WO2018179876A1 - エンジンの補機取付構造 - Google Patents

エンジンの補機取付構造 Download PDF

Info

Publication number
WO2018179876A1
WO2018179876A1 PCT/JP2018/004205 JP2018004205W WO2018179876A1 WO 2018179876 A1 WO2018179876 A1 WO 2018179876A1 JP 2018004205 W JP2018004205 W JP 2018004205W WO 2018179876 A1 WO2018179876 A1 WO 2018179876A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
bracket
auxiliary machine
accessory
mounting structure
Prior art date
Application number
PCT/JP2018/004205
Other languages
English (en)
French (fr)
Inventor
松浦 弘和
隆慶 寺本
和洋 松岡
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US16/492,326 priority Critical patent/US20200325819A1/en
Priority to EP18775802.4A priority patent/EP3578777B1/en
Priority to CN201880017511.0A priority patent/CN110418877B/zh
Publication of WO2018179876A1 publication Critical patent/WO2018179876A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/06Endless member is a belt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/14Engine-driven auxiliary devices combined into units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Definitions

  • the present invention relates to an engine accessory mounting structure in which an accessory is mounted on an engine.
  • an engine accessory mounting structure described in Patent Document 1 is known as an engine accessory mounting structure in which an accessory is attached to the engine.
  • the engine accessory is mounted on the side of the cylinder block of the engine via a mounting bracket.
  • the mounting bracket is provided with a support portion that protrudes in a direction away from the side of the engine, and the engine accessory is fixed to the support portion by a fastening bolt.
  • the engine accessory is likely to generate minute vertical vibrations in the vertical direction of the engine due to the bending displacement of the support portion of the mounting bracket. Then, by adjusting the shape dimension of the mounting bracket, that is, the rigidity of each part according to the weight of the engine accessory, the minute vertical vibration is generated in synchronization with the resonance frequency of the engine vibration, and Designed to occur in opposite phase to engine vibration. Thereby, the vibration in the vertical direction of the engine is attenuated by the minute vertical vibration of the engine accessory, and the vibration in the vertical direction of the engine is reduced.
  • An object of the present invention is to provide an engine accessory mounting structure capable of reducing engine vibration in a direction perpendicular to the direction in which the crankshaft of the engine extends on a horizontal plane without causing an increase in weight or cost. is there.
  • the engine accessory mounting structure has a crankshaft extending in the first direction.
  • the engine supports an auxiliary machine via a bracket.
  • the bracket includes a first part connected to the engine and a second part connected to the auxiliary machine and having lower rigidity than the first part.
  • the second portion When the engine vibrates in a second direction orthogonal to the first direction on a horizontal plane, the second portion has a phase opposite to that of the engine and vibrates in the first direction. It functions as a dynamic damper that attenuates vibrations of the engine.
  • the engine accessory mounting structure according to the present invention can dampen engine vibrations in a direction orthogonal to the direction in which the crankshaft of the engine extends on a horizontal plane without causing an increase in weight or cost.
  • FIG. 1 is a perspective view of an engine / transmission unit having an engine accessory mounting structure according to an embodiment of the present invention. It is another perspective view of the engine and mission unit provided with the auxiliary machinery attachment structure of the engine which concerns on embodiment of this invention.
  • FIG. 5 is another partial enlarged perspective view of the vicinity of an accessory bracket of an engine / mission unit provided with an engine accessory mounting structure according to an embodiment of the present invention.
  • FIG. 3 is a partially enlarged front view of the vicinity of an accessory bracket of an engine / mission unit provided with an engine accessory mounting structure according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along a line AA in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along a line BB in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along a line CC in FIG. 4.
  • FIG. 5 is another partial enlarged perspective view of the vicinity of an accessory bracket of an engine / mission unit provided with an engine accessory mounting structure according to an embodiment of the present invention. It is a perspective view of an accessory bracket of an engine accessory mounting structure according to an embodiment of the present invention. It is a right view of the accessory bracket of the accessory attachment structure of the engine which concerns on embodiment of this invention. It is a front view of the accessory bracket of the accessory attachment structure of the engine which concerns on embodiment of this invention. It is a top view of the engine mission unit provided with the auxiliary machinery attachment structure of the engine which concerns on embodiment of this invention.
  • FIG. 1 is a perspective view of an engine / mission unit A provided with an exemplary engine accessory mounting structure.
  • FIG. 2 is another perspective view of the engine / mission unit A having an exemplary engine accessory mounting structure.
  • the engine / mission unit A will be described below with reference to FIGS.
  • the upper direction is referred to as the upper direction
  • the lower direction is referred to as the lower direction
  • the left direction is referred to as the left direction
  • the right direction is referred to as the right direction
  • the left direction and the right direction are collectively referred to as the left and right direction with respect to the page.
  • the vertical direction and the direction orthogonal to the horizontal direction are referred to as the front-rear direction
  • the direction toward the front in the front-rear direction is referred to as the front
  • the direction toward the back is referred to as the rear.
  • the engine / mission unit A has a rectangular parallelepiped engine 1 that is long in the vertical direction, and a chain (not shown) that links a crankshaft 2 and a cam (not shown) included in the engine 1.
  • a substantially rectangular chain cover 3 that is long in the up-down direction, and a rectangular parallelepiped transmission 4 that is attached to the engine 1 via the chain cover 3.
  • the engine 1 is attached to a cylinder block 9 in which a cylinder (not shown) in which a piston (not shown) slides is formed, an upper portion of the cylinder block 9, and an intake port (not shown) and
  • the cylinder head 10 in which an exhaust port (not shown) is formed and the side of the cylinder block 9 opposite to the side where the transmission 4 is arranged are arranged in a first direction (left and right in FIGS. 1 and 2).
  • a crankshaft pulley 11 that rotates together with the extending crankshaft 2, a drive belt 33 that spans the crankshaft pulley 11, an auxiliary machine 7 that spans the drive belt 33, and the auxiliary machine 7 are connected to the cylinder block 9.
  • the crankshaft pulley 11 is exemplified as a rotating member. Note that the rotating member may be another rotating member such as a sprocket.
  • the chain cover 3 is attached to the right side surface portion of the cylinder block 9 and the cylinder head 10.
  • the chain cover 3 is formed in a size from the lower end to the upper end of the right side surface portion of the engine 1 and covers the entire right side surface portion of the engine 1.
  • the transmission 4 is for converting the rotational motion of the crankshaft 2 into a rotational speed suitable for traveling and transmitting it to drive wheels (not shown), and examples thereof include an automatic transmission and a manual transmission. However, it is not limited to these.
  • the transmission 4 may be any one as long as it converts the rotational motion of the crankshaft 2 to a rotational speed suitable for traveling and transmits it to drive wheels (not shown).
  • FIG. 3 is a partially enlarged perspective view of the vicinity of an accessory bracket of an engine / mission unit equipped with an exemplary engine accessory mounting structure.
  • FIG. 4 is a partially enlarged front view of the vicinity of an accessory bracket of an engine / transmission unit having an exemplary engine accessory mounting structure.
  • FIG. 5 is a cross-sectional view taken along a line AA in FIG. 6 is a cross-sectional view taken along a line BB in FIG. 7 is a cross-sectional view taken along a line CC in FIG.
  • the auxiliary machine 7 will be described with reference to FIGS.
  • the auxiliary machine 7 is arranged in the vicinity of the crankshaft pulley 11 on the front surface of the cylinder block 9.
  • Examples of the auxiliary machine 7 include an air conditioner compressor and a power generator alternator, but are not limited thereto.
  • the auxiliary machine 7 may be any machine as long as the rotational movement of the crankshaft 2 is transmitted via the drive belt 33.
  • the auxiliary machine 7 includes a hollow cylindrical auxiliary machine main body 34, an auxiliary machine pulley 35 that is disposed on the side surface of the auxiliary machine main body 34 on the crankshaft pulley 11 side, and over which the drive belt 33 is stretched,
  • the auxiliary machine body 34 is attached to the side opposite to the auxiliary machine pulley 35, the auxiliary machine main body 34 is attached to the cylinder block 9, the stationary side mounting part 36, the auxiliary machine body 34 is attached to the auxiliary machine pulley 35 side, Drive side attachment portions 37 and 38 for attaching the auxiliary machine body 34 to the cylinder block 9.
  • the stationary side mounting portion 36 is formed in a rectangular parallelepiped shape that is long in the left-right direction, and protrudes rightward from the right side surface portion of the auxiliary machine body 34.
  • a circular bolt through hole 39 through which the bolt 31 is inserted penetrates in the right end portion of the stationary side mounting portion 36 in a substantially horizontal direction.
  • the drive-side attachment portions 37 and 38 have an upper attachment portion 37 attached to the upper side of the auxiliary machine main body 34 and a lower attachment portion 38 attached to the lower side of the auxiliary machine main body 34.
  • the upper mounting part 37 is located slightly on the bracket 8 side (right side in FIG. 4) than the lower mounting part 38.
  • the upper mounting portion 37 includes a support portion 40 that extends upward from the auxiliary machine body 34, and a substantially rectangular parallelepiped bolt that is connected to the support portion 40 and is long in a substantially horizontal direction in which the bolt 12 is inserted. And an insertion part 41.
  • a circular bolt through hole 42 penetrates the bolt insertion part 41 in a substantially horizontal direction.
  • An opening 43 that is long in a substantially horizontal direction is formed on the surface of the bolt insertion portion 41 that faces the auxiliary machine body 34.
  • the lower mounting portion 38 includes a support portion 44 that extends downward from the auxiliary machine body 34, and a substantially rectangular parallelepiped bolt that is connected to the support portion 44 and is long in a substantially horizontal direction in which the bolt 14 is inserted. And an insertion part 45.
