以下,對用以實施本發明之形態(以下,亦稱為「本實施形態」)進行詳細說明。以下之實施形態係用以對本發明進行說明之例示,本發明並不限定於以下之實施形態,可於其主旨之範圍內實施各種變化。 本實施形態之纖維強化複合體用芯材係包含珠粒發泡成形體者,亦可僅包含珠粒發泡成形體。於芯材中,亦可視目的或用途包含珠粒發泡成形體以外之構件。 --珠粒發泡成形體-- 珠粒發泡成形體包含熱塑性樹脂,且任意選擇性地包含微量之氣體、添加劑等。 上述珠粒發泡成形體中之熱塑性樹脂之含量較佳為50~100質量%,亦可為僅包含熱塑性樹脂之珠粒發泡成形體。 ---熱塑性樹脂--- 熱塑性樹脂並無特別限定,較佳為以於70℃~200℃內損耗正切tanδ成為最大之溫度為Tp,(Tp-30)℃之儲存模數(G'1)與150℃之儲存模數(G'2)之比(G'2/G'1)為0.25~0.95。若G'2/G'1處於該範圍,則容易適當維持高溫下之剛性,容易抑制複合時之變形,又,容易與纖維強化材融和,容易表現出接著強度。G'2/G'1更佳為0.30~0.90,進而較佳為0.30~0.85。 關於熱塑性樹脂,就與纖維強化材之接著性之觀點而言,較佳為包含聚苯醚系樹脂,可進而包含聚苯醚系樹脂以外之樹脂(其他樹脂)。 ----聚苯醚系樹脂---- 聚苯醚系樹脂係指包含下述通式(1)所表示之重複單元的聚合物,例如可列舉包括下述通式(1)所表示之重複單元之均聚物、包含下述通式(1)所表示之重複單元之共聚物等。 [化1]
[式中,R
1
、R
2
、R
3
、及R
4
分別獨立地為選自由氫原子、鹵素原子、烷基、烷氧基、苯基、於鹵素原子與通式(1)中之苯環之間具有至少2個碳原子之鹵烷基或鹵代烷氧基且不含第3α-碳之基所組成之群中之一價之基]。 作為聚苯醚系樹脂,並無特別限定,例如可列舉聚(2,6-二甲基-1,4-伸苯基)醚、聚(2,6-二乙基-1,4-伸苯基)醚、聚(2-甲基-6-乙基-1,4-伸苯基)醚、聚(2-甲基-6-丙基-1,4-伸苯基)醚、聚(2,6-二丙基-1,4-伸苯基)醚、聚(2-乙基-6-丙基-1,4-伸苯基)醚、聚(2,6-二丁基-1,4-伸苯基)醚、聚(2,6-二月桂基-1,4-伸苯基)醚、聚(2,6-二苯基-1,4-聯伸苯)醚、聚(2,6-二甲氧基-1,4-伸苯基)醚、聚(2,6-二乙氧基-1,4-伸苯基)醚、聚(2-甲氧基-6-乙氧基-1,4-伸苯基)醚、聚(2-乙基-6-硬脂氧基-1,4-伸苯基)醚、聚(2,6-二氯-1,4-伸苯基)醚、聚(2-甲基-6-苯基-1,4-伸苯基)醚、聚(2,6-二苄基-1,4-伸苯基)醚、聚(2-乙氧基-1,4-伸苯基)醚、聚(2-氯-1,4-伸苯基)醚、聚(2,6-二溴-1,4-伸苯基)醚等。其中,尤佳為於包含在上述通式(1)中R
1
及R
2
為碳原子數1~4之烷基且R
3
及R
4
為氫原子或碳數1~4之烷基之重複單元的聚合物。 聚苯醚系樹脂可單獨使用1種,亦可將2種以上組合而使用。 作為聚苯醚系樹脂之重量平均分子量,較佳為20,000~60,000。 關於本實施形態中之聚苯醚(PPE)系樹脂之含量,較佳為:相對於珠粒發泡成形體中包含之熱塑性樹脂100質量%,較佳為30~75質量%,更佳為35~65質量%,進而較佳為35~50質量%。於PPE含量為30質量%以上之情形時,容易獲得優異之耐熱性,又,於PPE含量為75質量%以下之情形時,容易獲得優異之加工性。 ----聚苯醚系樹脂以外之樹脂(其他樹脂)---- 作為其他樹脂,可列舉熱塑性樹脂等,例如可列舉:聚乙烯、聚丙烯、乙烯-乙酸乙烯酯共聚物(EVA)等聚烯烴系樹脂;聚乙烯醇;聚氯乙烯;聚偏二氯乙烯;ABS(丙烯腈-丁二烯-苯乙烯)樹脂;AS(丙烯腈-苯乙烯)樹脂;聚苯乙烯系樹脂;甲基丙烯酸系樹脂;聚醯胺系樹脂;聚碳酸酯系樹脂;聚醯亞胺系樹脂;聚縮醛系樹脂;聚酯系樹脂;丙烯酸系樹脂;纖維素系樹脂;苯乙烯系、聚氯乙烯系、聚胺基甲酸乙酯系、聚酯系、聚醯胺系、1,2-聚丁二烯系、氟橡膠系等熱塑性彈性體;聚醯胺系、聚縮醛系、聚酯系、氟系熱塑性工程塑膠等。又,於無損本發明之目的之範圍內,亦可使用改性、交聯之樹脂。其中,就相溶性之觀點而言,較佳為聚苯乙烯系樹脂。 該等可單獨使用1種,亦可將2種以上組合而使用。 作為聚苯乙烯系樹脂,可列舉苯乙烯或苯乙烯衍生物之均聚物、以苯乙烯及/或苯乙烯衍生物為主成分之共聚物等。 作為苯乙烯衍生物,並無特別限定,例如可列舉鄰甲基苯乙烯、間甲基苯乙烯、對甲基苯乙烯、第三丁基苯乙烯、α-甲基苯乙烯、β-甲基苯乙烯、二苯基乙烯、氯苯乙烯、溴苯乙烯等。 作為苯乙烯或苯乙烯衍生物之均聚物,例如,可列舉聚苯乙烯、聚α-甲基苯乙烯、聚氯苯乙烯等。 作為以苯乙烯及/或苯乙烯衍生物為主成分之共聚物,例如可列舉:苯乙烯-α-烯烴共聚物;苯乙烯-丁二烯共聚物;苯乙烯-丙烯腈共聚物;苯乙烯-馬來酸共聚物;苯乙烯-馬來酸酐共聚物;苯乙烯-馬來醯亞胺共聚物;苯乙烯-N-苯基馬來醯亞胺共聚物;苯乙烯-N-烷基馬來醯亞胺共聚物;苯乙烯-N-烷基取代苯基馬來醯亞胺共聚物;苯乙烯-丙烯酸共聚物;苯乙烯-甲基丙烯酸共聚物;苯乙烯-甲基丙烯酸酯共聚物;苯乙烯-甲基丙烯酸甲酯共聚物;苯乙烯-正烷基丙烯酸酯共聚物;苯乙烯-正烷基甲基丙烯酸酯共聚物;乙基乙烯苯-二乙烯苯共聚物;ABS、丁二烯-丙烯腈-α-甲基苯共聚物等三元共聚物;苯乙烯接枝聚乙烯、苯乙烯接枝乙烯-乙酸乙烯酯共聚物、(苯乙烯-丙烯酸)接枝聚乙烯、苯乙烯接枝聚醯胺等接枝共聚物等。 該等可單獨使用1種,亦可將2種以上組合而使用。 