WO2018173727A1 - 光配向性共重合体、光配向膜および光学積層体 - Google Patents

光配向性共重合体、光配向膜および光学積層体 Download PDF

Info

Publication number
WO2018173727A1
WO2018173727A1 PCT/JP2018/008439 JP2018008439W WO2018173727A1 WO 2018173727 A1 WO2018173727 A1 WO 2018173727A1 JP 2018008439 W JP2018008439 W JP 2018008439W WO 2018173727 A1 WO2018173727 A1 WO 2018173727A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
photo
formula
carbon atoms
Prior art date
Application number
PCT/JP2018/008439
Other languages
English (en)
French (fr)
Inventor
寛 野副
隆史 飯泉
考浩 加藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019507508A priority Critical patent/JPWO2018173727A1/ja
Publication of WO2018173727A1 publication Critical patent/WO2018173727A1/ja
Priority to US16/558,841 priority patent/US20200004087A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials

Definitions

  • the present invention relates to a photo-alignment copolymer, a photo-alignment film, and an optical laminate.
  • Optical films such as optical compensation sheets and retardation films are used in various image display devices from the viewpoint of eliminating image coloring and widening the viewing angle.
  • a stretched birefringent film has been used as the optical film, but recently, it has been proposed to use an optically anisotropic layer using a liquid crystalline compound instead of the stretched birefringent film.
  • optically anisotropic layer is provided with an alignment film on a support on which the optically anisotropic layer is formed in order to align the liquid crystalline compound.
  • a photo-alignment film subjected to a photo-alignment process instead of the process is known.
  • Patent Document 1 discloses a liquid crystal alignment layer formed from a thermosetting film-forming composition containing an acrylic copolymer having a photodimerization site such as a cinnamoyl group and a crosslinking agent ([claims 1] [Claim 3] [Claim 11] ⁇ 0028>).
  • the present inventors examined an acrylic copolymer obtained by copolymerizing a monomer having a photodimerization site and a monomer having a thermal crosslinking site as the acrylic copolymer described in Patent Document 1. It was clarified that the heat resistance of the photo-alignment film formed using the obtained acrylic copolymer may be inferior depending on the type of the polymer.
  • this invention makes it a subject to provide the photo-alignment copolymer which can produce the photo-alignment film excellent in heat resistance, and the photo-alignment film and optical laminated body which were produced using it. .
  • the present inventors have formed a copolymer by using a copolymer having a repeating unit containing a specific photoalignable group and a repeating unit containing a specific crosslinkable group.
  • the present invention was completed by finding that the photo-alignment film to be heat-resistant has good heat resistance. That is, the present inventors have found that the above problem can be achieved by the following configuration.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent.
  • R 2 , R 3 , R 4 , R 5 and R 6 two adjacent groups may be bonded to form a ring.
  • R 7 represents a hydrogen atom or a methyl group.
  • L 1 and L 2 in formula (2) of formula (1) are each independently of the carbon atoms that may 1 be ⁇ 10 have a substituent A, a linear, branched or cyclic alkylene group , At least two or more selected from the group consisting of an arylene group having 6 to 12 carbon atoms which may have a substituent B, an ether group, a carbonyl group, and an imino group which may have a substituent C Represents a divalent linking group in which the above groups are combined.
  • the substituent A is at least one substituent selected from the group consisting of a halogen atom, an alkyl group and an alkoxy group
  • the substituent B is a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group
  • the substituent C is at least one substituent selected from the group consisting of an alkyl group and an aryl group It is.
  • L 1 in the formula (1) may have a substituent A, a linear alkylene group having 1 to 10 carbon atoms, and may have a substituent A 3 to 3 carbon atoms.
  • L 1 in the formula (1) may have a substituent A, a linear alkylene group having 1 to 10 carbon atoms, or a carbon number that may have a substituent A
  • the substituents represented by R 2 , R 3 , R 4 , R 5 and R 6 in formula (1) are each independently a halogen atom, a linear, branched or cyclic group having 1 to 20 carbon atoms.
  • * represents the bonding position with the benzene ring in formula (1)
  • R 8 represents a monovalent organic group.
  • R 9 represents a hydrogen atom or a methyl group.
  • L 3 represents a carbon having 1 to 10 carbon atoms which may have a substituent A, a linear, branched or cyclic alkylene group, and a carbon which may have a substituent B.
  • a divalent linking group in which one or two or more groups selected from the group consisting of an arylene group of 6 to 12 groups, an ether group, a carbonyl group, and an imino group which may have a substituent C are combined.
  • Q represents any group of —OH, —COOH, and —COOtBu.
  • the present invention it is possible to provide a photo-alignment copolymer capable of producing a photo-alignment film having excellent heat resistance, and a photo-alignment film and an optical laminate produced using the copolymer.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the photoalignable copolymer of the present invention comprises a repeating unit A containing a photoalignable group represented by the following formula (1) and a repeating unit B containing a crosslinkable group represented by the following formula (2). It is a photo-alignment copolymer.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent.
  • R 2 , R 3 , R 4 , R 5 and R 6 two adjacent groups may be bonded to form a ring.
  • R 7 represents a hydrogen atom or a methyl group.
  • L 1 in the above formula (1) and L 2 in the above formula (2) are each independently a linear, branched or cyclic group having 1 to 10 carbon atoms which may have a substituent A.
  • a divalent linking group in which at least two or more groups selected from the group consisting of imino groups (—NH—) may be combined.
  • the substituent A is at least one substituent selected from the group consisting of a halogen atom, an alkyl group and an alkoxy group
  • the substituent B is a halogen atom, an alkyl group, an aryl group, an alkoxy group.
  • the substituent C is at least one selected from the group consisting of an alkyl group and an aryl group A kind of substituent.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among them, a fluorine atom and a chlorine atom are preferable.
  • alkyl group for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group) Group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, cyclohexyl group, etc.), more preferably an alkyl group having 1 to 4 carbon atoms, and a methyl group or an ethyl group.
  • an alkoxy group having 1 to 18 carbon atoms is preferable, an alkoxy group having 1 to 8 carbon atoms (for example, a methoxy group, an ethoxy group, an n-butoxy group, a methoxyethoxy group, etc.) is more preferable.
  • An alkoxy group having a number of 1 to 4 is more preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • the aryl group include an aryl group having 6 to 12 carbon atoms.
  • a phenyl group examples include a phenyl group, an ⁇ -methylphenyl group, a naphthyl group, and the like, and among them, a phenyl group is preferable.
  • the aryloxy group examples include phenoxy, naphthoxy, imidazolyloxy, benzoimidazolyloxy, pyridin-4-yloxy, pyrimidinyloxy, quinazolinyloxy, purinyloxy, thiophen-3-yloxy and the like.
  • the alkoxycarbonyl group examples include methoxycarbonyl and ethoxycarbonyl.
  • linear alkylene group having 1 to 10 carbon atoms specific examples include a methylene group, an ethylene group, a propylene group, a butylene group and a pentylene group. Hexylene group, decylene group and the like.
  • branched alkylene group include a dimethylmethylene group, a methylethylene group, a 2,2-dimethylpropylene group, and a 2-ethyl-2-methylpropylene group.
  • cyclic alkylene group examples include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclooctylene group, a cyclodecylene group, an adamantane-diyl group, and a norbornane-diyl group. And exo-tetrahydrodicyclopentadiene-diyl group and the like, among which cyclohexylene group is preferable.
  • arylene group having 6 to 12 carbon atoms include a phenylene group, a xylylene group, a biphenylene group, a naphthylene group, and a 2,2′-methylenebisphenyl group, and among them, a phenylene group is preferable. .
  • L 1 in the above formula (1) is the substituent A.
  • a linear alkylene group having 1 to 10 carbon atoms which may have a cyclic alkylene group having 3 to 10 carbon atoms which may have the above-mentioned substituent A, and the above-mentioned substituent B. It is preferably a divalent linking group containing at least any of the arylene groups having 6 to 12 carbon atoms which may optionally be a straight chain having 1 to 10 carbon atoms which may have the substituent A.
  • Linear alkylene group or unsubstituted trans-1,4- A divalent linking group containing cyclohexylene is particularly preferable.
  • R 2 , R 3 , R 4 , R 5 and R 6 in the above formula (1) will be described, but R 2 , R 3 , R 4 , R in the above formula (1) will be described.
  • 5 and R 6 may be hydrogen atoms instead of substituents.
  • the photo-alignment group easily interacts with the liquid crystalline compound, and the optical formed on the photo-alignment film
  • liquid crystal orientation each independently, a halogen atom, a straight chain, branched or A cyclic alkyl group, a linear halogenated alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a cyano group
  • * represents a bonding position with the benzene ring in the formula (1)
  • R 8 represents a monovalent organic group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among them, a fluorine atom and a chlorine atom are preferable.
  • the linear alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, specifically, for example, a methyl group, Examples thereof include an ethyl group and an n-propyl group.
  • the branched alkyl group an alkyl group having 3 to 6 carbon atoms is preferable, and specific examples thereof include an isopropyl group and a tert-butyl group.
  • the cyclic alkyl group is preferably an alkyl group having 3 to 6 carbon atoms, and specific examples thereof include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • the straight-chain halogenated alkyl group having 1 to 20 carbon atoms is preferably a fluoroalkyl group having 1 to 4 carbon atoms. Specific examples include a trifluoromethyl group, a perfluoroethyl group, and a perfluoropropyl group. And a perfluorobutyl group, among which a trifluoromethyl group is preferable.
