WO2018181785A1 - 車両の制動装置 - Google Patents

車両の制動装置 Download PDF

Info

Publication number
WO2018181785A1
WO2018181785A1 PCT/JP2018/013386 JP2018013386W WO2018181785A1 WO 2018181785 A1 WO2018181785 A1 WO 2018181785A1 JP 2018013386 W JP2018013386 W JP 2018013386W WO 2018181785 A1 WO2018181785 A1 WO 2018181785A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
region
drive signal
frequency region
target
Prior art date
Application number
PCT/JP2018/013386
Other languages
English (en)
French (fr)
Inventor
鏡貴憲 宮地
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to DE112018001737.0T priority Critical patent/DE112018001737T5/de
Priority to CN201880022967.6A priority patent/CN110536816B/zh
Priority to US16/486,849 priority patent/US11225229B2/en
Publication of WO2018181785A1 publication Critical patent/WO2018181785A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/173Eliminating or reducing the effect of unwanted signals, e.g. due to vibrations or electrical noise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/161Systems with master cylinder
    • B60T13/165Master cylinder integrated or hydraulically coupled with booster
    • B60T13/166Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3255Systems in which the braking action is dependent on brake pedal data
    • B60T8/3275Systems with a braking assistant function, i.e. automatic full braking initiation in dependence of brake pedal velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/404Control of the pump unit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/1752Masking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • B60T15/025Electrically controlled valves

