g以上100cm/g以下であったものの、ビーズアニール工程では嵩倍率が低下した。
 その後、この発泡ビーズを容器内に入れ、加圧空気を導入(0.4MPaまで4時間かけて昇圧し、その後0.4MPaで16時間保持)することで、加圧処理を施した。これを、水蒸気孔を有する型内成形金型内に充填し(クラッキング率0%)、水蒸気で加熱して発泡ビーズを相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡ビーズからなる発泡成形体を得た。各物性の測定・評価結果を表1に示す。
(実施例2~5、16~17、比較例2)
 ビーズ原料から発泡ビーズを製造する際の加圧水蒸気の圧力プログラムを表2の通り設定したこと以外は、実施例1と同様にして発泡成形体を得た。各物性の測定・評価結果を表1に示す。
 なお、実施例2~5、16~17及び比較例2において、表2に示すビーズ発泡工程では1秒当たりの嵩倍率の増加が0.1cm/g以上100cm/g以下であったものの、ビーズアニール工程では嵩倍率が低下した。
(実施例6~10)
 特開平4-372630号公報の実施例1に記載の方法に準じ、表1に示すビーズ原料ペレットを耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤として二酸化炭素(気体)を注入し、圧力3.0MPa、温度10℃の条件下で3時間かけてビーズ原料ペレットに対して二酸化炭素を含浸させた後、圧力容器から取り出してすぐにビーズ原料ペレットを移送し、ビーズ原料ペレットを発泡炉内で攪拌羽を77rpmにて回転させながら、表2に示す圧力プログラムで加圧水蒸気により発泡し、発泡工程を行い、プレ発泡ビーズを得た。ここで、発泡ビーズの炭化水素ガスの含有量を発泡直後にガスクロマトグラフィーにより測定したが、検出限界(0.01質量%)以下であった。
 次に、得られたプレ発泡ビーズを熱風乾燥機に投入し、表3に示す温度・時間加熱することで発泡ビーズを得た。
 なお、実施例6~10において、表2に示すビーズ発泡工程では1秒当たりの嵩倍率の増加が0.1cm/g以上100cm/g以下であったものの、ビーズアニール工程では嵩倍率が低下した。
 その後、この発泡ビーズを容器内に入れ、加圧空気を導入(0.4MPaまで4時間かけて昇圧し、その後0.4MPaで16時間保持)することで、加圧処理を施した。これを、水蒸気孔を有する型内成形金型内に充填し(クラッキング率0%)、水蒸気で加熱して発泡ビーズを相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡ビーズからなる発泡成形体を得た。各物性の測定・評価結果を表1に示す。
(実施例11~12、14)
 特開平4-372630号公報の実施例1に記載の方法に準じ、表1に示すビーズ原料樹脂ペレットを耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤として二酸化炭素(ガス)を注入し、圧力3.0MPa、温度10℃の条件下で3時間かけてビーズ原料樹脂ペレットに対して二酸化炭素を含浸させた。
 続いてビーズ原料樹脂ペレットをメッシュ状のかごに投入し、攪拌しながら熱風で表4に示す条件で加熱し、発泡及びアニールさせて発泡ビーズを得た。
 その後、この発泡ビーズを容器内に入れ、加圧空気を導入(0.4MPaまで4時間かけて昇圧し、その後0.4MPaで16時間保持)することで、加圧処理を施した。これを、水蒸気孔を有する型内成形金型内に充填し(クラッキング率0%)、水蒸気で加熱して発泡ビーズを相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡ビーズからなる発泡成形体を得た。各物性の測定・評価結果を表1に示す。
(実施例13)
 ビーズ原料を表1の通り変更し、ビーズ原料から発泡ビーズを製造する際の加圧水蒸気の圧力プログラムを表2の通り設定したこと以外は、実施例1と同様にして発泡成形体を得た。各物性の測定・評価結果を表1に示す。
 なお、表2に示すビーズ発泡工程では1秒当たりの嵩倍率の増加が0.1cm/g以上100cm/g以下であったものの、ビーズアニール工程では嵩倍率が低下した。
(実施例15)
 樹脂ペレットEに、特開2011-105879号公報の実施例に記載の方法に準じて、ビーズ原料樹脂ペレットに発泡剤としての炭酸ガスを含有させた。そして、炭酸ガスを含めたビーズ原料樹脂ペレットを加熱発泡することによって発泡ビーズを得た。
 これを、水蒸気孔を有する型内成形金型内に充填し(クラッキング率0%)、水蒸気で加熱して発泡ビーズを相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡ビーズからなる発泡成形体を得た。各物性の測定・評価結果を表1に示す。
 なお、表4に示すビーズ発泡工程では1秒当たりの嵩倍率の増加が0.1cm/g以上100cm/g以下であったものの、ビーズアニール工程では嵩倍率が低下した。
(比較例1)
 ビーズアニール工程を行わなかったこと以外は、実施例1と同様にして表2に示すプログラムで発泡ビーズおよび発泡成形体を得た。各物性の測定・評価結果を表1に示す。
(比較例7)
 ビーズアニール工程を行わなかったこと以外は、実施例15と同様にして表4に示すプログラムで発泡ビーズおよび発泡成形体を得た。各物性の測定・評価結果を表1に示す。
(比較例3)
 ビーズアニール工程を行わなかったこと以外は、実施例9と同様にして表2に示すプログラムで発泡ビーズおよび発泡成形体を得た。各物性の測定・評価結果を表1に示す。
(比較例4)
 実施例1と同じビーズ原料樹脂ペレット100重量部に対し、発泡剤としてn-ペンタン(沸点36.1℃)を10重量部加え、押出機内で加熱混錬し、未発泡の粒子を得た。この樹脂粒子を発泡炉内で攪拌羽を77rpmにて回転させながら加圧水蒸気により加熱し、発泡させて発泡ビーズを得た。この時の発泡温度は155℃であった。
 その後、ビーズアニールを行わずに、実施例1と同様に加圧処理、成形を試みたが、ビーズの融着不足で発泡成形体を得ることはできなかった。各物性の測定・評価結果を表1に示す。
(比較例5)
 ビーズアニール工程を行わなかったこと以外は、実施例11と同様にして表4に示すプログラムで発泡ビーズおよび発泡成形体を得た。各物性の測定・評価結果を表1に示す。
(比較例6)
 ビーズ原料ペレットF100重量部に、イソブタン40重量部、メタノール4.8重量部を仕込み密封して昇温し、85℃で3時間保持した。その後25℃まで冷却してから取り出し、水蒸気(94℃1分)で発泡させて発泡ビーズを得た。30℃にて1日熟成後、水蒸気孔を有する型内成形金型内に充填し(クラッキング率0%)、水蒸気で加熱して発泡ビーズを成形しようと試みたが、ビーズの融着不足で発泡成形体を得ることができなかった。各物性の測定・評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本実施形態の製造方法で製造した発泡ビーズから得られる発泡成形体は、自動車周辺部材、電子機器周辺部材等に好適に用いることができる。

