JP5440698B2 - 電動機の制御装置および制御方法 - Google Patents

電動機の制御装置および制御方法 Download PDF

Info

Publication number
JP5440698B2
JP5440698B2 JP2012517054A JP2012517054A JP5440698B2 JP 5440698 B2 JP5440698 B2 JP 5440698B2 JP 2012517054 A JP2012517054 A JP 2012517054A JP 2012517054 A JP2012517054 A JP 2012517054A JP 5440698 B2 JP5440698 B2 JP 5440698B2
Authority
JP
Japan
Prior art keywords
frequency
carrier
frequency range
control
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012517054A
Other languages
English (en)
Other versions
JPWO2011148485A1 (ja
Inventor
亮祐 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2011148485A1 publication Critical patent/JPWO2011148485A1/ja
Application granted granted Critical
Publication of JP5440698B2 publication Critical patent/JP5440698B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

この発明は、電動機の制御装置および制御方法に関し、より特定的には、電動機制御に用いられるキャリア周波数の制御に関する。
従来より、交流電動機を駆動制御する電力変換器(インバータ)に、パルス幅変調制御(PWM制御)を適用することが行なわれている。
特開2004−48844号公報(特許文献1)には、パルス幅変調制御を適用したインバータでの、キャリア周波数と、ノイズの音量および電力損失との関係が記載されている。詳細には、キャリア周波数を低くすると、インバータに起因するノイズの音量が大きくなる一方で、スイッチング損失が低減する。これに対して、キャリア周波数を高くすると、ノイズの音量が小さくなる一方でスイッチング素子の損失が増大することが記載されている。特許文献1には、ハイブリッド車両の搭乗者の聴覚に違和感を与えずに燃費を向上するため、エンジン回転数が低いときにはキャリア周波数を高く設定する一方で、エンジン回転数が高いときにはキャリア周波数を低下する制御が記載されている。
また、特開2005−278281号公報(特許文献2)には、車両の存在を歩行者に報知するための車両の制御装置として、歩行者などの障害物の検知時に、キャリア周波数を可聴周波数帯まで低下させる制御が記載されている。
一方、PWM制御による騒音を低減するための技術として、特開2007−20320号公報(特許文献3)および特開2008−99475号公報(特許文献4)が存在する。
特許文献3には、損失を増加させることなく聴感上の騒音を低減するPWMインバータ装置が記載されている。具体的には、PWMパルスの周波数を決めるキャリア周波数を、任意のキャリア周波数を中心として所定周波数範囲だけ周期的もしくはランダムに変動させることが記載されている。さらに、特許文献3では、このキャリア周波数の変動幅を、電動機電流値もしくは周波数指令値により変更することが記載されている。
また、特開2008−99475号公報(特許文献4)には、電力変換装置の制御において、所望の周波数帯におけるノイズスペクトルを平坦化するために、キャリア周波数を離散的かつ周期的に時間変化させることが記載されている。そして、変化させるキャリア周波数の値について、高調波周波数同士が重畳しないように決定することが記載されている。
特開2004−48844号公報 特開2005−278281号公報 特開2007−20320号公報 特開2008−99475号公報
電動機からの駆動力により走行可能な、ハイブリッド車、燃料電池車および電気自動車等の電動車両では、電動機からの駆動力のみによって走行する場合に車両の発生音が小さいため、歩行者等が車両の接近を認識し難いことが指摘されている。
特許文献2によれば、警報音の発生装置等を新たに設けることなく、キャリア周波数の低下によって、可聴周波数帯の電磁騒音を付加的な作動音として発生できる。これにより、歩行者等に車両の接近を報知することが期待される。
一方、インバータから電動機へ供給される電流には、キャリア周波数に従う高調波電流(リップル電流)が重畳されることが知られている。このため、キャリア周波数が低くなると、リップル電流が大きくなることによって、磁界の変動が大きくなるため、ステータに生じる渦電流が大きくなる。この結果、鉄損の増加によって電力損失が増大するため電動機効率が低下する。特に、永久磁石型の電動機では渦電流の増大は、磁石温度の上昇、ひいては減磁の発生につながるため、さらに電動機効率が低下する虞がある。
このため、特許文献2によるキャリア周波数制御では、作動音の発生時には、キャリア周波数を固定的に低下させることになるため、その適用頻度が高いと、電動機効率の低下によって燃費の悪化が生じる虞がある。
この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、電動機の効率低下により燃費を悪化させることなく、電動機制御に用いるキャリア周波数の制御によって電動車両の作動音を大きくすることである。
この発明のある局面では、電動車両に搭載された電動機の制御装置は、電動機指令演算部、キャリア発生部、キャリア周波数制御部およびパルス幅変調部を備える。電動機指令演算部は、少なくとも1つのスイッチング素子を含むように構成された電力変換器から電動機に供給される電圧または電流の制御指令を発生するように構成される。キャリア発生部は、電力変換器の制御に用いられるキャリア信号を発生するように構成される。キャリア周波数制御部は、キャリア発生部が発生する複数のキャリア信号の周波数を、電動車両の車速が所定速度よりも高いときには所定周波数を中心とした第1の周波数範囲内で変動させる一方で、車速が所定速度よりも低いときには所定周波数を中心とした第2の周波数範囲内で変動させるように制御する。パルス幅変調部は、電動機指令演算部からの制御指令と、キャリア発生部からのキャリア信号との比較に基づいて、電力変換器のスイッチング素子のオンオフを制御するように構成される。電動車両の搭載機器は、キャリア信号に起因して生じる電磁振動により振動することによって音を発生する複数の機械振動系を形成する。そして、第1および第2の周波数範囲は、第2の周波数範囲内でキャリア周波数が変動される際における複数の機械振動系からの発生音が、第1の周波数範囲内でキャリア周波数が変動される際における複数の機械振動系からの発生音よりも大きくなるように設定される。
