WO2020196893A1 - ポリアミド系樹脂予備発泡粒子、ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法 - Google Patents
ポリアミド系樹脂予備発泡粒子、ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法 Download PDFInfo
- Publication number
- WO2020196893A1 WO2020196893A1 PCT/JP2020/014341 JP2020014341W WO2020196893A1 WO 2020196893 A1 WO2020196893 A1 WO 2020196893A1 JP 2020014341 W JP2020014341 W JP 2020014341W WO 2020196893 A1 WO2020196893 A1 WO 2020196893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamide
- based resin
- temperature
- foamed particles
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/125—Water, e.g. hydrated salts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/034—Post-expanding of foam beads or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2477/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
- C08J2477/06—Polyamides derived from polyamines and polycarboxylic acids
Definitions
- the present invention relates to a polyamide-based resin pre-foamed particle, a polyamide-based resin foam molded product, and a method for producing a polyamide-based resin foamed molded product.
- engineering resins especially polyamide resins, are known as plastics having high heat resistance and also excellent wear resistance and chemical resistance. Therefore, according to the foam molded product of polyamide, it is considered that it can be used for applications requiring higher heat resistance.
- an extrusion foaming method As a technique for producing a resin foam molded product, an extrusion foaming method, a foam injection molding method, an in-mold foam molding method (also referred to as a bead foam molding method) and the like can be mentioned.
- an organic or inorganic foaming agent is press-fitted into a molten resin using an extruder, and the pressure is released at the outlet of the extruder to have a certain cross-sectional shape, such as a plate shape, a sheet shape, or a columnar shape.
- This is a method of obtaining a foam of the above, putting it in a mold and heat-processing it, or cutting and pasting it into a desired shape.
- the foam injection molding method is a method of obtaining a foam molded product having pores by injection molding a resin having foamability and foaming it in a mold.
- the in-mold foam molding method is a method of obtaining a foamed molded product by filling a mold with resin prefoamed particles having foamability, heating the mold with steam or the like, foaming the particles, and at the same time heat-sealing the particles. Is.
- This in-mold foam molding method has advantages such as easy setting of the product shape and easy acquisition of a foam molded product having a high foaming ratio, and is widely used in the industrial world.
- Patent Document 1 a polyamide resin particle and a methyl alcohol are put into an autoclave together with an aqueous solvent, the system is heated and then released to atmospheric pressure to obtain preliminary foamed particles, and the preliminary foamed particles are used.
- a technique for obtaining a polyamide-based resin foam molded product by filling it in a mold of a molding machine and molding it is disclosed.
- Patent Document 2 carbon dioxide gas is blown into polyamide-based resin particles in an autoclave, and the obtained particles are heated to obtain preliminary foamed particles, and then the preliminary foamed particles are used as a mold for a molding machine.
- Patent Document 3 discloses a technique for obtaining a polyamide-based resin foam molded product by filling a mold of an aliphatic polyamide prefoamed particle and heating it with steam.
- the foam molded product described in Patent Document 1 contains methyl alcohol, which is extremely harmful to the human body, in the bubbles.
- methyl alcohol may volatilize again in a high temperature environment, causing the molded product to swell and impair its appearance. Therefore, it is necessary to release the methyl alcohol remaining in the bubbles over a long period of time after molding. there were.
- the foam molded product described in Patent Document 2 uses hot air as a heat medium, which has low thermal conductivity at the time of molding and which makes it difficult to uniformly heat the molded product.
- the foamed particles heated by the hot air are heat-sealed around the slit of the mold which is the inlet of the hot air, and then continue to be exposed to the high temperature air, so that the resin is oxidatively deteriorated.
- the coloring and physical properties would deteriorate.
- heat is not sufficiently transferred and the temperature of the resin does not rise sufficiently, so that the foamed particles are difficult to heat-fuse, and there is a risk that a uniformly fused molded product cannot be obtained. there were.
- the foamed molded product described in Patent Document 3 needs to use low-temperature steam in order to maintain the closed-cell structure of the foamed particles at the time of molding, and the foamed molded product obtained thereby melts the preliminary foamed particles. There was a risk that the clothes would be insufficient and the mechanical strength would be inferior. Further, when molding is performed by high-temperature steam in order to promote the fusion of the foamed particles, shrinkage occurs due to the rupture of the bubble film, and the inherent properties of the resin foamed molded product such as light weight and heat insulating property are impaired. There was a risk of
- an object of the present invention is to provide polyamide-based resin pre-foamed particles which are raw materials for a polyamide-based resin foam molded article having excellent mechanical strength.
- the present inventors pressurized with air having a density of ⁇ 1 (g / cm 3 ) and 0.9 MPa, and used saturated steam having a temperature 5 ° C. higher than the heat fusion temperature 30.
- the expansion ratio which is the ratio ( ⁇ 1 / ⁇ 2) to the density ⁇ 2 (g / cm 3 ) after heating for seconds, to a specific range, and completed the present invention. ..
- the present invention is as follows.
- [1] Contains polyamide resin Density ⁇ 1 and (g / cm 3), then pressurized with air 0.9 MPa, the density after heating for 30 seconds using a 5 ° C. higher temperature saturated steam from heat fusion temperature ⁇ 2 (g / cm 3)
- the expansion ratio which is the ratio with ( ⁇ 1 / ⁇ 2), is 1.0 or more.
- Polyamide-based resin pre-foamed particles characterized by this.
- [2] Contains polyamide resin After pressurizing with air having a density of ⁇ 1 (g / cm 3 ) and 0.9 MPa, it is 10 ° C. higher than the external melting start temperature at the time of underwater measurement measured under the following condition B using a differential scanning calorimeter.
- the expansion ratio B which is the ratio ( ⁇ 1 / ⁇ 3) to the density ⁇ 3 (g / cm 3 ) after heating for 30 seconds using saturated water vapor at a temperature, is 1.0 or more.
- Polyamide-based resin pre-foamed particles characterized by this.
- Condition B The polyamide-based resin pre-foamed particles are sealed in an aluminum airtight pressure vessel while being embedded in pure water, heated by a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min to melt, and then melted.
- DSC differential scanning calorimeter
- 2nd scan DSC curve obtained when the polyamide-based resin pre-foamed particles solidified by cooling at a cooling rate of 10 ° C./min are melted by heating again at 10 ° C./min with a differential scanning calorimeter (DSC).
- DSC differential scanning calorimeter
- the straight line that approximates the DSC curve after the completion of melting on the high temperature side of the maximum heat absorption peak is used as the baseline, and the temperature at the intersection of the tangent line and the baseline on the low temperature side of the maximum heat absorption peak is measured in water.
- the external melting start temperature is used.
- the number average molecular weight Mn of the above-mentioned polyamide resin is 10,000 or more and 35,000 or less.
- the polyamide-based resin pre-foamed particles according to any one of [1] to [5], wherein the weight average molecular weight Mw is 35,000 or more and 140000 or less.
- the sum (acid value + amine value) of the acid value and the amine value of the above-mentioned polyamide resin measured by the potential difference titration method is 2.5 mgKOH / g or more and 8.0 mgKOH / g or less, [1] to [ 6]
- the polyamide-based resin prefoamed particles according to any one of.
- the peak temperature of the maximum endothermic peak is 150 ° C or higher and 215 ° C or lower.
- a straight line that approximates the DSC curve after the end of melting on the high temperature side of the maximum endothermic peak is used as the baseline, and external melting is the temperature at the intersection of the tangent line at the turning point on the low temperature side of the maximum endothermic peak and the baseline.
- the width of the maximum endothermic peak corresponding to the difference between the start temperature and the outer melting end temperature, which is the temperature at the intersection of the tangent line and the baseline at the turning point on the high temperature side of the maximum endothermic peak, is 25 ° C. or higher and 80.
- the polyamide-based resin prefoamed particles according to any one of [1] to [7], which is below ° C. Condition A
- the baseline is a straight line that approximates the DSC curve after the end of melting on the higher temperature side than the maximum heat absorption peak, and the external melting start temperature, which is the temperature at the intersection of the tangent line at the turning point on the lower temperature side than the maximum heat absorption peak and the above baseline.
- the polyamide-based resin prefoamed particles according to any one of [1] to [12], wherein the crystal melting rate at a temperature higher than 10 ° C. is 20% or more.
- the polyamide-based resin pre-foamed particles according to any one of [1] to [13] are filled in the cavity of the mold, and water vapor below the melting point of the polyamide-based resin pre-foamed particles is supplied into the cavity.
- a method for producing a polyamide-based resin foam molded product which comprises a step of expanding and heat-sealing the polyamide-based resin prefoamed particles.
- polyamide-based resin pre-foamed particles which are raw materials for a polyamide-based resin foam-molded article having excellent mechanical strength.
- the present embodiment a mode for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail.
- the following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
- the polyamide-based resin pre-expanded particles of the present embodiment contain a polyamide-based resin and are saturated at a temperature 5 ° C. higher than the heat fusion temperature after being pressurized with air having a density of ⁇ 1 (g / cm 3 ) and 0.9 MPa.
- the expansion ratio which is the ratio ( ⁇ 1 / ⁇ 2) to the density ⁇ 2 (g / cm 3 ) after heating with steam for 30 seconds, is 1.0 or more.
- Another polyamide-based resin prefoamed particle of the present embodiment contains a polyamide-based resin, is pressurized with air having a density of ⁇ 1 (g / cm 3 ) and 0.9 MPa, and then is described below using a differential scanning calorimeter. Ratio ( ⁇ 1 / ⁇ 3) with the density ⁇ 3 (g / cm 3 ) after heating for 30 seconds using saturated steam at a temperature 10 ° C higher than the external melting start temperature B at the time of measurement in water measured under the condition B of. ), The expansion ratio B is 1.0 or more.
- Condition B The polyamide-based resin pre-foamed particles are sealed in an aluminum airtight pressure vessel while being embedded in pure water, heated by a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min to melt, and then melted. 2nd scan DSC curve obtained when the polyamide-based resin pre-foamed particles solidified by cooling at a cooling rate of 10 ° C./min are melted by heating again at 10 ° C./min with a differential scanning calorimeter (DSC).
- DSC differential scanning calorimeter
- the straight line that approximates the DSC curve after the end of melting on the high temperature side of the maximum heat absorption peak is used as the baseline, and the temperature at the intersection of the tangent line and the baseline on the low temperature side of the maximum heat absorption peak is the start of external melting.
- the temperature be B.
- the polyamide-based resin prefoamed particles having the expansion ratio and / or the expansion ratio B of 1.0 or more include, for example, (i) 10 to 3000 mass ppm of a base metal element with respect to 100 mass% of the polyamide resin. In the DSC curve obtained when the temperature is raised from 30 ° C. to 280 ° C.
- the maximum heat absorption peak is 150 ° C. or higher and 215 ° C. or lower, and the straight line that approximates the DSC curve after melting on the higher temperature side than the maximum heat absorption peak is used as the baseline, and the tangent line at the turning point on the low temperature side of the maximum heat absorption peak and the above.
- the external melting start temperature which is the temperature at the intersection with the baseline
- the external melting end temperature which is the temperature at the intersection of the tangent line and the baseline on the high temperature side of the maximum heat absorption peak.
- the width of the maximum heat absorption peak is 25 ° C. or higher and 80 ° C. or lower.
- Polyamide-based resin Pre-foamed particles (iii) Polyamide-based resin containing 50% by mass or more of crystalline polyamide resin with respect to 100% by mass of polyamide-based resin. Examples thereof include pre-foamed particles, (iv) polyamide-based resin pre-foamed particles in which two or more of the above (i) to (iii) are combined.
- the polyamide-based resin pre-foamed particles are pre-foamed particles obtained by foaming a polyamide-based resin composition containing a polyamide-based resin.
- the above-mentioned polyamide-based resin composition contains a polyamide-based resin, and may further contain other components.
- the "preliminary foamed particles” refer to resin particles (beads, etc.) having a porous structure formed by foaming of a polyamide-based resin composition and having foamability that has not been foamed in the final stage. For example, it can be used as a raw material for a polyamide-based resin foam molded product.
- examples of the polyamide-based resin include polyamide homopolymers, polyamide copolymers, and mixtures thereof.
- examples of the polyamide homopolymer include polyamide 66, polyamide 610, polyamide 612, polyamide 46, and polyamide 1212 obtained by polycondensation of diamine and dicarboxylic acid, and polyamide 6, polyamide 12 obtained by ring-opening polymerization of lactam. And so on.
- polyamide copolymer examples include polyamide 6/66, polyamide 66/6, polyamide 66/610, polyamide 66/612, polyamide 66 / 6T (T represents a terephthalic acid component), and polyamide 66 / 6I (T). I represents an isophthalic acid component), polyamide 6T / 6I, and the like.
- aliphatic polyamides are preferable, and polyamide 6, polyamide 66, polyamide 6/66, polyamide 66/6 and the like are more preferable. These may be used alone or in combination of two or more as a mixture.
- the polyamide resin preferably contains two or more kinds of polyamide resins having different melting points. Above all, from the viewpoint that the optimum temperature range in bead foam molding using steam is widened, the fusion property between particles during molding is improved, the foaming ratio is increased, and a foamed molded product having further excellent mechanical properties can be obtained. It is preferable to contain the polyamide-based resin (A) and the polyamide-based resin (B) having a melting point higher than that of the polyamide-based resin (A). As a result, the width of the maximum endothermic peak corresponding to the difference between the extrapolation melting start temperature and the extrapolation melting end temperature can be realized to be 25 ° C. or higher and 80 ° C. or lower, and the polyamide-based resin prefoamed particles are foam-molded. It can be sufficiently foamed.
- the difference in melting point between the polyamide resin (A) and the polyamide resin (B) is the bead foam molding using steam.
- the temperature is preferably 5 ° C. or higher, and extrusion stability during extrusion molding of the polyamide-based resin prefoamed particles is preferable.
- the temperature is more preferably 10 to 70 ° C, still more preferably 15 to 50 ° C.
- the combination of the polyamide-based resin (A) and the polyamide-based resin (B) may be, for example, a mixture containing the combination of the above-mentioned polyamide homopolymer and / or the above-mentioned polyamide copolymer, and the polyamide 6 and the polyamide 66.
- the polyamide-based resin (A) is preferably polyamide 6/66
- the polyamide-based resin (B) is preferably polyamide 6 or polyamide 6/66
- the polyamide-based resin (A) is polyamide 6/66.
- the combination in which the polyamide resin (B) is polyamide 6 is preferable. As a result, the crystallinity of the foamed molded product is increased, and the heat resistance and the fusion rate are sufficient.
- the polyamide-based resin may be a mixture consisting of only a combination of the above-mentioned polyamide-based resin (A) and the polyamide-based resin (B), or the polyamide-based resin (A) and the polyamide-based resin (B). In addition to the combination with, it may be a mixture further containing another polyamide-based resin.
- the mass ratio of the polyamide resin (A) in the polyamide resin composition (100% by mass) is 50 to 99. It is preferably 5% by mass, more preferably 80 to 99% by mass.
- the mass ratio of the polyamide resin (A) in the polyamide-based resin pre-foamed particles (100% by mass) is preferably 50 to 99.5% by mass, more preferably 80 to 99% by mass.
- the mass ratio of the polyamide resin (B) in the polyamide resin composition (100% by mass) is 0.1 to 0.1 to It is preferably 50% by mass, more preferably 0.5 to 10% by mass.
- the mass ratio of the polyamide resin (B) in the polyamide resin prefoamed particles (100% by mass) is preferably 0.1 to 50% by mass, more preferably 0.5 to 10% by mass. .. From the viewpoint of reducing the temperature during extrusion molding, suppressing thermal deterioration of the resin, and improving extrusion stability during extrusion molding, the polyamide resin (A) in the polyamide resin composition (100% by mass).
- the mass ratio of the polyamide resin (A) in the polyamide resin prefoamed particles (100% by mass) is the polyamide resin in the polyamide resin prefoamed particles (100% by mass). It is preferably more than the mass ratio of (B), more preferably 30% by mass or more, and further preferably 60% by mass or more.
- the polyamide-based resin composition is the mass ratio of the polyamide-based resin (B) to 100 parts by mass of the polyamide-based resin (A).
- it is preferably 20 parts by mass or less, more preferably 0.5 to 20 parts by mass, and further preferably 1 to 10 parts by mass.
- the mass ratio of the polyamide-based resin (B) to 100 parts by mass of the polyamide-based resin (A) is preferably 20 parts by mass or less, more preferably 0. It is 5 to 20 parts by mass, more preferably 1 to 10 parts by mass.
- an amorphous polyamide resin is used from the viewpoint that it easily contains a foaming agent such as carbon dioxide gas or a hydrocarbon and the density of the foamed molded product can be lowered. It is preferable to include it.
- the content ratio of the amorphous polyamide resin is preferably less than 50% by mass, and more preferably less than 30% by mass with respect to 100% by mass of the above-mentioned polyamide-based resin. preferable.
- the content ratio of the amorphous polyamide resin is preferably less than 50% by mass, and further preferably less than 30% by mass with respect to 100% by mass of the polyamide-based resin. preferable.
- the above-mentioned polyamide-based resin composition has a viewpoint of setting the expansion ratio and / or expansion ratio B described later to 1.0 or more, and foamed particles. From the viewpoint of obtaining a polyamide-based resin foam molded product having a higher expansion ratio, better heat resistance and mechanical strength, by further suppressing shrinkage due to bubble rupture even at a temperature at which fusion of the above progresses sufficiently. , And the viewpoint that the viscosity of the polyamide-based resin composition in a high-temperature environment during foam molding is lowered, the mutual diffusion of the resin between the foamed particles is promoted, the fusion property of the molded product is improved, and the mechanical strength is improved.
- the polyamide-based resin pre-foamed particles preferably contain 50% by mass or more of the crystalline polyamide resin, and more preferably 70% by mass or more, based on 100% by mass of the polyamide-based resin.
- the crystalline polyamide resin is preferably a crystalline aliphatic polyamide resin, and more preferably contains 50% by mass or more of the crystalline aliphatic polyamide resin with respect to 100% by mass of the polyamide-based resin.
- the crystalline polyamide in the present embodiment is a polymer having an amide bond (-NHCO-) in the main chain, and the heat of fusion determined by a differential scanning calorimeter (DSC) is 1 J / g or more, preferably 10 J / g.
- the polyamide having a temperature of 15 J / g or more, and most preferably 20 J / g or more.
- the differential scanning calorimetry (DSC) can be specifically measured using a DSC-7 type manufactured by PerkinElmer.
- the amorphous polyamide means a polyamide having a heat of fusion of less than 1 J / g when measured under the above conditions.
- the polyamide-based resin composition preferably contains more than 50% by mass of an aliphatic polyamide, more preferably 60% by mass or more, and 70% by mass or more, based on 100% by mass of the polyamide-based resin. It is more preferable to contain it, and it is particularly preferable to contain it in an amount of 75% by mass or more.
- the polyamide-based resin pre-foamed particles preferably contain more than 50% by mass, more preferably 60% by mass or more of the aliphatic polyamide with respect to 100% by mass of the polyamide-based resin, 70. It is more preferably contained in an amount of 75% by mass or more, and particularly preferably 75% by mass or more.
- the melting point of the polyamide resin is preferably 150 ° C. or higher, preferably 180 ° C. or higher, from the viewpoint of making the foamed molded product sufficiently heat resistant.
- the temperature is more preferably 270 ° C. or lower, and more preferably 270 ° C. or lower, further preferably 250 ° C. or lower, from the viewpoint of improving the fusion rate of the pre-foamed particles in the molding process of the foamed molded product. ..
- the melting point of the polyamide resin refers to a value measured by differential scanning calorimetry (DSC) according to JIS K7121.
- the peak indicating endothermic reaction that appears in the measurement is defined as the peak indicating melting of the resin, and the temperature at the peak indicating endothermic reaction that appears on the highest temperature side is defined as the melting point.
- a commercially available differential scanning calorimeter may be used, and examples thereof include DSC7 manufactured by PerkinElmer.
- ordinary conditions may be used. For example, the resin is held at a temperature above its melting point under an inert gas atmosphere, then rapidly cooled to about room temperature at 20 ° C./min, and then the temperature exceeds the melting point. Examples include conditions for raising the temperature to 20 ° C./min.
- the highly reactive functional groups (amino groups and carboxyl groups) of the polyamide resin at the ends are changed to low reactive functional groups by adding an end-capping agent in the synthesis of the polyamide resin (polyamide resin). Can be closed).
- the time for adding the end-capping agent includes the time when the raw material is charged, the time when the polymerization starts, the time during the middle stage of the polymerization, or the time when the polymerization ends.
- the terminal encapsulant is not particularly limited as long as it is a monofunctional compound capable of reacting with an amino group or a carboxyl group of a polyamide resin, and is, for example, a monocarboxylic acid, a monoamine, or an acid anhydride. , Monoisocyanates, monoacid halides, monoesters, monoalcohols and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
- the acid value and the amine value of the polyamide resin may be 0 mgKOH / g or more, respectively, and when the polyamide resin is melt-retained. From the viewpoint of making gelation and deterioration less likely to occur, and from the viewpoint of making it difficult to cause problems such as coloring and hydrolysis in the resin usage environment, it is preferably 10 mgKOH / g or less, and further preferably 5 mgKOH / g or less. preferable.
- the sum (acid value + amine value) of the amine value and the acid value of the polyamide resin makes the interaction with the base metal compound of the polyamide resin stronger, and the prefoamed particles are sufficiently fused.
- the progressive temperature it is preferably 2.5 mgKOH / g or more and 8.0 mgKOH / g or less, more preferably 3 from the viewpoint of further suppressing the shrinkage due to the rupture of the bubbles and giving a higher expansion ratio. It is 0.0 to 6.5 mgKOH / g, more preferably 3.5 to 5.5 mgKOH / g.
- the amine value and the acid value may be the same or different. The acid value and amine value can be measured by the methods described in Examples described later. Further, the acid value and amine value of the polyamide resin can be adjusted by changing the molecular weight of the polyamide resin or by using the above-mentioned terminal encapsulant.
- the saturated water absorption rate (23 ° C. 100% RH) of the polyamide resin is preferably 3% or more, and is in this range. It is preferable from the viewpoint that excellent fusion property can be exhibited when the polyamide-based resin prefoamed particles are water-containing, and more preferably 6% or more.
- the number average molecular weight Mn of the polyamide-based resin is such that the viscosity of the polyamide-based resin in a high-temperature environment during foam molding decreases, and foamed particles.
- the polymer chain is three-dimensional even in a high temperature environment during foam molding.
- increasing the strength of the bubble film, and suppressing bubble rupture it is preferably 10,000 or more.
- the weight average molecular weight Mw of the polyamide resin reduces the viscosity of the polyamide resin in a high temperature environment during foam molding, promotes mutual diffusion of the resin between the foamed particles, and improves the fusion property of the molded product.
- the weight average molecular weight Mw of the polyamide resin reduces the viscosity of the polyamide resin in a high temperature environment during foam molding, promotes mutual diffusion of the resin between the foamed particles, and improves the fusion property of the molded product.
- it is preferably 140000 or less, and from the viewpoint of maintaining the three-dimensional network of polymer chains even in a high temperature environment during foam molding, increasing the strength of the bubble film, and suppressing foam rupture. Therefore, it is preferably 35,000 or more. It is more preferably 40,000 to 125,000, still more preferably 60,000 to 120,000, and particularly preferably 65,000 to 120,000.
- the number average molecular weight Mn and the weight average molecular weight Mw can be measured by the methods described in Examples described later.
- the polyamide-based resin composition and / or the polyamide-based resin pre-foamed particles of the present embodiment may further contain other components.
- the other additive components include base metal element-containing compounds; iodine element-containing compounds; stabilizers, flame retardants, bubble conditioners, modifiers, impact improvers, lubricants, pigments, dyes, weather resistance improvers, and antistatic agents.
- examples thereof include inhibitor, impact resistant modifier, crystal nucleating agent, glass beads, inorganic filler, cross-linking agent, nucleating agent such as talc, and other additive components such as thermoplastic resin.
- base metal elements include iron, copper, nickel, lead, zinc, tin, tungsten, molybdenum, tantalum, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, and hafnium. Elements such as indium, niobium, rhenium, and tantalum fall under this category. From the viewpoint of improving moldability, cost, and toxicity, copper element or zinc element is preferable.
- the content of the base metal element is preferably 10 to 3000 mass ppm with respect to 100 mass% of the polyamide resin. Further, it is more preferably 20 mass ppm or more, and further preferably 30 mass ppm or more. Further, it is more preferably 2500 ppm by mass or less, and further preferably 2000 ppm by mass or less.
- the content of the base metal element is 10 mass ppm or more, it is possible to suppress a decrease in density and variation due to shrinkage during in-mold molding, and when it is 20 mass ppm or more, thermal stability can be further improved.
- the base metal element-containing compound When the content of the base metal element is 3000 mass ppm or less, the base metal element-containing compound is less likely to agglomerate during melt kneading, resulting in bubble rupture due to the aggregation of the base metal element-containing compound and poor appearance of the foamed particles. It becomes difficult.
- the type of base metal element in the polyamide-based resin composition and / or the polyamide-based resin prefoamed particles can be identified by fluorescent X-rays. Further, the mass ratio of the base metal element can be measured by inductively coupled plasma emission spectroscopy (ICP-AES), and specifically, can be measured by the method described in Examples described later.
- ICP-AES inductively coupled plasma emission spectroscopy
- the compound that supplies the base metal element is not particularly limited as long as it is a compound containing the base metal element, and is, for example, a salt such as a metal halide or a metal acetate, or an ethylene-unsaturated carboxylic acid metal salt copolymer. Such as ionomers.
- a compound which supplies a base metal element may be referred to as a "base metal element-containing compound”.
- the content of the iodine element is preferably 10 to 6000 mass ppm with respect to 100 mass% of the polyamide resin. Further, it is more preferably 100 mass ppm or more, and further preferably 1000 mass ppm or more.
- 10 mass ppm or more of the iodine element it is possible to suppress a decrease in density due to shrinkage during molding, and by containing 100 mass ppm or more, the thermal stability is further improved.
- the content of the iodine element is preferably 6000 mass ppm or less, more preferably 5000 mass ppm or less, still more preferably 4000 mass ppm or less, from the viewpoint of colorability.
- the above-mentioned content of the iodine element in the polyamide-based resin composition and / or the polyamide-based resin prefoamed particles can be measured by an ion chromatograph method, and specifically, measured by the method described in Examples described later. can do.
- the molar ratio of the iodine element to the base metal element in the polyamide resin composition and / or the polyamide resin prefoamed particles is preferably 1.0 or more, and more preferably 3.0 or more.
- the molar ratio is 1.0 or more, the moldability can be improved, and when the molar ratio is 3.0 or more, a foam molded product having further excellent thermal stability can be produced.
- the molar ratio of the iodine element to the base metal element refers to what is obtained as follows.
- the molar concentration [x] of the base metal element was obtained by dividing the mass concentration mx of the base metal element measured by ICP-AES by the atomic weight of the element, and this was detected by all fluorescent X-rays. By summing up the base metal elements, the molar concentration [M] of the base metal elements as a whole can be obtained.
- the value obtained by dividing the mass concentration m2 of the iodine element measured by the ion chromatography method by the atomic weight of iodine is defined as [I].
- the value [I] / [M] obtained by dividing this [I] by [M] is defined as the molar ratio of the iodine element to the base metal element.
- the base metal element is only copper element
- the value [Cu] obtained by dividing the mass concentration of copper element measured by ICP-AES by the atomic weight of copper is obtained, and the above [I] is divided by [Cu].
- [I] / [Cu] can be obtained.
- the compound that supplies the iodine element is not particularly limited as long as it is a compound containing an iodine element, and examples thereof include alkali metal salts such as potassium iodide and sodium iodide, and ammonium salts such as tetrabutylammonium iodide. Can be mentioned.
- a compound which supplies an iodine element may be referred to as an "iodine element-containing compound".
- the method for adding the base metal element-containing compound and / or the iodine element-containing compound is not particularly limited, but can be added by a known melt-kneading method, and examples thereof include a melt-kneading method using an extruder. Be done.
- the base metal element-containing compound and the iodine element-containing compound may be directly dry-blended with the polyamide resin as a raw material, but from the viewpoint of improving operability, the master batch containing the base metal element-containing compound and the iodine element-containing compound It is preferable to blend and knead the master batch containing the above, or the master batch containing both the base metal element-containing compound and the iodine element-containing compound.
- a single-screw extruder equipped with one screw or a twin-screw extruder equipped with two screws can be used.
- twin-screw extruder either one in which two screws rotate in the same direction or one in which two screws rotate in different directions can be used.
- the set temperature of the cylinder during melt kneading is not particularly limited as long as it is equal to or higher than the melting point of the polyamide resin, and is, for example, in the range of 200 to 340 ° C. More preferably, it is in the range of 200 to 300 ° C.
- melt kneading is preferable at a set temperature of 200 ° C. or higher, and in order to suppress thermal deterioration of the polyamide resin, melt kneading is preferable at a set temperature of 290 ° C. or lower.
- the preferable set temperature differs depending on the polyamide resin used, and it is desirable to melt and knead at a set temperature 20 to 80 ° C. higher than the melting point of the polyamide resin.
- the resin temperature at the time of extrusion of the polyamide-based resin composition is affected by factors such as the set temperature of the cylinder, the screw rotation speed, and the amount of resin supplied.
- the temperature of the molten resin during melt kneading is preferably a temperature of 210 to 340 ° C. More preferably, it is 220 to 320 ° C., which is the temperature measured by a thermometer such as a contact thermoelectric pair mounted in the tip flange of the extruder.
- the particles are extruded as strands by discharging from a die, water-cooled in a cooling tank, and cut to obtain a desired particle shape that is easy to use for foaming.
- the particle shape of the polyamide-based resin composition is not particularly limited, and examples thereof include bead-shaped, pellet-shaped, spherical, and amorphous pulverized products.
- the average particle size of the particle size is 0.5 to 0.5 from the viewpoint of making the size of the foamed particles after foaming appropriate, making the foamed particles easier to handle, and making the filling at the time of molding more dense. It is preferably 4.0 mm, more preferably 0.5 to 2.5 mm.
- the average particle size is calculated by photographing 20 particles of an arbitrary polyamide resin composition with a microscope and drawing two straight lines passing through the center of each particle so as to be orthogonal to each other. Obtained by averaging. When the lengths of the two straight lines are different, the longer one is adopted as the particle diameter of the particles.
- the additive component refers to a compound excluding the above-mentioned polyamide resin, the above-mentioned base metal element-containing compound, and the above-mentioned iodine element-containing compound.
- the stabilizer is not particularly limited, and includes, for example, organic antioxidants such as hindered phenol-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, phosphite compounds, and thioether-based compounds.
- organic antioxidants such as hindered phenol-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, phosphite compounds, and thioether-based compounds.
- Heat stabilizers; light stabilizers such as hindered amines, benzophenones, and imidazoles; ultraviolet absorbers; metal inactivating agents; and the like can be mentioned. These may be used individually by 1 type, and of course, 2 or more types may be used in combination.
- a copper compound is preferable from the viewpoint of effectively preventing long-term heat aging in a high temperature environment of 120 ° C. or higher, and a combination of this copper compound and an alkali metal halide compound is also preferable.
- the alkali metal halide compound include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, and iodide. Examples include potassium. These may be used individually by 1 type, and may be used in combination of 2 or more type.
- the flame retardant is not particularly limited, but a combination of a halogen-based flame retardant and an antimony compound is preferable.