Claims (17)

  1.  樹脂を含むビーズ原料を発泡させるビーズ発泡工程と、
     前記ビーズ発泡工程後に、前記ビーズ原料の(ガラス転移温度-30)℃以上(ガラス転移温度+30)℃以下の温度で熱処理するビーズアニール工程と、を含む、
    ことを特徴とする発泡ビーズの製造方法。
  2.  樹脂を含むビーズ原料を発泡させるビーズ発泡工程と、
     前記ビーズ発泡工程後に、前記ビーズ原料の(軟化点温度-30)℃以上(軟化点温度+30)℃以下の温度で熱処理するビーズアニール工程と、を含む、
    ことを特徴とする発泡ビーズの製造方法。
  3.  前記樹脂が非晶性樹脂である、請求項1又は2に記載の発泡ビーズの製造方法。
  4.  前記樹脂が結晶性樹脂である、請求項2に記載の発泡ビーズの製造方法。
  5.  前記ビーズアニール工程において、蒸気を用いて前記熱処理をする、請求項1又は2に記載の発泡ビーズの製造方法。
  6.  前記ビーズアニール工程において、熱風を用いて前記熱処理をする、請求項1又は2に記載の発泡ビーズの製造方法。
  7.  前記ビーズ発泡工程と前記ビーズアニール工程とを同一機器内で行う、請求項1又は2に記載の発泡ビーズの製造方法。
  8.  前記ビーズ発泡工程と前記ビーズアニール工程とを同一機器内で行う、請求項3に記載の発泡ビーズの製造方法。
  9.  前記熱処理の時間が10秒以上600秒以下である、請求項1又は2に記載の発泡ビーズの製造方法。
  10.  前記熱処理の時間が10秒以上600秒以下である、請求項3に記載の発泡ビーズの製造方法。
  11.  前記熱処理の時間が10秒以上600秒以下である、請求項8に記載の発泡ビーズの製造方法。
  12.  非晶性樹脂を含むビーズ原料を発泡させた発泡ビーズであって、前記ビーズ原料の(ガラス転移温度+10)℃で5分間加熱した際の加熱収縮率が25%以下である、
    ことを特徴とする非晶性樹脂発泡ビーズ。
  13.  結晶性樹脂を含むビーズ原料を発泡させた発泡ビーズであって、前記ビーズ原料の(軟化点温度-10)℃で5分間加熱した際の加熱収縮率が25%以下である、
    ことを特徴とする結晶性樹脂発泡ビーズ。
  14.  膨張能が2.3以上である、請求項12に記載の非晶性樹脂発泡ビーズ。
  15.  膨張能が2.3以上である、請求項13に記載の結晶性樹脂発泡ビーズ
  16.  請求項12又は14に記載の非晶性樹脂発泡ビーズを成形してなる、
    ことを特徴とする発泡成形体。
  17.  請求項13又は15に記載の結晶性樹脂発泡ビーズを成形してなる、
    ことを特徴とする発泡成形体。
PCT/JP2023/029135 2022-08-24 2023-08-09 発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体 WO2024043103A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-133359 2022-08-24
JP2022133359 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024043103A1 true WO2024043103A1 (ja) 2024-02-29