Definitions

  • the present invention relates to a vehicle braking device that adjusts the braking force applied to the wheels.
  • a device in which a plurality of electromagnetic valves are provided on a hydraulic circuit arranged between a master cylinder and a wheel cylinder is known.
  • the drive of the electromagnetic valve is controlled when adjusting the hydraulic pressure in the wheel cylinder, that is, the braking force applied to the wheel.
  • Such a solenoid valve may be driven by pulse width control (also referred to as “PWM control”).
  • PWM control pulse width control
  • the frequency of the drive signal input to the solenoid valve is continuously changed when the solenoid valve is driven. I am doing so. Thereby, the sound pressure level of the noise can be lowered as compared with the case where the frequency of the drive signal is fixed at a constant value.
  • a vehicle braking device for solving the above-described problem is a vehicle braking device that adjusts a braking force to a vehicle, and includes an electric control target and a target control unit that drives the control target by pulse width control.
  • the target control unit is configured to change the frequency of the drive signal in the frequency domain when the drive signal is input to the control target to drive the control target.
  • the width of the frequency domain is set based on the curve of the minimum audible range among the equal loudness curves.
  • the sound pressure level corresponding to the frequency of the drive signal input to the control target among the specified sound pressure levels that are the sound pressure levels represented by the curve of the minimum audible range of the equal loudness curve is referred to as a specific sound pressure level.
  • a specific sound pressure level is relatively high, even if the sound pressure level of the noise generated from the control target is relatively high, the vehicle occupant is difficult to hear the noise.
  • the specific sound pressure level is relatively low, even if the sound pressure level of noise generated from the control target is relatively low, the vehicle occupant can easily hear the noise.
  • the frequency of the drive signal input to the control target is varied within the frequency domain.
  • the width of the frequency region is set based on the curve of the minimum audible region. For example, when setting the frequency domain in the range where the specified sound pressure level, which is the sound pressure level represented by the curve of the minimum audible range, is low, compared to setting the frequency domain in the range where the specified sound pressure level is high Thus, the frequency region is set so that the frequency region becomes wider. Then, by varying the frequency of the drive signal within the frequency range set in consideration of the specified sound pressure level in this way, the noise sound pressure level can be reduced below the specified sound pressure level, or the noise sound pressure level can be reduced. Even if the sound pressure level is higher than the specified sound pressure level, the difference between the sound pressure level of noise and the specified sound pressure level can be reduced.
  • the block diagram which shows the outline of the braking device of the vehicle of 1st Embodiment.
  • a map showing the relationship between frequency and frequency.
  • the graph which represents typically the relationship between the critical zone
  • the graph showing the relationship between the period which can receive the effect
  • the graph which shows the relationship between the 1st frequency domain and the 2nd frequency domain.
  • the graph which shows the relationship between the 1st frequency area
  • the graph which shows the relationship between the 1st frequency area
  • the map which shows the relationship between a frequency and frequency in the brake device of the vehicle of another embodiment.
  • a vehicle braking device according to a first embodiment will be described below with reference to FIGS.
  • the vehicle shown in FIG. 1 includes a plurality of braking mechanisms 20 that are individually provided for a plurality of wheels 10 (that is, the same number as the wheels) and the braking device 40 of the present embodiment.
  • each brake mechanism 20 includes a wheel cylinder 21 to which brake fluid is supplied, a disk rotor 22 that rotates integrally with the wheel 10, and a friction material that relatively moves in a direction toward and away from the disk rotor 22. 23 respectively.
  • the higher the WC pressure Pwc, which is the hydraulic pressure in the wheel cylinder 21, can increase the force for pressing the friction material 23 against the disk rotor 22, that is, the braking force on the wheel 10.
  • the braking device 40 includes a hydraulic pressure generating device 50 to which a braking operation member 41 such as a brake pedal operated by a driver is coupled, and a braking actuator capable of individually adjusting the WC pressure Pwc in each wheel cylinder 21. 60.
  • the brake actuator 60 is provided with two systems of hydraulic circuits 611 and 612. Two wheel cylinders 21 among the wheel cylinders 21 are connected to the first hydraulic circuit 611. The remaining two wheel cylinders 21 are connected to the second hydraulic circuit 612.
  • the first hydraulic circuit 611 is closed when regulating the increase in the WC pressure Pwc, and the differential pressure adjusting valve 62 for adjusting the differential pressure between the master cylinder 51 and the wheel cylinder 21 of the hydraulic pressure generator 50.
  • a holding valve 64 to be valved and a pressure reducing valve 65 to be opened when the WC pressure Pwc is decreased are provided.
  • the differential pressure regulating valve 62 is a normally open linear solenoid valve
  • the holding valve 64 is a normally open solenoid valve
  • the pressure reducing valve 65 is a normally closed solenoid valve.
  • the first hydraulic circuit 611 is connected to a reservoir 66 that temporarily stores brake fluid that has flowed out of the wheel cylinder 21 via the pressure reducing valve 65, and a pump 68 that operates based on driving of the electric motor 67. Has been.
  • the pump 68 operates when adjusting the WC pressure Pwc.
  • the structure of the second hydraulic circuit 612 is substantially the same as the structure of the first hydraulic circuit 611; therefore, the description of the structure of the second hydraulic circuit 612 is omitted in this specification.
  • the control device 100 of the braking device 40 is a valve control that is an example of a motor control unit 110, an opening degree instruction unit 120, a region setting unit 150, and a target control unit as functional units for controlling the brake actuator 60. Part 140.
  • the motor control unit 110 controls the driving of the electric motor 67, that is, the amount of brake fluid discharged from the pump 68.
  • the opening degree instruction unit 120 individually sets the opening degree instruction value Z for the differential pressure adjusting valve 62, the holding valve 64, and the pressure reducing valve 65.
  • the region setting unit 150 is a frequency region based on the frequency of the drive signal DSV input to the differential pressure adjusting valve 62, the holding valve 64, and the pressure reducing valve 65 when the differential pressure adjusting valve 62, the holding valve 64, and the pressure reducing valve 65 are started.
  • Set X That is, when the frequency of the drive signal DSV input when starting the differential pressure adjusting valve 62, the holding valve 64, and the pressure reducing valve 65 is the start-up frequency, the region setting unit 150 subtracts a predetermined frequency from the start-up frequency. Is set as a lower limit, and a frequency region X is set with an upper limit of a frequency obtained by adding a predetermined frequency to the startup frequency.
  • the frequency that is the center of the frequency region X is referred to as a variation center frequency Ys
  • the lower limit frequency of the frequency region X is referred to as a variation lower limit frequency Ydl
  • the upper limit frequency of the frequency region X is referred to as a variation upper limit frequency. It shall be called Yul.
  • the valve control unit 140 performs electromagnetic valve 62, 64, and the like as a control target by pulse width control (hereinafter also referred to as “PWM control”) based on the opening instruction value Z set by the opening instruction unit 120. 65 is driven.
  • PWM pulse width control
  • the valve control unit 140 determines the activation frequency based on the situation (for example, the running state of the vehicle) and the like, and a frequency equal to the activation frequency.
  • Drive signal DSV is generated.
  • the valve control unit 140 drives the electromagnetic valves 62, 64, 65 by inputting the generated drive signal DSV to the electromagnetic valves 62, 64, 65.
  • the valve control unit 140 receives the drive signal DSV input to the solenoid valves 62, 64, 65.
  • the frequency is varied within the frequency region X set by the region setting unit 150.
  • the sound pressure level of noise generated by driving the solenoid valves 62, 64, 65 is higher than when the frequency of the drive signal DSV input to the solenoid valves 62, 64, 65 is fixed at a predetermined value. Is suppressed.
  • the valve control unit 140 changes the frequency of the drive signal DSV using the map MAP1 shown in FIG.
  • FIG. 2 shows the relationship between frequency and frequency N.
  • “frequency N” corresponds to the number of frequencies selected per unit time. That is, when the electromagnetic valves 62, 64, 65 are driven, the total period during which the driving signal DSV having a high frequency N is input to the electromagnetic valves 62, 64, 65 is the driving signal having a low frequency N. The DSV becomes longer than the sum of periods input to the solenoid valves 62, 64, 65.
  • the frequency N at which the fluctuation center frequency Ys is selected in the frequency region X is the highest. Further, in the frequency region X, the frequency N gradually decreases as the frequency goes from the fluctuation center frequency Ys to the fluctuation lower limit frequency Ydl, and the frequency N gradually decreases as the frequency goes from the fluctuation center frequency Ys to the fluctuation upper limit frequency Yul. Become. However, both the frequency N at which the variation lower limit frequency Ydl is selected and the frequency N at which the variation upper limit frequency Yul is selected are higher than “0”.
  • FIG. 3 shows an isoloudness curve of ISO226: 2003.
  • the equal loudness curve is obtained by measuring the sound pressure level at which the loudness and noise level of human hearing are the same for each different frequency and connecting them with contour lines.
  • the equal loudness curve indicated by the solid line is a curve Lmin of the minimum audible range.
  • the width of the frequency region X is set based on the curve Lmin of the minimum audible region. That is, when the frequency of the drive signal DSV is changed in the frequency domain X, the width of the frequency domain X is set so that the sound pressure level of the noise having the fluctuation center frequency Ys does not become much higher than the specified sound pressure level RSPL. That is, the difference between the variation lower limit frequency Ydl and the variation upper limit frequency Yul in the frequency region X is set.
  • the specified sound pressure level RSPL when the sound pressure level corresponding to the fluctuation center frequency Ys is set to the specified center sound pressure level RSPLs, the frequency region X is set to become wider as the specified center sound pressure level RSPLs is lower. It will be.
  • the width of the frequency region X is set to be narrower than the critical band CB of the fluctuation center frequency Ys.
  • the noise generated from the solenoid valves 62, 64, 65 when the drive signal DSV having the same frequency as the fluctuation center frequency Ys is input to the solenoid valves 62, 64, 65 is referred to as “corresponding to the frequency equal to the fluctuation center frequency Ys”. "Noise to do”.
  • the critical band CB of the fluctuation center frequency Ys is a frequency region in which noise of other frequencies can be eliminated by the action of spectrum masking by noise corresponding to the frequency equal to the fluctuation center frequency Ys.
  • the frequency region X is set based on the critical band CB of the fluctuation center frequency Ys so that it can be subjected to the effect of spectrum masking by noise corresponding to the frequency equal to the fluctuation center frequency Ys. It can be said that
  • the critical band CB is determined by the fluctuation center frequency Ys and the sound pressure level of noise corresponding to the frequency equal to the fluctuation center frequency Ys. Therefore, in the present embodiment, the critical band CB is obtained in advance by experiments or simulations, and the width of the frequency region X, that is, the predetermined frequency is set based on the critical band CB.
  • the valve control unit 140 sets the frequency region X set by the region setting unit 150.
  • the frequency of the drive signal DSV is varied within the range. Specifically, the valve control unit 140 changes the frequency of the drive signal DSV every specified time TM1.
  • FIG. 5 shows the operation when the frequency of the drive signal input to the solenoid valve is changed under a situation where noise is generated from the solenoid valve because a drive signal of a certain frequency is input to the solenoid valve.
  • the specified time TM1 is set to be shorter than the time length of the period F during which time masking can be applied. That is, it can be said that the specified time TM1 is set so as to be able to be subjected to time masking due to noise generated from the electromagnetic valve before the frequency of the drive signal DSV is changed.
  • step S11 the valve control unit 140 sets the frequency of the drive signal DSV input to the differential pressure regulating valve 62 to the startup frequency.
  • step S ⁇ b> 12 the current frequency region X is set by the region setting unit 150.
  • step S13 the valve control unit 140 starts outputting the drive signal DSV to the differential pressure regulating valve 62.
  • step S14 it is determined whether or not there is an instruction to stop driving the differential pressure regulating valve 62. For example, when it can be determined that the control of the differential pressure between the master cylinder 51 and the wheel cylinder 21 is unnecessary, the drive stop of the differential pressure adjustment valve 62 is instructed. If there is an instruction to stop driving (step S14: YES), the process proceeds to the next step S15. In step S15, the valve control unit 140 stops the output of the drive signal DSV to the differential pressure regulating valve 62. Thereafter, this processing routine is terminated.
  • step S16 it is determined whether or not the duration of the state in which the drive signal DSV having one frequency in the frequency region X is input to the differential pressure adjusting valve 62 has reached the specified time TM1. Is done by. If the above duration is less than the specified time TM1 (step S16: NO), the process proceeds to step S14 described above. On the other hand, when the above duration is equal to or longer than the prescribed time TM1 (step S16: YES), the process proceeds to the next step S17.
  • step S 17 the frequency of the drive signal DSV input to the differential pressure regulating valve 62 is changed within the frequency region X by the valve control unit 140.
  • the valve control unit 140 determines the changed frequency using the map MAP1 shown in FIG. 2 and outputs the drive signal DSV having the changed frequency to the differential pressure adjusting valve 62.
  • the valve control unit 140 changes the frequency of the drive signal DSV input to the differential pressure regulating valve 62 according to the map MAP1 and a predetermined rule.
  • the frequency of the drive signal DSV that has been output until the process proceeds to step S17 is referred to as the frequency of the current drive signal DSV. That is, when the frequency of the current drive signal DSV is lower than the fluctuation center frequency Ys of the frequency domain X, the valve control unit 140 sets the frequency of the drive signal DSV to a frequency equal to the fluctuation center frequency Ys or within the frequency domain X. The frequency is changed to a frequency higher than the fluctuation center frequency Ys.
  • the valve control unit 140 sets the frequency of the drive signal DSV to a frequency equal to the fluctuation center frequency Ys or the frequency domain X The frequency is changed to a frequency lower than the fluctuation center frequency Ys. Furthermore, when the frequency of the current drive signal DSV is equal to the fluctuation center frequency Ys of the frequency region X, the valve control unit 140 determines that the drive signal DSV is lower when the frequency of the previous drive signal DSV is lower than the fluctuation center frequency Ys. In the frequency region X is changed to a frequency higher than the fluctuation center frequency Ys.
  • the valve control unit 140 determines that the drive signal DSV is higher when the frequency of the previous drive signal DSV is higher than the fluctuation center frequency Ys. In the frequency region X is changed to a frequency lower than the fluctuation center frequency Ys.
  • step S17 When the process of step S17 is thus performed, the process proceeds to step S14 described above. Next, the effect
