WO2020175200A1 - 車両の制動装置 - Google Patents

車両の制動装置 Download PDF

Info

Publication number
WO2020175200A1
WO2020175200A1 PCT/JP2020/005933 JP2020005933W WO2020175200A1 WO 2020175200 A1 WO2020175200 A1 WO 2020175200A1 JP 2020005933 W JP2020005933 W JP 2020005933W WO 2020175200 A1 WO2020175200 A1 WO 2020175200A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
wheel
braking force
hydraulic pressure
vehicle
Prior art date
Application number
PCT/JP2020/005933
Other languages
English (en)
French (fr)
Inventor
勇作 山本
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2020175200A1 publication Critical patent/WO2020175200A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger

Definitions

  • the present invention relates to a braking device for a vehicle, which controls a braking force applied to wheels by adjusting a hydraulic pressure in a wheel cylinder.
  • the braking device described in Patent Document 1 includes a braking actuator that supplies and discharges brake fluid to and from a plurality of wheel cylinders, and a control device that controls the braking actuator.
  • the braking actuator has multiple hydraulic circuits, and two wheel cylinders are connected to one hydraulic circuit. Of the two wheel cylinders, the hydraulic circuit has a first hydraulic passage to which the first wheel cylinder is connected and a second hydraulic passage to which the second wheel cylinder is connected. Each of the first and second liquid passages is provided with a holding valve that operates to control an increase in the hydraulic pressure in the wheel cylinder.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 1 2 _ 1 1 6 3 7 4
  • Patent Document 1 does not disclose any operation of the braking actuator in such a case. ⁇ 0 2020/175 200 2 (:171? 2020/005933
  • a vehicle braking device for solving the above-mentioned problems includes a braking actuator that supplies and discharges brake fluid to and from a plurality of wheel cylinders, and a control device that controls the braking actuator.
  • the braking actuator is provided in a pressurizing mechanism for supplying brake fluid to each of the wheel cylinders, a first fluid passage to which a first wheel cylinder of each of the wheel cylinders is connected, and a first fluid passage, And a first holding valve that is closed when restricting the inflow of brake fluid into the first wheel cylinder, a second fluid passage to which a second wheel cylinder of each of the wheel cylinders is connected, A second holding valve which is provided in the second liquid passage and which is closed when the inflow of the brake fluid into the second wheel cylinder is regulated.
  • the controller controls the braking force of the vehicle when the second hydraulic pressure, which is the hydraulic pressure in the second wheel cylinder, is higher than the first hydraulic pressure, which is the hydraulic pressure in the first wheel cylinder. While the first holding valve is closed to hold the first hydraulic pressure, the second hydraulic pressure is reduced by operating the pressurizing mechanism with the second holding valve opened.
  • One depressurization process and when increasing the braking force of the vehicle while the one depressurization process is being executed or after the one depressurization process is finished and the second hydraulic pressure is higher than the first hydraulic pressure And a first pressure increasing process for increasing the second hydraulic pressure by operating the pressurizing mechanism by closing a holding valve to maintain the first hydraulic pressure.
  • the second hydraulic pressure may become higher than the first hydraulic pressure.
  • the depressurizing process is executed.
  • the second hydraulic pressure is reduced by the operation of the pressurizing mechanism while the first holding valve is closed and the first hydraulic pressure is maintained. In this case, the first hydraulic pressure is maintained and the second hydraulic pressure is reduced by the pressurizing mechanism when the braking force of the vehicle is reduced.
  • the first pressure increasing process is performed.
  • the second hydraulic pressure is increased while the closing of the first holding valve is maintained. This not only increases the braking force of the vehicle, but also increases the second hydraulic pressure while maintaining the first hydraulic pressure. Therefore, on the other hand, the state where the balance between the first hydraulic pressure and the second hydraulic pressure is changed by the execution of the depressurization process can be corrected by the execution of the first pressure increase process.
  • FIG. 1 is a diagram showing a schematic configuration of part of a vehicle braking device of a first embodiment.
  • FIG. 2 A map showing the relationship between the total braking force of the 1st system and the 1st and 2nd target braking forces.
  • FIG. 3 A map that shows the relationship between the hydraulic pressure in the wheel cylinder, ⁇ , and the braking force.
  • FIG. 4 A flow chart explaining the first half of the processing routine executed by the control device of the braking device.
  • FIG. 5 A flow chart explaining the second half of the processing routine executed by the control device.
  • FIG. 6 ( 3 ) to ( ⁇ 0 are timing charts during vehicle braking in the braking device of the first embodiment.
  • FIG. 7 is a flow chart illustrating a part of a processing routine executed by a control device in the braking device of the second embodiment.
  • FIG. 8 In the braking device of the second embodiment, for each wheel during vehicle braking, Timing chart showing the transition of pressure. ⁇ 0 2020/175 200 4 (:171? 2020/005933
  • FIG. 1 shows a vehicle including the braking device 40 of the present embodiment.
  • the vehicle has multiple wheels 108, 10m, 100, 100,
  • Each braking mechanism 20 to 200 is a hydraulic pressure in the wheel cylinder 21. It is configured such that the higher the pressure ⁇ , the greater the force that presses the friction material 23 against the rotating body 22 that rotates integrally with the openings of the wheels 10-1 0. That is, each braking mechanism 20-8-20. 0 means that the higher the pressure ⁇ is, the greater the braking force can be applied to the wheels 108 to 10 openings.
  • the braking mechanism provided for the wheel 10* is referred to as "braking mechanism 20*”.
  • the wheel cylinder 21 of the braking mechanism 20 * is called “wheel cylinder 21 for wheel 1 0 *”.
  • the pressure in the wheel cylinder 21 for wheel 10 * is referred to as “pressure for wheel 10 *”.
  • “*” is one of “8”, “Mimi”, “ ⁇ ” and “0”.
  • the braking mechanism 208 is a braking mechanism provided for the wheel 108.
  • the wheel cylinder 21 for the wheel 108 is the wheel cylinder 21 of the braking mechanism 208
  • the pressure ⁇ for the wheel 108 is the wheel cylinder 21 of the braking mechanism 208. This is the pressure.
  • the braking device 40 includes a hydraulic pressure generating device 41, a braking actuator 50, and a braking control device 80 as a control device.
  • the hydraulic pressure generator 41 has a master cylinder 43 that generates hydraulic pressure according to the amount of operation of the braking operation member 42 by the driver of the vehicle.
  • the braking actuator 50 is for supplying and discharging the brake fluid to and from each wheel cylinder 21 and has a first hydraulic system 5 1 1 and a second hydraulic system 5 1 2. ⁇ 0 2020/175 200 5 ⁇ (: 17 2020 /005933
  • the 1st hydraulic system 5 11 is a system for adjusting ⁇ / ⁇ / 0 pressure ⁇ / ⁇ / 0 for wheel 10 and ⁇ / ⁇ / 0 pressure ⁇ / ⁇ / 0 for wheel 10 .
  • the second hydraulic system 5 1 2 is a system that adjusts ⁇ / ⁇ / 0 pressure ⁇ / ⁇ / 0 for wheel 100 and ⁇ / ⁇ / 0 pressure ⁇ / ⁇ / 0 for wheel 10
  • the first hydraulic pressure system 5 1 1 is provided with a hydraulic pressure circuit 5 2 1 that connects the master cylinder 4 3 and each wheel cylinder 2 1.
  • the hydraulic circuit 5 2 1 consists of a fluid passage 5 3 8 to which the wheel cylinder 21 for wheel 10 8 is connected, and a wheel cylinder 2 1 for wheel 10 2 out of the two wheel cylinders 21. It has a fluid line 5 3 connected to it.
  • the liquid channels 53 8 and 5 3 are arranged in parallel with each other.
  • a differential pressure adjusting valve 5 4 1 is provided on the master cylinder 4 3 side of the hydraulic lines 5 3 8 and 5 3 in the hydraulic circuit 5 2 1.
  • the differential pressure regulating valve 5 41 is a linear solenoid valve.
  • a holding valve 5558 for closing the flow of the brake fluid to the wheel cylinder 21 for the wheel 108 and a wheel shaft for the wheel 108 are closed.
  • a pressure reducing valve 56 8 which is opened when the brake fluid flows out from the inside of the binder 21.
  • a holding valve 5 5 and a wheel cylinder 2 1 for wheel 10 are closed in the fluid path 5 3 and are closed when the flow of brake fluid into the wheel cylinder 21 for wheel 10 is regulated.
  • a pressure reducing valve 56 and 6 which is opened when the brake fluid flows out from the inside.
  • Each holding valve 558, 55 is a normally open type linear solenoid valve
  • each pressure reducing valve 568, 56 is a normally closed solenoid valve.
  • the pressure reducing valves 5 6 and 5 6 may be repeatedly opened and closed.
  • the operating noise of the pressure reducing valves 5 6 and 5 6 and oil stimulation sound is sound with a sudden change in fluid pressure due to the pressure reducing valve 5 6, 5 6 Snake closing occurs.
  • vector holding valve for varying the ⁇ pressure ⁇ ⁇ (3 When actuating valves 5 5 and 55, adjusting the differential pressure command value for valves 5 5 and 55 5 allows the brake fluid to flow without repeatedly opening and closing valves 5 5 and 5 5.
  • the operation noise of the holding valves 5 5 8 and 5 5 and the oil noise caused by the operation of the holding valves 5 5 and 5 5 are generated by the pressure reducing valve 5 ⁇ 0 2020/175 200 6 ⁇ (: 171-1? 2020 /005933
  • a check valve 5 78 arranged in parallel with the holding valve 5 58 is connected to the liquid path 5 38.
  • the check valves 5 7 8 and 5 7 are arranged such that the hydraulic pressure on the wheel cylinder 21 side of the check valves 5 5 8 and 5 5 is higher than that of the holding valves 5 5 8 and 5 5 in the liquid paths 5 3 8 and 5 3. Brake fluid flows from the wheel cylinder 2 1 side to the differential pressure adjusting valve 5 4 1 side than the holding valves 5 5 8 and 5 5 when the hydraulic pressure is higher than the differential pressure adjusting valve 5 4 1 hydraulic pressure. Is tolerated.
  • the first hydraulic system 5 1 when the pressure reducing valves 5 6 8 and 5 6 were opened, they flowed out from the wheel cylinder 2 1 via the pressure reducing valves 5 6 8 and 5 6.
  • a reservoir 581 that temporarily stores the brake fluid and a pump 591 that uses an electric motor 65 as a power source are connected.
  • the pump 5 91 pumps up the brake fluid from the reservoir 5 81 and discharges the brake fluid. .. Further, the pump 5 91 can also discharge the brake fluid and the brake fluid from the master cylinder 43 through the reservoir 5 81.
  • the discharge port of the pump 5 91 is connected to the portion 60 1 between the differential pressure regulating valve 5 4 1 and each of the fluid paths 5 3 and 5 3 in the hydraulic circuit 5 2 1. Therefore, the brake fluid is discharged from the pump 5 91 while adjusting the differential pressure command value for the differential pressure regulating valve 5 4 1, and each wheel cylinder 2 1 It is possible to adjust the pressure ⁇ ( 3. That is, in the present embodiment, the wheel cylinder 21 for wheel 10 and the wheel 10 for wheel 10 are controlled by the differential pressure regulating valve 5 4 1 and the pump 5 9 1.
  • An example of a "pressurizing mechanism 6 21" that supplies brake fluid to the wheel cylinder 21 is configured.
  • the second hydraulic system 5 1 2 is similar to the first hydraulic system 5 11 in that the hydraulic circuit 5 2 2, the reservoir 5 82, and the pump 5 that uses the electric motor 6 5 as a power source. 9 2 and.
  • a hydraulic cylinder 5 2 2 is connected to a wheel cylinder 2 1 for the wheel 100 and a wheel cylinder 21 for the wheel 10 port.
  • the hydraulic circuit 5 2 2 has a differential pressure adjustment valve, two holding valves and two pressure reducing valves, similar to the hydraulic circuit 5 2 1. ⁇ 02020/175 200 7 ⁇ (: 171? 2020 /005933
  • the braking control device 80 determines that the required vehicle braking force, which is a required value of the braking force for the vehicle, is based on [3 ⁇ 4, the pressurizing mechanism 62 1, each holding valve 55, 55 and each pressure reducing valve 5 68. Adjust the pressure for each wheel 108 to 100 by controlling the 56th wheel.
  • the braking control device 80 transmits and receives various information to and from other control devices.
  • the required vehicle braking force? ⁇ [3 ⁇ 4 is transmitted from the control device 90 for automatic driving to the braking control device 80.
  • the braking control device 80 controls the braking actuator 50 on the basis of the received requested vehicle braking force ⁇ [3 ⁇ 4.
  • Each ⁇ / ( 3 pressure When controlling the, based on the braking force distribution ratio X corresponding to the predetermined braking force distribution, May be controlled.
  • the braking force distribution is the distribution of the braking force applied to the first wheel and the braking force applied to the second wheel of the two wheels under the control of the 1st ⁇ 1 hydraulic system.
  • the predetermined braking force distribution is based on the predetermined braking force distribution.
  • the two wheels under the control of the second hydraulic system 5 1 2 are the wheels 10 ( 3, 10).
  • wheel 108 corresponds to the "first wheel” and wheel 10 corresponds to the "second wheel”.
  • Wheel cylinder 21 for wheel 108 corresponds to "first wheel cylinder”
  • the holding valve 558 provided on the road 53-8 corresponds to the “first holding valve.”
  • the wheel cylinder 2 1 for the wheel 1 ⁇ corresponds to the “second wheel cylinder” and the wheel 1 0 _.
  • the holding valve 55 which is installed in the liquid path 53, corresponds to the “second holding valve”.
  • the braking force distribution ratio X is Is the ratio of the braking force applied to the second wheel to the braking force applied to the first wheel when is controlled. Therefore, by controlling the braking force applied to each of the wheels 108 to 100 according to the braking force distribution ratio X, the braking force applied to each of the wheels 108 to 10 according to the predetermined braking force distribution is controlled. Can be controlled.
  • ⁇ / ( 3 pressures ⁇ for wheel 10 is used on the first hydraulic system 5 11 side. The pressure for wheel 10 is higher than that for wheel 10.
  • FIGS. 2 to 5 two wheel cylinders connected to the hydraulic circuit 5 2 1 during vehicle braking.
  • a processing routine executed by the braking control device 80 when controlling the engine will be described.
  • the processing routines shown in FIGS. 4 and 5 are repeatedly executed during vehicle braking.
  • the required vehicle braking force ⁇ is acquired. That is, when the vehicle travels by automatic driving, the required vehicle's vehicle I'power factor 0 received from the control device 90 for automatic driving is acquired.
  • the required vehicle braking force 0 is derived so as to have a magnitude corresponding to the braking operation value that is a value related to the driver's braking operation. Examples of the braking operation value include an operation amount of the braking operation member 42 and an operation force input to the braking operation member 42.
  • the first system total control force 1 is derived based on the required vehicle braking force ⁇ .
  • the required vehicle braking force is 0 [half of the 1st system total braking force 1 and the rest is the 2nd system total braking force 2.
  • the first system total braking force is the sum of the braking force applied to the wheel 108 and the braking force applied to the wheel 108.
  • the second system total braking force 2 is the sum of the braking force applied to the wheel 100 and the braking force applied to the mouth of the wheel 100.
  • Step 3 13 the first target ⁇ pressure ⁇ / ⁇ 1 ”, the second target ⁇ 02020/175 200 9 boxes (: 171? 2020 /005933
  • the hydraulic pressure obtained by converting the target of the braking force to be applied to the wheel 108, which is derived based on the number 1 and the braking force distribution ratio X, into the pressure ⁇ for the wheel 108 is the first target ⁇ pressure ⁇ ⁇ / ⁇ 1 ”is the second target ⁇ pressure ⁇ 2 ”is the target of ⁇ / ( 3 pressure ⁇ ( 3 for the second wheel.
  • the hydraulic pressure converted to ⁇ / ( 3 pressure ⁇ ( 3 for wheel 1 ⁇ ⁇ is the second target ⁇ / ( 3 pressure ⁇ / ⁇ 2 ”. isobaric target ⁇ / ( The three pressures are the targets for the pressures to equalize the pressures in the two wheel cylinders 21 with each other. ⁇ / ( 3 pressures ⁇ ( 3 and wheels 1 for wheel 10) The total of the braking force applied to the wheel 10 and the braking force applied to the wheel 10 is set as the total braking force of the first system 1 while making ⁇ / ( 3 pressures for the wheel) equal to each other.
  • the ⁇ pressure ⁇ to be equalized is the equal pressure target ⁇ / ( 3 pressure ⁇ Cho ”.
  • the first target ⁇ pressure ⁇ ( 31 ”, the second target ⁇ / ( 3 pressure ⁇ 2 Ding “and isobaric target ⁇ / ( 3 pressures Ding” are derived using the map shown in Figure 2 and the map shown in Figure 3, respectively.
  • FIG. 2 shows that the target braking force to be applied to the first wheel, ie, the wheel 108, is the first target wheel braking force, which is the target, and the second wheel, the wheel, 10
  • the solid line indicates the first system total braking force.
  • This is a map for deriving the 1st target wheel braking force 1 1 ", based on Ding 1 and the braking force distribution ratio X.
  • the broken line indicates the 1st system total braking force Ding 1 and the braking force distribution.
  • the first system total braking force 1, the first target wheel braking force 11 1 "and the second target wheel braking force 12 2" are shown as ⁇ / ( 3 pressure ⁇ ⁇ ( 3)
  • the map for converting to 3 is shown.
  • the solid line shows the relationship between the 1st target wheel braking force 11 1" and the 1st target pressure ⁇ / ⁇ 1".
  • the dashed line is the map showing the relationship between the second target wheel braking force, 12 ", and the second target ⁇ / ( 3 pressure 0, 2".
  • the alternate long and short dash line is the map This is a map showing the relationship between the total braking force of 1 system 1 and the target of equal pressure ⁇ ⁇ _ _ _.