- a halogen-based flame retardant brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy resin, brominated styrene anhydride maleic acid copolymer, brominated epoxy resin, brominated phenoxy resin, decabromodiphenyl ether, Decabromobiphenyl, brominated polystyrene, perchlorocyclopentadecane, and brominated cross-linked aromatic polymers are preferable, and as the antimony compound, antimony trioxide, antimone pentoxide, and sodium antimonate are preferable.
- a combination of dibromopolystyrene and antimony trioxide is preferable from the viewpoint of thermal stability.
- a non-halogen flame retardant may also be used, and specific examples thereof include melamine cyanurate, red phosphorus, phosphinic acid metal salt, nitrogen-containing phosphoric acid compound and the like, and in particular, phosphinic acid.
- a combination of a metal salt and a nitrogen-containing phosphoric acid compound is preferable.
- the inorganic nucleating agent includes talc, silica, calcium silicate, calcium carbonate, aluminum oxide, titanium oxide, diatomaceous earth, clay, baking soda, alumina, barium sulfate, aluminum oxide, bentonite and the like. Usually, 0.005 to 5 parts by mass is added to the total amount of the raw material of the polyamide-based resin prefoamed particles.
- the content of the above-mentioned additive component in the polyamide-based resin composition and / or in the polyamide-based resin prefoamed particles may be 15 parts by mass or less and 6 parts by mass or less with respect to 100 parts by mass of the polyamide-based resin. It is preferably 3 parts by mass or less, and more preferably 3 parts by mass or less.
- the additive component may be added at the same time as the base metal element-containing compound or the iodine element-containing compound, or before or after the step of adding the base metal element-containing compound or the iodine element-containing compound. , May be added by performing melt kneading again. More preferably, it is desirable to melt-knead the base metal element-containing compound and the iodine element-containing compound at the same time in one twin-screw extruder.
- the above-mentioned polyamide resin composition is a compound having a substituent (hereinafter, also referred to as a reactive substituent) that reacts with an amino group or a carboxyl group of the polyamide resin as long as the object of the present invention is not impaired.
- the degree of cross-linking of the resin may be increased by forming a cross-linked structure via such a substituent in the molecule of the resin using or a polymer or the like.
- the reactive substituent include functional groups such as glycidyl group, carboxyl group, carboxylic acid metal salt, ester group, hydroxyl group, amino group, carbodiimide group and acid anhydride group.
- a glycidyl group, an acid anhydride group, and a carbodiimide group are preferable. These may be used individually by 1 type, and may be used in combination of 2 or more type. Further, the compound, the polymer and the like may have a plurality of types of functional groups in one molecule.
- the amount of the reactive substituent introduced into the resin should be such that gelation or the like does not occur in the resin due to cross-linking.
- the polyamide-based resin pre-foamed particles of the present embodiment are pressurized with air having a density of ⁇ 1 (g / cm 3 ) and 0.9 MPa (for example, 0). Pressurized at 9. MPa for 24 hours), and the ratio to the density ⁇ 2 (g / cm 3 ) after heating for 30 seconds with saturated steam having a temperature 5 ° C.
- the expansion ratio of ⁇ 1 / ⁇ 2) is preferably 1.0 or more, more preferably 1.1 or more, still more preferably 1.2 or more, and may be 2.0 or less.
- the expansion ratio is 1.0 or more, a resin foamed molded product having sufficient mechanical strength can be obtained when the mold is filled with the preliminary foamed particles and heated with steam to obtain a resin foamed molded product. it can.
- the density ⁇ 1 may be the density of the polyamide-based resin pre-foamed particles before pressurization and heating when measuring ⁇ 2, and may be, for example, the density of the polyamide-based resin pre-foamed particles that have not been pressure-heated after production. ..
- the expansion ratio includes, for example, addition of a heat stabilizer (for example, addition of the above-mentioned base metal element-containing compound), use of a combination of polyamide resins having a difference in melting point in the above preferable range, use of crystalline polyamide resin, and water content. Can be adjusted by using polyamide-based resin pre-expanded particles of 0% by mass or more and 12% by mass or less.
- the expansion ratio when saturated steam having a temperature 3 ° C. higher than the heat fusion temperature is used is preferably 1.0 or more, and may be 2.0 or less. Further, the expansion ratio when saturated steam having a heat fusion temperature is used is preferably 1.0 or more, and may be 2.0 or less.
- the polyamide-based resin pre-expanded particles are pressurized with a density of ⁇ 1 (g / cm 3 ) and 0.9 MPa of air, and then the difference is obtained.
- the expansion ratio B which is a ratio ( ⁇ 1 / ⁇ 3), is preferably 1.0 or more, more preferably 1.1 or more, still more preferably 1.2 or more, and 2.0 or less. Good.
- the density ⁇ 1 may be the density of the polyamide-based resin pre-foamed particles before pressurization and heating when measuring ⁇ 3, and may be, for example, the density of the polyamide-based resin pre-foamed particles that have not been pressure-heated after production. ..
- the expansion ratio B is, for example, the addition of a heat stabilizer (for example, the addition of the above-mentioned base metal element-containing compound), the use of a combination of polyamide resins having a difference in melting point in the above preferable range, the use of a crystalline polyamide resin, and the water content.
- the ratio can be adjusted by using polyamide-based resin pre-expanded particles having a ratio of 0% by mass or more and 12% by mass or less.
- the method of measuring the extrapolation melting start temperature B and the expansion ratio B will be described in Examples.
- the expansion ratio when saturated steam having a temperature 8 ° C. higher than the extrapolation melting start temperature B is used is preferably 1.0 or more, and may be 2.0 or less.
- the expansion ratio is preferably 1.0 or more, and may be 2.0 or less.
- the polyamide-based resin pre-foamed particles are prepared from 30 ° C. under the condition of a temperature rise rate of 10 ° C./min using a differential scanning calorimeter.
- the peak temperature of the maximum endothermic peak is preferably 150 ° C. or higher and 255 ° C. or lower, more preferably 150 ° C. or higher and 215 ° C. or lower, more preferably. Is 155 ° C. or higher and 220 ° C. or lower, more preferably 160 ° C. or higher and 200 ° C. or lower.
- the polyamide-based resin prefoamed particles of the present embodiment have a straight line that approximates the DSC curve after the completion of melting on the higher temperature side than the peak temperature of the maximum heat absorption peak as the baseline in the DSC curve, and the peak temperature of the maximum heat absorption peak.
- the width of the maximum heat absorption peak corresponding to the difference from the external melting end temperature is preferably 25 ° C.
- the width of the maximum endothermic peak is within the above range, it is possible to suppress a decrease in material strength due to defoaming of the prefoamed particles while strengthening the cohesive force between the foamed particles under temperature conditions, and the moldability tends to be improved.
- the peak temperature of the maximum endothermic is in the above-mentioned preferable range and the width of the maximum endothermic peak is in the above-mentioned range.
- the maximum endothermic peak means a peak in which the amount of heat absorption is maximum when there are a plurality of endothermic peaks.
- FIG. 1 shows the DSC curve obtained when the polyamide-based resin prefoamed particles of the present embodiment are heated from 30 ° C. to 280 ° C. under the condition of a temperature rise rate of 10 ° C./min using a differential scanning calorimeter. It is a figure which shows an example.
- A is the intersection of the DSC curve and the baseline on the lower temperature side than the peak temperature of the maximum heat absorption peak
- B is the intersection of the DSC curve and the baseline on the higher temperature side than the peak temperature of the maximum heat absorption peak
- C is the maximum heat absorption.
- the peak temperature of the maximum endothermic peak is set to 150 ° C. or higher and 255 ° C. or lower (preferably 150 ° C. or higher and 215 ° C. or lower).
- the width of the temperature is set to 25 ° C. or higher and 80 ° C. or lower (preferably 28 ° C. or higher and 70 ° C. or lower).
- two kinds of polyamide resins having different melting points are used (particularly in the above-mentioned preferable embodiment). )
- Adjusting the water content of the polyamide-based resin pre-foamed particles for example, adjusting the water content to a suitable range described later) and the like.
- Polyamide-based resin By performing a water-containing treatment in advance so that the water content of the pre-foamed particles is 3% by mass or more and 15% by mass or less, in the subsequent heat fusion step, the polyamide-based resin under a high temperature environment during foam molding.
- the viscosity of the resin composition is lowered, the meltability of the molded product is improved, and the mechanical strength, for example, the bending breaking strength can be improved.
- This is due to the fact that under the temperature conditions during in-mold molding, it expands due to the increase in the volume of bubbles in the polyamide-based resin foamed particles, and promotes mutual diffusion of the resin between different foamed particles due to the decrease in viscosity of the polyamide-based resin. is there.
- the polyamide-based resin pre-foamed particles do not sufficiently foam, fusion between the foamed particles does not proceed due to insufficient expansion ability, peeling occurs at the interface of the foamed particles, and sufficient bending breaking strength cannot be obtained.
- the water content of the polyamide-based resin prefoamed particles is preferably 15% by mass or less, and more preferably 12% by mass or less.
- the water-impregnated polyamide-based resin pre-foamed particles relax the interaction due to hydrogen bonds between the molecular chains found in the dried polyamide-based resin foamed particles, so that the storage elastic coefficient does not change much before and after the glass transition temperature. It exhibits uniform foaming behavior even with sudden temperature changes in foam molding, and the variation in particle size is small. This variation in particle size causes voids in the molded product, which causes a decrease in mechanical strength.
- the water content of the polyamide pre-foamed particles is preferably 0% by mass or more, more preferably 0% by mass. %, More preferably 3% by mass or more, still more preferably 4.5% by mass or more, and particularly preferably 6% by mass or more.
- the water content of the polyamide-based resin pre-foamed particles is the mass (W0) of the polyamide-based resin pre-foamed particles, the mass (W1) after removing the surface-adhering water of the polyamide-based resin pre-foamed particles, and 80 Calculated from the mass (W2) after vacuum drying at ° C. for 6 hours.
- the water content (mass%) is calculated by (W1-W2) / W2 ⁇ 100.
- a high-pressure gas it can. For example, air adjusted to a wind speed of 100 m / sec or more can be preferably used.
- the water content of the polyamide resin pre-foamed particles can be adjusted by immersing them in warm water. In the water-containing treatment, when the temperature is 40 ° C. or higher, the water-containing rate is high and the water can be efficiently contained. Further, from the viewpoint of suppressing the deformation of the pre-foamed particles above the glass transition point, it is preferable to carry out at 70 ° C. or lower. Further, the water-containing time of the polyamide-based resin pre-foamed particles is preferably 30 minutes or less, and more preferably 15 minutes or less, from the viewpoint of suppressing the elution amount of the additive inside. Further, the water content time of the polyamide-based resin prefoamed particles is preferably 1 minute or more from the viewpoint of uniform treatment.
- the treatment can be performed using a dehydrator or the like.
- the rotation speed of the dehydration treatment is preferably 100 rpm or more, and more preferably 500 rpm or more from the viewpoint of shortening the treatment time.
- the rotation speed of the dehydration treatment is preferably 50,000 rpm or less.
- the dehydration treatment time is preferably 10 minutes or less, and more preferably 5 minutes or less. Further, the dehydration treatment time is preferably 1 minute or more from the viewpoint of uniformity.
- the amount of water adhering to the surface of the polyamide-based resin pre-foamed particles is the mass (W0) of the polyamide-based resin pre-foamed particles, the mass (W1) after removing the surface-adhered water of the polyamide-based resin pre-foamed particles, and the polyamide-based resin pre-foamed. It is calculated from the mass (W2) after the particles are vacuum-dried at 80 ° C. for 6 hours. The amount of water adhering to the surface (mass%) is calculated by (W0-W1) / W2 ⁇ 100.
- the water content of the polyamide resin prefoamed particles having a hollow portion or a concave outer shape portion it is possible to remove the surface adhering water accumulated in the hollow portion or the concave outer shape portion by using a high-pressure gas. It can. For example, air adjusted to a wind speed of 100 m / sec or more can be preferably used.
- the amount of water adhering to the surface of the polyamide-based resin prefoamed particles is preferably 14% by mass or less. Therefore, it is preferable to remove the polyamide-based resin prefoamed particles so that the amount of water adhering to the surface is 14% by mass or less.
- the amount of surface-adhered water is 14% by mass or less, agglomeration between particles due to interaction between surface-adhered water is unlikely to occur when filling the raw material for in-mold foam molding, and pre-foamed particles are densely filled in the mold. This results in a molded product with few sparse defects and improved mechanical strength. From such a viewpoint, the amount of water adhering to the surface of the polyamide-based resin prefoamed particles is more preferably 10% by mass or less, still more preferably 7% by mass or less.
- the water content of the polyamide-based resin composition may be adjusted in advance when the polyamide-based resin pre-foamed particles are produced. For example, by pelletizing the extruded molten resin in high-temperature water, the pellets before foaming are foamed in a state where the water content is adjusted to 5% by mass or more, so that the polyamide-based resin pre-foamed particles having a high water content can be obtained. Obtainable.
- the temperature at the time of pelletizing is preferably 40 ° C. or higher, and more preferably 50 ° C. or higher.
- the solvent for the solvent treatment is ethanol
- the ethanol content of the polyamide-based resin prefoamed particles is 3% by mass or more and 15% by mass. It is preferable to perform the treatment in advance so as to be as follows.
- the number average molecular weight Mn of the polyamide-based resin pre-foamed particles is such that the viscosity of the polyamide-based resin composition in a high-temperature environment during foam molding is used. It is preferably 35,000 or less, and is high even in a high temperature environment during foam molding, from the viewpoint of lowering, promoting mutual diffusion of the resin between the foamed particles, improving the fusion property of the molded product, and improving the mechanical strength. It is preferably 10,000 or more from the viewpoint of maintaining the three-dimensional network of molecular chains, increasing the strength of the bubble film, and suppressing bubble rupture.
- the weight average molecular weight Mw of the polyamide-based resin pre-foamed particles reduces the viscosity of the polyamide-based resin composition in a high-temperature environment during foam molding and promotes mutual diffusion of the resin between the foamed particles. From the viewpoint of improving the meltability and the mechanical strength, it is preferably 140000 or less, and the three-dimensional network of the polymer chains is maintained even in a high temperature environment at the time of foam molding, and the strength of the bubble film is increased. From the viewpoint of suppressing bubble rupture, it is preferably 35,000 or more. It is more preferably 40,000 to 125,000, and even more preferably 65,000 to 120,000.
- the number average molecular weight Mn and the weight average molecular weight Mw can be measured by the methods described in Examples described later.
- the polyamide-based resin prefoamed particles are subjected to the 2nd scan DSC curve measured under the following condition B using a differential scanning calorimeter.
- the baseline is a straight line that approximates the DSC curve after the end of melting on the high temperature side of the maximum endothermic peak
- the external melting start temperature is the temperature at the intersection of the tangent line and the baseline at the turning point on the low temperature side of the maximum endothermic peak.
- the crystal melting rate at a temperature higher than 10 ° C. is preferably 15% or more, more preferably 20% or more, still more preferably 20 to 40%, and particularly preferably 20 to 35%.
- condition B The polyamide-based resin pre-foamed particles are sealed in an aluminum sealed pressure-resistant container while being embedded in pure water, heated by a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min to melt, and then melted.
- DSC differential scanning calorimeter
- the scan DSC curve is used.
- the crystal melting rate can be measured by the method described in Examples described later.
- the polyamide-based resin pre-foamed particles use saturated steam having a temperature 5 ° C. higher than the heat fusion temperature of the polyamide-based resin pre-foamed particles.
- the closed cell ratio after heating is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. When the closed cell ratio is 60% or more, a resin foamed molded product having sufficient mechanical strength can be obtained when the prefoamed particles are filled in a mold and heated with steam to obtain a resin foamed molded product. it can.
- the closed cell ratio is determined by, for example, addition of a heat stabilizer (for example, addition of the above-mentioned base metal element-containing compound), use of a combination of polyamide resins having a difference in melting point in the above preferable range, use of a crystalline polyamide resin, and the like. Can be adjusted by.
- the method for measuring the closed cell ratio will be described in Examples.
- the polyamide-based resin pre-foamed particles of the present embodiment can be obtained by impregnating (impregnating) a polyamide-based resin composition containing the above-mentioned polyamide-based resin with a foaming agent to cause foaming.
- the method for incorporating (impregnating) the foaming agent in the polyamide-based resin composition is not particularly limited, and may be a generally used method.
- Examples of such a method include a method of using an aqueous medium in a suspension system such as water (suspension impregnation), a method of using a heat-decomposable foaming agent such as sodium bicarbonate (foaming agent decomposition), and a gas at a critical pressure or higher.
- a method of bringing the gas into a liquid phase state and bringing it into contact with the base resin liquid phase impregnation
- a method of setting the gas to an atmosphere below the critical pressure and putting it in a gas phase state, and bringing it into contact with the base resin can be mentioned.
- vapor phase impregnation is particularly preferable.
- the solubility of the gas in the resin is higher and the content of the foaming agent is likely to be higher than in the case of the suspension impregnation performed under high temperature conditions. Therefore, in the vapor phase impregnation, it is easy to achieve a high foaming ratio, and the bubble size in the resin tends to be uniform. Further, the decomposition agent decomposition is also inconvenient in that it is carried out under high temperature conditions like suspension impregnation. Further, in this method, not all of the added pyrolyzable foaming agent becomes gas, so that the amount of gas generated tends to be relatively small.
- the vapor phase impregnation has an advantage that the foaming agent content can be easily increased as compared with the decomposition of the foaming agent. Further, in the gas phase impregnation, the equipment such as the pressure resistant device and the cooling device tends to be more compact than in the case of the liquid phase impregnation, and the equipment cost can be easily reduced.
- the conditions for vapor phase impregnation are not particularly limited, and for example, from the viewpoint of more efficiently dissolving the gas in the resin, the atmospheric pressure is preferably 0.5 to 6.0 MPa.
- the ambient temperature is preferably 5 to 30 ° C.
- the foaming agent used when producing the polyamide-based resin prefoamed particles of the present embodiment is not particularly limited, and examples thereof include compounds that can be used as air or gas.
- compounds that can be gas include inorganic compounds such as carbon dioxide, nitrogen, oxygen, hydrogen, argon, helium, and neon; trichlorofluoromethane (R11), dichlorodifluoromethane (R12), chlorodifluoromethane (R22), tetra.
- Fluorocarbons such as chlorodifluoroethane (R112), dichlorofluoroethane (R141b), chlorodifluoroethane (R142b), difluoroethane (R152a), HFC-245fa, HFC-236ea, HFC-245ca, HFC-225ca; HFO-1234y, HFO-1234ze (E).
- hydrofluoroolefins propane, n-butane, i-butane, n-pentane, i-pentane, neopentane and other saturated hydrocarbons; dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether.
- Ethers such as furan, furfural, 2-methylfuran, tetrahydrofuran, tetrahydropyran; chlorinated hydrocarbons such as methyl chloride and ethyl chloride; alcohols such as methanol and ethanol; and the like.
- the foaming agent preferably has little impact on the environment and is not flammable or supportive, and from the viewpoint of safety during handling, a non-flammable inorganic compound is more preferable, and solubility in a polyamide resin is preferable.
- Carbon dioxide gas is particularly preferable from the viewpoint of ease of handling.
- the method for causing foaming in the polyamide resin composition containing (impregnated) the foaming agent is not particularly limited, but for example, the polyamide resin composition impregnated with the foaming agent is changed from a high pressure atmosphere to a low pressure atmosphere.
- the gas as a foaming agent dissolved in the polyamide resin composition is expanded to cause foaming, or by heating with pressure steam or the like, the polyamide resin composition is contained.
- one-step foaming may be performed, or multi-step foaming including secondary foaming and tertiary foaming may be performed.
- multi-step foaming it is easy to prepare pre-foamed particles having a high foaming ratio, and the pre-foamed particles used for molding are up to tertiary foaming from the viewpoint of reducing the amount of resin used per unit volume. It is preferable that the pre-foamed particles are the same.
- the gas used for the pressurization treatment is not particularly limited as long as it is inert to the polyamide resin, but an inorganic gas or a hydrofluoroolefin having high gas safety and a small gas global warming potential is used.
- an inorganic gas or a hydrofluoroolefin having high gas safety and a small gas global warming potential is used.
- the inorganic gas include air, carbon dioxide gas, nitrogen gas, oxygen gas, ammonia gas, hydrogen gas, argon gas, helium gas, neon gas and the like
- the hydrofluoroolefin include HFO-1234y and the like.
- Examples thereof include HFO-1234ze (E), and air or carbon dioxide gas is particularly preferable from the viewpoint of ease of handling and economy.
- the method of the pressurization treatment is not particularly limited, and examples thereof include a method of filling the pressurized tank with prefoamed particles and supplying gas into the tank.
- the polyamide-based resin foam molded product of the present embodiment preferably contains the above-mentioned polyamide-based resin pre-foamed particles of the present embodiment, and more preferably consists of only the polyamide-based resin pre-foamed particles of the present embodiment.
- the polyamide-based resin foam molded body of the present embodiment it is preferable that at least a part of the polyamide-based resin pre-foamed particles is fused to each other.
- the polyamide-based resin foam molded product of the present embodiment can be produced from the above-mentioned polyamide-based resin pre-foamed particles of the present embodiment, and can be formed into an arbitrary three-dimensional shape by heat-sealing the polyamide-based resin pre-foamed particles. Can be molded.
- the pre-foamed particles are filled in the cavity of the molding die and heated to cause foaming and at the same time heat-sealing the pre-foamed particles to each other. After that, a method of solidifying by cooling and molding can be mentioned.
- the method for filling the pre-foamed particles is not particularly limited, but for example, a cracking method in which the pre-foamed particles are filled with the mold slightly open, or a pre-compression pressure-compressed method with the mold closed. Examples thereof include a compression method in which the foamed particles are filled, a compression cracking method in which the above-mentioned cracking method is performed after the mold is filled with the pre-foamed particles pressure-compressed.
- the polyamide-based resin pre-foamed particles are filled in a cavity of a mold, and water vapor below the melting point of the polyamide-based resin pre-foamed particles is supplied into the cavity. Then, it is preferable to include a step of expanding and heat-sealing the above-mentioned polyamide-based resin prefoamed particles.
- the preliminary foamed particles are used for molding from the viewpoint of applying a constant gas pressure to the bubbles of the preliminary foamed particles to make the size (cell size) of the bubbles inside the particles uniform.
- the gas used for the pressurization treatment is not particularly limited, but it is preferable to use an inorganic gas from the viewpoint of flame retardancy, heat resistance, and dimensional stability.
- the method of the inorganic gas and the pressure treatment is the same as the case of the pressure treatment with the gas applied to the pre-foamed particles before foaming in the above-mentioned method of causing foaming of the polyamide resin.
- the heat medium used for molding the polyamide-based resin pre-foamed particles may be a general-purpose heat medium, and is preferably saturated steam or superheated steam from the viewpoint of suppressing oxidative deterioration of the foamed molded product. Saturated steam is more preferable from the viewpoint of enabling uniform heating.
- the temperature of the saturated steam is preferably equal to or lower than the melting point of the polyamide-based resin prefoamed particles.
- the melting point of the polyamide-based resin prefoamed particles is 10 ° C. or lower, more preferably 25 ° C. or lower, and even more preferably 40 ° C. or lower.
- the heating temperature (molding temperature) of the polyamide-based resin pre-foamed particles is 100 ° C. or higher and 270 ° C. or lower, fusion between the particles proceeds, which is preferable, more preferably 105 ° C. or higher and 200 ° C. or lower, and further preferably 105. It is °C or more and 160 °C or less.
- the pre-foamed particles are placed in the cavity of the molding die from the viewpoint of applying a constant gas pressure to the bubbles of the pre-foamed particles to make the size (cell size) of the bubbles inside the particles uniform.
- a gas Prior to filling, it is preferable to pressurize the prefoamed particles with a gas.
- the method of the pressurizing treatment is not particularly limited, and for example, the atmospheric pressure is 0.3 to 6.0 MPa from the viewpoint of efficiently advancing the pressurizing treatment of the gas on the prefoamed particles.
- the ambient temperature is preferably 5 to 50 ° C.
- Examples of the gas used for the pressurizing treatment include the same gas as the foaming agent used in producing the above-mentioned polyamide-based resin prefoamed particles. Above all, from the viewpoint of flame retardancy, heat resistance, and dimensional stability, it is preferable to use an inorganic compound gas.
- the gas may be used alone or in combination of two or more.
- the gas used in the pressurizing treatment may be the same gas as the foaming agent used in producing the polyamide-based resin prefoamed particles, or may be a different gas.
- the heat medium used for molding the polyamide pre-foamed particles may be a general-purpose heat medium, and is preferably saturated steam or superheated steam from the viewpoint of suppressing oxidative deterioration of the foamed molded product. Saturated steam is more preferable from the viewpoint of enabling uniform heating.
- the molding temperature is set to 100 ° C. or higher, and after heating (preheating) with saturated steam having a molding temperature of -5 ° C or lower for 1 second to 10 seconds, heating and melting with saturated steam at the molding temperature. It is preferable to wear it.
- the temperature of the saturated steam used for the preheating is preferably a molding temperature of ⁇ 5 ° C.
- the temperature of the saturated steam is preferably a molding temperature of ⁇ 15 ° C. or higher, more preferably a molding temperature of ⁇ 14 ° C. or higher, and further preferably a molding temperature of ⁇ 13 ° C. or higher.
- moisture tends to be diffused into the polyamide pre-foamed particles while suppressing expansion and fusion of the polyamide pre-foamed particles.
- the heating time with saturated steam used for the preheating is preferably 1 second or more and 10 seconds or less, more preferably 1 second or more and 5 seconds or less, and further preferably 1 second or more and 3 seconds or less.
- the polyamide prefoamed particles having a water content of 0% by mass or more and 12% by mass or less are filled in the mold, the molding temperature is 100 ° C. or higher, and the molding temperature is ⁇ 5.
- heat fusion may be performed with saturated water vapor having a molding temperature described above.
- the polyamide pre-foamed particles may be subjected to solvent treatment before being filled in the cavity of the molding die.
- the solvent used for the solvent treatment, the solvent treatment method, and the like can be the same as described above.
- the polyamide pre-foamed particles are preferably subjected to a pressure treatment with a gas before being filled in the cavity of the molding die.
- the method of pressurization treatment, the gas used for the pressurization treatment, and the like can be the same as described above.
- the polyamide pre-foamed particles are heated (preheated) for 15 seconds or more by saturated steam at a molding temperature of ⁇ 5 ° C. or lower before being heated by saturated steam at the molding temperature.
- the heating time with the saturated steam used for the preheating is preferably 15 seconds or more, more preferably 15 to 120 seconds, and further preferably 30 to 90 seconds.
- the density of the polyamide-based resin foam molded product of the present embodiment is preferably 0.02 to 0.8 g / cm 3 .
- the density is 0.02 g / cm 3 or more, by keeping the bubble diameter uniform, it is possible to prevent the thickness of the bubble film from becoming excessively thin and maintain the strength of the bubble film. Further, when it is 0.8 g / cm 3 or less, the lightness of the resin foam molded product can be enhanced.
- the closed cell ratio of the polyamide-based resin foam molded product of the present embodiment is preferably 75% or more.
- the strength of the foam can be maintained high and the heat insulating property of the foam can be enhanced.
- the closed cell ratio can be measured by the method described in Examples described later.
- the dimensional change rate of the polyamide-based resin foam molded product of the present embodiment due to heating is preferably 1.5% or less, and more preferably 1.0% or less.
- the dimensional change rate after heating at 150 ° C. for 22 hours is preferably in the above range, and the dimensional change rate after heating at 150 ° C. for 22 hours and the dimensional change rate after heating at 170 ° C. for 22 hours are It is more preferable that all of them are in the above range.
- the dimensional change rate refers to a value measured after heating at a predetermined temperature for 22 hours in accordance with the dimensional stability evaluation method B of JIS K6767.
- the content of base metal element and iodine element in the polyamide resin composition was measured as follows. First, in order to identify the base metal element in the polyamide-based resin composition, the polyamide-based resin composition was cut out in a 30 mm square, and a fluorescent X-ray analyzer (product name: Rigaku ZSX100e, manufactured by Rigaku Co., Ltd., tube: Rh). ). When the polyamide-based resin composition is in the form of a sheet or a foamed molded product having a flat surface, it can be cut out and measured as it is, but when the polyamide-based resin composition is pellets or foamed particles, it can be measured.
- a fluorescent X-ray analyzer product name: Rigaku ZSX100e, manufactured by Rigaku Co., Ltd., tube: Rh.
- the polyamide-based resin composition is sandwiched between hot plates heated to a temperature 30 ° C. higher than the melting point (described later), heated and pressed for 3 minutes to obtain a sheet of the polyamide-based resin composition, which is then cooled and solidified. This was cut out in a 30 mm square and measured.
- ICP-AES inductively coupled plasma emission spectroscopy
- the concentration of the target element existing in the system is estimated, and the target contained in the sample is calculated from the weight of the sample weighed.
- the mass concentration of the element was measured.
- the mass ratio of the base metal element in 100% by mass of the polyamide resin was calculated from the concentration of the polyamide resin in the sample.
- the measurement wavelength an appropriate wavelength was selected for the element detected by fluorescent X-ray. For example, when copper element was detected, 324.754 nm was used, when iron element was detected, 259.940 nm was used, and when zinc element was detected, 213.856 nm was used.
- the mass of the iodine element was measured by an ion chromatograph method in accordance with JIS K0127: 2013.
- the sample was burnt and decomposed by the oxygen flask combustion method, the generated gas was absorbed by the absorbing liquid, and the sample was introduced into an ion chromatograph analyzer (trade name: ICS-1500, manufactured by Thermo Fisher Scientific Co., Ltd.) for measurement. Then, the content (mass ppm) of each element with respect to 100% by mass of the polyamide resin was calculated.
- the molar concentration of base metal element [M] is the atomic weight of all base metal elements detected by the above-mentioned fluorescent X-rays, which is the mass concentration measured by ICP-AES. After dividing by, it was calculated by totaling.
- the molar concentration [I] of the iodine element was calculated by dividing the mass concentration of the iodine element measured by the method (1) above by the atomic weight of iodine. Then, the molar ratio of the iodine element to the base metal element was calculated by [I] / [M].
- Expansion ratio and expansion ratio B The obtained polyamide-based resin prefoamed particles were sealed in an autoclave, and in a state where the autoclave was immersed in warm water at 40 ° C., compressed air was introduced over 4 hours until the pressure in the autoclave reached 0.9 MPa, and then compressed air was introduced.
- the prefoamed particles were pressurized by holding the pressure at 0.9 MPa for 24 hours. Then, the pressure in the autoclave was released, and the pressure-treated prefoamed particles were taken out and placed in a metal mesh dish-shaped container. Then, it was placed in a pressure vessel, saturated steam was introduced into the pressure vessel until it reached a predetermined temperature, and the temperature was raised to a predetermined temperature over 20 seconds.
- the temperature of the saturated steam was adjusted by using saturated steam at 198 ° C. (1.4 MPa) and adjusting the opening degree of the valve. Then, the prefoamed particles were expanded by holding at the predetermined temperature for 10 seconds. Then, the pre-foamed particles after heating were dried for 24 hours using a dryer at 60 ° C., and the densities ⁇ 2 and ⁇ 3 were measured according to the method (3) described above.
- the value ⁇ 1 / ⁇ 2 obtained by dividing the density ⁇ 1 of the pre-foamed particles before the pressurization treatment by ⁇ 2 is the expansion ratio of the pre-foamed particles
- the value ⁇ 1 / ⁇ 3 obtained by dividing ⁇ 1 by ⁇ 3 is the expansion ratio B of the pre-foamed particles.