  • a circular bolt through hole 46 penetrates the bolt insertion part 45 in a substantially horizontal direction.
  • An opening 47 that is long in a substantially horizontal direction is formed on the surface of the bolt insertion portion 45 that faces the auxiliary machine body 34.
  • FIG. 8 is another partially enlarged perspective view of the vicinity of an accessory bracket of an engine / transmission unit having an exemplary engine accessory attachment structure.
  • FIG. 9 is a perspective view of the bracket 8 of the exemplary engine accessory mounting structure.
  • FIG. 10 is a right side view of the bracket 8 of the exemplary engine accessory mounting structure.
  • FIG. 11 is a front view of the bracket 8 of the exemplary engine accessory mounting structure.
  • the auxiliary machine 7 is omitted for convenience of explanation.
  • the engine accessory mounting structure will be described below with reference to FIGS.
  • the engine accessory mounting structure is separated to the right from the end surface (the left side surface of the cylinder block 9 in FIG. 8) that intersects the left and right direction next to the crankshaft pulley 11 of the cylinder block 9.
  • the bracket 8 is disposed at a position, and the mounting portions 5 and 6 are disposed closer to the left side surface of the cylinder block 9 than the bracket 8 is.
  • the bracket 8 is attached to the front part of the cylinder block 9. Specifically, as shown in FIGS. 5 and 9, the bracket 8 is connected to the first portion 16 connected to the front surface portion of the cylinder block 9 and the auxiliary machine 7, and has a lower rigidity than the first portion 16. And a second portion 17 having the same.
  • the first part 16 is connected to the upper side of the substantially circular screw fixing part 20 in which a bolt through hole 19 into which the bolt 18 is inserted is formed at the center, and the cylinder block 9 of the first part 16. And a substantially circular positioning portion 21 for determining a position with respect to.
  • the screw fixing portion 20 is configured such that the center of the bolt through hole 22 formed in the front surface portion of the cylinder block 9 and the center of the bolt through hole 19 of the screw fixing portion 20 are aligned.
  • the bolt 18 is inserted into the bolt through hole 22 from the hole 19, and the male screw of the bolt 18 and the female screw formed on the inner peripheral surface of the bolt through hole 22 are screwed to be fixed to the front portion of the cylinder block 9.
  • the bolt 18 is exemplified as a fixture for fixing the bracket 8 to the engine 1.
  • the bolt through hole 19 is exemplified as a fixing hole through which the fixing tool is inserted.
  • a pin through hole 25 into which the pin 24 is inserted is formed at the center of the positioning portion 21, and the center of the pin through hole 26 formed in the front portion of the cylinder block 9 is positioned.
  • the pin 24 is press-fitted from the pin through hole 25 into the pin through hole 26 in a state where the center of the pin through hole 25 of the portion 21 is matched.
  • the pin 24 is exemplified as a positioning tool for positioning the bracket 8 with respect to the engine 1.
  • the pin through hole 25 is exemplified as a positioning hole through which the positioning tool is inserted.
  • the second portion 17 is on a virtual plane along a second direction (left-right direction in FIG. 10) defined to be orthogonal to the first direction (front-rear direction in FIG. 10) on the horizontal plane. And has a U-shaped cross section.
  • the second portion 17 includes a base portion 27 connected to the left side of the screw fixing portion 20, a bent portion 28 bent in a U shape from the base portion 27, and a bent portion.
  • a straight portion 29 extending straight upward from the portion 28; and an auxiliary device connecting portion 30 connected to the straight portion 29 to which the auxiliary device 7 is connected.
  • the straight portion 29 is formed such that the length L1 in the first direction (left-right direction in FIG. 11) is shorter than the length L2 in the vertical direction (vertical direction in FIG. 10) of the bent portion 28. .
  • the straight portion 29 alternately receives a rightward force and a leftward force in FIG. 11, the straight portion 29 is likely to vibrate so as to swing in the left-right direction (the front-rear direction in FIG. 10) about the bent portion 28. ing. That is, the rigidity of the straight portion 29 is low in the left-right direction in FIG.
  • the auxiliary machine connecting portion 30 is formed in a cylindrical shape extending in a substantially horizontal direction.
  • the inner peripheral surface of the auxiliary machine connecting portion 30 is a bolt through hole 32 into which the bolt 31 can be inserted, and a female screw that is screwed with the male screw of the bolt 31 is formed.
  • the auxiliary machine connecting portion 30 is connected to the bolt through hole 39 of the stationary side mounting portion 36 in a state where the center of the bolt through hole 32 and the center of the bolt through hole 39 of the stationary side mounting portion 36 are substantially aligned in the horizontal direction.
  • Bolts 31 are inserted up to the through holes 32, and the auxiliary machine 7 is connected by screwing the male screw of the bolt 31 and the female screw of the bolt through hole 32.
  • the auxiliary machine connecting part 30 is arranged on the straight part 29 so that the center of the bolt through hole 32 is positioned on the extension line of the center line G1 of the pin through hole 25 of the positioning part 21.
  • the attachment parts 5, 6 include a first attachment part 5 for connection to the upper attachment part 37 of the auxiliary machine 7 and a second attachment part 6 for connection to the lower attachment part 37 of the auxiliary machine 7.
  • the first mounting portion 5 includes a cylindrical boss projecting from the front surface portion of the cylinder block 9 in a substantially horizontal direction, as shown in FIGS.
  • the inner peripheral surface of the first mounting portion 5 is a bolt through hole 13 through which the bolt 12 is inserted.
  • a female screw that fits with the male screw of the bolt 12 is formed on the inner surface of the bolt through hole 13, a female screw that fits with the male screw of the bolt 12 is formed.
  • the bolt through hole 13 extends from the bolt through hole 13 in a state where the center of the bolt through hole 13 and the center of the bolt through hole 42 of the upper mounting portion 37 of the auxiliary machine 7 are aligned in the substantially horizontal direction.
  • the bolt 12 is inserted until the male screw of the bolt 12 and the female screw of the bolt through-hole 13 are screwed together, and the auxiliary machine 7 is connected.
  • the shape and size of the first mounting portion 5 are adjusted so that the rigidity of the first mounting portion 5 is higher than the rigidity of the second portion 17 of the bracket 8.
  • the vibration of the auxiliary machine 7 is less likely to occur on the auxiliary machine pulley 35 side than on the side connected to the bracket 8 of the auxiliary machine 7. Therefore, the vibration on the auxiliary pulley 35 side of the auxiliary machine 7 is suppressed, and the driving of the auxiliary machine 7 is stabilized.
  • the second mounting portion 6 includes an L-shaped boss formed on the front surface portion of the cylinder block. Specifically, as shown in FIG. 7, the second mounting portion 6 is connected to the columnar extending portion 6 a extending downward from the front surface portion of the cylinder block 9 in the substantially vertical direction, and the extending portion 6 a, and is substantially horizontal. And a cylindrical accessory connecting portion 6b extending in a direction away from the cylinder block 9 (leftward in FIG. 7).
  • the inner peripheral surface of the auxiliary machine connecting portion 6b is a bolt through hole 15 into which the bolt 14 can be inserted, and a female screw that is screwed with the male screw of the bolt 14 is formed.
  • the second mounting portion 6 has a bolt passage of the lower mounting portion 38 in a state where the center of the bolt through hole 15 of the auxiliary machine connecting portion 6b and the center of the bolt through hole 46 of the lower mounting portion 38 are substantially aligned in the horizontal direction.
  • the bolt 14 is inserted from the hole 46 to the bolt through hole 15 of the auxiliary machine connecting portion 6b, and the male screw of the bolt 14 and the female screw of the bolt through hole 15 of the auxiliary machine connecting portion 6b are screw-coupled to each other.
  • the second attachment portion 6 includes an L-shaped boss, the auxiliary machine connecting portion 6b is likely to vibrate so as to swing in the first direction (the front-rear direction in FIG. 7) about the extending portion 6a. ing.
  • the rigidity of the second attachment portion 6 is lower in the first direction (the front-rear direction in FIG. 7) than the rigidity of the first attachment portion 5, and the second attachment portion 6 is lower on the lower side of the auxiliary machine 7 than on the upper side. Vibration in one direction (the front-rear direction in FIG. 7) is likely to occur.
  • the rigidity of the first mounting portion 5 is higher than the rigidity of the second mounting portion 6, vibration is less likely to occur on the upper side of the auxiliary machine 7 than on the lower side. Therefore, as shown in FIGS.
  • a triangular rigidity adjusting portion 49 formed in the cylinder block 9 is attached to the second attachment portion 6.
  • transformation to the said 1st direction (FIG. 8 left-right direction) of the 2nd attachment part 6 is adjusted.
  • the rigidity in the left-right direction of the second mounting portion 6 can be easily adjusted by the shape and size of the second mounting portion 6 and the shape and size of the rigidity adjusting portion 49. For example, when the horizontal dimension of the second mounting part 6 or the rigidity adjusting part 49 is increased or the shape of the rigidity adjusting part 49 is increased, the rigidity of the second mounting part 6 in the first direction is high. Become.
  • the horizontal dimension of the second mounting part 6 or the rigidity adjusting part 49 is reduced or the shape of the second mounting part 6 or the rigidity adjusting part 49 is reduced, the horizontal direction of the second mounting part 6 is determined.
  • the rigidity of is low.
  • FIG. 12 is a plan view of an exemplary engine / mission unit A.
  • FIG. 12 the operation of the engine auxiliary attachment structure for reducing engine vibration generated in the engine 1 will be described.
  • the direction will be described based on the engine 1 instead of the paper surface.
  • engine vibration is likely to occur in the front-rear direction of the engine 1 as shown in FIG. That is, engine vibration is likely to occur in the engine 1 in a second direction (front-rear direction in FIG. 12) defined to be orthogonal to the first direction (left-right direction in FIG. 12) on a horizontal plane.
  • the engine vibration in the front-rear direction of the engine 1 means that the transmission 4 side of the crankshaft 2 (the right side in FIG. 12) fluctuates forward in the horizontal direction and at the same time the opposite side of the transmission 4 of the crankshaft 2 (
  • the left side in FIG. 12 fluctuates backward in the horizontal direction, and then the right side of the crankshaft 2 fluctuates backward in the horizontal direction, and at the same time, the left side of the crankshaft 2 fluctuates forward in the horizontal direction.