好ましくは、キャリア周波数制御部は、電動車両の車速が所定速度よりも高いときには、第1の変更周期に従って第1の周波数範囲内でキャリア信号の周波数を変動させる一方で、電動車両の車速が所定速度よりも低いときには、第2の変更周期に従って第2の周波数範囲内でキャリア信号の周波数を変動させる。第2の変更周期は、第1の変更周期よりも長い。
この発明の他の局面では、電動車両に搭載された電動機の制御方法であって、少なくとも1つのスイッチング素子を含むように構成された電力変換器の制御に用いられる複数のキャリア信号の周波数を制御するステップと、制御するステップにより決められたキャリア周波数に従って、キャリア信号を発生するステップと、電力変換器から電動機に供給される電圧または電流の制御指令を発生するためのステップと、制御指令とキャリア信号との比較に基づいてスイッチング素子のオンオフ制御信号を発生するステップとを備える。制御するステップは、電動車両の車速が所定速度よりも高いときに、所定周波数を中心とした第1の周波数範囲内でキャリア周波数を変動させるステップと、車速が所定速度よりも低いときに、所定周波数を中心とした第2の周波数範囲内でキャリア周波数を変動させるステップとを含む。電動車両には、機械振動によって音源となる機構を有する複数の機器が搭載される。そして、第1および第2の周波数範囲は、第2の周波数範囲内でキャリア周波数が変動される際における複数の機械振動系からの発生音が、第1の周波数範囲内でキャリア周波数が変動される際における複数の機械振動系からの発生音よりも大きくなるように設定される。
好ましくは、制御するステップは、電動車両の車速が所定速度よりも高いときに、第1の変更周期に従って第1の周波数範囲内でキャリア周波数を変動させるステップと、車速が所定速度よりも低いときに、第2の変更周期に従って第2の周波数範囲内でキャリア周波数を変動させるステップとを含む。第2の変更周期は、第1の変更周期よりも長い。
好ましくは、第1および第2の周波数範囲は、複数の機械振動系のいずれかの共振周波数が、第1の周波数範囲の外側であって、かつ、第2の周波数範囲の内側となるように設定される。
この発明によれば、電動機の効率低下により燃費を悪化させることなく、電動機制御に用いるキャリア周波数の制御によって電動車両の作動音を大きくすることである。
本発明の実施の形態による電動機の制御装置が適用される電動車両の一例であるハイブリッド車の全体構成を説明する概略ブロック図である。 図1のハイブリッド車におけるエンジンおよびモータジェネレータ間の回転速度の関係を示す共線図である。 図1に示したモータジェネレータを駆動するための電気システムの構成を示す回路図である。 本発明の実施の形態による電動機の制御装置の機能ブロック図である。 図4に示したパルス幅変調部によるPWM制御を説明する波形図である。 各インバータでのキャリア周波数の制御を説明する概念図である。 図6に示したランダムキャリア制御における電磁騒音の音圧レベル分布を示す概念図である。 本発明の実施の形態によるランダムキャリア制御を説明する概念図である。 本発明の実施の形態による電動機の制御方法の処理手順を説明する第1のフローチャートである。 本発明の実施の形態による電動機制御の処理手順を説明する第2のフローチャートである。 本発明の実施の形態の変形例によるランダムキャリア制御を説明する概念図である。 本発明の実施の形態の変形例による電動機制御の処理手順を説明するフローチャートである。
以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下図中の同一または相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。
図1は、本発明の実施の形態による電動機制御が適用される電動車両の一例であるハイブリッド車の全体構成を説明する概略ブロック図である。なお、電動車両は、ハイブリッド車、電気自動車、燃料電池車等の、電気エネルギによる車両駆動力発生源(代表的には電動機)を備えた車両を総称するものとする。
図1を参照して、ハイブリッド車は、エンジン100と、第1モータジェネレータ110(以下、単に「MG1」とも称する)と、第2モータジェネレータ120(以下、単に「MG2」とも称する)と、動力分割機構130と、減速機140と、バッテリ150とを備える。MG1およびMG2の各々は、本発明の実施の形態による電動機制御の対象となる「電動機」に対応する。
図1に示すハイブリッド車は、エンジン100およびMG2のうちの少なくとも一方からの駆動力により走行する。エンジン100、MG1およびMG2は、動力分割機構130を介して接続されている。エンジン100が発生する動力は、動力分割機構130により、2経路に分割される。一方は減速機140を介して駆動輪190を駆動する経路である。もう一方は、MG1を駆動させて発電する経路である。
MG1およびMG2の各々は、代表的には三相の交流回転電機である。MG1は、動力分割機構130により分割されたエンジン100の動力により発電する。MG1により発電された電力は、車両の走行状態や、バッテリ150のSOC(State Of Charge)に応じて使い分けられる。たとえば、通常走行時では、MG1により発電された電力はそのままMG2を駆動させる電力となる。一方、バッテリ150のSOCが予め定められた値よりも低い場合、MG1により発電された電力は、後述するインバータにより交流から直流に変換される。その後、後述するコンバータにより電圧が調整されてバッテリ150に蓄えられる。
MG1が発電機として作用している場合、MG1は負のトルクを発生している。ここで、負のトルクとは、エンジン100の負荷となるようなトルクをいう。MG1が電力の供給を受けて電動機として作用している場合、MG1は正のトルクを発生する。ここで、正のトルクとは、エンジン100の負荷とならないようなトルク、すなわち、エンジン100の回転をアシストするようなトルクをいう。なお、MG2についても同様である。
MG2は、代表的には三相交流回転電機である。MG2は、バッテリ150に蓄えられた電力およびMG1により発電された電力のうちの少なくとも一方の電力により駆動する。
MG2の駆動力は、減速機140を介して駆動輪190に伝えられる。これにより、MG2はエンジン100をアシストしたり、MG2からの駆動力により車両を走行させたりする。
ハイブリッド車の回生制動時には、減速機140を介して駆動輪190によりMG2が駆動され、MG2が発電機として作動する。これによりMG2は、制動エネルギを電力に変換する回生ブレーキとして作動する。MG2により発電された電力は、バッテリ150に蓄えられる。
動力分割機構130は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から構成される。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤが自転可能であるように支持する。サンギヤはMG1の回転軸に連結される。キャリアはエンジン100のクランクシャフトに連結される。リングギヤはMG2の回転軸および減速機140に連結される。