  • the alkoxy group having 1 to 20 carbon atoms is preferably an alkoxy group having 1 to 18 carbon atoms, more preferably an alkoxy group having 6 to 18 carbon atoms, and still more preferably an alkoxy group having 6 to 14 carbon atoms.
  • Preferred examples include an n-hexyloxy group, an n-octyloxy group, an n-decyloxy group, an n-dodecyloxy group, and an n-tetradecyloxy group.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms. Specific examples include a phenyl group, an ⁇ -methylphenyl group, a naphthyl group, and the like. preferable.
  • the aryloxy group having 6 to 20 carbon atoms is preferably an aryloxy group having 6 to 12 carbon atoms, and specific examples thereof include a phenyloxy group and a 2-naphthyloxy group. Is preferred.
  • amino group examples include a primary amino group (—NH 2 ); a secondary amino group such as a methylamino group; a dimethylamino group, a diethylamino group, a dibenzylamino group, a nitrogen-containing heterocyclic compound (for example, pyrrolidine)
  • a tertiary amino group such as a group having a nitrogen atom as a bond.
  • the monovalent organic group represented by R 8 in the above formula (3) includes, for example, a linear or cyclic alkyl group having 1 to 20 carbon atoms. It is done.
  • a linear alkyl group an alkyl group having 1 to 6 carbon atoms is preferable, and specific examples include a methyl group, an ethyl group, an n-propyl group, and the like. Among them, a methyl group or an ethyl group is preferable. preferable.
  • cyclic alkyl group an alkyl group having 3 to 6 carbon atoms is preferable, and specific examples include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, etc. Among them, a cyclohexyl group is preferable.
  • the monovalent organic group represented by R 8 in the above formula (3) may be a combination of the above-described linear alkyl group and cyclic alkyl group, either directly or via a single bond. Good.
  • R 2 , R 3 , R 4 , R 5 and R 6 in the above formula (1) are obtained because the photo-alignment group is likely to interact with the liquid crystal compound and the liquid crystal alignment is improved.
  • at least R 4 represents the substituent described above, and further, the rigidity of the obtained photo-alignable copolymer is improved, and the heat resistance of the produced photo-alignment film is further improved. From the above, it is more preferable that R 2 , R 3 , R 5 and R 6 all represent a hydrogen atom.
  • R 4 in the above formula (1) is preferably an electron donating substituent because the reaction efficiency is improved when the obtained photo-alignment film is irradiated with light.
  • the electron-donating substituent refers to a substituent having a Hammett value (Hammett substituent constant ⁇ p) of 0 or less.
  • an alkyl group examples include halogenated alkyl groups and alkoxy groups.
  • repeating unit A containing the photoalignable group represented by the above formula (1) examples include the repeating units A-1 to A-116 shown below.
  • Me represents a methyl group.
  • repeating unit B containing the photoalignable group represented by the above formula (2) include the repeating units B-1 to B-16 shown below.
  • the photo-alignment copolymer of the present invention has the above repeating unit A content because the rigidity of the resulting photo-alignment copolymer is improved and the heat resistance of the produced photo-alignment film is further improved.
  • X and the content Y of the repeating unit B described above preferably satisfy the following formula (4), more preferably satisfy the following formula (5), and satisfy the following formula (7). More preferably. 0.2 ⁇ X / (X + Y) ⁇ 0.8 (4) 0.2 ⁇ X / (X + Y) ⁇ 0.6 (5) 0.3 ⁇ X / (X + Y) ⁇ 0.5 (7)
  • the photo-alignment copolymer of the present invention may have other repeating units in addition to the above-described repeating unit A and repeating unit B as long as the effects of the present invention are not impaired.
  • Examples of such other repeating unit-forming monomers include, for example, acrylic ester compounds, methacrylic ester compounds, maleimide compounds, acrylamide compounds, acrylonitrile, maleic anhydride, styrene compounds, A vinyl compound etc. are mentioned.
  • the photo-alignment copolymer of the present invention preferably has a repeating unit C represented by the following formula (6) from the viewpoint of improving liquid crystal alignment at a low exposure amount. .
  • This is considered because the repeating unit C assists the crosslinking by the repeating unit B by reacting with the crosslinking group in the repeating unit B and crosslinking.
  • R 9 represents a hydrogen atom or a methyl group.
  • L 3 has a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms which may have the above-described substituent A, and the above-described substituent B.
  • Q represents any group of —OH, —COOH, and —COOtBu. “TBu” is an abbreviation for tert-butyl.
  • repeating unit C represented by the above formula (6) include the repeating units C-1 to C-12 shown below.
  • the method for synthesizing the photoalignable copolymer of the present invention is not particularly limited.
  • the monomer that forms the repeating unit A described above, the monomer that forms the repeating unit B described above, and any other repeating unit are mixed and polymerized in an organic solvent using a radical polymerization initiator.
  • the weight average molecular weight (Mw) of the photo-alignment copolymer of the present invention is 10,000 because the rigidity of the resulting photo-alignment copolymer is improved and the heat resistance of the produced photo-alignment film is further improved. ⁇ 500,000 is preferable, and 30,000 to 200,000 is more preferable because the liquid crystal orientation is improved.
  • the weight average molecular weight and the number average molecular weight in the present invention are values measured by a gel permeation chromatograph (GPC) method under the following conditions.
  • the photo-alignment film of the present invention is a composition for photo-alignment film (hereinafter also referred to as “the composition for photo-alignment film of the present invention”) containing the above-described photo-alignment copolymer of the present invention. It is a photo-alignment film formed by using.
  • the thickness of the photo-alignment film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 to 1000 nm, and more preferably 10 to 700 nm.
  • the content of the photoalignable copolymer of the present invention in the composition for photoalignment film of the present invention is not particularly limited, but when it contains an organic solvent described later, it is 0.1 to 50 with respect to 100 parts by mass of the organic solvent.
  • the amount is preferably part by mass, and more preferably 0.5 to 10 parts by mass.
  • the composition for photo-alignment film of the present invention preferably contains an organic solvent from the viewpoint of workability for producing the photo-alignment film.
  • organic solvent include ketones (eg, acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, etc.), ethers (eg, dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons, and the like.
  • hexane alicyclic hydrocarbons (e.g., cyclohexane), aromatic hydrocarbons (e.g., toluene, xylene, trimethylbenzene), halogenated carbons (e.g., dichloromethane, dichloroethane, di) Chlorobenzene, chlorotoluene, etc.), esters (eg, methyl acetate, ethyl acetate, butyl acetate, etc.), water, alcohols (eg, ethanol, isopropanol, butanol, cyclohexanol, etc.), cellosolves (eg, methyl cellosolve, ethyl) Rosolve, etc.), cellosolve acetates, sulfoxides (eg, dimethyl sulfoxide, etc.), amides (eg, dimethylformamide, dimethylacetamide, etc.), etc., and these
  • composition for photo-alignment film of the present invention may contain other components other than those described above, and examples thereof include a crosslinking catalyst, an adhesion improver, a leveling agent, a surfactant, and a plasticizer.
  • the photo-alignment film of the present invention can be produced by a conventionally known production method except that the above-described composition for a photo-alignment film of the present invention is used.
  • the photo-alignment film of the present invention described above is supported. It can be produced by a production method having a coating step of applying to the body surface and a light irradiation step of irradiating the coating film of the composition for photo-alignment film with polarized light or non-polarized light from an oblique direction with respect to the coating film surface. it can.
  • a support body it demonstrates in the optical laminated body of this invention mentioned later.
  • the application method in the application step is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include spin coating, die coating, gravure coating, flexographic printing, and inkjet printing.
  • the polarized light applied to the coating film of the composition for photo-alignment film is not particularly limited, and examples thereof include linearly polarized light, circularly polarized light, and elliptically polarized light. Among these, linearly polarized light is preferable.
  • the “oblique direction” for irradiating non-polarized light is not particularly limited as long as it is a direction inclined by a polar angle ⁇ (0 ⁇ ⁇ 90 °) with respect to the normal direction of the coating film surface, and depending on the purpose.
  • the angle ⁇ is preferably 20 to 80 °.
  • the wavelength in polarized light or non-polarized light is not particularly limited as long as the coating film of the composition for photo-alignment film can impart alignment controllability to liquid crystalline molecules, but for example, ultraviolet light, near ultraviolet light, visible light Etc. Of these, near-ultraviolet rays of 250 nm to 450 nm are particularly preferable.
  • the light source for irradiating polarized light or non-polarized light include a xenon lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, and a metal halide lamp.
  • an interference filter, a color filter, or the like for ultraviolet rays or visible light obtained from such a light source the wavelength range to be irradiated can be limited.
  • linearly polarized light can be obtained by using a polarizing filter or a polarizing prism for the light from these light sources.
  • the integrated light quantity of polarized light or non-polarized light is not particularly limited as long as it can provide alignment controllability for liquid crystalline molecules to the coating film of the composition for photo-alignment film, but is not particularly limited, but is 1 to 300 mJ. / Cm 2 is preferable, and 5 to 100 mJ / cm 2 is more preferable.
  • the illuminance for polarized light or non-polarized light is not particularly limited as long as it can impart alignment controllability to liquid crystalline molecules to the coating film of the composition for photo-alignment film, but is 0.1 to 300 mW / cm 2. 1 to 100 mW / cm 2 is more preferable.