  • the engine vibration that occurs in the engine 1 is a vibration that occurs continuously.
  • the auxiliary machine 7 connected to the second portion 17 of the bracket 8, the first mounting portion 5, and the second mounting portion 6 has high rigidity of the first mounting portion 5, and the second portion 17 of the bracket 8 2 Since the rigidity of the mounting portion 6 in the first direction (left-right direction in FIG. 12) is low, when receiving a rightward force and a leftward force alternately, the auxiliary machine 7 supports the first mounting portion 5 as a fulcrum. Vibrate so as to swing in the left-right direction. That is, the auxiliary machine 7 vibrates in the left-right direction when engine vibration in the front-rear direction of the engine 1 occurs. The vibration of the auxiliary machine 7 in the left-right direction reduces the engine vibration in the front-rear direction of the engine 1.
  • the right side of the engine 1 fluctuates forward in the horizontal direction
  • the left side of the engine 1 fluctuates backward in the horizontal direction.
  • the auxiliary machine 7 receives a leftward force due to the fluctuation of the engine 1.
  • the auxiliary machine 7 receiving the leftward force stays on the spot for a moment and moves to the left according to the law of inertia.
  • the right side of the engine 1 fluctuates backward in the horizontal direction, and at the same time, the left side of the engine 1 fluctuates forward in the horizontal direction.
  • the auxiliary machine 7 receiving the leftward force continues to fluctuate to the left for a moment due to the law of inertia, and at the same time receives the rightward force from the engine 1.
  • the left side of the engine 1 receives a force in the rearward direction in the horizontal direction due to the leftward movement of the auxiliary machine 7, so that the leftward fluctuation of the engine 1 in the horizontal direction is suppressed.
  • the auxiliary machine 7 that has received the rightward force due to the leftward horizontal displacement of the engine 1 changes to the right.
  • the left side of the engine 1 fluctuates rearward in the horizontal direction.
  • the auxiliary machine 7 receiving the rightward force continues to fluctuate to the right momentarily according to the law of inertia, and at the same time receives the leftward force from the engine 1.
  • the right side of the engine 1 receives a force in the rearward direction in the horizontal direction due to the rightward movement of the auxiliary machine 7, the rightward fluctuation in the right direction of the engine 1 is suppressed.
  • the auxiliary machine 7 connected to the second portion 17 and the second mounting portion 6 vibrates in the left-right direction in the opposite phase to the engine vibration in the front-rear direction of the engine 1.
  • the vibration is reduced by the left-right vibration of the auxiliary machine 7.
  • the second portion 17 and the second attachment portion 6 function as a dynamic damper that attenuates engine vibration in the front-rear direction of the engine 1 by vibrating in the left-right direction.
  • the auxiliary pulley 35 side of the auxiliary machine 7 is attached to the cylinder block 9 via the attachment parts 5 and 6 formed in the engine 1, but at least one of the attachment parts 5 and 6 is omitted. Then, it may be directly attached to the cylinder block 9. If it does in this way, the weight reduction of the engine 1 and cost reduction can be achieved.
  • the second portion 17 of the bracket 8 has a U-shaped cross section on the virtual plane along the left-right direction in FIG. 10, but is reversed on the virtual plane along the left-right direction in FIG. 10. It may be formed in a U shape or an L shape. However, when the second portion 17 is formed in a U shape or an inverted U shape, it is preferable in that stress concentration is avoided when the second portion 17 vibrates in the front-rear direction in FIG.
  • hub was formed in the front part of the cylinder block 9, it replaced with the 2nd attachment part 6 and the 1st attachment part 5 may be formed.
  • the rigidity of the first mounting portion 5 is higher than the rigidity of the second mounting portion 6, vibration is less likely to occur on the auxiliary pulley 35 side of the auxiliary device 7, and the driving of the auxiliary device 7 is more stable. This is preferable.
  • the extending portion 6a of the second mounting portion 6 is formed to extend downward in the vertical direction, but may be formed to extend upward in the vertical direction.
  • auxiliary machine 7 is connected to the bracket 8 and the attachment parts 5 and 6, but a plurality of auxiliary machines may be connected.
  • the exemplary engine accessory mounting structure described in connection with the above-described embodiment mainly includes the following features.
  • the engine accessory mounting structure has a crankshaft extending in the first direction.
  • the engine supports an auxiliary machine via a bracket.
  • the bracket includes a first part connected to the engine and a second part connected to the auxiliary machine and having lower rigidity than the first part.
  • the second portion When the engine vibrates in a second direction orthogonal to the first direction on a horizontal plane, the second portion has a phase opposite to that of the engine and vibrates in the first direction. It functions as a dynamic damper that attenuates vibrations of the engine.
  • the second portion when the engine vibrates in the second direction orthogonal to the first direction on the horizontal plane, the second portion has a phase opposite to that of the engine and vibrates in the first direction.
  • it functions as a dynamic damper that attenuates engine vibration.
  • the vibration of the engine is attenuated by the vibration in the first direction of the second portion of the bracket, it is not necessary to reinforce to suppress the vibration of the engine. Therefore, it is possible to reduce engine vibration in a direction orthogonal to the direction in which the crankshaft of the engine extends on a horizontal plane without causing an increase in weight or cost.
  • a mounting portion connected to the at least one auxiliary machine may be further provided at a position spaced from the bracket in the first direction.
  • the engine may include an end surface that intersects the first direction next to a rotating member that rotates with the crankshaft outside the engine.
  • the attachment portion may be disposed closer to the end surface than the bracket.
  • the second portion of the bracket may have a lower rigidity than the attachment portion.
  • the second portion of the bracket has a rigidity lower than that of the mounting portion disposed nearer to the end surface than the bracket, so that the mounting portion is the second portion of the bracket. Higher rigidity. Therefore, compared with the side of the auxiliary machine connected to the bracket, vibration on the end face side of the auxiliary machine is less likely to occur, and the driving stability of the auxiliary machine can be easily ensured.
  • the second portion of the bracket may have a length in the first direction shorter than a length in the vertical direction.
  • the second portion of the bracket is easily deformed in the first direction because the length in the first direction is shorter than the length in the vertical direction. That is, the rigidity of the second portion is reduced in the first direction. Therefore, the second portion of the bracket is likely to vibrate in the first direction, and the engine vibration is more effectively reduced by the vibration of the second portion in the first direction.
  • the second portion of the bracket may have a U-shaped or inverted U-shaped cross section on a virtual plane along the second direction.
  • the second portion of the bracket has a U-shaped or inverted U-shaped cross section on a virtual plane along the second direction, and thus the U-shaped or inverted U-shaped cross section. It becomes easy to vibrate in the first direction depending on the shape. That is, the rigidity of the second portion is reduced. Therefore, the engine vibration in the second direction is more effectively reduced by the vibration in the first direction of the second portion.
  • a fixing hole through which a fixing tool for fixing the bracket to the engine is inserted and a positioning hole through which a positioning tool for positioning the bracket with respect to the engine are inserted into the first portion. It may be formed.
  • the second portion may include an auxiliary machine connecting portion to which the at least one auxiliary machine is connected on an extension line of a center line of the positioning hole.
  • the second portion has an auxiliary machine connecting portion to which the at least one auxiliary machine is connected on an extension line of the center line of the positioning hole, when the bracket is fixed to the engine, Even if the position of the fixing hole with respect to the engine is shifted, the position of the positioning hole and the auxiliary machine connecting portion with respect to the engine does not shift. For this reason, the displacement of the auxiliary machine with respect to the engine is suppressed.
  • an auxiliary machine different from the auxiliary machine may be arranged above the auxiliary machine of the engine.
  • the mounting portion includes a first mounting portion for connecting the at least one auxiliary machine to the engine, and a second for connecting the at least one auxiliary machine to the engine below the first mounting portion. And an attachment portion.
  • the second attachment portion may be lower in rigidity than the first attachment portion.
  • the second mounting portion is lower in rigidity than the first mounting portion, the first mounting portion is higher in rigidity than the second mounting portion. Therefore, vibrations on the upper side of the auxiliary machine are less likely to occur, and the vibrations of the auxiliary machine are less likely to be transmitted to the other auxiliary machine, so that the second mounting is ensured while ensuring the driving stability of the other auxiliary machine.
  • the rigidity of the part can be reduced.
  • the second mounting portion may include an L-shaped boss formed on a cylinder block of the engine.
  • the second mounting portion since the second mounting portion includes an L-shaped boss formed on the cylinder block of the engine, the deformation in the first direction can be achieved by changing the L-shaped shape.
  • the ease can be easily adjusted.
  • the engine accessory mounting structure has a crankshaft extending in the first direction.
  • the engine supports an auxiliary machine via a bracket.
  • the bracket is disposed on one side of the engine in the first direction, and is connected to the engine, a first part connected to the engine, and the auxiliary machine, and the rigidity in the first direction is higher than that of the first part. And a lower second portion.
  • the bracket is disposed on one side in the first direction of the engine, is connected to the engine, and is connected to the auxiliary device, and has rigidity in the first direction from the first portion. And a lower second portion. Therefore, when the engine vibrates in a second direction orthogonal to the first direction on the horizontal plane, the second portion is in a phase opposite to that of the engine and vibrates in the first direction. Thus, the second portion functions as a dynamic damper that attenuates engine vibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vibration Prevention Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