進而,亦可視需要於聚苯乙烯系樹脂中添加丁二烯等橡膠成分而使用。 橡膠成分之含量相對於聚苯乙烯系樹脂100質量%,較佳為1.0~20質量%,更佳為3.0~18質量%。 就發泡體之加工性之觀點而言,本實施形態中之其他樹脂之含量相對於珠粒發泡成形體中包含之熱塑性樹脂100質量%,較佳為25~70質量%,更佳為35~65質量%。 ---氣體--- 氣體係指於珠粒發泡成形體之製造過程(下述)中包含者。 作為氣體,並無特別限定,可列舉空氣、二氧化碳、用作發泡劑之各種氣體、脂肪族烴系氣體等。 作為脂肪族烴系氣體,具體而言,可列舉丁烷、戊烷等。 於本實施形態中,珠粒發泡成形體中之脂肪族烴系氣體之濃度(含量)以珠粒發泡成形體之體積為基準,較佳為500體積ppm以下,更佳為200體積ppm以下。又,於本實施形態中,芯材中之脂肪族烴系氣體之濃度(含量)以芯材之體積為基準,較佳為500體積ppm以下,更佳為200體積ppm以下。 再者,脂肪族烴系氣體之含量可藉由氣相層析法進行測定。 若將脂肪族烴系氣體之含量設為500體積ppm以下,則容易抑制因複合時之加熱引起之珠粒發泡成形體之膨脹,因此,容易獲得優異之表面平滑性、接著性、強度,尺寸之再現性亦良好,亦容易抑制後來之膨脹。又,容易進行存在厚度不同之部位之形狀等更複雜之形狀下之複合。 ---添加劑--- 作為添加劑,例如可列舉阻燃劑、橡膠成分、抗氧化劑、熱穩定劑、潤滑劑、顏料、染料、耐光性改良劑、抗靜電劑、耐衝擊改質劑、滑石等成核劑、玻璃珠粒、無機填充劑、抗黏連劑等。 作為阻燃劑,可列舉:溴化合物等鹵素系化合物、磷系化合物或矽酮系化合物等非鹵素系化合物等有機系阻燃劑;以氫氧化鋁、氫氧化鎂為代表之金屬氫氧化物、以三氧化銻、五氧化銻為代表之銻系化合物等無機系阻燃劑等。 阻燃劑之含量相對於熱塑性樹脂100質量%,較佳為3質量%以下,更佳為1質量%以下。若阻燃劑之含量處於該範圍,則更容易維持耐熱性或複合加工時之剛性,容易表現出良好之接著性。又,所獲得之複合體之尺寸更接近所需之尺寸,又,尺寸之再現性亦容易變得更好。 以下,對珠粒發泡成形體之物性進行記載。 珠粒發泡成形體之熱縮初始溫度為80℃以上。若熱縮初始溫度低於80℃,則於在與纖維強化材複合時進行加熱時,芯材中包含之珠粒發泡成形體在較早的階段收縮,因此,纖維強化材無法追隨其變化而產生皺褶等,從而外觀變差。更佳為85℃以上。 再者,熱縮初始溫度可藉由下述實施例中記載之方法進行測定。 珠粒發泡成形體之線膨脹係數為10×10
-5
mm/mm·℃以下。若線膨脹係數大於10×10
-5
mm/mm·℃,則於與纖維強化材複合時之加熱步驟中,芯材中包含之珠粒發泡成形體膨脹,另一方面,纖維強化材不膨脹,因此無法進行追隨,而產生樹脂萎縮或皺褶等,從而外觀變差,接著性下降。更佳為5×10
-5
mm/mm·℃以下。 再者,線膨脹係數可藉由下述實施例中記載之方法進行測定。 珠粒發泡成形體之130℃下之加熱尺寸變化率為-4.0~0%。再者,負係指收縮,正係指膨脹。若加熱尺寸變化率小於-4.0%、即收縮率大於4.0%,則不僅會導致芯材中包含之珠粒發泡成形體之密度增加而使輕量化效果下降,而且無法獲得所需之尺寸或尺寸之再現性下降。若收縮進一步變大,則珠粒發泡成形體與纖維強化材之密接性下降,而接著性或外觀變差,最終珠粒發泡成形體熔融而無法獲得複合品。若加熱尺寸變化率大於0%、即珠粒發泡成形體膨脹,則難以薄壁化。又,難以控制膨脹量,因此,尺寸再現性變差,或無法進行複雜之形狀下之複合。又,會於珠粒發泡成形體之表面產生凹凸,因此,作為結果,不僅複合體之表面平滑性變差,而且其接著性下降。較佳為-3.5~0%,更佳為-3.0~0%。 再者,130℃下之加熱尺寸變化率可藉由下述實施例中記載之方法進行測定。 珠粒發泡成形體之發泡倍率並無特別限定,較佳為1.5 cm
3
/g以上,更佳為2 cm
3
/g以上,又,較佳為40 cm
3
/g以下,更佳為25 cm
3
/g以下。若為該範圍,則容易活用輕量化之優點並且維持優異之耐熱性及高溫剛性。 再者,發泡倍率可藉由下述實施例中記載之方法進行測定。 上述珠粒發泡成形體可藉由珠粒發泡法而獲得。若使用珠粒發泡成形體,則賦形性優異,可成形為各種形,因此,於用於構件等之構造構件時,具有設計之自由度變得更寬之優點。又,亦具有同時進行珠粒發泡成形體之成形及與纖維強化材之複合而亦可省略加工步驟之優點。 本發明所使用之發泡珠粒例如可藉由於熱塑性樹脂中含有(含浸)發泡劑(含浸步驟)並使樹脂成分發泡(發泡步驟)而獲得,但並不限制於此。 於含浸步驟中,使基材樹脂中含有發泡劑之方法並無特別限定,可應用通常進行之方法。作為使基材樹脂中含有發泡劑之方法,可列舉利用水等懸濁系於水性介質中進行之方法(懸濁含浸)或使用重碳酸氫鈉等熱分解型發泡劑之方法(發泡劑分解法)、使氣體為臨界壓力以上之氣體氛圍而使之成為液相狀態而與基材樹脂接觸之方法(液相含浸)、於未達臨界壓力之高壓氣體氛圍下以氣相狀態與基材樹脂接觸之方法(氣相含浸)等。其中,尤佳為於未達臨界壓力之高壓氣體氛圍下進行氣相含浸之方法。其原因在於:進行氣相含浸之方法與於高溫條件下實施之懸濁含浸相比,氣體於樹脂中之溶解度更好,而容易提高發泡劑之含量。因此,容易達成高發泡倍率,基材樹脂內之氣泡尺寸亦容易變得均勻。發泡劑分解法亦同樣地,不僅於高溫條件下實施,並且熱分解型發泡劑並非全部成為氣體,因此,氣體產生量容易相對變少。因此,氣相含浸具有更容易提高發泡劑含量之優點。又,與液相含浸相比,耐壓裝置或冷卻裝置等設備更容易變得小型化,容易降低設備費。 