  • the frequency of the drive signal DSV input to the differential pressure regulating valve 62 in the frequency region X is changed.
  • the width of the frequency region X is set based on the minimum audible region curve Lmin. For this reason, the sound pressure level of noise generated from the differential pressure adjusting valve 62 is unlikely to exceed the specified sound pressure level RSPL represented by the curve Lmin of the minimum audible range. Therefore, discomfort caused by driving the differential pressure regulating valve 62 can be prevented from being given to the occupant of the vehicle, or the discomfort given to the occupant can be further reduced.
  • the frequency domain X is set based on the critical band CB of the fluctuation center frequency Ys of the frequency domain X. Therefore, the noise corresponding to the frequency after the change can be erased by the action of spectrum masking by the noise corresponding to the frequency before the change.
  • the region lower than the variation center frequency Ys is one of the first region and the second region, and the region higher than the variation center frequency Ys is the first region and the second region.
  • the responsiveness of the differential pressure regulating valve 62 is not very good, but noise is generated by the vehicle occupant.
  • the frequency of the drive signal DSV input to the electromagnetic valves 64 and 65 is changed to the differential pressure adjusting valve 62. It is changed in the same manner as in the case of driving. Therefore, even when the electromagnetic valves 64 and 65 are driven, it is possible to obtain the same effects as when the differential pressure regulating valve 62 is driven.
  • the control device 100 includes a motor control unit 110, an opening degree instruction unit 120, a region switching unit 130, and a valve control unit 140 as functional units for controlling the braking actuator 60. .
  • the region switching unit 130 performs switching of the frequency region X every switching time TM2 when the differential pressure adjusting valve 62, the holding valve 64, and the pressure reducing valve 65 are driven.
  • the switching time TM2 is equal to the time length of the “switching period” and is longer than the specified time TM1.
  • a plurality of (two in this embodiment) frequency regions X1 and X2 are stored in advance as the frequency region X.
  • the first frequency region X1 is set on the higher frequency side than the second frequency region X2.
  • the variation lower limit frequency of the first frequency region X1 is a variation lower limit frequency Ydl1
  • the variation upper limit frequency of the first frequency region X1 is a variation upper limit frequency Yul1
  • the variation lower limit frequency of the second frequency region X2 is a variation lower limit frequency Ydl2.
  • the variation upper limit frequency of the second frequency region X2 is defined as a variation upper limit frequency Yul2.
  • the variation lower limit frequency Ydl1 of the first frequency region X1 is higher than the variation upper limit frequency Yul2 of the second frequency region X2.
  • two frequency regions X1 and X2 are set in advance, but the widths of the frequency regions X1 and X2 are the same.
  • the defined center sound pressure level RSPLs corresponding to the variation center frequency Ys1 in the first frequency region X1 is greater than the defined center sound pressure level RSPLs corresponding to the variation center frequency Ys2 in the second frequency region X2.
  • the widths of the frequency regions X1 and X2 are set in accordance with the specified central sound pressure level RSPLs corresponding to the fluctuation center frequency Ys1 of the first frequency region X1. Therefore, it can be said that the width of the second frequency region X2 is set wider than the specified central sound pressure level RSPLs corresponding to the fluctuation center frequency Ys2 of the second frequency region X2.
  • the width of the frequency regions X1 and X2 is set to be narrower than the critical band CB of the fluctuation center frequency Ys (see FIG. 5). That is, in the present embodiment, the width of each frequency region X1, X2 is set to be narrower than the critical band CB of the fluctuation center frequency Ys1 of the first frequency region X1. Therefore, the first frequency region X1 is set so as to be able to receive the effect of spectrum masking by noise corresponding to the frequency equal to the fluctuation center frequency Ys1, based on the critical band CB of the fluctuation center frequency Ys1. be able to.
  • the second frequency region X2 is set so that it can be subjected to the effect of spectrum masking by noise corresponding to the frequency equal to the variation center frequency Ys2, based on the critical band CB of the variation center frequency Ys2. It can be said.
  • step S111 the region switching unit 130 selects the first frequency region X1 as the frequency region X.
  • step S111 the second frequency region X2 may be selected as the frequency region X.
  • the valve control unit 140 sets the frequency of the drive signal DSV input to the differential pressure regulating valve 62 to a frequency within the frequency region X.
  • the frequency of the drive signal DSV may be equal to the fluctuation center frequency Ys of the selected frequency region X, or may be equal to a frequency different from the fluctuation center frequency Ys.
  • step S13 the process proceeds to step S13 described above.
  • step S14 When the differential pressure regulating valve 62 is driven, the processes of step S14, step S16, and step S17 are performed as in the first embodiment. And in this embodiment, if the process of step S17 is implemented, a process will transfer to following step S18.
  • step S18 the region switching unit 130 determines whether or not the elapsed time from when the frequency region X is selected has reached the switching time TM2.
  • step S18: NO the process proceeds to step S14 described above.
  • step S19 the region switching unit 130 switches the frequency region X. Specifically, when the frequency region X before switching is the first frequency region X1, the region switching unit 130 switches the frequency region X to the second frequency region X2. On the other hand, when the frequency region X before switching is the second frequency region X2, the region switching unit 130 switches the frequency region X to the first frequency region X1. Therefore, in the present embodiment, the region switching unit 130 has a higher frequency side in the current frequency region (in this case, the first frequency region X1) than in the previous frequency region (for example, the second frequency region X2).
  • next frequency region is switched to a region on the lower frequency side than the current frequency region (in this case, the second frequency region X2).
  • the region switching unit 130 is on the lower frequency side of the current frequency region (in this case, the second frequency region X2) than the previous frequency region (for example, the first frequency region X1)
  • the next frequency region is switched to a region on the higher frequency side than the current frequency region (in this case, the first frequency region X1).
  • the frequency of the drive signal DSV is fluctuated within the frequency region X where the specified sound pressure level RSPL is set to a high range. It is preferable to make it. However, when the drive signal DSV having a frequency included in the frequency region X set in the high range of the specified sound pressure level RSPL is input to the differential pressure adjustment valve 62, the response of the differential pressure adjustment valve 62 is not good. There is.
  • one of the first frequency region X1 and the second frequency region X2 is a frequency region where it is difficult for the vehicle occupant to hear the noise although the responsiveness of the differential pressure regulating valve 62 is not so good.
  • the other frequency region is a frequency region where the responsiveness of the differential pressure regulating valve 62 is good, but noise can be easily heard by a vehicle occupant.
  • the responsiveness of the differential pressure adjustment valve 62 is not so good, but the period when the vehicle occupant is difficult to hear the noise and the differential pressure adjustment
  • the responsiveness of the valve 62 is good, it is possible to alternately repeat a period in which noise is easily heard by a vehicle occupant. That is, it is possible to achieve both suppression of a decrease in the responsiveness of the differential pressure adjusting valve 62 and making it difficult for the vehicle occupant to hear the noise.
  • the frequency of the drive signal DSV input to the electromagnetic valves 64 and 65 is changed to the differential pressure adjusting valve 62. It is changed in the same manner as in the case of driving. Therefore, even when the electromagnetic valves 64 and 65 are driven, it is possible to obtain the same effects as when the differential pressure regulating valve 62 is driven.
  • each said embodiment into another embodiment as follows.
  • the frequency of the drive signal DSV is varied in the frequency domain X based on the map MAP1
  • the frequency of the drive signal DSV is varied according to a rule different from the above rule. Also good. For example, when a drive signal DSV having a frequency lower than the fluctuation center frequency Ys in the frequency region X is input to the solenoid valve, the next frequency of the drive signal DSV is a fluctuation center frequency if the frequency is different from the frequency. The frequency may be changed to a frequency lower than Ys.
  • the fluctuation center frequency Ys in the frequency region X when a drive signal DSV having a frequency higher than the fluctuation center frequency Ys in the frequency region X is input to the solenoid valve, if the next frequency of the drive signal DSV is a frequency different from the frequency, the fluctuation center frequency The frequency may be changed to a frequency higher than Ys.
  • the region storage unit 131 may store three or more frequency regions that can be selected by the region switching unit 130.
  • the region storage unit 131 selects the frequency region X from the three or more frequency regions stored in the region storage unit 131 according to a predetermined rule.
  • a rule for example, if the current frequency range is higher than the previous frequency range, the next frequency range is switched to a lower frequency side than the current frequency range, and the current frequency range is changed to the current frequency range. When the frequency region is on the lower frequency side, the next frequency region can be switched to the higher frequency side than the current frequency region.
  • a rule for switching in order from the frequency region on the low frequency side to the frequency region on the high frequency side may be adopted.
  • the width of the second frequency region X2 may be different from the width of the first frequency region X1.
  • the width of the first frequency region X1 is set based on the specified central sound pressure level RSPLs at the variation center frequency Ys1 in the first frequency region X1, and the variation center frequency Ys2 in the second frequency region X2 is set.
  • the width of the second frequency region X2 may be set based on the specified central sound pressure level RSPLs. In this case, when the prescribed central sound pressure level RSPLs at the fluctuation center frequency Ys1 is different from the prescribed central sound pressure level RSPLs at the fluctuation center frequency Ys2, the width of the second frequency region X2 is the first frequency region. This is different from the width of X1.
  • the width of the frequency region set in the range where the specified sound pressure level RSPL is low is wider than the width of the frequency region set in the range where the specified sound pressure level RSPL is high. Therefore, even when the frequency of the drive signal DSV is fluctuated within the frequency range set in the range where the specified sound pressure level RSPL is low, the frequency range is relatively wide, so that the solenoid valves 62, 64, 65 are driven. It is possible to make it difficult for an occupant of the vehicle to hear the resulting noise.
  • region X1 may correspond with the fluctuation
  • at least a part of one frequency region X of the plurality of frequency regions X may overlap with other frequency regions.
  • the variation lower limit frequency Ydl1 of the first frequency region X1 is lower than the variation upper limit frequency Yul2 of the second frequency region X2, and the variation lower limit frequency Ydl1 of the first frequency region X1 is the second frequency region. It may be higher than the lower limit variation frequency Ydl2 of X2.
  • the lower limit variation frequency Ydl1 of the first frequency region X1 is lower than the lower limit variation frequency Ydl2 of the second frequency region X2, and the upper limit variation frequency Yul1 of the first frequency region X1.
  • it may be higher than the fluctuation upper limit frequency Yul2 of the second frequency region X2.
  • the first frequency region X1 may be set so that the variation center frequency Ys1 is the same as the variation center frequency Ys2 of the second frequency region X2, or the variation center frequency Ys1 is the same as the variation center frequency Ys2. It may be set differently.
  • the first frequency region X1 when the first frequency region X1 is included in the second frequency region X2, a sound other than the operation sound of the braking actuator 60 (for example, a traveling sound generated when the vehicle travels) is generated. If so, the first frequency region X1 may be selected, and the frequency of the drive signal DSV may be varied within the first frequency region X1. On the other hand, when no other sound is generated (for example, when the vehicle is stopped and no traveling sound is generated), the second frequency region X2 is selected and driven in the second frequency region X2. The frequency of the signal DSV may be varied.
  • one frequency region X may be a region for fixing the frequency of the drive signal DSV. That is, in the example shown in FIG. 11, when the first frequency region X1 is selected, the frequency of the drive signal DSV can be varied in the first frequency region X1, whereas the second frequency region X1 can be varied. When the frequency domain X2 is selected, the frequency of the drive signal DSV is held at the fluctuation center frequency Ys2 of the second frequency domain X2.
  • the second frequency region X2 is selected so that the frequency of the drive signal DSV is not changed, while the selection condition is satisfied. If not, the first frequency region X1 may be selected and the frequency of the drive signal DSV may be varied within the first frequency region X1. That is, as a control mode performed by the valve control unit 140, a fluctuation mode in which the frequency of the drive signal DSV is varied in the first frequency region X1, and a frequency of the drive signal DSV at one frequency outside the first frequency region X1. It is also possible to select a fixing mode for fixing.
  • the frequency domain X is switched every switching cycle.
  • the present invention is not limited to this, and the frequency region X may be switched using a change in the running state of the vehicle (for example, a change from running to stopping) and a change in the vehicle body speed as a trigger.
  • the startup frequency may be determined first, and the first frequency region X1 may be set based on the startup frequency.
  • the second frequency region X2 is set based on the first frequency region X1.
  • the startup frequency is determined first, and the frequency region X is set based on the startup frequency.
  • the present invention is not limited to this.
  • a frequency in the preset frequency region X may be selected as the startup frequency.
  • the frequency range X is set so that the sound pressure level of noise does not exceed the specified sound pressure level RSPL when the solenoid valves 62, 64, 65 are driven, the effect of time masking is considered.
  • the specified time TM1 may be set.
  • the noise corresponding to the frequency equal to the fluctuation center frequency Ys is set to the width of the frequency region X. It is also possible to set without taking into account the effect of spectrum masking by.
  • the frequency of the drive signal DSV is set using the map shown in FIG. You may make it fluctuate.
  • the map representing the relationship between the frequency and the frequency N is shown by a solid line
  • the curve Lmin of the minimum audible range is shown by a broken line.
  • the frequency N of the frequency with the low specified sound pressure level RSPL represented by the curve Lmin in the minimum audible range is low and the frequency N of the frequency with the high specified sound pressure level RSPL is low. Low.
  • the sound pressure level of noise corresponding to the low frequency of the specified sound pressure level RSPL is unlikely to increase. Therefore, the sound pressure level of noise caused by driving of the solenoid valves 62, 64, 65 can be made lower than the specified sound pressure level RSPL.
  • the electric motor 67 is driven by PWM control. Therefore, even when the electric motor 67 is driven, the frequency of the drive signal DSV input to the electric motor 67 may be varied within the frequency range set based on the curve Lmin of the minimum audible range. Good.
  • the motor control unit 110 functions as an example of the “target control unit”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