エンジン1の補機取付構造は、第1方向に延びるクランクシャフト2を有する。エンジン1は、ブラケット8を介して補機7を支持する。ブラケット8は、エンジン1に連結される第1部分16と、補機7に連結され、且つ、第1部分16よりも低い剛性を有する第2部分17と、を含む。第2部分17は、水平面上において前記第1方向に直交する第2方向にエンジン1が振動するときに、エンジン1の振動とは逆位相であり、且つ、第1方向に振動することにより、エンジン1の振動を減衰するダイナミックダンパとして機能する。

Description

エンジンの補機取付構造
 本発明は、エンジンに補機が取り付けられるエンジンの補機取付構造に関する。
 エンジンに補機が取り付けられるエンジンの補機取付構造としては、例えば、特許文献1に記載されたエンジンの補機取付構造が知られている。
 特許文献1に記載されたエンジンの補機取付構造によれば、エンジンのシリンダブロックの側部にエンジン補機が取付ブラケットを介して取り付けられている。前記取付ブラケットには、前記エンジンの側部から離れる方向へ突出する支持部が上下に配設されており、この支持部に前記エンジン補機が締結ボルトによって固定されている。
 前記エンジン補機は、前記取付ブラケットの前記支持部の撓み変位によって前記エンジンの上下方向に微小上下振動が生じやすくなっている。そして、前記エンジン補機の重量に応じて、前記取付ブラケットの形状寸法すなわち各部の剛性を調整することにより、前記微小上下振動が前記エンジンの振動の共振周波数に同調して発生し、かつ、前記エンジンの振動と逆位相に生じるように設計されている。これにより、エンジンの上下方向の振動が前記エンジン補機の前記微小上下振動によって減衰され、エンジンの上下方向の振動が低減されている。
 ここで、例えば、前記エンジンのミッション側にチェーンカバーを備えている場合、前記エンジンと前記ミッションとが前記チェーンカバーを介して締結されるので、前記エンジンと前記ミッションとの間の締結剛性が弱くなる。特に、前記チェーンカバーが上下方向に長い場合は、前記エンジンの前後方向の振動が大きくなる。
 しかしながら、上記特許文献1のエンジンの補機取付構造では、前記エンジンの上下方向の振動を低減することができるが、前記エンジンの前後方向、すなわち、水平面上においてエンジンのクランクシャフトの延びる方向と直交する方向のエンジン振動を低減することはできない。そこで、補強によって前記エンジン振動を低減することが考えられるが、重量やコストが増大するといった問題が生じる。
実開平04-42226号公報
 本発明の目的は、重量やコストの増大を招くことなく、水平面上においてエンジンのクランクシャフトの延びる方向と直交する方向のエンジン振動を低減することができるエンジンの補機取付構造を提供することである。
 本発明の一局面に係るエンジンの補機取付構造は、第1方向に延びるクランクシャフトを有する。前記エンジンは、ブラケットを介して補機を支持する。前記ブラケットは、前記エンジンに連結される第1部分と、前記補機に連結され、且つ、第1部分よりも低い剛性を有する第2部分と、を含む。前記第2部分は、水平面上において前記第1方向に直交する第2方向に前記エンジンが振動するときに、前記エンジンの振動とは逆位相であり、且つ、前記第1方向に振動することにより、前記エンジンの振動を減衰するダイナミックダンパとして機能する。
 本発明に係るエンジンの補機取付構造は、重量やコストの増大を招くことなく、水平面上においてエンジンのクランクシャフトの延びる方向と直交する方向のエンジンの振動を減衰することができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施形態に係るエンジンの補機取付構造を備えたエンジン・ミッションユニットの斜視図である。 本発明の実施形態に係るエンジンの補機取付構造を備えたエンジン・ミッションユニットの他の斜視図である。 本発明の実施形態に係るエンジンの補機取付構造を備えたエンジン・ミッションユニットの補機ブラケット近傍の他の部分拡大斜視図である。 本発明の実施形態に係るエンジンの補機取付構造を備えたエンジン・ミッションユニットの補機ブラケット近傍の部分拡大前面図である。 図4のA-A線に沿った断面で切断した断面図である。 図4のB-B線に沿った断面で切断した断面図である。 図4のC-C線に沿った断面で切断した断面図である。 本発明の実施形態に係るエンジンの補機取付構造を備えたエンジン・ミッションユニットの補機ブラケット近傍の他の部分拡大斜視図である。 本発明の実施形態に係るエンジンの補機取付構造の補機ブラケットの斜視図である。 本発明の実施形態に係るエンジンの補機取付構造の補機ブラケットの右側面図である。 本発明の実施形態に係るエンジンの補機取付構造の補機ブラケットの前面図である。 本発明の実施形態に係るエンジンの補機取付構造を備えたエンジン・ミッションユニットの平面図である。
 図1は、例示的なエンジンの補機取付構造を備えたエンジン・ミッションユニットAの斜視図である。図2は、例示的なエンジンの補機取付構造を備えたエンジン・ミッションユニットAの他の斜視図である。以下、図1、2を参照して、エンジン・ミッションユニットAが説明される。尚、以下の図1~11において、紙面に対し、上側の方向を上方、下側の方向を下方、上方及び下方を総称した方向を上下方向と呼ぶ。また、紙面に対し、左側の方向を左方、右側の方向を右方、左方及び右方を総称した方向を左右方向と呼ぶ。更に、上下方向及び左右方向と直交する方向を前後方向と呼び、前後方向において手前に向かう方向を前方、奥側に向かう方向を後方と呼ぶ。
 エンジン・ミッションユニットAは、図1、2に示すように、上下方向に長い直方体状のエンジン1と、エンジン1に有するクランクシャフト2及びカム(図示せず)を連動させるチェーン(図示せず)を覆う上下方向に長い略矩形状のチェーンカバー3と、チェーンカバー3を介してエンジン1に取り付けられた左右方向に長い直方体状のトランスミッション4と、を備える。
 エンジン1は、内部にピストン(図示せず)が摺動するシリンダー(図示せず)が形成されたシリンダブロック9と、シリンダブロック9の上部に取り付けられ、内部に吸気ポート(図示せず)及び排気ポート(図示せず)が形成されたシリンダヘッド10と、シリンダブロック9のトランスミッション4が配置された側面とは反対側の側面に配置され、第1方向(図1、2では左右方向)に延びるクランクシャフト2とともに回転するクランクシャフトプーリ11と、クランクシャフトプーリ11に掛け渡された駆動ベルト33と、駆動ベルト33が掛け渡された補機7と、補機7をシリンダブロック9に連結させるためのエンジンの補機取付構造と、を備える。クランクシャフトプーリ11は、回転部材として例示される。尚、回転部材は、スプロケット等の他の回転部材であってもよい。
 チェーンカバー3は、シリンダブロック9及びシリンダヘッド10の右側面部に取り付けられている。チェーンカバー3は、エンジン1の右側面部の下端から上端に至る大きさに形成され、エンジン1の右側面部全体を覆っている。
 トランスミッション4は、クランクシャフト2の回転運動を走行に適した回転数に変換し、駆動輪(図示せず)に伝達するためのものであり、例えば、オートマチックトランスミッションやマニュアルトランスミッションを挙げることができるが、これらに限定されない。トランスミッション4は、クランクシャフト2の回転運動を走行に適した回転数に変換し、駆動輪(図示せず)に伝達するためのものであればいずれのものでもよい。