氣相含浸條件並無特別限定,作為氣體氛圍壓力,較佳為0.5~6.0 MPa。又,氣體氛圍溫度較佳為5~30℃,更佳為7~20℃。若氣體氛圍壓力、氣體氛圍溫度為上述範圍,則容易更有效率地進行向基材樹脂中之氣體溶解。尤其是,有若氣體氛圍溫度較低,則含浸量增加但含浸速度變慢,若氣體氛圍溫度較高,則含浸量減少但含浸速度變快之傾向,根據其等之兼顧,為了有效率地進行向基材樹脂中之氣體溶解,較佳為設定上述氣體氛圍溫度。 發泡劑並無特別限定,可使用通常使用之氣體。作為其例,可列舉空氣、二氧化碳、氮氣、氧氣、氨氣、氫氣、氬氣、氦氣、氖氣等無機氣體、三氯氟甲烷(R11)、二氯二氟甲烷(R12)、氯二氟甲烷(R22)、四氯二氟乙烷(R112)、二氯氟乙烷(R141b)、氯二氟乙烷(R142b)、二氟乙烷(R152a)、HFC-245fa、HFC-236ea、HFC-245ca、HFC-225ca等氟碳或丙烷、正丁烷、異丁烷、正戊烷、異戊烷、新戊烷等飽和烴、二甲基醚、二乙基醚、甲基乙基醚、異丙基醚、正丁基醚、二異丙基醚、呋喃、糠醛、2-甲基呋喃、四氫呋喃、四氫吡喃等醚類、二甲基酮、甲基乙基酮、二乙基酮、甲基正丙基酮、甲基正丁基酮、甲基異丁基酮、甲基正戊基酮、甲基正己基酮、乙基正丙基酮、乙基正丁基酮等酮類、甲醇、乙醇、丙醇、異丙醇、丁醇、異丁醇、第三丁醇等醇類、甲酸甲酯、甲酸乙酯、甲酸丙酯、甲酸丁酯、甲酸戊酯、丙酸甲酯、丙酸乙酯等羧酸酯類、氯甲烷、氯乙烷等氯化烴類等。 該等可單獨使用1種,亦可併用2種以上。 就氣體之安全性之觀點而言,較佳為無機氣體。又,無機氣體與烴等有機氣體相比不易溶於樹脂,於發泡步驟或成形步驟後,氣體容易自樹脂逸出,因此,亦具有成形品之經時下之尺寸穩定性更優異之優點。進而,亦具有亦不易發生因殘留氣體引起之樹脂之塑化之情況,成形後,容易自更早之階段表現出優異之耐熱性之優點。無機氣體之中,就於樹脂中之溶解性、操作之容易性之觀點而言,較佳為二氧化碳,其含浸量相對於樹脂較佳為0.5~10質量%。更佳為1.0~9質量%。 若二氧化碳之含浸量為0.5質量%以上,則容易達成更高之發泡倍率,基材樹脂內之氣泡尺寸不易產生偏差,有基材樹脂間之發泡倍率之偏差變小之傾向。若為10質量%以下,則因氣泡尺寸適當,故有容易維持獨立氣泡率之傾向。 發泡步驟中之發泡珠粒之發泡方法並無特別限定,例如可列舉自高壓條件下瞬間開放為低壓氣體氛圍下而使基材樹脂內溶解之氣體膨脹之方法或利用加壓水蒸氣等進行加熱而使基材樹脂內溶解之氣體膨脹之方法等。其中,尤佳為加熱發泡之方法。其原因在於:與自高壓條件下瞬間開放為低壓氣體氛圍下之方法相比,基材樹脂內部之氣泡尺寸更容易變得均勻。又,具有容易進行發泡倍率之控制、尤其是低發泡倍率品之控制之優點。 於發泡步驟中,對發泡機供給之蒸汽之導入壓力較佳為6.0~15.0 kg/cm
2
・G,更佳為6.1~12.0 kg/cm
2
・G。若導入壓力較低,則加熱預發泡機之能力變低,因此,進行預發泡時,升溫至特定溫度所需之時間變長。由此,容易發生預發泡粒子表面暫時溶解而與相鄰之預發泡粒子一體化之被稱為「黏連」之現象。於導入蒸汽壓為6.0 kg/cm
2
・G以上之情形時,預發泡機內之蒸汽壓力快速上升,而容易獲得未黏連之良好之預發泡粒子。又,蒸汽例如自發泡爐之下部自大量蒸汽孔導入,藉由攪拌翼對樹脂進行攪拌,藉此能夠更均勻且有效率地進行發泡。攪拌翼之旋轉數較佳為20~120 rpm,更佳為50~90 rpm。若旋轉數為20 rpm以下,則有不均勻地面對加壓水蒸氣而難以控制發泡或容易發生黏連等不良情況之傾向,若為120 rpm以上,則有發泡時之珠粒因攪拌翼而受到損傷從而使獨立氣泡率下降或不易獲得所需之發泡倍率之傾向。 於使發泡珠粒發泡直至成為所需之發泡倍率時,可進行一階段之發泡,亦可進行包括二次發泡、三次發泡等之多階段之發泡。再者,於進行多階段之發泡之情形時,具有容易製備高發泡倍率之預發泡粒子之優點。 於多階段之發泡之情形時,較佳為於各階段之發泡前針對預發泡粒子利用氣體進行加壓處理。作為加壓處理時使用之氣體,只要相對於樹脂為惰性,則並無特別限定,較佳為氣體之安全性較高且氣體之全球暖化係數較小之無機氣體或氫氟烯烴。作為無機氣體,例如可列舉空氣、二氧化碳、氮氣、氧氣、氨氣、氫氣、氬氣、氦氣、氖氣等,又,作為氫氟烯烴,例如可列舉HFO-1234y、HFO-1234ze(E)等,就操作容易性及經濟性之觀點而言,尤佳為空氣或二氧化碳。加壓處理之方法並無特別限定,可列舉將預發泡粒子填充至加壓槽內並對該槽內供給氣體之方法等。 發泡步驟所獲得之發泡珠粒之形狀並無特別限定,例如可列舉圓柱狀、長方體狀、球狀、不定型之粉碎品等。 發泡珠粒之大小(粒徑)較佳為0.2~3 mm。若大小處於該範圍,則預發泡後之粒子成為適當之大小,容易操作,又,成形時之填充容易變得更緊密。再者,發泡珠粒之大小可利用游標卡尺進行測定。 發泡步驟所獲得之發泡珠粒之發泡倍率並無特別限定,較佳為1.5~40 cm
3
/g,更佳為2~25 cm
3
/g。若為該範圍,則容易獲得活用輕量化之優點並且具有優異之耐熱性及高溫剛性之珠粒發泡成形體。於調整為多階段中所需之倍率時,一次發泡倍率較佳為1.4~10 cm
3