  • the optical laminate of the present invention is an optical laminate having the above-described photo-alignment film of the present invention and an optically anisotropic layer formed using a liquid crystal composition containing a liquid crystalline compound. Further, the optical layered body of the present invention preferably further has a support, and specifically, preferably has a support, a photo-alignment film, and an optically anisotropic layer in this order. .
  • optically anisotropic layer The optically anisotropic layer of the optical layered body of the present invention is not particularly limited as long as it is an optically anisotropic layer containing a liquid crystalline compound, and a conventionally known optically anisotropic layer may be appropriately employed and used. it can.
  • Such an optically anisotropic layer is a layer obtained by curing a composition containing a liquid crystal compound having a polymerizable group (hereinafter also referred to as “optically anisotropic layer forming composition”).
  • it may be a single layer structure or a structure (laminate) in which a plurality of layers are laminated.
  • the liquid crystalline compound and optional additives contained in the composition for forming an optically anisotropic layer will be described.
  • the liquid crystalline compound contained in the composition for forming an optically anisotropic layer is a liquid crystalline compound having a polymerizable group.
  • liquid crystal compounds can be classified into a rod-shaped type and a disk-shaped type based on their shapes. In addition, there are low and high molecular types, respectively.
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but a rod-like liquid crystal compound or a discotic liquid crystal compound is preferably used, and a rod-like liquid crystal compound is more preferably used.
  • a liquid crystalline compound having a polymerizable group is used for immobilizing the above-mentioned liquid crystalline compound, but it is more preferable that the liquid crystalline compound has two or more polymerizable groups in one molecule.
  • a liquid crystalline compound is a 2 or more types of mixture, it is preferable that at least 1 type of liquid crystalline compound has a 2 or more polymeric group in 1 molecule.
  • after the liquid crystal compound is fixed by polymerization it is no longer necessary to exhibit liquid crystallinity.
  • the type of the polymerizable group is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group, etc. are mentioned preferably, and a (meth) acryloyl group is more preferable.
  • the (meth) acryloyl group is a notation meaning a methacryloyl group or an acryloyl group.
  • rod-like liquid crystal compound for example, those described in claim 1 of JP-T-11-53019 and paragraphs ⁇ 0026> to ⁇ 0098> of JP-A-2005-289980 can be preferably used.
  • tick liquid crystalline compounds for example, those described in paragraphs ⁇ 0020> to ⁇ 0067> of JP-A-2007-108732 and paragraphs ⁇ 0013> to ⁇ 0108> of JP-A-2010-244038 are preferably used. However, it is not limited to these.
  • a reverse wavelength dispersive liquid crystalline compound can be used as the liquid crystalline compound.
  • “reverse wavelength dispersion” liquid crystal compound is used to measure the in-plane retardation (Re) value of a retardation film produced using the compound at a specific wavelength (visible light range). In this case, the Re value becomes the same or higher as the measurement wavelength increases.
  • the reverse wavelength dispersive liquid crystalline compound is not particularly limited as long as it can form a reverse wavelength dispersive film as described above. For example, the general formula (I) described in JP-A-2008-297210 is disclosed.
  • the composition for forming an optically anisotropic layer may contain components other than the liquid crystalline compounds described above.
  • the composition for forming an optically anisotropic layer may contain a polymerization initiator.
  • the polymerization initiator used is selected according to the type of the polymerization reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
  • photopolymerization initiators include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon substituted aromatic acyloin compounds, polynuclear quinone compounds, combinations of triarylimidazole dimers and p-aminophenyl ketones. It is done.
  • the amount of the polymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the total solid content of the composition.
  • the polymerizable monomer may be contained in the composition for optically anisotropic layer formation from the point of the uniformity of a coating film, and the intensity
  • the polymerizable monomer include radically polymerizable or cationically polymerizable compounds.
  • it is a polyfunctional radically polymerizable monomer and is preferably copolymerizable with the polymerizable group-containing liquid crystalline compound. Examples thereof include those described in paragraphs ⁇ 0018> to ⁇ 0020> in JP-A-2002-296423.
  • the content of the polymerizable monomer is preferably 1 to 50% by mass and more preferably 2 to 30% by mass with respect to the total mass of the liquid crystal compound.
  • composition for forming an optically anisotropic layer may contain a surfactant from the viewpoint of the uniformity of the coating film and the strength of the film.
  • the surfactant include conventionally known compounds, and fluorine compounds are particularly preferable.
  • compounds described in paragraphs ⁇ 0028> to ⁇ 0056> in JP-A No. 2001-330725, and compounds described in paragraphs ⁇ 0069> to ⁇ 0126> in JP-A No. 2005-062673 are exemplified. It is done.
  • composition for forming an optically anisotropic layer may contain an organic solvent.
  • organic solvent the thing similar to what was demonstrated in the composition for photo-alignment films
  • the composition for forming an optically anisotropic layer includes a vertical alignment accelerator such as a polarizer interface side vertical alignment agent and an air interface side vertical alignment agent, a polarizer interface side horizontal alignment agent, and air.
  • a vertical alignment accelerator such as a polarizer interface side vertical alignment agent and an air interface side vertical alignment agent
  • a polarizer interface side horizontal alignment agent such as an interface side horizontal alignment agent
  • air such as an interface side horizontal alignment agent
  • Various alignment agents such as a horizontal alignment accelerator such as an interface side horizontal alignment agent may be contained.
  • the composition for forming an optically anisotropic layer may contain an adhesion improving agent, a plasticizer, a polymer and the like in addition to the above components.
  • the method for forming an optically anisotropic layer using the composition for forming an optically anisotropic layer having such a component is not particularly limited.
  • the optically anisotropic layer is formed on the above-described photo-alignment film of the present invention. It can form by apply
  • the composition for forming an optically anisotropic layer can be applied by a known method (for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, or a die coating method).
  • the thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.1 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m.
  • the optical layered body of the present invention may have a support as a base material for forming the optically anisotropic layer.
  • a support include a polarizer and a polymer film, and combinations thereof, for example, a laminate of a polarizer and a polymer film, a laminate of a polymer film, a polarizer and a polymer film.
  • the support may be a body.
  • the support may be a temporary support that can be peeled after the optically anisotropic layer is formed (hereinafter, sometimes simply referred to as “temporary support”).
  • temporary support Specifically, a polymer film that functions as a temporary support may be peeled from the optical laminate to provide an optically anisotropic layer.
  • the laminated body of the support body containing a polarizer and an optically anisotropic layer may be provided by peeling the temporary support body contained in the said optically anisotropic layer.
  • a polarizer when the optical layered body of the present invention is used for an image display device, it is preferable to use at least a polarizer as a support.
  • a polarizer will not be specifically limited if it is a member which has the function to convert light into specific linearly polarized light, A conventionally well-known absorption type polarizer and reflection type polarizer can be utilized.
  • the absorption polarizer an iodine polarizer, a dye polarizer using a dichroic dye, a polyene polarizer, and the like are used.
  • Iodine polarizers and dye polarizers include coating polarizers and stretchable polarizers, both of which can be applied.
  • Patent No. 5048120, Patent No. 5143918, Patent No. 5048120, Patent No. 4691205, Japanese Patent No. 4751481, and Japanese Patent No. 4751486 can be cited, and known techniques relating to these polarizers can also be preferably used.
  • a polarizer in which thin films having different birefringence are stacked, a wire grid polarizer, a polarizer in which a cholesteric liquid crystal having a selective reflection region and a quarter wavelength plate are combined, or the like is used.
  • a polyvinyl alcohol resin (a polymer containing —CH 2 —CHOH— as a repeating unit is intended.
  • a polarizer including one is preferable.
  • the polarizing plate can be produced, for example, as follows.
  • the support is peeled off from the optical laminate described above, and the layer including the optically anisotropic layer is stacked on the support including the polarizer.
  • the above-mentioned optical laminated body is laminated
  • both layers may be bonded with an adhesive or the like.
  • the adhesive is not particularly limited, but is an epoxy compound curable adhesive that does not contain an aromatic ring in the molecule, as disclosed in JP-A No.
  • An active energy ray-curable adhesive comprising a photopolymerization initiator having a molar extinction coefficient of 400 or more at a wavelength of 450 nm and an ultraviolet curable compound as essential components, and a (meth) acrylic compound described in JP-A-2008-174667 (A) a (meth) acrylic compound having 2 or more (meth) acryloyl groups in the molecule and (b) a hydroxyl group in the molecule, and having only a polymerizable double bond (Meth) acrylic compound and (c) phenolethylene oxide modified acrylate or nonylphenol ethylene oxide modified acrylic Such as an active energy ray-curable adhesive containing a chromatography bets and the like.
  • the thickness of the polarizer is not particularly limited, but is preferably 1 to 60 ⁇ m, more preferably 1 to 30 ⁇ m, and still more preferably 2 to 20 ⁇ m.
  • a polymer film is not specifically limited,
  • the polymer film (for example, polarizer protective film etc.) used normally can be used.
  • the polymer constituting the polymer film is, for example, a cellulose-based polymer; an acrylic polymer having an acrylate polymer such as polymethyl methacrylate or a lactone ring-containing polymer; a thermoplastic norbornene-based polymer; a polycarbonate-based polymer.