エンジン100、MG1およびMG2が、遊星歯車からなる動力分割機構130を介して連結されることで、エンジン100、MG1およびMG2の回転速度は、図2に示すように、共線図において直線で結ばれる関係になる。
図1に示すハイブリッド車は、発進時や低車速時等のエンジン100の効率が悪い運転領域では、基本的には、エンジン100を停止してMG2の駆動力のみによって走行する。そして、通常走行時には、エンジン100を効率の高い領域で作動させるとともに、動力分割機構130によりエンジン100の動力を2経路に分ける。一方の経路に伝達された動力は、駆動輪190を駆動する。他方の経路に伝達された動力は、MG1を駆動して発電を行なう。このとき、MG2は、MG1の発電電力を用いて動力を出力することによって、駆動輪190の駆動補助を行なう。また、高速走行時には、さらにバッテリ150からの電力をMG2に供給することでMG2の動力を増大させることにより、駆動輪190に対して駆動力の追加を行なう。
一方、減速時には、駆動輪190により従動するMG2が発電機として機能して回生制動による発電を行なう。回生発電によって回収された電力は、バッテリ150に充電される。なお、ここで言う回生制動とは、ハイブリッド自動車を運転するドライバによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの走行中にアクセルペダルをオフすることで回生発電をさせながら車両減速(または加速の中止)させることを含む。
図1に戻って、バッテリ150は、複数の二次電池セル(図示せず)により構成された組電池である。バッテリ150の電圧は、たとえば200V程度である。バッテリ150には、MG1およびMG2が発電した電力の他、車両の外部電源から供給される電力によって充電されてもよい。
エンジン100、MG1およびMG2は、ECU(Electronic Control Unit)170により制御される。なお、ECU170は複数のECUに分割するようにしてもよい。
ECU170は、図示しないCPU(Central Processing Unit)およびメモリを内蔵した電子制御ユニットにより構成され、当該メモリに記憶されたマップおよびプログラムに基づいて、各センサによる検出値を用いた演算処理を行なうように構成される。あるいは、ECUの少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。
図3には、図1に示したMG1,MG2を駆動するための電気システムの構成が示される。
図3を参照して、ハイブリッド車には、コンバータ200と、MG1に対応する第1インバータ210と、MG2に対応する第2インバータ220と、SMR(System Main Relay)250とが設けられる。
コンバータ200は、リアクトルと、直列接続された2個の電力用半導体スイッチング素子(以下、単に「スイッチング素子」とも称する)と、各スイッチング素子に対応して設けられた逆並列ダイオードと、リアクトルとを含む。電力用半導体スイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタ、電力用バイポーラトランジスタ等を適宜採用することができる。リアクトルは、バッテリ150の正極側に一端が接続され、2つのスイッチング素子の接続点に他端が接続される。各スイッチング素子のオンオフは、ECU170により制御される。
バッテリ150から放電された電力をMG1もしくはMG2に供給する際、電圧がコンバータ200により昇圧される。逆に、MG1もしくはMG2により発電された電力をバッテリ150を充電する際、電圧がコンバータ200により降圧される。
コンバータ200と、第1インバータ210および第2インバータ220との間のシステム電圧VHは、電圧センサ180により検出される。電圧センサ180の検出結果は、ECU170に送信される。
第1インバータ210は、一般的な三相インバータで構成され、並列接続されたU相アーム、V相アームおよびW相アームを含む。U相アーム、V相アームおよびW相アームは、各々、直列に接続された2個のスイッチング素子(上アーム素子および下アーム素子)を有する。各スイッチング素子には、逆並列ダイオードが接続される。
MG1は、星型結線されたU相コイル、V相コイルおよびW相コイルを固定子巻線として有する。各相コイルの一端は、中性点112で互いに接続される。各相コイルの他端は、第1インバータ210の各相アームのスイッチング素子の接続点とそれぞれ接続される。
第1インバータ210は、車両走行時には、車両走行に要求される出力(車両駆動トルク、発電トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従ってMG1が動作するように、MG1の各相コイルの電流または電圧を制御する。第1インバータ210は、バッテリ150から供給される直流電力を交流電力に変換してMG1に供給する電力変換動作と、MG1により発電された交流電力を直流電力に変換する電力変換動作との双方向の電力変換を実行可能である。
第2インバータ220は、第1インバータ210と同様に、一般的な三相インバータで構成される。MG2は、MG1と同様に、星型結線されたU相コイル、V相コイルおよびW相コイルを固定子巻線として有する。各相コイルの一端は、中性点122で互いに接続される。各相コイルの他端は、第2インバータ220の各相アームのスイッチング素子の接続点とそれぞれ接続される。
第2インバータ220は、車両走行時には、車両走行に要求される出力(車両駆動トルク、回生制動トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従ってMG2が動作するように、MG2の各相コイルの電流または電圧を制御する。第2インバータ220についても、バッテリ150から供給される直流電力を交流電力に変換してMG2に供給する電力変換動作と、MG2により発電された交流電力を直流電力に変換する電力変換動作との双方向の電力変換を実行可能である。
SMR250は、バッテリ150とコンバータ200との間に設けられる。SMR250が開放されると、バッテリ150が電気システムから遮断される。一方、SMR250が閉成されると、バッテリ150が電気システムに接続される。SMR250の状態は、ECU170により制御される。たとえば、ハイブリッド車のシステム起動を指示するパワーオンスイッチ(図示せず)のオン操作に応答して、SMR250が閉成される一方で、パワーオンスイッチのオフ操作に応答して、SMR250は開放される。
図4は、本発明の実施の形態による電動機の制御装置の機能ブロック図である。図4に示した各機能ブロックについては、当該ブロックに相当する機能を有する回路(ハードウェア)をECU170に構成してもよいし、予め設定されたプログラムに従ってECU170がソフトウェア処理を実行することにより実現してもよい。