/g。若為該範圍,則珠粒發泡成形體中之泡孔尺寸容易變得均勻,容易賦予二次發泡能力。 再者,發泡珠粒之發泡倍率係指發泡珠粒之體積Vp相對於發泡珠粒之重量Wp之比率(Vp/Wp)。又,於本說明書中,發泡珠粒之體積係指藉由水沒法測得之體積。 亦可由上述發泡珠粒,使用通常之成形加工方法獲得珠粒發泡成形體(成形步驟)。 作為成形加工方法之例,可列舉於成形步驟中,於成形模具內填充發泡珠粒,進行加熱,藉此,使之發泡,同時使珠粒彼此熔合後,藉由冷卻使之固化而成形之方法,但並不限定於此。發泡珠粒之填充方法並無特別限定,作為例,可列舉以於填充時將模具略微打開之狀態進行填充之裂化法或填充於將模具關閉之狀態下進行加壓而壓縮之珠粒之壓縮法、於填充壓縮珠粒後進行裂化之壓縮裂化法等。 較佳為於填充發泡珠粒前,進行於無機氣體環境下實施加壓處理之加壓步驟。其原因在於:藉由實施加壓處理,能夠對發泡珠粒內之氣泡賦予固定之氣體壓力,而容易更均勻地發泡成形。實施加壓處理之情形時之壓力源並無特別限定,就上述阻燃性或耐熱性、尺寸穩定性之觀點而言,較佳為使用無機氣體。作為無機氣體之例,可列舉空氣、二氧化碳、氮氣、氧氣、氨氣、氫氣、氬氣、氦氣、氖氣等,就操作之容易性及經濟性之觀點而言,較佳為二氧化碳或空氣,但並不限定於此。加壓處理之方法亦並無特別限定,可列舉於加壓槽內填充發泡珠粒並對該槽內供給無機氣體後進行加壓之方法等。 若使用上述發泡珠粒,則亦可藉由公知之模具內成形方法製造微細之形狀或複雜之形狀之成形體,可使用之用途之範圍變寬亦具有特徵。 例如,藉由如下方法等而成形:藉由減壓成形法之方法,其係使用先前之使發泡珠粒於模具內成形之一對成形模具,於加壓大氣壓下或減壓下將發泡珠粒填充至成形模具模腔內,進行閉模並以使成形模具模腔體積減少0~70%之方式進行壓縮,繼而對模具內供給蒸汽等熱介質而進行加熱,從而使發泡珠粒加熱熔合(例如,日本專利特公昭46-38359號公報);加壓成形法,其係利用加壓氣體對發泡珠粒進行預加壓處理而提高發泡珠粒內之壓力,提高發泡珠粒之二次發泡性,一面維持二次發泡性一面於大氣壓下或減壓下將發泡珠粒填充至成形模具模腔內並進行閉模,繼而對模具內供給蒸汽等熱介質而進行加熱,從而使發泡珠粒加熱熔合(例如,日本專利特公昭51-22951號公報)。 又,亦可藉由壓縮填充成型法(日本專利特公平4-46217號公報)進行成形,該壓縮填充成型法係於利用壓縮氣體加壓至大氣壓以上之模腔內,填充加壓至該壓力以上之發泡珠粒後,對模腔內供給蒸汽等熱介質而進行加熱,從而使發泡珠粒加熱熔合。此外,亦可藉由常壓填充成型法(日本專利特公平6-49795號公報)或將上述方法組合之方法(日本專利特公平6-22919號公報)等進行成形,該常壓填充成型法係將於特殊條件下獲得之二次發泡能力較高之發泡珠粒填充至大氣壓下或減壓下之一對成形模具之模腔內後,繼而供給蒸汽等熱介質而進行加熱,從而使發泡珠粒加熱熔合。 使用本實施形態之發泡珠粒之成形體(珠粒發泡成形體)之發泡倍率並無特別限定,較佳為1.5~40 cm
3
/g,更佳為2~25 cm
3
/g。若為該範圍,則容易獲得活用輕量化之優點並且具有優異之耐熱性及高溫剛性之珠粒發泡成形體。 再者,珠粒發泡成形體之發泡倍率係指珠粒發泡成形體之體積Vb相對於珠粒發泡成形體之重量Wb之比率(Vb/Wb)。又,於本說明書中,珠粒發泡成形體之體積係指藉由水沒法測得之體積。 (纖維強化複合體) 使用本實施形態之芯材,與纖維強化材(例如,表皮材)進行複合,而能夠獲得纖維強化複合體。纖維強化複合體係於包含珠粒發泡成形體之芯材之表面之至少一部分配置有包含纖維及樹脂之表皮材的複合體。芯材亦可為僅包含珠粒發泡成形體之芯材。 於本實施形態之纖維強化複合體中,芯材之表面中之供配置表皮材之部分可根據芯材之形狀適當決定,例如,於片狀之情形時,可設為單面或兩面之全部或一部分,於塊狀之情形時,亦可設為於靜置狀態下自特定方向可見之面之全部或一部分,於線狀之情形時,可設為自一端於延伸方向延伸特定長度之表面之全部或一部分。 -表皮材- 本實施形態之纖維強化複合體中之表皮材包含纖維及樹脂,且任意選擇性地包含添加劑等。 --纖維-- 作為纖維,可列舉高強度、高彈性模數之纖維,具體而言,可列舉碳纖維、玻璃纖維、有機纖維(例如,可列舉以美國杜邦(股)公司製造之「Kevlar(註冊商標)」為代表之聚芳香族聚醯胺纖維)、氧化鋁纖維、碳化矽纖維、硼纖維、碳化矽纖維等。 其中,為了於保持較高之剛性之狀況下確保輕量性,較佳為彈性模數與密度之比即比彈性模數較高者,具體而言,較佳為碳纖維或玻璃纖維,更佳為碳纖維。 該等纖維可單獨使用1種,亦可併用2種以上。 關於本實施形態中之纖維之依據JIS-K7127測得之拉伸彈性模數,就確保較高之剛性之觀點而言,較佳為200~850 GPa。 本實施形態中之纖維之含量相對於表皮材100質量%,較佳為40~80質量%。 關於本實施形態中之纖維之單位面積重量,就提高剛性、實現輕量化之觀點而言,於表皮材之表面,較佳為50~4000 g/m
2
,更佳為100~1000 g/m
2
,例如可設為200 g/m
2