  • the pressure is set based on the relationship between the pressure ⁇ ( 3 and the braking force.
  • the first target ⁇ pressure ⁇ 1 is applied only to the first wheel, wheel 108, and the second target ⁇ pressure.
  • ⁇ / ⁇ 2Cha acts only on the second wheel, wheel 10.
  • the equal pressure target ⁇ ( 3 chome " is equal pressure target Since it acts on the vehicle, it is possible to exert a large braking force on the vehicle with a smaller hydraulic pressure. Therefore, in Fig.
  • the first target wheel braking force 11 1 "and the second target wheel braking force 12 1" are The relationship between each target ⁇ / ( 3 pressure 0 1 chome ", ⁇ / ⁇ 2 chome ", 0 chome” in Fig. 3 will be explained in detail, assuming that they are all the same size.
  • the total braking force 1 of the 1st system is equal to the sum of the 1st target wheel braking force 1 1" and the 2nd target wheel braking force 1 2". Therefore, the 1st target wheel If the braking force of 1 1 ”and the second target wheel braking force of 1 2 ”are respectively set to “1”, the total braking force of system 1 1 of system 1 becomes “2 1”. ⁇ 02020/175 200 11 ⁇ (: 171? 2020 /005933
  • each wheel cylinder When the braking force of the first wheel is "1" When the pressure is equal to the pressure, the braking force of the first wheel is “1", but the braking force of the second wheel is "11” which is smaller than “1”. Therefore, the sum of the braking force of the first wheel and the braking force of the second wheel is smaller than “21”.
  • the braking force of the second wheel when the pressure in each wheel cylinder 21 is 0, the braking force of the second wheel is "1". When the pressure is equal to the pressure, the braking force of the second wheel is "1", but the braking force of the first wheel is "12", which is larger than "1”. Therefore, the sum of the braking force of the first wheel and the braking force of the second wheel is larger than “21”.
  • the pressure is 1:1 which is higher than "1:”.
  • step 314 it is determined whether or not the vehicle is being braked by the operation of each braking mechanism 208 to 200.
  • Required vehicle braking force ⁇ [If 3 ⁇ 4 is "0", vehicle braking is not being performed.
  • the required vehicle braking force ⁇ [3 ⁇ 4 is larger than "0” vehicle braking is being performed.
  • the process proceeds to the next step 315.
  • step 315 each flag to be described later !_ ⁇ 1, !_ ⁇ 2, !_ ⁇
  • step 316 the output ⁇ pressure ⁇ ( 31 is the first target ⁇ pressure ⁇ as the required value of ⁇ pressure for the first wheel 108).
  • ⁇ ( 31 ” is set.
  • the second target ⁇ pressure ⁇ 2 is set as the output ⁇ pressure ⁇ 2, which is the required value of ⁇ pressure for the wheel 10 which is the second wheel.
  • the process is next ⁇ 02020/175 200 12 (:171?2020/005933
  • output 0 pressure 0 1 is also referred to as “output 0 pressure 0 1" for wheel 108
  • output 0 pressure 02 is also referred to as “output 0 pressure 0 2 for wheel 10".
  • step 317 ⁇ / ( 3 pressure ⁇ ( 3 follows the output ⁇ / ( 3 pressure ⁇ 1 for wheel 108, and ⁇ / ( for wheel 10 )
  • the operation of the braking actuator 50 is controlled so that the 3 pressure ⁇ ( 3 follows the output ⁇ / ( 3 pressure ⁇ 2).
  • the judgment in step 3 1 4 becomes "N0" and the processing in step 3 17
  • all of the holding valves 55 and 55 are fully opened, and “0” is set as the differential pressure command value for the differential pressure adjusting valve 54 1.
  • the pressure reducing valves 56 and 56 are each. After that, this processing routine is once terminated.
  • step 314 determines whether the vehicle is being braked (step 3).
  • step 318 it is determined whether the distribution correction control flag !_ ⁇ 1 is set to ON.
  • the distribution correction control flag !_ ⁇ 1 is a flag that is set to ON when it can be determined that the actual braking force distribution is different from the predetermined braking force distribution. Therefore, when it can be determined that the actual braking force distribution is not equal to the predetermined braking force distribution, the distribution correction control flag !_ ⁇ 1 is set to OFF. If the distribution correction control flag !_ ⁇ 1 is set to OFF (31 8 :N0), the process proceeds to the next step 319.
  • step 319 it is determined whether or not the following two conditions are both satisfied. Reduction of pressure 0 for the first wheel, wheel 108, is required. ⁇ The first target ⁇ pressure ⁇ 1 ”is lower than the second target ⁇ pressure ⁇ ”.
  • step 316 the output ⁇ pressure ⁇ 1 and the output ⁇ pressure ⁇ are selected. After setting 2 respectively, in the next step 317, ⁇ 02020/175 200 13 ⁇ (: 171? 2020 /005933
  • step 319 when both of the above two conditions are satisfied (step 3), the process proceeds to the next step 320.
  • step 320 the distribution correction control flag !_° 1 is set to ON, and the -direction depressurization control flag !_° 2 is set to ON.
  • the variation correction amount 8013 is derived.
  • the braking force applied to the wheel 108 is maintained. While the decompression process is being executed, the braking force applied to the wheel 10 is not reduced, and the braking force applied to the wheel 108 is not decreased unless the braking force applied to the second wheel, wheel 10 is reduced.
  • the sum of the motive power and the braking force applied to the wheel 10 is different from the total braking force of the first system, which is 1. Therefore, in the present embodiment, the wheel 10 ⁇ 02020/175 200 14 ((171?2020/005933
  • the fluctuation correction amount 801 13 is derived as a value corresponding to the limit amount of the reduction of the braking force applied to the wheel 10 due to the holding of the pressure ⁇ / ( 3.
  • the difference between the previous value of ⁇ / ⁇ 1 and the 1st target ⁇ pressure ⁇ / ⁇ 1 is calculated as the limit ⁇ pressure change amount.
  • the previous value of pressure ⁇ ( 31) is the output ⁇ / ( 3 pressure ⁇ ( 31 for wheel 108 derived from the previous run of this processing routine.
  • the limited braking force change amount is derived based on the pressure change amount.
  • the limited braking force change amount corresponds to the reduction amount of the braking force applied to the wheel 108 per unit time when it is assumed that the pressure reducing process is not executed. Therefore, the limit braking force change amount is The larger the amount of pressure change, the more.
  • the variation correction amount ⁇ ⁇ ( 31 3 is derived based on the limited braking force change amount.
  • the variation correction amount ⁇ ⁇ ( 31 3 is the limited braking force change applied to the wheel 1 This is the amount of change in pressure 0 for the wheel 10 required to reduce the amount by the amount of change.
  • the variation correction amount 80 ⁇ 3 has a positive value.
  • each output ⁇ pressure ⁇ 1, ⁇ ⁇ 2 is derived. That is, the previous value of output ⁇ pressure is set as output ⁇ pressure ⁇ 1. Also, And the variation correction amount ⁇ ⁇ ( 31 3 the difference is output Is calculated. The output ⁇ / ( 3 pressure ⁇ / ⁇ 2 is lower than the target pressure ⁇ / ⁇ 2 ”, and the process proceeds to step 317.
  • step 317 since the output ⁇ pressure ⁇ 1 is held at the previous value ⁇ 1 of the output ⁇ pressure, the holding valve 555 for the first wheel wheel 108 is closed. In this case, since the pressure reducing valve 568 for the wheel 108 is closed, the pressure ⁇ for the wheel 108 is maintained. In addition, since "0" is set as the differential pressure command value for the holding valve 55 for wheel 10 that is the second wheel, the holding valve ⁇ 02020/175 200 15 ⁇ (: 171? 2020 /005933
  • step 318 if the distribution correction control flag !_ ⁇ 1 is set to a value ( ⁇ 3), the process proceeds to the next step 323.
  • step 323 it is determined whether or not the both-wheels equal pressure control flag !_ 03 is set to ON.
  • the two-wheel equal pressure control flag !_ ⁇ 3 is used for the first wheel, which is wheel 10, and the second wheel, which is wheel 10, for wheel 10. This is a flag that is set to ON when controlling the braking force of the vehicle while maintaining the pressure ⁇ ( 3 and Eq. 3 equal to each other. Both wheels equal pressure control flag !_ 03 is set to OFF. If (323 :N0), the process moves to the next step 324. In step 324, the vehicle that is the first wheel is
  • step 325 the determination decompression amount 80[deg.] is derived.
  • the second wheel, wheel 10 When the pressure is reduced, the differential pressure command value for the differential pressure adjustment valve 54 1 becomes smaller, so that the fluid in the portion between the differential pressure adjustment valve 54 1 and each holding valve 55, 55 in the hydraulic circuit 52 1 is reduced.
  • the intermediate liquid pressure which is the pressure, becomes low.
  • the intermediate hydraulic pressure becomes lower than ⁇ / ( 3 pressure ⁇ ( 3 for the first wheel, wheel 108, even if the holding valve 5558 is closed, it will still flow through the check valve 57/8.
  • the decompression process is terminated after a predetermined period has passed from the state. Then, the judgment decompression amount ⁇ ⁇ ( 31 ⁇ ) is set as a judgment criterion of whether or not a predetermined period has elapsed.
  • ⁇ / The amount of decrease in braking force for judgment is derived based on the amount of decrease in 3 pressures.
  • ⁇ / The amount of decrease in pressure of 3 is 0 pressures ⁇ based on the braking force distribution ratio).
  • ⁇ ( 3 is the difference between ⁇ / ( 3 pressure for wheel 10 when controlling 3) and the current pressure 0 for wheel 108.
  • the braking force reduction amount for judgment is the braking force distribution ratio. This is the difference between the braking force applied to the wheel 10 when controlling each ⁇ / ( 3 pressure ⁇ ( 3 based on X and the braking force currently applied to the wheel 108.
  • the judgment braking force decrease amount is larger as the judgment ⁇ / ( 3
  • the pressure decrease amount is larger.
  • Wheel for wheel 1 As the amount of change, determination pressure reduction ⁇ ⁇ ⁇ (31 ⁇ Gashirube out is. Judged decompression amount ⁇ ⁇ ⁇ / (31 spoon is derived as the value the more determined braking force reduction amount increases When the determination pressure reduction amount ⁇ ⁇ ( 31) is derived, the process proceeds to the next step 326.
  • the determination pressure reduction amount 80] 13 is a positive value.
  • step 326 the output value for the first wheel, that is, the wheel 108, the previous value ⁇ / ⁇ 1 of the pressure, is the second target ⁇ pressure ⁇ 2 ”, and the decompression amount for judgment ⁇ ⁇ 1 It is judged whether it is lower than the judgment hydraulic pressure which is the difference with the swallow.Output ⁇ Previous value of pressure ⁇ ( 31 If the swallow is lower than the judgment hydraulic pressure (326: ⁇ 3) Since it is not determined that the period has elapsed, the process moves to the above-mentioned step 32 1.
  • step 327 the pressure reduction control flag 1_02 is set to OFF and the two wheels equal pressure control flag 1_03 is set to ON.
  • step 328 the previous value ⁇ 1 ⁇ of the output ⁇ pressure is set as each output ⁇ pressure ⁇ / ⁇ 1, ⁇ 2. That is, each output ⁇ / ( 3 pressure ⁇ ( 31, ⁇ / ⁇ 2 has the same magnitude as each other. Then, the process proceeds to step 317. In this case, each holding valve 55, 55 Each holding valve 55, 55 is fully opened because the differential pressure command value for the differential pressure is set to “0.” Also, each output is output as the differential pressure command value for the differential pressure regulating valve 54 1.
  • ⁇ ( 31, ⁇ 2 is set to a value, and the brake fluid is discharged from the pump 591. Furthermore, the pressure reducing valves 568 and 56 are kept closed. The processing is ended, and the depressurization processing for both sides is started.
  • the bidirectional depressurization processing is for the wheel 108 by operating the pressurization mechanism 62 1 with each holding valve 55, 55 open. And wheels for 10 Is a process of reducing the pressure of each. When both depressurization processes are started, this processing routine is ended once.
  • step 323 if the two-wheels equal pressure control flag !_ 03 is set to the desired value ( ⁇ 3), the process proceeds to the next step 329.
  • step 329 the equal pressure target is set as each output ⁇ pressure ⁇ / ⁇ 1, ⁇ ⁇ 2.
  • both wheels equal pressure control flag 1_03 is set to ON when the vehicle braking force is required to be increased, the vehicle braking force is required to be increased while both pressure reducing processes are being executed.
  • the braking force of the vehicle is required to be increased when the respective pressures ( 3) and ( 3) are equal to each other after completion of the depressurization process. Under the circumstance, when the determination in step 323 becomes “3” and the processing in step 317 is executed, the second pressure increasing processing is executed.
  • step 324 if the pressure reduction ⁇ ( 3 pressure reduction for the first wheel, wheel 108, is not required (N0), the process proceeds to the next step 330.
  • step 330 it is judged whether or not the previous value ⁇ 1 of the output ⁇ pressure for the wheels 108 is the 1st target ⁇ pressure ⁇ 1 ”. 1st target ⁇ pressure ⁇ 1 It means that the output is higher than the previous value of ⁇ pressure, which is ⁇ 1, which means that it is required to increase ⁇ / ( 3 pressure ⁇ ( 3 for wheel 10 or increase the braking force of the vehicle.
  • step 331 the pressure increase correction amount 810 is derived.
  • the second wheel, wheel 10 There is a case where the braking force of the vehicle is required to be increased under the condition that the pressure is higher than ⁇ / ( 3 pressure ⁇ ( 3 for wheel 10 which is the first wheel. In this case, the holding valve 55 for the wheel 10 is closed to hold ⁇ / ( 3 pressure ⁇ ( 3 for the wheel 10 and the pressure for the wheel 10
  • the first pressure-increasing process that increases Boosting correction amount ⁇ is used in the first pressure boosting process.
  • the amount of correction braking force increase is based on the braking force distribution ratio X. This is the difference between the braking force applied to wheel 10 when pressure ⁇ ( 3 is controlled and the braking force currently applied to wheel 108. Therefore, the corrected braking force increase amount is The larger the amount of increase in pressure, the greater the amount of pressure that will be applied to the wheels.
  • a pressure increase correction amount ⁇ ⁇ ( 310) is derived as a change amount of the pressure ⁇ .
  • the pressure increase correction amount 801 10 is derived such that the value increases as the correction braking force increase amount increases.
  • each output O pressure O 1, ⁇ O 2 is derived.
  • output ⁇ / ( previous value of 3 pressure ⁇ ( 31 ⁇ ) is set as output ⁇ pressure ⁇ 1 for wheel 10 which is the first wheel.
  • Second target ⁇ / The sum of ( 3 pressure ⁇ / ⁇ 1 ”and the pressure increase correction amount 8 010 is derived as the output ⁇ pressure ⁇ 2 for the second wheel, wheel 10).
  • output ⁇ 02020/175 200 20 units (: 171? 2020 /005933
  • step 330 when the previous value of output ⁇ pressure ⁇ 1 ⁇ is the first target ⁇ pressure ⁇ 1 ”or less ( ⁇ 3), the process proceeds to the next step 333. It Previous pressure value ⁇ ( 31
  • step 333 OFF for each flag !_ ⁇ 1, !_ ⁇ 2, !_ ⁇ 3.
  • step 334 the output for wheel 108, which is the first wheel, is output.
  • first “Is set.
  • the output for the second wheel, wheel 10 ⁇ / ⁇ 2 pcs is set. Then, the process proceeds to the next step 317.
  • a value is set according to the difference from the pressure. This adjusts the opening of the holding valve 55, so that ⁇ / ( 3 pressure ⁇ ( 3 is output for the wheel 108).
  • the thick solid line is the Indicates the transition
  • the thick broken line indicates a transition of the 0 pressure ⁇ ⁇ (3 goals for the second wheel.
  • ⁇ pressure for the second wheel ⁇ ⁇ (3 goals, for example, the ⁇ I mean the change of pressure ⁇ ( 3, the thin broken line is Is showing a move.
  • the target of 0 pressure and 0 pressure for the first wheel is, for example, 1st target 0 pressure ⁇ / ⁇ 1 ”.
  • the vehicle braking according to the predetermined braking force distribution is started from timing 10.
  • the required vehicle braking force ⁇ ⁇ [3 ⁇ 4 is increased in the period from the timing to timing 1 1 1.
  • the distribution of the braking force applied to the first wheel and the braking force applied to the second wheel is the predetermined braking force distribution.
  • Held in the first Pressure ⁇ O pressure for the 2nd wheel is higher than 3)
  • the 2nd holding valve is fully opened in the braking actuator 50.
  • the 5th holding valve is the 2nd holding valve.
  • the holding valve 55 Since it corresponds to the holding valve, the holding valve 55 is fully opened, and the differential pressure command value for the differential pressure regulating valve 54 1 is set as the first differential pressure command value. The same value is set.
  • the second target ⁇ pressure ⁇ 2 ⁇ is set as the output ⁇ pressure ⁇ 2 and the output for the first wheel ⁇ / ( 3 pressure ⁇ ( 31 As first "Is set. ⁇ 0 2020/175 200 22 ⁇ (: 171? 2020 /005933
  • the control mode of the holding valve is the differential pressure mode
  • holding valve 5 58 is controlled in the differential pressure mode.
  • a value corresponding to the difference from the output ⁇ pressure ⁇ 2 is set as the differential pressure command value for the first holding valve, and ⁇ pressure ⁇ is set to the first target ⁇ pressure ⁇ 1 Can be followed.
  • the required vehicle braking force ⁇ [3 ⁇ 4 is reduced.
  • the pressure reduction process is started because the first target ⁇ pressure ⁇ / ⁇ 1 ”is higher than the second target ⁇ pressure ⁇ / ⁇ 2 ”.
  • the distribution corresponds to the distribution at the start, which is the distribution of the braking force at the start of the depressurization process, and the braking force distribution ratio X corresponds to the distribution at the starting force.
  • the output ⁇ pressure ⁇ 1 for the first wheel is held at the same size as the timing tine 11 1 despite the pressure reduction of the first target ⁇ pressure ⁇ 1.
  • the first holding valve is closed and the first pressure reducing valve is kept closed.
  • holding valve 5 5 is closed and pressure reducing valve 5 6 8 The valve close is maintained.
  • the output ⁇ / ( 3 pressure ⁇ / ⁇ 2 for the second wheel is "In this case, the second holding valve is fully opened and the second pressure reducing valve is kept closed.