- the obtained polyamide-based resin pre-foamed particles were placed in a state where the pressure inside the bubbles was atmospheric pressure and did not contain a foaming agent such as hydrocarbon or carbon dioxide. 10 g of the pre-foamed particles are placed in a metal mesh container so that the pre-foamed particles adhere to each other, then placed in a pressure vessel, and saturated steam at a predetermined temperature is introduced into the pressure vessel over 20 seconds until the temperature reaches a predetermined temperature. After that, the prefoamed particles were heated by holding at the predetermined temperature for 10 seconds. As a predetermined temperature, different temperatures in 1.5 ° C. increments were used, and measurements were made three times for each temperature.
- the temperature (° C.) at which at least some of the prefoamed particles were fused to each other was defined as the heat fusion temperature of the prefoamed particles in all three out of three times.
- the state in which at least some of the prefoamed particles were fused to each other was determined by the following method.
- the nominal size specified by JIS Z8801 is equal to or larger than the particle size of the pre-foamed particles and less than twice the particle size of the pre-foamed particles (for example, when the particle size of the pre-foamed particles is 2.5 mm).
- a closed container and about 10 mg of shredded polyamide-based resin pre-foamed particles were placed on a precision balance (PerkinElmer, AD6000), the weight was recorded, and the weight of the polyamide-based resin pre-foamed particles was precisely weighed.
- pure water was ground into the sample pan with a Pasteur pipette, and the shredded polyamide-based resin prefoamed particles were embedded in the pure water.
- the closed container was covered with a lid and sealed with a manual sample sealer (Hitachi High-Tech Science, K-W10100274).
- DSC measurement A measurement sample and a reference sample containing 12 mg of water were set in a DSC (“DSC3500” manufactured by NETSZCH), and the temperature was raised from 40 ° C. to 200 ° C. at a heating rate of 10 ° C./min under a nitrogen air flow atmosphere of 20 mL / min. After warming, holding at 200 ° C.
- the 2nd scan DSC curve was obtained by measuring the change in calorific value.
- the weight of the measurement sample after the completion of the DSC measurement was immediately measured using a precision balance (A & D, BM-20). The weight of water remaining after the measurement was calculated from the sample weight and bread tare weight at the time of preparation, and the measurement result in which 3 mg or more of water remained was used for the analysis.
- the maximum heat absorption is based on a straight line that approximates the DSC curve after melting on the high temperature side of the maximum heat absorption peak.
- the temperature at the intersection of the tangent line and the baseline at the turning point on the low temperature side of the peak was defined as the external melting start temperature at the time of underwater measurement.
- the melting point of the polyamide resin was measured according to JIS K7121 using a differential scanning calorimeter (trade name: DSC7, manufactured by PerkinElmer). 8 mg of sample was precisely weighed and used for measurement. The measurement conditions are a nitrogen atmosphere, temperature condition: 300 ° C. for 5 minutes, then temperature lowering rate: 20 ° C./min to 50 ° C., then temperature rising rate: 20 ° C./min from 50 ° C. to 300 ° C. The temperature was raised. Then, the temperature (° C.) that gives the top of the peak showing the endothermic reaction that appeared was defined as the melting point of the resin. The melting points of the polyamide-based resin composition and the polyamide-based resin prefoamed particles were also measured by the same method.
- the polyamide-based resin prefoamed particles were heated at 10 ° C./min from 30 ° C. to 280 ° C., and the change in calorific value was measured to obtain a DSC curve.
- the temperature (° C.) of the peak top of the maximum endothermic peak indicating the maximum endothermic amount from the start of measurement was measured.
- a straight line that approximates the DSC curve after the completion of melting on the high temperature side of the maximum heat absorption peak is used as the baseline, and is the temperature at the intersection of the tangent line and the baseline at the turning point on the low temperature side of the maximum heat absorption peak.
- the outflow conditions were eluent: hexafluoroisopropanol (+ 10 mm Albanyl / L sodium trifluoroacetate), column: Shodex GPC LF-404 connected in two, column temperature: 40 ° C., flow rate: 0.3 mL / min.
- the PMMA-equivalent number average molecular weight and weight average molecular weight were measured from the obtained chromatogram.
- the polyamide-based resin composition and the polyamide-based resin pre-foamed particles were also measured by the same method.
- Acid value (mgKOH / g) (Va-Vb) x N x f x 56.11 / S
- Va titration amount (mL) in this test, Vb; titration amount (mL) in blank test, N; titration concentration (m Cincinnatil / L), S; sample weight (g), f; Factor of Titration Solution
- the amine titer of the polyamide resin was measured by the potentiometric titration method as follows. To a 100 mL Erlenmeyer flask, 3 g of a sample vacuum-dried at 60 ° C.
- Amine value (mgKOH / g) (Va-Vb) x N x f x 56.11 / S
- Va titration amount (mL) in this test, Vb; titration amount (mL) in blank test, N; titration concentration (m beginnerl / L), S; sample weight (g), f; Titrate factor
- Crystal melting rate was determined using the 2nd scan DSC curve measured under the above condition B.
- the maximum heat absorption peak is "supplemented” from “external melting start temperature -20 ° C” to the total integrated value from “external melting start temperature -20 ° C” to "external melting end temperature + 20 ° C”.
- the ratio (%) of the partially integrated values up to "external melting start temperature + 10 ° C.” was defined as the crystal melting rate at a temperature 10 ° C. higher than the external melting start temperature.
- the peak partial integration value was calculated by outputting plot data using a general analysis program attached to the differential scanning calorimeter (DSC).
- the external melting end temperature is defined by a straight line that approximates the DSC curve after melting on the high temperature side of the maximum endothermic peak, and is the temperature at the intersection of the tangent and the baseline at the turning point on the high temperature side of the maximum endothermic peak.
- (D) Fusing property A 5 mm deep cut line is made on the surface of a plate-shaped foam molded product having a length of 300 mm, a width of 300 mm, and a thickness of 20 mm so as to divide it into two equal parts vertically using a cutter knife. The foam molded product was divided along this line.
- the number (a) of the pre-foamed particles broken in the particles (the pre-foamed particles are broken by the split surface) and along the interface between the pre-foamed particles
- the number (b) of those broken was measured, and the fusion rate (%) was calculated according to the following formula (2).
- Fusion rate (%) ⁇ a / (a + b) ⁇ ⁇ 100 ... (2) Those having a fusion rate of 80% or more were evaluated as ⁇ (good), and those having a fusion rate of less than 80% were evaluated as ⁇ (poor).
- Nylon 666 (nylon 66/6) (trade name: Novamide 2430A, manufactured by DSM Co., Ltd.), copper iodide, potassium iodide, and nucleating agent are mixed as a polyamide resin in the ratio shown in Table 1, and then two. It was melt-kneaded under heating conditions with a shaft extruder, then extruded into strands, cooled with water in a cold water tank, and cut to prepare a pellet-shaped base resin. To this, carbon dioxide gas as a foaming agent was contained in the base resin according to the method described in Examples of Japanese Patent Application Laid-Open No. 2011-105879.
- pre-foamed particles having a density of 0.3 g / cm 3 .
- the obtained pre-foamed particles are filled in the cavity of the in-mold molding die (cavity dimensions: length: 300 mm, width: 300 mm, height: 20 mm), which corresponds to 70% of the cavity volume.
- the mold was fixed. Then, this mold was attached to the in-mold foam molding machine. Then, saturated steam at 119 ° C. was supplied into the cavity for 30 seconds, and the prefoamed particles were heat-sealed for molding.
- the foamed molded product was cooled by supplying cooling water into the cavity of the mold, and then the mold was opened and the foamed molded product was taken out.
- the evaluation results of Examples 1 to 5 are shown in Table 1. Copper is the only base metal element detected by fluorescent X-rays, and the mass concentration measured by ICP-AES is also shown in Table 1.
- Example 6 As the base metal element-containing compound, 0.02 parts by mass of copper acetate was used instead of copper iodide, and a foamed molded product was obtained in the same manner as in Example 1 except that potassium iodide was not used. Copper was the only base metal element detected by fluorescent X-rays, and the mass concentration measured by ICP-AES was 102 ppm.
- Example 7 Examples of the base metal element-containing compound, except that zinc-containing ionomer (trade name: Hymilan HM1706, Mitsui-Dupont Polycaical Co., Ltd.) was used in place of copper iodide in an amount of 5 parts by mass, and potassium iodide was not used.
- a foam molded product was obtained in the same manner as in 1.
- Zinc was the only base metal element detected by fluorescent X-rays, and the mass concentration measured by ICP-AES was 42 ppm.
- Example 8 As the base metal element-containing compound, 0.05 parts by mass of iron (II) chloride was used instead of copper iodide, and a foamed molded product was obtained in the same manner as in Example 1 except that potassium iodide was not used. Iron was the only base metal element detected by fluorescent X-rays, and the mass concentration measured by ICP-AES was 211 ppm.
- Example 9 As a polyamide resin, 80 parts by mass of nylon 666 (nylon 66/6) (trade name: Novamid 2430A, manufactured by DSM Co., Ltd.) and 20 parts by mass of nylon 6I (trade name: Grivory G16, EMS-Chemie, Gross-Umstat) A foam molded product was obtained in the same manner as in Example 1 except that it was used. Copper was the only base metal element detected by fluorescent X-rays, and the mass concentration measured by ICP-AES was 95 ppm.
- nylon 666 nylon 66/6
- nylon 6I trade name: Grivory G16, EMS-Chemie, Gross-Umstat
- Example 10 As a polyamide resin, 40 parts by mass of nylon 666 (nylon 66/6) (trade name: Novamid 2430A, manufactured by DSM Co., Ltd.) and 60 parts by mass of nylon 6I (trade name: Grivory G16, EMS-Chemie, Gross-Umstat) A foam molded product was obtained in the same manner as in Example 1 except that it was used. Copper was the only base metal element detected by fluorescent X-rays, and the mass concentration measured by ICP-AES was 98 ppm.
- nylon 666 nylon 66/6
- nylon 6I trade name: Grivory G16, EMS-Chemie, Gross-Umstat
- Example 1 A foam molded product was obtained in the same manner as in Example 1 except that copper iodide and potassium iodide were not added. No base metal element was detected by fluorescent X-ray.
- Example 2 A foam molded product was obtained in the same manner as in Example 1 except that the amount of copper iodide added was 0.002 parts by mass. Copper was the only base metal element detected by fluorescent X-rays, and the mass concentration measured by ICP-AES was less than 10 ppm.
- the prefoamed particles made of the polyamide-based resin composition containing 10 to 3000 mass ppm of the base metal element have an expansion ratio of 1.0 or more at a temperature 5 ° C. higher than the heat fusion temperature.
- the mechanical strength of the molded product was also excellent.
- the expansion ratio B was 1.0 or more, and a molded product having excellent mechanical strength was obtained. Comparing Examples 9 to 10 with Example 1, by adding the amorphous polyamide, a foam molded product having a lower density and excellent light weight was produced although the oil resistance and heat resistance were slightly inferior. I know I can do it.
- the pre-foamed particles containing no base metal element or made of a polyamide resin having a mass of 10 mass ppm or less have an expansion ratio at a temperature higher than the heat fusion temperature.
- the expansion ratio B is less than 0 and the expansion ratio B is also less than 1.0, and the foamed molded product obtained thereby causes shrinkage of the preliminary foamed particles, whereby the appearance, fusion property, and mechanical strength of the molded product are inferior.
- PA6 Polyamide 6 resin, UBE Nylon 1030B, melting point 225 ° C.
- PA6I Polyamide 6I resin
- PA66 Polyamide 66 resin, Leona, melting point 265 ° C.
- PA6 / 66 (A) and PA6 as polyamide resins are mixed at the ratios shown in Table 2, then melt-kneaded under heating conditions with a twin-screw extruder, extruded into strands, and water-cooled in a cold water tank. , Cutting was performed to obtain pellets having an average particle diameter of 1.4 mm. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- the density of the obtained preliminary foamed particles was 0.29 g / cm 3 .
- the obtained polyamide-based resin prefoamed particles were dried in an oven at 50 ° C. for 16 hours, then sealed in an autoclave, and compressed air was introduced over 1 hour until the pressure in the autoclave reached 0.4 MPa. Then, by keeping the pressure at 0.4 MPa for 24 hours, the polyamide-based resin pre-foamed particles were pressure-treated.
- the pressure-treated polyamide-based resin pre-foamed particles were filled in the cavity of the in-mold molding die (cavity dimensions: length: 300 mm, width: 300 mm, height: 25 mm), and then the mold was molded. Then, this mold was attached to the in-mold foam molding machine.
- saturated steam at 105 ° C. is supplied into the cavity for 10 seconds, and then saturated steam at 119 ° C. is supplied into the cavity for 30 seconds to foam and heat-fuse the polyamide-based resin prefoamed particles.
- Polyamide-based resin pre-foamed particles were molded into a foam. The obtained foam was cooled by supplying cooling water into the cavity of the mold, and then the mold was opened to take out the polyamide-based resin foam molded product.
- Example 12 to 24 When the polyamide resin was melt-kneaded under heating conditions with a twin-screw extruder, a polyamide resin foam molded product was obtained in the same manner as in Example 11 except that the polyamide type and the mixing ratio were changed as shown in Table 2. It was.
- Examples 25 to 29 The polyamide-based resin was mixed at the ratio shown in Table 2, then melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, and cut to perform an average particle size of 1. .4 mm pellets were obtained.
- the obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 240 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- the obtained polyamide-based resin prefoamed particles were dried in an oven at 50 ° C. for 16 hours, then sealed in an autoclave, and compressed air was introduced over 1 hour until the pressure in the autoclave reached 0.4 MPa. Then, by keeping the pressure at 0.4 MPa for 24 hours, the polyamide-based resin pre-foamed particles were pressure-treated.
- the pressure-treated polyamide-based resin pre-foamed particles were filled in the cavity of the in-mold molding die (cavity dimensions: length: 300 mm, width: 300 mm, height: 25 mm), and then the mold was molded. Then, this mold was attached to the in-mold foam molding machine. Then, saturated steam at 140 ° C.
- Example 30 Polyimide 6/66 (A) was used as the polyamide resin, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and average particle diameter 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- the polyamide-based resin prefoamed particles were stored in a constant temperature and humidity chamber at 23 ° C. and 55% for 48 hours or more, and the water content was measured. As a result, the water content was 3.5%.
- the obtained polyamide-based resin prefoamed particles are sealed in an autoclave, compressed air is introduced over 1 hour until the pressure in the autoclave reaches 0.4 MPa, and then the pressure is maintained at 0.4 MPa for 24 hours. By doing so, the polyamide-based resin prefoamed particles were pressure-treated.
- the pressure-treated polyamide-based resin pre-foamed particles were filled in the cavity of the in-mold molding die (cavity dimensions: length: 300 mm, width: 300 mm, height: 25 mm), and then the mold was molded. Then, this mold was attached to the in-mold foam molding machine. Then, saturated steam at 105 ° C. is supplied into the cavity for 10 seconds, and then saturated steam at 119 ° C. is supplied into the cavity for 30 seconds to foam and heat-fuse the polyamide-based resin prefoamed particles. , Polyamide-based resin pre-foamed particles were molded into a foam. The obtained foam was cooled by supplying cooling water into the cavity of the mold, and then the mold was opened to take out the polyamide-based resin foam molded product.
- Example 32 Polyimide 6/66 (A) was used as the polyamide resin, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and average particle diameter 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 10 minutes, and then dehydrated at 1000 rpm / min for 3 minutes in a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 12.0%. After that, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- Example 34 Polyamide-based resins are mixed as shown in Table 3, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and have an average particle size of 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 10 minutes, and then dehydrated at 1000 rpm / min for 3 minutes in a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 10.0%. After that, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- Example 35 Polyamide-based resins are mixed as shown in Table 3, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and have an average particle size of 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 30 minutes, and then dehydrated at 1000 rpm / min for 3 minutes in a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 14.6%. After that, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- Example 36 Polyamide-based resins are mixed as shown in Table 3, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and have an average particle size of 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 5 minutes, and then dehydrated at 1000 rpm / min for 3 minutes with a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 7.5%. After that, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- Example 37 Polyamide-based resins are mixed as shown in Table 3, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and have an average particle size of 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 10 minutes, and then dehydrated at 1000 rpm / min for 3 minutes in a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 10.2%. After that, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- the water content of the obtained polyamide-based resin prefoamed particles was 1.5%.
- the polyamide-based resin prefoamed particles are immediately sealed in the autoclave, compressed air is introduced over 1 hour until the pressure in the autoclave reaches 0.4 MPa, and then the pressure is maintained at 0.4 MPa for 24 hours.
- the polyamide-based resin prefoamed particles were pressure-treated.
- the pressure-treated polyamide-based resin pre-foamed particles were filled in the cavity of the in-mold molding die (cavity dimensions: length: 300 mm, width: 300 mm, height: 25 mm), and then the mold was molded. Then, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 60 minutes, and then dehydrated at 1000 rpm / min for 3 minutes in a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 15.4%. Then, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- polyamide 66 is mixed at a ratio of 25 parts by mass with respect to 100 parts by mass, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into a strand shape, and water-cooled in a cold water tank. Then, cutting was performed to obtain pellets having an average particle diameter of 1.4 mm. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 270 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Example 41 Polyamide-based resins are mixed as shown in Table 3, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and have an average particle size of 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 10 minutes, and then dehydrated at 1000 rpm / min for 3 minutes in a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 7.0%.
- compressed air was introduced over 1 hour until the pressure in the autoclave reached 0.4 MPa, and then the pressure was maintained at 0.4 MPa for 24 hours.
- Polyamide-based resin pre-foamed particles were pressure-treated.
- the pressure-treated polyamide-based resin pre-foamed particles were filled in the cavity of the in-mold molding die (cavity dimensions: length: 300 mm, width: 300 mm, height: 25 mm), and then the mold was molded. Then, this mold was attached to the in-mold foam molding machine. Then, saturated steam at 105 ° C. is supplied into the cavity for 10 seconds, and then saturated steam at 120 ° C. is supplied into the cavity for 30 seconds to foam and heat-fuse the polyamide-based resin prefoamed particles. , Polyamide-based resin pre-foamed particles were molded into a foam. The obtained foam was cooled by supplying cooling water into the cavity of the mold, and then the mold was opened to take out the polyamide-based resin foam molded product.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 10 minutes, and then dehydrated at 1000 rpm / min for 3 minutes in a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the foamed particles was 7.2%. By encapsulating the polyamide-based resin prefoamed particles in an autoclave, compressed air was introduced over 1 hour until the pressure in the autoclave reached 0.4 MPa, and then the pressure was maintained at 0.4 MPa for 24 hours. , Polyamide-based resin pre-foamed particles were pressure-treated.
- the pressure-treated polyamide-based resin pre-foamed particles were filled in the cavity of the in-mold molding die (cavity dimensions: length: 300 mm, width: 300 mm, height: 25 mm), and then the mold was molded. Then, this mold was attached to the in-mold foam molding machine. Then, saturated steam at 105 ° C. is supplied into the cavity for 10 seconds, and then saturated steam at 120 ° C. is supplied into the cavity for 30 seconds to foam and heat-fuse the polyamide-based resin prefoamed particles. , Polyamide-based resin pre-foamed particles were molded into a foam. The obtained foam was cooled by supplying cooling water into the cavity of the mold, and then the mold was opened to take out the polyamide-based resin foam molded product.
- Example 31 Polyimide 6/66 (A) as a polyamide resin and a nucleating agent are dry-blended at the ratios shown in Table 4, then melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands and cooled. It was water-cooled in a water tank and cut to obtain pellets having an average particle size of 1.4 mm. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 5 minutes, and then dehydrated at 1000 rpm / min for 3 minutes with a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 7.5%.
- the obtained polyamide-based resin prefoamed particles are sealed in an autoclave, compressed air is introduced over 1 hour until the pressure in the autoclave reaches 0.4 MPa, and then the pressure is maintained at 0.4 MPa for 24 hours.
- the polyamide-based resin prefoamed particles were pressure-treated.
- the pressure-treated polyamide-based resin pre-foamed particles were filled in the cavity of the in-mold molding die (cavity dimensions: length: 300 mm, width: 300 mm, height: 25 mm), and then the mold was molded. Then, this mold was attached to the in-mold foam molding machine. Then, saturated steam at 105 ° C. is supplied into the cavity for 10 seconds, and then saturated steam at 119 ° C. is supplied into the cavity for 30 seconds to foam and heat-fuse the polyamide-based resin prefoamed particles. , Polyamide-based resin pre-foamed particles were molded into a foam. The obtained foam was cooled by supplying cooling water into the cavity of the mold, and then the mold was opened to take out the polyamide-based resin foam molded product.
- Example 33 Polyamide-based resins are mixed as shown in Table 4, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and have an average particle size of 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 5 minutes, and then dehydrated at 1000 rpm / min for 3 minutes with a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 7.7%. After that, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- Example 38 Polyamide-based resins are mixed as shown in Table 4, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and have an average particle size of 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 5 minutes, and then dehydrated at 1000 rpm / min for 3 minutes with a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 7.8%. After that, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- Example 39 Polyamide-based resins are mixed as shown in Table 4, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and have an average particle size of 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 5 minutes, and then dehydrated at 1000 rpm / min for 3 minutes with a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 7.5%. After that, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- Example 40 Polyamide-based resins are mixed as shown in Table 4, melt-kneaded under heating conditions with a twin-screw extruder, then extruded into strands, water-cooled in a cold water tank, cut, and have an average particle size of 1.4 mm. Pellets were obtained. The obtained pellets were put into a pressure cooker at 10 ° C., and 4 MPa of carbon dioxide gas was blown into the pressure cooker for 12 hours. Next, the carbon dioxide impregnated pellets were transferred to a foaming apparatus, and air at 200 ° C. was blown for 20 seconds to obtain an aggregate of polyamide-based resin pre-foamed particles.
- Polyamide-based resin Pre-foamed particles are placed in a water-permeable non-woven fabric bag, immersed in a constant-temperature water bath heated to 50 ° C. for 5 minutes, and then dehydrated at 1000 rpm / min for 3 minutes with a dehydrator to contain water. Resin pre-foamed particles were obtained. The water content of the preliminary foamed particles was 7.6%. After that, a polyamide-based resin foam molded product was produced in the same manner as in Example 11.