図4を参照して、ECU170は、電動機指令演算部300,305と、パルス幅変調部310,315と、キャリア周波数制御部350と、キャリア発生部360,365とを含む。
電動機指令演算部300は、MG1のフィードバック制御により、第1インバータ210の制御指令を演算する。ここで、制御指令は、各インバータ210,220によって制御される、MG1,MG2へ供給される電圧または電流の指令値である。以下では、制御指令として、MG1,MG2の各相の電圧指令Vu,Vv,Vwを例示する。たとえば、電動機指令演算部300は、MG1の各相の電流Imt(1)のフィードバックにより、MG1の出力トルクを制御する。具体的には、電動機指令演算部300は、MG1のトルク指令値Tqcom(1)に対応した電流指令値を設定するとともに、当該電流指令値と電動機電流Imt(1)との偏差に応じて電圧指令Vu,Vv,Vwを発生する。この際に、MG1の回転角θ(1)を用いた座標変換(代表的には、dq軸変換)を伴う制御演算を用いることが一般的である。
電動機指令演算部305は、電動機指令演算部300と同様に、MG2のフィードバック制御によって、第2インバータ220の制御指令、具体的には、MG2の各相電圧指令Vu,Vv,Vwを発生する。すなわち、MG2の電動機電流Imt(2)、回転角θ(2)およびトルク指令値Tqcom(2)に基づいて、電圧指令Vu,Vv,Vwが生成される。
パルス幅変調部310は、キャリア発生部360からのキャリア信号160(1)と、電動機指令演算部300からの電圧指令Vu,Vv,Vwとに基づいて、第1インバータ210のスイッチング素子の制御信号S11〜S16を発生する。制御信号S11〜S16により、第1インバータ210のU相、V相、W相の上下アームを構成する6個のスイッチング素子のオンオフが制御される。
同様に、パルス幅変調部315は、キャリア発生部365からのキャリア信号160(2)と、電動機指令演算部305からの電圧指令Vu,Vv,Vwとに基づいて、第2インバータ220のスイッチング素子の制御信号S21〜S26を発生する。制御信号S21〜S26により、第2インバータ220のU相、V相、W相の上下アームを構成する6個のスイッチング素子のオンオフが制御される。
パルス幅変調部310,315では、キャリア信号160(160(1)および160(2)を総称するもの)と、電圧指令Vu,Vv,Vwとを比較するPWM制御が実行される。
図5は、パルス幅変調部310,315によるPWM制御を説明する波形図である。
図5を参照して、PWM制御では、キャリア信号160と、電圧指令270(電圧指令Vu,Vv,Vwを総称するもの)との電圧比較に基づき、インバータの各相のスイチング素子のオンオフが制御される。この結果、MG1,MG2の各相コイル巻線には、各相に疑似正弦波電圧としてのパルス幅変調電圧280が印加される。キャリア信号160は、周期的な三角波やのこぎり波によって構成することができる。
再び図4を参照して、キャリア周波数制御部350は、第1インバータ210でのPWM制御に用いられるキャリア周波数f1と、第2インバータ220のPWM制御に用いられるキャリア周波数f2とを制御する。
キャリア発生部360は、キャリア周波数制御部350によって設定されたキャリア周波数f1に従ってキャリア信号160(1)を発生する。キャリア発生部360は、キャリア周波数制御部350によって設定されたキャリア周波数f2に従ってキャリア信号160(2)を発生する。
すなわち、キャリア信号160(1)および160(2)の周波数は、キャリア周波数制御部350によって設定されたキャリア周波数f1およびf2に従って変化する。この結果、第1インバータ210および第2インバータ220での、PWM制御によるスイッチング周波数が、キャリア周波数制御部350によって制御される。
インバータ210,220では、キャリア周波数に従って図示しないスイッチング素子がオンオフされる。このため、インバータ210,220からMG1,MG2に供給される電流には、スイッチング周波数に従う高調波電流(リップル電流)が重畳される。これにより、MG1,MG2に作用する電磁力が、スイッチング周波数に従った周波数で変動する。
一方、MG1,MG2を始めとするハイブリッド車の搭載機器によって、質量要素およびばね要素の組み合わせによる機械振動系が複数形成される。たとえば、MG1,MG2では、ロータを質量要素とし、支持ベアリングをばね要素とする機械振動系や、ステータおよびケースによって構成される機械振動系が存在する。また、図示しないトランスミッションケース等によっても、機械振動系が構成される。これらの機械振動系は、外力の作用や、振動が伝達されることによって振動し、空気を振動させることによって音を発生する。
MG1,MG2では、ステータおよびロータ間に作用する電磁力がキャリア周波数に従って周期的に変動すると、ロータおよびステータの機械振動系に、キャリア周波数による振動が発生する。この振動は、さらに他の機械振動系へも伝達されるので、これら機械振動系の振動によって、音(いわゆる、電磁騒音)が生じることになる。
ここで各機械振動系には、固有の共振周波数が存在する。共振周波数による振動は減衰しにくくなるので、振動の振幅が大きくなる結果、発生音も大きくなる。共振周波数は、当該機械振動系を構成する機器の形状、質量、剛性等によって決まる固有値である。共振周波数は、実機実験やCAE(Computer Aided Engineering)による設計シミュレーションによって求めることができる。また、機器の形状、質量、剛性等の設計により、共振周波数をある程度調整することも可能である。
このように、ハイブリッド車を始めとする電動車両には、その搭載機器によって複数の機械共振系が形成されており、その少なくとも一部は、キャリア周波数に起因して生じる振動(電磁振動)によって振動することにより、騒音(電磁騒音)を発生する。この騒音は、電動車両の作動音として、車両外部へ出力されることになる。
図6は、本発明の実施の形態による電動機の制御装置による各インバータ210,220でのキャリア周波数制御(以下、「ランダムキャリア制御」とも称する)を説明する概念図である。図6には、インバータ210のキャリア周波数f1の制御が例示される。
図6を参照して、キャリア周波数制御部350は、キャリア周波数f1を、所定の周波数範囲420内で、時間経過に応じて一定周期あるいはランダム周期で変化させる。周波数範囲420の中心値はfaであり、上限値f1maxはfa+Δfaであり、下限値f1minはfa−Δfaである。キャリア周波数f1は、変更周期Trが経過するごとに変更される。Trが固定値であるときには、キャリア周波数は一定周期で変動することなり、Trを変化させるとキャリア周波数はランダムな周期で変化する。
図7は、図6に示したランダムキャリア制御における電磁騒音の音圧レベル分布を示す概念図である。
図7を参照して、符号400は、キャリア周波数f1=faに固定した場合の音圧レベルの周波数分布が示される。この場合には、中心周波数faに対応した固定周波数の音圧レベルが高くなるため、当該周波数の騒音がユーザに感知されやすくなる。