制動装置は、制御対象の一例である電磁弁と、PWM制御によって電磁弁を駆動させる弁制御部とを備える。弁制御部は、電磁弁に駆動信号を入力して電磁弁を駆動させているときに、周波数領域内で駆動信号の周波数を変動させる。なお、周波数領域の広さは、等ラウドネス曲線のうちの最小可聴域の曲線に基づいて設定されている。

Description

車両の制動装置
 本発明は、車輪に対する制動力を調整する車両の制動装置に関する。
 車両の制動装置として、マスタシリンダとホイールシリンダとの間に配置されている液圧回路上に複数の電磁弁が設けられている装置が知られている。こうした制動装置では、ホイールシリンダ内の液圧、すなわち車輪に対する制動力を調整するときに電磁弁の駆動が制御される。
 なお、こうした電磁弁は、パルス幅制御(「PWM制御」ともいう。)によって駆動されることがある。特許文献1に記載の制動装置では、電磁弁の駆動に起因するノイズの音圧レベルを低くするために、電磁弁を駆動させるに際して同電磁弁に入力する駆動信号の周波数を連続的に変化させるようにしている。これにより、駆動信号の周波数を一定値で固定している場合と比較し、上記ノイズの音圧レベルを低くすることができる。
米国特許出願公開第2014/0309904号明細書
 上記のように電磁弁に入力する駆動信号の周波数を変動させる場合、周波数の異なる複数種類の上記ノイズが電磁弁から発生することとなる。このように複数種類の上記ノイズが車両の乗員に聞こえてしまうと、当該乗員が不快に感じるおそれがある。
 したがって、特許文献1に記載されているように電磁弁に入力する駆動信号の周波数を変動させる場合、乗員に不快感を与えないように、又は、乗員に与える不快感をより低減できるように、周波数の変動のさせ方を工夫するという点で改善の余地がある。
 上記課題を解決するための車両の制動装置は、車両に対する制動力を調整する車両の制動装置であって、電動式の制御対象と、パルス幅制御によって制御対象を駆動させる対象制御部と、を備えている。対象制御部は、制御対象に駆動信号を入力して同制御対象を駆動させているときに、周波数領域内で駆動信号の周波数を変動させるようになっている。周波数領域の広さは、等ラウドネス曲線のうちの最小可聴域の曲線に基づいて設定されている。
 等ラウドネス曲線のうちの最小可聴域の曲線で表される音圧レベルである規定音圧レベルのうち、制御対象に入力されている駆動信号の周波数に対応する音圧レベルを特定音圧レベルというものとする。この場合、特定音圧レベルが比較的高いときには、制御対象から発生するノイズの音圧レベルが比較的高くても、車両の乗員はノイズを聞き取りにくい。一方、特定音圧レベルが比較的低いときには、制御対象から発生するノイズの音圧レベルが比較的低くても、車両の乗員はノイズを聞き取りやすい。
 そこで、上記構成では、周波数領域内で制御対象に入力する駆動信号の周波数が変動される。しかも、この周波数領域の広さが、上記最小可聴域の曲線に基づいて設定されている。例えば、上記最小可聴域の曲線で表される音圧レベルである規定音圧レベルが低い範囲に周波数領域を設定する場合には、規定音圧レベルが高い範囲に周波数領域を設定する場合と比較して周波数領域の広さが広くなるように、同周波数領域が設定されている。そして、このように規定音圧レベルを考慮して設定された周波数範囲内で駆動信号の周波数を変動させることにより、ノイズの音圧レベルを規定音圧レベル以下としたり、ノイズの音圧レベルが規定音圧レベルよりも高くなってもノイズの音圧レベルと規定音圧レベルとの差分を小さくしたりすることができる。
 したがって、上記最小可聴域の曲線に基づいて設定されている周波数領域内で駆動信号の周波数を変動させることにより、制御対象の駆動に起因する不快感を車両の乗員に与えないようにすること、又は、乗員に与える当該不快感をより低減させることが可能となる。
第1の実施形態の車両の制動装置の概略を示す構成図。 周波数と頻度との関係を示すマップ。 等ラウドネス曲線を表すグラフ。 周波数領域の変動中心周波数の臨界帯域と周波数領域との関係を模式的に表すグラフ。 時間マスキングの作用を受けることのできる期間と規定時間との関係を表すグラフ。 第1の実施形態の制動装置において、制御装置が実行する処理ルーチンを説明するフローチャート。 第2の実施形態の車両の制動装置の制御装置の機能構成を示す図。 第1の周波数領域と第2の周波数領域との関係を示すグラフ。 第2の実施形態の制動装置において、制御装置が実行する処理ルーチンを説明するフローチャート。 別の実施形態の車両の制動装置において、第1の周波数領域と第2の周波数領域との関係を示すグラフ。 別の実施形態の車両の制動装置において、第1の周波数領域と第2の周波数領域との関係を示すグラフ。 別の実施形態の車両の制動装置において、周波数と頻度との関係を示すマップ。
 (第1の実施形態)
 以下、車両の制動装置の第1の実施形態を図1~図6に従って説明する。
 図1に示す車両は、複数の車輪10に対して個別に設けられている複数(すなわち、車輪と同数)の制動機構20と、本実施形態の制動装置40とを備えている。
 図1に示すように、各制動機構20は、ブレーキ液が供給されるホイールシリンダ21と、車輪10と一体回転するディスクロータ22と、ディスクロータ22に近づく方向及び離れる方向に相対移動する摩擦材23とをそれぞれ有している。そして、各制動機構20では、ホイールシリンダ21内の液圧であるWC圧Pwcが高いほど、ディスクロータ22に摩擦材23を押し付ける力、すなわち車輪10に対する制動力をそれぞれ大きくすることができる。
 制動装置40は、運転者によって操作されるブレーキペダルなどの制動操作部材41が連結されている液圧発生装置50と、各ホイールシリンダ21内のWC圧Pwcを個別に調整することのできる制動アクチュエータ60とを有している。
 制動アクチュエータ60には、2系統の液圧回路611,612が設けられている。第1の液圧回路611には、各ホイールシリンダ21のうちの2つのホイールシリンダ21が接続されている。また、第2の液圧回路612には、残りの2つのホイールシリンダ21が接続されている。
 第1の液圧回路611には、液圧発生装置50のマスタシリンダ51とホイールシリンダ21との差圧を調整するための差圧調整弁62と、WC圧Pwcの増大を規制する際に閉弁される保持弁64と、WC圧Pwcを減少させる際に開弁される減圧弁65とが設けられている。差圧調整弁62は常開型のリニア電磁弁であり、保持弁64は常開型の電磁弁であり、減圧弁65は常閉型の電磁弁である。また、第1の液圧回路611には、ホイールシリンダ21から減圧弁65を介して流出したブレーキ液を一時的に貯留するリザーバ66と、電動モータ67の駆動に基づき作動するポンプ68とが接続されている。このポンプ68は、WC圧Pwcを調整する際に作動する。
 なお、第2の液圧回路612の構造は、第1の液圧回路611の構造とほぼ同一であるため、本明細書では、第2の液圧回路612の構造の説明については割愛するものとする。
 次に、図1~図6を参照し、制動装置40の制御装置100について説明する。
 図1に示すように、制御装置100は、制動アクチュエータ60を制御するための機能部として、モータ制御部110、開度指示部120、領域設定部150、及び対象制御部の一例である弁制御部140を有している。
 モータ制御部110は、電動モータ67の駆動、すなわちポンプ68のブレーキ液の吐出量を制御する。
 開度指示部120は、差圧調整弁62、保持弁64及び減圧弁65に対する開度指示値Zを個別に設定する。
 領域設定部150は、差圧調整弁62、保持弁64及び減圧弁65の起動時に差圧調整弁62、保持弁64及び減圧弁65に入力される駆動信号DSVの周波数を基に、周波数領域Xを設定する。すなわち、差圧調整弁62、保持弁64及び減圧弁65の起動時に入力される駆動信号DSVの周波数を起動時周波数とした場合、領域設定部150は、起動時周波数から所定周波数を減算した周波数を下限とし、起動時周波数に所定周波数を加算した周波数を上限とする周波数領域Xを設定する。なお、以降の記載においては、周波数領域Xの中心となる周波数を変動中心周波数Ysといい、周波数領域Xの下限の周波数を変動下限周波数Ydlといい、周波数領域Xの上限の周波数を変動上限周波数Yulというものとする。
 弁制御部140は、開度指示部120によって設定されている開度指示値Zに基づいたパルス幅制御(以下、「PWM制御」ともいう。)によって、制御対象としての電磁弁62,64,65を駆動させる。「PWM」とは、「Pulse Width Modulation」の略記である。すなわち、電磁弁62,64,65の起動時には、弁制御部140は、そのときの状況(例えば、車両の走行状態)などに基づいて上記起動時周波数を決定し、同起動時周波数と等しい周波数の駆動信号DSVを生成する。そして、弁制御部140は、生成した駆動信号DSVを電磁弁62,64,65に入力させることで、電磁弁62,64,65を駆動させる。
 本実施形態では、起動時周波数と等しい周波数の駆動信号DSVを電磁弁62,64,65に入力させたあとでは、弁制御部140は、電磁弁62,64,65に入力する駆動信号DSVの周波数を、領域設定部150によって設定された周波数領域X内で変動させる。これにより、電磁弁62,64,65に入力する駆動信号DSVの周波数を所定値で固定する場合と比較し、電磁弁62,64,65の駆動によって発生するノイズの音圧レベルが高くなることが抑制される。このように駆動信号DSVの周波数を周波数領域X内で変動させる場合、弁制御部140は、図2に示すマップMAP1を用いて駆動信号DSVの周波数を変更する。