- the polyamide-based resin foam molded body of the present invention utilizes heat insulating materials and automobile members used under high temperature conditions, such as oil pans, engine covers, cylinder head covers, other cover-shaped parts, intake manifolds and their components. It can be suitably used for integrated parts, ducts, electrical component cases, battery cases, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本発明は、機械的強度に優れたポリアミド系樹脂発泡成形体の原料となるポリアミド系樹脂予備発泡粒子を提供することを目的とする。本発明のポリアミド系樹脂予備発泡粒子は、ポリアミド系樹脂を含み、密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、熱融着温度より5℃高い温度の飽和水蒸気を用いて30秒間加熱した後の密度ρ2(g/cm3)との割合(ρ1/ρ2)である膨張比が、1.0以上である、ことを特徴としている。
Description
本発明は、ポリアミド系樹脂予備発泡粒子、ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法に関する。
近年、自動車産業において、環境に対する取り組みとして、排出ガス低減のために車体の軽量化が要求されている。この要求にこたえるために、自動車の外装材料や内装材料として、金属等と比較して軽量なプラスチック製部材が用いられるようになってきている。
特に、さらなる軽量化の観点から、樹脂発泡成形体への期待が高まっている。しかしながら、汎用の発泡体はポリエチレン、ポリスチレン、ポリプロピレン等の汎用樹脂が用いられており、これら汎用樹脂は、耐熱性に劣るため、高い耐熱性が必要とされる自動車用部材等には使用することができなかった。
特に、さらなる軽量化の観点から、樹脂発泡成形体への期待が高まっている。しかしながら、汎用の発泡体はポリエチレン、ポリスチレン、ポリプロピレン等の汎用樹脂が用いられており、これら汎用樹脂は、耐熱性に劣るため、高い耐熱性が必要とされる自動車用部材等には使用することができなかった。
一方、エンジニアリング樹脂、特に、ポリアミド系樹脂は、耐熱性が高く、また、耐摩耗性、耐薬品性等にも優れたプラスチックとして知られている。
従って、ポリアミドの発泡成形体によれば、より耐熱性が要求される用途にも使用することができると考えられる。
従って、ポリアミドの発泡成形体によれば、より耐熱性が要求される用途にも使用することができると考えられる。
ここで、樹脂発泡成形体を製造する技術としては、押出発泡法、発泡射出成形法、型内発泡成形法(ビーズ発泡成形法ともいう。)等が挙げられる。
押出発泡法は、押出機を用いて溶融状態の樹脂に有機又は無機発泡剤を圧入し、押出機出口で圧力を開放することによって、一定の断面形状を有する、板状、シート状、又は柱状の発泡体を得て、これを金型に入れて熱加工する、又は切り貼りにより目的形状に成形する方法である。
押出発泡法は、押出機を用いて溶融状態の樹脂に有機又は無機発泡剤を圧入し、押出機出口で圧力を開放することによって、一定の断面形状を有する、板状、シート状、又は柱状の発泡体を得て、これを金型に入れて熱加工する、又は切り貼りにより目的形状に成形する方法である。
発泡射出成形法は、発泡性を備える樹脂を射出成形し、金型内にて発泡させることによって、空孔を有する発泡成形体を得る方法である。
型内発泡成形法は、発泡性を備える樹脂予備発泡粒子を型内に充填し、水蒸気等で加熱し、粒子を発泡させると同時に粒子同士を熱融着させることによって、発泡成形体を得る方法である。この型内発泡成形法は、製品形状を自由に設定しやすく、高発泡倍率の発泡成形体を得やすい等の利点があり、広く産業界に普及している。
例えば、特許文献1には、オートクレーブ中にポリアミド系樹脂粒子とメチルアルコールとを水溶媒と共に入れ、系を昇温後に大気圧に放出することによって、予備発泡粒子を得て、この予備発泡粒子を成形機の金型内に充填し、成形することによって、ポリアミド系樹脂発泡成形体を得る技術が開示されている。
また、特許文献2には、オートクレーブ中でポリアミド系樹脂粒子に炭酸ガスを吹き込み、得られた粒子を加熱することによって、予備発泡粒子を得て、その後、この予備発泡粒子を成形機の金型内に充填し、熱風により加熱することによって、ポリアミド系樹脂発泡品を得る技術が開示されている。
また、特許文献3には、脂肪族ポリアミド予備発泡粒子を成形機の金型内に充填し、水蒸気により加熱することによってポリアミド系樹脂発泡成形体を得る技術が開示されている。
また、特許文献2には、オートクレーブ中でポリアミド系樹脂粒子に炭酸ガスを吹き込み、得られた粒子を加熱することによって、予備発泡粒子を得て、その後、この予備発泡粒子を成形機の金型内に充填し、熱風により加熱することによって、ポリアミド系樹脂発泡品を得る技術が開示されている。
また、特許文献3には、脂肪族ポリアミド予備発泡粒子を成形機の金型内に充填し、水蒸気により加熱することによってポリアミド系樹脂発泡成形体を得る技術が開示されている。
しかしながら、特許文献1に記載の発泡成形体は、人体に対して極めて有害なメチルアルコールを気泡中に含有する。また、かかるメチルアルコールは、高温環境下において再度揮発し、成形体を膨らませて、その外観を損なわせる虞があるため、成形後に長期間をかけて気泡中に残存するメチルアルコールを放出する必要があった。
また、特許文献2に記載の発泡成形体は、成形時に、熱伝導率が低く、また、成形体を均一に加熱することが困難な、熱風を熱媒体として用いる。このとき、熱風の流入口となる金型のスリットの周囲において、熱風により加熱された発泡粒子が、熱融着し、その後、高温の空気に晒され続けるため、樹脂が、酸化劣化して、その着色や物性が低下する虞があった。また、スリットの周囲以外の箇所においては、熱が十分に伝わらず、樹脂の温度が十分に上がらないため、発泡粒子が熱融着しにくく、均一に融着した成形体が得られない虞があった。
また、特許文献3に記載の発泡成形体は、成形時において発泡粒子の独立気泡構造を維持するために低温の水蒸気を用いる必要があり、これによって得られた発泡成形体は予備発泡粒子の融着が足りず、機械的強度に劣る虞があった。また、発泡粒子の融着を促進させるために、高温の水蒸気によって成形しようとすると、気泡の破膜に起因する収縮が起き、樹脂発泡成形体が本来有する軽量性や断熱性等の特性が損なわれる虞があった。
また、特許文献2に記載の発泡成形体は、成形時に、熱伝導率が低く、また、成形体を均一に加熱することが困難な、熱風を熱媒体として用いる。このとき、熱風の流入口となる金型のスリットの周囲において、熱風により加熱された発泡粒子が、熱融着し、その後、高温の空気に晒され続けるため、樹脂が、酸化劣化して、その着色や物性が低下する虞があった。また、スリットの周囲以外の箇所においては、熱が十分に伝わらず、樹脂の温度が十分に上がらないため、発泡粒子が熱融着しにくく、均一に融着した成形体が得られない虞があった。
また、特許文献3に記載の発泡成形体は、成形時において発泡粒子の独立気泡構造を維持するために低温の水蒸気を用いる必要があり、これによって得られた発泡成形体は予備発泡粒子の融着が足りず、機械的強度に劣る虞があった。また、発泡粒子の融着を促進させるために、高温の水蒸気によって成形しようとすると、気泡の破膜に起因する収縮が起き、樹脂発泡成形体が本来有する軽量性や断熱性等の特性が損なわれる虞があった。
そこで、本発明は、機械的強度に優れたポリアミド系樹脂発泡成形体の原料となるポリアミド系樹脂予備発泡粒子を提供することを目的とする。
本発明者らは、課題解決のため鋭意検討した結果、密度ρ1(g/cm3)と、0.9MPaの空気で加圧し、熱融着温度より5℃高い温度の飽和水蒸気を用いて30秒間加熱した後の密度ρ2(g/cm3)との割合(ρ1/ρ2)である膨張比を特定範囲とすること等により、上記課題を解決しうることを見出し、本発明を完成させた。
すなわち、本発明は以下の通りである。
[1]
ポリアミド系樹脂を含み、
密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、熱融着温度より5℃高い温度の飽和水蒸気を用いて30秒間加熱した後の密度ρ2(g/cm3)との割合(ρ1/ρ2)である膨張比が、1.0以上である、
ことを特徴とするポリアミド系樹脂予備発泡粒子。
[2]
ポリアミド系樹脂を含み、
密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、示差走査熱量計を用いて、下記の条件Bで測定される水中測定時の補外融解開始温度から10℃高い温度の飽和水蒸気を用いて、30秒間加熱した後の密度ρ3(g/cm3)との割合(ρ1/ρ3)である膨張比Bが、1.0以上である、
ことを特徴とするポリアミド系樹脂予備発泡粒子。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られる2nd scan DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークより低温側の変曲点における接線と上記ベースラインとの交点の温度を水中測定時の補外融解開始温度とする。
[3]
上記ポリアミド系樹脂100質量%に対し、卑金属元素を10~3000質量ppm含む、[1]又は[2]に記載のポリアミド系樹脂予備発泡粒子。
[4]
上記卑金属元素が、銅元素又は亜鉛元素である、[3]に記載のポリアミド系樹脂予備発泡粒子。
[5]
上記ポリアミド系樹脂100質量%に対し、ヨウ素元素を10~6000質量ppm含有し、
上記卑金属元素に対する上記ヨウ素元素のモル割合(ヨウ素元素/卑金属元素)が1以上である、[3]又は[4]に記載のポリアミド系樹脂予備発泡粒子。
[6]
上記ポリアミド系樹脂の数平均分子量Mnが10000以上35000以下であり、
重量平均分子量Mwが35000以上140000以下である、[1]~[5]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
[7]
電位差滴定法により測定される、上記ポリアミド系樹脂の酸価とアミン価との和(酸価+アミン価)が、2.5mgKOH/g以上8.0mgKOH/g以下である、[1]~[6]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
[8]
示差走査熱量計を用いて、下記の条件Aで測定されるDSC曲線において、最大吸熱ピークのピーク温度が150℃以上215℃以下であり、
上記最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、上記最大吸熱ピークの低温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解開始温度と、上記最大吸熱ピークの高温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解終了温度との差に相当する最大吸熱ピークの幅が、25℃以上80℃以下である、[1]~[7]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
条件A
昇温速度10℃/分の条件下で30℃から280℃まで昇温した際に得られるDSC曲線。
[9]
上記ポリアミド系樹脂として、ポリアミド系樹脂(A)と、上記ポリアミド系樹脂(A)より融点が高いポリアミド系樹脂(B)とを含む、[1]~[8]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
[10]
上記ポリアミド系樹脂(A)100質量部に対する、上記ポリアミド系樹脂(B)の質量割合が20質量部以下である、[9]に記載のポリアミド系樹脂予備発泡粒子。
[11]
上記ポリアミド系樹脂100質量%に対して、結晶性ポリアミド樹脂を50質量%以上含む、[1]~[10]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
[12]
上記結晶性ポリアミド樹脂が、脂肪族ポリアミド樹脂である、[11]に記載のポリアミド系樹脂予備発泡粒子。
[13]
示差走査熱量計を用いて、下記の条件Bで測定される2nd scan DSC曲線において、
最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークより低温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解開始温度から10℃高い温度における結晶融解率が20%以上である、[1]~[12]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られるDSC曲線を2nd scan DSC曲線とする。
[14]
[1]~[13]のいずれかに記載のポリアミド系樹脂予備発泡粒子からなる、ポリアミド系樹脂発泡成形体。
[15]
[1]~[13]のいずれかに記載のポリアミド系樹脂予備発泡粒子を金型のキャビティ内に充填し、上記キャビティ内に上記ポリアミド系樹脂予備発泡粒子の融点以下の水蒸気を供給して、上記ポリアミド系樹脂予備発泡粒子を膨張させ、且つ熱融着させる工程を含む、ポリアミド系樹脂発泡成形体の製造方法。
[1]
ポリアミド系樹脂を含み、
密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、熱融着温度より5℃高い温度の飽和水蒸気を用いて30秒間加熱した後の密度ρ2(g/cm3)との割合(ρ1/ρ2)である膨張比が、1.0以上である、
ことを特徴とするポリアミド系樹脂予備発泡粒子。
[2]
ポリアミド系樹脂を含み、
密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、示差走査熱量計を用いて、下記の条件Bで測定される水中測定時の補外融解開始温度から10℃高い温度の飽和水蒸気を用いて、30秒間加熱した後の密度ρ3(g/cm3)との割合(ρ1/ρ3)である膨張比Bが、1.0以上である、
ことを特徴とするポリアミド系樹脂予備発泡粒子。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られる2nd scan DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークより低温側の変曲点における接線と上記ベースラインとの交点の温度を水中測定時の補外融解開始温度とする。
[3]
上記ポリアミド系樹脂100質量%に対し、卑金属元素を10~3000質量ppm含む、[1]又は[2]に記載のポリアミド系樹脂予備発泡粒子。
[4]
上記卑金属元素が、銅元素又は亜鉛元素である、[3]に記載のポリアミド系樹脂予備発泡粒子。
[5]
上記ポリアミド系樹脂100質量%に対し、ヨウ素元素を10~6000質量ppm含有し、
上記卑金属元素に対する上記ヨウ素元素のモル割合(ヨウ素元素/卑金属元素)が1以上である、[3]又は[4]に記載のポリアミド系樹脂予備発泡粒子。
[6]
上記ポリアミド系樹脂の数平均分子量Mnが10000以上35000以下であり、
重量平均分子量Mwが35000以上140000以下である、[1]~[5]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
[7]
電位差滴定法により測定される、上記ポリアミド系樹脂の酸価とアミン価との和(酸価+アミン価)が、2.5mgKOH/g以上8.0mgKOH/g以下である、[1]~[6]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
[8]
示差走査熱量計を用いて、下記の条件Aで測定されるDSC曲線において、最大吸熱ピークのピーク温度が150℃以上215℃以下であり、
上記最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、上記最大吸熱ピークの低温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解開始温度と、上記最大吸熱ピークの高温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解終了温度との差に相当する最大吸熱ピークの幅が、25℃以上80℃以下である、[1]~[7]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
条件A
昇温速度10℃/分の条件下で30℃から280℃まで昇温した際に得られるDSC曲線。
[9]
上記ポリアミド系樹脂として、ポリアミド系樹脂(A)と、上記ポリアミド系樹脂(A)より融点が高いポリアミド系樹脂(B)とを含む、[1]~[8]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
[10]
上記ポリアミド系樹脂(A)100質量部に対する、上記ポリアミド系樹脂(B)の質量割合が20質量部以下である、[9]に記載のポリアミド系樹脂予備発泡粒子。
[11]
上記ポリアミド系樹脂100質量%に対して、結晶性ポリアミド樹脂を50質量%以上含む、[1]~[10]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
[12]
上記結晶性ポリアミド樹脂が、脂肪族ポリアミド樹脂である、[11]に記載のポリアミド系樹脂予備発泡粒子。
[13]
示差走査熱量計を用いて、下記の条件Bで測定される2nd scan DSC曲線において、
最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークより低温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解開始温度から10℃高い温度における結晶融解率が20%以上である、[1]~[12]のいずれかに記載のポリアミド系樹脂予備発泡粒子。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られるDSC曲線を2nd scan DSC曲線とする。
[14]
[1]~[13]のいずれかに記載のポリアミド系樹脂予備発泡粒子からなる、ポリアミド系樹脂発泡成形体。
[15]
[1]~[13]のいずれかに記載のポリアミド系樹脂予備発泡粒子を金型のキャビティ内に充填し、上記キャビティ内に上記ポリアミド系樹脂予備発泡粒子の融点以下の水蒸気を供給して、上記ポリアミド系樹脂予備発泡粒子を膨張させ、且つ熱融着させる工程を含む、ポリアミド系樹脂発泡成形体の製造方法。
本発明によれば、機械的強度に優れたポリアミド系樹脂発泡成形体の原料となるポリアミド系樹脂予備発泡粒子を提供することができる。
以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について詳細に説明する。以下の実施形態は、本発明を説明するための例示であり、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[ポリアミド系樹脂予備発泡粒子]
本実施形態のポリアミド系樹脂予備発泡粒子は、ポリアミド系樹脂を含み、密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、熱融着温度より5℃高い温度の飽和水蒸気を用いて30秒間加熱した後の密度ρ2(g/cm3)との割合(ρ1/ρ2)である膨張比が1.0以上である。
別の本実施形態のポリアミド系樹脂予備発泡粒子は、ポリアミド系樹脂を含み、密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、示差走査熱量計を用いて、下記の条件Bで測定される水中測定時の補外融解開始温度Bから10℃高い温度の飽和水蒸気を用いて、30秒間加熱した後の密度ρ3(g/cm3)との割合(ρ1/ρ3)である膨張比Bが、1.0以上である。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られる2nd scan DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークより低温側の変曲点における接線と上記ベースラインとの交点の温度を補外融解開始温度Bとする。 上記膨張比及び/又は上記膨張比Bが1.0以上であるポリアミド系樹脂予備発泡粒子としては、例えば、(i)ポリアミド系樹脂100質量%に対して、卑金属元素を10~3000質量ppm含むポリアミド系樹脂予備発泡粒子、(ii)示差走査熱量計を用いて、昇温速度10℃/分の条件下で30℃から280℃まで昇温した際に得られるDSC曲線において、最大吸熱ピークのピーク温度が150℃以上215℃以下であり、上記最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、上記最大吸熱ピークの低温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解開始温度と、上記最大吸熱ピークの高温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解終了温度との差に相当する上記最大吸熱ピークの幅が、25℃以上80℃以下であるポリアミド系樹脂予備発泡粒子、(iii)ポリアミド系樹脂100質量%に対して、結晶性ポリアミド樹脂を50質量%以上含むポリアミド系樹脂予備発泡粒子、(iv)上記(i)~(iii)の2つ以上を組み合わせたポリアミド系樹脂予備発泡粒子、等が挙げられる。
本実施形態のポリアミド系樹脂予備発泡粒子は、ポリアミド系樹脂を含み、密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、熱融着温度より5℃高い温度の飽和水蒸気を用いて30秒間加熱した後の密度ρ2(g/cm3)との割合(ρ1/ρ2)である膨張比が1.0以上である。
別の本実施形態のポリアミド系樹脂予備発泡粒子は、ポリアミド系樹脂を含み、密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、示差走査熱量計を用いて、下記の条件Bで測定される水中測定時の補外融解開始温度Bから10℃高い温度の飽和水蒸気を用いて、30秒間加熱した後の密度ρ3(g/cm3)との割合(ρ1/ρ3)である膨張比Bが、1.0以上である。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られる2nd scan DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークより低温側の変曲点における接線と上記ベースラインとの交点の温度を補外融解開始温度Bとする。 上記膨張比及び/又は上記膨張比Bが1.0以上であるポリアミド系樹脂予備発泡粒子としては、例えば、(i)ポリアミド系樹脂100質量%に対して、卑金属元素を10~3000質量ppm含むポリアミド系樹脂予備発泡粒子、(ii)示差走査熱量計を用いて、昇温速度10℃/分の条件下で30℃から280℃まで昇温した際に得られるDSC曲線において、最大吸熱ピークのピーク温度が150℃以上215℃以下であり、上記最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、上記最大吸熱ピークの低温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解開始温度と、上記最大吸熱ピークの高温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解終了温度との差に相当する上記最大吸熱ピークの幅が、25℃以上80℃以下であるポリアミド系樹脂予備発泡粒子、(iii)ポリアミド系樹脂100質量%に対して、結晶性ポリアミド樹脂を50質量%以上含むポリアミド系樹脂予備発泡粒子、(iv)上記(i)~(iii)の2つ以上を組み合わせたポリアミド系樹脂予備発泡粒子、等が挙げられる。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂予備発泡粒子は、ポリアミド系樹脂を含むポリアミド系樹脂組成物を発泡させた予備発泡粒子である。上記ポリアミド系樹脂組成物は、ポリアミド系樹脂を含み、さらにその他の成分を含んでいてもよい。
ここで、「予備発泡粒子」とは、ポリアミド系樹脂組成物の発泡によって形成された多孔構造を有し、最終段階の発泡を行っていない発泡性を備えた樹脂粒子(ビーズ等)を指す。例えば、ポリアミド系樹脂発泡成形体の原料として用いることができる。
ここで、「予備発泡粒子」とは、ポリアミド系樹脂組成物の発泡によって形成された多孔構造を有し、最終段階の発泡を行っていない発泡性を備えた樹脂粒子(ビーズ等)を指す。例えば、ポリアミド系樹脂発泡成形体の原料として用いることができる。
(ポリアミド系樹脂)
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂としては、例えば、ポリアミド単独重合体、ポリアミド共重合体、これらの混合物、が挙げられる。
上記ポリアミド単独重合体としては、ジアミンとジカルボン酸との重縮合により得られる、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド46、ポリアミド1212等、ラクタムの開環重合により得られる、ポリアミド6、ポリアミド12等が挙げられる。
上記ポリアミド共重合体としては、例えば、ポリアミド6/66、ポリアミド66/6、ポリアミド66/610、ポリアミド66/612、ポリアミド66/6T(Tは、テレフタル酸成分を表す)、ポリアミド66/6I(Iは、イソフタル酸成分を表す)、ポリアミド6T/6I等が挙げられる。
中でも脂肪族ポリアミドが好ましく、ポリアミド6、ポリアミド66、ポリアミド6/66、ポリアミド66/6等がより好ましい。
これらは、1種単独で用いてもよく、2種以上を組み合わせて混合物として用いてもよい。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂としては、例えば、ポリアミド単独重合体、ポリアミド共重合体、これらの混合物、が挙げられる。
上記ポリアミド単独重合体としては、ジアミンとジカルボン酸との重縮合により得られる、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド46、ポリアミド1212等、ラクタムの開環重合により得られる、ポリアミド6、ポリアミド12等が挙げられる。
上記ポリアミド共重合体としては、例えば、ポリアミド6/66、ポリアミド66/6、ポリアミド66/610、ポリアミド66/612、ポリアミド66/6T(Tは、テレフタル酸成分を表す)、ポリアミド66/6I(Iは、イソフタル酸成分を表す)、ポリアミド6T/6I等が挙げられる。
中でも脂肪族ポリアミドが好ましく、ポリアミド6、ポリアミド66、ポリアミド6/66、ポリアミド66/6等がより好ましい。
これらは、1種単独で用いてもよく、2種以上を組み合わせて混合物として用いてもよい。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂としては、融点が異なる2種以上のポリアミド系樹脂を含むことが好ましい。中でも、蒸気を用いたビーズ発泡成形における最適温度領域が広くなり、成形時の粒子間の融着性が改善し、発泡倍率が上がり、機械的特性に一層優れる発泡成形体が得られる観点から、ポリアミド系樹脂(A)と、ポリアミド系樹脂(A)より融点が高いポリアミド系樹脂(B)とを含むことが好ましい。これにより、補外融解開始温度と補外融解終了温度との差に相当する最大吸熱ピークの幅が、25℃以上80℃以下であることを実現でき、ポリアミド系樹脂予備発泡粒子を発泡成形する際に十分に発泡させることができる。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂(A)と上記ポリアミド系樹脂(B)との融点の差としては、蒸気を用いたビーズ発泡成形における最適温度領域が広くなり、発泡倍率が上がり、機械的特性に一層優れる発泡成形体が得られる観点から、5℃以上であることが好ましく、ポリアミド系樹脂予備発泡粒子の押出成形時の押出安定性が向上する観点から、より好ましくは10~70℃、さらに好ましくは15~50℃である。
なお、ポリアミド系樹脂が3種以上含まれる場合、融点が最小のポリアミド系樹脂をポリアミド系樹脂(A)、融点が最大のポリアミド系樹脂をポリアミド系樹脂(B)としてよい。
なお、ポリアミド系樹脂が3種以上含まれる場合、融点が最小のポリアミド系樹脂をポリアミド系樹脂(A)、融点が最大のポリアミド系樹脂をポリアミド系樹脂(B)としてよい。
上記ポリアミド系樹脂(A)とポリアミド系樹脂(B)との組み合わせとしては、例えば、上記ポリアミド単独重合体及び/又は上記ポリアミド共重合体の組み合わせを含む混合物としてよく、ポリアミド6とポリアミド66との組み合わせ、ポリアミド6とポリアミド612との組み合わせ、ポリアミド6とポリアミド610との組み合わせ、ポリアミド6とポリアミド6Tとの組み合わせ、ポリアミド6とポリアミド6Iとの組み合わせ、ポリアミド612とポリアミド66との組み合わせ、ポリアミド610とポリアミド66との組み合わせ、ポリアミド66とポリアミド6Tとの組み合わせ、ポリアミド66とポリアミド6Iとの組み合わせ、ポリアミド6/66とポリアミド6との組み合わせ、ポリアミド6/66とポリアミド66との組み合わせ、異なる2種のポリアミド6/66の組み合わせ、等が挙げられる。これらの中でも、ポリアミド系樹脂(A)としてはポリアミド6/66が好ましく、ポリアミド系樹脂(B)としてはポリアミド6又はポリアミド6/66が好ましく、ポリアミド系樹脂(A)がポリアミド6/66であり、ポリアミド系樹脂(B)がポリアミド6である組み合わせが好ましい。これにより発泡成形体の結晶化度を高めて、耐熱性及び融着率が十分となる。
なお、上記ポリアミド系樹脂は、上述のポリアミド系樹脂(A)とポリアミド系樹脂(B)との組み合わせのみからなる混合物であってもよいし、ポリアミド系樹脂(A)とポリアミド系樹脂(B)との組み合わせに加えてさらに他のポリアミド系樹脂を含む混合物であってもよい。
なお、上記ポリアミド系樹脂は、上述のポリアミド系樹脂(A)とポリアミド系樹脂(B)との組み合わせのみからなる混合物であってもよいし、ポリアミド系樹脂(A)とポリアミド系樹脂(B)との組み合わせに加えてさらに他のポリアミド系樹脂を含む混合物であってもよい。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂組成物(100質量%)中の上記ポリアミド系樹脂(A)の質量割合としては、50~99.5質量%が好ましく、より好ましくは80~99質量%である。また、ポリアミド系樹脂予備発泡粒子(100質量%)中の上記ポリアミド系樹脂(A)の質量割合としては、50~99.5質量%が好ましく、より好ましくは80~99質量%である。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂組成物(100質量%)中の上記ポリアミド系樹脂(B)の質量割合としては、0.1~50質量%が好ましく、より好ましくは0.5~10質量%である。また、ポリアミド系樹脂予備発泡粒子(100質量%)中の上記ポリアミド系樹脂(B)の質量割合としては、0.1~50質量%が好ましく、より好ましくは0.5~10質量%である。
押出成形時の温度を低減して、樹脂の熱劣化を抑制し、押出成形時の押出安定性が向上する観点から、上記ポリアミド系樹脂組成物(100質量%)中の上記ポリアミド系樹脂(A)の質量割合は、上記ポリアミド系樹脂組成物(100質量%)中の上記ポリアミド系樹脂(B)の質量割合より多いことが好ましく、30質量%以上多いことがより好ましく、60質量%以上多いことがさらに好ましい。また、同様の観点から、ポリアミド系樹脂予備発泡粒子(100質量%)中の上記ポリアミド系樹脂(A)の質量割合は、上記ポリアミド系樹脂予備発泡粒子(100質量%)中の上記ポリアミド系樹脂(B)の質量割合より多いことが好ましく、30質量%以上多いことがより好ましく、60質量%以上多いことがさらに好ましい。
押出成形時の温度を低減して、樹脂の熱劣化を抑制し、押出成形時の押出安定性が向上する観点から、上記ポリアミド系樹脂組成物(100質量%)中の上記ポリアミド系樹脂(A)の質量割合は、上記ポリアミド系樹脂組成物(100質量%)中の上記ポリアミド系樹脂(B)の質量割合より多いことが好ましく、30質量%以上多いことがより好ましく、60質量%以上多いことがさらに好ましい。また、同様の観点から、ポリアミド系樹脂予備発泡粒子(100質量%)中の上記ポリアミド系樹脂(A)の質量割合は、上記ポリアミド系樹脂予備発泡粒子(100質量%)中の上記ポリアミド系樹脂(B)の質量割合より多いことが好ましく、30質量%以上多いことがより好ましく、60質量%以上多いことがさらに好ましい。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂組成物は、上記ポリアミド系樹脂(A)100質量部に対する、上記ポリアミド系樹脂(B)の質量割合が、20質量部以下であることが好ましく、より好ましくは0.5~20質量部、さらに好ましくは1~10質量部である。質量割合が上記範囲であると、発泡成形体の結晶化度を高めて、耐熱性及び融着率が十分となる。
また、ポリアミド系樹脂予備発泡粒子においても、上記ポリアミド系樹脂(A)100質量部に対する、上記ポリアミド系樹脂(B)の質量割合は、20質量部以下であることが好ましく、より好ましくは0.5~20質量部、さらに好ましくは1~10質量部である。
また、ポリアミド系樹脂予備発泡粒子においても、上記ポリアミド系樹脂(A)100質量部に対する、上記ポリアミド系樹脂(B)の質量割合は、20質量部以下であることが好ましく、より好ましくは0.5~20質量部、さらに好ましくは1~10質量部である。
発泡成形体として、優れた軽量性が求められる場合には、炭酸ガスや炭化水素等の発泡剤を含みやすく、発泡成形体の密度を低くすることができる観点から、非晶性のポリアミド樹脂を含むことが好ましい。この場合、上記ポリアミド系樹脂組成物において、上記ポリアミド系樹脂100質量%に対して、非晶性ポリアミド樹脂の含有割合が50質量%未満であることが好ましく、30質量%未満であることがさらに好ましい。また、上記ポリアミド系樹脂予備発泡粒子において、上記ポリアミド系樹脂100質量%に対して、非晶性ポリアミド樹脂の含有割合が50質量%未満であることが好ましく、30質量%未満であることがさらに好ましい。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂組成物は、後述の膨張比及び/又は膨張比Bを1.0以上とする観点、及び発泡粒子の融着が十分に進行する温度においても、気泡の破膜に起因する収縮をより一層抑え、より高い膨張比をもち、耐熱性及び機械的強度により優れたポリアミド系樹脂発泡成形体を得る観点、及び発泡成形時の高温環境下でのポリアミド系樹脂組成物の粘度が低下し、発泡粒子間の樹脂の相互拡散を促進せしめ、成形品の融着性が向上し、機械強度を向上させる観点から、上記ポリアミド系樹脂100質量%に対して、結晶性ポリアミド樹脂を50質量%以上含むことが好ましい。発泡成形体として耐熱性、耐薬品性、耐油性と軽量性とのバランスが求められる場合には、上記ポリアミド系樹脂100質量%に対して、結晶性ポリアミド樹脂を50質量%以上含むことが好ましく、70質量%以上含むことがより好ましい。また、上記ポリアミド系樹脂予備発泡粒子において、上記ポリアミド系樹脂100質量%に対して、結晶性ポリアミド樹脂を50質量%以上含むことが好ましく、70質量%以上含むことがより好ましい。
また、上記結晶性ポリアミド樹脂は結晶性の脂肪族ポリアミド樹脂であることが好ましく、上記ポリアミド系樹脂100質量%に対して結晶性の脂肪族ポリアミド樹脂を50質量%以上含むことがより好ましい。
本実施形態における結晶性ポリアミドは、主鎖中にアミド結合(-NHCO-)を有する重合体で、かつ示差走査熱量計(DSC)で求めた融解熱量が1J/g以上、好ましくは10J/g以上、より好ましくは15J/g以上、最も好ましくは20J/g以上であるポリアミドをいう。示差走査熱量計(DSC)の測定は、具体的には、パーキンエルマー社製DSC-7型を用いて測定することができる。更に詳しく述べれば、窒素雰囲気下、試料約8mgを300℃で2分間保った後、降温速度20℃/minで40℃まで降温して、さらに40℃で2分間保持した後、昇温速度20℃/minで昇温したときに現れる吸熱ピーク(融解ピーク)のピーク面積から求めることができる。また、非晶性ポリアミドとは、上述の条件で測定した際に、融解熱量が1J/g未満であるポリアミドをいう。
また、上記結晶性ポリアミド樹脂は結晶性の脂肪族ポリアミド樹脂であることが好ましく、上記ポリアミド系樹脂100質量%に対して結晶性の脂肪族ポリアミド樹脂を50質量%以上含むことがより好ましい。