。 --樹脂-- 作為樹脂,可列舉熱固性樹脂或熱塑性樹脂,可列舉環氧樹脂、酚系樹脂、氰酸酯樹脂、苯并㗁樹脂、聚醯亞胺樹脂、不飽和聚酯樹脂、乙烯酯樹脂、ABS樹脂、聚對苯二甲酸乙二酯樹脂、尼龍樹脂、馬來醯亞胺樹脂等。 其中,較佳為藉由熱、光、電子束等來自外部之能量附加而硬化之熱固性樹脂,具體而言,較佳為環氧樹脂。 該等樹脂可單獨使用1種,亦可併用2種以上。 樹脂之玻璃轉移溫度就與芯材之接著性、變形或翹曲之觀點而言,較佳為80~250℃,更佳為80~180℃。 再者,玻璃轉移溫度可依據ASTM-D-3418藉由中點法進行測定。 於樹脂為熱固性樹脂之情形時,其硬化溫度就與芯材之接著性、變形或翹曲之觀點而言,較佳為80~250℃,更佳為80~150℃。 本實施形態中之樹脂之含量就與芯材之接著性、變形或翹曲之觀點而言,相對於表皮材100質量%,較佳為20~60質量%,更佳為30~50質量%。 (纖維強化複合體之製造方法) 以下,對本實施形態之纖維強化複合體之製造方法進行記載。 本實施形態中之一例之纖維強化複合體之製造方法係藉由將包含珠粒發泡成形體之芯材以及包含纖維及樹脂之表皮材添加至成形機內進行成形而獲得纖維強化複合體之方法。再者,芯材之形狀並無特別限定,可視目的或用途適當決定,例如可列舉成形品、粒子狀、片狀、線狀(絲狀)、塊狀等。 ((表皮材製備步驟)) 於表皮材製備步驟中,使纖維浸漬於熔融狀態之樹脂中或將熔融狀態之樹脂吹送至纖維或使纖維含浸於樹脂中,而獲得表皮材。表皮材可以交叉預浸漬體之形式製備。 再者,使纖維含浸於樹脂中後,亦可藉由光或熱推進樹脂之硬化。 於纖維強化複合體之形狀亦為片狀之情形時,亦可設為如關於本實施形態之纖維強化複合體之記載。 ((成形步驟)) 於成形步驟中,將芯材(例如,珠粒發泡成形體)及表皮材以所需之配置狀態填充至成形機內,同時進行成形即可。 再者,珠粒發泡成形體可於成形步驟中進一步發泡。 於該成形步驟中,例如,於製造兩面被表皮材覆蓋之片狀之複合體之情形時,可以片狀之珠粒發泡成形體位於2片片狀之表皮材之間之方式,將該等填充至成形機內,於製造被表皮材覆蓋之塊狀之複合體之情形時,可以塊狀之珠粒發泡成形體被片狀之表皮材包裹之方式,將該等填充至成形機內,於製造被表皮材覆蓋之線狀之複合體之情形時,可以線狀之珠粒發泡成形體被片狀之表皮材包裹之方式,將該等填充至成形機內。 於成形步驟中,較佳為先不施加壓力,而以80~150℃、較佳為100~120℃之溫度保持0~5分鐘、較佳為1~3分鐘,其後,以0~3 MPa、較佳為0.1~1 MPa之壓力、80~150℃、較佳為100~120℃之溫度,保持5~30分鐘、較佳為10~20分鐘。 如此,藉由於加壓前,於不施加壓力之狀態下於高溫條件下保持,對表皮材均勻地施加熱,而能夠獲得表面平滑性。 以下,對本實施形態之纖維強化複合體之物性進行記載。 本實施形態之纖維強化複合體之表觀密度較佳為0.05~1 g/cm
3
。 再者,纖維強化複合體之表觀密度係指纖維強化複合體之重量相對於纖維強化複合體之體積V之比率(W/V)。 本實施形態之纖維強化複合體之尺寸可視目的或用途適當決定。 作為表皮材之厚度,大致可設為0.1~2 mm。 [實施例] 以下,基於實施例及比較例對本發明進行說明,但本發明並不限定於該等。 纖維強化複合體用芯材(珠粒發泡成形體)及纖維強化複合體之評價方法如下所述。 (1)熱縮初始溫度 將300 mm×100 mm×厚度10 mm之平板狀之珠粒發泡成形體於調整為23℃之環境中置24小時。於該珠粒發泡成形體,以20 mm間隔平行地劃三根200 mm之直線,利用游標卡尺測定線之長度(mm)。其後,將珠粒發泡成形體投入至30℃之烘箱中經過2小時後,於23℃下靜置1小時後,測定線之長度(mm)。以5℃為單位提高烘箱之溫度,反覆進行該測定,將三根全部低於在23℃下測得之線之長度時之溫度設為熱縮初始溫度(℃)。 (2)線膨脹係數 將300 mm×100 mm×厚度10 mm之平板狀之珠粒發泡成形體於調整為23℃之環境中置24小時。於該珠粒發泡成形體,以20 mm間隔平行地劃三根200 mm之直線,利用游標卡尺測定線之長度(mm)(尺寸A)。將珠粒發泡成形體投入調整為40℃之環境中經過2小時後,測定剛取出之線之長度(mm)(尺寸B)。將相同之珠粒發泡成形體投入調整為5℃之環境中經過2小時後,測定剛取出之線之長度(mm)(尺寸C)。針對各線,利用下述式計算線膨脹係數,將其平均值設為珠粒發泡成形體之線膨脹係數(mm/mm·℃)。 線膨脹係數=(尺寸B-尺寸C)/(尺寸A×35) (3)130℃下之加熱尺寸變化率 將加熱溫度設為130℃且將加熱時間設為1.5分鐘,除此以外,依據JIS K6767之高溫時之尺寸穩定性試驗B法進行測定。再者,關於加熱時間,於將試驗片投入至熱風循環式乾燥機內後,於乾燥機內溫度達到130℃後設為1.5分鐘。 (4)黏彈性測定 針對發泡前之樹脂,使用TA Instruments公司製造之ARES-G2,以下述條件進行黏彈性測定。再者,測定係一面自300℃進行降溫一面進行,於途中樹脂固化而無法進行測定之情形時,使用直至該溫度為止之資料。根據所獲得之資料,將於70℃(途中無法進行測定之情形時為無法測定時之溫度)~200℃內損耗正切tanδ成為最大之溫度設為Tp,求出(Tp-30)℃及150℃之儲存模數,分別求出G'1及G'2,計算G'2/G'1。再者,於途中無法進行測定而無法獲得(Tp-30℃)之資料之情形時,將無法測定時之溫度之儲存模數設為G'1。 測定治具 :錐板 測定模式 :熔融 掃描範疇 :溫度掃描 應變量 :10% 頻率 :10 rad/sec 溫度範圍 :70~300℃ 降溫速度 :2℃/min 板徑 :25f mm 間隙間隔 :1 mm 自動模式 :軸向力(Axial force)…10 g 敏感度(Sensitivity)…2.0 g (5)殘留氣體濃度 將實施例及比較例所獲得之珠粒發泡成形體作為試樣適量裝入頂空瓶中,以珠粒發泡成形體試樣之軟化點以上之溫度加熱約1小時。其後,利用氣相層析儀(島津製作所製造,GC14B)對頂空瓶內之氣體進行定量。使用氦(He)作為載氣,以定流量模式(約30 mL/分鐘)進行控制。又,使管柱(Porapak Q,80/100目,3.2 mmf×2.1 m),於50~150℃內進行升溫、保持,利用熱導型檢測器(TCD)進行檢測。根據檢測出之區域面積及利用標準氣體試樣製成之校準曲線,算出脂肪族烴系氣體之體積。然後,將脂肪族烴系氣體之體積除以珠粒發泡成形體試樣之體積,而算出脂肪族烴系氣體之濃度(體積ppm)。 (6)珠粒發泡成形體之發泡倍率 測得珠粒發泡成形體之重量W(g)後,藉由水沒法測定體積V(cc),將其體積除以重量,將所得之值V/W(cc/g)設為發泡倍率(cm