 図2には、周波数と頻度Nとの関係が図示されている。ここでいう「頻度N」とは、単位時間あたりに選択される周波数の回数に相当する。すなわち、電磁弁62,64,65を駆動させている場合、頻度Nの高い周波数の駆動信号DSVが電磁弁62,64,65に入力される期間の合計は、頻度Nの低い周波数の駆動信号DSVが電磁弁62,64,65に入力される期間の合計よりも長くなる。
 この場合、図2に示すように、周波数領域Xの中で、変動中心周波数Ysが選択される頻度Nが最も高い。また、周波数領域X内では、周波数が変動中心周波数Ysから変動下限周波数Ydlに向かうにつれて頻度Nが徐々に低くなり、周波数が変動中心周波数Ysから変動上限周波数Yulに向かうにつれて頻度Nが徐々に低くなる。ただし、変動下限周波数Ydlが選択される頻度N及び変動上限周波数Yulが選択される頻度Nの双方は、「0」よりも高い。
 図3には、ISO226:2003の等ラウドネス曲線が図示されている。等ラウドネス曲線は、人間の聴覚による音の大きさ、騒音のうるささが同じになる音圧レベルを異なる周波数毎に測定して等高線で結んだものである。図3において、破線及び実線で示す等ラウドネス曲線のうち、実線で示す等ラウドネス曲線は、最小可聴域の曲線Lminである。最小可聴域の曲線Lminで表される音圧レベルを規定音圧レベルRSPLとした場合、規定音圧レベルRSPLよりも低い音圧レベルのノイズを人間が聞き取ることは、ほとんどできない。
 そして、周波数領域Xの広さは、最小可聴域の曲線Lminに基づいて設定されている。すなわち、周波数領域X内で駆動信号DSVの周波数を変動させた場合に、変動中心周波数Ysのノイズの音圧レベルが規定音圧レベルRSPLよりもあまり高くならないように、周波数領域Xの広さ、すなわち周波数領域Xにおける変動下限周波数Ydlと変動上限周波数Yulとの差分が設定されている。規定音圧レベルRSPLのうち、変動中心周波数Ysに対応する音圧レベルを規定中心音圧レベルRSPLsとした場合、周波数領域Xは、規定中心音圧レベルRSPLsが低いほど広くなるように設定されることとなる。
 例えば、図4に示すように、周波数領域Xの広さは、変動中心周波数Ysの臨界帯域CBよりも狭くなるように設定されている。変動中心周波数Ysと等しい周波数の駆動信号DSVが電磁弁62,64,65に入力されているときに電磁弁62,64,65から発生するノイズのことを「変動中心周波数Ysと等しい周波数に対応するノイズ」という。この場合、変動中心周波数Ysの臨界帯域CBとは、変動中心周波数Ysと等しい周波数に対応するノイズによるスペクトルマスキングの作用によって、他の周波数のノイズをかき消すことのできる周波数の領域のことである。すなわち、電磁弁62,64,65に入力する駆動信号DSVの周波数を、変動中心周波数Ysと等しい周波数から、臨界帯域CB内における別の周波数に変更した場合、変動中心周波数Ysと等しい周波数に対応するノイズによって、当該別の周波数に対応するノイズがかき消される。なお、「別の周波数に対応するノイズ」とは、当該別の周波数の駆動信号DSVが電磁弁62,64,65に入力されているときに電磁弁62,64,65から発生するノイズのことである。つまり、本実施形態では、周波数領域Xは、変動中心周波数Ysの臨界帯域CBを基に、変動中心周波数Ysと等しい周波数に対応するノイズによるスペクトルマスキングの作用を受けることができるように設定されているということができる。
 なお、臨界帯域CBは、変動中心周波数Ysと、変動中心周波数Ysと等しい周波数に対応するノイズの音圧レベルとによって決まる。そこで、本実施形態では、臨界帯域CBを実験やシュミレーションなどによって予め求め、この臨界帯域CBを基に周波数領域Xの広さ、すなわち上記所定周波数が設定されている。
 上述したように、電磁弁62,64,65に駆動信号DSVを入力して電磁弁62,64,65を駆動させる場合、弁制御部140は、領域設定部150によって設定されている周波数領域X内で駆動信号DSVの周波数を変動させる。具体的には、弁制御部140は、規定時間TM1毎に駆動信号DSVの周波数を変更する。
 図5には、ある周波数の駆動信号が電磁弁に入力されているために同電磁弁からノイズが発生している状況下で電磁弁に入力する駆動信号の周波数を変更したときの作用が図示されている。図5に示すように、タイミングt1で電磁弁への駆動信号の周波数が変更されると、タイミングt1から始まる所定の期間F内では、タイミングt1まで電磁弁から発生していたノイズの時間マスキングの作用によって、変更後の周波数に対応するノイズが人間に聞き取りにくくなる。そこで、図5に示すように、本実施形態では、規定時間TM1は、時間マスキングの作用を受けることのできる期間Fの時間的な長さよりも短くなるように設定されている。つまり、規定時間TM1は、駆動信号DSVの周波数が変更される前で電磁弁から発生するノイズによる時間マスキングの作用を受けることができるように設定されているということができる。
 次に、図6を参照し、電磁弁の一例である差圧調整弁62を駆動させる際に制御装置100によって実行される処理ルーチンについて説明する。なお、差圧調整弁62以外の他の電磁弁、すなわち保持弁64及び減圧弁65を駆動させる際の処理ルーチンは、図6に示す処理ルーチンと同等である。そのため、保持弁64用の処理ルーチン及び減圧弁65用の処理ルーチンの説明を割愛するものとする。
 図6に示すように、本処理ルーチンが実行されると、始めにステップS11において、弁制御部140によって、差圧調整弁62に入力する駆動信号DSVの周波数が、上記起動時周波数に設定される。続いて、次のステップS12では、領域設定部150によって、今回の周波数領域Xが設定される。そして、ステップS13において、弁制御部140によって、差圧調整弁62への駆動信号DSVの出力が開始される。
 続いて、次のステップS14では、差圧調整弁62の駆動停止の指示があるか否かの判定が行われる。例えば、マスタシリンダ51とホイールシリンダ21との差圧の制御が不要と判断できるときに差圧調整弁62の駆動停止が指示される。駆動停止の指示がある場合(ステップS14:YES)、処理が次のステップS15に移行される。そして、ステップS15において、弁制御部140によって、差圧調整弁62への駆動信号DSVの出力が停止される。その後、本処理ルーチンが終了される。
 一方、差圧調整弁62の駆動停止の指示がない場合(ステップS14:NO)、処理が次のステップS16に移行される。そして、ステップS16において、周波数領域X内の一の周波数の駆動信号DSVが差圧調整弁62に入力されている状態の継続時間が規定時間TM1に達したか否かの判定が弁制御部140によって行われる。上記の継続時間が規定時間TM1未満である場合(ステップS16:NO)、処理が前述したステップS14に移行される。一方、上記の継続時間が規定時間TM1以上である場合(ステップS16:YES)、処理が次のステップS17に移行される。
 そして、ステップS17において、弁制御部140によって、差圧調整弁62に入力する駆動信号DSVの周波数が、周波数領域X内で変更される。このとき、弁制御部140は、図2に示すマップMAP1を用いて変更後の周波数を決定し、変更後の周波数の駆動信号DSVを差圧調整弁62に出力する。
 ここで、ステップS17の処理では、弁制御部140は、マップMAP1と所定のルールとに従って、差圧調整弁62に入力する駆動信号DSVの周波数を変更する。ステップS17の処理に移行するまで出力されていた駆動信号DSVの周波数を今回の駆動信号DSVの周波数というものとする。すなわち、弁制御部140は、今回の駆動信号DSVの周波数が周波数領域Xの変動中心周波数Ysよりも低い場合、駆動信号DSVの周波数を、変動中心周波数Ysと等しい周波数、又は、周波数領域X内において変動中心周波数Ysよりも高い周波数に変更する。反対に、弁制御部140は、今回の駆動信号DSVの周波数が周波数領域Xの変動中心周波数Ysよりも高い場合、駆動信号DSVの周波数を、変動中心周波数Ysと等しい周波数、又は、周波数領域X内において変動中心周波数Ysよりも低い周波数に変更する。さらに、弁制御部140は、今回の駆動信号DSVの周波数が周波数領域Xの変動中心周波数Ysと等しかった場合、前回の駆動信号DSVの周波数が変動中心周波数Ysよりも低かったときには、駆動信号DSVの周波数を周波数領域X内において変動中心周波数Ysよりも高い周波数に変更する。一方、弁制御部140は、今回の駆動信号DSVの周波数が周波数領域Xの変動中心周波数Ysと等しかった場合、前回の駆動信号DSVの周波数が変動中心周波数Ysよりも高かったときには、駆動信号DSVの周波数を周波数領域X内において変動中心周波数Ysよりも低い周波数に変更する。
 このようにステップS17の処理が行われると、処理が前述したステップS14に移行される。
 次に、差圧調整弁62を駆動させる際の作用を効果とともに説明する。
 (1)差圧調整弁62を駆動させる場合、周波数領域X内で差圧調整弁62に入力される駆動信号DSVの周波数が変動される。上述したように、周波数領域Xの広さは、上記最小可聴域の曲線Lminに基づいて設定されている。そのため、差圧調整弁62から発生するノイズの音圧レベルが、最小可聴域の曲線Lminで表される規定音圧レベルRSPLを上回りにくくなる。したがって、差圧調整弁62の駆動に起因する不快感を車両の乗員に与えないようにすること、又は、乗員に与える当該不快感をより低減させることができる。
 (2)具体的には、周波数領域Xは、周波数領域Xの変動中心周波数Ysの臨界帯域CBに基づいて設定されている。そのため、変更前の周波数に対応するノイズによるスペクトルマスキングの作用によって、変更後の周波数に対応するノイズをかき消すことができる。