 図3は、例示的なエンジンの補機取付構造を備えたエンジン・ミッションユニットの補機ブラケット近傍の部分拡大斜視図である。図4は、例示的なエンジンの補機取付構造を備えたエンジン・ミッションユニットの補機ブラケット近傍の部分拡大前面図である。図5は、図4のA-A線に沿った断面で切断した断面図である。図6は、図4のB-B線に沿った断面で切断した断面図である。図7は、図4のC-C線に沿った断面で切断した断面図である。以下、図3~7を参照し、補機7が説明される。
 補機7は、シリンダブロック9の前面部のクランクシャフトプーリ11の近傍に配置されている。補機7は、例えば、エアコン用コンプレッサや発電用オルターネータを挙げることができるが、これらに限定されない。補機7は、クランクシャフト2の回転運動が駆動ベルト33を介して伝達されるものであればいずれのものでもよい。具体的には、補機7は、中空円筒状の補機本体34と、補機本体34のクランクシャフトプーリ11側の側面に配置され、駆動ベルト33が掛け渡された補機プーリ35と、補機本体34の補機プーリ35とは反対側に取り付けられ、補機本体34をシリンダブロック9に取り付けるための静止側取付部36と、補機本体34の補機プーリ35側に取り付けられ、補機本体34をシリンダブロック9に取り付けるための駆動側取付部37、38と、を有する。
 静止側取付部36は、図4に示すように、左右方向に長い直方体状に形成されており、補機本体34の右側面部から右方へ突出している。静止側取付部36の右側端部には、図4、5に示すように、ボルト31が挿通される円形のボルト通孔39が略水平方向に貫通している。
 駆動側取付部37、38は、補機本体34の上部側に取り付けられた上部取付部37と、補機本体34の下部側に取り付けられた下部取付部38と、を有する。
 上部取付部37は、下部取付部38よりも若干、ブラケット8側(図4では右側)に位置している。上部取付部37は、図6に示すように、補機本体34から上方へ延びる支持部40と、支持部40に連設され、ボルト12が挿入される略水平方向に長い略直方体状のボルト挿通部41と、を有する。ボルト挿通部41には、円形のボルト通孔42が略水平方向に貫通している。ボルト挿通部41の補機本体34と対向する面には、略水平方向に長い開口部43が形成されている。
 下部取付部38は、図7に示すように、補機本体34から下方へ延びる支持部44と、支持部44に連設され、ボルト14が挿入される略水平方向に長い略直方体状のボルト挿通部45と、を有する。ボルト挿通部45には、円形のボルト通孔46が略水平方向に貫通している。ボルト挿通部45の補機本体34と対向する面には、略水平方向に長い開口部47が形成されている。
 図8は、例示的なエンジンの補機取付構造を備えたエンジン・ミッションユニットの補機ブラケット近傍の他の部分拡大斜視図である。図9は、例示的なエンジンの補機取付構造のブラケット8の斜視図である。図10は、例示的なエンジンの補機取付構造のブラケット8の右側面図である。図11は、例示的なエンジンの補機取付構造のブラケット8の前面図である。尚、図8では、説明の便宜上、補機7が省略されている。以下、図5、8~11を参照し、エンジンの補機取付構造が説明される。
 エンジンの補機取付構造は、図8に示すように、シリンダブロック9のクランクシャフトプーリ11の隣において左右方向に交差する端面(図8ではシリンダブロック9の左側の側面)から右方に離れた位置に配置されたブラケット8と、ブラケット8よりもシリンダブロック9の左側の側面の近くに配置された取付部5、6とを、有する。
 ブラケット8は、シリンダブロック9の前面部に取り付けられている。具体的には、ブラケット8は、図5、9に示すように、シリンダブロック9の前面部に連結される第1部分16と、補機7に連結され、第1部分16よりも低い剛性を有する第2部分17と、を備える。
 第1部分16は、ボルト18が挿入されるボルト通孔19が中央に形成された略円形のねじ固定部20と、ねじ固定部20の上側に連設され、第1部分16のシリンダブロック9に対する位置を定める略円形の位置決め部21と、を有する。
 ねじ固定部20は、図5に示すように、シリンダブロック9の前面部に形成されたボルト通穴22の中心とねじ固定部20のボルト通孔19の中心とを一致させた状態でボルト通孔19からボルト通穴22にボルト18が差し込まれており、ボルト18の雄ねじとボルト通穴22の内周面に形成された雌ねじとがねじ結合することにより、シリンダブロック9の前面部に固定されている。尚、ボルト18は、ブラケット8をエンジン1に固定するための固定具として例示される。ボルト通孔19は、固定具が挿通される固定穴として例示される。
 位置決め部21の中央には、図5、9に示すように、ピン24が差し込まれるピン通孔25が形成されており、シリンダブロック9の前面部に形成されたピン通穴26の中心と位置決め部21のピン通孔25の中心とを一致させた状態でピン通孔25からピン通穴26にピン24が圧入されている。これにより、ブラケット8をシリンダブロック9に取り付ける際に、第1部分16のシリンダブロック9に対する位置のずれを生じにくくしている。尚、ピン24は、ブラケット8をエンジン1に対して位置決めするための位置決め具として例示される。ピン通孔25は、位置決め具が挿通される位置決め穴として例示される。
 第2部分17は、図10に示すように、水平面上において前記第1方向(図10では前後方向)に直交するように規定された第2方向(図10では左右方向)に沿う仮想平面上でU字状の断面を有する。具体的には、第2部分17は、図9、10に示すように、ねじ固定部20の左側に連設される基部27と、基部27からU字状に屈曲する屈曲部28と、屈曲部28から上方にまっすぐ延びるストレート部29と、ストレート部29に連設され、補機7が連結される補機連結部30と、を有する。
 ストレート部29は、前記第1方向(図11では左右方向)の長さL1が、屈曲部28の鉛直方向(図10では上下方向)の長さL2に比べて短くなるように形成されている。これにより、ストレート部29は、図11において右向きの力と左向きの力を交互に受けると、屈曲部28を中心にして左右方向(図10では前後方向)に揺動するように振動しやすくなっている。すなわち、ストレート部29の剛性は、図11において左右方向に低くなっている。
 補機連結部30は、図5、9に示すように、略水平方向に延びる円筒状に形成されている。補機連結部30の内周面は、ボルト31を挿入可能なボルト通孔32となっており、ボルト31の雄ねじと螺合する雌ねじが形成されている。補機連結部30には、ボルト通孔32の中心と静止側取付部36のボルト通孔39の中心とが略水平方向に一致した状態で、静止側取付部36のボルト通孔39からボルト通孔32までボルト31が挿入されており、ボルト31の雄ねじとボルト通孔32の雌ねじとがねじ結合することにより、補機7が連結されている。尚、図5では、ボルト通孔32は、略水平方向に貫通しているが、シリンダブロック9側が閉塞されていてもよい。補機連結部30は、位置決め部21のピン通孔25の中心線G1の延長線上に、ボルト通孔32の中心が位置するようにストレート部29に配置されている。これにより、ブラケット8がシリンダブロック9に取り付けられる際に、ねじ固定部20のシリンダブロック9に対する位置がずれたとしても、位置決め部21と補機連結部30のシリンダブロック9に対する位置はずれないので、補機連結部30に連結される補機7の位置ずれが抑制される。