一方で、符号410は、図6に示したようにキャリア周波数f1を下限値f1minから上限値f1maxの周波数範囲で変動させた場合の音圧レベルの周波数分布である。各キャリア周波数で発生する電磁騒音のレベルが一定であれば、キャリア周波数を変更する周期を短くすることにより(たとえば、Tr=2〜10[ms]程度)、人間の聴覚には、当該周波数範囲で一様な強度の音として認識される。この結果、符号410に示すように、当該周波数領域内で音圧レベルを分散することができるため、騒音の音圧レベルを低減することが可能となる。
このように、一般的には、ランダムキャリア制御によって、インバータによる電動機制御によって発生する電磁騒音を低減することができる。なお、ランダムキャリア制御の実行時には、キャリア周波数の平均値が中心周波数faとなるように、周波数の変動パターンが予め設定される。
図8は、本発明の実施の形態によるランダムキャリア制御を説明する概念図である。
図8を参照して、キャリア周波数制御部350は、通常時には、キャリア周波数f1を、周波数faを中心とする所定周波数範囲420(f1min〜f1max)内で周期的あるいはランダムに変更する。
一方、低車速時には、キャリア周波数制御部350は、キャリア周波数f1を、周波数faを中心とする所定周波数範囲430内で周期的あるいはランダムに変更する。周波数範囲430の最小周波数はf1min♯(f1min♯<f1min)であり、最大周波数はf1max♯(f1max♯>f1max)である。
このように、周波数範囲430は、周波数範囲420よりも広く、かつ、その中心周波数faは周波数範囲420と実質的に等しく設定される。好ましくは、周波数範囲420および430の間で、中心周波数faは共通である。この結果、周波数範囲430(低車速時)によってランダムキャリア制御を行なうときのキャリア周波数f1の平均値は、周波数範囲420(通常時)によってランダムキャリア制御を行なうときと同等である。
上述のように、ハイブリッド車(電動車両)には複数の機械共振系が存在しており、かつ、それぞれの機械共振系は、その機械的構造(形状、質量、剛性等)に依存した固有の共振周波数を有する。
このため、周波数範囲420から周波数範囲430に拡大してランダムキャリア制御を行なうことによって、キャリア周波数が、より多数の共振周波数を横切って変動することが期待される。すなわち、当該共振周波数での電磁振動を引き起こすことによって、トータルでの電磁騒音(発生音)の増大が期待できる。この結果、通常時には電磁騒音を軽減するようにランダムキャリア制御を行なう一方で、低車速時には、電磁騒音によって車両作動音が増大するようにランダムキャリア制御を実行することができる。
好ましくは、周波数範囲420,430は、共振周波数での発生音が大きい、特定の機械振動系の共振周波数frmに着目して、周波数範囲420が共振周波数frmを含まない一方で、周波数範囲430が共振周波数frmを含むように、予め設定される。これにより、より効果的に、ランダムキャリア制御による低車速時の電磁騒音(発生音)を、通常時よりも大きくすることができる。
なお、この特定の機械振動系については、ハイブリッド車(電動車両)の構成によって異なるが、たとえば、キャリア周波数による電磁力変動によって振動源となる、MG1,MG2のロータにおける機械振動系や、振動が伝達されるステータおよびモータケースからなる機械振動系が該当する。すなわち、これらの機械振動系の共振周波数に基づいて、周波数範囲420,430を決めることができる。
あるいは、複数存在する機械振動系の共振周波数(frmを含む)を正確に把握することが困難である点を考慮すれば、実際にランダムキャリア制御を行なった際の作動音の測定結果に基づいて、すなわち実機実験によって、周波数範囲420,430を決めることも可能である。
また、周波数範囲430(低車速時)によってランダムキャリア制御を行なうときのキャリア周波数f1の平均値は、周波数範囲420(通常時)によってランダムキャリア制御を行なうときと同等である。したがって、ハイブリッド車(電動車両)の作動音を増大されるためのキャリア周波数制御によって、特許文献2のようにキャリア周波数を固定的に低下させることがないので、電動機効率の低下および燃費の悪化が生じることを回避できる。
なお、以上では、キャリア周波数f1の制御を説明したが、キャリア周波数f2についても、キャリア周波数f1と同様のランダムキャリア制御を適用できる。なお、キャリア周波数f1およびキャリア周波数f2は、同じ周波数であってもよく、異なる周波数であってもよい。また、周波数範囲420(通常時)および周波数範囲430(低車速時)のそれぞれについても、キャリア周波数f1およびf2の間で、同じであってもよく、異なっていてもよい。
図9は、本発明の実施の形態による電動機の制御方法の処理手順を説明する第1のフローチャートである。
図9を参照して、ECU170は、ステップS100により、インバータ210,220でのキャリア周波数を決定するためのランダムキャリア制御を行なう。
図10は、図9のステップS100による制御処理手順の詳細を説明するフローチャートである。
図10を参照して、ECU170は、ステップS110により、ハイブリッド車(電動車両)の車速が所定速度V1よりも低いかどうかを判定する。車速がV1よりも低い低車速時(S110のYES判定時)には、ECU120は、ステップS130により、周波数範囲430(図8)をキャリア周波数の変動幅に設定する。一方で、S110がNO判定となる通常時には、ECU170は、ステップS130により、図8の周波数範囲420をキャリア周波数の変動幅に設定する。この結果、低車速時には、ランダムキャリア制御による周波数変化範囲が、通常時よりも拡大される。
ECU170は、ステップS160では、キャリア周波数の変更周期(図6のTr)が経過したかどうかを判定する。ECU170は、キャリア変更周期が経過するまでは(S160のNO判定時)、ステップS170により現在のキャリア周波数を維持するとともに、ステップS180によりカウンタ値をインクリメントする。そして、カウンタ値が、キャリア変更周期Trに相当する値に達すると、ECU170は、ステップS160をYES判定する。
ECU170は、キャリア変更周期が経過すると(S160のYES判定時)、ステップS190により、ステップS110〜S130によって決められた周波数範囲420または430内でキャリア周波数が変動するように、キャリア周波数を変更する。この際にステップS180でのカウンタ値はクリアされる。
このように、ステップS100(S110〜S180)によって、第1インバータ210のキャリア周波数f1および第2インバータ220のキャリア周波数f2が決定される。すなわち、ステップS100(S110〜S180)による処理は、図4のキャリア周波数制御部350の機能に対応する。
ECU170は、ステップS200では、ステップS100で決定されたキャリア周波数f1,f2に従って、キャリア信号160(1),160(2)を発生する。すなわち、ステップS200による処理は、図4のキャリア発生部360,365の機能に対応する。