  • the holding valve 55 5 is fully opened,
  • the pressure reducing valve 5 6 is kept closed, and is output as the differential pressure command value for the differential pressure adjusting valve 5 4 1.
  • the value is set according to the pressure. Therefore, even if the second holding valve is fully open, Output pressure ⁇ ( 3 Can be followed by 2.
  • each wheel 10 3 By adjusting, the actual control of the vehicle can be made to follow the required vehicle braking force.
  • the required vehicle braking force ⁇ is started to increase from the timing 12.
  • the actual braking force distribution differs from the predetermined braking force distribution. Specifically, the actual braking force distribution ratio is smaller than the braking force distribution ratio X. Therefore, in Timing Dy 12, the previous value of output ⁇ pressure for the first wheel ⁇ 1 was higher than the first target ⁇ Pressure ⁇ 1 ”. The pressure is higher than the 0 pressure for the first wheel, so the pressure reduction process is terminated and the 1st pressure increase process is started.
  • the output ⁇ pressure ⁇ 1 for the first wheel is maintained even though the first target ⁇ pressure ⁇ 1 ′′ is increased.
  • the holding valve continues to be closed During the period from timing 12 to timing 13, the output ⁇ pressure ⁇ 2 is maintained higher than the second target ⁇ pressure ⁇ 2 ”.
  • the second holding valve is held fully open.For example, in the hydraulic circuit 5 2 1, the holding valve 5 5m is held fully open, and the differential pressure adjusting valve 5 4 1 has a value corresponding to 0 2. It is set. It is possible to increase the pressure at a speed higher than the increase speed of ". This makes it possible to maintain the braking force applied to the first wheel while following the increase in the required vehicle braking force The braking force can be increased, and the actual braking force distribution can be brought closer to a predetermined braking force distribution.
  • the second holding valve is held fully open.
  • the differential pressure command value for the differential pressure regulating valve 5 4 1 and the differential pressure command value for the first holding valve are adjusted respectively, so that when the braking force of the vehicle decreases, the pressure for the first wheel ⁇ ( 3 Is maintained and the pressure for the second wheel ⁇ ( 3 is depressurized by the pressurizing mechanism 6 2 1. Therefore, since the second pressure reducing valve is not actuated, the operation noise of the braking actuator 50 is generated.
  • the required vehicle braking force when the required vehicle braking force?
  • the actual operation can be performed by appropriately switching the state of controlling the first holding valve in the differential pressure mode. It is possible to increase the braking force applied to each wheel while maintaining the state where the braking force distribution is equal to the predetermined braking force distribution.
  • the required vehicle braking force ⁇ is reduced from timing D14.
  • the pressure reduction process is started because the second target 0 pressure 0 2 "is higher than the 1st target 0 pressure 0 1".
  • the required vehicle braking force is 0 [3 ⁇ 4 reduction.
  • the previous value of the output ⁇ pressure for the first wheel ⁇ 1 is the second target ⁇ pressure ⁇ / ⁇ 2 In this case, it can be determined that the 0 pressure ⁇ ( 3 for the first wheel and the 0 pressure ( 3 for the second wheel have become equal to each other.
  • the previous value of the output ⁇ pressure for the first wheel ⁇ 1 ⁇ is the second target ⁇ pressure ⁇ / ⁇ 2 pcs ⁇ and the decompression amount for judgment ⁇ ⁇ 1 Lower than the judgment fluid pressure, which is the difference from the ⁇ 0 2020/175 200 25 ⁇ (: 171? 2020 /005933
  • the depressurization process continues to be performed. And at timing Ding 16 the first Since the previous value of pressure ⁇ ( 3 1 ⁇ becomes equal to or higher than the judgment fluid pressure, the _-direction decompression process is terminated and both decompression processes are started.
  • the intermediate hydraulic pressure in the hydraulic circuit between the differential pressure regulating valve and each holding valve becomes 0 pressure ( lower than 3) for the first wheel.
  • hydraulic circuit 5 Within 2 the intermediate hydraulic pressure in the part between the differential pressure regulating valve 5 4 1 and each holding valve 5 5, 5 5 is lower than ⁇ / ( 3 pressure ⁇ ( 3 for wheel 10).
  • the brake fluid flows from the inside of the wheel cylinder 2 1 for the wheel 108 to the differential pressure adjusting valve 5 4 1 via the check valve 5 7 in parallel with the holding valve 5 5.
  • ⁇ / ( 3 pressure ⁇ ( 3 for wheel 108 is decompressed, and it is determined that the predetermined period has elapsed at evening dying 16).
  • the depressurization process is terminated, and both depressurization processes are started.
  • the output ⁇ pressure ⁇ 1 for the first wheel and the output ⁇ pressure 0 2 for the second wheel are reduced due to the decrease of the ⁇ pressure ⁇ for the second wheel due to the execution of the pressure reducing process.
  • the depressurization process is continued until a predetermined period of time elapses after and become equal to each other.
  • the check valve in parallel with the first holding valve is used to reduce the pressure ⁇ / ( 3 for the first wheel. When done, first The difference between the pressure ⁇ ( 3 and the intermediate hydraulic pressure is reduced.
  • the differential pressure command value for the differential pressure regulating valve 5 4 1 is adjusted by executing the depressurizing process on the other hand during the period from timing D 15 to timing D 16.
  • the equal pressure target is set as the differential pressure command value for the differential pressure regulating valve 5 41. The value may be set according to the pressure.
  • the requested vehicle braking force 9 0 is increased from the timing table 17 on. It is possible to judge that each ⁇ / ( 3 pressure ⁇ ( 3 is equal to each other during both depressurization processes. Therefore, the second pressure boosting process is started at timing c 17) Required vehicle braking force The increase of ⁇ continues until timing chord 18. Therefore, during the period from timing chord 17 to timing chord 18, the first holding valve and the second holding valve are kept fully open. Also, by changing the differential pressure command value for the differential pressure regulating valve 5 41, each ⁇ / ( 3 pressure ⁇ ( 3 can be increased.
  • each ⁇ / ( 3 pressure ⁇ ( 3 can be depressurized by varying the differential pressure command value for the differential pressure regulating valve 5 4 1.
  • Each ⁇ / ( 3 pressure ⁇ ( 3 can be decompressed without operating the valves 5 6 and 5 6). Therefore, the quietness of the braking actuator 50 during vehicle braking can be enhanced.
  • each output is performed because the decompression process is executed.
  • the control content when increasing the braking force of the vehicle after the values of 0 2 are equal to each other is different from that of the first embodiment. Therefore, in the following description, the parts different from those of the first embodiment will be mainly described, and the same reference numerals will be given to the same or corresponding member configurations as those of the first embodiment, and redundant description will be repeated. It shall be omitted.
  • Fig. 7 shows two wheel cylinders connected to the hydraulic circuit 5 2 1 during vehicle braking. A part of the processing routine executed by the braking control device 80 in controlling the motor is shown.
  • step 3 26 the difference between the previous output value ⁇ 1 ⁇ for the first wheel, wheel 10 and the second target ⁇ pressure ⁇ 2 If the pressure exceeds the judgment fluid pressure (N 0 ), the distribution correction control flag !_ ⁇ 1 is set to the desired value, and the two-wheel equal pressure control flag !_ 0 3 is set to ON (3 2 7 ). Thereby, the depressurization process is terminated.
  • Step 3 2 3 it is determined in step 3 2 3 that both wheels equal pressure control flag !_ 0 3 is set to ON ( ⁇ 02020/175200 28 ⁇ (:171? 2020/005933 ⁇ 3), as shown in Fig. 7, the process moves to step 34 1.
  • Step 34 1 it is judged whether or not the pressure increase of ⁇ / ( 3 pressure ⁇ ( 3) for the wheel 108 which is the first wheel is required.
  • step 342 When there is no pressure increase request (34 1: N0), the process proceeds to the next step 342. In step 342, each output ⁇ pressure ⁇ / ⁇ 1, "Is set. Then, the process proceeds to step 317. At step 317, each holding valve 55 8 and 55 is fully opened. Also, the differential pressure command to differential pressure adjusting valve 54 1 is issued. Each output as a value A value corresponding to ⁇ 1, ⁇ / ⁇ 2 is set. If there is no pressure increase request, but there is a pressure decrease request, the equal pressure target ⁇ pressure ⁇ ⁇ ⁇ ⁇ ”is decompressed, and thus both pressure reduction processing is executed by executing Step 342 and Step 317. During both pressure reduction processing each ⁇ Since 2 is depressurized, the differential pressure command value for the differential pressure regulating valve 54 1 gradually decreases. As a result, the isobaric target Depending on the decompression of pressure Is decompressed.
  • step 341 if there is a pressure increase request in step 341, the process proceeds to the next step 343 (step 3).
  • step 343 the pressure reducing control flag !_° 2 is set to ON, and the two-wheel equal pressure control flag !_° 3 is set to ON.
  • step 344 the pressure increase correction amount 8101 is derived, as in step 331 above.
  • step 345 as with step 332 above, each output is ⁇ / ⁇ 2 is set. After that, the process proceeds to step 317 described above.
  • step 330 the output value for the wheel 108 ⁇
  • the previous value of pressure ⁇ 1 ⁇ is the first target ⁇ pressure ⁇ ⁇ / ⁇ 1 ”It is determined that the following is true.
  • the braking actuator 5 0 is activated in step 3 17 That is, in the third pressure increasing process, when the braking/driving force distribution is restored to the predetermined braking force distribution, the holding valve 5 5 for the wheel 108, which is the first wheel, is released in the closed state. Therefore actuating a pressurizing mechanism 6 2 1, each (3 pressure (3 is boosted to the braking force distribution is maintained.
  • the thin solid line is the first ⁇ ( indicates the transition of 3 and the thin dashed line is the first ⁇ ( 3 1 chome ".
  • the braking force distribution at the timing D23 is different from the predetermined braking force distribution that is the distribution at the start time. (although 3 1 is retained, Is increased. in this case, “Because it will be higher than the above, the pressure for the 2nd wheel will increase at a faster speed than the 2nd target 0 pressure”.
  • the previous value of the output ⁇ pressure for the 1st wheel ⁇ 1 ⁇ is the 1st target ⁇ pressure ⁇ 1
  • the braking force distribution is set to the prescribed amount.
  • the output ⁇ pressure ⁇ 2 gradually increases.
  • the second holding valve is fully opened. Output Can be followed by 2.
  • ⁇ A value is set according to the difference from the pressure ⁇ 2. This will output 0 pressure ⁇ ( 3 for the 1st wheel.
  • the pressure ⁇ ( 3 1 can be made to follow. Therefore, the braking force of the vehicle can be made to follow the required vehicle braking force ⁇ while maintaining the braking force distribution at a predetermined braking force distribution.
  • the braking force of the vehicle when the braking force of the vehicle is increased, it is possible to reduce the difference between the actual braking force distribution and the predetermined braking force distribution. ⁇ 0 2020/175 200 31 ⁇ (: 171-1? 2020 /005933
  • the actual braking force distribution and the prescribed braking force distribution may be exceeded.
  • timing braking force 25 is required to reduce the braking force of the vehicle. Therefore, the third pressure increasing process is ended and the depressurizing process is started.
  • the depressurization process is terminated on the condition that it is determined that a predetermined period has elapsed from the time when it was determined that the two became equal to each other.
  • a predetermined period has elapsed from the time when it was determined that the two became equal to each other.
  • the predetermined period has elapsed when the elapsed time from this point reaches a predetermined time.
  • the predetermined time may be fixed at the predetermined time, or ⁇ / ⁇ 2” “Decompression speed may be changed according to the speed.
  • step 326 it is determined whether or not the previous value of the output ⁇ pressure for the first wheel ⁇ 1 is lower than the second target ⁇ pressure ⁇ 2 ”. It is desirable to make a determination as to whether the previous value ⁇ ( 31 "If it is lower than (326: ⁇ 3), on the other hand, the decompression process is continued. On the other hand, the previous value ⁇ / ⁇ 1 ⁇ was the second target ⁇ / ( 3 pressure ⁇ 2 ” In the case of (326: N0), depressurization processing is started on both sides.
  • the first pressure-increasing process is carried out regardless of whether or not the braking force distribution is equal to the predetermined braking force distribution, while maintaining the ⁇ pressure ⁇ for the first wheel and the ⁇ pressure ⁇ for the second wheel.
  • the pressure may be increased.
  • Fig. 9 shows the transition of each ⁇ / ( 3 pressure ⁇ ( 3 when the first pressure boosting process is performed. In the example shown in Fig. 9, the timing It is applied to the first wheel according to the specified braking force distribution. ⁇ 0 2020/175 200 33 ⁇ (: 171? 2020 /005933
  • the braking force applied to the second wheel and the braking force applied to the second wheel are increased respectively. Is increased. At the timing 31, it is required to reduce the braking force of the vehicle, so the decompression process is started. On the other hand, it is required to increase the braking force of the vehicle at the timing 32 during execution of the depressurization process. Then, the _ direction pressure reducing process is ended and the first pressure increasing process is started.
  • the first holding valve is closed and the second holding valve is fully opened.
  • the same value for the second wheel is set as the differential pressure command value for the differential pressure regulating valve 5 41.
  • No. 2 Is calculated as the sum of the pressure increase correction amount ⁇ ⁇ ( 3 1 0).
  • the braking force distribution returns to the predetermined braking force distribution at timing 3 3 during execution of the first pressure increasing process, Even after 3 3, the state in which the 1st holding valve is closed and the 2nd holding valve is fully opened continues, so that in the period from the timing table 3 3 to the timing table 3 4 ⁇ pressure is higher than the 2nd target ⁇ pressure ⁇ 2 ”, and ⁇ pressure for the first wheel is “Lower than that continues. Since the braking force of the vehicle is required to be reduced at the timing table 34, the first pressure increasing process is ended and the depressurizing process is started.
  • the pressurizing mechanism can supply and discharge the brake fluid from the opposite side of the wheel cylinder 21 sandwiching the holding valves 5558 and 555, it is described in the above embodiment.
  • the configuration may be different from that of the pressurizing mechanism 6 2 1.
  • a pressurizing mechanism having another configuration there are, for example, those disclosed in Japanese Patent Laid-Open No. 20 1 7-1 5 4 5 6 3 and Japanese Patent Laid-Open No. 2 0 8 _ 184 0 5 7 Mention may be made of electric cylinders as disclosed. The electric cylinder is based on the drive amount of the electric motor. ⁇ 0 2020/175 200 34 ⁇ (: 17 2020 /005933
  • the braking actuator is provided in a pressure mechanism that supplies brake fluid to each of the wheel cylinders, a first fluid passage to which a first wheel cylinder of the wheel cylinders is connected, and a first fluid passage, A first holding valve that is closed when restricting the inflow of brake fluid into the first wheel cylinder; a second fluid passage to which a second wheel cylinder of each of the wheel cylinders is connected; A second holding valve that is provided in the second liquid passage and that is closed when restricting the flow of the brake fluid into the second wheel cylinder,
  • the control device is configured to reduce the braking force of the vehicle when the second hydraulic pressure, which is the hydraulic pressure in the second wheel cylinder, is higher than the first hydraulic pressure, which is the hydraulic pressure in the first wheel cylinder.
  • the second hydraulic pressure is reduced by operating the pressurizing mechanism with the second hydraulic valve opened while maintaining the first hydraulic pressure by closing the first hydraulic valve.
  • the wheel to which the braking force corresponding to the first hydraulic pressure is applied is the first wheel, and the wheel to which the braking force corresponding to the second hydraulic pressure is applied is the first wheel.
  • the control device increases the depressurization amount of the second hydraulic pressure as the reduction limit amount of the braking force applied to the first wheel accompanying the retention of the first hydraulic pressure increases.
  • a braking device for a vehicle which controls the pressurizing mechanism.
  • the second hydraulic pressure may become higher than the first hydraulic pressure depending on the set braking force distribution. Under these circumstances, it is necessary to reduce the braking force of the vehicle. ⁇ 0 2020/175 200 35 ⁇ (: 171? 2020 /005933
  • the depressurizing process is executed on the other hand.
  • the second hydraulic pressure is reduced by the operation of the pressurizing mechanism while the first holding valve is closed and the first hydraulic pressure is maintained.
  • the second hydraulic pressure is reduced by taking into consideration the reduction limit amount of the braking force applied to the first wheel due to the retention of the first hydraulic pressure. That is, the braking force applied to the first wheel is not reduced, but the braking force applied to the second wheel is reduced to a large extent. Therefore, it becomes possible to suppress the deviation between the actual braking force of the vehicle and the required braking force due to the retention of the first hydraulic pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