本実施形態における結晶性ポリアミドは、主鎖中にアミド結合(-NHCO-)を有する重合体で、かつ示差走査熱量計(DSC)で求めた融解熱量が1J/g以上、好ましくは10J/g以上、より好ましくは15J/g以上、最も好ましくは20J/g以上であるポリアミドをいう。示差走査熱量計(DSC)の測定は、具体的には、パーキンエルマー社製DSC-7型を用いて測定することができる。更に詳しく述べれば、窒素雰囲気下、試料約8mgを300℃で2分間保った後、降温速度20℃/minで40℃まで降温して、さらに40℃で2分間保持した後、昇温速度20℃/minで昇温したときに現れる吸熱ピーク(融解ピーク)のピーク面積から求めることができる。また、非晶性ポリアミドとは、上述の条件で測定した際に、融解熱量が1J/g未満であるポリアミドをいう。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂が、ポリアミド系樹脂の混合物である場合、発泡成形体の結晶化度を高めて、耐熱性を十分にする観点から、上記ポリアミド系樹脂組成物は、ポリアミド系樹脂100質量%に対して、脂肪族ポリアミドを50質量%超含むことが好ましく、60質量%以上含むことがより好ましく、70質量%以上含むことがさらに好ましく、75質量%以上含むことが格別好ましい。また、同様の観点から、上記ポリアミド系樹脂予備発泡粒子において、ポリアミド系樹脂100質量%に対して、脂肪族ポリアミドを50質量%超含むことが好ましく、60質量%以上含むことがより好ましく、70質量%以上含むことがさらに好ましく、75質量%以上含むことが格別好ましい。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂の融点は、発泡成形体の耐熱性を十分にする観点から、150℃以上であることが好ましく、180℃以上であることが更に好ましく、また、発泡成形体の成形プロセスにおいて予備発泡粒子同士の融着率を向上させる観点から、270℃以下であることが好ましく、250℃以下であることが更に好ましい。
なお、本明細書において、ポリアミド系樹脂の融点は、JIS K7121に準じて、示差走査熱量測定(DSC)により測定した値を指す。測定で現れた吸熱を示すピークを樹脂の融解を示すピークとし、最も高温側に現れた吸熱を示すピークにおける温度を、融点とする。
測定装置としては、市販の示差走査熱量計を用いてよく、例えば、パーキンエルマー社製のDSC7等が挙げられる。
測定条件としては、通常の条件を用いてよく、例えば、不活性ガス雰囲気下、樹脂をその融点超の温度で保持し、その後、20℃/分で室温程度まで急冷し、次いで、融点超の温度まで20℃/分で昇温させる条件等が挙げられる。
なお、本明細書において、ポリアミド系樹脂の融点は、JIS K7121に準じて、示差走査熱量測定(DSC)により測定した値を指す。測定で現れた吸熱を示すピークを樹脂の融解を示すピークとし、最も高温側に現れた吸熱を示すピークにおける温度を、融点とする。
測定装置としては、市販の示差走査熱量計を用いてよく、例えば、パーキンエルマー社製のDSC7等が挙げられる。
測定条件としては、通常の条件を用いてよく、例えば、不活性ガス雰囲気下、樹脂をその融点超の温度で保持し、その後、20℃/分で室温程度まで急冷し、次いで、融点超の温度まで20℃/分で昇温させる条件等が挙げられる。
ポリアミド系樹脂が末端に有する高反応性の官能基(アミノ基及びカルボキシル基)を、ポリアミド系樹脂の合成において末端封止剤を添加することによって、低反応性の官能基に変える(ポリアミド系樹脂の末端を封鎖する)ことができる。
この場合、末端封止剤を添加する時期としては、原料仕込み時、重合開始時、重合中後期、又は重合終了時が挙げられる。
末端封止剤としては、ポリアミド系樹脂のアミノ基又はカルボキシル基との間で反応し得る単官能性の化合物である限り、特に制限されることなく、例えば、モノカルボン酸、モノアミン、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
この場合、末端封止剤を添加する時期としては、原料仕込み時、重合開始時、重合中後期、又は重合終了時が挙げられる。
末端封止剤としては、ポリアミド系樹脂のアミノ基又はカルボキシル基との間で反応し得る単官能性の化合物である限り、特に制限されることなく、例えば、モノカルボン酸、モノアミン、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂の酸価及びアミン価としては、それぞれ、0mgKOH/g以上としてよく、また、ポリアミド系樹脂の溶融滞留時にゲル化や劣化を生じにくくする観点、及び樹脂の使用環境下において着色や加水分解等の問題を生じにくくする観点から、10mgKOH/g以下であることが好ましく、5mgKOH/g以下であることが更に好ましい。
上記ポリアミド系樹脂の上記アミン価と上記酸価との和(酸価+アミン価)は、ポリアミド系樹脂の卑金属化合物との相互作用をより強固なものとし、予備発泡粒子の融着が十分に進行する温度においても、気泡の破膜に起因する収縮をより一層抑え、より高い膨張比を与える観点から、2.5mgKOH/g以上8.0mgKOH/g以下であることが好ましく、より好ましくは3.0~6.5mgKOH/g、さらに好ましくは3.5~5.5mgKOH/gである。
上記アミン価と酸価とは、同じであってもよいし異なっていてもよい。
なお、上記酸価及びアミン価は、後述の実施例に記載の方法により測定することができる。また、ポリアミド系樹脂の酸価、アミン価は、ポリアミド系樹脂の分子量を変更したり、上述の末端封止剤を使用したりすることにより調整することができる。
上記ポリアミド系樹脂の上記アミン価と上記酸価との和(酸価+アミン価)は、ポリアミド系樹脂の卑金属化合物との相互作用をより強固なものとし、予備発泡粒子の融着が十分に進行する温度においても、気泡の破膜に起因する収縮をより一層抑え、より高い膨張比を与える観点から、2.5mgKOH/g以上8.0mgKOH/g以下であることが好ましく、より好ましくは3.0~6.5mgKOH/g、さらに好ましくは3.5~5.5mgKOH/gである。
上記アミン価と酸価とは、同じであってもよいし異なっていてもよい。
なお、上記酸価及びアミン価は、後述の実施例に記載の方法により測定することができる。また、ポリアミド系樹脂の酸価、アミン価は、ポリアミド系樹脂の分子量を変更したり、上述の末端封止剤を使用したりすることにより調整することができる。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂の飽和吸水率(23℃100%RH)は、3%以上であることが好ましく、この範囲であると、ポリアミド系樹脂予備発泡粒子を含水処理した場合に優れた融着性を発現することができる観点から好ましく、より好ましくは6%以上である。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂の数平均分子量Mnは、発泡成形時の高温環境下でのポリアミド系樹脂の粘度が低下し、発泡粒子間の樹脂の相互拡散を促進せしめ、成形品の融着性が向上し、機械強度を向上させる観点から、35000以下であることが好ましく、発泡成形時の高温環境下でも高分子鎖の3次元ネットワークを保持し、気泡の膜の強度を上げ、破泡を抑える観点から、10000以上であることが好ましい。より好ましくは12000~27000、さらに好ましくは15000~30000、特に好ましくは16000~26000である。
また、ポリアミド系樹脂の重量平均分子量Mwは、発泡成形時の高温環境下でのポリアミド系樹脂の粘度が低下し、発泡粒子間の樹脂の相互拡散を促進せしめ、成形品の融着性が向上し、機械強度を向上させる観点から、140000以下であることが好ましく、発泡成形時の高温環境下でも高分子鎖の3次元ネットワークを保持し、気泡の膜の強度を上げ、破泡を抑える観点から、35000以上であることが好ましい。より好ましくは40000~125000、さらに好ましくは60000~120000、特に好ましくは65000~120000である。
なお、数平均分子量Mn、重量平均分子量Mwは、後述の実施例に記載の方法により測定することができる。
また、ポリアミド系樹脂の重量平均分子量Mwは、発泡成形時の高温環境下でのポリアミド系樹脂の粘度が低下し、発泡粒子間の樹脂の相互拡散を促進せしめ、成形品の融着性が向上し、機械強度を向上させる観点から、140000以下であることが好ましく、発泡成形時の高温環境下でも高分子鎖の3次元ネットワークを保持し、気泡の膜の強度を上げ、破泡を抑える観点から、35000以上であることが好ましい。より好ましくは40000~125000、さらに好ましくは60000~120000、特に好ましくは65000~120000である。
なお、数平均分子量Mn、重量平均分子量Mwは、後述の実施例に記載の方法により測定することができる。
(その他の成分)
本実施形態のポリアミド系樹脂組成物及び/又はポリアミド系樹脂予備発泡粒子は、さらにその他の成分を含んでいてもよい。
上記他の添加成分としては、例えば、卑金属元素含有化合物;ヨウ素元素含有化合物;安定剤、難燃剤、気泡調整剤、改質剤、衝撃改良材、滑剤、顔料、染料、耐候性改良剤、帯電防止剤、耐衝撃改質剤、結晶核剤、ガラスビーズ、無機充填材、架橋剤、タルク等の核剤、他の熱可塑性樹脂等の添加成分;が挙げられる。
本実施形態のポリアミド系樹脂組成物及び/又はポリアミド系樹脂予備発泡粒子は、さらにその他の成分を含んでいてもよい。
上記他の添加成分としては、例えば、卑金属元素含有化合物;ヨウ素元素含有化合物;安定剤、難燃剤、気泡調整剤、改質剤、衝撃改良材、滑剤、顔料、染料、耐候性改良剤、帯電防止剤、耐衝撃改質剤、結晶核剤、ガラスビーズ、無機充填材、架橋剤、タルク等の核剤、他の熱可塑性樹脂等の添加成分;が挙げられる。
-卑金属元素含有化合物-
上記卑金属元素としては、鉄、銅、ニッケル、鉛、亜鉛、すず、タングステン、モリブデン、タンタル、コバルト、ビスマス、カドミウム、チタン、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム、タリウム等の元素が該当する。成形性の向上効果、コスト、及び有毒性の観点から、銅元素又は亜鉛元素が好ましい。
上記卑金属元素としては、鉄、銅、ニッケル、鉛、亜鉛、すず、タングステン、モリブデン、タンタル、コバルト、ビスマス、カドミウム、チタン、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム、タリウム等の元素が該当する。成形性の向上効果、コスト、及び有毒性の観点から、銅元素又は亜鉛元素が好ましい。
本実施形態(例えば、上記[1]~[13]の形態等)において、卑金属元素の含有量としては、ポリアミド系樹脂100質量%に対して、10~3000質量ppmであることが好ましい。また、20質量ppm以上であることがより好ましく、さらに好ましくは30質量ppm以上である。また、2500質量ppm以下であることがより好ましく、さらに好ましくは質量2000ppm以下である。卑金属元素の含有量が10質量ppm以上であると、型内成形時に収縮による密度の低下やバラつきを抑えることができ、20質量ppm以上であると、熱安定性を一層向上させることができる。卑金属元素の含有量が3000質量ppm以下であると、溶融混錬時に卑金属元素含有化合物が凝集しにくくなり、卑金属元素含有化合物の凝集に起因する気泡の破膜や、発泡粒子の外観不良が起こりにくくなる。
なお、ポリアミド系樹脂組成物中及び/又はポリアミド系樹脂予備発泡粒子中の、卑金属元素の種類は、蛍光X線により同定することができる。また、卑金属元素の質量割合は、誘導結合プラズマ発光分光分析法(ICP-AES)により測定することができ、具体的には後述の実施例に記載の方法により測定することができる。
なお、ポリアミド系樹脂組成物中及び/又はポリアミド系樹脂予備発泡粒子中の、卑金属元素の種類は、蛍光X線により同定することができる。また、卑金属元素の質量割合は、誘導結合プラズマ発光分光分析法(ICP-AES)により測定することができ、具体的には後述の実施例に記載の方法により測定することができる。
上記卑金属元素を供給する化合物としては、卑金属元素を含む化合物であれば特に限定されることなく、例えば、ハロゲン化金属や酢酸金属等の塩や、エチレン-不飽和カルボン酸金属塩共重合体のようなアイオノマー等が挙げられる。
なお、本明細書において、卑金属元素を供給する化合物を、「卑金属元素含有化合物」と称する場合がある。
なお、本明細書において、卑金属元素を供給する化合物を、「卑金属元素含有化合物」と称する場合がある。
-ヨウ素元素含有化合物-
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ヨウ素元素の含有量としては、ポリアミド系樹脂100質量%に対して、10~6000質量ppmであることが好ましい。また、100質量ppm以上であることがより好ましく、さらに好ましくは1000質量ppm以上である。10質量ppm以上のヨウ素元素を含むことで、成形時の収縮による密度の低下を抑えることができ、100質量ppm以上含むことで、熱安定性がさらに向上する。ヨウ素元素の上記含有量は、着色性の観点から、6000質量ppm以下であることが好ましく、より好ましくは5000質量ppm以下、さらに好ましくは4000質量ppm以下である。
ポリアミド系樹脂組成物及び/又はポリアミド系樹脂予備発泡粒子中の、ヨウ素元素の上記含有量は、イオンクロマトグラフ法で測定することができ、具体的には後述の実施例に記載の方法により測定することができる。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ヨウ素元素の含有量としては、ポリアミド系樹脂100質量%に対して、10~6000質量ppmであることが好ましい。また、100質量ppm以上であることがより好ましく、さらに好ましくは1000質量ppm以上である。10質量ppm以上のヨウ素元素を含むことで、成形時の収縮による密度の低下を抑えることができ、100質量ppm以上含むことで、熱安定性がさらに向上する。ヨウ素元素の上記含有量は、着色性の観点から、6000質量ppm以下であることが好ましく、より好ましくは5000質量ppm以下、さらに好ましくは4000質量ppm以下である。
ポリアミド系樹脂組成物及び/又はポリアミド系樹脂予備発泡粒子中の、ヨウ素元素の上記含有量は、イオンクロマトグラフ法で測定することができ、具体的には後述の実施例に記載の方法により測定することができる。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記ポリアミド系樹脂組成物及び/又は上記ポリアミド樹脂系予備発泡粒子中の、上記卑金属元素に対する上記ヨウ素元素のモル割合(ヨウ素元素/卑金属元素)は、1.0以上であることが好ましく、より好ましくは3.0以上である。モル割合が1.0以上であれば成形性を向上させることができ、3.0以上であれば、さらに熱安定性に優れた発泡成形体をつくることができる。
ここで、卑金属元素に対するヨウ素元素のモル割合は、次の通り求められるものを指す。すなわち、ICP-AESによって測定された卑金属元素の質量濃度mxを、その元素の原子量で除することにより、その卑金属元素のモル濃度[x]を求め、これを蛍光X線で検出された全ての卑金属元素について合計することにより、卑金属元素全体のモル濃度[M]を求めることができる。同様にイオンクロマトグラフ法によって測定されたヨウ素元素の質量濃度m2をヨウ素の原子量で除した値を[I]とする。この[I]を[M]で除した値[I]/[M]を、卑金属元素に対するヨウ素元素のモル割合とする。
また、例えば、卑金属元素が銅元素のみである場合、ICP-AESによって測定された銅元素の質量濃度を銅の原子量で除した値[Cu]を求め、上記[I]を[Cu]で除して[I]/[Cu]を求めることができる。
ここで、卑金属元素に対するヨウ素元素のモル割合は、次の通り求められるものを指す。すなわち、ICP-AESによって測定された卑金属元素の質量濃度mxを、その元素の原子量で除することにより、その卑金属元素のモル濃度[x]を求め、これを蛍光X線で検出された全ての卑金属元素について合計することにより、卑金属元素全体のモル濃度[M]を求めることができる。同様にイオンクロマトグラフ法によって測定されたヨウ素元素の質量濃度m2をヨウ素の原子量で除した値を[I]とする。この[I]を[M]で除した値[I]/[M]を、卑金属元素に対するヨウ素元素のモル割合とする。
また、例えば、卑金属元素が銅元素のみである場合、ICP-AESによって測定された銅元素の質量濃度を銅の原子量で除した値[Cu]を求め、上記[I]を[Cu]で除して[I]/[Cu]を求めることができる。
ヨウ素元素を供給する化合物としては、ヨウ素元素を含む化合物であれば特に限定されることなく、例えば、ヨウ化カリウムやヨウ化ナトリウム等のアルカリ金属塩、ヨウ化テトラブチルアンモニウム等のアンモニウム塩等が挙げられる。
なお、本明細書において、ヨウ素元素を供給する化合物を、「ヨウ素元素含有化合物」と称する場合がある。
なお、本明細書において、ヨウ素元素を供給する化合物を、「ヨウ素元素含有化合物」と称する場合がある。
卑金属元素含有化合物及び/又はヨウ素元素含有化合物を添加する方法としては、特に限定はされないが、公知の溶融混錬法によって添加することができ、例えば、押出機を用いた溶融混錬法が挙げられる。この際、卑金属元素含有化合物とヨウ素元素含有化合物は、原料となるポリアミド系樹脂に直接ドライブレンドしても良いが、操作性向上の観点から、卑金属元素含有化合物を含むマスターバッチとヨウ素元素含有化合物を含むマスターバッチ、又は卑金属元素含有化合物とヨウ素元素含有化合物との両方を含むマスターバッチをブレンドして溶融混錬することが好ましい。
押出機としては、一つのスクリュを備えた単軸押出機や、二つのスクリュを備えた二軸押出機を用いることができる。二軸押出機では、二つのスクリュが同方向に回転するもの、異方向に回転するものでも、いずれも用いることができる。
溶融混錬時におけるシリンダの設定温度は、ポリアミド系樹脂の融点以上であれば特に限定されず、例えば、200~340℃の範囲内である。より好ましくは、200~300℃の範囲内である。生産性を保つためには200℃以上の設定温度で溶融混錬することが好ましく、ポリアミド系樹脂の熱劣化を抑制する為には、290℃以下の設定温度で溶融混錬することが好ましい。卑金属元素含有化合物の分散性の観点から、使用するポリアミド系樹脂によって好ましい設定温度は異なり、ポリアミド系樹脂の融点より20~80℃高い設定温度で溶融混錬することが望ましい。
ポリアミド系樹脂組成物の押出時における樹脂温度は、シリンダの設定温度・スクリュ回転数・樹脂の供給量等の因子によって影響を受ける。溶融混錬時の溶融樹脂温度として、210~340℃となる温度とするのが好ましい。より好ましくは、220~320℃であり、これは、押出機の先端フランジ内に取り付けた接触式熱電対等の温度計で実測した温度である。
溶融混錬後は、ダイから吐出させることによりストランドとして押し出し、冷却槽で水冷し、カッティングを行い、発泡に利用しやすい所望の粒子形状とすることが好ましい。ポリアミド系樹脂組成物の粒子形状としては、特に限定されることなく、例えば、ビーズ状、ペレット状、球体、不定形の粉砕物等が挙げられる。また、上記粒子径状の平均粒子径は、発泡後の発泡粒子の大きさを適度なものとし、発泡粒子を取り扱いやすくして、成形時の充填をより密にする観点から、0.5~4.0mmであることが好ましく、0.5~2.5mmであることがより好ましい。なお、平均粒子径は、任意のポリアミド系樹脂組成物の粒子20個をマイクロスコープで撮影し、それぞれの粒子において粒子の中心を通る直線2本を直交するように引いて、算出した粒子径を平均することにより得られる。なお、直線2本の線の長さが異なる場合は、長い方をその粒子の粒子径として採用する。
-添加成分-
上記添加成分とは、上記ポリアミド系樹脂、上記卑金属元素含有化合物、上記ヨウ素元素含有化合物、を除く化合物をいうものとする。
上記添加成分とは、上記ポリアミド系樹脂、上記卑金属元素含有化合物、上記ヨウ素元素含有化合物、を除く化合物をいうものとする。
上記安定剤としては、特に限定されることなく、例えば、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、ホスファイト化合物、チオエーテル系化合物等の有機系酸化防止剤や熱安定剤;ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤;金属不活性化剤;等が挙げられる。これらは、1種単独で用いてもよく、もちろん2種以上を組み合わせて用いてもよい。
上記熱安定剤としては、120℃以上の高温環境下で長期熱老化を効果的に防止する観点から、銅化合物が好ましく、この銅化合物とハロゲン化アルカリ金属化合物との組み合わせも好ましい。ここで、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
難燃剤としては、特に限定されないが、ハロゲン系難燃剤とアンチモン化合物との組み合わせが好ましい。
ここで、ハロゲン系難燃剤としては、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ樹脂、臭素化スチレン無水マレイン酸共重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン、臭素化架橋芳香族重合体が好ましく、また、アンチモン化合物としては、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウムが好ましい。
難燃剤としては、熱安定性の観点から、ジブロモポリスチレンと三酸化アンチモンとの組み合わせが好ましい。
また、難燃剤としては、非ハロゲン系難燃剤も用いられてよく、具体的には、メラミンシアヌレート、赤リン、ホスフィン酸金属塩、含窒素リン酸系化合物等が挙げられ、特に、ホスフィン酸金属塩と、含窒素リン酸系化合物(例えば、メラミンやメラミンの縮合物(メラム、メロン等)とポリリン酸との、反応生成物又は混合物も含む)との組み合わせが好ましい。
ここで、ハロゲン系難燃剤としては、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ樹脂、臭素化スチレン無水マレイン酸共重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン、臭素化架橋芳香族重合体が好ましく、また、アンチモン化合物としては、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウムが好ましい。
難燃剤としては、熱安定性の観点から、ジブロモポリスチレンと三酸化アンチモンとの組み合わせが好ましい。
また、難燃剤としては、非ハロゲン系難燃剤も用いられてよく、具体的には、メラミンシアヌレート、赤リン、ホスフィン酸金属塩、含窒素リン酸系化合物等が挙げられ、特に、ホスフィン酸金属塩と、含窒素リン酸系化合物(例えば、メラミンやメラミンの縮合物(メラム、メロン等)とポリリン酸との、反応生成物又は混合物も含む)との組み合わせが好ましい。
ポリアミド系樹脂予備発泡粒子の平均気泡径を調節する必要がある場合は、気泡調整剤を添加してもよい。気泡調整剤としては、無機造核剤には、タルク、シリカ、ケイ酸カルシウム、炭酸カルシウム、酸化アルミニウム、酸化チタン、珪藻土、クレー、重曹、アルミナ、硫酸バリウム、酸化アルミニウム、ベントナイト等があり、その使用量は通常、ポリアミド系樹脂予備発泡粒子の原料全量に対して、0.005~5質量部を添加する。
ポリアミド系樹脂組成物中及び/又はポリアミド系樹脂予備発泡粒子中の上記添加成分の含有量は、ポリアミド系樹脂100質量部に対して、15質量部以下としてよく、6質量部以下であることが好ましく、3質量部以下であることがさらに好ましい。
本実施形態において、上記添加成分を添加する方法としては、卑金属元素含有化合物やヨウ素元素含有化合物と同時に添加してもよく、また卑金属元素含有化合物やヨウ素元素含有化合物を添加する工程の前もしくは後に、もう一度溶融混錬を行って添加してもよい。より好ましくは、一つの二軸押出機中で、卑金属元素含有化合物やヨウ素元素含有化合物と同時に溶融混錬することが望ましい。
なお、上記ポリアミド系樹脂組成物には、本発明の目的を損なわない範囲において、ポリアミド系樹脂のアミノ基又はカルボキシル基と反応する置換基(以下、反応性の置換基ともいう。)を有する化合物や重合体等を用いて、樹脂の分子内においてかかる置換基を介した架橋構造を形成させることによって、樹脂の架橋度を高めてもよい。
反応性の置換基としては、例えば、グリシジル基、カルボキシル基、カルボン酸金属塩、エステル基、ヒドロキシル基、アミノ基、カルボジイミド基、酸無水物基等の官能基等が挙げられ、特に、反応の速さの観点から、グリシジル基、酸無水物基、カルボジイミド基が好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、化合物や重合体等は、1分子中に複数種の官能基を有していてもよい。なお、反応性の置換基の樹脂への導入量は、架橋により樹脂にゲル化等が生じない程度とするのがよい。
反応性の置換基としては、例えば、グリシジル基、カルボキシル基、カルボン酸金属塩、エステル基、ヒドロキシル基、アミノ基、カルボジイミド基、酸無水物基等の官能基等が挙げられ、特に、反応の速さの観点から、グリシジル基、酸無水物基、カルボジイミド基が好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、化合物や重合体等は、1分子中に複数種の官能基を有していてもよい。なお、反応性の置換基の樹脂への導入量は、架橋により樹脂にゲル化等が生じない程度とするのがよい。
(特性)
以下に、本実施形態のポリアミド系樹脂予備発泡粒子の特性について述べる。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂予備発泡粒子は、密度ρ1(g/cm3)と、0.9MPaの空気で加圧し(例えば、0.9MPaで24時間加圧し)、上記ポリアミド系樹脂予備発泡粒子の熱融着温度より5℃高い温度の飽和水蒸気を用いて30秒間加熱した後の密度ρ2(g/cm3)との割合(ρ1/ρ2)である膨張比が、1.0以上であること好ましく、より好ましくは1.1以上、さらに好ましくは1.2以上であり、2.0以下であってよい。
上記膨張比が1.0以上であれば、予備発泡粒子を金型に充填し、水蒸気で加熱して樹脂発泡成形体とした時に、十分な機械強度を持った樹脂発泡成形体を得ることができる。また、気泡の破膜に起因する収縮を抑え、耐熱性及び機械的強度に優れたポリアミド系樹脂発泡成形体を得ることができる。
なお、密度ρ1は、ρ2を測定する際の加圧加熱前のポリアミド系樹脂予備発泡粒子の密度としてよく、例えば、製造後に加圧加熱処理をしていないポリアミド系樹脂予備発泡粒子の密度としてよい。
上記膨張比は、例えば、熱安定剤の添加(例えば、上述の卑金属元素含有化合物の添加)、融点の差が上記好適範囲のポリアミド系樹脂の組み合わせの使用、結晶性ポリアミド樹脂の使用、含水率が0質量%以上12質量%以下のポリアミド系樹脂予備発泡粒子の使用等により調整することができる。
熱融着温度、及び膨張比の測定方法については、実施例にて説明する。
また、熱融着温度より3℃高い温度の飽和水蒸気を用いた場合の膨張比は1.0以上であることが好ましく、2.0以下であってよい。また、熱融着温度の飽和水蒸気を用いた場合の上記膨張比は1.0以上であることが好ましく、2.0以下であってよい。
以下に、本実施形態のポリアミド系樹脂予備発泡粒子の特性について述べる。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂予備発泡粒子は、密度ρ1(g/cm3)と、0.9MPaの空気で加圧し(例えば、0.9MPaで24時間加圧し)、上記ポリアミド系樹脂予備発泡粒子の熱融着温度より5℃高い温度の飽和水蒸気を用いて30秒間加熱した後の密度ρ2(g/cm3)との割合(ρ1/ρ2)である膨張比が、1.0以上であること好ましく、より好ましくは1.1以上、さらに好ましくは1.2以上であり、2.0以下であってよい。
上記膨張比が1.0以上であれば、予備発泡粒子を金型に充填し、水蒸気で加熱して樹脂発泡成形体とした時に、十分な機械強度を持った樹脂発泡成形体を得ることができる。また、気泡の破膜に起因する収縮を抑え、耐熱性及び機械的強度に優れたポリアミド系樹脂発泡成形体を得ることができる。
なお、密度ρ1は、ρ2を測定する際の加圧加熱前のポリアミド系樹脂予備発泡粒子の密度としてよく、例えば、製造後に加圧加熱処理をしていないポリアミド系樹脂予備発泡粒子の密度としてよい。
上記膨張比は、例えば、熱安定剤の添加(例えば、上述の卑金属元素含有化合物の添加)、融点の差が上記好適範囲のポリアミド系樹脂の組み合わせの使用、結晶性ポリアミド樹脂の使用、含水率が0質量%以上12質量%以下のポリアミド系樹脂予備発泡粒子の使用等により調整することができる。
熱融着温度、及び膨張比の測定方法については、実施例にて説明する。
また、熱融着温度より3℃高い温度の飽和水蒸気を用いた場合の膨張比は1.0以上であることが好ましく、2.0以下であってよい。また、熱融着温度の飽和水蒸気を用いた場合の上記膨張比は1.0以上であることが好ましく、2.0以下であってよい。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂予備発泡粒子は、密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、示差走査熱量計を用いて、下記の条件Bで測定される水中測定時の補外融解開始温度Bから10℃高い温度の飽和水蒸気を用いて、30秒間加熱した後の密度ρ3(g/cm3)との割合(ρ1/ρ3)である膨張比Bが、1.0以上であること好ましく、より好ましくは1.1以上、さらに好ましくは1.2以上であり、2.0以下であってよい。
上記膨張比Bが1.0以上であれば、予備発泡粒子を金型に充填し、水蒸気で加熱して樹脂発泡成形体とした時に、十分な機械強度を持った樹脂発泡成形体を得ることができる。また、気泡の破膜に起因する収縮を抑え、耐熱性及び機械的強度に優れたポリアミド系樹脂発泡成形体を得ることができる。
なお、密度ρ1は、ρ3を測定する際の加圧加熱前のポリアミド系樹脂予備発泡粒子の密度としてよく、例えば、製造後に加圧加熱処理をしていないポリアミド系樹脂予備発泡粒子の密度としてよい。
上記膨張比Bは、例えば、熱安定剤の添加(例えば、上述の卑金属元素含有化合物の添加)、融点の差が上記好適範囲のポリアミド系樹脂の組み合わせの使用、結晶性ポリアミド樹脂の使用、含水率が0質量%以上12質量%以下のポリアミド系樹脂予備発泡粒子の使用等により調整することができる。
補外融解開始温度B、及び膨張比Bの測定方法については、実施例にて説明する。
また、補外融解開始温度Bより8℃高い温度の飽和水蒸気を用いた場合の膨張比は1.0以上であることが好ましく、2.0以下であってよい。また、補外融解開始温度Bの飽和水蒸気を用いた場合の上記膨張比は1.0以上であることが好ましく、2.0以下であってよい。
上記膨張比Bが1.0以上であれば、予備発泡粒子を金型に充填し、水蒸気で加熱して樹脂発泡成形体とした時に、十分な機械強度を持った樹脂発泡成形体を得ることができる。また、気泡の破膜に起因する収縮を抑え、耐熱性及び機械的強度に優れたポリアミド系樹脂発泡成形体を得ることができる。
なお、密度ρ1は、ρ3を測定する際の加圧加熱前のポリアミド系樹脂予備発泡粒子の密度としてよく、例えば、製造後に加圧加熱処理をしていないポリアミド系樹脂予備発泡粒子の密度としてよい。
上記膨張比Bは、例えば、熱安定剤の添加(例えば、上述の卑金属元素含有化合物の添加)、融点の差が上記好適範囲のポリアミド系樹脂の組み合わせの使用、結晶性ポリアミド樹脂の使用、含水率が0質量%以上12質量%以下のポリアミド系樹脂予備発泡粒子の使用等により調整することができる。
補外融解開始温度B、及び膨張比Bの測定方法については、実施例にて説明する。
また、補外融解開始温度Bより8℃高い温度の飽和水蒸気を用いた場合の膨張比は1.0以上であることが好ましく、2.0以下であってよい。また、補外融解開始温度Bの飽和水蒸気を用いた場合の上記膨張比は1.0以上であることが好ましく、2.0以下であってよい。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂予備発泡粒子は、示差走査熱量計を用いて、昇温速度10℃/分の条件下で30℃から280℃まで昇温した際に得られるDSC曲線(条件A)において、最大吸熱ピークのピーク温度が、150℃以上255℃以下であることが好ましく、より好ましくは150℃以上215℃以下、より好ましくは155℃以上220℃以下、さらに好ましくは160℃以上200℃以下である。最大吸熱ピークのピーク温度が上記範囲にあると、飽和蒸気を用いた発泡成形が容易となり、実用上好ましい傾向がある。
また、本実施形態のポリアミド系樹脂予備発泡粒子は、上記DSC曲線において、最大吸熱ピークのピーク温度より高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークのピーク温度より低温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解開始温度と、最大吸熱ピークのピーク温度の高温側の変曲点における接線とベースラインとの交点の温度である補外融解終了温度との差に相当する最大吸熱ピークの幅が、25℃以上80℃以下であることが好ましく、より好ましくは28℃以上70℃以下、さらに好ましくは35℃以上70℃以下、特に好ましくは40℃以上65℃以下である。最大吸熱ピークの幅が上記範囲にあると、温度条件で発泡粒子間の融着力を強めつつ、予備発泡粒子の破泡による材料強度の低下を抑制でき、成形性が向上する傾向がある。
上記ポリアミド系樹脂予備発泡粒子は、最大吸熱の上記ピーク温度が上述の好適範囲であり、且つ最大吸熱ピークの上記幅が上述の範囲であることが好ましい。
また、本実施形態のポリアミド系樹脂予備発泡粒子は、上記DSC曲線において、最大吸熱ピークのピーク温度より高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークのピーク温度より低温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解開始温度と、最大吸熱ピークのピーク温度の高温側の変曲点における接線とベースラインとの交点の温度である補外融解終了温度との差に相当する最大吸熱ピークの幅が、25℃以上80℃以下であることが好ましく、より好ましくは28℃以上70℃以下、さらに好ましくは35℃以上70℃以下、特に好ましくは40℃以上65℃以下である。最大吸熱ピークの幅が上記範囲にあると、温度条件で発泡粒子間の融着力を強めつつ、予備発泡粒子の破泡による材料強度の低下を抑制でき、成形性が向上する傾向がある。
上記ポリアミド系樹脂予備発泡粒子は、最大吸熱の上記ピーク温度が上述の好適範囲であり、且つ最大吸熱ピークの上記幅が上述の範囲であることが好ましい。
なお、最大吸熱ピークとは、吸熱ピークが複数あった場合に、吸熱量が最大となるピークのことを意味する。
図1は、本実施形態のポリアミド系樹脂予備発泡粒子について、示差走査熱量計を用いて昇温速度10℃/分の条件下で30℃から280℃まで昇温した際に得られるDSC曲線の一例を示す図である。図1において、Aは最大吸熱ピークのピーク温度より低温側のDSC曲線とベースラインとの交点、Bは最大吸熱ピークのピーク温度より高温側のDSC曲線とベースラインとの交点、Cは最大吸熱ピークの低温側の変曲点における接線とベースラインとの交点、Dは最大吸熱ピークの高温側の変曲点における接線とベースラインとの交点である。また、CTは補外融解開始温度、DTは補外融解終了温度、PTは最大吸熱ピークのピーク温度である。最大吸熱ピークの幅は、DTからCTを引いた値に相当する。
図1は、本実施形態のポリアミド系樹脂予備発泡粒子について、示差走査熱量計を用いて昇温速度10℃/分の条件下で30℃から280℃まで昇温した際に得られるDSC曲線の一例を示す図である。図1において、Aは最大吸熱ピークのピーク温度より低温側のDSC曲線とベースラインとの交点、Bは最大吸熱ピークのピーク温度より高温側のDSC曲線とベースラインとの交点、Cは最大吸熱ピークの低温側の変曲点における接線とベースラインとの交点、Dは最大吸熱ピークの高温側の変曲点における接線とベースラインとの交点である。また、CTは補外融解開始温度、DTは補外融解終了温度、PTは最大吸熱ピークのピーク温度である。最大吸熱ピークの幅は、DTからCTを引いた値に相当する。
本実施形態(例えば、上記[1]~[13]の形態等)において、上記最大吸熱ピークのピーク温度を150℃以上255℃以下(好ましくは150℃以上215℃以下)とし、上記最大吸熱ピークの幅を25℃以上80℃以下(好ましくは28℃以上70℃以下)とするための方法としては、例えば、融点が異なる2種のポリアミド系樹脂を用いること(特に上述の好ましい態様で用いること)、ポリアミド系樹脂予備発泡粒子の含水率を調整すること(例えば後述の好適範囲にすること)等があげられる。
ポリアミド系樹脂予備発泡粒子の含水率を3質量%以上15質量%以下になるように、あらかじめ含水処理を行うことにより、その後の熱融着工程において、発泡成形時の高温環境下でのポリアミド系樹脂組成物の粘度が低下し、成形品の融着性が向上し、機械強度、例えば曲げ破断強度が向上させることができる。これは、型内成形時の温度条件で、ポリアミド系樹脂発泡粒子内の気泡の体積増加によって膨張せしめ、ポリアミド系樹脂の粘度低下による異なる発泡粒子間の樹脂の相互拡散を促進せしめることによるものである。
ポリアミド系樹脂予備発泡粒子の含水率が15質量%よりも大きいと、ポリアミド系樹脂予備発泡粒子内部の独立気泡内の凝縮水を生じ、型内発泡成形時の加熱の際には蒸発熱として吸熱作用を及ぼす。この粒子内部の凝縮水は、発泡粒子の外表面からの伝熱により加熱されるため、水蒸気の潜熱で直接加熱されるポリアミド系樹脂予備発泡粒子外部の表面付着水に比べると、ポリアミド系樹脂予備発泡粒子内部の加熱効率は悪く、このことは、型内発泡成形時のポリアミド系樹脂予備発泡粒子の昇温の妨げとなる。その結果、ポリアミド系樹脂予備発泡粒子が充分に発泡せず、膨張能不足から発泡粒子間の融着が進まず、発泡粒子界面での剥離が発生して十分な曲げ破断強度が得られない。このような観点から、ポリアミド系樹脂予備発泡粒子の含水率は15%質量以下であることが好ましく、より好ましくは12質量%以下である。