3
/g)。 (7)厚度 使用游標卡尺測定實施例及比較例所獲得之纖維強化複合體之厚度(mm)及表皮材之厚度(mm)。 (8)表觀密度 測定實施例及比較例所獲得之纖維強化複合體之重量W(g)後,利用游標卡尺測定片狀之纖維強化複合體之3邊,計算其體積V(cm
3
)。然後,將重量W相對於體積V之比率(W/V)(g/cm
3
)設為表觀密度。 (9)表面平滑性、外觀 使用實施例及比較例所獲得之珠粒發泡成形體與表皮材進行複合,以目視觀察纖維強化複合體之表面,以下述方式進行評價。 ◎(優異):無皺褶或氣泡,表面平滑性良好者。 ○(良好):產生若干皺褶或氣泡,但實際使用上無問題者。 ×(差):樹脂萎縮或皺褶較多而無法實際使用者。 (10)接著性 使用實施例及比較例所獲得之珠粒發泡成形體與表皮材進行複合,於纖維強化複合體之中心部及距端部10 mm之部位進行切斷,以目視觀察其剖面,以下述方式對表皮材與芯材之接著狀態進行評價。 ◎(優異):於表皮材與芯材之間無間隙而接著性良好者。 ○(良好):於表皮材與芯材之間有一部分間隙,但實際使用上無問題者。 ×(差):表皮材與芯材之間之間隙或剝離較多而無法實際使用者。 (11)尺寸再現性 使用實施例及比較例所獲得之珠粒發泡成形體與表皮材進行複合,針對30個纖維強化複合體,分別使用游標卡尺測定縱、橫之長度,計算測定值之3σ及平均值,將(3σ/平均值)×100作為偏差(%)。 ◎(優異):偏差為0.3%以下者 ○(良好):偏差為0.3~0.5%者 ×(差):偏差大於0.5%者 [實施例1] 準備2片包括拉伸彈性模數為250 GPa之碳纖維及硬化溫度為80℃之環氧樹脂的纖維之單位面積重量為200 g/m
2
且碳纖維含量為60質量%之交叉預浸漬體作為表皮材。 又,使用73質量%之聚苯醚系樹脂(PPE)、12質量%(基材樹脂中之橡膠成分含量為0.6質量%)之橡膠濃度為6質量%之耐衝擊性聚苯乙烯樹脂(HIPS)、15質量%之通用聚苯乙烯樹脂(PS),相對於該等熱塑性樹脂100質量%,添加22質量%之非鹵素系阻燃劑,利用擠出機加熱熔融混練後進行擠出,而製作作為芯材之基材樹脂顆粒。實施該基材樹脂之黏彈性測定,結果Tp為153℃,G'2/G'1為0.40。 依據日本專利特開平4-372630號公報之實施例1中記載之方法,將基材樹脂顆粒收容至耐壓容器中,以乾燥空氣置換容器內之氣體後,注入二氧化碳(氣體)作為發泡劑,於壓力3.2 MPa、溫度11℃之條件下歷時3小時相對於基材樹脂顆粒含浸7質量%之二氧化碳。 其後,於預發泡機內,一面以77 rpm使攪拌翼旋轉,一面利用加壓水蒸氣使基材樹脂顆粒發泡,而獲得發泡珠粒。 將該發泡珠粒歷時1小時升壓至0.5 MPa,其後以0.5 MPa保持8小時,實施加壓處理。 將其填充至具有水蒸氣孔之模具內成形模具內,利用加壓水蒸氣進行加熱而使發泡珠粒彼此膨脹、熔合後,進行冷卻,自成形模具中取出,而獲得300 mm×300 mm×10 mm厚度、發泡倍率10 cm
3
/g之珠粒發泡成形體(發泡體)。 測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為85℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為5×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為-3.6%。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 將所獲得之珠粒發泡成形體用作芯材,將以上述方式準備之表皮材於芯材之上下兩面各積層1片,繼而將該積層體於不施加壓力之狀態下以100℃保持3分鐘後,一面以面壓0.4 MPa進行加壓一面保持15分鐘,藉此,使表皮材及芯材同時成形而獲得纖維強化複合體。 將各條件之詳情表示於表1。 關於實施例1之纖維強化複合體之外觀,無皺褶或氣泡,為優異者。關於接著性,於表皮材與芯材之間有一部分間隙,但為實際使用上無問題之水準。又,關於尺寸再現性,為雖有若干尺寸變動,但亦為實際使用上無問題之水準。 [實施例2] 將聚苯醚系樹脂(PPE)40質量%、聚苯乙烯系樹脂(PS)60質量%利用擠出機加熱熔融混練後擠出,而製作作為芯材之基材樹脂顆粒。實施該基材樹脂之黏彈性測定,結果Tp為158℃,G'2/G'1為0.81。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。 測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為95℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為4×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為0.1%以下之收縮。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 實施例2之纖維強化複合體之外觀、接著性、尺寸再現性均優異。 [實施例3] 使用實施例2之熱塑性樹脂,製作發泡倍率5 cm