制動装置40の制動アクチュエータ50は、加圧機構621、車輪10A用の保持弁55A及び車輪10B用の保持弁55Bを備える。制動装置40の制御装置80は、車輪10A用のWC圧よりも車輪10B用のWC圧が高い状態で車両の制動力を減少させる場合、保持弁55Aを閉弁しつつ保持弁55Bを開弁させた状態で加圧機構621を作動させることによって車輪10B用のWC圧を減圧させる一方減圧処理と、保持弁55Aを閉弁しつつ加圧機構621の作動によって車輪10B用のWC圧を増圧させる第1増圧処理とを実行する。

Description

\¥0 2020/175200 1 卩(:17 2020 /005933 明 細 書
発明の名称 : 車両の制動装置
技術分野
[0001 ] 本発明は、 ホイールシリンダ内の液圧の調整を通じ、 車輪に付与する制動 力を制御する車両の制動装置に関する。
背景技術
[0002] 特許文献 1 に記載されている制動装置は、 複数のホイールシリンダ内への ブレーキ液の給排を行う制動アクチユエータと、 制動アクチユエータを制御 する制御装置とを備えている。 制動アクチユエータは複数系統の液圧回路を 有しており、 1つの液圧回路に 2つのホイールシリンダが接続されている。 液圧回路は、 2つのホイールシリンダのうち、 第 1ホイールシリンダが接続 される第 1液路と、 第 2ホイールシリンダが接続される第 2液路とを有して いる。 第 1液路及び第 2液路には、 ホイールシリンダ内の液圧の増大を規制 すべく作動する保持弁がそれぞれ設けられている。
[0003] 上記の制動装置では、 車両の目標ヨーモーメントが 「0」 から有意値に変 更された場合、 第 2ホイールシリンダ内の液圧を第 1ホイールシリンダ内の 液圧よりも高くするとともに、 各ホイールシリンダのうち、 第 1液路の保持 弁を閉弁させることにより、 第 1ホイールシリンダ内の液圧を保持させる。 先行技術文献
特許文献
[0004] 特許文献 1 :特開 2 0 1 2 _ 1 1 6 3 7 4号公報
発明の概要
発明が解決しようとする課題
[0005] 第 1ホイールシリンダ内の液圧よりも第 2ホイールシリンダ内の液圧を高 く し、 且つ第 1液路に設けられている保持弁が閉弁されているときに、 車両 の制動力の増大が要求されることがある。 特許文献 1 には、 このような場合 における制動アクチユエータの作動について何ら開示されていない。 \¥0 2020/175200 2 卩(:171? 2020 /005933
課題を解決するための手段
[0006] 上記課題を解決するための車両の制動装置は、 複数のホイールシリンダ内 へのブレーキ液の給排を行う制動アクチユエータと、 前記制動アクチユエー 夕を制御する制御装置と、 を備えている。 前記制動アクチユエータは、 前記 各ホイールシリンダにブレーキ液を供給する加圧機構と、 前記各ホイールシ リンダのうちの第 1ホイールシリンダが接続される第 1液路と、 前記第 1液 路に設けられ、 且つ前記第 1ホイールシリンダへのブレーキ液の流入を規制 する際に閉弁される第 1保持弁と、 前記各ホイールシリンダのうちの第 2ホ イールシリンダが接続される第 2液路と、 前記第 2液路に設けられ、 且つ前 記第 2ホイールシリンダへのブレーキ液の流入を規制する際に閉弁される第 2保持弁と、 を有している。 前記制御装置は、 前記第 1ホイールシリンダ内 の液圧である第 1液圧よりも前記第 2ホイールシリンダ内の液圧である第 2 液圧が高い状態で車両の制動力を減少させるときに、 前記第 1保持弁を閉弁 して前記第 1液圧を保持しつつ、 前記第 2保持弁を開弁させた状態で前記加 圧機構を作動させることによって前記第 2液圧を減圧させる一方減圧処理と 、 前記一方減圧処理の実行中又は当該一方減圧処理の終了後において前記第 1液圧よりも前記第 2液圧が高い状態で車両の制動力を増大させる場合、 前 記第 1保持弁を閉弁して前記第 1液圧を保持し、 前記加圧機構の作動によっ て前記第 2液圧を増圧させる第 1増圧処理と、 を実行する。
[0007] 車両制動時に、 第 2液圧が第 1液圧よりも高くなることがある。 そして、 第 1液圧よりも第 2液圧が高い状況下で車両の制動力を減少させるときには 一方減圧処理が実行される。 一方減圧処理では、 第 1保持弁を閉弁して第 1 液圧を保持した状態で、 加圧機構の作動によって第 2液圧が減圧される。 こ の場合、 車両の制動力の減少に際して第 1液圧は保持され、 第 2液圧は加圧 機構によって減圧される。 そのため、 ホイールシリンダ内の液圧を減圧させ る際に開弁される減圧弁が液路に設けられており、 且つ、 加圧機構が還流ポ ンプの作動によらない構成である場合、 第 2液路に設けられている減圧弁を 作動させることなく、 リザーバのブレーキ液を汲み出す還流ボンプの作動も \¥0 2020/175200 3 卩(:171? 2020 /005933
抑制することができる。 その結果、 制動アクチユエータの作動音の発生を抑 制することができる。 また、 一方減圧処理の実行中又は一方減圧処理の終了 後に車両の制動力を増大させる場合には、 第 1増圧処理が実行される。 第 1 増圧処理では、 第 1保持弁の閉弁が維持された状態で第 2液圧が増圧される 。 これにより、 単に車両の制動力を増大させるだけではなく、 第 1液圧を保 持しつつ第 2液圧が増大される。 そのため、 一方減圧処理の実行によって第 1液圧と第 2液圧とのバランスが変わってしまった状態を、 第 1増圧処理の 実行によって是正することができる。 したがって、 上記構成によれば、 車両 の制動力を増大させるベく各ホイールシリンダ内の液圧を調整するに際し、 減圧弁を作動させないことによって制動アクチユエータの静粛性を高めると ともに、 液圧の変更に伴って第 1液圧と第 2液圧とのバランスが崩れた状態 を是正することができるようになる。
図面の簡単な説明
[0008] [図 1]第 1実施形態の車両の制動装置の一部の概略構成を示す図。
[図 2]第 1系統総制動力と、 第 1 目標制動力及び第 2目標制動力との関係を示 すマップ。
[図 3]ホイールシリンダ内の液圧である 〇圧と、 制動力との関係を示すマツ プ。
[図 4]同制動装置の制御装置によって実行される処理ルーチンの前半部分を説 明するフローチヤート。
[図 5]同制御装置によって実行される処理ルーチンの後半部分を説明するフロ —ナヤート。
[図 6] ( 3 ) 〜 ( ¢0 は、 第 1実施形態の制動装置における車両制動時のタイ ミングチヤート。
[図 7]第 2実施形態の制動装置において、 制御装置によって実行される処理ル —チンの一部を説明するフローチヤート。
[図 8]第 2実施形態の制動装置において、 車両制動時における各車輪用の
Figure imgf000005_0001
圧の推移を示すタイミングチヤート。 \¥0 2020/175200 4 卩(:171? 2020 /005933
[図 9]変更例の制動装置において、 車両制動時における各車輪用の
Figure imgf000006_0001
圧の推 移を示すタイミングチヤート。
発明を実施するための形態
[0009] (第 1実施形態)
以下、 車両の制動装置の一実施形態を図 1〜図 6に従って説明する。
図 1 には、 本実施形態の制動装置 4 0を備える車両が図示されている。 車 両は、 複数の車輪 1 〇八, 1 0巳, 1 0 0 , 1 0 0と、
Figure imgf000006_0002
と同数の制動機構 2 0八, 2 0巳, 2 0(3 , 2 0 0とを備えている。 各制動 機構 2 0八〜2 0 0は、 ホイールシリンダ 2 1内の液圧である 〇圧 〇 が高いほど、 車輪 1 0 ~ 1 0口と一体回転する回転体 2 2に摩擦材 2 3を 押し付ける力が大きくなるように構成されている。 すなわち、 各制動機構 2 0八~ 2 0 0は、 〇圧 〇が高いほど大きな制動力を車輪 1 0八~ 1 0 口に付与することができる。
[0010] 本実施形態では、 車輪 1 〇*に対して設けられている制動機構を 「制動機 構 2 0 *」 という。 制動機構 2 0 *のホイールシリンダ 2 1 を 「車輪 1 0 * 用のホイールシリンダ 2 1」 という。 車輪 1 0 *用のホイールシリンダ 2 1 内の 〇圧 〇を 「車輪 1 0 *用の 〇圧 〇」 という。 「*」 は、 「 八」 、 「巳」 、 「〇」 及び 「0」 のうちの何れかである。 例えば、 制動機構 2 0八とは車輪 1 0八に対して設けられている制動機構である。 また、 車輪 1 0八用のホイールシリンダ 2 1 とは制動機構 2 0八のホイールシリンダ 2 1であり、 車輪 1 0八用の 〇圧 〇とは制動機構 2 0八のホイールシリ ンダ 2 1内の 〇圧 〇である。
[001 1 ] 制動装置 4 0は、 液圧発生装置 4 1 と、 制動アクチユエータ 5 0と、 制御 装置としての制動制御装置 8 0とを備えている。 液圧発生装置 4 1は、 車両 の運転者による制動操作部材 4 2の操作量に応じた液圧が発生するマスタシ リンダ 4 3を有している。
[0012] 制動アクチユエータ 5 0は、 各ホイールシリンダ 2 1へのブレーキ液の給 排を行うものであり、 第 1液圧系統 5 1 1及び第 2液圧系統 5 1 2を有して \¥0 2020/175200 5 卩(:17 2020 /005933
いる。 第 1液圧系統 5 1 1は、 車輪 1 0 用の\/\/ 0圧 \/\/ 0及び車輪 1 〇巳 用の \/\/ 0圧 \/\/ 0を調整する系統である。 第 2液圧系統 5 1 2は、 車輪 1 〇 0用の \/\/ 0圧 \/\/ 0及び車輪 1 0 用の\/\/ 0圧 \/\/ 0を調整する系統である
[0013] 第 1液圧系統 5 1 1 には、 マスタシリンダ 4 3と各ホイールシリンダ 2 1 とを繫ぐ液圧回路 5 2 1が設けられている。 液圧回路 5 2 1は、 2つのホイ —ルシリンダ 2 1のうち、 車輪 1 0八用のホイールシリンダ 2 1が接続され る液路 5 3八と、 車輪 1 0巳用のホイールシリンダ 2 1が接続される液路 5 3巳とを有している。 各液路 5 3八, 5 3巳は互いに並列に配置されている 。 液圧回路 5 2 1 における各液路 5 3八, 5 3巳よりもマスタシリンダ 4 3 側には、 差圧調整弁 5 4 1が設けられている。 差圧調整弁 5 4 1は、 リニア 電磁弁である。
[0014] 液路 5 3八には、 車輪 1 〇八用のホイールシリンダ 2 1へのブレーキ液の 流入を規制する際に閉弁される保持弁 5 5八と、 車輪 1 〇八用のホイールシ リンダ 2 1内からブレーキ液を流出させる際に開弁される減圧弁 5 6八とが 設けられている。 液路 5 3巳には、 車輪 1 0巳用のホイールシリンダ 2 1へ のブレーキ液の流入を規制する際に閉弁される保持弁 5 5巳と、 車輪 1 〇巳 用のホイールシリンダ 2 1内からブレーキ液を流出させる際に開弁される減 圧弁 5 6巳とが設けられている。 各保持弁 5 5八, 5 5巳は常開型のリニア 電磁弁であり、 各減圧弁 5 6八, 5 6巳は常閉型の電磁弁である。 ホイール シリンダ 2 1内の 〇圧 \^ (3を減圧させる際、 減圧弁 5 6 , 5 6巳の開 閉が繰り返されることがある。 この場合、 減圧弁 5 6 , 5 6巳の作動音、 及び、 減圧弁 5 6 , 5 6巳の開閉に起因する液圧の急激な変化に伴う音で ある油激音が発生する。 これに対し、 〇圧 \^ (3を変化させるベく保持弁 5 5 , 5 5巳を作動させる場合、 保持弁 5 5 , 5 5巳に対する差圧指令 値を調整することにより、 保持弁 5 5 , 5 5巳の開閉を繰り返さなくても ブレーキ液を流通させることができる。 そのため、 保持弁 5 5八, 5 5巳の 作動音、 及び、 保持弁 5 5 , 5 5巳の作動に起因する油激音は、 減圧弁 5 \¥0 2020/175200 6 卩(:171? 2020 /005933
6八, 5 6巳の作動時と比較して小さい。
[0015] また、 液路 5 3八には、 保持弁 5 5八と並列に配置されている逆止弁 5 7 八が接続されている。 液路 5 3巳には、 保持弁 5 5巳と並列に配置されてい る逆止弁 5 7巳が接続されている。 各逆止弁 5 7八, 5 7巳は、 液路 5 3八 , 5 3巳において保持弁 5 5八, 5 5巳よりもホイールシリンダ 2 1側の液 圧が保持弁 5 5 , 5 5巳よりも差圧調整弁 5 4 1の液圧よりも高いときに 、 保持弁 5 5八, 5 5巳よりもホイールシリンダ 2 1側から差圧調整弁 5 4 1側へのブレーキ液の流動を許容するものである。
[0016] 第 1液圧系統 5 1 1 には、 減圧弁 5 6八, 5 6巳が開弁されているときに 減圧弁 5 6八, 5 6巳を介してホイールシリンダ 2 1から流出したブレーキ 液を一時的に貯留するリザーバ 5 8 1 と、 電気モータ 6 5を動力源とするポ ンプ 5 9 1 とが接続されている。 減圧弁 5 6 , 5 6巳が開弁されてリザー バ 5 8 1 にブレーキ液が貯留されると、 ポンプ 5 9 1は、 リザーバ 5 8 1か らブレーキ液を汲み上げて当該ブレーキ液を吐出する。 また、 ポンプ 5 9 1 は、 リザーバ 5 8 1 を介してマスタシリンダ 4 3内からブレーキ液を当該ブ レーキ液を吐出することもできる。 ポンプ 5 9 1の吐出ポートは、 液圧回路 5 2 1 における差圧調整弁 5 4 1 と各液路 5 3 , 5 3巳との間の部分 6 0 1 に接続されている。 そのため、 差圧調整弁 5 4 1 に対する差圧指令値を調 整しつつポンプ 5 9 1からブレーキ液を吐出させることにより、 各ホイール シリンダ 2 1
Figure imgf000008_0001
圧 \^ (3を調整することができる。 すなわち、 本実施 形態では、 差圧調整弁 5 4 1及びポンプ 5 9 1 により、 車輪 1 0 用のホイ —ルシリンダ 2 1及び車輪 1 0巳用のホイールシリンダ 2 1 にブレーキ液を 供給する 「加圧機構 6 2 1」 の一例が構成されている。
[0017] 第 2液圧系統 5 1 2は、 第 1液圧系統 5 1 1 と同様に、 液圧回路 5 2 2と 、 リザーバ 5 8 2と、 電気モータ 6 5を動力源とするポンプ 5 9 2とを有し ている。 液圧回路 5 2 2には、 車輪 1 〇〇用のホイールシリンダ 2 1 と車輪 1 0口用のホイールシリンダ 2 1が接続される。 また、 液圧回路 5 2 2には 、 液圧回路 5 2 1 と同様に、 差圧調整弁、 2つの保持弁及び 2つの減圧弁が \¥02020/175200 7 卩(:171? 2020 /005933
設けられている。 なお、 液圧回路 522の構成は、 液圧回路 52 1 とほぼ同 じであるため、 詳細な説明を割愛する。
[0018] 制動制御装置 80は、 車両に対する制動力の要求値である要求車両制動力 巳 〇[¾を基に、 加圧機構 62 1、 各保持弁 55 , 55巳及び各減圧弁 5 6八, 56巳を制御することにより、 各車輪 1 0八〜 1 00用の 〇圧 〇を調整する。
[0019] また、 制動制御装置 80は、 他の制御装置と各種の情報の送受信を行う。
例えば、 車両が自動運転によって走行する場合、 要求車両制動力巳?〇[¾が 、 自動運転用の制御装置 90から制動制御装置 80に送信される。 この場合 、 制動制御装置 80は、 受信した要求車両制動力巳 〇[¾を基に制動ァクチ ユエータ 50を制御する。
[0020] 車両制動時に各\^/(3圧
Figure imgf000009_0001
を制御する際、 所定の制動力配分に対応する 制動力配分比率 Xを基に、
Figure imgf000009_0002
が制御されることがある。 制動力 配分とは、 第 1\1液圧系統が管轄する 2つの車輪のうち、 第 1車輪に付与する 制動力と第 2車輪に付与する制動力との配分である。 所定の制動力配分は、 所定の制動力配分に従って各 〇圧 \^(3を調整するときに第 1車輪用の 〇圧 \^(3よりも第 2車輪用の
Figure imgf000009_0003
\^(3を高くする制動力配分である。 ここでいう 「1\!」 は、 「1」 又は 「2」 である。 第 1液圧系統 5 1 1が管轄 する 2つの車輪とは車輪 1 0八, 1 0巳のことであり、 第 2液圧系統 5 1 2 が管轄する 2つの車輪とは車輪 1 0(3, 1 0口のことである。 本実施形態で は、 第 1液圧系統 5 1 1が管轄する 2つの車輪 1 0 , 1 0巳のうち、 車輪 1 〇八が 「第 1車輪」 に該当し、 車輪 1 〇巳が 「第 2車輪」 に該当する。 車 輪 1 0八用のホイールシリンダ 2 1が 「第 1ホイールシリンダ」 に該当し、 車輪 1 〇 用の\^/(3圧 \^(3が 「第 1液圧」 に該当する。 また、 液路 53八 に設けられている保持弁 55八が 「第 1保持弁」 に該当する。 車輪 1 〇巳用 のホイールシリンダ 2 1が 「第 2ホイールシリンダ」 に該当し、 車輪 1 〇巳
Figure imgf000009_0004
に該当する。 また、 液路 53巳に設けられ ている保持弁 55巳が 「第 2保持弁」 に該当する。 \¥0 2020/175200 8 卩(:171? 2020 /005933
[0021] 制動力配分比率 Xとは、
Figure imgf000010_0001
が制御 されるときにおける、 第 1車輪に付与する制動力に対する第 2車輪に付与す る制動力の比率である。 そのため、 制動力配分比率 Xに従って各車輪 1 〇八 〜 1 0 0に付与する制動力を制御することにより、 所定の制動力配分に従っ た各車輪 1 〇八〜 1 0口に付与する制動力の制御を実現することができる。 そして、 制動力配分比率 Xに従って各車輪 1 0八〜 1 0口に付与する制動力 を制御する場合、 第 1液圧系統 5 1 1側では、 車輪 1 〇 用の\^/ (3圧 〇 よりも車輪 1 0巳用の 〇圧 〇が高くなる。
[0022] 次に、 図 2〜図 5を参照し、 車両制動時において、 液圧回路 5 2 1 に接続 される 2つのホイールシリンダ
Figure imgf000010_0002
を制御する際に制動制 御装置 8 0によって実行される処理ルーチンについて説明する。 なお、 図 4 及び図 5に示す処理ルーチンは、 車両制動時に繰り返し実行される。
[0023] 図 4及び図 5に示すように、 本処理ルーチンにおいて、 始めのステップ 3
1 1では、 要求車両制動力巳 〇 が取得される。 すなわち、 車両が自動運 転によって走行する場合、 自動運転用の制御装置 9 0から受信した要求車両 芾 I」動力巳 0 が取得される。 運転者の制動操作によって車両に制動力が付 与される場合、 運転者の制動操作に関する値である制動操作値に応じた大き さとなるように要求車両制動力巳 0 が導出される。 制動操作値としては 、 制動操作部材 4 2の操作量や制動操作部材 4 2に入力される操作力などを 挙げることができる。 そして、 要求車両制動力巳 〇[¾が取得されると、 処 理が次のステップ 3 1 2に移行される。
[0024] ステップ 3 1 2において、 要求車両制動力巳 〇 を基に、 第 1系統総制 動力巳 丁 1が導出される。 例えば、 要求車両制動力巳 〇[¾の半分が第 1 系統総制動力巳 丁 1 とされ、 残りが第 2系統総制動力巳 丁 2とされる。 第 1系統総制動力巳 丁 1 とは、 車輪 1 0八に付与する制動力と車輪 1 0巳 に付与する制動力との和である。 第 2系統総制動力巳 丁 2とは、 車輪 1 0 〇に付与する制動力と車輪 1 0口に付与する制動力との和である。
[0025] 続いて、 ステップ 3 1 3では、 第 1 目標 〇圧 \^/〇 1 丁 「、 第 2目標 \¥02020/175200 9 卩(:171? 2020 /005933
〇圧 \^/〇2丁 「及び等圧目標 \^/(3圧 \^(3丁丁 「がそれぞれ導出される。 第 1 目標 〇圧 〇 1 丁 「は第 1車輪用の 〇圧 〇の目標である。 こ の場合、 第 1 目標 \^/(3圧 〇 1 丁 「は、 車輪 1 0 用の\^/(3圧 \^(3の目 標である。 第 1系統総制動力巳 丁 1 と制動力配分比率 Xとに基づいて導出 される車輪 1 0八に付与する制動力の目標を車輪 1 〇八用の 〇圧 〇に 変換した液圧が、 第 1 目標 〇圧 \^/〇 1 丁 「である。 第 2目標 〇圧 〇 2丁 「は第 2車輪用の \^/(3圧 \^(3の目標である。 この場合、 第 2目標 〇圧 〇 2丁 「は、 車輪 1 0巳用の 〇圧 〇の目標である。 第 1系統 総制動力巳 丁 1 と制動力配分比率乂とに基づいて導出される車輪 1 〇巳に 付与する制動力の目標を車輪 1 〇巳用の \^/(3圧 \^(3に変換した液圧が、 第 2目標 \^/(3圧 \^/〇2丁 「である。 等圧目標 \^/(3圧 〇丁丁 「は、 2つの ホイールシリンダ 2 1内の 〇圧 〇を互いに等しくするための 〇圧 〇の目標である。 車輪 1 0 用の\^/(3圧 \^(3と車輪 1 〇巳用の \^/(3圧 〇とを互いに等しく しつつ、 車輪 1 0 に付与する制動力と車輪 1 0巳に 付与する制動力との和を第 1系統総制動力巳 丁 1 と等しくする 〇圧 〇が、 等圧目標 \^/(3圧 〇丁丁 「である。 本実施形態では、 第 1 目標 〇 圧 \^(31 丁 「、 第 2目標 \^/(3圧 〇 2丁 「及び等圧目標 \^/(3圧 〇丁 丁 「は、 図 2に示すマップ及び図 3に示すマップを用いてそれぞれ導出され る。
[0026] 図 2には、 第 1車輪である車輪 1 0八に付与する制動力の目標である第 1 目標車輪制動力巳 1 1 丁 「と、 第 2車輪である車輪 1 0巳に付与する制動 力の目標である第 2目標車輪制動力巳 1 2丁 「とを導出するためのマップ が図示されている。 具体的には、 図 2において、 実線は、 第 1系統総制動力 巳 丁 1 と制動力配分比率 Xとを基に第 1 目標車輪制動力巳 1 1 丁 「を導 出するためのマップである。 破線は、 第 1系統総制動力巳 丁 1 と制動力配 分比率 Xとを基に第 2目標車輪制動力巳 1 2丁 「を導出するためのマップ である。 図 2によれば、 第 1 目標車輪制動力巳 1 1 丁 「及び第 2目標車輪 制動力巳 1 2丁 「は、 第 1系統総制動力巳 丁 1が大きいほどそれぞれ大 \¥02020/175200 10 卩(:171?2020/005933