  • Polyester polymers such as polyethylene terephthalate and polyethylene naphthalate
  • Styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin)
  • Polyolefin polymers such as polyethylene, polypropylene and ethylene / propylene copolymer
  • Vinyl chloride Amide polymers such as nylon and aromatic polyamide; imide polymers; sulfone polymers; polyethersulfone polymers; polyetheretherketone Polymers; polyphenylene sulfide polymers; vinylidene chloride polymer; vinyl alcohol-based polymer, vinyl butyral-based polymers; arylate polymers; polyoxymethylene polymers, epoxy-based polymers; or polymers obtained by mixing these polymers.
  • a cellulose polymer represented by triacetyl cellulose (hereinafter also referred to as “cellulose acylate”) can be preferably used.
  • cellulose acylate a cellulose polymer represented by triacetyl cellulose
  • acrylic polymer examples include polymethyl methacrylate and lactone ring-containing polymers described in paragraphs ⁇ 0017> to ⁇ 0107> of JP-A-2009-98605.
  • the thickness of the polymer film used for the polarizer protective film or the like is not particularly limited, but is preferably 40 ⁇ m or less because the thickness of the optical laminate can be reduced. Although a minimum is not specifically limited, Usually, it is 5 micrometers or more.
  • the thickness of the support is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, and still more preferably 5 to 20 ⁇ m.
  • the thickness of the said support body means the total thickness of these thickness, when it has both a polarizer and a polymer film.
  • a cellulose polymer or a polyester polymer can be preferably used as a support that can be peeled from the optical laminate.
  • the thickness of the polymer film is not particularly limited, but is preferably 5 ⁇ m to 100 ⁇ m, more preferably 20 ⁇ m to 90 ⁇ m, for reasons such as handling during production.
  • the peeling interface may be between the support and the photo-alignment film, may be between the photo-alignment film and the optical anisotropic layer, or may be another interface.
  • the optical layered body of the present invention can be thinned by peeling off the support, it can be suitably used when producing an image display device.
  • the display element used in the image display device is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, a plasma display panel, and the like. Among these, a liquid crystal cell and an organic EL display panel are preferable, and a liquid crystal cell is more preferable. That is, the image display device is preferably a liquid crystal display device using a liquid crystal cell as a display element, an organic EL display device using an organic EL display panel as a display element, and more preferably a liquid crystal display device.
  • a liquid crystal display device which is an example of an image display device is a liquid crystal display device having the above-described optical laminate of the present invention and a liquid crystal cell.
  • the optical layered body of the present invention it is preferable to use the optical layered body of the present invention as a polarizing plate on the front side.
  • a liquid crystal cell used in a liquid crystal display device includes a VA (Virtual Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, or a TN (Twisted). Nematic), but is not limited thereto.
  • VA Virtual Alignment
  • OCB Optically Compensated Bend
  • IPS In-Plane-Switching
  • TN Transmission
  • Nematic Nematic
  • rod-like liquid crystal molecules rod-like liquid crystal compounds
  • the TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and is described in many documents.
  • VA mode liquid crystal cell rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied.
  • the VA mode liquid crystal cell includes: (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). (2) Liquid crystal cell (SID97, Digest of tech.
  • any of a PVA (Patterned Vertical Alignment) type, a photo-alignment type (Optical Alignment), and a PSA (Polymer-Stained Alignment) may be used. Details of these modes are described in Japanese Patent Application Laid-Open No. 2006-215326 and Japanese Patent Publication No. 2008-538819.
  • IPS mode liquid crystal cell rod-like liquid crystal molecules are aligned substantially parallel to the substrate, and the liquid crystal molecules respond in a planar manner when an electric field parallel to the substrate surface is applied.
  • the IPS mode displays black when no electric field is applied, and the absorption axes of the pair of upper and lower polarizing plates are orthogonal.
  • JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522 are methods for reducing leakage light during black display in an oblique direction and improving the viewing angle using an optical compensation sheet.
  • the following monomer mB-4 which forms the repeating unit B-4, includes 3,4-epoxycyclohexylmethanol synthesized by the method described in Tetrahedron Letters, 43, 1001-1003 (2002), and acrylic acid chloride (Tokyo Chemical Industry). Reagent) and an esterification reaction using a known alcohol and acid chloride.
  • the following monomer mC-1 uses commercially available methacrylic acid (Wako Pure Chemical Industries), the following monomer mC-3 uses commercially available 2-hydroxyethyl methacrylate (Tokyo Kasei Reagent), and the following monomer mC-4 uses commercially available 2-methacryloyl.
  • Oxyethyl succinate (Shin Nakamura Chemical Co., Ltd.) is used, the following monomer mC-5 is commercially available -butyl methacrylate (Wako Pure Chemical Industries), and the following monomer mC-7 is commercially available 2-methacryloyloxyethylphthalic acid (new Nakamura Chemical Co., Ltd.) and commercially available 2-hydroxyethylmethacrylamide (Tokyo Kasei) was used as the monomer mC-12.
  • the following monomers mC-1 and the like correspond to monomers that form the above-mentioned repeating unit C-1 and the like, respectively.
  • the following monomer mD-2 is a commercially available 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (Tokyo Kasei Reagent), and the following monomer mD-4 is a commercially available ethylene glycol monoacetoacetate monomethacrylate (Tokyo Kasei Reagent).
  • the following monomer mD-5 was a commercially available glycidyl methacrylate (Tokyo Kasei Reagent).
  • the following monomer mD-1 was synthesized according to Synthesis Example 3 described in JP-A No. 2014-12823.
  • the above-described monomer mD-1 and the like correspond to monomers that form the following repeating unit D-1 and the like, respectively.
  • the repeating unit D-3 shown below was synthesized after synthesizing a polyorganosiloxane according to the method described in paragraphs ⁇ 0248> and ⁇ 0258> of Japanese Patent No. 5790156 using the monomer mD-2 described above. It is a repeating unit synthesized by reaction with 4-methoxycinnamic acid.
  • Example 1 A flask equipped with a condenser, a thermometer, and a stirrer was charged with 5 parts by mass of 2-butanone as a solvent, and refluxed by heating in a water bath while flowing 5 mL / min of nitrogen into the flask.
  • the solution in which the parts were mixed was added dropwise over 3 hours, and further stirred for 3 hours while maintaining the reflux state.
  • the mixture was allowed to cool to room temperature and diluted by adding 30 parts by mass of 2-butanone to obtain a polymer solution of about 20% by mass.
  • the obtained polymer solution is poured into a large excess of methanol to precipitate the polymer, and the collected precipitate is filtered off, washed with a large amount of methanol, and then blown and dried at 50 ° C. for 12 hours, A polymer P-1 having a photoalignable group was obtained.
  • Examples 2 to 31 and Comparative Examples 1 to 5 As the monomer for forming the repeating unit shown in Table 1 below, each synthesized monomer was used, and the addition amount of the polymerization initiator was changed so as to have the weight average molecular weight shown in Table 1 below. A polymer was synthesized in the same manner as the polymer P-1 synthesized in Example 1, except that the amount of the monomer was changed so as to be the content.
  • composition for photo-alignment film 1 part by mass of the polymer P-3 synthesized in Example 3 and 0.05 part by mass of a thermal acid generator represented by the following structural formula are added to 100 parts by mass of tetrahydrofuran to obtain a composition for a photoalignment film A product was prepared.
  • each polymer synthesized in Examples 5, 7, 9, 10, 18 to 21 and 25 to 31 and Comparative Examples 1 to 5 was also added with 1 part by weight of 100 parts by weight of tetrahydrofuran.
  • An alignment film composition was prepared.
  • optical laminates of Examples 3, 5, 7, 9, 10, 18 to 21 and 25 to 31 and Comparative Examples 1 to 5 were prepared according to the following procedure.
  • As the cellulose acylate film the same one as in Comparative Example 1 of JP-A No. 2014-164169 was used.
  • Each composition for photo-alignment films prepared above was applied to one surface of this film with a bar coater. After application, the solvent was removed by drying on a hot plate at 80 ° C. for 5 minutes to form a photoisomerized composition layer having a thickness of 0.2 ⁇ m.
  • the obtained photoisomerizable composition layer was irradiated with polarized ultraviolet rays (10 mJ / cm 2 , using an ultrahigh pressure mercury lamp) to form a photo-alignment film.
  • polarized ultraviolet rays (10 mJ / cm 2 , using an ultrahigh pressure mercury lamp)
  • a nematic liquid crystal compound ZLI-4792, manufactured by Merck & Co., Inc.
  • ZLI-4792 manufactured by Merck & Co., Inc.
  • the orientation is fixed by irradiation with ultraviolet rays (500 mJ / cm 2 , using an ultra-high pressure mercury lamp) in a nitrogen atmosphere (oxygen concentration 100 ppm) under a nitrogen atmosphere to form an optically anisotropic layer having a thickness of 2.0 ⁇ m.
  • An optical laminate was produced.
  • Example 32 In the production of the optical layered body of Example 18, Example 18 was used except that instead of the nematic liquid crystalline compound applied on the photo-alignment film, the following optically anisotropic layer coating liquid (liquid crystal 101) was used.
  • the optical laminate of Example 32 was produced by the same method as described above.
  • Example 33 In the production of the optical laminated body of Example 18, Example 18 was used except that the following optically anisotropic layer coating liquid (liquid crystal 102) was used instead of the nematic liquid crystalline compound coated on the photo-alignment film.
  • the optical laminated body of Example 33 was produced by the same method as described above.
  • the liquid crystal director is greatly disturbed, the surface state is not stable, and the display performance is very inferior.
  • the stable surface state is a crossed Nicol arrangement.