また、ポリアミド系樹脂予備発泡粒子の含水率を適宜調整することによって、成形品の発泡径のばらつきを抑制することができる。含水処理されたポリアミド系樹脂予備発泡粒子は、乾燥したポリアミド系樹脂発泡粒子でみられる分子鎖間の水素結合による相互作用を緩和するため、ガラス転移温度前後での貯蔵弾性率の変化が少なく、発泡成形における急激な温度変化に対しても均一な発泡挙動を示し、粒子径のばらつきが小さくなる。この粒子径のばらつきは、成形品内の空隙を生じる原因となるため、機械強度の低下を生じる。このような観点から、本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド予備発泡粒子の含水率は、0質量%以上であることが好ましく、より好ましくは0質量%超、さらに好ましくは3質量%以上、さらに好ましくは4.5質量%以上、特に好ましくは6質量%以上である。
ポリアミド系樹脂予備発泡粒子の含水率は、ポリアミド系樹脂予備発泡粒子の質量(W0)、及びポリアミド系樹脂予備発泡粒子の表面付着水を除去した後の質量(W1)、ポリアミド予備発泡粒子を80℃、6時間真空乾燥させた後の質量(W2)から算出する。含水率(質量%)は、(W1-W2)/W2×100により算出する。
また、中空部又は凹外形部を有するポリアミド系樹脂予備発泡粒子の含水率を算出する際に、高圧のガスを用いることで、中空部や凹外形部に滞留した表面付着水を除去することができる。例えば、100m/秒以上の風速に調整された空気等を好適に使用することができる。
また、中空部又は凹外形部を有するポリアミド系樹脂予備発泡粒子の含水率を算出する際に、高圧のガスを用いることで、中空部や凹外形部に滞留した表面付着水を除去することができる。例えば、100m/秒以上の風速に調整された空気等を好適に使用することができる。
ポリアミド系樹脂予備発泡粒子の含水処理は、温水下で浸漬処理することにより含水量を調整することができる。含水処理は40℃以上の温水であると含水速度が速く、効率よく含水させることができる。また、ガラス転移点以上での予備発泡粒子の変形を抑止できる観点から、70℃以下で実施することが好ましい。また、ポリアミド系樹脂予備発泡粒子の含水時間は、内部の添加剤の溶出量を抑えられるという観点から、30分以内であることが好ましく、15分以内であるとさらに好ましい。また、ポリアミド系樹脂予備発泡粒子の含水時間は、均一に処理できるという観点から、1分以上であることが好ましい。
また、含水処理後のポリアミド系樹脂予備発泡粒子の表面付着水を除去するために、脱水機等を用いて処理することができる。脱水処理の回転速度は、100rpm以上の速度で実施するのが好ましく、処理時間が短縮できる観点から、500rpm以上であるとより好ましい。また、脱水処理の回転速度は、50000rpm以下であると好ましい。脱水処理の時間は生産性の観点から、10分以内が好ましく、5分以内であるとより好ましい。また、脱水処理の時間は、均一性の観点から1分以上であることが好ましい。
ポリアミド系樹脂予備発泡粒子の表面付着水量は、ポリアミド系樹脂予備発泡粒子の質量(W0)、及びポリアミド系樹脂予備発泡粒子の表面付着水を除去した後の質量(W1)、ポリアミド系樹脂予備発泡粒子を80℃、6時間真空乾燥させた後の質量(W2)から算出する。表面付着水量(質量%)は、(W0-W1)/W2×100により算出する。
また、中空部又は凹外形部を有するポリアミド系樹脂予備発泡粒子の含水率を算出する際に、高圧のガスを用いることで、中空部や凹外形部に滞留した表面付着水を除去することができる。例えば、100m/秒以上の風速に調整された空気等を好適に使用することができる。
また、中空部又は凹外形部を有するポリアミド系樹脂予備発泡粒子の含水率を算出する際に、高圧のガスを用いることで、中空部や凹外形部に滞留した表面付着水を除去することができる。例えば、100m/秒以上の風速に調整された空気等を好適に使用することができる。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂予備発泡粒子の表面付着水量は、14質量%以下であることが好ましい。そのため、ポリアミド系樹脂予備発泡粒子の表面付着水量は、14質量%以下となるように除去することが好ましい。表面付着水の量が14質量%以下であれば、型内発泡成形の原料充填時に表面付着水同士の相互作用による粒子間の凝集が発生しにくく、型内に予備発泡粒子が最密に充填され、疎な欠陥の少ない成形体となり、機械強度が向上する。このような観点から、ポリアミド系樹脂予備発泡粒子の表面付着水量は、より好ましくは10質量%以下、さらに好ましくは7質量%以下である。
さらに、表面付着水量は、粒子内の含水量よりも少なく調整することで、ポリアミド予備発泡粒子に圧縮空気を導入する際の、導入量のばらつきを低減でき、成形品の機械強度が安定するという観点から好ましい。
ポリアミド系樹脂予備発泡粒子に含水処理を行う手法として、ポリアミド系樹脂予備発泡粒子を製造する際に、あらかじめポリアミド系樹脂組成物の含水率を調整しても良い。例えば、押出した溶融樹脂のペレタイズを高温の水中で行うことによって、発泡前のペレットの含水率を5質量%以上に調整した状態で発泡させることで、含水率の高いポリアミド系樹脂予備発泡粒子を得ることができる。このペレタイズ時の温度は40℃以上が好ましく、50℃以上であるとさらに好ましい。
上記のように、溶媒処理として、水を使用した例を説明したが、例えば溶媒処理の溶媒をエタノールとした際には、ポリアミド系樹脂予備発泡粒子のエタノール含有率を3質量%以上15質量%以下になるように、あらかじめ処理を行うことが好ましい。
含エタノール処理を行った場合のポリアミド系樹脂予備発泡粒子の含エタノール量及び含水量の測定は、ポリアミド系樹脂予備発泡粒子から表面付着水及び表面付着エタノールを除去した後、THFを加えて測定試料を調製する。GC-MS-SIM(Selected Ion Monitoring)法を用いて水、エタノールをそれぞれ定量し、それぞれの定量値(%)であるW(水)、W(EtOH)から、含水率=W(水)/(100-W(水)-W(EtOH))×100、含エタノール率=W(EtOH)/(100-W(水)-W(EtOH))×100により算出する。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂予備発泡粒子の数平均分子量Mnは、発泡成形時の高温環境下でのポリアミド系樹脂組成物の粘度が低下し、発泡粒子間の樹脂の相互拡散を促進せしめ、成形品の融着性が向上し、機械強度を向上させる観点から、35000以下であることが好ましく、発泡成形時の高温環境下でも高分子鎖の3次元ネットワークを保持し、気泡の膜の強度を上げ、破泡を抑える観点から、10000以上であることが好ましい。より好ましくは15000~30000、さらに好ましくは16000~26000である。また、ポリアミド系樹脂予備発泡粒子の重量平均分子量Mwは、発泡成形時の高温環境下でのポリアミド系樹脂組成物の粘度が低下し、発泡粒子間の樹脂の相互拡散を促進せしめ、成形品の融着性が向上し、機械強度を向上させる観点から、140000以下であることが好ましく、発泡成形時の高温環境下でも高分子鎖の3次元ネットワークを保持し、気泡の膜の強度を上げ、破泡を抑える観点から、35000以上であることが好ましい。より好ましくは40000~125000、さらに好ましくは65000~120000である。
なお、数平均分子量Mn、重量平均分子量Mwは、後述の実施例に記載の方法により測定することができる。
なお、数平均分子量Mn、重量平均分子量Mwは、後述の実施例に記載の方法により測定することができる。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂予備発泡粒子は、示差走査熱量計を用いて、下記の条件Bで測定される2nd scan DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークより低温側の変曲点における接線と上記ベースラインとの交点の温度である補外融解開始温度から10℃高い温度における結晶融解率が、15%以上であることが好ましく、より好ましくは20%以上、さらに好ましくは20~40%、特に好ましくは20~35%である。結晶融解率が上記範囲であると、発泡成形時の高温環境下でのポリアミド系樹脂組成物の粘度が低下し、発泡粒子間の樹脂の相互拡散を促進せしめ、成形品の融着性が向上し、機械強度を向上させることができる。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られるDSC曲線を2nd scan DSC曲線とする。
なお、結晶融解率は後述の実施例に記載の方法により測定することができる。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られるDSC曲線を2nd scan DSC曲線とする。
なお、結晶融解率は後述の実施例に記載の方法により測定することができる。
本実施形態(例えば、上記[1]~[13]の形態等)において、ポリアミド系樹脂予備発泡粒子は、上記ポリアミド系樹脂予備発泡粒子の熱融着温度より5℃高い温度の飽和水蒸気を用いて加熱した後の独立気泡率が、60%以上であることが好ましくより好ましくは70%以上、さらに好ましくは80%以上である。
上記独立気泡率が60%以上であれば、予備発泡粒子を金型に充填し、水蒸気で加熱して樹脂発泡成形体とした時に、十分な機械強度を持った樹脂発泡成形体を得ることができる。また、気泡の破膜に起因する収縮を抑え、耐熱性及び機械的強度に優れたポリアミド系樹脂発泡成形体を得ることができる。
上記独立気泡率は、例えば、熱安定剤の添加(例えば、上述の卑金属元素含有化合物の添加)、融点の差が上記好適範囲のポリアミド系樹脂の組み合わせの使用、結晶性ポリアミド樹脂の使用、等により調整することができる。
独立気泡率の測定方法については、実施例にて説明する。
上記独立気泡率が60%以上であれば、予備発泡粒子を金型に充填し、水蒸気で加熱して樹脂発泡成形体とした時に、十分な機械強度を持った樹脂発泡成形体を得ることができる。また、気泡の破膜に起因する収縮を抑え、耐熱性及び機械的強度に優れたポリアミド系樹脂発泡成形体を得ることができる。
上記独立気泡率は、例えば、熱安定剤の添加(例えば、上述の卑金属元素含有化合物の添加)、融点の差が上記好適範囲のポリアミド系樹脂の組み合わせの使用、結晶性ポリアミド樹脂の使用、等により調整することができる。
独立気泡率の測定方法については、実施例にて説明する。
(製造方法)
本実施形態のポリアミド系樹脂予備発泡粒子は、上記ポリアミド系樹脂を含むポリアミド系樹脂組成物に発泡剤を含有(含浸)させて、発泡を生じさせることによって得ることができる。
ポリアミド系樹脂組成物に発泡剤を含有(含浸)させる方法としては、特に限定されることなく、一般的に用いられている方法としてよい。
本実施形態のポリアミド系樹脂予備発泡粒子は、上記ポリアミド系樹脂を含むポリアミド系樹脂組成物に発泡剤を含有(含浸)させて、発泡を生じさせることによって得ることができる。
ポリアミド系樹脂組成物に発泡剤を含有(含浸)させる方法としては、特に限定されることなく、一般的に用いられている方法としてよい。
かかる方法としては、水等の懸濁系で水性媒体を用いて行う方法(懸濁含浸)や、重炭酸ナトリウム等の熱分解型発泡剤を用いる方法(発泡剤分解)、ガスを臨界圧力以上の雰囲気とし液相状態にして、基材樹脂に接触させる方法(液相含浸)、ガスを臨界圧力未満の雰囲気とし気相状態にして、基材樹脂に接触させる方法(気相含浸)等が挙げられる。
上記方法のうち、特に、気相含浸が好ましい。
上記方法のうち、特に、気相含浸が好ましい。
気相含浸では、高温条件下で実施される懸濁含浸の場合と比較して、ガスの樹脂への溶解度がより高く、発泡剤の含有量を高くしやすい。そのため、気相含浸では、高発泡倍率を達成しやすく、樹脂内の気泡サイズも均一になりやすい。
また、発泡剤分解も、懸濁含浸と同様に高温条件下で実施される点で不都合がある。また、この方法では、加えた熱分解型発泡剤全てがガスになるわけではないため、ガス発生量が相対的に少なくなりやすい。そのため、気相含浸では、発泡剤分解に比べ、発泡剤含有量を高くしやすいという利点がある。
更に、気相含浸では、液相含浸の場合と比較して、耐圧装置や冷却装置等の設備がよりコンパクトになりやすく、設備費を低減しやすい。
また、発泡剤分解も、懸濁含浸と同様に高温条件下で実施される点で不都合がある。また、この方法では、加えた熱分解型発泡剤全てがガスになるわけではないため、ガス発生量が相対的に少なくなりやすい。そのため、気相含浸では、発泡剤分解に比べ、発泡剤含有量を高くしやすいという利点がある。
更に、気相含浸では、液相含浸の場合と比較して、耐圧装置や冷却装置等の設備がよりコンパクトになりやすく、設備費を低減しやすい。
気相含浸の条件としては、特には限定されることなく、例えば、ガスの樹脂への溶解をより効率的に進める観点から、雰囲気圧力としては、0.5~6.0MPaであることが好ましく、雰囲気温度としては、5~30℃であることが好ましい。
ここで、本実施形態のポリアミド系樹脂予備発泡粒子を製造する際に使用される発泡剤としては、特に限定されることなく、空気やガスとし得る化合物等が挙げられる。
ガスとし得る化合物の例としては、二酸化炭素、窒素、酸素、水素、アルゴン、ヘリウム、ネオン等の無機化合物;トリクロロフルオロメタン(R11)、ジクロロジフルオロメタン(R12)、クロロジフルオロメタン(R22)、テトラクロロジフルオロエタン(R112)ジクロロフルオロエタン(R141b)クロロジフルオロエタン(R142b)、ジフルオロエタン(R152a)、HFC-245fa、HFC-236ea、HFC-245ca、HFC-225ca等のフルオロカーボン;HFO-1234y、HFO-1234ze(E)等のハイドロフルオロオレフィン;プロパン、n-ブタン、i-ブタン、n-ペンタン、i-ペンタン、ネオペンタン等の飽和炭化水素;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2-メチルフラン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;塩化メチル、塩化エチル等の塩素化炭化水素類;メタノール、エタノール等のアルコール類;等が挙げられる。
これらの空気やガスとし得る化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ガスとし得る化合物の例としては、二酸化炭素、窒素、酸素、水素、アルゴン、ヘリウム、ネオン等の無機化合物;トリクロロフルオロメタン(R11)、ジクロロジフルオロメタン(R12)、クロロジフルオロメタン(R22)、テトラクロロジフルオロエタン(R112)ジクロロフルオロエタン(R141b)クロロジフルオロエタン(R142b)、ジフルオロエタン(R152a)、HFC-245fa、HFC-236ea、HFC-245ca、HFC-225ca等のフルオロカーボン;HFO-1234y、HFO-1234ze(E)等のハイドロフルオロオレフィン;プロパン、n-ブタン、i-ブタン、n-ペンタン、i-ペンタン、ネオペンタン等の飽和炭化水素;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2-メチルフラン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;塩化メチル、塩化エチル等の塩素化炭化水素類;メタノール、エタノール等のアルコール類;等が挙げられる。
これらの空気やガスとし得る化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
発泡剤としては、環境への影響が少なく、可燃性や支燃性がないものが好ましく、取り扱い時の安全性の観点から、可燃性のない無機化合物が更に好ましく、ポリアミド系樹脂への溶解性、取り扱いの容易性の観点から、二酸化炭素ガス(炭酸ガス)特に好ましい。
発泡剤を含有(含浸)させたポリアミド系樹脂組成物に発泡を生じさせる方法としては、特に限定されないが、例えば、発泡剤を含浸させたポリアミド系樹脂組成物を高圧雰囲気下から低圧雰囲気下に一気に持ち込むことによって、ポリアミド系樹脂組成物中に溶解している発泡剤としてのガスを膨張させて、発泡を生じさせる方法や、圧力蒸気等を用いて加熱することによって、ポリアミド系樹脂組成物中のガスを膨張させて、発泡を生じさせる方法等を用いることができ、特に、生成物であるポリアミド系樹脂発泡成形体内部の気泡の大きさ(セルサイズ)を均一にするという利点、及び発泡倍率を制御して低発泡倍率のポリアミド系樹脂発泡成形体の作製を容易にするという利点が得られるため、後者の加熱・発泡を行う方法を用いることが好ましい。
ここで、予備発泡粒子を所望の発泡倍率になるまで発泡させる際、一段階の発泡を行ってもよく、二次発泡、三次発泡等からなる多段階の発泡を行ってもよい。なお、多段階の発泡を行った場合、高発泡倍率の予備発泡粒子を調製しやすく、成形に用いられる予備発泡粒子は、単位体積当たりに使用される樹脂量を低減する観点から、三次発泡まで行った予備発泡粒子であることが好ましい。
特に、多段階の発泡の場合、各段階での発泡前に予備発泡粒子に対してガスによる加圧処理を行うことが好ましい。加圧処理に用いるガスとしては、ポリアミド系樹脂に対して不活性である限り、特には限定されないが、ガスの安全性が高く、ガスの地球温暖化係数の小さい、無機ガスやハイドロフルオロオレフィンが好ましい。無機ガスとしては、例えば、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等が挙げられ、また、ハイドロフルオロオレフィンとしては、例えば、HFO-1234y、HFO-1234ze(E)等が挙げられ、特に、取り扱い容易性及び経済性の観点から、空気や炭酸ガスが好ましい。加圧処理の手法としては、特には限定されないが、予備発泡粒子を加圧タンク内に充填し、該タンク内にガスを供給する手法等が挙げられる。
[ポリアミド系樹脂発泡成形体]
本実施形態のポリアミド系樹脂発泡成形体について説明する。
本実施形態のポリアミド系樹脂発泡成形体は、上述の本実施形態のポリアミド系樹脂予備発泡粒子を含むことが好ましく、本実施形態のポリアミド系樹脂予備発泡粒子のみからなることがより好ましい。本実施形態のポリアミド系樹脂発泡成形体内において、ポリアミド系樹脂予備発泡粒子は少なくとも一部が互いに融着していることが好ましい。
本実施形態のポリアミド系樹脂発泡成形体について説明する。
本実施形態のポリアミド系樹脂発泡成形体は、上述の本実施形態のポリアミド系樹脂予備発泡粒子を含むことが好ましく、本実施形態のポリアミド系樹脂予備発泡粒子のみからなることがより好ましい。本実施形態のポリアミド系樹脂発泡成形体内において、ポリアミド系樹脂予備発泡粒子は少なくとも一部が互いに融着していることが好ましい。
本実施形態のポリアミド系樹脂発泡成形体は、上述の本実施形態のポリアミド系樹脂予備発泡粒子から製造することができ、ポリアミド系樹脂予備発泡粒子を加熱融着させることにより、任意の立体形状に成形することができる。
ポリアミド系樹脂予備発泡粒子を成形する方法としては、例えば、予備発泡粒子を成形用金型のキャビティ内に充填し、加熱することによって、発泡を生じさせると同時に予備発泡粒子同士を熱融着させた後、冷却により固化し、成形する方法が挙げられる。ポリアミド系樹脂予備発泡粒子を閉鎖した金型内に充填、発泡させて得るが、密閉し得ない金型内に充填して加熱し、予備発泡粒子相互を融着させる方法を採用してもよい。樹脂種と成形条件によっては汎用の型内発泡自動成形機を使用することができる。
ここで、予備発泡粒子の充填方法は、特には限定されないが、例えば、金型を多少開けた状態で予備発泡粒子を充填するクラッキング法、金型を閉じたままの状態で加圧圧縮した予備発泡粒子を充填する圧縮法、金型に加圧圧縮した予備発泡粒子を充填した後に上記クラッキング法を行う圧縮クラッキング法等が挙げられる。
ポリアミド系樹脂予備発泡粒子を成形する方法としては、例えば、予備発泡粒子を成形用金型のキャビティ内に充填し、加熱することによって、発泡を生じさせると同時に予備発泡粒子同士を熱融着させた後、冷却により固化し、成形する方法が挙げられる。ポリアミド系樹脂予備発泡粒子を閉鎖した金型内に充填、発泡させて得るが、密閉し得ない金型内に充填して加熱し、予備発泡粒子相互を融着させる方法を採用してもよい。樹脂種と成形条件によっては汎用の型内発泡自動成形機を使用することができる。
ここで、予備発泡粒子の充填方法は、特には限定されないが、例えば、金型を多少開けた状態で予備発泡粒子を充填するクラッキング法、金型を閉じたままの状態で加圧圧縮した予備発泡粒子を充填する圧縮法、金型に加圧圧縮した予備発泡粒子を充填した後に上記クラッキング法を行う圧縮クラッキング法等が挙げられる。
本実施形態のポリアミド系樹脂発泡成形体の製造方法は、上記ポリアミド系樹脂予備発泡粒子を金型のキャビティ内に充填し、上記キャビティ内に上記ポリアミド系樹脂予備発泡粒子の融点以下の水蒸気を供給して、上記ポリアミド系樹脂予備発泡粒子を膨張させ、且つ熱融着させる工程を含むことが好ましい。
ポリアミド系樹脂発泡成形体の製造方法では、予備発泡粒子の気泡に一定のガス圧力を付与して、粒子内部の気泡の大きさ(セルサイズ)を均一にする観点から、予備発泡粒子を成形用金型のキャビティ内に充填する前に、予備発泡粒子に対してガスによる加圧処理を行うことが好ましい。加圧処理に用いるガスとしては、特には限定されないが、難燃性、耐熱性、寸法安定性の観点から、無機ガスを用いるのが好ましい。無機ガス及び加圧処理の方法については、上述のポリアミド系樹脂に発泡を生じさせる方法において発泡前の予備発泡粒子に対して施されるガスによる加圧処理の場合と同様である。
ポリアミド系樹脂発泡成形体の製造方法では、予備発泡粒子の気泡に一定のガス圧力を付与して、粒子内部の気泡の大きさ(セルサイズ)を均一にする観点から、予備発泡粒子を成形用金型のキャビティ内に充填する前に、予備発泡粒子に対してガスによる加圧処理を行うことが好ましい。加圧処理に用いるガスとしては、特には限定されないが、難燃性、耐熱性、寸法安定性の観点から、無機ガスを用いるのが好ましい。無機ガス及び加圧処理の方法については、上述のポリアミド系樹脂に発泡を生じさせる方法において発泡前の予備発泡粒子に対して施されるガスによる加圧処理の場合と同様である。
ポリアミド系樹脂予備発泡粒子を成形する際に用いられる熱媒体は、汎用の熱媒体としてよく、発泡成形体の酸化劣化を抑制する観点から、飽和水蒸気や過熱水蒸気であることが好ましく、発泡成形体に対して均一な加熱を可能にする観点から、飽和水蒸気が更に好ましい。
上記飽和水蒸気の温度は、上記ポリアミド系樹脂予備発泡粒子の融点以下であることが好ましい。具体的には、上記ポリアミド系樹脂予備発泡粒子の融点の10℃以下、より好ましくは25℃以下、さらに好ましくは40℃以下である。
上記飽和水蒸気の温度は、上記ポリアミド系樹脂予備発泡粒子の融点以下であることが好ましい。具体的には、上記ポリアミド系樹脂予備発泡粒子の融点の10℃以下、より好ましくは25℃以下、さらに好ましくは40℃以下である。
ポリアミド系樹脂予備発泡粒子の加熱温度(成形温度)が100℃以上270℃以下であれば、粒子間の融着が進むため好ましく、より好ましくは105℃以上200℃以下であり、さらに好ましくは105℃以上160℃以下である。
上記製造方法では、予備発泡粒子の気泡に一定のガス圧力を付与して、粒子内部の気泡の大きさ(セルサイズ)を均一にする観点から、予備発泡粒子を成形用金型のキャビティ内に充填する前に、予備発泡粒子に対してガスによる加圧処理を行うことが好ましい。加圧処理の方法については、特には限定されることなく、例えば、予備発泡粒子へのガスの加圧処理を効率的に進める観点から、雰囲気圧力としては、0.3~6.0MPaであることが好ましく、雰囲気温度としては、5~50℃であることが好ましい。
加圧処理に用いるガスとしては、上述のポリアミド系樹脂予備発泡粒子を製造する際に使用される発泡剤と同様のガスが挙げられる。中でも、難燃性、耐熱性、寸法安定性の観点から、無機化合物のガスを用いるのが好ましい。上記ガスは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
加圧処理に用いる上記ガスは、ポリアミド系樹脂予備発泡粒子を製造する際に使用される発泡剤と同じガスであってもよいし異なるガスであってもよい。
加圧処理に用いる上記ガスは、ポリアミド系樹脂予備発泡粒子を製造する際に使用される発泡剤と同じガスであってもよいし異なるガスであってもよい。
ポリアミド予備発泡粒子を成形する際に用いられる熱媒体は、汎用の熱媒体としてよく、発泡成形体の酸化劣化を抑制する観点から、飽和水蒸気や過熱水蒸気であることが好ましく、発泡成形体に対して均一な加熱を可能にする観点から、飽和水蒸気が更に好ましい。
熱媒体として飽和水蒸気を用いる場合、成形温度を100℃以上として、成形温度-5℃以下の温度の飽和水蒸気によって1秒以上10秒以下加熱(予熱)した後、成形温度の飽和水蒸気によって加熱融着させることが好ましい。
上記予熱に用いる飽和水蒸気の温度は、成形温度-5℃以下であることが好ましく、より好ましくは成形温度-6℃以下、さらに好ましくは成形温度-7℃以下である。また、上記飽和水蒸気の温度は、成形温度-15℃以上であることが好ましく、より好ましくは成形温度-14℃以上、さらに好ましくは成形温度-13℃以上である。上記の温度範囲であると、ポリアミド予備発泡粒子の膨張と融着を抑制しつつ、ポリアミド予備発泡粒子中へ水分を拡散させることができる傾向にある。
また、上記予熱に用いる飽和水蒸気での加熱時間は、1秒以上10秒以下であることが好ましく、より好ましくは1秒以上5秒以下、さらに好ましくは1秒以上3秒以下である。従来、ポリアミド予備発泡粒子を成形温度近くまで予熱する工程により成形に要する総時間が延長し、生産性が低下することが問題となっていたが、加熱時間が上記範囲であると、当該問題を実用上許容できる範囲でポリアミド予備発泡粒子中へ水分を拡散させることができ、成形温度での融着性が向上する傾向にある。
熱媒体として飽和水蒸気を用いる場合、成形温度を100℃以上として、成形温度-5℃以下の温度の飽和水蒸気によって1秒以上10秒以下加熱(予熱)した後、成形温度の飽和水蒸気によって加熱融着させることが好ましい。
上記予熱に用いる飽和水蒸気の温度は、成形温度-5℃以下であることが好ましく、より好ましくは成形温度-6℃以下、さらに好ましくは成形温度-7℃以下である。また、上記飽和水蒸気の温度は、成形温度-15℃以上であることが好ましく、より好ましくは成形温度-14℃以上、さらに好ましくは成形温度-13℃以上である。上記の温度範囲であると、ポリアミド予備発泡粒子の膨張と融着を抑制しつつ、ポリアミド予備発泡粒子中へ水分を拡散させることができる傾向にある。
また、上記予熱に用いる飽和水蒸気での加熱時間は、1秒以上10秒以下であることが好ましく、より好ましくは1秒以上5秒以下、さらに好ましくは1秒以上3秒以下である。従来、ポリアミド予備発泡粒子を成形温度近くまで予熱する工程により成形に要する総時間が延長し、生産性が低下することが問題となっていたが、加熱時間が上記範囲であると、当該問題を実用上許容できる範囲でポリアミド予備発泡粒子中へ水分を拡散させることができ、成形温度での融着性が向上する傾向にある。
本実施形態のポリアミド発泡成形体の製造方法としては、含水量が0質量%以上12質量%以下のポリアミド予備発泡粒子を、型内に充填し、成形温度を100℃以上として、成形温度-5℃以下の温度の飽和水蒸気によって15秒以上加熱した後、上述の成形温度の飽和水蒸気によって加熱融着させてもよい。
上記製造方法を用いることにより、成形時のポリアミド予備発泡粒子間の融着性が改善し、機械強度に優れたポリアミド発泡成形体を製造することができる。
上記製造方法を用いることにより、成形時のポリアミド予備発泡粒子間の融着性が改善し、機械強度に優れたポリアミド発泡成形体を製造することができる。
また、ポリアミド予備発泡粒子は、成形用金型のキャビティ内に充填する前に溶媒処理を行ってもよい。溶媒処理に用いる溶媒、溶媒処理方法等は、上述と同様とすることができる。
更に、ポリアミド予備発泡粒子は、成形用金型のキャビティ内に充填する前にガスによる加圧処理を行うことが好ましい。加圧処理の方法、加圧処理に用いるガス等は、上述と同様とすることができる。
更に、ポリアミド予備発泡粒子は、成形用金型のキャビティ内に充填する前にガスによる加圧処理を行うことが好ましい。加圧処理の方法、加圧処理に用いるガス等は、上述と同様とすることができる。
本実施形態のポリアミド発泡成形体の製造方法としては、ポリアミド予備発泡粒子を、成形温度の飽和水蒸気によって加熱する前に、成形温度-5℃以下の温度の飽和水蒸気によって15秒以上加熱(予熱)してもよい。
上記予熱に用いる飽和水蒸気での加熱時間は、15秒以上であることが好ましく、より好ましくは15~120秒、さらに好ましくは30~90秒である。従来、ポリアミド予備発泡粒子を成形温度近くまで予熱する工程により成形に要する総時間が延長し、生産性が低下することが問題となっていたが、加熱時間が上記範囲であると、当該問題を実用上許容できる範囲でポリアミド予備発泡粒子中へ水分を拡散させることができ、成形温度での融着性が向上する傾向にある。
上記予熱に用いる飽和水蒸気での加熱時間は、15秒以上であることが好ましく、より好ましくは15~120秒、さらに好ましくは30~90秒である。従来、ポリアミド予備発泡粒子を成形温度近くまで予熱する工程により成形に要する総時間が延長し、生産性が低下することが問題となっていたが、加熱時間が上記範囲であると、当該問題を実用上許容できる範囲でポリアミド予備発泡粒子中へ水分を拡散させることができ、成形温度での融着性が向上する傾向にある。
本実施形態のポリアミド系樹脂発泡成形体の密度は、0.02~0.8g/cm3であることが好ましい。密度が0.02g/cm3以上であることにより、気泡径を均一に保つことで、気泡膜の厚みが過度に薄くなることを防ぎ、気泡膜の強度を保持することができる。また、0.8g/cm3以下であることにより、樹脂発泡成形体の軽量性を高めることができる。
本実施形態のポリアミド系樹脂発泡成形体の独立気泡率としては、75%以上であることが好ましい。独立気泡率が75%以上であることにより、発泡体の強度を高く維持することと、発泡体の断熱性を高めることができる。
上記独立気泡率は、後述の実施例に記載の方法により測定することができる。
上記独立気泡率は、後述の実施例に記載の方法により測定することができる。
本実施形態のポリアミド系樹脂発泡成形体の加熱による寸法変化率は、1.5%以下であることが好ましく、1.0%以下であることが更に好ましい。中でも、150℃で22時間加熱した後の寸法変化率が上記範囲であることが好ましく、150℃で22時間加熱した後の寸法変化率、及び170℃で22時間過熱した後の寸法変化率が何れも上記範囲であることがより好ましい。
なお、寸法変化率は、JIS K6767の寸法安定性評価・B法に準拠して、所定温度で22時間加熱した後に測定した値を指す。
なお、寸法変化率は、JIS K6767の寸法安定性評価・B法に準拠して、所定温度で22時間加熱した後に測定した値を指す。
以下、本発明を具体的な実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。
後述する実施例及び比較例のポリアミド予備発泡粒子、ポリアミド発泡成形体の物性の測定方法を以下に示す。
(1)卑金属元素、ヨウ素元素の含有量
ポリアミド系樹脂組成物中の卑金属元素とヨウ素元素の含有量は、次のようにして測定した。
まず、ポリアミド系樹脂組成物中の卑金属元素を同定するため、ポリアミド系樹脂組成物を30mm四方に切り出し、蛍光X線分析装置(製品名:Rigaku ZSX100e、(株)リガク社製、管球:Rh)で測定した。ポリアミド系樹脂組成物がシート状であったり、平面を持つ発泡成形体であったりする場合には、そのまま切り出して測定することができるが、ポリアミド系樹脂組成物がペレットや発泡粒子の場合には、ポリアミド系樹脂組成物を融点(後述)より30℃高い温度に加熱された熱板の間に挟み、3分間加熱加圧し、ポリアミド系樹脂組成物のシートを得て、これを冷却固化させたのち、これを30mm四方に切り出して測定した。次に、蛍光X線分析で検出された元素について、各卑金属元素の含有量を、誘導結合プラズマ発光分光分析法(ICP-AES)によって測定した。
まず、試料を精秤し、これを硫酸と過酸化水素水を用いて加熱分解し、これをICP-AES(商品名:iCAP6300Duo、サーモフィッシャーサイエンティフィック社製)に導入して、測定した。サンプルの発光強度を、前もって用意してあった検量線と比較することにより、系内に存在する対象元素の濃度を見積もり、秤量しておいた試料の重量とから、試料の中に含まれる対象元素の質量濃度を測定した。また、試料中のポリアミド系樹脂濃度から、ポリアミド系樹脂100質量%中の卑金属元素の質量割合を算出した。
測定波長は、蛍光X線で検出された元素について、適当なものを選択した。例えば、銅元素が検出された場合には、324.754nm、鉄元素が検出された場合には、259.940nm、亜鉛元素が検出された場合には、213.856nmを用いた。
ヨウ素元素の質量は、JIS K0127:2013に準拠して、イオンクロマトグラフ法によって測定した。試料を酸素フラスコ燃焼法によって燃焼分解し、発生ガスを吸収液に吸収させ、イオンクロマトグラフ分析装置(商品名:ICS-1500、サーモフィッシャーサイエンティフィック社製)に導入して測定した。
そして、ポリアミド系樹脂100質量%に対する各元素の含有量(質量ppm)を算出した。
ポリアミド系樹脂組成物中の卑金属元素とヨウ素元素の含有量は、次のようにして測定した。
まず、ポリアミド系樹脂組成物中の卑金属元素を同定するため、ポリアミド系樹脂組成物を30mm四方に切り出し、蛍光X線分析装置(製品名:Rigaku ZSX100e、(株)リガク社製、管球:Rh)で測定した。ポリアミド系樹脂組成物がシート状であったり、平面を持つ発泡成形体であったりする場合には、そのまま切り出して測定することができるが、ポリアミド系樹脂組成物がペレットや発泡粒子の場合には、ポリアミド系樹脂組成物を融点(後述)より30℃高い温度に加熱された熱板の間に挟み、3分間加熱加圧し、ポリアミド系樹脂組成物のシートを得て、これを冷却固化させたのち、これを30mm四方に切り出して測定した。次に、蛍光X線分析で検出された元素について、各卑金属元素の含有量を、誘導結合プラズマ発光分光分析法(ICP-AES)によって測定した。
まず、試料を精秤し、これを硫酸と過酸化水素水を用いて加熱分解し、これをICP-AES(商品名:iCAP6300Duo、サーモフィッシャーサイエンティフィック社製)に導入して、測定した。サンプルの発光強度を、前もって用意してあった検量線と比較することにより、系内に存在する対象元素の濃度を見積もり、秤量しておいた試料の重量とから、試料の中に含まれる対象元素の質量濃度を測定した。また、試料中のポリアミド系樹脂濃度から、ポリアミド系樹脂100質量%中の卑金属元素の質量割合を算出した。
測定波長は、蛍光X線で検出された元素について、適当なものを選択した。例えば、銅元素が検出された場合には、324.754nm、鉄元素が検出された場合には、259.940nm、亜鉛元素が検出された場合には、213.856nmを用いた。
ヨウ素元素の質量は、JIS K0127:2013に準拠して、イオンクロマトグラフ法によって測定した。試料を酸素フラスコ燃焼法によって燃焼分解し、発生ガスを吸収液に吸収させ、イオンクロマトグラフ分析装置(商品名:ICS-1500、サーモフィッシャーサイエンティフィック社製)に導入して測定した。
そして、ポリアミド系樹脂100質量%に対する各元素の含有量(質量ppm)を算出した。
(2)卑金属元素に対するヨウ素元素のモル割合
卑金属元素のモル濃度[M]は、上述の蛍光X線で検出された全ての卑金属元素について、ICP-AESで測定した質量濃度を、その元素の原子量で除した後、合計することにより算出した。
また、ヨウ素元素のモル濃度[I]は、上述の(1)の方法で測定したヨウ素元素の質量濃度を、ヨウ素の原子量で除することにより算出した。そして、[I]/[M]により、卑金属元素に対するヨウ素元素のモル割合を算出した。
卑金属元素のモル濃度[M]は、上述の蛍光X線で検出された全ての卑金属元素について、ICP-AESで測定した質量濃度を、その元素の原子量で除した後、合計することにより算出した。
また、ヨウ素元素のモル濃度[I]は、上述の(1)の方法で測定したヨウ素元素の質量濃度を、ヨウ素の原子量で除することにより算出した。そして、[I]/[M]により、卑金属元素に対するヨウ素元素のモル割合を算出した。
(3)密度
ポリアミド系樹脂発泡成形体について、質量W(g)を測定し、その後、水没法により、ポリアミド系樹脂発泡成形体の見かけの体積Va(cm3)を測定した。そして、その質量Wを見かけの体積Vaで除した値W/Va(g/cm3)を、ポリアミド系樹脂発泡成形体の密度とした。
ポリアミド系樹脂発泡成形体について、質量W(g)を測定し、その後、水没法により、ポリアミド系樹脂発泡成形体の見かけの体積Va(cm3)を測定した。そして、その質量Wを見かけの体積Vaで除した値W/Va(g/cm3)を、ポリアミド系樹脂発泡成形体の密度とした。
(4)独立気泡率