きくなる。 そして、 第 1 目標車輪制動力巳 1 1 丁 「と第 2目標車輪制動力 巳 1 2丁 「との和は、 第 1系統総制動力巳 丁 1 と等しい。
[0027] 図 3には、 第 1系統総制動力巳 丁 1、 第 1 目標車輪制動力巳 1 1 丁 「 及び第 2目標車輪制動力巳 1 2丁 「を、 \^/ (3圧 \^ (3に変換するためのマ ップが図示されている。 図 3において、 実線は第 1 目標車輪制動力巳 1 1 丁 「と第 1 目標 〇圧 \^/〇 1 丁 「との関係を示すマップであり、 破線は第 2目標車輪制動力巳 1 2丁 「と第 2目標 \^/ (3圧 〇 2丁 「との関係を示 すマップである。 また、 一点鎖線は、 第 1系統総制動力巳 丁 1 と等圧目標 〇圧 〇丁丁 「との関係を示すマップである。 これら各マップは、 各制 動機構 2 0 ~ 2 0〇における、
Figure imgf000012_0001
圧 \^ (3と制動力との関係特性に基づ いて設定されている。 第 1 目標 〇圧 〇 1 丁 「は第 1車輪である車輪 1 0八のみに作用し、 第 2目標 〇圧 \^/〇2丁 「は第 2車輪である車輪 1 0 巳のみに作用する。 これに対し、 等圧目標
Figure imgf000012_0002
車輪 1 0 八及び車輪 1 0巳の双方に作用する。 そのため、 等圧目標
Figure imgf000012_0003
\^ (3丁丁 「を用いる状態では、 等圧目標
Figure imgf000012_0004
〇八, 1 〇巳に作用するため、 より小さな液圧で大きな制動力を車両に発揮させるこ とができる。 したがって、 図 3では、 第 1系統総制動力巳 丁 1、 第 1 目標 車輪制動力巳 1 1 丁 「及び第 2目標車輪制動力巳 1 2丁 「が何れも同じ 大きさである場合、 第 2目標 〇圧 〇 2丁 「が最も高く、 第 1 目標 〇 圧 \^ (3 1 丁 が 2番目に高く、 等圧目標
Figure imgf000012_0005
「が最も低い。
[0028] ここで、 図 2に示す制動力配分とは異なるが、 説明を簡単にするために、 第 1 目標車輪制動力巳 1 1 丁 「及び第 2目標車輪制動力巳 1 2丁 「が何 れも同じ大きさである場合を例として、 図 3における各目標 \^/ (3圧 〇 1 丁 「, \^/〇2丁 「, 〇丁丁 「の関係を具体的に説明する。
[0029] 第 1系統総制動力巳 丁 1は、 第 1 目標車輪制動力巳 1 1 丁 「と第 2目 標車輪制動力巳 1 2丁 「との和と等しい。 そのため、 第 1 目標車輪制動力 巳 1 1 丁 「及び第 2目標車輪制動力巳 1 2丁 「をそれぞれ 「 1」 とし た場合、 第 1系統総制動力巳 丁 1は、 「2 1」 となる。 \¥02020/175200 11 卩(:171? 2020 /005933
[0030] 各ホイールシリンダ
Figure imgf000013_0001
第 1車輪の制動力を 「 1 」 とする場合の
Figure imgf000013_0002
圧と等しく した場合、 第 1車輪の制動力は 「 1」 とな るものの、 第 2車輪の制動力は、 「 1」 よりも小さい 「 1 1」 となる。 そのため、 第 1車輪の制動力と第 2車輪の制動力との和は 「2 1」 より も小さくなる。 一方、 各ホイールシリンダ 2 1内の 〇圧 〇を、 第 2車 輪の制動力を 「 1」 とする場合の
Figure imgf000013_0003
圧と等しく した場合、 第 2車輪の制 動力は 「 1」 となるものの、 第 1車輪の制動力は、 「 1」 よりも大きい 「 1 2」 となる。 そのため、 第 1車輪の制動力と第 2車輪の制動力との和 は 「2 1」 よりも大きくなる。
[0031] したがって、 第 1系統総制動力巳 丁 1 を 「2 1」 と等しくする場合 の等圧目標
Figure imgf000013_0004
第 2車輪の制動力を 「 1」 とする場合 の第 2目標 〇圧 \^/〇2丁 「よりも低く、 且つ、 第 1車輪の制動力を 「 1」 とする場合の第 1 目標 〇圧 〇 1 丁 「よりも高い 「 1:」 となる。
[0032] 図 4に戻り、 第 1 目標 〇圧 〇 1 丁 1% 第 2目標 〇圧 〇 2丁 「 及び等圧目標
Figure imgf000013_0005
〇丁丁 「が導出されると、 処理が次のステップ 31 4に移行される。 ステップ 31 4において、 各制動機構 20八~200の作 動によって車両制動が行われているか否かの判定が行われる。 要求車両制動 力巳 〇[¾が 「0」 である場合、 車両制動が行われていない。 一方、 要求車 両制動力巳 〇[¾が 「0」 よりも大きい場合、 車両制動が行われている。 そ して、 車両制動が行われているとの判定がなされていない場合 (31 4 : 〇) 、 処理が次のステップ 31 5に移行される。
[0033] ステップ 31 5において、 後述する各フラグ !_◦ 1 , !_〇2, !_〇
3にオフがセッ トされる。 そして、 処理が次のステップ 31 6に移行される ステップ 31 6において、 第 1車輪である車輪 1 〇八用の 〇圧の要求値 である出力 〇圧 \^(31 として第 1 目標 〇圧 \^(31 丁 「が設定される 。 また、 第 2車輪である車輪 1 0巳用の 〇圧の要求値である出力 〇圧 〇 2として第 2目標 〇圧 〇 2丁 「が設定される。 そして、 処理が次 \¥02020/175200 12 卩(:171?2020/005933
のステップ 31 7に移行される。 以降の記載においては、
Figure imgf000014_0001
1 を 「車輪 1 0八用の出力 〇圧 〇 1」 ともいい、 出力 〇圧 〇 2 を 「車輪 1 0巳用の出力 〇圧 〇 2」 ともいう。
[0034] ステップ 31 7において、 車輪 1 0八用の\^/(3圧 \^(3が出力 \^/(3圧 〇 1 に追随し、 且つ、 車輪 1 0巳用の\^/(3圧 \^(3が出力 \^/(3圧 〇 2に 追随するように、 制動ァクチユエータ 50の作動が制御される。 ステップ 3 1 4の判定が 「N0」 となってステップ 31 7の処理が実行される場合、 各 保持弁 55 , 55巳が何れも全開とされ、 且つ差圧調整弁 54 1 に対する 差圧指令値として 「0」 が設定される。 また、 各減圧弁 56 , 56巳の閉 弁が維持される。 その後、 本処理ルーチンが一旦終了される。
[0035] その一方で、 ステップ 31 4において、 車両制動中であるとの判定がなさ れている場合 (丫巳3) 、 処理が次のステップ 31 8に移行される。 ステッ プ31 8において、 配分補正制御フラグ !_◦ 1 にオンがセッ トされている か否かの判定が行われる。 配分補正制御フラグ !_◦ 1は、 実際の制動力配 分が所定の制動力配分と異なっていると判断できるときにはオンがセッ トさ れるフラグである。 そのため、 実際の制動力配分が所定の制動力配分と等し いと判断できるときには、 配分補正制御フラグ !_◦ 1 にオフがセッ トされ ている。 配分補正制御フラグ !_◦ 1 にオフがセッ トされている場合 (31 8 : N0) 、 処理が次のステップ 31 9に移行される。
[0036] ステップ 31 9において、 以下に示す 2つの条件が何れも成立しているか 否かの判定が行われる。 第 1車輪である車輪 1 〇八用の 〇圧 〇の減 圧が要求されていること。 ·第 1 目標 〇圧 〇 1 丁 「が第 2目標 〇圧 〇 丁 「よりも低いこと。
[0037] 車輪 1 0八用の\^/(3圧 \^(3の減圧が要求されているということは、 車両 の制動力の減少が要求されていることを意味する。 上記 2つの条件のうち少 なくとも 1つが成立していない場合 (31 9 : N0) 、 処理が前述したステ ップ 31 6に移行される。 そして、 ステップ 31 6で出力 〇圧 〇 1及 び出力 〇圧 〇 2がそれぞれ設定されると、 次のステップ 31 7では、 \¥02020/175200 13 卩(:171? 2020 /005933
Figure imgf000015_0006
4 1 に対する差圧指令値として設定される。 例えば出力
Figure imgf000015_0001
圧 〇 2が出
Figure imgf000015_0002
よりも高い場合、 差圧調整弁 54 1 に対する差圧指令値と して出力
Figure imgf000015_0003
圧 〇 2に応じた値が設定される。 また、 車輪 1 〇巳用の保 持弁 55巳に対する差圧指令値として 「0」 が設定されるため、 保持弁 55 巳が全開とされる。 また、 車輪 1 0八用の保持弁 55八に対する差圧指令値 として、
Figure imgf000015_0004
と出力
Figure imgf000015_0005
との差分に応じた値が設 定される。 さらに、 各減圧弁 56 , 56巳の閉弁が維持される。 これによ り、 車輪 1 0巳用の\^/(3圧 \^(3を出力 \^/(3圧 〇 2に追随させ、 且つ車 輪 1 0八用の\^/(3圧 \^(3を出力 \^/(3圧 \^(31 に追随させることができる 。 その後、 本処理ルーチンが _旦終了される。
[0038] 一方、 ステップ 31 9において、 上記 2つの条件の何れもが成立している 場合 (丫巳3) 、 処理が次のステップ 320に移行される。 ステップ 320 において、 配分補正制御フラグ !_◦ 1 にオンがセッ トされ、 且つ、 -方減 圧制御フラグ !_◦ 2にオンがセッ トされる。 一方減圧制御フラグ !_◦ 2 は、 車輪 1 0 用の\^/(3圧 \^(3と車輪 1 0巳用の \^/(3圧 \^(3とのうち高 圧側のみ減圧させる処理である一方減圧処理を実行するときにはオンがセッ 卜されるフラグである。 この場合、 高圧側の 〇圧 〇とは、 第 2車輪で ある車輪 1 0巳用の 〇圧 〇である。
[0039] 次のステップ 32 1 において、 変動補正量八 〇 1 3が導出される。 一 方減圧処理では、 第 1車輪である車輪 1 0 用の\^/(3圧 \^(3を保持するこ とにより、 車輪 1 0八に付与する制動力が保持される。 そのため、 一方減圧 処理の実行中では、 車輪 1 〇 に付与する制動力が減少されない分、 第 2車 輪である車輪 1 0巳に付与する制動力を多めに減少させないと、 車輪 1 〇八 に付与する制動力と車輪 1 〇巳に付与する制動力との和が、 第 1系統総制動 力巳 丁 1 と乖離してしまう。 そこで、 本実施形態では、 車輪 1 0 用の \¥02020/175200 14 卩(:171?2020/005933
〇圧 \^/(3の保持に伴う車輪 1 0 に付与する制動力の減少の制限量に応じ た値として変動補正量八 〇 1 3が導出される。
[0040] 変動補正量△ \^(31 3の導出処理について説明する。 出力 \^/(3圧 〇
1の前回値 \^/〇 1 匕と第 1 目標 〇圧 \^/〇 1 丁 との差分が制限 〇圧 変化量として算出される。
Figure imgf000016_0001
圧の前回値 \^(31 匕とは、 本処理ルー チンの前回の実行時に導出された車輪 1 0八用の出力 \^/(3圧 \^(31である 。 続いて、
Figure imgf000016_0002
圧変化量を基に、 制限制動力変化量が導出される。 制限 制動力変化量とは、 一方減圧処理が実行されないと仮定した場合における、 単位時間あたりの車輪 1 〇八に付与する制動力の減少量に相当する。 そのた め、 制限制動力変化量は、
Figure imgf000016_0003
圧変化量が多いほど多い。 _方減圧処理 の実行中では、 車輪 1 〇巳に付与する制動力を、 制限制動力変化量だけ余分 に減少させることとなる。 そのため、 制限制動力変化量を基に、 変動補正量 △ \^(31 3が導出される。 変動補正量△ \^(31 3は、 車輪 1 〇巳に付与 する制動力を制限制動力変化量だけ減少させるのに必要な車輪 1 0巳用の 〇圧 〇の変動量である。 したがって、 変動補正量八 〇 ] 3は、 制限 制動力変化量が多いほど値が大きくなるように導出される。 変動補正量△ 〇 1 3が導出されると、 処理が次のステップ 322に移行される。 なお、 変動補正量八 〇 ] 3は正の値となる。
[0041] ステップ 322において、 各出力 〇圧 〇 1 , \^〇2が導出される 。 すなわち、 出力 〇圧 〇 1 として出力 〇圧の前回値 〇 1 匕が設 定される。 また、
Figure imgf000016_0004
「と変動補正量△ \^(31 3との差 が出力
Figure imgf000016_0005
して算出される。 出力 \^/(3圧 \^/〇2は、 目標 〇 圧 \^/〇2丁 「よりも低い。 そして、 処理がステップ 31 7に移行される。
[0042] ステップ 31 7では、 出力 〇圧 〇 1が出力 〇圧の前回値 〇 1 匕で保持されるため、 第 1車輪である車輪 1 〇八用の保持弁 55八が閉弁さ れる。 この場合、 車輪 1 0八用の減圧弁 56八は閉弁されているため、 車輪 1 0八用の 〇圧 〇が保持される。 また、 第 2車輪である車輪 1 〇巳用 の保持弁 55巳に対する差圧指令値として 「0」 が設定されるため、 保持弁 \¥02020/175200 15 卩(:171? 2020 /005933
55巳は全開とされる。 そして、 差圧調整弁 54 1 に対する差圧指令値とし て出力
Figure imgf000017_0001
圧 〇 2に応じた値が設定され、 ポンプ 59 1からブレーキ液 が吐出される。 一方減圧処理の実行中では、
Figure imgf000017_0002
〇 2が徐々に低 くなるため、 各減圧弁 56 , 56巳の閉弁を維持するとともに車輪 1 0八
Figure imgf000017_0003
を減圧させる ことができる。 そして、 本処理ルーチンが一旦終了される。
[0043] その一方で、 ステップ 31 8において、 配分補正制御フラグ !_◦ 1 に才 ンがセッ トされている場合 (丫巳3) 、 処理が次のステップ 323に移行さ れる。 図 5に示すように、 ステップ 323において、 両輪等圧制御フラグ !_ 03にオンがセッ トされているか否かの判定が行われる。 両輪等圧制御フ ラグ !_〇3は、 第 1車輪である車輪 1 0 用の 〇圧 〇と第 2車輪で ある車輪 1 0巳用の
Figure imgf000017_0004
圧 \^(3とが互いに等しい状態を維持しつつ車両の 制動力を制御するときにオンがセッ トされるフラグである。 両輪等圧制御フ ラグ !_ 03にオフがセッ トされている場合 (323 : N0) 、 処理が次の ステップ 324に移行される。 ステップ 324において、 第 1車輪である車
Figure imgf000017_0005
。 減圧要求がある場合 (324 : 丫巳3) 、 処理が次のステップ 325に移 行される。
[0044] ステップ 325において、 判定用減圧量八 〇] 匕が導出される。 一方 減圧処理の実行によって第 2車輪である車輪 1 0巳用の
Figure imgf000017_0006
が減圧 されると、 差圧調整弁 54 1 に対する差圧指令値が小さくなるため、 液圧回 路 52 1 における差圧調整弁 54 1 と各保持弁 55 , 55巳との間の部分 の液圧である中間液圧が低くなる。 そして、 中間液圧が第 1車輪である車輪 1 0八用の\^/(3圧 \^(3よりも低くなると、 保持弁 55八が閉弁されていて も逆止弁 57八を介してホイールシリンダ 2 1側から差圧調整弁 54 1側に ブレーキ液が流出する。 すなわち、 保持弁 55八を閉弁したままでも車輪 1 0八用の
Figure imgf000017_0007
圧 \^(3が減圧される。 本実施形態では、 一方減圧処理による 車輪 1 0巳用の
Figure imgf000017_0008
の減圧によって車輪 1 〇 用の\^/(3圧 〇と \¥02020/175200 16 卩(:171?2020/005933
車輪 1 0巳用の
Figure imgf000018_0001
圧 \^(3とが互いに等しい状態になっても車両の制動力 の減少が継続される場合、 当該状態になってから所定の期間が経過してから 一方減圧処理を終了させるようにしている。 そして、 所定の期間が経過した か否かの判断基準として、 判定用減圧量△ \^(31 匕が設定される。
[0045] 判定用減圧量△ \^(31 匕の導出処理について説明する。 第 1 目標 〇圧
\^(31 丁 「と車輪
Figure imgf000018_0002
との差分が、 判定用 〇 圧減少量として算出される。 判定用\^/(3圧減少量を基に、 判定用制動力減少 量が導出される。 判定用\^/(3圧減少量とは、 制動力配分比率乂に基づいて各 〇圧 \^(3を制御した場合の車輪 1 〇 用の\^/(3圧と、 現在の車輪 1 0八 用の 〇圧 〇との差分である。 判定用制動力減少量は、 制動力配分比率 Xに基づいて各\^/(3圧 \^(3を制御した場合の車輪 1 0 に付与する制動力 と、 現時点で車輪 1 0八に付与している制動力との差分である。 そのため、 判定用制動力減少量は、 判定用\^/(3圧減少量が多いほど多い。 続いて、 車輪 1 〇巳に付与する制動力を判定用制動力減少量だけ変化させるのに必要な車 輪 1 0巳用の
Figure imgf000018_0003
の変化量として、 判定用減圧量△ \^(31 匕が導 出される。 判定用減圧量△ \^/(31 匕は、 判定用制動力減少量が多いほど値 が大きくなるように導出される。 判定用減圧量△ \^(31 匕が導出されると 、 処理が次のステップ 326に移行される。 なお、 判定用減圧量八 〇] 13は正の値である。
[0046] ステップ 326において、 第 1車輪である車輪 1 0八用の出力 〇圧の前 回値 \^/〇 1 匕が、 第 2目標 〇圧 〇 2丁 「と判定用減圧量△ 〇 1 匕との差である判定液圧よりも低いか否かの判定が行われる。 出力 〇圧の 前回値 \^(31 匕が判定液圧よりも低い場合 (326 : 丫巳3) 、 所定の期 間が経過しているとの判定がなされないため、 処理が前述したステップ 32 1 に移行される。 すなわち、 一方減圧処理が継続される。 一方、 出力 〇圧 の前回値 \^/(31 匕が判定液圧以上である場合 (326 : N0) 、 所定の期 間が経過しているとの判定がなされるため、 処理が次のステップ 327に移 行される。 \¥02020/175200 17 卩(:171? 2020 /005933
[0047] ステップ 327において、 一方減圧制御フラグ 1_〇2にオフがセッ トさ れ、 両輪等圧制御フラグ 1_〇3にオンがセッ トされる。 続いて、 ステップ 328では、 各出力 〇圧 \^/〇 1 , 〇 2として出力 〇圧の前回値 〇 1 匕が設定される。 すなわち、 各出力 \^/(3圧 \^(31 , \^/〇2が互い に同じ大きさとなる。 そして、 処理がステップ 31 7に移行される。 この場 合、 各保持弁 55 , 55巳に対する差圧指令値として 「0」 が設定される ため、 各保持弁 55 , 55巳は全開とされる。 また、 差圧調整弁 54 1 に 対する差圧指令値として各出力
Figure imgf000019_0001
\^(31 , 〇 2に応じた値に設定 され、 且つ、 ポンプ 59 1からブレーキ液が吐出される。 さらに、 各減圧弁 56八, 56巳の閉弁が維持される。 すなわち、 一方減圧処理が終了され、 双方減圧処理が開始される。 双方減圧処理とは、 各保持弁 55 , 55巳を それぞれ開弁させた状態で加圧機構 62 1 を作動させることによって車輪 1 0八用の
Figure imgf000019_0002
及び車輪 1 0巳用の
Figure imgf000019_0003
をそれぞれ減圧させ る処理である。 双方減圧処理が開始されると、 本処理ルーチンが一旦終了さ れる。
[0048] その一方で、 ステップ 323において、 両輪等圧制御フラグ !_ 03に才 ンがセッ トされている場合 (丫巳3) 、 処理が次のステップ 329に移行さ れる。 ステップ 329において、 各出力 〇圧 \^/〇 1 , \^〇2として等 圧目標
Figure imgf000019_0004
圧 \^(3丁丁 「が設定される。 そして、 処理がステップ 31 7に 移行される。
[0049] 両輪等圧制御フラグ !_〇3にオンがセッ トされている状況下で車両の制 動力の減少が要求されている場合、 双方減圧処理が実行されている。 そのた め、 車両の制動力の減少が要求されている状況下でステップ 323の判定が 「丫巳3」 になった場合、 双方減圧処理が継続されることとなる。 すなわち 、 双方減圧処理が実行される場合、 等圧目標
Figure imgf000019_0005
圧?\^/(3丁丁 「が減圧され る。 そのため、 ステップ 31 7において制動アクチユエータ 50を作動させ る場合、 各保持弁 55 , 55巳の全開が保持されつつ、 差圧調整弁 54 1 に対する差圧指令値が徐々に小さくなる。 その結果、 等圧目標 圧 〇 \¥02020/175200 18 卩(:171? 2020 /005933
丁丁 「の減圧に応じ、
Figure imgf000020_0001
が減圧される。
[0050] 両輪等圧制御フラグ 1_〇3にオンがセッ トされている状況下でも車両の 制動力の増大が要求されることもある。 車両の制動力の増大が要求されてい るときに両輪等圧制御フラグ 1_〇3にオンがセッ トされている場合として は、 双方減圧処理の実行中に車両の制動力の増大が要求された場合と、 双方 減圧処理の終了後において各 (3圧 0が互いに等しいときに車両の制動 力の増大が要求された場合とが挙げられる。 そのため、 車両の制動力の増大 が要求されている状況下でステップ 323の判定が 「丫巳3」 になってステ ップ 31 7の処理が実行されると、 第 2増圧処理が実行されることとなる。 第 2増圧処理では、 各保持弁 55 , 55巳を全開にした状態で加圧機構 6 2 1 を作動させることによって車輪