  • the liquid crystal director is intended to mean a vector in the direction in which the long axes of liquid crystal molecules are aligned (alignment main axis).
  • Example 34 Synthesized in Example 1 except that each monomer synthesized was used as a monomer for forming the repeating unit shown in Table 3 below, and the amount of the monomer was changed so as to be the content of the repeating unit shown in Table 3 below.
  • Polymer P-32 was synthesized by the same method as for polymer P-1. The synthesized polymer P-32 had a weight average molecular weight of 36000.
  • Examples 35 to 39 Synthesized in Example 34, except that each monomer synthesized was used as a monomer for forming the repeating unit shown in Table 3 below, and the amount of the monomer was changed so as to be the content of the repeating unit shown in Table 3 below.
  • Polymer P-33 to polymer P-37 were synthesized in the same manner as for polymer P-32.
  • optical laminates of Examples 33 to 39 and Example 7 were produced by the following procedure.
  • As the cellulose acylate film the same one as in Comparative Example 1 of JP-A No. 2014-164169 was used.
  • Each composition for photo-alignment films prepared above was applied to one surface of this film with a bar coater. After application, the solvent was removed by drying on a hot plate at 80 ° C. for 5 minutes to form a photoisomerized composition layer having a thickness of 0.2 ⁇ m.
  • the resulting photoisomerized composition layer was irradiated with polarized ultraviolet light (5 mJ / cm 2 , using an ultrahigh pressure mercury lamp) to form a photo-alignment film.
  • a nematic liquid crystal compound (ZLI-4792, manufactured by Merck & Co., Inc.) was applied onto the photo-alignment film with a bar coater to form a composition layer.
  • the formed composition layer was once heated to 90 ° C. on a hot plate and then cooled to 60 ° C. to stabilize the orientation. Thereafter, the orientation is fixed by irradiation with ultraviolet rays (500 mJ / cm 2 , using an ultra-high pressure mercury lamp) in a nitrogen atmosphere (oxygen concentration 100 ppm) under a nitrogen atmosphere to form an optically anisotropic layer having a thickness of 2.0 ⁇ m.
  • An optical laminate was produced.
  • AAA Liquid crystal directors are uniformly aligned and have excellent surface shape and display performance
  • AA Liquid crystal directors are uniformly aligned and excellent in display performance

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)

Abstract

耐熱性に優れた光配向膜を作製することができる光配向性共重合体、ならびに、それを用いて作製した光配向膜および光学積層体を提供する。光配向性共重合体は、下記式(1)で表される光配向性基を含む繰り返し単位Aと、下記式(2)で表される架橋性基を含む繰り返し単位Bとを有する。光配向膜は、光配向性共重合体を含有する光配向膜用組成物を用いて形成され、光学積層体は、光配向膜と、光学異方性層とを有し、画像表示装置は、光学積層体を有する。

Description

光配向性共重合体、光配向膜および光学積層体
 本発明は、光配向性共重合体、光配向膜および光学積層体に関する。
 光学補償シートおよび位相差フィルムなどの光学フィルムは、画像着色解消および視野角拡大などの観点から、様々な画像表示装置で用いられている。
 光学フィルムとしては延伸複屈折フィルムが使用されていたが、近年、延伸複屈折フィルムに代えて、液晶性化合物を用いた光学異方性層を使用することが提案されている。
 このような光学異方性層は、液晶性化合物を配向させるために、光学異方性層を形成する支持体上に配向膜を設けることが知られており、また、この配向膜として、ラビング処理に代えて光配向処理を施した光配向膜が知られている。
 例えば、特許文献1には、シンナモイル基などの光二量化部位を有するアクリル共重合体と架橋剤とを含有する熱硬化膜形成組成物から形成される液晶配向層が開示されている([請求項1][請求項3][請求項11]<0028>)。
国際公開第2010/150748号
 本発明者らは、特許文献1に記載されたアクリル共重合体として、光二量化部位を有するモノマーと熱架橋部位を有するモノマーとを共重合させて得られるアクリル共重合体について検討したところ、モノマーの種類によっては、得られるアクリル共重合体を用いて形成した光配向膜の耐熱性が劣る場合があることを明らかとした。
 そこで、本発明は、耐熱性に優れた光配向膜を作製することができる光配向性共重合体、ならびに、それを用いて作製した光配向膜および光学積層体を提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、特定の光配向性基を含む繰り返し単位と、特定の架橋性基を含む繰り返し単位とを有する共重合体を用いることにより、形成される光配向膜の耐熱性が良好となることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題を達成することができることを見出した。
 [1] 下記式(1)で表される光配向性基を含む繰り返し単位Aと、下記式(2)で表される架橋性基を含む繰り返し単位Bとを有する、光配向性共重合体。
Figure JPOXMLDOC01-appb-C000004

 式(1)中、Rは、水素原子またはメチル基を表し、R、R、R、RおよびRは、それぞれ独立に、水素原子または置換基を表す。R、R、R、RおよびRのうち、隣接する2つの基が結合して環を形成していてもよい。
 式(2)中、Rは、水素原子またはメチル基を表す。
 式(1)のLおよび式(2)中のLは、それぞれ独立に、置換基Aを有していてもよい炭素数1~10の、直鎖状、分岐状または環状のアルキレン基、置換基Bを有していてもよい炭素数6~12のアリーレン基、エーテル基、カルボニル基、および、置換基Cを有していてもよいイミノ基からなる群から選択される少なくとも2以上の基を組み合わせた2価の連結基を表す。
 ただし、置換基Aは、ハロゲン原子、アルキル基およびアルコキシ基からなる群から選択される少なくとも1種の置換基であり、置換基Bは、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、シアノ基、カルボニル基およびアルコキシカルボニル基からなる群から選択される少なくとも1種の置換基であり、置換基Cは、アルキル基およびアリール基からなる群から選択される少なくとも1種の置換基である。
 [2] 式(1)のLが、置換基Aを有していてもよい炭素数1~10の、直鎖状のアルキレン基、置換基Aを有していてもよい炭素数3~10の環状のアルキレン基、および、置換基Bを有していてもよい炭素数6~12のアリーレン基のいずれかを含む、2価の連結基である、[1]に記載の光配向性共重合体。
 [3] 式(1)のLが、置換基Aを有していてもよい炭素数1~10の、直鎖状のアルキレン基、または、置換基Aを有していてもよい炭素数3~10の環状のアルキレン基を含む、2価の連結基である、[2]に記載の光配向性共重合体。
 [4] 式(1)のR、R、R、RおよびRのうち、少なくともRが置換基を表す、[1]~[3]のいずれかに記載の光配向性共重合体。
 [5] 式(1)のR、R、RおよびRがいずれも水素原子を表す、[4]に記載の光配向性共重合体。
 [6] 式(1)のRが、電子供与性の置換基である、[1]~[5]のいずれかに記載の光配向性共重合体。
 [7] 式(1)のR、R、R、RおよびRが表す置換基が、それぞれ独立に、ハロゲン原子、炭素数1~20の、直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の、直鎖状のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、シアノ基、アミノ基、または、下記式(3)で表される基である、[1]~[6]のいずれかに記載の光配向性共重合体。
Figure JPOXMLDOC01-appb-C000005

 式(3)中、*は、式(1)中のベンゼン環との結合位置を表し、Rは、1価の有機基を表す。
 [8] 繰り返し単位Aの含有量Xと、繰り返し単位Bの含有量Yとが、下記式(4)を満たす、[1]~[7]のいずれかに記載の光配向性共重合体。
 0.2 ≦ X/(X+Y) ≦ 0.8 ・・・(4)
 [9] 繰り返し単位Aの含有量Xと、繰り返し単位Bの含有量Yとが、下記式(5)を満たす、[8]に記載の光配向性共重合体。
 0.2 ≦ X/(X+Y) ≦ 0.6 ・・・(5)
 [10] 重量平均分子量が10000~500000である、[1]~[9]のいずれかに記載の光配向性共重合体。
 [11] 重量平均分子量が30000~200000である、[10]に記載の光配向性共重合体。
 [12] 更に、下記式(6)で表される繰り返し単位Cを有する、[1]~[10]のいずれかに記載の光配向性共重合体。