 次に、図6~8を参照し、取付部5、6が説明される。取付部5、6は、補機7の上部取付部37に連結させるための第1取付部5と、補機7の下部取付部37に連結させるための第2取付部6と、を含む。
 第1取付部5は、図6、8に示すように、シリンダブロック9の前面部から略水平方向に突出する円筒状のボスを含む。第1取付部5の内周面は、ボルト12が挿通されるボルト通穴13となっている。ボルト通穴13の内面には、ボルト12の雄ねじと羅合する雌ねじが形成されている。第1取付部5には、ボルト通穴13の中心と補機7の上部取付部37のボルト通孔42の中心とが略水平方向に一致した状態で、ボルト通孔42からボルト通穴13までボルト12が挿入されており、ボルト12の雄ねじとボルト通穴13の雌ねじとがねじ結合することにより、補機7が連結されている。また、第1取付部5の剛性がブラケット8の第2部分17の剛性よりも高くなるように、第1取付部5の形状寸法が調整されている。これにより、補機7の振動は、補機7のブラケット8と連結される側に比べて補機プーリ35側において生じにくくなっている。そのため、補機7の補機プーリ35側の振動が抑制され、補機7の駆動が安定する。
 第2取付部6は、シリンダブロックの前面部に形成されたL字状のボスを含む。具体的には、第2取付部6は、図7に示すように、シリンダブロック9の前面部から略鉛直方向の下方に延びる柱状の延伸部6aと、延伸部6aに連設され、略水平方向であり、かつ、シリンダブロック9から離れる方向(図7では左方)へ延びる円筒状の補機連結部6bと、を有する。補機連結部6bの内周面は、ボルト14を挿入可能なボルト通穴15となっており、ボルト14の雄ねじと螺合する雌ねじが形成されている。
 第2取付部6には、補機連結部6bのボルト通穴15の中心と下部取付部38のボルト通孔46の中心とが略水平方向に一致した状態で、下部取付部38のボルト通孔46から補機連結部6bのボルト通穴15までボルト14が挿入されており、ボルト14の雄ねじと補機連結部6bのボルト通穴15の雌ねじとがねじ結合することにより、補機7が連結されている。第2取付部6は、L字状のボスを含むので、補機連結部6bは、延伸部6aを中心に前記第1方向(図7では前後方向)に揺動するように振動しやすくなっている。そのため、第2取付部6の剛性は、第1取付部5の剛性よりも前記第1方向(図7では前後方向)に低くなっており、補機7の下部側において上部側よりも前記第1方向(図7では前後方向)の振動が生じやすくなっている。一方、第1取付部5の剛性は、第2取付部6の剛性よりも高いので、補機7の上部側において下部側よりも振動が生じにくくなっている。そのため、図3、4に示すように、シリンダブロック9の補機7の上方位置48に補機7とは別の駆動ベルト33が掛け渡される補機(図示省略)が配置されても、その別の補機に補機7の振動が伝わりにくくなっているので、前記別の補機の駆動の安定性を確保することができる。
 第2取付部6には、図8に示すように、シリンダブロック9に形成された三角形状の剛性調整部49が取り付けられている。これにより、第2取付部6の前記第1方向(図8では左右方向)への変形のしやすさ(左右方向の剛性)が調整されている。第2取付部6の左右方向の剛性は、第2取付部6の形状寸法や剛性調整部49の形状寸法によって容易に調整することができる。例えば、第2取付部6や剛性調整部49の左右方向の寸法を大きくしたり、剛性調整部49の形状を大きくしたりした場合は、第2取付部6の前記第1方向の剛性は高くなる。一方、第2取付部6や剛性調整部49の左右方向の寸法を小さくしたり、第2取付部6や剛性調整部49の形状を小さくしたりした場合は、第2取付部6の左右方向の剛性は低くなる。
 図12は、例示的なエンジン・ミッションユニットAの平面図である。以下、図12を参照し、エンジンの補機取付構造がエンジン1に生じるエンジン振動を低減する動作ついて説明する。尚、図12では、紙面ではなく、エンジン1を基準に方向を説明する。エンジン1には、上下方向に長いチェーンカバー3を介してトランスミッション4が取り付けられているので、図12に示すように、エンジン1の前後方向にエンジン振動が生じやすい。すなわち、エンジン1には、水平面上において前記第1方向(図12では左右方向)に直交するように規定された第2方向(図12では前後方向)にエンジン振動が生じやすい。具体的には、エンジン1の前後方向のエンジン振動とは、クランクシャフト2のトランスミッション4側(図12では右側)が水平方向の前方へ変動すると同時に、クランクシャフト2のトランスミッション4とは反対側(図12では左側)が水平方向の後方へ変動し、その後、クランクシャフト2の右側が水平方向の後方へ変動すると同時に、クランクシャフト2の左側が水平方向の前方へ変動し、このような変動が連続して起こるような振動がエンジン1に生じるエンジン振動を言う。
 一方、ブラケット8の第2部分17と第1取付部5と第2取付部6とに連結された補機7は、第1取付部5の剛性が高く、ブラケット8の第2部分17と第2取付部6の前記第1方向(図12では左右方向)の剛性が低くなっているので、右向きの力と左向きの力を交互に受けると、補機7は、第1取付部5を支点に左右方向に揺動するように振動する。すなわち、補機7は、エンジン1の前後方向のエンジン振動が生じると、左右方向に振動する。この補機7の左右方向の振動によってエンジン1の前後方向のエンジン振動が低減される。
 具体的には、まず、エンジン1の右側が水平方向の前方へ変動すると同時に、エンジン1の左側が水平方向の後方へ変動する。このとき、補機7は、エンジン1の変動によって左向きの力を受ける。左向きの力を受けた補機7は、慣性の法則により、一瞬その場で留まって左方へ変動する。
 その後、エンジン1の右側が水平方向の後方へ変動すると同時に、エンジン1の左側が水平方向の前方へ変動する。このとき、左向きの力を受けていた補機7は、慣性の法則により一瞬左方へ変動し続けると同時に、エンジン1から右向きの力を受ける。一方、エンジン1の左側は、補機7の左方への変動によって水平方向の後方へ向かう力を受けるので、エンジン1の左側の水平方向の前方への変動が抑制される。その後、エンジン1の左側の水平方向の前方への変位によって右向きの力を受けていた補機7は、右方へ変動する。
 次いで、エンジン1の右側が水平方向の前方へ変動すると同時に、エンジン1の左側が水平方向の後方へ変動する。このとき、右向きの力を受けていた補機7は、慣性の法則により一瞬右方へ変動し続けると同時に、エンジン1から左向きの力を受ける。一方、エンジン1の右側は、補機7の右方への変動によって水平方向の後方へ向かう力を受けるので、エンジン1の右側の水平方向の前方への変動が抑制される。
 このように、第2部分17と第2取付部6に連結された補機7は、エンジン1の前後方向のエンジン振動とは逆位相で左右方向に振動するので、エンジン1の前後方向のエンジン振動は、補機7の左右方向の振動によって低減される。言い換えると、第2部分17と第2取付部6は、左右方向に振動することにより、エンジン1の前後方向のエンジン振動を減衰するダイナミックダンパとして機能する。
 なお、以上に説明したエンジンの補機取付構造は、本発明の一実施形態であり、その具体的構成については、適宜変更可能である。以下、本実施形態の変形例について説明する。