Figure imgf000020_0002
及び車輪 1 0巳
Figure imgf000020_0003
がそれぞれ増圧される。 具体的には、 第 2増圧処理では、 各保持弁 55 , 55巳に対する差圧指令値として 「0」 が設定されるため 、 各保持弁 55 , 55巳は全開とされる。 また、 差圧調整弁 54 1 に対す る差圧指令値として各出力
Figure imgf000020_0004
\^/〇2 (=?\^/(3丁丁 1〇 に 応じた値が設定され、 且つ、 ポンプ 59 1からブレーキ液が吐出される。 第 2増圧処理が実行される場合、 等圧目標
Figure imgf000020_0005
?\^/(3丁丁 「が増圧される。 そのため、 差圧調整弁 54 1 に対する差圧指令値が徐々に大きくなる。 これ により、 等圧目標
Figure imgf000020_0006
「の増圧に応じ、 各\^/(3圧 \^(3が増圧 される。 そして、 本処理ルーチンが一旦終了される。
[0051] その一方で、 ステップ 324において、 第 1車輪である車輪 1 0八用の 〇圧 \^(3の減圧が要求されていない場合 (N0) 、 処理が次のステップ 3 30に移行される。 ステップ 330において、 車輪 1 〇八用の出力 〇圧の 前回値 〇 1 匕が第 1 目標 〇圧 〇 1 丁 「以下であるか否かの判定が 行われる。 第 1 目標 〇圧 〇 1 丁 「が出力 〇圧の前回値 〇 1 匕よ りも高いということは、 車輪 1 0 用の\^/(3圧 \^(3の増圧、 すなわち車両 の制動力の増大が要求されていることを意味する。
[0052] 出力 〇圧の前回値 〇 1 匕が第 1 目標 〇圧 〇 1 丁 「よりも高い \¥02020/175200 19 卩(:171? 2020 /005933
場合 (330 : N0) 、 処理が次のステップ 33 1 に移行される。 ステップ 33 1 において、 増圧補正量八 〇 1 〇が導出される。 一方減圧処理の実 行中又は一方減圧処理の終了後で第 2車輪である車輪 1 0巳用の
Figure imgf000021_0001
〇が第 1車輪である車輪 1 0 用の\^/(3圧 \^(3よりも高い状態で、 車両の 制動力の増大が要求されることがある。 本実施形態では、 このような場合、 車輪 1 〇 用の保持弁 55 を閉弁して車輪 1 0 用の\^/(3圧 \^(3を保持 し、 加圧機構 62 1の作動によって車輪 1 0巳用の
Figure imgf000021_0002
を増大させ る第 1増圧処理が実行される。 増圧補正量
Figure imgf000021_0003
〇は、 第 1増圧処理で 用いられる。
[0053] 増圧補正量△ \^(31 〇の導出処理について説明する。 第 1
Figure imgf000021_0004
\NC ^ T rと車輪 1 0八用の出力
Figure imgf000021_0006
との差分が補正
Figure imgf000021_0005
圧増大 量として算出される。
Figure imgf000021_0007
圧増大量を基に、 補正制動力増大量が導出さ れる。
Figure imgf000021_0008
圧増大量は、
Figure imgf000021_0009
制御した場合の車輪 1 〇 用の\^/(3圧と、 現在の車輪 1 〇 用の 〇圧 〇との差分である。 補正制動力増大量は、 制動力配分比率 Xに基づいて各 〇圧 \^(3を制御した場合の車輪 1 0 に付与する制動力と、 現時点で車輪 1 〇八に付与している制動力との差分である。 そのため、 補正制動力増大量 は、 補正 〇圧増大量が多いほど多い。 続いて、 車輪 1 0巳に付与する制動 力を補正制動力増大量だけ変化させるのに必要な車輪 1 0巳用の
Figure imgf000021_0010
圧 〇の変化量として、 増圧補正量△ \^(31 〇が導出される。 増圧補正量八 〇 1 〇は、 補正制動力増大量が多いほど値が大きくなるように導出される 。 増圧補正量△ \^(31 〇が導出されると、 処理が次のステップ 332に移 行される。 なお、 増圧補正量八 〇] 〇は正の値である。
[0054] ステップ 332において、 各出力 〇圧 〇 1 , \^〇2が導出される 。 具体的には、 第 1車輪である車輪 1 0 用の出力 〇圧 〇 1 として出 力\^/(3圧の前回値 \^(31 匕が設定される。 また、 第 2目標 \^/(3圧 \^/〇 1 丁 「と増圧補正量八 〇 1 〇との和が、 第 2車輪である車輪 1 0巳用の出 力 〇圧 〇 2として導出される。 すなわち、 第 1増圧処理では、 出力 \¥02020/175200 20 卩(:171? 2020 /005933
〇圧 \^(31 を保持しつつ、
Figure imgf000022_0001
が増圧される。 そして、 処 理が次のステップ 31 7に移行される。 この場合、 車輪 1 〇八用の保持弁 5 5八は閉弁される一方で、 車輪 1 0巳用の保持弁 55巳は全開にされる。 ま た、 差圧調整弁 54 1 に対する差圧指令値として出力
Figure imgf000022_0002
た値が設定され、 且つ、 ポンプ 59 1からブレーキ液が吐出される。 第 1増 圧処理中では出力
Figure imgf000022_0003
そのため、 差圧調整弁 54 1 に対する差圧指令値が徐々に大きくなるため、 車輪 1 〇巳用の
Figure imgf000022_0004
圧 〇が増圧される。 その後、 本処理ルーチンが一旦終了される。
[0055] その一方で、 ステップ 330において、 出力 〇圧の前回値 〇 1 匕が 第 1 目標 〇圧 〇 1 丁 「以下である場合 (丫巳3) 、 処理が次のステッ プ333に移行される。
Figure imgf000022_0006
圧の前回値 \^(31
Figure imgf000022_0005
\ZVC 1 丁 「以下である場合、 実際の制動力配分比率が、 一方減圧処理の開始 前の制動力配分に相当する制動力配分比率 Xまで回復したと判断できる。 そ のため、 ステップ 333において、 各フラグ !_◦ 1 , !_〇2, !_〇3 にオフがセッ トされる。 続いて、 ステップ 334では、 第 1車輪である車輪 1 0八用の出力
Figure imgf000022_0008
として第
Figure imgf000022_0007
「が設定さ れる。 また、 第 2車輪である車輪 1 0巳用の出力 〇圧 〇 2として第 2
Figure imgf000022_0009
\^/〇2丁 「が設定される。 そして、 処理が次のステップ 31 7 に移行される。
[0056] すなわち、 第 1増圧処理では、 車輪 1 0巳用の \^/(3圧 \^(3の増圧によつ て実際の制動力配分比率が、 _方減圧処理の開始前の制動力配分に相当する 制動力配分比率 Xまで回復した以降では、 車輪 1 〇 用の保持弁 55 の閉 弁を解除した状態で各 〇圧 \^(3が増大される。 具体的には、 車輪 1 〇巳 用の保持弁 55巳に対する差圧指令値として 「0」 が設定され、 保持弁 55 巳が全開とされる。 また、 差圧調整弁 54 1 に対する差圧指令値として出力 〇圧 〇 2に応じた値が設定される。 そのため、 車輪 1 〇巳用の 〇圧
Figure imgf000022_0010
に追随させることができる。 また、 車輪 1 〇八 用の保持弁 55 に対する差圧指令値として出力
Figure imgf000022_0011
\¥02020/175200 21 卩(:171? 2020 /005933
圧 〇 2との差に応じた値が設定される。 これにより、 保持弁 55 の開 度が調整されるため、 車輪 1 0八用の\^/(3圧 \^(3を出力
Figure imgf000023_0001
追随させることができる。 その後、 本処理ルーチンが一旦終了される。
[0057] なお、 車両制動時において、 液圧回路 522に接続される 2つのホイール シリンダ 2 1
Figure imgf000023_0002
圧 \^(3を制御する際に制動制御装置 80によって実 行される処理ルーチンについては、 図 4及び図 5に示す処理ルーチンと同等 である。 そのため、 ここでは、 車輪 1 〇〇用の 〇圧 〇及び車輪 1 00 用の 〇圧 〇をそれぞれ制御するための処理ルーチンの説明については 割愛する。
[0058] 次に、 図 6を参照し、 本実施形態の作用及び効果について説明する。 図 6
(a) において、 太い実線は第
Figure imgf000023_0003
の推移を示し、 太い 破線は第 2車輪用の 0圧 \^(3の目標の推移を示している。 第 2車輪用の 〇圧 \^(3の目標とは、 例えば第
Figure imgf000023_0004
「のことである 圧 \^(3の推移を示し、 細い破線は、
Figure imgf000023_0005
移を示している。 第 1車輪用の 〇圧 〇の目標とは、 例えば第 1 目標 〇圧 \^/〇 1 丁 「のことである。
[0059] 図 6 (3) , (b) , (〇) , (〇〇 に示すように、 タイミング丁 1 0か ら所定の制動力配分に従った車両制動が開始される。 タイミング丁 1 0から タイミング丁 1 1 までの期間では、 要求車両制動力巳 〇[¾が増大される。 第 1車輪に付与する制動力と第 2車輪に付与する制動力との配分が、 所定の 制動力配分で保持されるため、 第 1
Figure imgf000023_0006
圧 \^(3よりも第 2車輪用 の 〇圧 〇が高い。 この場合、 制動アクチユエータ 50では第 2保持弁 が全開とされる。 例えば、 液圧回路 52 1では保持弁 55巳が第 2保持弁に 該当するため、 保持弁 55巳が全開とされる。 そして、 差圧調整弁 54 1 に 対する差圧指令値として第
Figure imgf000023_0007
じた値が設定 される。 タイミング丁 1 0からタイミング丁 1 1 までの期間では、 出力 〇 圧 〇 2として第 2目標 〇圧 〇 2丁 「が設定され、 第 1車輪用の出 力\^/(3圧 \^(31 として第
Figure imgf000023_0008
「が設定される。 そのた \¥0 2020/175200 22 卩(:171? 2020 /005933
め、 第 2保持弁が全開であっても、 第 2車輪用の 〇圧 〇を第 2目標 〇圧 \^〇2丁 「、 すなわち出力 〇圧 〇 2に追随させることができる 。 また、 第 1保持弁の制御モードは差圧モードとなる。 例えば、 液圧回路 5 2 1では保持弁 5 5 が第 1保持弁に該当するため、 保持弁 5 5八が差圧モ -ドで制御される。 そして、 第 1保持弁に対する差圧指令値として出力 〇 圧 〇 2との差分に応じた値が設定される。 これに 〇圧 〇を第 1 目標 〇圧 〇 1 丁 すなわち
Figure imgf000024_0001
追随させることができる。
[0060] タイミング丁 1 1からタイミング丁 1 2までの期間では、 要求車両制動力 巳 〇[¾が減少される。 タイミング丁 1 1では、 第 1 目標 〇圧 \^/〇 1 丁 「よりも第 2目標 〇圧 \^/〇2丁 「が高いため、 一方減圧処理が開始され る。 すなわち、 所定の制動力配分が、 一方減圧処理の開始時の制動力配分で ある開始時配分に相当する。 また、 制動力配分比率 Xが、 開始時配分に相当 する制動力配分比率である。
[0061 ] —方減圧処理では、 第 1 目標 〇圧 〇 1 丁 「が減圧されるにも拘わら ず、 第 1車輪用の出力 〇圧 〇 1がタイミング丁 1 1での大きさで保持 される。 この場合、 第 1保持弁が閉弁され、 第 1減圧弁の閉弁が維持される 。 例えば、 液圧回路 5 2 1では、 保持弁 5 5 が閉弁され、 減圧弁 5 6八の 閉弁が維持される。
[0062] このように第 1車輪用の 〇圧 〇が保持される場合、 第 2車輪用の出 力\^/ (3圧 \^/〇2は、
Figure imgf000024_0002
「よりも低くなる。 この場 合、 第 2保持弁が全開とされ、 第 2減圧弁の閉弁が維持される。 例えば、 液 圧回路 5 2 1では保持弁 5 5巳が全開とされ、 減圧弁 5 6巳の閉弁が維持さ れる。 そして、 差圧調整弁 5 4 1 に対する差圧指令値として出力
Figure imgf000024_0003
圧 〇 2に応じた値が設定される。 そのため、 第 2保持弁が全開であっても、 第 2車輪用の
Figure imgf000024_0004
圧 \^ (3を出力
Figure imgf000024_0005
〇 2に追随させることができる。
Figure imgf000024_0006
〇 1 に相当する、 第 1車輪に付与する制動力との和は、 第 1系統総制動 \¥0 2020/175200 23 卩(:171? 2020 /005933
力巳 丁 1 と等しい。 そのため、 第 2液圧系統 5 1 2側でも同じように各車 輪 1 0 (3 ,
Figure imgf000025_0001
を調整することにより、 車両の実際の制 動力を要求車両制動力巳 〇 に追随させることができる。
[0063] タイミング丁 1 2からは要求車両制動力巳 〇 の増大が開始される。 一 方減圧処理中では、 実際の制動力配分が所定の制動力配分と異なっている。 具体的には、 実際の制動力配分比率は、 制動力配分比率 Xよりも小さい。 そ のため、 タイミング丁 1 2では、 第 1車輪用の出力 〇圧の前回値 〇 1 匕が、 第 1 目標 〇圧 〇 1 丁 「よりも高い。 また、 第 2車輪用の 〇圧 〇が第 1車輪用の 〇圧 〇よりも高い。 そのため、 一方減圧処理が 終了され、 第 1増圧処理が開始される。
[0064] 第 1増圧処理では、 第 1 目標 〇圧 〇 1 丁 「が増圧されるにも拘わら ず、 第 1車輪用の出力 〇圧 〇 1の保持が継続される。 そのため、 第 1 保持弁の閉弁が継続される。 タイミング丁 1 2からタイミング丁 1 3までの 期間では、 出力 〇圧 〇 2が第 2目標 〇圧 〇 2丁 「よりも高い状 態が維持されるため、 第 2保持弁が全開で保持される。 例えば、 液圧回路 5 2 1では保持弁 5 5巳の全開が保持される。 そして、 差圧調整弁 5 4 1 に対 〇 2に応じた値が設定される。 その結
Figure imgf000025_0002
Figure imgf000025_0003
「の増大速度 よりも高い速度で増圧させることができる。 これにより、 第 1車輪に付与す る制動力を保持しつつも、 要求車両制動力巳 〇 の増大に追随して車両の 実際の制動力を増大させることができる。 また、 実際の制動力配分を所定の 制動力配分に接近させることができる。
[0065] 第 1増圧処理中のタイミング丁 1 3で、 第 1車輪用の出力 〇圧の前回値 〇 1 匕が第 1 目標 〇圧 〇 1 丁 「以下になったため、 実際の制動力 配分が所定の制動力配分に回復したと判断することができる。 すなわち、 第 1車輪用の
Figure imgf000025_0004
「と等しく、 且つ第 2 車輪用の
Figure imgf000025_0005
「と等しい状態になった と判断することができる。 すると、 第 1増圧処理では、 第 2保持弁は全開で \¥0 2020/175200 24 卩(:171? 2020 /005933
保持される一方で、 第 1保持弁の閉弁が解除されて第 1保持弁の制御モード が差圧モードとなる。 タイミング丁 1 4までは要求車両制動力巳 〇[¾が増 大される。 そのため、 タイミング丁 1 3からタイミング丁 1 4までの期間で は、 上述したタイミング丁 1 0からタイミング丁 1 1 までの期間と同じよう に、 制動アクチユエータ 5 0が制御される。 すなわち、 実際の制動力配分が 所定の制動力配分と等しい状態を維持しつつ、 各\^/ (3圧
Figure imgf000026_0001
が増圧される
[0066] 本実施形態では、 第 1車輪用の 〇圧 \^ (3よりも第 2車輪用の 〇圧 〇が高い状態で車両制動を制御する場合、 第 2保持弁を全開で保持しつつ 、 差圧調整弁 5 4 1 に対する差圧指令値及び第 1保持弁に対する差圧指令値 がそれぞれ調整される。 これにより、 車両の制動力の減少に際して第 1車輪 用の 〇圧 \^ (3は保持され、 第 2車輪用の 〇圧 \^ (3は加圧機構 6 2 1 によって減圧される。 そのため、 第 2減圧弁が作動されない分、 制動アクチ ユエータ 5 0での作動音の発生を抑制することができる。 また、 一方減圧処 理の終了後において要求車両制動力巳? 0 が増大される場合、 第 1保持弁 を差圧モードで制御する状態に適切に切り替えることにより、 実際の制動力 配分が所定の制動力配分と等しい状態を維持しつつ、 各車輪に付与する制動 力を増大させることができる。
[0067] タイミング丁 1 4からは要求車両制動力巳 〇 が減少される。 タイミン グ丁 1 4では、 第 2目標 〇圧 〇 2丁 「が第 1 目標 〇圧 〇 1 丁 「 よりも高いため、 一方減圧処理が開始される。 要求車両制動力巳 〇[¾の減 少はタイミング丁 1 7まで継続するものの、 一方減圧処理の実行中のタイミ ング丁 1 5で、 第 1車輪用の出力 〇圧の前回値 〇 1 匕が第 2目標 〇 圧 \^/〇2丁 「と等しくなる。 この場合、 第 1車輪用の 〇圧 \^ (3と第 2 車輪用の 0圧 (3とが互いに等しい状態になったと判断することができ る。 しかし、 本実施形態では、 タイミング丁 1 5からタイミング丁 1 6まで の期間では、 第 1車輪用の出力 〇圧の前回値 〇 1 匕が、 第 2目標 〇 圧 \^/〇2丁 「と判定用減圧量△ 〇 1 匕との差である判定液圧よりも低 \¥0 2020/175200 25 卩(:171? 2020 /005933
いため、 一方減圧処理の実行が継続される。 そして、 タイミング丁 1 6で、 第 1
Figure imgf000027_0001
圧の前回値 \^ (3 1 匕が上記判定液圧以上になるため 、 _方減圧処理が終了されて双方減圧処理が開始される。
[0068] タイミング丁 1 5以降でも一方減圧処理を継続し、
Figure imgf000027_0002
〇の減圧を継続させると、 液圧回路における、 差圧調整弁と各保持弁との 間の部分の中間液圧が第 1車輪用の 0圧 (3よりも低くなる。 例えば液 圧回路 5 2 1内では、 差圧調整弁 5 4 1 と各保持弁 5 5 , 5 5巳との間の 部分の中間液圧が車輪 1 0 用の\^/ (3圧 \^ (3よりも低くなる。 すると、 液 圧回路 5 2 1内では、 保持弁 5 5 に並列な逆止弁 5 7 を介し、 車輪 1 0 八用のホイールシリンダ 2 1内からブレーキ液が差圧調整弁 5 4 1側に流出 する。 これにより、 車輪 1 0八用の\^/ (3圧 \^ (3が減圧される。 そして、 夕 イミング丁 1 6で所定の期間が経過したとの判定がなされるため、 一方減圧 処理が終了され、 双方減圧処理が開始される。
[0069] ここで、 タイミング丁 1 5で一方減圧処理を終了して双方減圧処理を開始 させたとする。 この場合、 双方減圧処理が開始されると、 第 1保持弁が閉弁 していた状態から全開状態になる。 すると、 第 1
Figure imgf000027_0003
\^ (3と中 間液圧との差分が大きいと、 第 1
Figure imgf000027_0004
圧 \^ (3が急激に減圧される 可能性がある。 すなわち、 第 1車輪に付与する制動力が急激に減少するおそ れがある。
[0070] この点、 本実施形態では、 一方減圧処理の実行に伴う第 2車輪用の 〇圧 〇の減少によって第 1車輪用の出力 〇圧 〇 1 と第 2車輪用の出力 〇圧 0 2とが互いに等しい状態になってから所定の期間が経過するま では、 一方減圧処理が継続される。 そして、 所定の期間が経過するまでの間 では、 第 1保持弁に並列な逆止弁を利用することにより、 第 1車輪用の 〇 圧 \^/ (3が減圧される。 このように第
Figure imgf000027_0005
される と、 第 1
Figure imgf000027_0006
圧 \^ (3と中間液圧との差分が減少される。 つまり、 当該差圧を十分に小さく してから、 _方減圧処理が終了されて双方減圧処理 が開始されることとなる。 これにより、 一方減圧処理から双方減圧処理への \¥0 2020/175200 26 卩(:171? 2020 /005933
移行時における第 1車輪用の 〇圧 〇の急激な変化、 すなわち第 1車輪 に付与する制動力の急激な変化を抑制することができる。 なお、 本実施形態 では、 タイミング丁 1 5からタイミング丁 1 6までの期間では、 一方減圧処 理の実行によって差圧調整弁 5 4 1 に対する差圧指令値が調整されるように している。 しかし、 当該期間でも、 タイミング丁 1 6以降と同様に、 差圧調 整弁 5 4 1 に対する差圧指令値として等圧目標
Figure imgf000028_0001
圧 〇丁丁 「に応じた 値を設定するようにしてもよい。
[0071 ] タイミング丁 1 6から双方減圧処理が開始されると、 第 1保持弁及び第 2 保持弁がそれぞれ全開で保持されるようになる。 要求車両制動力巳 0 の 減少はタイミング丁 1 7まで継続される。 そのため、 タイミング丁 1 6から タイミング丁 1 7までの期間では、 双方減圧処理が実行される。 すなわち、 当該期間では、 第 1保持弁及び第 2保持弁をそれぞれ全開で保持していても 、 差圧調整弁 5 4 1 に対する差圧指令値を可変させることにより、 各 〇圧 を減圧させることができる。 つまり、 各減圧弁 5 6 , 5 6巳を作動 させることなく各\^/ (3圧 \^ (3を減圧させることができる。 したがって、 車 両制動中における制動アクチユエータ 5 0の静粛性を高めることができる。