Figure JPOXMLDOC01-appb-C000006

 式(6)中、Rは、水素原子またはメチル基を表す。
 式(6)中、Lは、置換基Aを有していてもよい炭素数1~10の、直鎖状、分岐状もしくは環状のアルキレン基、置換基Bを有していてもよい炭素数6~12のアリーレン基、エーテル基、カルボニル基、および、置換基Cを有していてもよいイミノ基からなる群から選択される1または2以上の基を組み合わせた2価の連結基を表す。
 式(6)中、Qは、-OH、-COOH、および、-COOtBuのいずれかの基を表す。
 [13] [1]~[12]のいずれかに記載の光配向性共重合体を含有する光配向膜用組成物を用いて形成した、光配向膜。
 [14] [13]に記載の光配向膜と、液晶性化合物を含有する液晶組成物を用いて形成される光学異方性層とを有する、光学積層体。
 本発明によれば、耐熱性に優れた光配向膜を作製することができる光配向性共重合体、ならびに、それを用いて作製した光配向膜および光学積層体を提供することができる。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[光配向性共重合体]
 本発明の光配向性共重合体は、下記式(1)で表される光配向性基を含む繰り返し単位Aと、下記式(2)で表される架橋性基を含む繰り返し単位Bとを有する、光配向性の共重合体である。
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Rは、水素原子またはメチル基を表し、R、R、R、RおよびRは、それぞれ独立に、水素原子または置換基を表す。R、R、R、RおよびRのうち、隣接する2つの基が結合して環を形成していてもよい。
 上記式(2)中、Rは、水素原子またはメチル基を表す。
 上記式(1)中のLおよび上記式(2)中のLは、それぞれ独立に、置換基Aを有していてもよい炭素数1~10の、直鎖状、分岐状または環状のアルキレン基、置換基Bを有していてもよい炭素数6~12のアリーレン基、エーテル基(-O-)、カルボニル基(-C(=O)-)、および、置換基Cを有していてもよいイミノ基(-NH-)からなる群から選択される少なくとも2以上の基を組み合わせた2価の連結基を表す。
 ここで、上記置換基Aは、ハロゲン原子、アルキル基およびアルコキシ基からなる群から選択される少なくとも1種の置換基であり、上記置換基Bは、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、シアノ基、カルボニル基およびアルコキシカルボニル基からなる群から選択される少なくとも1種の置換基であり、上記置換基Cは、アルキル基およびアリール基からなる群から選択される少なくとも1種の置換基である。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 アルキル基としては、例えば、炭素数1~18の、直鎖状、分岐鎖状または環状のアルキル基が好ましく、炭素数1~8のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロヘキシル基等)がより好ましく、炭素数1~4のアルキル基であることが更に好ましく、メチル基またはエチル基であるのが特に好ましい。
 アルコキシ基としては、例えば、炭素数1~18のアルコキシ基が好ましく、炭素数1~8のアルコキシ基(例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基等)がより好ましく、炭素数1~4のアルコキシ基であることが更に好ましく、メトキシ基またはエトキシ基であるのが特に好ましい。
 アリール基としては、例えば、炭素数6~12のアリール基が挙げられ、具体的には、例えば、フェニル基、α-メチルフェニル基、ナフチル基などが挙げられ、中でも、フェニル基が好ましい。
 アリールオキシ基としては、例えば、フェノキシ、ナフトキシ、イミダゾイルオキシ、ベンゾイミダゾイルオキシ、ピリジン-4-イルオキシ、ピリミジニルオキシ、キナゾリニルオキシ、プリニルオキシ、チオフェン-3-イルオキシなどが挙げられる。
 アルコキシカルボニル基としては、例えば、メトキシカルボニル、エトキシカルボニルなどが挙げられる。
 炭素数1~10の、直鎖状、分岐状または環状のアルキレン基について、直鎖状のアルキレン基としては、具体的には、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、デシレン基などが挙げられる。
 また、分岐状のアルキレン基としては、具体的には、例えば、ジメチルメチレン基、メチルエチレン基、2,2-ジメチルプロピレン基、2-エチル-2-メチルプロピレン基などが挙げられる。
 また、環状のアルキレン基としては、具体的には、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロデシレン基、アダマンタン-ジイル基、ノルボルナン-ジイル基、exo-テトラヒドロジシクロペンタジエン-ジイル基などが挙げられ、中でも、シクロヘキシレン基が好ましい。
 炭素数6~12のアリーレン基としては、具体的には、例えば、フェニレン基、キシリレン基、ビフェニレン基、ナフチレン基、2,2’-メチレンビスフェニル基などが挙げられ、中でも、フェニレン基が好ましい。
 本発明においては、得られる光配向性共重合体の剛直性が向上し、作製される光配向膜の耐熱性が更に向上する理由から、上記式(1)のLが、上記置換基Aを有していてもよい炭素数1~10の直鎖状のアルキレン基、上記置換基Aを有していてもよい炭素数3~10の環状のアルキレン基、および、上記置換基Bを有していてもよい炭素数6~12のアリーレン基のいずれかを少なくとも含む2価の連結基であることが好ましく、上記置換基Aを有していてもよい炭素数1~10の直鎖状のアルキレン基、または、上記置換基Aを有していてもよい炭素数3~10の環状のアルキレン基を少なくとも含む2価の連結基であることがより好ましく、無置換の炭素数2~6の直鎖状のアルキレン基、または、無置換のtrans-1,4-シクロヘキシレンを含む2価の連結基であることが特に好ましい。
 次に、上記式(1)中のR、R、R、RおよびRが表す置換基について説明するが、上記式(1)中のR、R、R、RおよびRが置換基ではなく水素原子であってもよいことは上述した通りである。
 上記式(1)のR、R、R、RおよびRが表す置換基としては、光配向性基が液晶性化合物と相互作用しやすくなり、光配向膜上に形成する光学異方性層における液晶性化合物の配向性(以下、「液晶配向性」と略す。)が向上する理由から、それぞれ独立に、ハロゲン原子、炭素数1~20の、直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、シアノ基、アミノ基、または、下記式(3)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000008

 ここで、上記式(3)中、*は、上記式(1)中のベンゼン環との結合位置を表し、Rは、1価の有機基を表す。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 炭素数1~20の、直鎖状、分岐状もしくは環状のアルキル基について、直鎖状のアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、例えば、メチル基、エチル基、n-プロピル基などが挙げられる。
 分岐状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、イソプロピル基、tert-ブチル基などが挙げられる。
 環状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 炭素数1~20の直鎖状のハロゲン化アルキル基としては、炭素数1~4のフルオロアルキル基が好ましく、具体的には、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基などが挙げられ、中でも、トリフルオロメチル基が好ましい。
 炭素数1~20のアルコキシ基としては、炭素数1~18のアルコキシ基が好ましく、炭素数6~18のアルコキシ基がより好ましく、炭素数6~14のアルコキシ基が更に好ましい。具体的には、例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基、n-ヘキシルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基などが好適に挙げられ、中でも、n-ヘキシルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基がより好ましい。
 炭素数6~20のアリール基としては、炭素数6~12のアリール基が好ましく、具体的には、例えば、フェニル基、α-メチルフェニル基、ナフチル基などが挙げられ、中でも、フェニル基が好ましい。
 炭素数6~20のアリールオキシ基としては、炭素数6~12のアリールオキシ基が好ましく、具体的には、例えば、フェニルオキシ基、2-ナフチルオキシ基などが挙げられ、中でも、フェニルオキシ基が好ましい。
 アミノ基としては、例えば、第1級アミノ基(-NH);メチルアミノ基などの第2級アミノ基;ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、含窒素複素環化合物(例えば、ピロリジン、ピペリジン、ピペラジンなど)の窒素原子を結合手とした基などの第3級アミノ基;が挙げられる。
 上記式(3)で表される基について、上記式(3)中のRが表す1価の有機基としては、例えば、炭素数1~20の、直鎖状または環状のアルキル基が挙げられる。
 直鎖状のアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、例えば、メチル基、エチル基、n-プロピル基などが挙げられ、中でも、メチル基またはエチル基が好ましい。
 環状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられ、中でも、シクロヘキシル基が好ましい。
 なお、上記式(3)中のRが表す1価の有機基としては、上述した直鎖状のアルキル基および環状のアルキル基を直接または単結合を介して複数組み合わせたものであってもよい。
 本発明においては、光配向性基が液晶性化合物と相互作用しやすくなり、液晶配向性が向上する理由から、上記式(1)中のR、R、R、RおよびRのうち、少なくともRが上述した置換基を表していることが好ましく、更に、得られる光配向性共重合体の剛直性が向上し、作製される光配向膜の耐熱性が更に向上する理由から、R、R、RおよびRがいずれも水素原子を表すことがより好ましい。
 本発明においては、得られる光配向膜に光照射した際に反応効率が向上する理由から、上記式(1)のRが電子供与性の置換基であることが好ましい。
 ここで、電子供与性の置換基(電子供与性基)とは、ハメット値(Hammett置換基定数σp)が0以下の置換基のことをいい、例えば、上述した置換基のうち、アルキル基、ハロゲン化アルキル基、アルコキシ基などが挙げられる。
 上記式(1)表される光配向性基を含む繰り返し単位Aとしては、具体的には、例えば、以下に示す繰り返し単位A-1~A-116が挙げられる。なお、下記式中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
 上記式(2)表される光配向性基を含む繰り返し単位Bとしては、具体的には、例えば、以下に示す繰り返し単位B-1~B-16が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 本発明の光配向性共重合体は、得られる光配向性共重合体の剛直性が向上し、作製される光配向膜の耐熱性が更に向上する理由から、上述した繰り返し単位Aの含有量Xと、上述した繰り返し単位Bの含有量Yとが、下記式(4)を満たしていることが好ましく、下記式(5)を満たしていることがより好ましく、下記式(7)を満たしていることが更に好ましい。