3
/g之珠粒發泡成形體。 測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為95℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為4×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為0.1%以下之收縮。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 實施例3之纖維強化複合體與實施例2同樣地具有優異之外觀、接著性、尺寸再現性。 [實施例4] 使用實施例2之熱塑性樹脂,製作發泡倍率15 cm
3
/g之珠粒發泡成形體。 測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為95℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為4×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為0.1%以下之收縮。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 實施例4之纖維強化複合體與實施例2同樣地具有優異之外觀、接著性、尺寸再現性。 [實施例5] 將聚苯醚系樹脂(PPE)50質量%、聚苯乙烯系樹脂(PS)50質量%利用擠出機加熱熔融混練後擠出,而製作作為芯材之基材樹脂顆粒。實施該基材樹脂之黏彈性測定,結果Tp為165℃,G'2/G'1為0.87。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為105℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為3×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為0.1%以下之收縮。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 實施例5之纖維強化複合體與實施例2同樣地具有優異之外觀、接著性、尺寸再現性。 [實施例6] 將聚苯醚系樹脂(PPE)60質量%、聚苯乙烯系樹脂(PS)40質量%利用擠出機加熱熔融混練後擠出,而製作作為芯材之基材樹脂顆粒。實施該基材樹脂之黏彈性測定,結果Tp為173℃,G'2/G'1為0.93。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為115℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為2×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為0.1%以下之收縮。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 實施例6之纖維強化複合體與實施例2同樣地具有優異之外觀、接著性、尺寸再現性。 [實施例7] 將聚苯醚系樹脂(PPE)35質量%、聚苯乙烯系樹脂(PS)65質量%利用擠出機加熱熔融混練後擠出,而製作作為芯材之基材樹脂顆粒。實施該基材樹脂之黏彈性測定,結果Tp為154℃,G'2/G'1為0.45。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為85℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為5×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為0.1%以下之收縮。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 實施例7之纖維強化複合體與實施例2同樣地具有優異之外觀、接著性、尺寸再現性。 [實施例8] 將聚苯醚系樹脂(PPE)30質量%、聚苯乙烯系樹脂(PS)70質量%利用擠出機加熱熔融混練後擠出,而製作作為芯材之基材樹脂顆粒。實施該基材樹脂之黏彈性測定,結果Tp為150℃,G'2/G'1為0.28。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為80℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為5×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為-0.3%。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 關於實施例8之纖維強化複合體,雖於外觀產生若干皺褶,但為無實用上之問題之水準。又,結果為,若干複合體之厚度較薄,表觀密度亦高於實施例1。 [比較例1] 將聚苯乙烯系樹脂(PS)100質量%利用擠出機加熱熔融混練後擠出,而製作作為芯材之基材樹脂顆粒。實施該基材樹脂之黏彈性測定,結果Tp為118℃,G'2/G'1為0.01以下。