上述の(3)において見かけの体積Vaを測定したポリアミド系樹脂発泡成形体について、その真の体積(Vx)を空気比較式比重計(ベックマン(株)社製)を用いて測定した。そして、下記の式1に従って、独立気泡率S(%)を算出した。
S(%)={(Vx-W/ρ)/(Va-W/ρ)}×100 ・・・式1
式中、Vxは樹脂発泡成形体の真の体積(cm3)であり、Vaは樹脂発泡成形体の見かけの体積(cm3)であり、Wは樹脂発泡成形体の質量(g)であり、ρは樹脂発泡成形体の基材樹脂の密度(g/cm3)である。
上述の(3)において見かけの体積Vaを測定したポリアミド系樹脂発泡成形体について、その真の体積(Vx)を空気比較式比重計(ベックマン(株)社製)を用いて測定した。そして、下記の式1に従って、独立気泡率S(%)を算出した。
S(%)={(Vx-W/ρ)/(Va-W/ρ)}×100 ・・・式1
式中、Vxは樹脂発泡成形体の真の体積(cm3)であり、Vaは樹脂発泡成形体の見かけの体積(cm3)であり、Wは樹脂発泡成形体の質量(g)であり、ρは樹脂発泡成形体の基材樹脂の密度(g/cm3)である。
(5)膨張比及び膨張比B
得られたポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブを40℃の温水に浸した状態で、オートクレーブ内の圧力が0.9MPaとなるまで圧縮空気を4時間かけて導入し、その後、圧力を0.9MPaに24時間保持することによって予備発泡粒子に加圧処理を施した。その後、オートクレーブ内の圧力を開放して加圧処理された予備発泡粒子を取り出し、金属メッシュの皿状の容器に入れた。次いで、圧力容器に入れ、圧力容器内に所定温度になるまで飽和水蒸気を導入して、所定温度まで20秒間かけて昇温した。飽和水蒸気の温度調整は、198℃(1.4MPa)の飽和水蒸気を使用し、バルブの開度を調整して行った。その後、該所定温度で10秒保持することで予備発泡粒子を膨張させた。そして、加熱後の予備発泡粒子を、60℃の乾燥機を用いて24時間乾燥させて、上述の(3)の方法に従って密度ρ2、ρ3を測定した。そして、ρ2で加圧処理前の予備発泡粒子の密度ρ1を除した値ρ1/ρ2を、予備発泡粒子の膨張比とし、ρ3でρ1を除した値ρ1/ρ3を予備発泡粒子の膨張比Bとした。
得られたポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブを40℃の温水に浸した状態で、オートクレーブ内の圧力が0.9MPaとなるまで圧縮空気を4時間かけて導入し、その後、圧力を0.9MPaに24時間保持することによって予備発泡粒子に加圧処理を施した。その後、オートクレーブ内の圧力を開放して加圧処理された予備発泡粒子を取り出し、金属メッシュの皿状の容器に入れた。次いで、圧力容器に入れ、圧力容器内に所定温度になるまで飽和水蒸気を導入して、所定温度まで20秒間かけて昇温した。飽和水蒸気の温度調整は、198℃(1.4MPa)の飽和水蒸気を使用し、バルブの開度を調整して行った。その後、該所定温度で10秒保持することで予備発泡粒子を膨張させた。そして、加熱後の予備発泡粒子を、60℃の乾燥機を用いて24時間乾燥させて、上述の(3)の方法に従って密度ρ2、ρ3を測定した。そして、ρ2で加圧処理前の予備発泡粒子の密度ρ1を除した値ρ1/ρ2を、予備発泡粒子の膨張比とし、ρ3でρ1を除した値ρ1/ρ3を予備発泡粒子の膨張比Bとした。
(6)熱融着温度
得られたポリアミド系樹脂予備発泡粒子を、気泡内部の圧力が大気圧であり、炭化水素や炭酸ガス等の発泡剤を含んでいない状態にした。この予備発泡粒子10gを金属メッシュの容器に予備発泡粒子同士が接着するように入れ、次いで、圧力容器に入れ、圧力容器内に所定温度になるまで20秒かけて所定温度の飽和水蒸気を導入し、その後、該所定温度で10秒保持することで予備発泡粒子を加熱した。所定温度として、1.5℃刻みの相異なる温度を用い、1つの温度につき3回測定した。そして、加熱後に、3回中3回すべてにおいて、少なくとも一部の予備発泡粒子同士が融着した温度(℃)を予備発泡粒子の熱融着温度とした。
なお、少なくとも一部の予備発泡粒子同士が融着した状態は、次の方法で決定した。JIS Z8801で規定される呼び寸法が、予備発泡粒子の粒子径以上、予備発泡粒子の粒子径の二倍未満である標準ふるい(例えば、予備発泡粒子の粒子径が2.5mmであった場合には、d=3.35mmの標準ふるい)を用いて、加熱する前の予備発泡粒子の分級を行い、ふるいを通過せずにふるいの上にとまった粒子の重量割合をXiとした。次いで、Xiを求めたのと同様のふるいを用いて、加熱後の予備発泡粒子の分級を行い、ふるいを通過せずにふるいの上にとまった粒子の重量割合をXeとした。このとき、Xe>Xiであるとき、少なくとも一部の予備発泡粒子同士が融着した状態とした。
得られたポリアミド系樹脂予備発泡粒子を、気泡内部の圧力が大気圧であり、炭化水素や炭酸ガス等の発泡剤を含んでいない状態にした。この予備発泡粒子10gを金属メッシュの容器に予備発泡粒子同士が接着するように入れ、次いで、圧力容器に入れ、圧力容器内に所定温度になるまで20秒かけて所定温度の飽和水蒸気を導入し、その後、該所定温度で10秒保持することで予備発泡粒子を加熱した。所定温度として、1.5℃刻みの相異なる温度を用い、1つの温度につき3回測定した。そして、加熱後に、3回中3回すべてにおいて、少なくとも一部の予備発泡粒子同士が融着した温度(℃)を予備発泡粒子の熱融着温度とした。
なお、少なくとも一部の予備発泡粒子同士が融着した状態は、次の方法で決定した。JIS Z8801で規定される呼び寸法が、予備発泡粒子の粒子径以上、予備発泡粒子の粒子径の二倍未満である標準ふるい(例えば、予備発泡粒子の粒子径が2.5mmであった場合には、d=3.35mmの標準ふるい)を用いて、加熱する前の予備発泡粒子の分級を行い、ふるいを通過せずにふるいの上にとまった粒子の重量割合をXiとした。次いで、Xiを求めたのと同様のふるいを用いて、加熱後の予備発泡粒子の分級を行い、ふるいを通過せずにふるいの上にとまった粒子の重量割合をXeとした。このとき、Xe>Xiであるとき、少なくとも一部の予備発泡粒子同士が融着した状態とした。
(7)水中測定時の補外融解開始温度
以下に示す測定条件(条件B)で測定された2nd scan DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークの低温側の変曲点における接線とベースラインとの交点の温度を水中測定時の補外融解開始温度とした。
(測定サンプル調製)
ポリアミド系樹脂予備発泡粒子を、精密ニッパー(ホーザン、N-55)を用いて、約1mm角の大きさに細断し、あらかじめ風袋重量を測定したアルミニウム製密閉容器(日立ハイテクサイエンス、GCA-0017)に加えた。次いで、密閉容器及び細断したポリアミド系樹脂予備発泡粒子約10mgを、精密天秤(パーキンエルマー、AD6000)に乗せ、重量を記録し、ポリアミド系樹脂予備発泡粒子の重量を精秤した。次いで、同サンプルパンに純水をパスツールピペットでサンプルパンに対してすり切り加え、細断したポリアミド系樹脂予備発泡粒子を純水に埋没させた。密閉容器に蓋を被せ、手動サンプルシーラー(日立ハイテクサイエンス、K-W10100724)で、密閉した。同密閉容器を12時間以上静置後、精密天秤(エー・アンド・デイ、BM-20)で重量を測定し、調製時のサンプル重量及び容器の風袋重量より、静置後に残存した水の重量を計算し、水が3mg以上残存した同密閉容器を選択し、測定サンプルとした。
(DSC測定)
測定サンプル、及び水を12mg封入したリファレンスサンプルを、DSC(NETSZCH社製「DSC3500」)にセットし、20mL/minの窒素気流雰囲気下、昇温速度10℃/分で40℃から200℃に昇温し、次いで200℃で1分間保持した後、10℃/分で40℃まで冷却し、40℃で5分間保持した後、再度、昇温速度10℃/分で、200℃まで昇温し、その熱量変化を測定することで2nd scan DSC曲線を得た。
(データ解析)
DSC測定終了後の測定サンプルについて、ただちに精密天秤(エー・アンド・デイ、BM-20)を用いて重量を測定した。調製時のサンプル重量、パン風袋重量より、測定終了後に残存した水の重量を計算し、水が3mg以上残存した測定結果を解析に用いた。縦軸を熱流(mW/mg)、横軸を温度(℃)として得られた2nd scan DSCにおいて、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークの低温側の変曲点における接線とベースラインとの交点の温度を水中測定時の補外融解開始温度とした。これらの解析を少なくともN=4で実施し、得られた補外融解開始温度を算出して、±10%以上の乖離を含む解析結果を除外し、少なくともN=3の結果を含む平均値を再度計算した。この再計算した平均値を、そのポリアミド系樹脂予備発泡粒子の水中測定時の補外融解開始温度とした。
以下に示す測定条件(条件B)で測定された2nd scan DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークの低温側の変曲点における接線とベースラインとの交点の温度を水中測定時の補外融解開始温度とした。
(測定サンプル調製)
ポリアミド系樹脂予備発泡粒子を、精密ニッパー(ホーザン、N-55)を用いて、約1mm角の大きさに細断し、あらかじめ風袋重量を測定したアルミニウム製密閉容器(日立ハイテクサイエンス、GCA-0017)に加えた。次いで、密閉容器及び細断したポリアミド系樹脂予備発泡粒子約10mgを、精密天秤(パーキンエルマー、AD6000)に乗せ、重量を記録し、ポリアミド系樹脂予備発泡粒子の重量を精秤した。次いで、同サンプルパンに純水をパスツールピペットでサンプルパンに対してすり切り加え、細断したポリアミド系樹脂予備発泡粒子を純水に埋没させた。密閉容器に蓋を被せ、手動サンプルシーラー(日立ハイテクサイエンス、K-W10100724)で、密閉した。同密閉容器を12時間以上静置後、精密天秤(エー・アンド・デイ、BM-20)で重量を測定し、調製時のサンプル重量及び容器の風袋重量より、静置後に残存した水の重量を計算し、水が3mg以上残存した同密閉容器を選択し、測定サンプルとした。
(DSC測定)
測定サンプル、及び水を12mg封入したリファレンスサンプルを、DSC(NETSZCH社製「DSC3500」)にセットし、20mL/minの窒素気流雰囲気下、昇温速度10℃/分で40℃から200℃に昇温し、次いで200℃で1分間保持した後、10℃/分で40℃まで冷却し、40℃で5分間保持した後、再度、昇温速度10℃/分で、200℃まで昇温し、その熱量変化を測定することで2nd scan DSC曲線を得た。
(データ解析)
DSC測定終了後の測定サンプルについて、ただちに精密天秤(エー・アンド・デイ、BM-20)を用いて重量を測定した。調製時のサンプル重量、パン風袋重量より、測定終了後に残存した水の重量を計算し、水が3mg以上残存した測定結果を解析に用いた。縦軸を熱流(mW/mg)、横軸を温度(℃)として得られた2nd scan DSCにおいて、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークの低温側の変曲点における接線とベースラインとの交点の温度を水中測定時の補外融解開始温度とした。これらの解析を少なくともN=4で実施し、得られた補外融解開始温度を算出して、±10%以上の乖離を含む解析結果を除外し、少なくともN=3の結果を含む平均値を再度計算した。この再計算した平均値を、そのポリアミド系樹脂予備発泡粒子の水中測定時の補外融解開始温度とした。
(8)融点
ポリアミド系樹脂の融点の測定を、JIS K7121に準じて、示差走査熱量計(商品名:DSC7、パーキンエルマー社製)を用いて、行った。試料8mgを精秤し、これを測定に用いた。測定条件は、窒素雰囲気下、温度条件:300℃で5分間保持、その後、降温速度:20℃/分で50℃まで降温、次いで、昇温速度:20℃/分で50℃から300℃まで昇温した。そして、現れた吸熱を示すピークのトップを与える温度(℃)を、樹脂の融点とした。ポリアミド系樹脂組成物、ポリアミド系樹脂予備発泡粒子の融点も同様の方法で測定した。
ポリアミド系樹脂の融点の測定を、JIS K7121に準じて、示差走査熱量計(商品名:DSC7、パーキンエルマー社製)を用いて、行った。試料8mgを精秤し、これを測定に用いた。測定条件は、窒素雰囲気下、温度条件:300℃で5分間保持、その後、降温速度:20℃/分で50℃まで降温、次いで、昇温速度:20℃/分で50℃から300℃まで昇温した。そして、現れた吸熱を示すピークのトップを与える温度(℃)を、樹脂の融点とした。ポリアミド系樹脂組成物、ポリアミド系樹脂予備発泡粒子の融点も同様の方法で測定した。
(9)示差走査熱量計(DSC)を用いたポリアミド予備発泡粒子の最大吸熱ピークの測定
(条件A)
示差走査熱量計(DSC)(NETZSCH社製「DSC3500」)を用いて、ポリアミド系樹脂予備発泡粒子の最大吸熱ピークのピーク温度及び幅を測定した。ポリアミド系樹脂予備発泡粒子の表面付着水及び/又は表面付着エタノールを除去した後、ポリアミド系樹脂予備発泡粒子をアルミニウム製密閉容器(日立ハイテクサイエンス、GCA-0017)に充填し、50mL/分の窒素気流中で測定した。具体的には、ポリアミド系樹脂予備発泡粒子を10℃/分にて30℃から280℃に昇温し、その熱量変化を測定することでDSC曲線を得た。
得られたDSC曲線において、測定開始からの最大の吸熱量を示す最大吸熱ピークのピークトップの温度(℃)を計測した。また、DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークの低温側の変曲点における接線とベースラインとの交点の温度である補外融解開始温度と、最大吸熱ピークの高温側の変曲点における接線とベースラインとの交点の温度である補外融解終了温度との差に相当する最大吸熱ピークの幅(℃)を求めた。
(条件A)
示差走査熱量計(DSC)(NETZSCH社製「DSC3500」)を用いて、ポリアミド系樹脂予備発泡粒子の最大吸熱ピークのピーク温度及び幅を測定した。ポリアミド系樹脂予備発泡粒子の表面付着水及び/又は表面付着エタノールを除去した後、ポリアミド系樹脂予備発泡粒子をアルミニウム製密閉容器(日立ハイテクサイエンス、GCA-0017)に充填し、50mL/分の窒素気流中で測定した。具体的には、ポリアミド系樹脂予備発泡粒子を10℃/分にて30℃から280℃に昇温し、その熱量変化を測定することでDSC曲線を得た。
得られたDSC曲線において、測定開始からの最大の吸熱量を示す最大吸熱ピークのピークトップの温度(℃)を計測した。また、DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークの低温側の変曲点における接線とベースラインとの交点の温度である補外融解開始温度と、最大吸熱ピークの高温側の変曲点における接線とベースラインとの交点の温度である補外融解終了温度との差に相当する最大吸熱ピークの幅(℃)を求めた。
(10)含水率
ポリアミド系樹脂予備発泡粒子を秤量(W0)した後、乾燥した繊維シート(キムタオル 日本製紙)に粒子を広げ別の繊維シートで表面付着水を除去した後、秤量(W1)する。このポリアミド系樹脂予備発泡粒子を80℃、6時間真空乾燥させたのち、再度秤量(W2)して、それぞれ含水率(%)=(W1-W2)/W2×100と表面付着水(%)=(W0-W1)/W2×100を算出した。
ポリアミド系樹脂予備発泡粒子を秤量(W0)した後、乾燥した繊維シート(キムタオル 日本製紙)に粒子を広げ別の繊維シートで表面付着水を除去した後、秤量(W1)する。このポリアミド系樹脂予備発泡粒子を80℃、6時間真空乾燥させたのち、再度秤量(W2)して、それぞれ含水率(%)=(W1-W2)/W2×100と表面付着水(%)=(W0-W1)/W2×100を算出した。
(11)数平均分子量Mn、重量平均分子量Mw
ポリアミド系樹脂の数平均分子量Mn、重量平均分子量Mwの測定を、次のようにして行った。試料をヘキサフルオロイソプロパノール(+10mmоl/L トリフルオロ酢酸ナトリウム)に溶解させ、0.2w/v%の試料溶液を作成した。この試料溶液をメンブレンフィルター(0.2μm)で濾過した後、10μLをGPC(昭光サイエンティフィック株式会社製、Shodex GPC-104)に注入し、流出した溶液をRI検出器で検出した。流出条件は、溶離液:ヘキサフルオロイソプロパノール(+10mmоl/L トリフルオロ酢酸ナトリウム)、カラム:Shodex GPC LF-404を二本連結、カラム温度:40℃、流量:0.3mL/minとした。あらかじめ分子量が既知のPMMA溶液を使って作成した検量線を基に、得られたクロマトグラムからPMMA換算の数平均分子量と重量平均分子量を測定した。ポリアミド系樹脂組成物、ポリアミド系樹脂予備発泡粒子についても同様の方法で測定した。
ポリアミド系樹脂の数平均分子量Mn、重量平均分子量Mwの測定を、次のようにして行った。試料をヘキサフルオロイソプロパノール(+10mmоl/L トリフルオロ酢酸ナトリウム)に溶解させ、0.2w/v%の試料溶液を作成した。この試料溶液をメンブレンフィルター(0.2μm)で濾過した後、10μLをGPC(昭光サイエンティフィック株式会社製、Shodex GPC-104)に注入し、流出した溶液をRI検出器で検出した。流出条件は、溶離液:ヘキサフルオロイソプロパノール(+10mmоl/L トリフルオロ酢酸ナトリウム)、カラム:Shodex GPC LF-404を二本連結、カラム温度:40℃、流量:0.3mL/minとした。あらかじめ分子量が既知のPMMA溶液を使って作成した検量線を基に、得られたクロマトグラムからPMMA換算の数平均分子量と重量平均分子量を測定した。ポリアミド系樹脂組成物、ポリアミド系樹脂予備発泡粒子についても同様の方法で測定した。
(12)酸価、アミン価
ポリアミド系樹脂の酸価を、JIK K0070に準じて、電位差滴定法で次のようにして測定した。100mLの三角フラスコに、60℃で16時間真空乾燥させた試料1gと、ベンジルアルコール80mLを加えた。空冷管を取り付けた後、200℃の湯浴中で13分加熱溶解させた後、室温まで冷却させた。電位差滴定装置(京都電子工業株式会社製、AT-710、電極;京都電子工業株式会社製、複合ガラス電極)を用いて滴定し(滴定液;0.01mоl/LのKOHアルコール溶液)、得られた変曲点を終点とした。同様の方法でブランク試験も行い、下式より酸価を算出した。
酸価(mgKOH/g)=(Va-Vb)×N×f×56.11/S
ただし、Va;本試験での滴定量(mL)、Vb;ブランク試験での滴定液量(mL)、N;滴定液の濃度(mоl/L)、S;試料の重量(g)、f;滴定液のファクター
ポリアミド系樹脂のアミン価を、電位差滴定法で次のようにして測定した。100mLの三角フラスコに、60℃で16時間真空乾燥させた試料3gと、m-クレゾール80mLを加え、室温で24時間撹拌した後、80℃のホットスターラーで3時間撹拌して溶解させた。試料が溶解したことを確認し、室温まで冷却した。電位差滴定装置(京都電子工業株式会社製、AT-710、電極;京都電子工業株式会社製、複合ガラス電極)を用いて滴定し(滴定液;0.05mоl/L過塩素酸メタノール溶液)、得られた変曲点を終点とした。同様の方法でブランク試験も行い、下式よりアミン価を算出した。
アミン価(mgKOH/g)=(Va-Vb)×N×f×56.11/S
ただし、Va;本試験での滴定量(mL)、Vb;ブランク試験での滴定液量(mL)、N;滴定液の濃度(mоl/L)、S;試料の重量(g)、f;滴定液のファクター
ポリアミド系樹脂の酸価を、JIK K0070に準じて、電位差滴定法で次のようにして測定した。100mLの三角フラスコに、60℃で16時間真空乾燥させた試料1gと、ベンジルアルコール80mLを加えた。空冷管を取り付けた後、200℃の湯浴中で13分加熱溶解させた後、室温まで冷却させた。電位差滴定装置(京都電子工業株式会社製、AT-710、電極;京都電子工業株式会社製、複合ガラス電極)を用いて滴定し(滴定液;0.01mоl/LのKOHアルコール溶液)、得られた変曲点を終点とした。同様の方法でブランク試験も行い、下式より酸価を算出した。
酸価(mgKOH/g)=(Va-Vb)×N×f×56.11/S
ただし、Va;本試験での滴定量(mL)、Vb;ブランク試験での滴定液量(mL)、N;滴定液の濃度(mоl/L)、S;試料の重量(g)、f;滴定液のファクター
ポリアミド系樹脂のアミン価を、電位差滴定法で次のようにして測定した。100mLの三角フラスコに、60℃で16時間真空乾燥させた試料3gと、m-クレゾール80mLを加え、室温で24時間撹拌した後、80℃のホットスターラーで3時間撹拌して溶解させた。試料が溶解したことを確認し、室温まで冷却した。電位差滴定装置(京都電子工業株式会社製、AT-710、電極;京都電子工業株式会社製、複合ガラス電極)を用いて滴定し(滴定液;0.05mоl/L過塩素酸メタノール溶液)、得られた変曲点を終点とした。同様の方法でブランク試験も行い、下式よりアミン価を算出した。
アミン価(mgKOH/g)=(Va-Vb)×N×f×56.11/S
ただし、Va;本試験での滴定量(mL)、Vb;ブランク試験での滴定液量(mL)、N;滴定液の濃度(mоl/L)、S;試料の重量(g)、f;滴定液のファクター
(13)結晶融解率
上記条件Bで測定された2nd scan DSC曲線用いて結晶融解率を求めた。最大吸熱ピークについて、「補外融解開始温度-20℃」から「補外融解終了温度+20℃」までの全積分値に対する、該最大吸熱ピークの「補外融解開始温度-20℃」から「補外融解開始温度+10℃」までの部分積分値の割合(%)を、補外融解開始温度から10℃高い温度における結晶融解率とした。なおピーク部分積分値は、示唆走査熱量計(DSC)に付属の一般的な解析プログラムを用いて、プロットデータを出力することにより算出した。
また、補外融解終了温度は最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークの高温側の変曲点における接線とベースラインとの交点の温度を補外融解終了温度とした。
上記条件Bで測定された2nd scan DSC曲線用いて結晶融解率を求めた。最大吸熱ピークについて、「補外融解開始温度-20℃」から「補外融解終了温度+20℃」までの全積分値に対する、該最大吸熱ピークの「補外融解開始温度-20℃」から「補外融解開始温度+10℃」までの部分積分値の割合(%)を、補外融解開始温度から10℃高い温度における結晶融解率とした。なおピーク部分積分値は、示唆走査熱量計(DSC)に付属の一般的な解析プログラムを用いて、プロットデータを出力することにより算出した。
また、補外融解終了温度は最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークの高温側の変曲点における接線とベースラインとの交点の温度を補外融解終了温度とした。
(A)耐熱性
後述する実施例及び比較例のポリアミド系樹脂発泡成形体の耐熱性について、加熱による寸法変化率、及び加熱後の外観変化を評価した。
(A-1)寸法変化率
発泡成形体を成形後、60℃の乾燥機を用いて24時間乾燥させて、発泡成形体に含まれる水分を除去した。この発泡成形体について、JIS K6767の寸法安定性評価・B法に準拠して、試験片の作製及び加熱試験(150℃及び170℃、22時間)を行い、その寸法変化率(%)を評価した。
評価基準としては、寸法変化率が小さいほど、発泡成形体は耐熱性に優れていると判定した。
(A-2)外観変化
上述の(A-1)における加熱試験後の試験片の外観の変化を目視にて評価した。評価基準は、以下の通りである。
○(優れる):試験片に割れ、収縮、膨張がない。
△(良好):試験片に割れ、収縮、膨張がわずかに確認されたが、使用上問題のない程度である。
×(不良):試験片に使用上問題がある程度の割れ、収縮、膨張が確認される。
-:未評価
後述する実施例及び比較例のポリアミド系樹脂発泡成形体の耐熱性について、加熱による寸法変化率、及び加熱後の外観変化を評価した。
(A-1)寸法変化率
発泡成形体を成形後、60℃の乾燥機を用いて24時間乾燥させて、発泡成形体に含まれる水分を除去した。この発泡成形体について、JIS K6767の寸法安定性評価・B法に準拠して、試験片の作製及び加熱試験(150℃及び170℃、22時間)を行い、その寸法変化率(%)を評価した。
評価基準としては、寸法変化率が小さいほど、発泡成形体は耐熱性に優れていると判定した。
(A-2)外観変化
上述の(A-1)における加熱試験後の試験片の外観の変化を目視にて評価した。評価基準は、以下の通りである。
○(優れる):試験片に割れ、収縮、膨張がない。
△(良好):試験片に割れ、収縮、膨張がわずかに確認されたが、使用上問題のない程度である。
×(不良):試験片に使用上問題がある程度の割れ、収縮、膨張が確認される。
-:未評価
(B)曲げ強度
発泡成形体を成形後、60℃の乾燥機を用いて24時間乾燥させて、成形体に含まれる水分を除去した。この発泡成形体について、JIS K7171に準拠して、その曲げ強度を測定し、曲げ強度(MPa)とした。
また、60℃の乾燥機を用いて24時間乾燥させたのち、150℃のオーブンに500時間静置させたのち、JIS K7171に準拠して、加熱後の曲げ強度(MPa)を測定し、加熱前の曲げ強度に対する加熱後の曲げ強度の割合から、加熱前後での強度保持率(%)を算出した。
発泡成形体を成形後、60℃の乾燥機を用いて24時間乾燥させて、成形体に含まれる水分を除去した。この発泡成形体について、JIS K7171に準拠して、その曲げ強度を測定し、曲げ強度(MPa)とした。
また、60℃の乾燥機を用いて24時間乾燥させたのち、150℃のオーブンに500時間静置させたのち、JIS K7171に準拠して、加熱後の曲げ強度(MPa)を測定し、加熱前の曲げ強度に対する加熱後の曲げ強度の割合から、加熱前後での強度保持率(%)を算出した。
(C)外観
発泡成形体を成形直後の発泡成形体の表面の外観を目視にて評価した。評価基準は、以下の通りである。
〇(優れる):平滑であり、ヒケ反り等が少ない。
△(良好):予備発泡粒子の収縮し、ヒケ反り等がわずかに見られるが、使用上問題ない程度である。
×(不良):予備発泡粒子が収縮し、ヒケ反り等が見られ、実用に耐えない。
発泡成形体を成形直後の発泡成形体の表面の外観を目視にて評価した。評価基準は、以下の通りである。
〇(優れる):平滑であり、ヒケ反り等が少ない。
△(良好):予備発泡粒子の収縮し、ヒケ反り等がわずかに見られるが、使用上問題ない程度である。
×(不良):予備発泡粒子が収縮し、ヒケ反り等が見られ、実用に耐えない。
(D)融着性
縦:300mm、横:300mm、厚み:20mmの板状の発泡成形体の表面にカッターナイフを用いて縦に2等分するように5mmの深さの切り込み線を入れ、この線に沿って発泡成形体を分割した。この分割面に現れた予備発泡粒子に関して、予備発泡粒子が粒子内で破断している(予備発泡粒子が分割面により破壊されている)ものの数(a)と、予備発泡粒子同士の界面に沿って破断している(予備発泡粒子同士の界面が分割面になっている)ものの数(b)とを測定し、下記式(2)に従って融着率(%)を算出した。
融着率(%)={a/(a+b)}×100・・・(2)
この融着率が80%以上のものを〇(良好)、80%未満のものを×(不良)として評価した。
縦:300mm、横:300mm、厚み:20mmの板状の発泡成形体の表面にカッターナイフを用いて縦に2等分するように5mmの深さの切り込み線を入れ、この線に沿って発泡成形体を分割した。この分割面に現れた予備発泡粒子に関して、予備発泡粒子が粒子内で破断している(予備発泡粒子が分割面により破壊されている)ものの数(a)と、予備発泡粒子同士の界面に沿って破断している(予備発泡粒子同士の界面が分割面になっている)ものの数(b)とを測定し、下記式(2)に従って融着率(%)を算出した。
融着率(%)={a/(a+b)}×100・・・(2)
この融着率が80%以上のものを〇(良好)、80%未満のものを×(不良)として評価した。
(E)耐油性
ASTM D543/JIS K7114に準拠して、以下の通り発泡成形体の耐油性を評価した。発泡成形体を成形後、60℃の乾燥機を用いて24時間乾燥させて、成形体に含まれる水分を除去した。この発泡成形体を縦:75mm、横:25mm、厚み:10mmの板状にカットし、これを機械油(商品名:オマラS2G68、昭和シェル石油(株))中に23℃で7日間浸漬して、その前後の体積変化率の絶対値を測定した。体積変化率が5%未満のものを〇(良好)、5%以上のものを×(不良)とした。
ASTM D543/JIS K7114に準拠して、以下の通り発泡成形体の耐油性を評価した。発泡成形体を成形後、60℃の乾燥機を用いて24時間乾燥させて、成形体に含まれる水分を除去した。この発泡成形体を縦:75mm、横:25mm、厚み:10mmの板状にカットし、これを機械油(商品名:オマラS2G68、昭和シェル石油(株))中に23℃で7日間浸漬して、その前後の体積変化率の絶対値を測定した。体積変化率が5%未満のものを〇(良好)、5%以上のものを×(不良)とした。
(F)ポリアミド系樹脂発泡成形体の比容
ポリアミド系樹脂発泡成形体を直方体に切り出したのち、質量W(g)を測定した。体積V(cc)を算出し、V/W(cc/g)を比容とした。
ポリアミド系樹脂発泡成形体を直方体に切り出したのち、質量W(g)を測定した。体積V(cc)を算出し、V/W(cc/g)を比容とした。
(G)ポリアミド系樹脂発泡成形体の曲げ強度
ポリアミド系樹脂発泡成形体の曲げ強度は、JISK7171(2008)に従って実施した。真空乾燥処理を40℃、24時間以上行った発泡成形体及び発泡成形体の試験片(試験片寸法;長さ300mm、幅40mm、厚さ20mm)を作製した。曲げ強度測定は、島津製作所製 オートグラフ(AG-5000D)型を用いて行い、厚さ方向に荷重を掛けることで曲げ強度(MPa)を計測した。
ポリアミド系樹脂発泡成形体の曲げ強度は、JISK7171(2008)に従って実施した。真空乾燥処理を40℃、24時間以上行った発泡成形体及び発泡成形体の試験片(試験片寸法;長さ300mm、幅40mm、厚さ20mm)を作製した。曲げ強度測定は、島津製作所製 オートグラフ(AG-5000D)型を用いて行い、厚さ方向に荷重を掛けることで曲げ強度(MPa)を計測した。
[実施例1~5]
ポリアミド系樹脂としてナイロン666(ナイロン66/6)(商品名:Novamid 2430A、(株)DSM製)、ヨウ化銅、ヨウ化カリウム、核剤を、表1に示す割合で混合し、次いで、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、ペレット形状の基材樹脂を作製した。
これに、特開2011-105879号公報の実施例に記載の方法に準じて、基材樹脂に発泡剤としての炭酸ガスを含有させた。そして、炭酸ガスを含めた基材樹脂を加熱することによって、発泡を生じさせて、密度:0.3g/cm3の予備発泡粒子を得た。
得られた予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:20mm)内に、キャビティ体積の70%に相当する予備発泡粒子を充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。
その後、キャビティ内に119℃の飽和水蒸気を30秒間供給して、予備発泡粒子を熱融着させることによって成形した。
金型のキャビティ内に冷却水を供給することによって、発泡成形体を冷却し、その後、型開きを行い、発泡成形体を取り出した。
実施例1~5の評価結果を表1に示す。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度も表1に示した。
ポリアミド系樹脂としてナイロン666(ナイロン66/6)(商品名:Novamid 2430A、(株)DSM製)、ヨウ化銅、ヨウ化カリウム、核剤を、表1に示す割合で混合し、次いで、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、ペレット形状の基材樹脂を作製した。
これに、特開2011-105879号公報の実施例に記載の方法に準じて、基材樹脂に発泡剤としての炭酸ガスを含有させた。そして、炭酸ガスを含めた基材樹脂を加熱することによって、発泡を生じさせて、密度:0.3g/cm3の予備発泡粒子を得た。
得られた予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:20mm)内に、キャビティ体積の70%に相当する予備発泡粒子を充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。
その後、キャビティ内に119℃の飽和水蒸気を30秒間供給して、予備発泡粒子を熱融着させることによって成形した。
金型のキャビティ内に冷却水を供給することによって、発泡成形体を冷却し、その後、型開きを行い、発泡成形体を取り出した。
実施例1~5の評価結果を表1に示す。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度も表1に示した。
[実施例6]
卑金属元素含有化合物として、ヨウ化銅の代わりに、酢酸銅を0.02質量部用い、ヨウ化カリウムを使用しなかったこと以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度は102ppmであった。
卑金属元素含有化合物として、ヨウ化銅の代わりに、酢酸銅を0.02質量部用い、ヨウ化カリウムを使用しなかったこと以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度は102ppmであった。
[実施例7]
卑金属元素含有化合物として、ヨウ化銅の代わりに、亜鉛含有アイオノマー(商品名:ハイミランHM1706、三井・デュポン ポリケイカル(株))を5質量部用い、ヨウ化カリウムを使用しなかったこと以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は亜鉛のみであり、ICP-AESで測定した質量濃度は42ppmであった。
卑金属元素含有化合物として、ヨウ化銅の代わりに、亜鉛含有アイオノマー(商品名:ハイミランHM1706、三井・デュポン ポリケイカル(株))を5質量部用い、ヨウ化カリウムを使用しなかったこと以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は亜鉛のみであり、ICP-AESで測定した質量濃度は42ppmであった。
[実施例8]
卑金属元素含有化合物として、ヨウ化銅の代わりに、塩化鉄(II)を0.05質量部用い、ヨウ化カリウムを使用しなかったこと以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は鉄のみであり、ICP-AESで測定した質量濃度は211ppmであった。
卑金属元素含有化合物として、ヨウ化銅の代わりに、塩化鉄(II)を0.05質量部用い、ヨウ化カリウムを使用しなかったこと以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は鉄のみであり、ICP-AESで測定した質量濃度は211ppmであった。
[実施例9]
ポリアミド系樹脂としてナイロン666(ナイロン66/6)(商品名:Novamid 2430A、(株)DSM製)80質量部、ナイロン6I(商品名:Grivory G16、EMS-Chemie、Gross-Umstadt)20質量部を用いた以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度は95ppmであった。
ポリアミド系樹脂としてナイロン666(ナイロン66/6)(商品名:Novamid 2430A、(株)DSM製)80質量部、ナイロン6I(商品名:Grivory G16、EMS-Chemie、Gross-Umstadt)20質量部を用いた以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度は95ppmであった。
[実施例10]
ポリアミド系樹脂としてナイロン666(ナイロン66/6)(商品名:Novamid 2430A、(株)DSM製)40質量部、ナイロン6I(商品名:Grivory G16、EMS-Chemie、Gross-Umstadt)60質量部を用いた以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度は98ppmであった。
ポリアミド系樹脂としてナイロン666(ナイロン66/6)(商品名:Novamid 2430A、(株)DSM製)40質量部、ナイロン6I(商品名:Grivory G16、EMS-Chemie、Gross-Umstadt)60質量部を用いた以外は実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度は98ppmであった。
[比較例1]
ヨウ化銅とヨウ化カリウムを添加しなかったこと以外は、実施例1と同様に発泡成形体を得た。蛍光X線によって卑金属元素は検出されなかった。
ヨウ化銅とヨウ化カリウムを添加しなかったこと以外は、実施例1と同様に発泡成形体を得た。蛍光X線によって卑金属元素は検出されなかった。
[比較例2]
ヨウ化銅の添加量を0.002質量部にしたこと以外は、実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度は10ppm未満であった。
ヨウ化銅の添加量を0.002質量部にしたこと以外は、実施例1と同様に発泡成形体を得た。蛍光X線によって検出された卑金属元素は銅のみであり、ICP-AESで測定した質量濃度は10ppm未満であった。
実施例1~8により、卑金属元素を10~3000質量ppm含むポリアミド系樹脂組成物からなる予備発泡粒子は、熱融着温度より5℃高い温度における膨張比が1.0以上となっており、成形体の機械強度もすぐれていた。また、実施例1~8は、膨張比Bも1.0以上であり、機械強度に優れた成形体が得られた。