 0.2 ≦ X/(X+Y) ≦ 0.8 ・・・(4)
 0.2 ≦ X/(X+Y) ≦ 0.6 ・・・(5)
 0.3 ≦ X/(X+Y) < 0.5 ・・・(7)
 本発明の光配向性共重合体は、本発明の効果を阻害しない限り、上述した繰り返し単位Aおよび繰り返し単位B以外に、他の繰り返し単位を有していてもよい。
 このような他の繰り返し単位を形成するモノマー(ラジカル重合性単量体)としては、例えば、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリルアミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。
 具体的には、本発明の光配向性共重合体は、低露光量での液晶配向性を向上させる観点から、下記式(6)で表される繰り返し単位Cを有していることが好ましい。これは、繰り返し単位Cが、上述した繰り返し単位Bにおける架橋性基と反応して架橋することにより、繰り返し単位Bによる架橋を補助しているためと考えられる。
Figure JPOXMLDOC01-appb-C000033
 上記式(6)中、Rは、水素原子またはメチル基を表す。
 上記式(6)中、Lは、上述した置換基Aを有していてもよい炭素数1~10の、直鎖状、分岐状もしくは環状のアルキレン基、上述した置換基Bを有していてもよい炭素数6~12のアリーレン基、エーテル基、カルボニル基、および、上述した置換基Cを有していてもよいイミノ基からなる群から選択される1または2以上の基を組み合わせた2価の連結基を表す。
 上記式(6)中、Qは、-OH、-COOH、および、-COOtBuのいずれかの基を表す。なお、「tBu」は、tert-ブチルの略語である。
 上記式(6)表される繰り返し単位Cとしては、具体的には、例えば、以下に示す繰り返し単位C-1~C-12が挙げられる。
Figure JPOXMLDOC01-appb-C000034
 本発明の光配向性共重合体の合成法は特に限定されず、例えば、上述した繰り返し単位Aを形成するモノマー、上述した繰り返し単位Bを形成するモノマー、および、任意の他の繰り返し単位(例えば、上述した繰り返し単位Cなど)を形成するモノマーを混合し、有機溶剤中で、ラジカル重合開始剤を用いて重合することにより合成することができる。
 本発明の光配向性共重合体の重量平均分子量(Mw)は、得られる光配向性共重合体の剛直性が向上し、作製される光配向膜の耐熱性が更に向上する理由から、10000~500000が好ましく、液晶配向性が向上する理由から、30000~200000がより好ましい。
 ここで、本発明における重量平均分子量および数平均分子量は、以下に示す条件でゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):THF(テトラヒドロフラン)
 ・装置名:TOSOH HLC-8320GPC
 ・カラム:TOSOH TSKgel Super HZM-H(4.6mm×15cm)を3本接続して使用
 ・カラム温度:40℃
 ・試料濃度:0.1質量%
 ・流速:1.0ml/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
[光配向膜]
 本発明の光配向膜は、上述した本発明の光配向性共重合体を含有する光配向膜用組成物(以下、形式的に「本発明の光配向膜用組成物」ともいう。)を用いて形成される光配向膜である。
 光配向膜の膜厚としては、特に制限はなく、目的に応じて適宜選択することができるが、10~1000nmが好ましく、10~700nmがより好ましい。
 本発明の光配向膜用組成物における本発明の光配向性共重合体の含有量は特に限定されないが、後述する有機溶媒を含有する場合、有機溶媒100質量部に対して0.1~50質量部であるのが好ましく、0.5~10質量部であるのがより好ましい。
 本発明の光配向膜用組成物は、光配向膜を作製する作業性等の観点から、有機溶媒を含有するのが好ましい。
 有機溶媒としては、具体的には、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、トルエン、キシレン、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン、ジクロロベンゼン、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチルなど)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミドなど)等が挙げられ、これらを1種単独で用いてもよく、2種類以上を併用してもよい。
 本発明の光配向膜用組成物は、上記以外の他の成分を含有してもよく、例えば、架橋触媒、密着改良剤、レベリング剤、界面活性剤、可塑剤などが挙げられる。
〔光配向膜の製造方法〕
 本発明の光配向膜は、上述した本発明の光配向膜用組成物を用いる以外は従来公知の製造方法により製造することができ、例えば、上述した本発明の光配向膜用組成物を支持体表面に塗布する塗布工程と、光配向膜用組成物の塗膜に対し、偏光または塗膜表面に対して斜め方向から非偏光を照射する光照射工程とを有する製造方法により作製することができる。
 なお、支持体については、後述する本発明の光学積層体において説明する。
 <塗布工程>
 塗布工程における塗布方法は特に限定されず、目的に応じて適宜選択することができ、例えば、スピンコーティング、ダイコーティング、グラビアコーティング、フレキソ印刷、インクジェット印刷などが挙げられる。
 <光照射工程>
 光照射工程において、光配向膜用組成物の塗膜に対して照射する偏光は特に制限はなく、例えば、直線偏光、円偏光、楕円偏光などが挙げられ、中でも、直線偏光が好ましい。
 また、非偏光を照射する「斜め方向」とは、塗膜表面の法線方向に対して極角θ(0<θ<90°)傾けた方向である限り、特に制限はなく、目的に応じて適宜選択することができるが、θが20~80°であることが好ましい。
 偏光または非偏光における波長としては、光配向膜用組成物の塗膜に、液晶性分子に対する配向制御能を付与することができる限り、特に制限はないが、例えば、紫外線、近紫外線、可視光線などが挙げられる。中でも、250nm~450nmの近紫外線が特に好ましい。
 また、偏光または非偏光を照射するための光源としては、例えば、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプなどが挙げられる。このような光源から得た紫外線や可視光線に対して、干渉フィルタや色フィルタなどを用いることで、照射する波長範囲を制限することができる。また、これらの光源からの光に対して、偏光フィルタや偏光プリズムを用いることで、直線偏光を得ることができる。
 偏光または非偏光の積算光量としては、光配向膜用組成物の塗膜に、液晶性分子に対する配向制御能を付与することができる限り、特に制限はなく、特に制限はないが、1~300mJ/cmが好ましく、5~100mJ/cmがより好ましい。
 偏光または非偏光の照度としては、光配向膜用組成物の塗膜に、液晶性分子に対する配向制御能を付与することができる限り、特に制限はないが、0.1~300mW/cmが好ましく、1~100mW/cmがより好ましい。
[光学積層体]
 本発明の光学積層体は、上述した本発明の光配向膜と、液晶性化合物を含有する液晶組成物を用いて形成される光学異方性層とを有する、光学積層体である。
 また、本発明の光学積層体は、更に支持体を有しているのが好ましく、具体的には、支持体と光配向膜と光学異方性層とをこの順に有しているのが好ましい。
〔光学異方性層〕
 本発明の光学積層体が有する光学異方性層は、液晶性化合物を含有する光学異方性層であれば特に限定されず、従来公知の光学異方性層を適宜採用して用いることができる。
 このような光学異方性層は、重合性基を有する液晶性化合物を含有する組成物(以下、「光学異方性層形成用組成物」ともいう。)を硬化させて得られる層であるのが好ましく、単層構造であってもよく、複数層を積層した構造(積層体)であってもよい。
 以下に、光学異方性層形成用組成物が含有している液晶性化合物および任意の添加剤について説明する。
 <液晶性化合物>
 光学異方性層形成用組成物が含有する液晶性化合物は、重合性基を有する液晶性化合物である。
 一般的に、液晶性化合物はその形状から、棒状タイプと円盤状タイプに分類できる。更にそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。
 本発明においては、いずれの液晶性化合物を用いることもできるが、棒状液晶性化合物またはディスコティック液晶性化合物を用いるのが好ましく、棒状液晶性化合物を用いるのがより好ましい。
 本発明においては、上述の液晶性化合物の固定化のために、重合性基を有する液晶性化合物を用いるが、液晶性化合物が1分子中に重合性基を2以上有することが更に好ましい。なお、液晶性化合物が2種類以上の混合物の場合には、少なくとも1種類の液晶性化合物が1分子中に2以上の重合性基を有していることが好ましい。なお、液晶性化合物が重合によって固定された後においては、もはや液晶性を示す必要はない。
 また、重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。なお、(メタ)アクリロイル基とは、メタアクリロイル基またはアクリロイル基を意味する表記である。
 棒状液晶性化合物としては、例えば、特表平11-513019号公報の請求項1や特開2005-289980号公報の段落<0026>~<0098>に記載のものを好ましく用いることができ、ディスコティック液晶性化合物としては、例えば、特開2007-108732号公報の段落<0020>~<0067>や特開2010-244038号公報の段落<0013>~<0108>に記載のものを好ましく用いることができるが、これらに限定されない。
 また、本発明においては、上記液晶性化合物として、逆波長分散性の液晶性化合物を用いることができる。
 ここで、本明細書において「逆波長分散性」の液晶性化合物とは、これを用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレターデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
 また、逆波長分散性の液晶性化合物は、上記のように逆波長分散性のフィルムを形成できるものであれば特に限定されず、例えば、特開2008-297210号公報に記載の一般式(I)で表される化合物(特に、段落番号<0034>~<0039>に記載の化合物)、特開2010-84032号公報に記載の一般式(1)で表される化合物(特に、段落番号<0067>~<0073>に記載の化合物)、および、特開2016-081035公報に記載の一般式(1)で表される化合物(特に、段落番号<0043>~<0055>に記載の化合物)等を用いることができる。
 <添加剤>
 光学異方性層形成用組成物には、上述した液晶性化合物以外の成分が含まれていてもよい。
 例えば、光学異方性層形成用組成物には、重合開始剤が含まれていてもよい。使用される重合開始剤は、重合反応の形式に応じて選択され、例えば、熱重合開始剤、光重合開始剤が挙げられる。例えば、光重合開始剤の例には、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせなどが挙げられる。
 重合開始剤の使用量は、組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.5~5質量%であることがより好ましい。
 また、光学異方性層形成用組成物には、塗膜の均一性、膜の強度の点から、重合性モノマーが含まれていてもよい。
 重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶性化合物と共重合性のものが好ましい。例えば、特開2002-296423号公報中の段落<0018>~<0020>に記載のものが挙げられる。