ECU170は、ステップS300では、第1インバータ210および第2インバータ220の制御指令を演算する。代表的には、制御指令として、インバータ各相の電圧指令Vu,Vv,Vwが演算される。すなわち、ステップS300による演算は、図4の電動機指令演算部300,305と同様に実行できる。
ECU170は、ステップS400では、第1インバータ210の制御指令とキャリア信号160(1)とを比較するPWM制御によって、第1インバータ210のスイッチング素子のオンオフ制御信号を発生する。ステップS400では、さらに、第2インバータ220の制御指令とキャリア信号160(2)とを比較するPWM制御によって、第2インバータ220のスイッチング素子のオンオフ制御信号が発生される。すなわち、ステップS400による処理は、図4のパルス幅変調部310,315と同様に実行できる。
ステップS100〜S400の処理を所定周期で繰返すことによって、図6,図8のランダムキャリア制御に従ったキャリア周波数を用いて、MG1,MG2を制御する第1インバータ210および第2インバータ220でのPWM制御を実行できる。
以上説明したように、本発明の実施の形態による電動機制御によれば、車両の発進、停止の際を含む低車速時に、ランダムキャリア制御の周波数範囲を拡大することによって、電磁騒音を大きくできる。これにより、車両外部へ出力される作動音を大きくすることができるので、電動車両の周囲に対する車両接近の報知効果を、低車速時に高めることができる。そして、この際にキャリア周波数の平均値が低下することがないため、特許文献2のように電動機の効率低下により燃費を悪化させることなく、作動音を大きくすることができる。
なお、特許文献2では、ミリ波レーダ、赤外線センサや超音波センサ等の障害物センサによって、歩行者等の障害物を検知したときに限って、電磁騒音を増大するためにキャリア周波数を低下させている。これにより、特許文献2では、キャリア周波数の低下に伴う燃費の悪化を軽減できるものと理解される。これに対して、本発明の実施の形態による電動機制御によれば、電磁騒音(車両作動音)を増大するための制御(ランダムキャリア制御の周波数範囲拡大)によって、燃費が悪化することがない。したがって、当該制御の適用頻度を高めても燃費の悪化が懸念されることがないので、特許文献2のような障害物センサを必要とすることなく、電動車両の周囲に対する車両接近の報知効果を高めることが好ましい低車速時に、電動車両の作動音を大きくすることができる。
なお、エンジン100を搭載するハイブリッド車では、ステップS110(図10)の判定において、エンジン100の作動/停止をさらに反映してもよい。具体的には、エンジン100の作動時には、車外への作動音がある程度大きいため、低車速時であっても、S110をNO判定としてもよい。
(変形例)
図11は、本発明の実施の形態の変形例に従うランダムキャリア制御を説明する概念図である。
図11を参照して、本発明の実施の形態による変形例では、低車速時におけるランダムキャリア制御は、図8に示したようにキャリア周波数範囲(f1min♯〜f1max♯)を拡大するとともに、キャリア変更周期Tr♯を通常時(図6のTr)よりも拡大する。すなわち、ランダムキャリア制御において、固定または変化されるキャリア変更周期Tr♯(Tr♯>Tr)は、通常時よりも長くなる。
図12は、本発明の実施の形態の変形例による電動機の制御方法の処理手順を説明するフローチャートである。
本発明の実施の形態の変形例では、図9のステップS100の構成が、図10から図12へ変更される。ハイブリッド車の構成および電動機制御のその他の点については、上述のとおりであるので、詳細な説明は繰返さない。
図12を参照して、ECU170は、通常時(ステップS110のNO判定時)には、ステップS120によりランダムキャリア制御の周波数変化幅を周波数範囲420に設定するとともに、キャリア変更周期を通常値Trに従って設定する。
これに対して、ECU170は、低車速時(S110のYES判定時)には、ステップS130により、ランダムキャリア制御の周波数変化幅を周波数範囲430に拡大するとともに、ステップS150により、キャリア変更周期を通常時よりも拡大する。すなわち、キャリア変更周期をTrからTr♯に拡大する。
そして、ECU170は、ステップS160〜S170により、ステップS140(通常時)あるいはステップS150(低車速時)によって設定されたキャリア変更周期TrまたはTr♯に従って、キャリア周波数を変動させる。
このように、キャリア周波数の変更周期を長くすることにより、図7に示した、ランダムキャリア制御による電磁騒音の軽減効果が弱められる。この結果、低車速時における電磁騒音をさらに大きくすることによって、車両外部へ出力される作動音をさらに大きくすることができる。
なお、本実施の形態では、本発明による電動機制御が適用される電動車両として図1の構成のハイブリッド車を例示したが、本発明の適用はこのような例に限定されるものではない。すなわち、キャリア周波数制御を伴って制御される駆動系の電動機(モータジェネレータ)が搭載される限り、図1とは異なる駆動系の構成を有するハイブリッド車や、エンジンを搭載しない電気自動車、燃料電池車等の任意の電動車両に対して、本発明を適用可能である。
また、電動機(モータジェネレータ)の個数についても特に限定されることはなく、電動機が1個、あるいは3個以上搭載される電動車両に対して、本発明は適用可能である点について確認的に記載する。
また、本実施の形態では、PWM制御される電力変換器としてインバータを例示したが、本発明の適用はこのような場合に限定されるものではない。すなわち、コンバータ等のインバータ以外の電力変換器をPWM制御する構成にも、本実施の形態によるスイッチング周波数制御を同様に適用することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、電動車両に搭載された電動機に対するキャリア信号用いた制御に適用できる。
100 エンジン、110 モータジェネレータ(MG1)、112,122 中性点、120 モータジェネレータ(MG2)、130 動力分割機構、140 減速機、150 バッテリ、160(1),160(2) キャリア信号、180 電圧センサ、190 駆動輪、200 コンバータ、210 インバータ(MG1)、220 インバータ(MG2)、270,Vu,Vv,Vw 電圧指令(各相)、280 パルス幅変調電圧、300,305 電動機指令演算部、310,315 パルス幅変調部、350 キャリア周波数制御部、360,365 キャリア発生部、420 周波数範囲(通常時)、430 周波数範囲(低車速時)、Imt(1),Imt(2) 電動機電流、S11〜S16,S21〜S26 制御信号(インバータ)、Tqcom トルク指令値、Tr キャリア変更周期(通常時)、Tr♯ キャリア変更周期(低車速時)、V1 所定速度、VH システム電圧、f1,f2 キャリア周波数、fa 中心周波数、frm 共振周波数(特定の機械振動系)。