 (3)さらに、駆動信号DSVを差圧調整弁62に入力して差圧調整弁62を駆動させている場合、変更前の周波数に対応するノイズによる時間マスキングの作用を受けることができるように設定された規定時間TM1毎に、駆動信号DSVの周波数が変更される。そのため、変更前の周波数に対応するノイズの時間マスキングの作用によって、変更後の周波数に対応するノイズを車両の乗員が聞き取りにくくすることができる。
 (4)本実施形態では、周波数領域X内で駆動信号DSVの周波数を変更する場合、図2に示すマップMAP1を用いて駆動信号DSVの周波数を変更するようにしている。そのため、変動中心周波数Ysに近い周波数の駆動信号DSVが差圧調整弁62に入力される期間の合計が、変動中心周波数Ysから離れている周波数の駆動信号DSVが差圧調整弁62に入力される期間の合計よりも長くなる。その結果、変動中心周波数Ysに対応するノイズによるスペクトルマスキングの作用によって、周波数領域X内における変動中心周波数Ys以外の他の周波数に対応するノイズを車両の乗員に聞き取らせにくくする効果の低下を抑制することができる。
 なお、こうした効果の低下を抑制する手法の一つとして、周波数領域X内であっても変動中心周波数Ysの近傍のみで駆動信号DSVの周波数を変動させることも考えられる。この場合、ある周波数の駆動信号DSVを差圧調整弁62に入力させる頻度が高くなり、当該ある周波数に対応するノイズの音圧レベルが高くなりやすい。この点、本実施形態では、頻度は低くても、変動中心周波数Ysの近傍ではない、すなわち変動上限周波数Yulや変動下限周波数Ydl近傍の周波数の駆動信号DSVを差圧調整弁62に入力させる機会を設けることにより、変動中心周波数Ys近傍の周波数に対応するノイズの音圧レベルが高くなりすぎることを抑制できる。
 (5)なお、周波数領域X内であっても、差圧調整弁62から発生するノイズを車両の乗員が聞き取りにくいものの、差圧調整弁62の応答性があまりよくない第1の領域と、差圧調整弁62から発生するノイズを車両の乗員が聞き取りやすいものの、差圧調整弁62の応答性がよい第2の領域とに区分けできることがある。周波数領域Xのうち、変動中心周波数Ysよりも低い側の領域が第1の領域及び第2の領域の何れか一方であり、変動中心周波数Ysよりも高い側の領域が第1の領域及び第2の領域の何れか他方であった場合、上記のルールに従って周波数領域X内で駆動信号DSVの周波数を変動させることにより、差圧調整弁62の応答性はあまりよくないもののノイズを車両の乗員が聞き取りにくい期間と、差圧調整弁62の応答性はよいもののノイズを車両の乗員が聞き取りやすい期間とを交互に繰り返させることが可能となる。すなわち、差圧調整弁62の応答性の低下の抑制と、上記ノイズを車両の乗員に聞き取らせにくくすることとの両立が可能となる。
 ちなみに、本実施形態では、差圧調整弁62以外の他の電磁弁64,65を駆動させる場合であっても、電磁弁64,65に入力する駆動信号DSVの周波数を、差圧調整弁62を駆動させる場合と同様に変動させる。そのため、電磁弁64,65を駆動させる場合であっても、差圧調整弁62を駆動させる場合と同様の作用効果を得ることができる。
 (第2の実施形態)
 次に、車両の制動装置の第2の実施形態を図7~図9に従って説明する。第2の実施形態では、電磁弁の駆動中に周波数領域を切り替える点などが第1の実施形態と相違している。そこで、以下の説明においては、第1の実施形態と相違している部分について主に説明するものとし、第1の実施形態と同一又は相当する部材構成には同一符号を付して重複説明を省略するものとする。
 図7に示すように、制御装置100は、制動アクチュエータ60を制御するための機能部として、モータ制御部110、開度指示部120、領域切替部130、及び弁制御部140を有している。
 領域切替部130は、差圧調整弁62、保持弁64及び減圧弁65が駆動しているときに、周波数領域Xの切り替えを切替時間TM2毎に行う。この切替時間TM2は、「切替周期」の時間的な長さと等しく、上記規定時間TM1よりも長い。
 すなわち、領域切替部130の領域記憶部131には、周波数領域Xとして、複数(本実施形態では2つ)の周波数領域X1,X2が予め記憶されている。各周波数領域X1,X2のうち、第1の周波数領域X1は、第2の周波数領域X2よりも高周波側に設定されている。第1の周波数領域X1の変動下限周波数を変動下限周波数Ydl1とし、第1の周波数領域X1の変動上限周波数を変動上限周波数Yul1とし、第2の周波数領域X2の変動下限周波数を変動下限周波数Ydl2とし、第2の周波数領域X2の変動上限周波数を変動上限周波数Yul2とする。この場合、図8に示すように、第1の周波数領域X1の変動下限周波数Ydl1は、第2の周波数領域X2の変動上限周波数Yul2よりも高い。
 本実施形態では、2つの周波数領域X1,X2が予め設定されているが、各周波数領域X1,X2の広さは互いに同じである。例えば図8に示すように、第1の周波数領域X1の変動中心周波数Ys1に対応する規定中心音圧レベルRSPLsが第2の周波数領域X2の変動中心周波数Ys2に対応する規定中心音圧レベルRSPLsよりも低い場合、第1の周波数領域X1の変動中心周波数Ys1に対応する規定中心音圧レベルRSPLsに合わせて、各周波数領域X1,X2の広さが設定されている。そのため、第2の周波数領域X2の広さは、第2の周波数領域X2の変動中心周波数Ys2に対応する規定中心音圧レベルRSPLsに対して広めに設定されているということができる。
 また、周波数領域X1,X2の広さは、変動中心周波数Ysの臨界帯域CBよりも狭くなるように設定されている(図5参照)。すなわち、本実施形態では、各周波数領域X1,X2の広さは、第1の周波数領域X1の変動中心周波数Ys1の臨界帯域CBよりも狭くなるようにそれぞれ設定されている。したがって、第1の周波数領域X1は、変動中心周波数Ys1の臨界帯域CBを基に、変動中心周波数Ys1と等しい周波数に対応するノイズによるスペクトルマスキングの作用を受けることができるように設定されているということができる。同様に、第2の周波数領域X2は、変動中心周波数Ys2の臨界帯域CBを基に、変動中心周波数Ys2と等しい周波数に対応するノイズによるスペクトルマスキングの作用を受けることができるように設定されているということができる。
 次に、図9を参照し、電磁弁の一例である差圧調整弁62を駆動させる際に制御装置100によって実行される処理ルーチンについて説明する。なお、差圧調整弁62以外の他の電磁弁、すなわち保持弁64及び減圧弁65を駆動させる際の処理ルーチンは、図9に示す処理ルーチンと同等である。そのため、保持弁64用の処理ルーチン及び減圧弁65用の処理ルーチンの説明を割愛するものとする。
 図9に示すように、本処理ルーチンが実行されると、始めにステップS111において、領域切替部130によって、周波数領域Xとして第1の周波数領域X1が選択される。なお、ステップS111では、第2の周波数領域X2を周波数領域Xとして選択してもよい。続いて、次のステップS112では、弁制御部140によって、差圧調整弁62に入力する駆動信号DSVの周波数が、周波数領域X内の周波数に設定される。例えば、駆動信号DSVの周波数を、選択されている周波数領域Xの変動中心周波数Ysと等しくしてもよいし、変動中心周波数Ysとは異なる周波数と等しくしてもよい。そして、処理が前述したステップS13に移行される。
 差圧調整弁62を駆動させている場合、第1の実施形態と同様に、ステップS14、ステップS16及びステップS17の各処理が実施される。そして、本実施形態では、ステップS17の処理が実施されると、処理が次のステップS18に移行される。
 そして、ステップS18では、領域切替部130によって、周波数領域Xが選択された時点からの経過時間が切替時間TM2に達したか否かの判定が行われる。上記の経過時間が切替時間TM2未満である場合(ステップS18:NO)、処理が前述したステップS14に移行される。
 一方、上記の経過時間が切替時間TM2以上である場合(ステップS18:YES)、処理が次のステップS19に移行される。そして、ステップS19において、領域切替部130によって、周波数領域Xの切り替えが行われる。具体的には、切り替え前の周波数領域Xが第1の周波数領域X1である場合、領域切替部130は、周波数領域Xを第2の周波数領域X2に切り替える。反対に、切り替え前の周波数領域Xが第2の周波数領域X2である場合、領域切替部130は、周波数領域Xを第1の周波数領域X1に切り替える。したがって、本実施形態では、領域切替部130は、前回の周波数領域(例えば、第2の周波数領域X2)よりも今回の周波数領域(この場合、第1の周波数領域X1)の方が高周波側であったときには、次回の周波数領域を今回の周波数領域よりも低周波側の領域(この場合、第2の周波数領域X2)に切り替える。一方、領域切替部130は、前回の周波数領域(例えば、第1の周波数領域X1)よりも今回の周波数領域(この場合、第2の周波数領域X2)の方が低周波側であったときには、次回の周波数領域を今回の周波数領域よりも高周波側の領域(この場合、第1の周波数領域X1)に切り替える。
 以上、本実施形態によれば、上記(1)~(5)に記載されている作用効果と同等の作用効果に加え、以下に示すような作用効果をさらに得ることができる。