[0072] タイミング丁 1 7からは要求車両制動力巳 9 0 が増大される。 双方減圧 処理中では各\^/ (3圧 \^ (3が互いに等しいと判断することができる。 そのた め、 タイミング丁 1 7で第 2増圧処理が開始される。 要求車両制動力巳 〇 の増大はタイミング丁 1 8まで継続される。 そのため、 タイミング丁 1 7 からタイミング丁 1 8までの期間では、 第 1保持弁及び第 2保持弁をそれぞ れ全開の状態に維持していても、 差圧調整弁 5 4 1 に対する差圧指令値を可 変させることにより、 各\^/ (3圧 \^ (3を増圧させることができる。
[0073] タイミング丁 1 8からは要求車両制動力巳 〇 が減少される。 第 2増圧 処理中では各\^/ (3圧 \^ (3が互いに等しいと判断することができる。 そのた め、 タイミング丁 1 8で双方減圧処理が開始される。 要求車両制動力巳 〇 8の減少はタイミング丁 1 9まで継続される。 そのため、 タイミング丁 1 8 からタイミング丁 1 9までの期間では、 第 1保持弁及び第 2保持弁をそれぞ \¥0 2020/175200 27 卩(:171? 2020 /005933
れ全開で保持していても、 差圧調整弁 5 4 1 に対する差圧指令値を可変させ ることにより、 各\^/ (3圧 \^ (3を減圧させることができる。 つまり、 各減圧 弁 5 6 , 5 6巳を作動させることなく各\^/ (3圧 \^ (3を減圧させることが できる。 したがって、 車両制動中における制動アクチユエータ 5 0の静粛性 を高めることができる。
[0074] なお、 タイミング丁 1 9で要求車両制動力巳 〇 が 「0」 となる。 すな わち、 車両制動が終了される。
(第 2実施形態)
次に、 車両の制動装置の第 2実施形態を図 7及び図 8に従って説明する。 第 2実施形態では、 一方減圧処理を実行したために各出力
Figure imgf000029_0001
0 2が互いに等しい状態になった以降で車両の制動力を増大させる際に おける制御内容が、 第 1実施形態と相違している。 そこで、 以下の説明にお いては、 第 1実施形態と相違している部分について主に説明するものとし、 第 1実施形態と同一又は相当する部材構成には同一符号を付して重複説明を 省略するものとする。
[0075] 図 7には、 車両制動時において、 液圧回路 5 2 1 に接続される 2つのホイ —ルシリンダ
Figure imgf000029_0002
を制御する際に制動制御装置 8 0によっ て実行される処理ルーチンの一部が図示されている。
[0076] 本処理ルーチンにおいて一方減圧処理 ( 3 2 1 , 3 2 2 ) が実行されると 、 第 1車輪である車輪 1 0八用の出力 〇圧 〇 1が保持され、 第 2車輪 である車輪 1 0巳用の出力 〇圧 〇 2が減圧される。 そして、 ステップ 3 2 6において、 第 1車輪である車輪 1 0 用の出力 〇圧の前回値 〇 1 匕が、 第 2目標 〇圧 〇 2丁 「と判定用減圧量△ 〇 1 匕との差で ある判定液圧以上になった場合 ( N 0 ) 、 配分補正制御フラグ !_◦ 1 に才 フがセッ トされ、 且つ両輪等圧制御フラグ !_ 0 3にオンがセッ トされる ( 3 2 7 ) 。 これにより、 一方減圧処理が終了される。
[0077] そして、 本処理ルーチンの次回の実行時では、 ステップ 3 2 3において、 両輪等圧制御フラグ !_ 0 3にオンがセッ トされているとの判定がなされ ( \¥02020/175200 28 卩(:171? 2020 /005933 丫巳3) 、 図 7に示すように、 処理がステップ 34 1 に移行される。 ステッ プ34 1 において、 第 1車輪である車輪 1 0八用の\^/(3圧 \^(3の増圧が要 求されているか否かの判定が行われる。
[0078] 増圧要求がない場合 (34 1 : N0) 、 処理が次のステップ 342に移行 される。 ステップ 342では、 各出力 〇圧 \^/〇 1 , \^〇2として等圧
Figure imgf000030_0001
「が設定される。 そして、 処理がステップ 31 7に移 行される。 ステップ 31 7では、 各保持弁 55八, 55巳が全開とされる。 また、 差圧調整弁 54 1 に対する差圧指令値として各出力
Figure imgf000030_0002
〇 1 , \^/〇2に応じた値が設定される。 増圧要求がなく、 減圧要求がある場合、 等圧目標 〇圧 〇丁丁 「が減圧されるため、 ステップ 342及びステッ プ31 7の実行により、 双方減圧処理が実行される。 双方減圧処理中では各
Figure imgf000030_0003
〇 2が減圧されるため、 差圧調整弁 54 1 に対す る差圧指令値は徐々に小さくなる。 その結果、 等圧目標
Figure imgf000030_0004
圧 〇丁丁 「 の減圧に応じ、
Figure imgf000030_0005
が減圧される。
[0079] —方、 ステップ 34 1 において、 増圧要求がある場合 (丫巳3) 、 処理が 次のステップ 343に移行される。 ステップ 343において、 一方減圧制御 フラグ !_◦ 2にオンがセッ トされ、 且つ両輪等圧制御フラグ !_◦ 3に才 フがセッ トされる。 そして、 第 3増圧処理が実行される。 第 3増圧処理では 、 ステップ 344において、 上記ステップ 33 1 と同様に、 増圧補正量八 〇 1 〇が導出される。 そして、 次のステップ 345において、 上記ステッ プ332と同様に、 各出力
Figure imgf000030_0006
\^/〇2が設定される。 その後 、 処理が前述したステップ 31 7に移行される。
[0080] すなわち、 第 3増圧処理が開始されると、 車輪 1 〇八用の保持弁 55八は 閉弁される一方で、 車輪 1 0巳用の保持弁 55巳は全開にされる。 また、 差 圧調整弁 54 1 に対する差圧指令値として出力
Figure imgf000030_0007
圧 〇 2に応じた値が 設定され、 且つ、 ポンプ 59 1からブレーキ液が吐出される。 第 3増圧処理 中では出力
Figure imgf000030_0008
そのため、 差圧調整弁 54 1 に対 する差圧指令値が徐々に大きくなるため、 車輪 1 〇巳用の \^(3が増 \¥0 2020/175200 29 卩(:171? 2020 /005933
圧される。 その後、 本処理ルーチンが一旦終了される。
[0081 ] 第 3増圧処理の実行による第 2車輪である車輪 1 〇巳用の出力
Figure imgf000031_0001
〇 2の増圧によって、 制動力配分が所定の制動力配分に回復すると、 ステッ プ3 3 0において、 車輪 1 0八用の出力 〇圧の前回値 〇 1 匕が第 1 目 標 〇圧 \^/〇 1 丁 「以下であるとの判定がなされる。 すると、 ステップ 3 3 3 , 3 3 4の各処理が実行された上で、 ステップ 3 1 7において制動アク チユエータ 5 0が作動されることとなる。 すなわち、 第 3増圧処理では、 制 動力配分が所定の制動力配分に回復した場合、 第 1車輪である車輪 1 〇八用 の保持弁 5 5 の閉弁を解除した状態で加圧機構 6 2 1 を作動させることに よって、 制動力配分が保持されるように各 (3圧 (3が増圧される。
[0082] なお、 車両制動時において、 液圧回路 5 2 2に接続される 2つのホイール シリンダ 2 1
Figure imgf000031_0002
圧 \^ (3を制御する際に制動制御装置 8 0によって実 行される処理ルーチンについては、 上記で説明した処理ルーチンと同等であ る。 そのため、 ここでは、 車輪 1 〇〇用の 〇圧 〇及び車輪 1 0 0用の 〇圧 \^ (3をそれぞれ制御するための処理ルーチンの説明については割愛 する。
[0083] 次に、 図 8を参照し、 本実施形態の作用及び効果のうち、 上記第 1実施形 態と相違する作用及び効果を中心に説明する。 図 8において、 太い実線は第 2車輪用の
Figure imgf000031_0004
の推移を示し、 太い破線は第
Figure imgf000031_0003
丁 「の推移を示している。 また、 細い実線は第 1
Figure imgf000031_0005
\^ (3の推 移を示し、 細い破線は第 1
Figure imgf000031_0006
\^ (3 1 丁 「の推移を示している。
[0084] —方減圧処理では、
Figure imgf000031_0007
が保持され、 その上 で、 第 2車輪用の出力 〇圧 〇 2が減圧される。 そのため、 図 8に示す ように、 第 1車輪用の 〇圧 〇が保持される一方で、 第 2車輪用の 〇 圧 〇が減圧される。 そして、 タイミング丁 2 1で、 第 1車輪用の出力 〇圧の前回値 \^ (3 1
Figure imgf000031_0008
「と等しくなる。 その 後のタイミング丁 2 2で、 第 1車輪用の出力 〇圧の前回値 〇 1 匕が、 第 2目標 〇圧 〇 2丁 「と判定用減圧量△ 〇 1 匕との差である判定 \¥0 2020/175200 30 卩(:171? 2020 /005933
液圧以上になる。 そのため、 所定の期間が終了したと判定できるため、 一方 減圧処理が終了されて双方減圧処理が開始される。 双方減圧処理の実行中の タイミング丁 2 3で車両の制動力の増大が要求されるようになると、 第 1車 輪用の
Figure imgf000032_0001
圧 〇の増圧が要求されるため、 双方減圧処理が終了されて第 3増圧処理が開始される。
[0085] 第 3増圧処理が開始されると、 タイミング丁 2 3では制動力配分が、 開始 時配分である所定の制動力配分と異なっているため、 第 1車輪用の出力 〇 圧 \^ (3 1が保持される一方で、
Figure imgf000032_0002
が増圧さ れる。 この場合、
Figure imgf000032_0003
「よりも 高くなるため、 第 2車輪用の 〇圧 〇は、 第 2目標 〇圧 〇 2丁 「 よりも速い速度で高くなる。
[0086] そして、 タイミング丁 2 4で、 第 1車輪用の出力 〇圧の前回値 〇 1 匕が第 1 目標 〇圧 〇 1 丁 「未満の状態から前回値 〇 1 匕が第 1 目
Figure imgf000032_0004
丁 「以上の状態に移行すると、 制動力配分が所定の制動力 配分に戻ったと判断できる。 すると、 タイミング丁 2 4以降で車両の制動力 の増大が継続される場合、 制動力配分を所定の制動力配分で保持したままで 圧調整弁 5 4 1 に対する差圧指
Figure imgf000032_0005
( = ? \^/〇2丁 〇 に応じた値 が設定される。 出力 〇圧 〇 2は徐々に高くなる。 また、 第 2保持弁が 全開状態とされる。 そのため、
Figure imgf000032_0006
を出力
Figure imgf000032_0007
〇 2に追随させることができる。
[0087] また、
Figure imgf000032_0008
〇圧 〇 2との差分に応じた値が設定される。 これにより、 第 1車輪用の 〇圧 \^ (3を出力
Figure imgf000032_0009
圧 \^ (3 1 に追随させることができる。 したがって 、 制動力配分を所定の制動力配分で保持しつつ、 車両の制動力を要求車両制 動力巳 〇 に追随させることができる。 すなわち、 本実施形態では、 車両 の制動力を増大させるときには、 実際の制動力配分と所定の制動力配分との 乖離を小さくすることができる。 特に、 制動力の増大量が多くなる可能性が \¥0 2020/175200 31 卩(:171? 2020 /005933
ある場合、 又は、 実際の制動力配分と所定の制動力配分との乖離による車両 の安定性への影響が許容の範囲を超えるような場合には、 実際の制動力配分 と所定の制動力配分との乖離が大きくならないように、 実際の制動力配分が 所定の制動力配分に戻ったと判断された以降では実際の制動力配分が所定の 制動力配分である状態を維持したままで各 〇圧 \^ (3を増圧させることが 好ましい。
[0088] なお、 タイミング丁 2 5からは車両の制動力の減少が要求される。 そのた め、 第 3増圧処理が終了されて一方減圧処理が開始される。 タイミング丁 2 6で、
Figure imgf000033_0001
圧の前回値 \^ (3 1 匕が、
Figure imgf000033_0002
〇 2丁 「と判定用減圧量△ 〇 1 匕との差である判定液圧以上の状態から 、 前回値 \^ (3 1 匕が判定液圧未満の状態に移行する。 すなわち、 第 2車輪 用の (3圧 0の減圧によって各 (3圧 (3が互いに等しい状態になっ たと判断することができる。 そのため、 タイミング丁 2 6以降において所定 の期間が経過したと判定されると、 一方減圧処理が終了されて双方減圧処理 が開始される。
[0089] (変更例)
上記各実施形態は、 以下のように変更して実施することができる。 上記各 実施形態及び以下の変更例は、 技術的に矛盾しない範囲で互いに組み合わせ て実施することができる。
[0090] 上記各実施形態では、 一方減圧処理による第
Figure imgf000033_0003
減圧によって第
Figure imgf000033_0004
とが互 いに等しい状態になったと判定された時点から所定の期間が経過したと判定 されることを条件に、 一方減圧処理を終了するようにしている。 上記各実施 形態では、
Figure imgf000033_0005
圧の前回値 \^ (3 1 匕が、 第 2目標 〇圧 〇 2丁 「と判定用減圧量△ 〇 1 匕との差である判定液圧以上になっ たときに、 所定の期間が経過したと判定するようにしている。 しかし、 こう した判定とは異なる方法で所定の期間が経過したか否かを判定するようにし てもよい。 例えば、 一方減圧処理中において、
Figure imgf000033_0006
圧の前回値 〇 1 \¥02020/175200 32 卩(:171? 2020 /005933
匕が第 2目標 \^/(3圧 〇 2丁 「以上になったときに、 第 2車輪用の 〇圧 〇と第 1車輪用の 〇圧 〇とが互いに等しい状態になったと判定し 、 この時点からの経過時間が所定時間になったときに所定の期間が経過した と判定するようにしてもよい。 この場合、 所定時間を、 規定時間で固定させ てもよいし、 第 2
Figure imgf000034_0001
\^/〇2丁 「の減圧速度に応じて可変させるよ うにしてもよい。
[0091]
Figure imgf000034_0002
の減圧によって第 2車輪
Figure imgf000034_0003
とが互いに等しい状態になっ たとの判定がなされたときに、 一方減圧処理を終了して双方減圧処理を開始 させるようにしてもよい。 この場合、 図 4及び図 5に示した処理ルーチンに おいて、 ステップ 326では、 第 1車輪用の出力 〇圧の前回値 〇 1 匕 が第 2目標 〇圧 〇 2丁 「よりも低いか否かの判定を行うことが望まし い。 そして、 前回値 \^(31
Figure imgf000034_0004
「よりも低い場 合 (326 : 丫巳3) 、 一方減圧処理が継続される。 一方、 前回値 \^/〇 1 匕が第 2目標 \^/(3圧 〇 2丁 「以上になった場合 (326 : N0) 、 双方 減圧処理が開始される。
[0092] 上記各実施形態では、 一方減圧処理による第 2車輪用の \^/(3圧 〇の 減圧によって第
Figure imgf000034_0005
とが互 いに等しい状態になった以降でも車両の制動力を減少させるときには、 双方 減圧処理が実行される。 しかし、 第 2車輪用の \^/(3圧 \^(3が 「0」 になる まで一方減圧処理を継続させ、 第 2車輪用の \^/(3圧 \^(3が 「0」 になって も車両の制動力の減少が未だ要求されるときには、 第 1車輪用の \^/(3圧 〇を減圧させるようにしてもよい。
[0093] 第 1増圧処理を、 制動力配分が所定の制動力配分と同じであるか否かに 拘わらず、 第 1車輪用の 〇圧 〇を保持しつつ第 2車輪用の 〇圧 〇を増圧させる処理としてもよい。 図 9には、 このような第 1増圧処理が実 行される場合における各\^/(3圧 \^(3の推移が図示されている。 図 9に示す 例では、 タイミング丁 30から所定の制動力配分に従って第 1車輪に付与す \¥0 2020/175200 33 卩(:171? 2020 /005933
る制動力及び第 2車輪に付与する制動力がそれぞれ増大されるように、 各
Figure imgf000035_0001
が増圧される。 タイミング丁 3 1で車両の制動力の減少が要求さ れるようになるため、 一方減圧処理が開始される。 一方減圧処理の実行中の タイミング丁 3 2で車両の制動力の増大が要求されるようになる。 すると、 _方減圧処理が終了されて第 1増圧処理が開始される。
[0094] 第 1増圧処理では、 第 1保持弁が閉弁されるとともに、 第 2保持弁が全開 とされる。 また、 差圧調整弁 5 4 1 に対する差圧指令値として第 2車輪用の じた値が設定される。
Figure imgf000035_0002
第 2
Figure imgf000035_0003
と増圧補正量△ \^ (3 1 〇との和として導出される 。 こうした第 1増圧処理の実行中におけるタイミング丁 3 3で制動力配分が 所定の制動力配分に戻るものの、 タイミング丁 3 3以降でも第 1保持弁が閉 弁されるとともに第 2保持弁が全開とされる状態が継続される。 すると、 夕 イミング丁 3 3からタイミング丁 3 4までの期間では、 第 2車輪用の 〇圧 〇が第 2目標 〇圧 〇 2丁 「よりも高く、 且つ第 1車輪用の 〇圧
Figure imgf000035_0004
「よりも低い状態が継続する。 タイミン グ丁 3 4で車両の制動力の減少が要求されるようになるため、 第 1増圧処理 が終了されて一方減圧処理が開始される。
[0095] このような制御構成によれば、 上記各実施形態と比較し、 車両の制動力を 増大させる際に第 1保持弁の弁体を移動させる機会を少なくすることができ る。 そのため、 例えば何らかの要因で第 1
Figure imgf000035_0005
圧 \^ (3と中間液圧 との差分が大きい状態で第 1保持弁の弁体を移動させてしまうことによる作 動音の発生の可能性を少なくすることができる。
[0096] 加圧機構は、 各保持弁 5 5八, 5 5巳を挟んだホイールシリンダ 2 1の 反対側からブレーキ液の給排を行うことができるものであれば、 上記実施形 態で説明した加圧機構 6 2 1 とは異なる構成であってもよい。 例えば、 他の 構成の加圧機構としては、 例えば 「特開 2 0 1 7 - 1 5 4 5 6 3号公報」 及 び 「特開 2 0 0 8 _ 1 8 4 0 5 7号公報」 に開示されているような電動シリ ンダを挙げることができる。 電動シリンダとは、 電動モータの駆動量に応じ \¥0 2020/175200 34 卩(:17 2020 /005933
た量のブレーキ液を吐出することのできるものである。 また、 他の構成の加 圧機構としては、 例えば 「特開 2 0 1 8— 3 4 6 3 1号公報」 に開示されて いるような、 アキュムレータと、 制御バルブとを備えたものであってもよい
[0097] 次に、 上記実施形態及び変更例から把握できる技術的思想について記載す る。
(イ) 複数のホイールシリンダ内の液圧を調整する制動アクチュエータと 、 前記制動アクチュエータを制御する制御装置と、 を備え、
前記制動アクチュエータは、 前記各ホイールシリンダにブレーキ液を供給 する加圧機構と、 前記各ホイールシリンダのうちの第 1ホイールシリンダが 接続される第 1液路と、 前記第 1液路に設けられ、 且つ前記第 1ホイールシ リンダへのブレーキ液の流入を規制する際に閉弁される第 1保持弁と、 前記 各ホイールシリンダのうちの第 2ホイールシリンダが接続される第 2液路と 、 前記第 2液路に設けられ、 且つ前記第 2ホイールシリンダへのブレーキ液 の流入を規制する際に閉弁される第 2保持弁と、 を有し、
前記制御装置は、 前記第 1ホイールシリンダ内の液圧である第 1液圧より も前記第 2ホイールシリンダ内の液圧である第 2液圧が高い状態で車両の制 動力を減少させるときに、 前記第 1保持弁を閉弁して前記第 1液圧を保持し つつ、 前記第 2保持弁を開弁させた状態で前記加圧機構を作動させることに よって前記第 2液圧を減圧させる一方減圧処理を実行するようになっており 前記第 1液圧に応じた制動力が付与される車輪を第 1車輪とし、 前記第 2 液圧に応じた制動力が付与される車輪を第 2車輪とした場合、
前記制御装置は、 前記 _方減圧処理では、 前記第 1液圧の保持に伴う前記 第 1車輪に付与する制動力の減少制限量が多いほど前記第 2液圧の減圧量が 多くなるように前記加圧機構を制御する、 車両の制動装置。
[0098] 車両制動時に、 設定されている制動力配分によっては第 2液圧が第 1液圧 よりも高くなることがある。 このような状況下で車両の制動力の減少が要求 \¥0 2020/175200 35 卩(:171? 2020 /005933
されることがある。 従来の技術を採用すれば、 第 1保持弁を閉弁させること によって第 1液圧を保持したまま、 第 2液圧を減圧させることは可能である 。 しかし、 第 1液圧が保持されるため、 車両の実際の制動力と要求制動力と の間に乖離が生じるおそれがある。
[0099] この点、 上記構成では、 第 1液圧よりも第 2液圧が高い状態で車両の制動 力の減少が要求された場合、 一方減圧処理が実行される。 一方減圧処理では 、 第 1保持弁を閉弁して第 1液圧を保持した状態で、 加圧機構の作動によっ て第 2液圧が減圧される。 しかも、 第 1液圧の保持に伴う第 1車輪に付与す る制動力の減少制限量を加味して第 2液圧が減圧される。 すなわち、 第 1車 輪に付与する制動力が減少されない分、 第 2車輪に付与する制動力が多めに 減少される。 そのため、 第 1液圧の保持に伴う車両の実際の制動力と要求制 動力との乖離を抑制することができるようになる。