実施例9~10と実施例1とを比較すると、非晶性のポリアミドを添加することで、耐油性、耐熱性は若干劣るものの、より密度が低く、軽量性に優れた発泡成形体を作製できることがわかる。
一方、比較例1、2に示したように、卑金属元素を含まない、又は10質量ppm以下のポリアミド系樹脂からなる予備発泡粒子は、熱融着温度よりも高い温度での膨張比が1.0未満であり且つ膨張比Bも1.0未満であり、それにより得られた発泡成形体は、予備発泡粒子の収縮がおき、これにより成形体の外観や融着性、機械強度は劣るものであった。
実施例9~10と実施例1とを比較すると、非晶性のポリアミドを添加することで、耐油性、耐熱性は若干劣るものの、より密度が低く、軽量性に優れた発泡成形体を作製できることがわかる。
一方、比較例1、2に示したように、卑金属元素を含まない、又は10質量ppm以下のポリアミド系樹脂からなる予備発泡粒子は、熱融着温度よりも高い温度での膨張比が1.0未満であり且つ膨張比Bも1.0未満であり、それにより得られた発泡成形体は、予備発泡粒子の収縮がおき、これにより成形体の外観や融着性、機械強度は劣るものであった。
以降の実施例11~41、比較例3~9で使用した原材料は下記の通りである。
PA6/66(A):ポリアミド6/66樹脂、Novamid2430A、融点192℃
PA6:ポリアミド6樹脂、UBE Nylon 1030B、融点225℃
PA6I:ポリアミド6I樹脂
PA6/66(B):ポリアミド6/66樹脂、Novamid2330J、融点213℃
PA66:ポリアミド66樹脂、Leona、融点265℃
PA6/66(A):ポリアミド6/66樹脂、Novamid2430A、融点192℃
PA6:ポリアミド6樹脂、UBE Nylon 1030B、融点225℃
PA6I:ポリアミド6I樹脂
PA6/66(B):ポリアミド6/66樹脂、Novamid2330J、融点213℃
PA66:ポリアミド66樹脂、Leona、融点265℃
[実施例11]
ポリアミド系樹脂としてPA6/66(A)、PA6を、表2に示す割合で混合し、次いで、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。得られた予備発泡粒子の密度は0.29g/cm3であった。
得られたポリアミド系樹脂予備発泡粒子を50℃のオーブンで16時間乾燥させた後、オートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に119℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
ポリアミド系樹脂としてPA6/66(A)、PA6を、表2に示す割合で混合し、次いで、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。得られた予備発泡粒子の密度は0.29g/cm3であった。
得られたポリアミド系樹脂予備発泡粒子を50℃のオーブンで16時間乾燥させた後、オートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に119℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
[実施例12~24]
ポリアミド系樹脂を二軸押出機にて加熱条件下で溶融混練する際、ポリアミド種と混合割合を表2に示す通りに変更したこと以外は実施例11と同様にポリアミド系樹脂発泡成形体を得た。
ポリアミド系樹脂を二軸押出機にて加熱条件下で溶融混練する際、ポリアミド種と混合割合を表2に示す通りに変更したこと以外は実施例11と同様にポリアミド系樹脂発泡成形体を得た。
[実施例25~29]
ポリアミド系樹脂を、表2に示す割合で混合し、次いで、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、240℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
得られたポリアミド系樹脂予備発泡粒子を50℃のオーブンで16時間乾燥させた後、オートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に140℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に150℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
ポリアミド系樹脂を、表2に示す割合で混合し、次いで、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、240℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
得られたポリアミド系樹脂予備発泡粒子を50℃のオーブンで16時間乾燥させた後、オートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に140℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に150℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
[実施例30]
ポリアミド系樹脂としてポリミド6/66(A)を用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を23℃55%の恒温恒湿室に48時間以上保管し、含水率を測定した結果、含水率は3.5%であった。
この得られたポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に119℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
ポリアミド系樹脂としてポリミド6/66(A)を用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を23℃55%の恒温恒湿室に48時間以上保管し、含水率を測定した結果、含水率は3.5%であった。
この得られたポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に119℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
[実施例32]
ポリアミド系樹脂としてポリミド6/66(A)を用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は12.0%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂としてポリミド6/66(A)を用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は12.0%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[実施例34]
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は10.0%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は10.0%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[実施例35]
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に30分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は14.6%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に30分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は14.6%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[実施例36]
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.5%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.5%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[実施例37]
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は10.2%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は10.2%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[比較例3]
ポリアミド系樹脂としてポリアミド6/66(A)のみを用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を50℃のオーブンで16時間乾燥させた後、実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂としてポリアミド6/66(A)のみを用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を50℃のオーブンで16時間乾燥させた後、実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[比較例4]
ポリアミド系樹脂としてポリアミド6/66(A)のみを用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。得られたポリアミド系樹脂予備発泡粒子の含水率は1.5%であった。このポリアミド系樹脂予備発泡粒子を直ちにオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。
その後、実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂としてポリアミド6/66(A)のみを用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。得られたポリアミド系樹脂予備発泡粒子の含水率は1.5%であった。このポリアミド系樹脂予備発泡粒子を直ちにオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。
その後、実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[比較例5]
ポリアミド系樹脂としてポリアミド6/66(A)のみを用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に60分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は15.4%であった。
その後、実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂としてポリアミド6/66(A)のみを用い、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に60分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は15.4%であった。
その後、実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[比較例6]
ポリアミド系樹脂として、ポリアミド66が100質量部に対してポリアミド6を25質量部の割合で混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、270℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を50℃のオーブンで16時間加熱した後、ポリアミド系樹脂発泡成形体を作製しようと試みたが、ポリアミド樹脂の融点が高すぎたため、作製できなかった。
ポリアミド系樹脂として、ポリアミド66が100質量部に対してポリアミド6を25質量部の割合で混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、270℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を50℃のオーブンで16時間加熱した後、ポリアミド系樹脂発泡成形体を作製しようと試みたが、ポリアミド樹脂の融点が高すぎたため、作製できなかった。
[比較例7、8]
ポリアミド系樹脂として、ポリアミド6/66(A)とポリアミド6Iを表3に示した割合で混合したこと以外は、実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂として、ポリアミド6/66(A)とポリアミド6Iを表3に示した割合で混合したこと以外は、実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[実施例41]
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.0%であった。
このポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に120℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.0%であった。
このポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に120℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
[比較例9]
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この発泡粒子の含水率は7.2%であった。
このポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に120℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
ポリアミド系樹脂を表3に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に10分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この発泡粒子の含水率は7.2%であった。
このポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に120℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
[実施例31]
ポリアミド系樹脂としてポリミド6/66(A)と核剤を、表4に示した割合でドライブレンドし、次いで、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.5%であった。
この得られたポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に119℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
ポリアミド系樹脂としてポリミド6/66(A)と核剤を、表4に示した割合でドライブレンドし、次いで、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.5%であった。
この得られたポリアミド系樹脂予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、ポリアミド系樹脂予備発泡粒子に加圧処理を施した。加圧処理したポリアミド系樹脂予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:25mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に119℃の飽和水蒸気を30秒間供給して、ポリアミド系樹脂予備発泡粒子を発泡させ、且つ熱融着させることによって、ポリアミド系樹脂予備発泡粒子を発泡体へ成形した。金型のキャビティ内に冷却水を供給することによって、得られた発泡体を冷却し、その後、型開きを行い、ポリアミド系樹脂発泡成形体を取り出した。
[実施例33]
ポリアミド系樹脂を表4に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.7%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂を表4に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.7%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[実施例38]
ポリアミド系樹脂を表4に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.8%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂を表4に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.8%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[実施例39]
ポリアミド系樹脂を表4に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.5%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂を表4に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.5%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
[実施例40]
ポリアミド系樹脂を表4に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.6%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
ポリアミド系樹脂を表4に示すように混合し、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、平均粒子径1.4mmのペレットを得た。
得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させた。次いで炭酸ガス含浸ペレットを発泡装置に移し、200℃の空気を20秒間吹き込み、ポリアミド系樹脂予備発泡粒子の集合体を得た。
ポリアミド系樹脂予備発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に5分浸漬したのち、脱水機で1000rpm/分で3分脱水処理をし、含水したポリアミド系樹脂予備発泡粒子を得た。この予備発泡粒子の含水率は7.6%であった。
その後は実施例11と同様にしてポリアミド系樹脂発泡成形体を作製した。
本発明のポリアミド系樹脂発泡成形体は、その特徴を活かし、高温条件下で使用される断熱材や自動車部材、例えば、オイルパン、エンジンカバーやシリンダーヘッドカバー、その他カバー形状の部品、インテークマニホールド及びその集積部品、ダクト類、電装品ケース、電池ケース等に好適に利用できる。
Claims (15)
- ポリアミド系樹脂を含み、
密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、熱融着温度より5℃高い温度の飽和水蒸気を用いて30秒間加熱した後の密度ρ2(g/cm3)との割合(ρ1/ρ2)である膨張比が、1.0以上である、
ことを特徴とするポリアミド系樹脂予備発泡粒子。 - ポリアミド系樹脂を含み、
密度ρ1(g/cm3)と、0.9MPaの空気で加圧した後、示差走査熱量計を用いて、下記の条件Bで測定される水中測定時の補外融解開始温度から10℃高い温度の飽和水蒸気を用いて、30秒間加熱した後の密度ρ3(g/cm3)との割合(ρ1/ρ3)である膨張比Bが、1.0以上である、
ことを特徴とするポリアミド系樹脂予備発泡粒子。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られる2nd scan DSC曲線において、最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークより低温側の変曲点における接線と前記ベースラインとの交点の温度を水中測定時の補外融解開始温度とする。 - 前記ポリアミド系樹脂100質量%に対し、卑金属元素を10~3000質量ppm含む、請求項1又は2に記載のポリアミド系樹脂予備発泡粒子。
- 前記卑金属元素が、銅元素又は亜鉛元素である、請求項3に記載のポリアミド系樹脂予備発泡粒子。
- 前記ポリアミド系樹脂100質量%に対し、ヨウ素元素を10~6000質量ppm含有し、
前記卑金属元素に対する前記ヨウ素元素のモル割合(ヨウ素元素/卑金属元素)が1以上である、請求項3又は4に記載のポリアミド系樹脂予備発泡粒子。 - 前記ポリアミド系樹脂の数平均分子量Mnが10000以上35000以下であり、
重量平均分子量Mwが35000以上140000以下である、請求項1~5のいずれか一項に記載のポリアミド系樹脂予備発泡粒子。 - 電位差滴定法により測定される、前記ポリアミド系樹脂の酸価とアミン価との和(酸価+アミン価)が、2.5mgKOH/g以上8.0mgKOH/g以下である、請求項1~6のいずれか一項に記載のポリアミド系樹脂予備発泡粒子。
- 示差走査熱量計を用いて、下記の条件Aで測定されるDSC曲線において、最大吸熱ピークのピーク温度が150℃以上215℃以下であり、
前記最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、前記最大吸熱ピークの低温側の変曲点における接線と前記ベースラインとの交点の温度である補外融解開始温度と、前記最大吸熱ピークの高温側の変曲点における接線と前記ベースラインとの交点の温度である補外融解終了温度との差に相当する最大吸熱ピークの幅が、25℃以上80℃以下である、請求項1~7のいずれか一項に記載のポリアミド系樹脂予備発泡粒子。
条件A
昇温速度10℃/分の条件下で30℃から280℃まで昇温した際に得られるDSC曲線。 - 前記ポリアミド系樹脂として、ポリアミド系樹脂(A)と、前記ポリアミド系樹脂(A)より融点が高いポリアミド系樹脂(B)とを含む、請求項1~8のいずれか一項に記載のポリアミド系樹脂予備発泡粒子。
- 前記ポリアミド系樹脂(A)100質量部に対する、前記ポリアミド系樹脂(B)の質量割合が20質量部以下である、請求項9に記載のポリアミド系樹脂予備発泡粒子。
- 前記ポリアミド系樹脂100質量%に対して、結晶性ポリアミド樹脂を50質量%以上含む、請求項1~10のいずれか一項に記載のポリアミド系樹脂予備発泡粒子。
- 前記結晶性ポリアミド樹脂が、脂肪族ポリアミド樹脂である、請求項11に記載のポリアミド系樹脂予備発泡粒子。
- 示差走査熱量計を用いて、下記の条件Bで測定される2nd scan DSC曲線において、
最大吸熱ピークより高温側における融解終了後のDSC曲線を近似した直線をベースラインとし、最大吸熱ピークより低温側の変曲点における接線と前記ベースラインとの交点の温度である補外融解開始温度から10℃高い温度における結晶融解率が20%以上である、請求項1~12のいずれか一項に記載のポリアミド系樹脂予備発泡粒子。
条件B
ポリアミド系樹脂予備発泡粒子を、純水中に埋没させた状態でアルミニウム製密閉耐圧容器に密封し、示唆走査熱量計(DSC)により昇温速度10℃/分で加熱して融解させ、次いで、冷却速度10℃/分で冷却して固化されたポリアミド系樹脂予備発泡粒子を、再度、示唆走査熱量計(DSC)で10℃/分で加熱して融解させた際に得られるDSC曲線を2nd scan DSC曲線とする。 - 請求項1~13のいずれか一項に記載のポリアミド系樹脂予備発泡粒子からなる、ポリアミド系樹脂発泡成形体。
- 請求項1~13のいずれか一項に記載のポリアミド系樹脂予備発泡粒子を金型のキャビティ内に充填し、前記キャビティ内に前記ポリアミド系樹脂予備発泡粒子の融点以下の水蒸気を供給して、前記ポリアミド系樹脂予備発泡粒子を膨張させ、且つ熱融着させる工程を含む、ポリアミド系樹脂発泡成形体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20779616.0A EP3950794A4 (en) | 2019-03-28 | 2020-03-27 | POLYAMIDE RESIN PRE-EXPANDED PARTICLE, POLYAMIDE RESIN EXPANDED MOLDED ARTICLE, AND METHOD FOR MAKING EXPANDED POLYAMIDE RESIN MOLDED ARTICLE |
US17/593,770 US20220169849A1 (en) | 2019-03-28 | 2020-03-27 | Polyamide-based resin pre-expanded particles, polyamide-based resin foam shaped product, and method of producing polyamide-based resin foam shaped product |
CN202080023202.1A CN113614158B (zh) | 2019-03-28 | 2020-03-27 | 聚酰胺系树脂预发泡颗粒、聚酰胺系树脂发泡成型体及聚酰胺系树脂发泡成型体的制造方法 |
JP2021509684A JP7085059B2 (ja) | 2019-03-28 | 2020-03-27 | ポリアミド系樹脂予備発泡粒子、ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-063446 | 2019-03-28 | ||
JP2019063446 | 2019-03-28 | ||
JP2020020117 | 2020-02-07 | ||
JP2020-020117 | 2020-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020196893A1 true WO2020196893A1 (ja) | 2020-10-01 |
Family
ID=72610600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014341 WO2020196893A1 (ja) | 2019-03-28 | 2020-03-27 | ポリアミド系樹脂予備発泡粒子、ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220169849A1 (ja) |
EP (1) | EP3950794A4 (ja) |
JP (1) | JP7085059B2 (ja) |
CN (1) | CN113614158B (ja) |
WO (1) | WO2020196893A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022085538A1 (ja) * | 2020-10-22 | 2022-04-28 | 株式会社ジェイエスピー | ポリアミド系樹脂多段発泡粒子の製造方法 |
WO2024024716A1 (ja) * | 2022-07-26 | 2024-02-01 | 株式会社ジェイエスピー | ポリアミド系樹脂発泡粒子 |
WO2024043103A1 (ja) * | 2022-08-24 | 2024-02-29 | 旭化成株式会社 | 発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体 |
US11993690B2 (en) | 2020-02-18 | 2024-05-28 | Jsp Corporation | Polyamide-based resin expanded beads and molded article of polyamide-based resin expanded beads |
WO2024171791A1 (ja) * | 2023-02-14 | 2024-08-22 | 株式会社ジェイエスピー | ポリアミド系樹脂発泡粒子及びポリアミド系樹脂発泡粒子成形体 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115418118B (zh) * | 2022-09-26 | 2023-03-28 | 福建乐钛科技有限公司 | 锦纶色母粒用钛白粉的制备方法 |
WO2024088893A1 (en) | 2022-10-25 | 2024-05-02 | Basf Se | Polyamide foams with high thermal stability |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011105879A (ja) | 2009-11-19 | 2011-06-02 | Asahi Kasei Chemicals Corp | ポリアミド発泡粒子及びその製造方法、ポリアミド発泡粒子群並びに発泡成型品 |
WO2016147582A1 (ja) * | 2015-03-18 | 2016-09-22 | 旭化成株式会社 | ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法 |
JP2018043490A (ja) * | 2016-09-16 | 2018-03-22 | 旭化成株式会社 | インシュレーター |
JP2018044127A (ja) * | 2016-09-16 | 2018-03-22 | 旭化成株式会社 | ポリアミド系樹脂発泡成形体 |
JP2018043487A (ja) * | 2016-09-16 | 2018-03-22 | 旭化成株式会社 | 繊維強化複合体 |
WO2019198642A1 (ja) * | 2018-04-09 | 2019-10-17 | 旭化成株式会社 | 発泡成型体、及びその製造方法 |
WO2020031803A1 (ja) * | 2018-08-08 | 2020-02-13 | 旭化成株式会社 | ポリアミド予備発泡粒子、並びにポリアミド発泡成形体及びその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105283493B (zh) * | 2013-05-15 | 2018-07-03 | 东洋纺株式会社 | 用于发泡成型体的聚酰胺树脂组合物及包含其的聚酰胺树脂的发泡成型体 |
CN109423043A (zh) * | 2017-08-24 | 2019-03-05 | 尤尼吉可株式会社 | 发泡成型用聚酰胺树脂组合物、发泡用聚酰胺树脂颗粒混合物和发泡成型体 |
-
2020
- 2020-03-27 JP JP2021509684A patent/JP7085059B2/ja active Active
- 2020-03-27 EP EP20779616.0A patent/EP3950794A4/en active Pending
- 2020-03-27 CN CN202080023202.1A patent/CN113614158B/zh active Active
- 2020-03-27 US US17/593,770 patent/US20220169849A1/en active Pending
- 2020-03-27 WO PCT/JP2020/014341 patent/WO2020196893A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011105879A (ja) | 2009-11-19 | 2011-06-02 | Asahi Kasei Chemicals Corp | ポリアミド発泡粒子及びその製造方法、ポリアミド発泡粒子群並びに発泡成型品 |
WO2016147582A1 (ja) * | 2015-03-18 | 2016-09-22 | 旭化成株式会社 | ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法 |
JP2018043490A (ja) * | 2016-09-16 | 2018-03-22 | 旭化成株式会社 | インシュレーター |
JP2018044127A (ja) * | 2016-09-16 | 2018-03-22 | 旭化成株式会社 | ポリアミド系樹脂発泡成形体 |
JP2018043487A (ja) * | 2016-09-16 | 2018-03-22 | 旭化成株式会社 | 繊維強化複合体 |
WO2019198642A1 (ja) * | 2018-04-09 | 2019-10-17 | 旭化成株式会社 | 発泡成型体、及びその製造方法 |
WO2020031803A1 (ja) * | 2018-08-08 | 2020-02-13 | 旭化成株式会社 | ポリアミド予備発泡粒子、並びにポリアミド発泡成形体及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3950794A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11993690B2 (en) | 2020-02-18 | 2024-05-28 | Jsp Corporation | Polyamide-based resin expanded beads and molded article of polyamide-based resin expanded beads |
WO2022085538A1 (ja) * | 2020-10-22 | 2022-04-28 | 株式会社ジェイエスピー | ポリアミド系樹脂多段発泡粒子の製造方法 |
WO2024024716A1 (ja) * | 2022-07-26 | 2024-02-01 | 株式会社ジェイエスピー | ポリアミド系樹脂発泡粒子 |
WO2024043103A1 (ja) * | 2022-08-24 | 2024-02-29 | 旭化成株式会社 | 発泡ビーズの製造方法、非晶性樹脂発泡ビーズ、結晶性樹脂発泡ビーズ及び発泡成形体 |
WO2024171791A1 (ja) * | 2023-02-14 | 2024-08-22 | 株式会社ジェイエスピー | ポリアミド系樹脂発泡粒子及びポリアミド系樹脂発泡粒子成形体 |
Also Published As
Publication number | Publication date |
---|---|
EP3950794A4 (en) | 2022-05-11 |
CN113614158B (zh) | 2023-03-24 |
JP7085059B2 (ja) | 2022-06-15 |
EP3950794A1 (en) | 2022-02-09 |
JPWO2020196893A1 (ja) | 2021-10-14 |
CN113614158A (zh) | 2021-11-05 |
US20220169849A1 (en) | 2022-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020196893A1 (ja) | ポリアミド系樹脂予備発泡粒子、ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法 | |
JP6068737B1 (ja) | ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法 | |
JP6956274B2 (ja) | ポリアミド予備発泡粒子、並びにポリアミド発泡成形体及びその製造方法 | |
JP6861001B2 (ja) | ポリアミド系樹脂発泡成形体 | |
WO2020049802A1 (ja) | ポリアミド系樹脂発泡粒子及びその製造方法 | |
CN107825726A (zh) | 纤维增强复合体 | |
EP4079796A1 (en) | Method for producing polyamide resin foamed particles | |
JP5809895B2 (ja) | ポリフェニレンサルファイド発泡体およびその製造方法 | |
JP6746447B2 (ja) | インシュレーター | |
WO2023054542A1 (ja) | ポリアミド系樹脂発泡粒子、ポリアミド系樹脂組成物、及び製造方法 | |
CN116490547A (zh) | 聚酰胺类树脂多级发泡颗粒的制造方法 | |
JPH04154845A (ja) | ポリブテン―1系樹脂発泡体およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20779616 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021509684 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020779616 Country of ref document: EP Effective date: 20211028 |