 上記実施形態では、補機7の補機プーリ35側は、エンジン1に形成された取付部5、6を介してシリンダブロック9に取り付けられたが、取付部5、6の少なくとも一方を省略して、直接シリンダブロック9に取り付けられるようにしてもよい。このようにすると、エンジン1の軽量化およびコストの低減化を図ることができる。
 上記実施形態では、ブラケット8の第2部分17は、図10における左右方向に沿う仮想平面上でU字状に形成される断面を有したが、図10における左右方向に沿う仮想平面上で逆U字状またはL字状に形成されてもよい。しかしながら、第2部分17がU字状または逆U字状に形成される場合、第2部分17が図10における前後方向に振動する際に応力集中が避けられる点で好ましい。
 上記実施形態では、シリンダブロック9の前面部にL字状のボスを含む第2取付部6が形成されたが、第2取付部6に代えて、第1取付部5が形成されてもよい。このようにすると、第1取付部5の剛性は第2取付部6の剛性よりも高いので、補機7の補機プーリ35側において振動が生じにくくなり、補機7の駆動がより安定する点で好ましい。
 上記実施形態では、第2取付部6の延伸部6aは、鉛直方向の下方に延びるように形成されたが、鉛直方向の上方に延びるように形成されてもよい。
 上記実施形態では、ブラケット8と取付部5、6には、補機7のみが連結されたが、複数の補機が連結されるようにしてもよい。
 上述の実施形態に関連して説明された例示的なエンジンの補機取付構造は、以下の特徴を主に備える。
 上述の実施形態の一局面に係るエンジンの補機取付構造は、第1方向に延びるクランクシャフトを有する。前記エンジンは、ブラケットを介して補機を支持する。前記ブラケットは、前記エンジンに連結される第1部分と、前記補機に連結され、且つ、第1部分よりも低い剛性を有する第2部分と、を含む。前記第2部分は、水平面上において前記第1方向に直交する第2方向に前記エンジンが振動するときに、前記エンジンの振動とは逆位相であり、且つ、前記第1方向に振動することにより、前記エンジンの振動を減衰するダイナミックダンパとして機能する。
 上記構成によれば、第2部分は、水平面上において第1方向に直交する第2方向にエンジンが振動するときに、エンジンの振動とは逆位相であり、且つ、第1方向に振動することにより、エンジンの振動を減衰するダイナミックダンパとして機能する。このように、ブラケットの第2部分の第1方向の振動によってエンジンの振動が減衰されるので、エンジンの振動を抑制するための補強をする必要がない。そのため、重量やコストの増大を招くことなく、水平面上においてエンジンのクランクシャフトの延びる方向と直交する方向のエンジンの振動を低減することができる。
 上記構成において、前記ブラケットから前記第1方向において離間した位置で前記少なくとも1つの補機に連結される取付部を更に備えてもよい。前記エンジンは、前記エンジンの外で前記クランクシャフトとともに回転する回転部材の隣において前記第1方向に交差する端面を含んでもよい。前記取付部は、前記ブラケットよりも前記端面の近くに配置されてもよい。前記ブラケットの前記第2部分は、前記取付部よりも低い剛性を有してもよい。
 上記構成によれば、前記ブラケットの前記第2部分は、前記ブラケットよりも前記端面の近くに配置された前記取付部よりも低い剛性を有するので、前記取付部は、前記ブラケットの前記第2部分よりも高い剛性を有する。そのため、前記補機の前記ブラケットと連結される側に比べて前記補機の前記端面側の振動が生じにくくなり、補機の駆動の安定性を確保しやすくなる。
 上記構成において、前記ブラケットの第2部分は、前記第1方向の長さが鉛直方向の長さよりも短くてもよい。
 上記構成によれば、前記ブラケットの第2部分は、前記第1方向の長さが鉛直方向の長さよりも短いので、前記第1方向へ変形しやすくなる。すなわち、前記第2部分の剛性は、前記第1方向に低くなる。そのため、前記ブラケットの第2部分は、前記第1方向に振動しやすくなり、前記エンジン振動は、前記第2部分の前記第1方向の振動によってより効果的に低減される。
 上記構成において、前記ブラケットの前記第2部分は、前記第2方向に沿う仮想平面上で、U字状又は逆U字状の断面を有してもよい。
 上記構成によれば、前記ブラケットの前記第2部分は、前記第2方向に沿う仮想平面上で、U字状又は逆U字状の断面を有するので、前記U字状又は逆U字状の形状によって前記第1方向に振動しやすくなる。すなわち、前記第2部分の剛性は低くなる。そのため、前記第2方向のエンジン振動は、前記第2部分の前記第1方向の振動によってより効果的に低減される。
 上記構成において、前記ブラケットを前記エンジンに固定するための固定具が挿通される固定穴及び前記ブラケットを前記エンジンに対して位置決めするための位置決め具が挿通される位置決め穴は、前記第1部分に形成されてもよい。前記第2部分は、前記位置決め穴の中心線の延長線上に前記少なくとも1つの補機が連結される補機連結部を有してもよい。
 上記構成によれば、前記第2部分は、前記位置決め穴の中心線の延長線上に前記少なくとも1つの補機が連結される補機連結部を有するので、前記ブラケットを前記エンジンに固定する際に、前記固定穴の前記エンジンに対する位置がずれたとしも、前記位置決め穴と補機連結部の前記エンジンに対する位置はずれない。そのため、前記補機の前記エンジンに対する位置ずれが抑制される。
 上記構成において、前記エンジンの前記補機の上方に前記補機とは別の補機が配置されてもよい。前記取付部は、前記エンジンに前記少なくとも1つの補機を連結させるための第1取付部と、前記第1取付部の下方で、前記エンジンに前記少なくとも1つの補機を連結させるための第2取付部と、を含んでもよい。前記第2取付部は、前記第1取付部よりも剛性において低くてもよい。
 上記構成によれば、前記第2取付部は、前記第1取付部よりも剛性において低いので、前記第1取付部は、前記第2取付部よりも剛性において高くなる。そのため、補機の上部側の振動が生じにくくなり、前記補機の振動が前記別の補機に伝わりにくくなるので、前記別の補機の駆動の安定性を確保しつつ、前記第2取付部の剛性を低くすることができる。
 上記構成において、前記第2取付部は、前記エンジンのシリンダブロックに形成されたL字状のボスを含んでもよい。
 上記構成によれば、前記第2取付部は、前記エンジンのシリンダブロックに形成されたL字状のボスを含むので、L字状の形状を変更することにより、前記第1方向への変形のしやすさ(第1方向の剛性)を容易に調整することができる。
 本発明一局面に係るエンジンの補機取付構造は、第1方向に延びるクランクシャフトを有する。前記エンジンは、ブラケットを介して補機を支持する。前記ブラケットは、前記エンジンの前記第1方向の一側に配設され、前記エンジンに連結される第1部分と、前記補機に連結され、且つ、前記第1方向の剛性が第1部分よりも低い第2部分と、を含む。
 上記構成によれば、ブラケットは、エンジンの第1方向の一側に配設され、エンジンに連結される第1部分と、補機に連結され、且つ、第1方向の剛性が第1部分よりも低い第2部分と、を含む。そのため、水平面上において第1方向に直交する第2方向にエンジンが振動するときに、第2部分は、エンジンの振動とは逆位相であり、且つ、第1方向に振動する。これにより、第2部分は、エンジンの振動を減衰するダイナミックダンパとして機能する。
 上述の実施形態の原理は、レシプロエンジンなどの様々なエンジンの補機取付構造に適用可能である。
 