Claims

\¥0 2020/175200 36 卩(:17 2020 /005933
請求の範囲
[請求項'! ] 車両に設けられている複数のホイールシリンダ内へのブレーキ液の 給排を行う制動アクチユエータと、 前記制動アクチユエータを制御す る制御装置と、 を備え、
前記制動アクチユエータは、 前記各ホイールシリンダにブレーキ液 を供給する加圧機構と、 前記各ホイールシリンダのうちの第 1ホイー ルシリンダが接続される第 1液路と、 前記第 1液路に設けられ、 且つ 前記第 1ホイールシリンダへのブレーキ液の流入を規制する際に閉弁 される第 1保持弁と、 前記各ホイールシリンダのうちの第 2ホイール シリンダが接続される第 2液路と、 前記第 2液路に設けられ、 且つ前 記第 2ホイールシリンダへのブレーキ液の流入を規制する際に閉弁さ れる第 2保持弁と、 を有し、
前記制御装置は、
前記第 1ホイールシリンダ内の液圧である第 1液圧よりも前記第 2 ホイールシリンダ内の液圧である第 2液圧が高い状態で車両の制動力 を減少させるときに、 前記第 1保持弁を閉弁して前記第 1液圧を保持 しつつ、 前記第 2保持弁を開弁させた状態で前記加圧機構を作動させ ることによって前記第 2液圧を減圧させる一方減圧処理と、
前記一方減圧処理の実行中又は当該一方減圧処理の終了後において 前記第 1液圧よりも前記第 2液圧が高い状態で車両の制動力を増大さ せる場合、 前記第 1保持弁を閉弁して前記第 1液圧を保持し、 前記加 圧機構の作動によって前記第 2液圧を増圧させる第 1増圧処理と、 を 実行する
車両の制動装置。
[請求項 2] 前記第 1液圧に応じた制動力が付与される車輪を第 1車輪とし、 前 記第 2液圧に応じた制動力が付与される車輪を第 2車輪とし、 前記第 1車輪に付与する制動力と前記第 2車輪に付与する制動力との配分を 制動力配分とした場合、 \¥0 2020/175200 37 卩(:171? 2020 /005933
前記制御装置は、 前記第 1増圧処理では、 前記制動力配分が、 前記 _方減圧処理の開始時の前記制動力配分である開始時配分で前記各車 輪に制動力を付与する場合よりも前記第 2車輪に付与する制動力を小 さくする配分であるときには、 前記第 1保持弁を閉弁して前記第 1液 圧を保持した状態での前記加圧機構の作動によって前記第 2液圧を増 圧させ、 前記制動力配分が前記開始時配分に回復した以降では、 前記 第 1保持弁の閉弁を解除した状態で前記加圧機構を作動させることに よって前記第 1液圧及び前記第 2液圧をそれぞれ増圧させる
請求項 1 に記載の車両の制動装置。
[請求項 3] 前記第 1液圧に応じた制動力が付与される車輪を第 1車輪とし、 前 記第 2液圧に応じた制動力が付与される車輪を第 2車輪とした場合、 前記制御装置は、 前記一方減圧処理では、 前記第 1液圧の保持に伴 う前記第 1車輪に付与する制動力の減少制限量が多いほど前記第 2液 圧の減圧量が多くなるように前記加圧機構を制御する 請求項 1又は請求項 2に記載の車両の制動装置。
[請求項 4] 前記制御装置は、 前記一方減圧処理の実行によって前記第 1液圧及 び前記第 2液圧が互いに等しくなった以降でも車両の制動力を減少さ せるときに、 前記第 1保持弁及び前記第 2保持弁をそれぞれ開弁させ た状態で前記加圧機構を作動させることによって前記第 1液圧及び前 記第 2液圧をそれぞれ減圧させる双方減圧処理を実行する
請求項 1〜請求項 3のうち何れか一項に記載の車両の制動装置。
[請求項 5] 前記制御装置は、 前記双方減圧処理の実行中又は当該双方減圧処理 の終了後において車両の制動力を増大させる場合、 前記第 1保持弁及 び前記第 2保持弁をそれぞれ開弁させた状態で前記加圧機構を作動さ せることによって前記第 1液圧及び前記第 2液圧をそれぞれ増圧させ る第 2増圧処理を実行する
請求項 4に記載の車両の制動装置。
[請求項 6] 前記制御装置は、 前記一方減圧処理の実行によって前記第 1液圧及 \¥0 2020/175200 38 卩(:171? 2020 /005933
び前記第 2液圧が互いに等しくなった以降でも車両の制動力を減少さ せるときに、 前記第 1保持弁及び前記第 2保持弁をそれぞれ開弁させ た状態で前記加圧機構を作動させることによって前記第 1液圧及び前 記第 2液圧をそれぞれ減圧させる双方減圧処理を実行するようになっ ており、
前記制御装置は、 前記双方減圧処理の実行中又は当該双方減圧処理 の終了後において車両の制動力を増大させる場合、 前記制動力配分が 、 前記開始時配分で前記各車輪に制動力を付与する場合よりも前記第 2車輪に付与する制動力を小さくする配分であるときには、 前記第 1 保持弁を閉弁して前記第 1液圧を保持し、 前記加圧機構の作動によっ て前記第 2液圧を増圧させ、 前記制動力配分が前記開始時配分に回復 した以降では、 前記第 1保持弁の閉弁を解除した状態で前記加圧機構 を作動させることによって前記第 1液圧及び前記第 2液圧をそれぞれ 増圧させる第 3増圧処理を実行する
請求項 2に記載の車両の制動装置。
[請求項 7] 前記第 1液路及び前記第 2液路には、 前記保持弁と並列に配置され ている逆止弁がそれぞれ接続されており、
前記各逆止弁は、 前記液路において前記保持弁よりも前記ホイール シリンダ側の液圧が前記保持弁よりも前記ホイールシリンダの反対側 の液圧よりも高いときに、 前記保持弁よりも前記ホイールシリンダ側 から前記ホイールシリンダの反対側へのブレーキ液の流動を許容する ものであり、
前記制御装置は、 前記一方減圧処理の実行によって前記第 1液圧及 び前記第 2液圧が互いに等しい状態になっても車両の制動力の減少が 継続される場合、 当該状態になってから所定の期間が経過してから前 記一方減圧処理を終了して前記双方減圧処理を開始する
請求項 4〜請求項 6のうち何れか一項に記載の車両の制動装置。
PCT/JP2020/005933 2019-02-28 2020-02-17 車両の制動装置 WO2020175200A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-035936 2019-02-28
JP2019035936A JP7256444B2 (ja) 2019-02-28 2019-02-28 車両の制動装置

Publications (1)

Publication Number Publication Date
WO2020175200A1 true WO2020175200A1 (ja) 2020-09-03

Family

ID=72238552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005933 WO2020175200A1 (ja) 2019-02-28 2020-02-17 車両の制動装置

Country Status (2)

Country Link
JP (1) JP7256444B2 (ja)
WO (1) WO2020175200A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254029A (ja) * 2009-04-22 2010-11-11 Advics Co Ltd ブレーキ制御装置
JP2012051456A (ja) * 2010-09-01 2012-03-15 Hitachi Automotive Systems Ltd ブレーキ制御装置
JP2012116374A (ja) * 2010-12-02 2012-06-21 Hitachi Automotive Systems Ltd ブレーキ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254029A (ja) * 2009-04-22 2010-11-11 Advics Co Ltd ブレーキ制御装置
JP2012051456A (ja) * 2010-09-01 2012-03-15 Hitachi Automotive Systems Ltd ブレーキ制御装置
JP2012116374A (ja) * 2010-12-02 2012-06-21 Hitachi Automotive Systems Ltd ブレーキ制御装置

Also Published As

Publication number Publication date
JP7256444B2 (ja) 2023-04-12
JP2020138651A (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
KR101745048B1 (ko) 자동차용 전기 유압식 제동 시스템을 제어하는 방법 및 디바이스
CN107531216B (zh) 具有多路调节的制动装置和用于压力调节的方法
US9610930B2 (en) Vehicle brake system
US20140028083A1 (en) Braking system and method for controlling a braking system
US8602507B2 (en) Method for controlling the activation of a hydraulic vehicle brake system and electromechanical brake booster
WO2010119889A1 (ja) Bbw式ブレーキ装置
JP2007500104A (ja) 自動車のブレーキシステムをコントロールするための方法
CN110035935B (zh) 用于操控车辆中的液压的制动系统的方法
CN101193784A (zh) 对用于陆地交通工具的液压制动系统减弱的制动效果的补偿
JP2009269465A (ja) 制動装置の制御装置
JP2022512134A (ja) 自律走行する陸上車両のための電気液圧による動力式車両ブレーキ装置
JP5386043B2 (ja) 車両用ブレーキ装置及びその制御方法
US9399987B2 (en) Method for performing open-loop/closed-loop control of the boosting of a braking force of a brake system, brake booster, and control unit
JP4438342B2 (ja) 車両の運動制御装置
WO2020175200A1 (ja) 車両の制動装置
CN114728641B (zh) 用于操控车辆中的液压的制动系统的方法
CN102036867A (zh) 车辆液压制动系统的压力发生器和该压力发生器的操作方法
US20150314763A1 (en) Brake System for a Land Vehicle and Method for Controlling a Brake System
KR102338692B1 (ko) 브레이크 시스템, 및 브레이크 시스템의 제어 방법
JP2008290487A (ja) ブレーキ制御装置
JP6536610B2 (ja) 車両の制動制御装置
CN105008190B (zh) 具有临时存储装置的液压制动系统
JP2002316631A (ja) 液圧制御装置およびブレーキ液圧制御装置
JP2001140765A (ja) ポンプ制御装置
JP2001294140A (ja) ブレーキ液圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762924

Country of ref document: EP

Kind code of ref document: A1