Claims (6)

  1. 電動車両に搭載された電動機(MG1,MG2)の制御装置であって、
    少なくとも1つのスイッチング素子を含むように構成された電力変換器(210,220)から前記電動機に供給される電圧または電流の制御指令(Vu,Vv,Vw)を発生するための電動機指令演算部(300,305)と、
    前記電力変換器の制御に用いられるキャリア信号を発生するためのキャリア発生部(360,365)と、
    前記キャリア発生部が発生する複数のキャリア信号(160(1),160(2))の周波数を、前記電動車両の車速が所定速度よりも高いときには所定周波数を中心とした第1の周波数範囲(420)内で変動させる一方で、前記車速が前記所定速度よりも低いときには前記所定周波数を中心とした第2の周波数範囲(430)内で変動させるように制御するためのキャリア周波数制御部(350)と、
    前記電動機指令演算部からの前記制御指令と、前記キャリア発生部からの前記キャリア信号との比較に基づいて、前記電力変換器の前記スイッチング素子のオンオフを制御するためのパルス幅変調部(310,315)とを備え、
    前記電動車両の搭載機器は、前記キャリア信号に起因して生じる電磁振動により振動することによって音を発生する複数の機械振動系を形成し、
    前記第1および前記第2の周波数範囲は、前記第2の周波数範囲内で前記キャリア信号の周波数が変動される際における前記複数の機械振動系からの発生音が、前記第1の周波数範囲内で前記キャリア信号の周波数が変動される際における前記複数の機械振動系からの発生音よりも大きくなるように設定される、電動機の制御装置。
  2. 前記キャリア周波数制御部(350)は、前記電動車両の車速が所定速度よりも高いときには、第1の変更周期(Tr)に従って前記第1の周波数範囲内で前記キャリア信号の周波数を変動させる一方で、前記電動車両の車速が所定速度よりも低いときには、第2の変更周期(Tr♯)に従って前記第2の周波数範囲内で前記キャリア信号の周波数を変動させ、
    前記第2の変更周期は、前記第1の変更周期よりも長い、請求の範囲第1項に記載の電動機の制御装置。
  3. 前記第1および前記第2の周波数範囲は、前記複数の機械振動系の少なくともいずれかの共振周波数(frm)が、前記第1の周波数範囲(420)の外側であって、かつ、前記第2の周波数範囲(430)の内側となるように設定される、請求の範囲第1項または第2項に記載の電動機の制御装置。
  4. 電動車両に搭載された電動機(MG1,MG2)の制御方法であって、
    少なくとも1つのスイッチング素子を含むように構成された電力変換器(210,220)の制御に用いられる複数のキャリア信号(160(1)、160(2))の周波数を制御するステップ(S100)と、
    前記制御するステップにより決められたキャリア周波数に従って、前記キャリア信号を発生するステップ(S200)と、
    前記電力変換器から前記電動機に供給される電圧または電流の制御指令(Vu,Vv,Vw)を発生するためのステップ(S300)と、
    前記制御指令と前記キャリア信号との比較に基づいて前記スイッチング素子のオンオフ制御信号を発生するステップ(S400)とを備え、
    前記制御するステップ(S100)は、
    前記電動車両の車速が所定速度よりも高いときに、所定周波数を中心とした第1の周波数範囲(420)内で前記キャリア周波数を変動させるステップ(S120)と、
    前記車速が前記所定速度よりも低いときに、前記所定周波数を中心とした第2の周波数範囲(430)内で前記キャリア周波数を変動させるステップ(S130)とを含み、
    前記電動車両には、機械振動によって音源となる機構を有する複数の機器が搭載され、
    前記第1および前記第2の周波数範囲は、前記第2の周波数範囲内で前記キャリア周波数が変動される際における前記複数の機器からの発生音が、前記第1の周波数範囲内で前記キャリア周波数が変動される際における前記複数の機械振動系からの発生音よりも大きくなるように設定される、電動機の制御方法。
  5. 前記制御するステップ(S100)は、
    前記電動車両の車速が所定速度よりも高いときに、第1の変更周期(Tr)に従って前記第1の周波数範囲(420)内で前記キャリア周波数(f1,f2)を変動させるステップ(S140)と、
    前記車速が前記所定速度よりも低いときに、第2の変更周期(Tr♯)に従って前記第2の周波数範囲(430)内で前記キャリア周波数を変動させるステップ(S150)とを含み、
    前記第2の変更周期は、前記第1の変更周期よりも長い、請求の範囲第4項に記載の電動機の制御方法。
  6. 前記第1および前記第2の周波数範囲は、前記複数の機器の少なくともいずれかの共振周波数(frm)が、前記第1の周波数範囲(420)の外側であって、かつ、前記第2の周波数範囲(430)の内側となるように設定される、請求の範囲第4項または第5項に記載の電動機の制御方法。
JP2012517054A 2010-05-27 2010-05-27 電動機の制御装置および制御方法 Expired - Fee Related JP5440698B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058976 WO2011148485A1 (ja) 2010-05-27 2010-05-27 電動機の制御装置および制御方法