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為70℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為7×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為-20%。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合。 將各條件之詳情表示於表1。 關於比較例1,於複合時芯材熔融而無法獲得纖維強化複合體。 [比較例2] 將聚丙烯系樹脂(PP)100質量%利用擠出機加熱熔融混練後擠出,而製作作為芯材之基材樹脂顆粒。實施該基材樹脂之黏彈性測定,結果Tp為153℃,G'2/G'1為0.14。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為95℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為12×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為-0.5%。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 關於比較例2,雖能夠獲得纖維強化複合體且厚度或表觀密度良好,但因線膨脹係數較大之影響而於外觀較多地見到樹脂萎縮或皺褶,又,因該影響,表皮材與芯材之間之間隙亦經常發生,為不耐實際使用者。 [比較例3] 將聚甲基丙烯酸甲酯系樹脂(PMMA)100質量%利用擠出機加熱熔融混練後擠出,而製成迷你顆粒。實施該基材樹脂之黏彈性測定,結果Tp為127℃,G'2/G'1為0.01以下。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為75℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為8×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為-15%。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將珠粒發泡成形體與表皮材進行複合。 將各條件之詳情表示於表1。 關於比較例3,與比較例1同樣地,芯材熔融而無法獲得複合體。 [比較例4] 將聚苯乙烯系樹脂(苯乙烯-甲基丙烯酸共聚物)(SMAA)100質量%利用擠出機加熱熔融混練後擠出,而製成迷你顆粒。實施該基材樹脂之黏彈性測定,結果Tp為145℃,G'2/G'1為0.17。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為80℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為7×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為-5.0%。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 比較例4能夠獲得纖維強化複合體,但芯材之收縮較大,並非可耐實際使用之物。 [比較例5] 將聚苯醚系樹脂(PPE)20質量%、聚苯乙烯系樹脂(PS)80質量%利用擠出機加熱熔融混練後擠出,而製作作為芯材之基材樹脂顆粒。實施該基材樹脂之黏彈性測定,結果Tp為141℃,G'2/G'1為0.04。 使用該基材樹脂顆粒,與實施例1同樣地製作珠粒發泡成形體。測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為75℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為6×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為-2.7%。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為檢測極限(50體積ppm)以下。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 關於比較例5,成形品收縮之結果,厚度較薄,表觀密度較高,進而因收縮初始溫度較低之影響,於表面觀察到皺褶,為不耐實際使用者。 [比較例6] 將發泡氣體設為戊烷,除此以外,與實施例2同樣地製作珠粒發泡成形體。 測定所獲得之珠粒發泡成形體之熱縮初始溫度,結果為90℃。測定所獲得之珠粒發泡成形體之線膨脹係數,結果為5×10
-5
mm/mm·℃。所獲得之珠粒發泡成形體之130℃下之尺寸變化率為+1.5%。測定所獲得之珠粒發泡成形體之脂肪族烴系氣體之濃度,結果為1500體積ppm。 與實施例1同樣地,將該珠粒發泡成形體與表皮材進行複合,使用所獲得之纖維強化複合體進行評價。 將各條件之詳情表示於表1。 關於比較例6,與實施例2相比表面平滑性略差,但外觀為可耐使用之水準。但是,因珠粒發泡成形體之膨脹之影響,表皮材與芯材之間之間隙較多,而接著性並不耐實際使用。又,因難以控制膨脹之影響,尺寸再現性亦較差。 [表1]
[產業上之可利用性] 本發明之纖維強化複合體用芯材與纖維強化材複合時之加工性優異,使用該纖維強化複合體用芯材之纖維強化複合體可於汽車領域(例如,汽車之天窗、發動機艙蓋、擋泥板等構件)中尤佳地使用。