 (6)差圧調整弁62から発生するノイズを車両の乗員に聞き取らせにくくするためには、上記規定音圧レベルRSPLが高い範囲に設定された周波数領域X内で駆動信号DSVの周波数を変動させることが好ましい。しかしながら、上記規定音圧レベルRSPLが高い範囲に設定された周波数領域X内に含まれる周波数の駆動信号DSVを差圧調整弁62に入力させる場合、差圧調整弁62の応答性がよくないことがある。また、規定音圧レベルRSPLが低い範囲に設定された周波数領域X内で駆動信号DSVの周波数を変動させる場合、ノイズが車両の乗員に聞き取りやすくなるものの、差圧調整弁62の応答性がよいこともあり得る。
 例えば、第1の周波数領域X1及び第2の周波数領域X2のうち一方の周波数領域が、差圧調整弁62の応答性はあまりよくないものの上記ノイズを車両の乗員が聞き取りにくい周波数領域であり、他方の周波数領域が、差圧調整弁62の応答性はよいもののノイズを車両の乗員が聞き取りやすい周波数領域であるものとする。この場合、本実施形態のように所定の切替周期で周波数領域Xを切り替えることにより、差圧調整弁62の応答性はあまりよくないものの上記ノイズを車両の乗員が聞き取りにくい期間と、差圧調整弁62の応答性はよいもののノイズを車両の乗員が聞き取りやすい期間とを交互に繰り返すことができる。すなわち、差圧調整弁62の応答性の低下の抑制と、上記ノイズを車両の乗員に聞き取らせにくくすることとの両立が可能となる。
 ちなみに、本実施形態では、差圧調整弁62以外の他の電磁弁64,65を駆動させる場合であっても、電磁弁64,65に入力する駆動信号DSVの周波数を、差圧調整弁62を駆動させる場合と同様に変動させる。そのため、電磁弁64,65を駆動させる場合であっても、差圧調整弁62を駆動させる場合と同様の作用効果を得ることができる。
 なお、上記各実施形態は以下のような別の実施形態に変更してもよい。
 ・各実施形態において、ステップS17では、マップMAP1に基づいて周波数領域X内で駆動信号DSVの周波数を変動させるのであれば、上記ルールとは異なるルールで駆動信号DSVの周波数を変動させるようにしてもよい。例えば、周波数領域X内における変動中心周波数Ysよりも低い周波数の駆動信号DSVを電磁弁に入力していた場合、駆動信号DSVの次の周波数を、当該周波数と異なる周波数であれば、変動中心周波数Ysよりも低い周波数に変更してもよい。また、周波数領域X内における変動中心周波数Ysよりも高い周波数の駆動信号DSVを電磁弁に入力していた場合、駆動信号DSVの次の周波数を、当該周波数と異なる周波数であれば、変動中心周波数Ysよりも高い周波数に変更してもよい。
 ・第2の実施形態において、領域記憶部131は、領域切替部130によって選択可能な周波数領域を3つ以上記憶していてもよい。この場合、領域記憶部131は、所定のルールに従って、領域記憶部131に記憶されている3つ以上の周波数領域の中から周波数領域Xを選択することとなる。ルールとしては、例えば、前回の周波数領域よりも今回の周波数領域の方が高周波側であったときには、次回の周波数領域を今回の周波数領域よりも低周波側に切り替え、前回の周波数領域よりも今回の周波数領域の方が低周波側であったときには、次回の周波数領域を今回の周波数領域よりも高周波側に切り替えることを挙げることができる。また、ルールとして、例えば、低周波側の周波数領域から高周波側の周波数領域に順番に切り替えるルールを採用してもよい。
 ・第2の実施形態において、第2の周波数領域X2の広さを、第1の周波数領域X1の広さと異ならせてもよい。例えば、第1の周波数領域X1の変動中心周波数Ys1での規定中心音圧レベルRSPLsを基に第1の周波数領域X1の広さを設定し、第2の周波数領域X2の変動中心周波数Ys2での規定中心音圧レベルRSPLsを基に第2の周波数領域X2の広さを設定するようにしてもよい。この場合、変動中心周波数Ys1での規定中心音圧レベルRSPLsが変動中心周波数Ys2での規定中心音圧レベルRSPLsと相違している場合、第2の周波数領域X2の広さが第1の周波数領域X1の広さと相違することとなる。
 この構成によれば、規定音圧レベルRSPLが低い範囲に設定された周波数領域の広さは、規定音圧レベルRSPLが高い範囲に設定された周波数領域の広さよりも広くなる。そのため、規定音圧レベルRSPLが低い範囲に設定された周波数領域内で駆動信号DSVの周波数を変動させる場合であっても、周波数領域が比較的広いため、電磁弁62,64,65の駆動に起因するノイズを車両の乗員に聞き取らせにくくすることが可能となる。
 ・第2の実施形態において、第1の周波数領域X1の変動下限周波数Ydl1が第2の周波数領域X2の変動上限周波数Yul2と一致していてもよい。
 ・第2の実施形態において、複数の周波数領域Xのうち、一の周波数領域Xの少なくとも一部分が他の周波数領域と重複していてもよい。例えば、第1の周波数領域X1の変動下限周波数Ydl1が、第2の周波数領域X2の変動上限周波数Yul2よりも低く、且つ、第1の周波数領域X1の変動下限周波数Ydl1が、第2の周波数領域X2の変動下限周波数Ydl2よりも高くてもよい。
 また、図10に示すように、第1の周波数領域X1の変動下限周波数Ydl1が、第2の周波数領域X2の変動下限周波数Ydl2よりも低く、且つ、第1の周波数領域X1の変動上限周波数Yul1が、第2の周波数領域X2の変動上限周波数Yul2よりも高くてもよい。この場合、第1の周波数領域X1を、変動中心周波数Ys1が第2の周波数領域X2の変動中心周波数Ys2と同じとなるように設定してもよいし、変動中心周波数Ys1が変動中心周波数Ys2と異なるように設定してもよい。
 このように第2の周波数領域X2内に第1の周波数領域X1が含まれている場合、制動アクチュエータ60の作動音以外の他の音(例えば、車両走行時に発生する走行音)が発生しているときには、第1の周波数領域X1を選択し、第1の周波数領域X1内で駆動信号DSVの周波数を変動させるようにしてもよい。一方、他の音が発生していないとき(例えば、車両が停止して走行音が発生していないとき)には、第2の周波数領域X2を選択し、第2の周波数領域X2内で駆動信号DSVの周波数を変動させるようにしてもよい。
 ・第2の実施形態において、複数の周波数領域Xのうち、一の周波数領域Xは、駆動信号DSVの周波数を固定するための領域であってもよい。すなわち、図11に示す例では、第1の周波数領域X1が選択されている場合には、第1の周波数領域X1内で駆動信号DSVの周波数を変動させることができるのに対し、第2の周波数領域X2が選択されている場合には、第2の周波数領域X2の変動中心周波数Ys2で駆動信号DSVの周波数が保持されることとなる。
 なお、図11に示す例を採用する場合、所定の選択条件が成立しているときには、第2の周波数領域X2を選択して駆動信号DSVの周波数を変動させないようにする一方、選択条件が成立していないときには、第1の周波数領域X1を選択して駆動信号DSVの周波数を第1の周波数領域X1内で変動させるようにしてもよい。すなわち、弁制御部140が実施する制御モードとして、第1の周波数領域X1内で駆動信号DSVの周波数を変動させる変動モードと、第1の周波数領域X1外の一の周波数で駆動信号DSVの周波数を固定させる固定モードとを選択可能としてもよい。
 ・上記第2の実施形態では、切替周期毎に周波数領域Xを切り替えるようにしている。しかし、これに限らず、車両の走行状態の変化(例えば、走行中から停車中への変化)及び車両の車体速度の変化などをトリガとして周波数領域Xを切り替えるようにしてもよい。
 ・上記第2の実施形態において、起動時周波数を先に決定し、同起動時周波数を基に第1の周波数領域X1を設定するようにしてもよい。このように第1の周波数領域X1が設定される場合、同第1の周波数領域X1を基に第2の周波数領域X2が設定されることとなる。
 ・上記第1の実施形態では、起動時周波数が先に決定され、同起動時周波数を基に周波数領域Xが設定されるようになっている。しかし、これに限らず、例えば予め設定されている周波数領域X内の周波数を、起動時周波数として選択するようにしてもよい。
 ・電磁弁62,64,65を駆動させているときにノイズの音圧レベルが規定音圧レベルRSPLを上回らないように周波数領域Xの広さが設定されている場合、時間マスキングによる作用を考慮せずに規定時間TM1を設定するようにしてもよい。
 ・電磁弁62,64,65を駆動させているときにノイズの音圧レベルが規定音圧レベルRSPLを上回らない場合、周波数領域Xの広さを、変動中心周波数Ysと等しい周波数に対応するノイズによるスペクトルマスキングの作用を考慮せずに設定するようにしてもよい。
 ・電磁弁62,64,65を駆動させているときにノイズの音圧レベルが規定音圧レベルRSPLを上回らないようにするためには、図12に示すマップを用いて駆動信号DSVの周波数を変動させるようにしてもよい。図12では、周波数と頻度Nとの関係を表すマップが実線で示されており、最小可聴域の曲線Lminが破線で示されている。図12に示すマップでは、周波数領域Xの中で、最小可聴域の曲線Lminで表される規定音圧レベルRSPLが低い周波数の頻度Nが低く、規定音圧レベルRSPLが高い周波数の頻度Nが低い。このようなマップを用いて駆動信号DSVの周波数を変動させることにより、規定音圧レベルRSPLの低い周波数に対応するノイズの音圧レベルが高くなりにくくなる。そのため、電磁弁62,64,65の駆動に起因するノイズの音圧レベルを規定音圧レベルRSPL未満とすることが可能となる。
 ・上記の制動アクチュエータ60では、PWM制御によって電動モータ67が駆動される。そのため、電動モータ67を駆動させる場合であっても、電動モータ67に入力する駆動信号DSVの周波数を、最小可聴域の曲線Lminに基づいて設定されている周波数領域内で変動させるようにしてもよい。この場合、モータ制御部110が、「対象制御部」の一例として機能することとなる。