Claims (8)

  1.  第1方向に延びるクランクシャフトを有するエンジンの補機取付構造であって、
     前記エンジンは、ブラケットを介して補機を支持し、
     前記ブラケットは、前記エンジンに連結される第1部分と、前記補機に連結され、且つ、第1部分よりも低い剛性を有する第2部分と、を含み、
     前記第2部分は、水平面上において前記第1方向に直交する第2方向に前記エンジンが振動するときに、前記エンジンの振動とは逆位相であり、且つ、前記第1方向に振動することにより、前記エンジンの振動を減衰するダイナミックダンパとして機能する
     エンジンの補機取付構造。
  2.  前記ブラケットから前記第1方向において離間した位置で前記少なくとも1つの補機に連結される取付部を更に備え、
     前記エンジンは、前記エンジンの外で前記クランクシャフトとともに回転する回転部材の隣において前記第1方向に交差する端面を含み、
     前記取付部は、前記ブラケットよりも前記端面の近くに配置され、
     前記ブラケットの前記第2部分は、前記取付部よりも低い剛性を有する
     請求項1に記載のエンジンの補機取付構造。
  3.  前記ブラケットの第2部分は、前記第1方向の長さが鉛直方向の長さよりも短い請求項1又は2に記載のエンジンの補機取付構造。
  4.  前記ブラケットの第2部分は、前記第2方向に沿う仮想平面上で、U字状又は逆U字状の断面を有する請求項3に記載のエンジンの補機取付構造。
  5.  前記ブラケットを前記エンジンに固定するための固定具が挿通される固定穴及び前記ブラケットを前記エンジンに対して位置決めするための位置決め具が挿通される位置決め穴は、前記第1部分に形成され、
     前記第2部分は、前記位置決め穴の中心線の延長線上に前記少なくとも1つの補機が連結される補機連結部を有する
     請求項1乃至4のいずれか1項に記載のエンジンの補機取付構造。
  6.  前記エンジンの前記補機の上方に前記補機とは別の補機が配置され、
     前記取付部は、前記エンジンに前記少なくとも1つの補機を連結させるための第1取付部と、前記第1取付部の下方で、前記エンジンに前記少なくとも1つの補機を連結させる第2取付部と、を有し、
    前記第2取付部は、前記第1取付部よりも剛性において低い
     請求項2に記載のエンジンの補機取付構造。
  7.  前記第2取付部は、前記エンジンのシリンダブロックに形成されたL字状のボスを含む請求項6に記載のエンジンの補機取付構造。
  8.  第1方向に延びるクランクシャフトを有するエンジンの補機取付構造であって、
     前記エンジンは、ブラケットを介して補機を支持し、
     前記ブラケットは、前記エンジンの前記第1方向の一側に配設され、前記エンジンに連結される第1部分と、前記補機に連結され、且つ、前記第1方向の剛性が第1部分よりも低い第2部分と、を含むことを特徴とするエンジンの補機取付構造。
     
PCT/JP2018/004205 2017-03-30 2018-02-07 エンジンの補機取付構造 WO2018179876A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/492,326 US20200325819A1 (en) 2017-03-30 2018-02-07 Accessory mounting structure for engine
EP18775802.4A EP3578777B1 (en) 2017-03-30 2018-02-07 Accessory mounting structure for engine
CN201880017511.0A CN110418877B (zh) 2017-03-30 2018-02-07 发动机的辅机安装构造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-067155 2017-03-30
JP2017067155A JP6390741B1 (ja) 2017-03-30 2017-03-30 エンジンの補機取付構造

Publications (1)

Publication Number Publication Date
WO2018179876A1 true WO2018179876A1 (ja) 2018-10-04

Family

ID=63579904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004205 WO2018179876A1 (ja) 2017-03-30 2018-02-07 エンジンの補機取付構造

Country Status (5)

Country Link
US (1) US20200325819A1 (ja)
EP (1) EP3578777B1 (ja)
JP (1) JP6390741B1 (ja)
CN (1) CN110418877B (ja)
WO (1) WO2018179876A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363350B2 (ja) * 2019-10-17 2023-10-18 スズキ株式会社 エンジンの補機取付構造

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164834A (ja) * 1987-12-21 1989-06-28 Mazda Motor Corp パワープラント系のダイナミックダンパー装置
JPH0460119A (ja) * 1990-06-29 1992-02-26 Mazda Motor Corp エンジンの補機取付装置
JPH0494425A (ja) * 1990-08-10 1992-03-26 Mazda Motor Corp エンジンの補機取付構造
JPH0442226U (ja) 1990-08-10 1992-04-09
JPH09119318A (ja) * 1995-10-26 1997-05-06 Toyota Motor Corp 補機支持装置
JP2003227346A (ja) * 2002-02-06 2003-08-15 Mazda Motor Corp エンジン補機取付構造
JP2004239155A (ja) * 2003-02-05 2004-08-26 Honda Motor Co Ltd 内燃機関用補機駆動装置
JP2005344542A (ja) * 2004-06-01 2005-12-15 Nissan Motor Co Ltd エンジンの補機装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203293A (en) * 1990-06-29 1993-04-20 Mazda Motor Corporation Auxiliary mechanism mounting structure for an engine
JP2932777B2 (ja) * 1991-07-31 1999-08-09 スズキ株式会社 V型エンジンの補機取付構造
JPH07127478A (ja) * 1993-10-29 1995-05-16 Yamaha Motor Co Ltd 4サイクルエンジンのタイミングチェーンケース構造
US5503117A (en) * 1993-10-29 1996-04-02 Yamaha Hatsudoki Kabushiki Kaisha Engine cooling system
JP3412373B2 (ja) * 1995-12-28 2003-06-03 日産自動車株式会社 エンジンにおける補機取付用ブラケットの構造
US5938169A (en) * 1996-11-26 1999-08-17 Suzuki Motor Corporation Engine mounting for engine accessory
JP2004239166A (ja) * 2003-02-06 2004-08-26 Kobelco Contstruction Machinery Ltd 建設機械のエンジン制御装置
JP4720289B2 (ja) * 2005-05-26 2011-07-13 日産自動車株式会社 内燃機関の振動低減装置
US7730867B2 (en) * 2008-02-14 2010-06-08 Gm Global Technology Operations, Inc. Engine including a self-adjusting thermally compliant bracket
CN201560881U (zh) * 2009-10-16 2010-08-25 中国第一汽车集团公司 安装动力起动发电机和张紧轮的整体式多功能支架
CN202300650U (zh) * 2011-09-30 2012-07-04 上汽通用五菱汽车股份有限公司 一种集成式减震型发动机附件支架装置
CN202756096U (zh) * 2012-07-30 2013-02-27 北汽福田汽车股份有限公司 安装支架、发动机安装结构总成和车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164834A (ja) * 1987-12-21 1989-06-28 Mazda Motor Corp パワープラント系のダイナミックダンパー装置
JPH0460119A (ja) * 1990-06-29 1992-02-26 Mazda Motor Corp エンジンの補機取付装置
JPH0494425A (ja) * 1990-08-10 1992-03-26 Mazda Motor Corp エンジンの補機取付構造
JPH0442226U (ja) 1990-08-10 1992-04-09
JPH09119318A (ja) * 1995-10-26 1997-05-06 Toyota Motor Corp 補機支持装置
JP2003227346A (ja) * 2002-02-06 2003-08-15 Mazda Motor Corp エンジン補機取付構造
JP2004239155A (ja) * 2003-02-05 2004-08-26 Honda Motor Co Ltd 内燃機関用補機駆動装置
JP2005344542A (ja) * 2004-06-01 2005-12-15 Nissan Motor Co Ltd エンジンの補機装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578777A4

Also Published As

Publication number Publication date
CN110418877A (zh) 2019-11-05
CN110418877B (zh) 2021-07-27
EP3578777A4 (en) 2020-03-18
JP6390741B1 (ja) 2018-09-19
US20200325819A1 (en) 2020-10-15
JP2018168767A (ja) 2018-11-01
EP3578777A1 (en) 2019-12-11
EP3578777B1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
JP5807731B1 (ja) エンジンのベルト張力調整装置
KR100867291B1 (ko) 차량 내 탑재 대상물을 지지하기 위한 지지 장치
JP2002178223A (ja) 防振装置付きチェーンソー
JP2017100567A (ja) 車両用内燃機関の支持装置
JP2013245636A (ja) 可変バルブタイミング機構付エンジン
WO2018179876A1 (ja) エンジンの補機取付構造
JP7013644B2 (ja) 変速機
US8967288B2 (en) Anti-vibration structure for operation lever of portable brush cutter
JP6230846B2 (ja) 振動低減エンジンマウンティング構造
JP2019019846A (ja) 車両用パワートレインのマウント装置
JP2012163011A (ja) 補機支持用ブラケット
JP2016176441A (ja) 内燃機関
JPH0460119A (ja) エンジンの補機取付装置
JP7327196B2 (ja) バランサ付きエンジン
JP7302403B2 (ja) ハイブリッド駆動装置
JP2014134124A (ja) 車両用エンジンのバランサ装置
JP2019035366A (ja) シリンダヘッドおよびこれを備える内燃機関
CN110080914B (zh) 车辆的内燃机
JP2021161988A (ja) エンジンのオイルクーラの振動低減構造
JPH0494425A (ja) エンジンの補機取付構造
JPH0539730A (ja) V型エンジンの補機取付構造
JP2022155117A (ja) クランクプーリ
JP2019044652A (ja) 補機駆動ユニット
JP2005344542A (ja) エンジンの補機装置
JP2019124170A (ja) 車両用発電ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018775802

Country of ref document: EP

Effective date: 20190905

NENP Non-entry into the national phase

Ref country code: DE