Publications (2)

Publication Number Publication Date
JPWO2011148485A1 JPWO2011148485A1 (ja) 2013-07-25
JP5440698B2 true JP5440698B2 (ja) 2014-03-12

Family

ID=45003492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012517054A Expired - Fee Related JP5440698B2 (ja) 2010-05-27 2010-05-27 電動機の制御装置および制御方法

Country Status (5)

Country Link
US (1) US8847542B2 (ja)
EP (1) EP2579451B1 (ja)
JP (1) JP5440698B2 (ja)
CN (1) CN102906993B (ja)
WO (1) WO2011148485A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230472A (ja) * 2013-05-27 2014-12-08 株式会社東芝 電力変換装置、電力変換装置の制御方法及び制御プログラム
KR20180039840A (ko) * 2016-10-11 2018-04-19 주식회사 만도 전동식 조향 장치의 소음 저감 장치 및 방법

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2579452B1 (en) 2010-06-07 2015-05-27 Toyota Jidosha Kabushiki Kaisha Control method and control device for an electric power regulator
JP5725617B2 (ja) * 2011-10-11 2015-05-27 ニチコン株式会社 充電装置
WO2013121589A1 (ja) * 2012-02-17 2013-08-22 三菱電機株式会社 電力変換装置、及び電力変換システム
DE112013006952T5 (de) * 2013-04-16 2015-12-31 Mitsubishi Electric Corporation Wechselrichtervorrichtung und Elektromotor mit integriertem Wechselrichter
KR101765407B1 (ko) * 2013-05-27 2017-08-07 가부시끼가이샤 도시바 전력 변환 장치 및 전력 변환 장치의 제어 방법
JP6197398B2 (ja) * 2013-06-24 2017-09-20 マツダ株式会社 ハイブリッド車の制御装置
JP6197397B2 (ja) * 2013-06-24 2017-09-20 マツダ株式会社 ハイブリッド車の制御装置
FR3015809B1 (fr) * 2013-12-20 2016-02-05 Renault Sas Procede de commande par decoupage des tensions d'alimentation d'une machine electrique et dispositif de commande correspondant
US9379575B2 (en) * 2014-03-07 2016-06-28 Nissan North America, Inc. Battery charger noise reduction by frequency switching
US9407103B2 (en) 2014-03-07 2016-08-02 Nissan North America, Inc. Battery charger noise reduction by variable frequency
US9816743B2 (en) * 2014-08-22 2017-11-14 Mitsubishi Electric Corporation Electric motor drive device and air-conditioning apparatus or refrigerating and air-conditioning apparatus using the same
CN106575941B (zh) * 2014-09-30 2019-07-09 松下知识产权经营株式会社 电动机控制装置、电动机单元、汽车以及电动机控制方法
JP6387852B2 (ja) * 2015-02-16 2018-09-12 株式会社デンソー スイッチング素子の駆動装置
EP3265811B1 (en) * 2015-03-02 2022-10-26 Sarcotein Diagnostics LLC 13+/17+ bin1 expression as a marker of cardiac disorders
JP6466578B2 (ja) * 2015-07-17 2019-02-06 株式会社日立産機システム 電力変換装置、及び、その出力電流ノイズの低減方法
JP6778536B2 (ja) * 2016-07-28 2020-11-04 株式会社日立製作所 電磁ノイズ解析装置、制御装置および制御方法
CN106330011A (zh) * 2016-09-05 2017-01-11 北京新能源汽车股份有限公司 电机的电磁干扰抑制方法、装置、电机控制器及电动车辆
JP6439771B2 (ja) * 2016-10-19 2018-12-19 トヨタ自動車株式会社 駆動装置および自動車
JP6715759B2 (ja) * 2016-12-28 2020-07-01 日立オートモティブシステムズ株式会社 インバータ駆動装置およびそれを用いた電動車両システム
JP6844383B2 (ja) * 2017-03-31 2021-03-17 株式会社アドヴィックス 車両の制動装置
GB2564873A (en) * 2017-07-25 2019-01-30 Quepal Ltd A resonant drive device
JP6937708B2 (ja) * 2018-02-21 2021-09-22 日立Astemo株式会社 モータ制御装置およびそれを用いる電動車両システム
JP6835043B2 (ja) * 2018-06-26 2021-02-24 トヨタ自動車株式会社 モータ駆動システム
CN109756172B (zh) * 2018-12-29 2021-03-09 追创科技(苏州)有限公司 一种有刷电机驱动方法、装置及计算机可读存储介质
CN112644339B (zh) * 2019-09-25 2022-01-07 比亚迪股份有限公司 能量转换装置的协同控制方法、装置、存储介质及车辆
CN111355436B (zh) * 2020-03-09 2021-11-23 珠海格力电器股份有限公司 有效降低干扰的驱动器载波频率控制方法、装置及驱动器
CN111398812B (zh) * 2020-03-27 2022-05-27 重庆金康动力新能源有限公司 电机载波频率标定系统、方法和装置
US11258357B1 (en) 2020-08-26 2022-02-22 Mitsubishi Electric Research Laboratories, Inc. EMI reduction in PWM inverters using adaptive frequency modulated carriers
US20220297708A1 (en) * 2021-03-18 2022-09-22 Tge-Pin CHUANG Vehicle output simulation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211092A (ja) * 1989-02-08 1990-08-22 Hitachi Ltd Pwm電力変換装置
JP2005278281A (ja) * 2004-03-24 2005-10-06 Toyota Motor Corp 車両の制御装置
WO2010023768A1 (ja) * 2008-08-28 2010-03-04 日産自動車株式会社 車両の作動音制御装置及び制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144176A (en) * 1996-10-02 2000-11-07 Lucent Technologies Inc. Method for reducing acoustic and vibration energy radiated from rotating machines
JP4157270B2 (ja) * 2000-11-28 2008-10-01 株式会社東芝 ハイブリッド車用インバータシステム
JP4032639B2 (ja) * 2000-11-30 2008-01-16 トヨタ自動車株式会社 車両の回生制御装置
JP3918663B2 (ja) 2002-07-09 2007-05-23 トヨタ自動車株式会社 車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
JP2007020320A (ja) 2005-07-08 2007-01-25 Yaskawa Electric Corp Pwmインバータ装置とその制御方法
US7639518B2 (en) * 2006-04-26 2009-12-29 Nissan Motor Co., Ltd. Device and method for controlling power converting device
JP5061570B2 (ja) 2006-10-13 2012-10-31 日産自動車株式会社 電力変換装置および電力変換方法
US7576500B2 (en) * 2007-05-31 2009-08-18 Gm Global Technology Operations, Inc. Method and system for operating a motor to reduce noise in an electric vehicle
JP4978429B2 (ja) * 2007-11-01 2012-07-18 アイシン・エィ・ダブリュ株式会社 電動機制御装置,電気自動車およびハイブリッド電気自動車
JP4605274B2 (ja) * 2008-08-27 2011-01-05 トヨタ自動車株式会社 車両
EP2579452B1 (en) 2010-06-07 2015-05-27 Toyota Jidosha Kabushiki Kaisha Control method and control device for an electric power regulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211092A (ja) * 1989-02-08 1990-08-22 Hitachi Ltd Pwm電力変換装置
JP2005278281A (ja) * 2004-03-24 2005-10-06 Toyota Motor Corp 車両の制御装置
WO2010023768A1 (ja) * 2008-08-28 2010-03-04 日産自動車株式会社 車両の作動音制御装置及び制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230472A (ja) * 2013-05-27 2014-12-08 株式会社東芝 電力変換装置、電力変換装置の制御方法及び制御プログラム
KR20180039840A (ko) * 2016-10-11 2018-04-19 주식회사 만도 전동식 조향 장치의 소음 저감 장치 및 방법
KR101903585B1 (ko) 2016-10-11 2018-10-04 주식회사 만도 전동식 조향 장치의 소음 저감 장치 및 방법

Also Published As

Publication number Publication date
CN102906993A (zh) 2013-01-30
US8847542B2 (en) 2014-09-30
EP2579451A1 (en) 2013-04-10
EP2579451A4 (en) 2014-09-03
JPWO2011148485A1 (ja) 2013-07-25
US20130049666A1 (en) 2013-02-28
WO2011148485A1 (ja) 2011-12-01
EP2579451B1 (en) 2016-03-30
CN102906993B (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5440698B2 (ja) 電動機の制御装置および制御方法
JP5644854B2 (ja) 電動機の制御装置および制御方法
JP5472327B2 (ja) 回転電機の制御装置および回転電機の制御方法
JP4830462B2 (ja) 電動車両の制御装置
JP5751240B2 (ja) 交流電動機の制御システム
JP4396644B2 (ja) 内燃機関の始動制御装置
JP6009757B2 (ja) 車両および車両の制御方法
JP2013103516A (ja) 車両および車両の制御方法
JP6814830B2 (ja) 制御システム、車両システム、および制御方法
JP2011251606A (ja) 車両の制御装置
JP5824824B2 (ja) 電動車両およびその制御方法
JP2012228138A (ja) 車両駆動装置
JP5614189B2 (ja) 車両用回転電機の駆動制御装置
JP2013103514A (ja) 車両および車両の制御方法
JP2010115075A (ja) 車両用発電機制御装置
JP2011207336A (ja) ハイブリッド車両
JP2010130775A (ja) 電動車両のサウンド制御装置
JP2013103515A (ja) 車両および車両の制御方法
JP2009196533A (ja) 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
JP5942809B2 (ja) 交流電動機の制御システム
JP2013258825A (ja) 車両およびその制御方法
JP2012171369A (ja) ハイブリッド車両およびその制御方法
JP2011051554A (ja) ハイブリッド車両用モータ制御装置
JP4978802B2 (ja) 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
JP5767083B2 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

LAPS Cancellation because of no payment of annual fees