Family

ID=90013171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029135 WO2024043103A1 (ja) 2022-08-24 2023-08-09 発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体

Country Status (1)

Country Link
WO (1) WO2024043103A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646735A (en) * 1979-09-25 1981-04-28 Japan Styrene Paper Co Ltd Freparation of polyolefin series resin foamed molding body
JPH07278341A (ja) * 1994-04-07 1995-10-24 Asahi Chem Ind Co Ltd 無架橋直鎖状低密度ポリエチレン系樹脂予備発泡粒子及びその製造方法
JP2002179832A (ja) * 2000-10-02 2002-06-26 Kanebo Ltd 発泡粒子および成形体
JP2003301067A (ja) * 2002-04-10 2003-10-21 Kanebo Ltd 耐熱性を有するポリ乳酸発泡粒子及び成形物、並びにこれらの製造方法
JP2015212323A (ja) * 2014-05-01 2015-11-26 株式会社ジェイエスピー 発泡粒子成形体
WO2020031803A1 (ja) * 2018-08-08 2020-02-13 旭化成株式会社 ポリアミド予備発泡粒子、並びにポリアミド発泡成形体及びその製造方法
WO2020196893A1 (ja) * 2019-03-28 2020-10-01 旭化成株式会社 ポリアミド系樹脂予備発泡粒子、ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646735A (en) * 1979-09-25 1981-04-28 Japan Styrene Paper Co Ltd Freparation of polyolefin series resin foamed molding body
JPH07278341A (ja) * 1994-04-07 1995-10-24 Asahi Chem Ind Co Ltd 無架橋直鎖状低密度ポリエチレン系樹脂予備発泡粒子及びその製造方法
JP2002179832A (ja) * 2000-10-02 2002-06-26 Kanebo Ltd 発泡粒子および成形体
JP2003301067A (ja) * 2002-04-10 2003-10-21 Kanebo Ltd 耐熱性を有するポリ乳酸発泡粒子及び成形物、並びにこれらの製造方法
JP2015212323A (ja) * 2014-05-01 2015-11-26 株式会社ジェイエスピー 発泡粒子成形体
WO2020031803A1 (ja) * 2018-08-08 2020-02-13 旭化成株式会社 ポリアミド予備発泡粒子、並びにポリアミド発泡成形体及びその製造方法
WO2020196893A1 (ja) * 2019-03-28 2020-10-01 旭化成株式会社 ポリアミド系樹脂予備発泡粒子、ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法

Similar Documents

Publication Publication Date Title
KR101371899B1 (ko) 발포 비드, 이를 이용한 성형체 및 성형체의 제조 방법
JP5722066B2 (ja) 多層構造体
JP5642521B2 (ja) 発泡ビーズ成形体及びその製造方法
JP5722067B2 (ja) 多層構造体
WO2024043103A1 (ja) 発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体
JP7457528B2 (ja) カバーおよびアンテナ装置
JP7355838B2 (ja) 容器、収納装置、電装部品収納体
WO2023171330A1 (ja) ビーズ発泡体及び発泡粒子並びにこれらの製造方法
JPWO2018186360A1 (ja) 繊維強化複合体用芯材、及びそれを用いた繊維強化複合体
EP4316800A1 (en) Laminate
JP6247459B2 (ja) 発泡粒子及び発泡粒子成形体
CN114514271B (zh) 间隔件及其制造方法以及复合体
EP4368663A1 (en) Foam beads, method for producing same, and formed body
TWI820604B (zh) 罩體
CN118156705A (zh) 电池架
JP7455186B2 (ja) リチウムイオン電池モジュール
JP2023043785A (ja) 発泡用熱可塑性樹脂ペレット群及びその製造方法
JP2017088834A (ja) 発泡体
JP2022100556A (ja) カバー材及び電波を送受信する装置
JP2016202753A (ja) 暖房便座用発泡体、暖房便座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857216

Country of ref document: EP

Kind code of ref document: A1