Claims (7)

  1.  車両に対する制動力を調整する車両の制動装置であって、
     電動式の制御対象と、パルス幅制御によって前記制御対象を駆動させる対象制御部と、を備え、
     前記対象制御部は、前記制御対象に駆動信号を入力して同制御対象を駆動させているときに、周波数領域内で前記駆動信号の周波数を変動させるようになっており、
     前記周波数領域の広さは、等ラウドネス曲線のうちの最小可聴域の曲線に基づいて設定されている
     車両の制動装置。
  2.  前記周波数領域の中心となる周波数を変動中心周波数とした場合、
     前記周波数領域は、前記変動中心周波数の臨界帯域を基に、前記変動中心周波数と等しい周波数の前記駆動信号が前記制御対象に入力されるときに同制御対象から発生するノイズによるスペクトルマスキングの作用を受けることができるように設定されている
     請求項1に記載の車両の制動装置。
  3.  前記対象制御部は、前記制御対象に前記駆動信号を入力して同制御対象を駆動させているときに、前記周波数領域内で前記変動中心周波数から離れている周波数の前記駆動信号が前記制御対象に入力される頻度を、前記周波数領域内で前記変動中心周波数に近い周波数の前記駆動信号が前記制御対象に入力される頻度よりも低くする
     請求項2に記載の車両の制動装置。
  4.  前記対象制御部は、前記制御対象に前記駆動信号を入力して同制御対象を駆動させているときに、前記周波数領域内で同駆動信号の周波数を規定時間毎に変更するようになっており、
     前記規定時間は、前記駆動信号の周波数が変更される前で前記制御対象から発生するノイズによる時間マスキングの作用を受けることができるように設定されている
     請求項1~請求項3のうち何れか一項に記載の車両の制動装置。
  5.  前記対象制御部は、
     前記制御対象に前記駆動信号を入力して同制御対象を駆動させている場合、
     前記周波数領域内において前記変動中心周波数よりも低い周波数の前記駆動信号を前記制御対象に入力していたときには、前記駆動信号の周波数を、前記変動中心周波数と等しい周波数、又は、前記周波数領域内において前記変動中心周波数よりも高い周波数に変更する一方、
     前記周波数領域内において前記変動中心周波数よりも高い周波数の前記駆動信号を前記制御対象に入力していたときには、前記駆動信号の周波数を、前記変動中心周波数と等しい周波数、又は、前記周波数領域内において前記変動中心周波数よりも低い周波数に変更する
     請求項2又は請求項3に記載の車両の制動装置。
  6.  前記周波数領域を切替周期毎に切り替える領域切替部を備え、
     前記領域切替部は、
     前回の前記周波数領域よりも今回の前記周波数領域の方が高周波側であったときには、次回の前記周波数領域を前記今回の周波数領域よりも低周波側に切り替える一方、
     前記前回の周波数領域よりも前記今回の周波数領域の方が低周波側であったときには、前記次回の周波数領域を前記今回の周波数領域よりも高周波側に切り替える
     請求項1~請求項5のうち何れか一項に記載の車両の制動装置。
  7.  前記周波数領域の中心となる周波数を変動中心周波数とし、前記最小可聴域の曲線で表される音圧レベルのうち、前記変動中心周波数に対応する音圧レベルを規定中心音圧レベルとした場合、
     前記規定中心音圧レベルが低い前記周波数領域の広さは、前記規定中心音圧レベルが高い前記周波数領域の広さよりも広い
     請求項6に記載の車両の制動装置。
PCT/JP2018/013386 2017-03-31 2018-03-29 車両の制動装置 WO2018181785A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018001737.0T DE112018001737T5 (de) 2017-03-31 2018-03-29 Bremsvorrichtung für ein Fahrzeug
CN201880022967.6A CN110536816B (zh) 2017-03-31 2018-03-29 车辆的制动装置
US16/486,849 US11225229B2 (en) 2017-03-31 2018-03-29 Braking device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070489 2017-03-31
JP2017070489A JP6844383B2 (ja) 2017-03-31 2017-03-31 車両の制動装置

Publications (1)

Publication Number Publication Date
WO2018181785A1 true WO2018181785A1 (ja) 2018-10-04

Family

ID=63678036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013386 WO2018181785A1 (ja) 2017-03-31 2018-03-29 車両の制動装置

Country Status (5)

Country Link
US (1) US11225229B2 (ja)
JP (1) JP6844383B2 (ja)
CN (1) CN110536816B (ja)
DE (1) DE112018001737T5 (ja)
WO (1) WO2018181785A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217696A (zh) * 2022-07-01 2022-10-21 奇瑞汽车股份有限公司 噪声控制方法、装置以及车辆制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6700617B2 (ja) * 2017-05-29 2020-05-27 株式会社アドヴィックス 車両の制動制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537726A (ja) * 2010-04-22 2013-10-03 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 入力オーディオ信号の修正装置及び修正方法
JP2014183673A (ja) * 2013-03-21 2014-09-29 Toyota Motor Corp インバータの制御装置
US20140309904A1 (en) * 2013-04-15 2014-10-16 Mando Corporation Solenoid valve control apparatus and method
JP2015053788A (ja) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 インバータの制御装置
JP2015229456A (ja) * 2014-06-06 2015-12-21 富士重工業株式会社 ハイブリッド車両の制御装置及び制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284985B2 (ja) * 1998-12-03 2002-05-27 トヨタ自動車株式会社 液圧ブレーキ装置
US20020116177A1 (en) * 2000-07-13 2002-08-22 Linkai Bu Robust perceptual speech processing system and method
US20110123037A1 (en) * 2008-06-27 2011-05-26 Soft Db Inc. Sound masking system and method using vibration exciter
JP5429518B2 (ja) * 2008-09-12 2014-02-26 株式会社アドヴィックス 制動制御装置
JP5440698B2 (ja) * 2010-05-27 2014-03-12 トヨタ自動車株式会社 電動機の制御装置および制御方法
JP6124834B2 (ja) * 2014-04-09 2017-05-10 株式会社アドヴィックス 車両制御装置
KR101967306B1 (ko) * 2014-05-21 2019-05-15 주식회사 만도 솔레노이드 밸브 제어장치 및 그 제어방법
US20170323628A1 (en) * 2016-05-05 2017-11-09 GM Global Technology Operations LLC Road noise masking system for a vehicle
US10046749B2 (en) * 2016-12-08 2018-08-14 Robert Bosch Gmbh Brake system and method of operating
JP6837214B2 (ja) * 2016-12-09 2021-03-03 パナソニックIpマネジメント株式会社 騒音マスキング装置、車両、及び、騒音マスキング方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537726A (ja) * 2010-04-22 2013-10-03 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 入力オーディオ信号の修正装置及び修正方法
JP2014183673A (ja) * 2013-03-21 2014-09-29 Toyota Motor Corp インバータの制御装置
US20140309904A1 (en) * 2013-04-15 2014-10-16 Mando Corporation Solenoid valve control apparatus and method
JP2015053788A (ja) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 インバータの制御装置
JP2015229456A (ja) * 2014-06-06 2015-12-21 富士重工業株式会社 ハイブリッド車両の制御装置及び制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217696A (zh) * 2022-07-01 2022-10-21 奇瑞汽车股份有限公司 噪声控制方法、装置以及车辆制造方法
CN115217696B (zh) * 2022-07-01 2024-03-01 奇瑞汽车股份有限公司 噪声控制方法、装置以及车辆制造方法

Also Published As

Publication number Publication date
US11225229B2 (en) 2022-01-18
JP6844383B2 (ja) 2021-03-17
DE112018001737T5 (de) 2019-12-19
US20200010063A1 (en) 2020-01-09
CN110536816A (zh) 2019-12-03
JP2018171976A (ja) 2018-11-08
CN110536816B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
EP1795415B1 (en) Vehicle braking apparatus
WO2018181785A1 (ja) 車両の制動装置
JP2008280028A (ja) 車両用制動制御装置
JP2011084243A (ja) 車両用ブレーキ液圧制御装置
JP5035171B2 (ja) ブレーキ制御装置
JP4949934B2 (ja) 車両用ブレーキ液圧制御装置
US7588298B2 (en) Brake system control apparatus
JP6481641B2 (ja) 車両の液圧制御装置
JP5455969B2 (ja) 車両用ブレーキ液圧制御装置
JP5407699B2 (ja) ブレーキ液圧制御装置
JP6536610B2 (ja) 車両の制動制御装置
JP2007230432A (ja) ブレーキ制御装置
WO2019044853A1 (ja) 車両の制動制御装置
JP4859135B2 (ja) 車両用ブレーキ液圧制御装置
JP4069386B2 (ja) 車両用ブレーキ制御装置
JP6759816B2 (ja) 車両の制動制御装置
JP2018065495A (ja) 車両の制動制御装置
WO2019107542A1 (ja) 電磁弁制御装置、及び、車両の制動制御装置
WO2020175200A1 (ja) 車両の制動装置
JP2008296885A (ja) 車両用ブレーキ液圧制御装置
KR100826806B1 (ko) 차량 제어 방법
JP6700617B2 (ja) 車両の制動制御装置
JP6648739B2 (ja) 車両の制動制御装置
JP2008296706A (ja) 車両用ブレーキ液圧制御装置
KR20030096969A (ko) 전자밸브의 구동제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774875

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18774875

Country of ref document: EP

Kind code of ref document: A1