 重合性モノマーの含有量は、液晶性化合物の全質量に対して、1~50質量%であることが好ましく、2~30質量%であることがより好ましい。
 また、光学異方性層形成用組成物には、塗膜の均一性、膜の強度の点から、界面活性剤が含まれていてもよい。
 界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001-330725号公報中の段落<0028>~<0056>に記載の化合物、特開2005-062673号公報の段落<0069>~<0126>に記載の化合物が挙げられる。
 また、光学異方性層形成用組成物には有機溶媒が含まれていてもよい。有機溶媒としては、上述した本発明の光配向膜用組成物において説明したものと同様のものを挙げることができる。
 また、光学異方性層形成用組成物には、偏光子界面側垂直配向剤、および、空気界面側垂直配向剤などの垂直配向促進剤、ならびに、偏光子界面側水平配向剤、および、空気界面側水平配向剤などの水平配向促進剤などの各種配向剤が含まれていてもよい。
 更に、光学異方性層形成用組成物には、上記成分以外に、密着改良剤、可塑剤、ポリマーなどが含まれていてもよい。
 このような成分を有する光学異方性層形成用組成物を用いた光学異方性層の形成方法は特に限定されず、例えば、上述した本発明の光配向膜上に、光学異方性層形成用組成物を塗布して塗膜を形成し、得られた塗膜に対して硬化処理(紫外線の照射(光照射処理)または加熱処理)を施すことにより形成することができる。
 光学異方性層形成用組成物の塗布は、公知の方法(例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
 本発明においては、上記光学異方性層の厚みについては特に限定されないが、0.1~10μmであるのが好ましく、0.5~5μmであるのがより好ましい。
〔支持体〕
 本発明の光学積層体は、上述したように、光学異方性層を形成するための基材として支持体を有していてもよい。
 このような支持体としては、例えば、偏光子、ポリマーフィルム等が挙げられ、これらが組み合わされたもの、例えば、偏光子とポリマーフィルムとの積層体、ポリマーフィルムと偏光子とポリマーフィルムとの積層体などであってもよい。
 また、支持体は、光学異方性層を形成した後に、剥離可能な仮支持体(以下、単に「仮支持体」とのみ表記する場合もある。)であってもよい。具体的には、仮支持体として機能するポリマーフィルムを光学積層体から剥離して、光学異方性層を提供できるものであってもよい。例えば、光学異方性層と仮支持体を含む光学積層体を用意し、光学積層体の光学異方性層側を、偏光子を含む支持体に粘着剤または接着剤で貼り合わせた後、上記光学異方性層に含まれる仮支持体を剥離することで、偏光子を含む支持体と光学異方性層との積層体を提供できるものであってもよい。
 <偏光子>
 本発明においては、本発明の光学積層体を画像表示装置に用いる場合は、支持体として少なくとも偏光子を用いるのが好ましい。
 偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に限定されず、従来公知の吸収型偏光子および反射型偏光子を利用することができる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子などが用いられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できるが、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第5048120号公報、特許第4691205号公報、特許第4751481号公報、特許第4751486号公報を挙げることができ、これらの偏光子に関する公知の技術も好ましく利用することができる。
 反射型偏光子としては、複屈折の異なる薄膜を積層した偏光子、ワイヤーグリッド型偏光子、選択反射域を有するコレステリック液晶と1/4波長板とを組み合わせた偏光子などが用いられる。
 なかでも、取り扱い性の点から、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマーを意図する。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つが好ましい)を含む偏光子であることが好ましい。
 本発明の光学積層体が剥離可能な支持体を含む態様において、偏光板は、例えば、以下のように製造することができる。
 上述の光学積層体中から支持体を剥離し、光学異方性層を含む層を、偏光子を含む支持体に積層する。または、上述の光学積層体を、偏光子を含む支持体に積層し、その後、光学積層体中に含まれる剥離可能な支持体を剥離する。積層の際は両層を接着剤等により接着してもよい。接着剤としては特に限定はないが、特開2004-245925号公報に示されるような、分子内に芳香環を含まないエポキシ化合物の硬化性接着剤、特開2008-174667号公報記載の360~450nmの波長におけるモル吸光係数が400以上である光重合開始剤と紫外線硬化性化合物とを必須成分とする活性エネルギー線硬化型接着剤、特開2008-174667号公報記載の(メタ)アクリル系化合物の合計量100質量部中に(a)分子中に(メタ)アクリロイル基を2以上有する(メタ)アクリル系化合物と、(b)分子中に水酸基を有し、重合性二重結合をただ1個有する(メタ)アクリル系化合物と、(c)フェノールエチレンオキサイド変性アクリレートまたはノニルフェノールエチレンオキサイド変性アクリレートとを含有する活性エネルギー線硬化型接着剤などがあげられる。
 偏光子の厚みは特に限定されないが、1~60μmであるのが好ましく、1~30μmであるのがより好ましく、2~20μmであるのが更に好ましい。
 <ポリマーフィルム>
 ポリマーフィルムは、特に限定されず、通常用いるポリマーフィルム(例えば、偏光子保護フィルムなど)を用いることができる。
 ポリマーフィルムを構成するポリマーとしては、具体的には、例えば、セルロース系ポリマー;ポリメチルメタクリレート、ラクトン環含有重合体等のアクリル酸エステル重合体を有するアクリル系ポリマー;熱可塑性ノルボルネン系ポリマー;ポリカーボネート系ポリマー;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー;ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン系ポリマー;塩化ビニル系ポリマー;ナイロン、芳香族ポリアミド等のアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;またはこれらのポリマーを混合したポリマーが挙げられる。
 これらのうち、トリアセチルセルロースに代表される、セルロース系ポリマー(以下、「セルロースアシレート」ともいう。)を好ましく用いることができる。
 また、加工性および光学性能の観点から、アクリル系ポリマーを用いるのも好ましい。
 アクリル系ポリマーとしては、ポリメチルメタクリレートや、特開2009-98605号公報の段落<0017>~<0107>に記載されるラクトン環含有重合体等が挙げられる。
 偏光子保護フィルム等に用いるポリマーフィルムの厚さは特に限定されないが、光学積層体の厚みを薄くできる等の理由から40μm以下が好ましい。下限は特に限定されないが通常5μm以上である。
 また、本発明においては、上記支持体の厚みについては特に限定されないが、1~100μmであるのが好ましく、5~50μmであるのがより好ましく、5~20μmであるのが更に好ましい。なお、上記支持体の厚みとは、偏光子およびポリマーフィルムをいずれも有している場合は、これらの厚みの合計の厚みをいう。
 光学積層体から剥離可能な支持体としてポリマーフィルムを用いる態様では、セルロース系ポリマーまたはポリエステル系ポリマーを好ましく用いることができる。ポリマーフィルムの厚さは特に限定されないが、製造時のハンドリング等の理由から5μm~100μmが好ましく、20μm~90μmがより好ましい。なお、剥離する界面は、支持体と光配向膜との間でもよく、光配向膜と光学異方性層との間でもよく、他の界面であっても構わない。
[画像表示装置]
 本発明の光学積層体は、支持体を剥離して薄型化できるため、画像表示装置を作製する際に好適に使用できる。
 画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、プラズマディスプレイパネル等が挙げられる。
 これらのうち、液晶セル、有機EL表示パネルであるのが好ましく、液晶セルであるのがより好ましい。すなわち、画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましく、液晶表示装置であるのがより好ましい。
〔液晶表示装置〕
 画像表示装置の一例である液晶表示装置は、上述した本発明の光学積層体と、液晶セルとを有する液晶表示装置である。
 なお、本発明においては、液晶セルの両側に設けられる偏光板のうち、フロント側の偏光板として本発明の光学積層体を用いるのが好ましい。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
 <液晶セル>
 液晶表示装置に利用される液晶セルは、VA(Virtical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、またはTN(Twisted 
Nematic)であることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子(棒状液晶性化合物)が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVA(Multi-domain Vertical Alignment)モードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード(Axially symmetric aligned microcell))の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)および(4)SURVIVAL(Super Ranged Viewing by Vertical Alignment)モードの液晶セル(LCD(liquid crystal display)インターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶性分子が平面的に応答する。IPSモードは電界無印加時で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
〔モノマーmA-1の合成〕
 上述した繰り返し単位A-1を形成するモノマーとして、Langmuir,32(36),9245-9253,(2016年)に記載された方法に従い、2-ヒドロキシエチルメタクリレート(HEMA)(東京化成試薬)と桂皮酸クロリド(東京化成試薬)を用いて、以下に示すモノマーmA-1を合成した。
Figure JPOXMLDOC01-appb-C000035
〔モノマーmA-2などの合成〕
 モノマーmA-1の合成において、桂皮酸クロリドを対応する桂皮酸クロリド誘導体に変えた以外は、モノマーmA-1と同様の方法で、以下に示すモノマーmA-2、mA-4、mA-5、mA-6、mA-8、mA-18、mA-22、mA-24、mA-37、mA-96、mA-98、mA-100、mA-114、および、mA-115を合成した。
 なお、以下のモノマーmA-2などは、それぞれ、上述した繰り返し単位A-2などを形成するモノマーに該当するものである。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000039
〔モノマーmA-107の合成〕
 <mA-107中間体の合成>
 撹拌羽、温度計、滴下ロートおよび還流管を備えた300mL三口フラスコに、4-ヒドロキシメチルシクロヘキサノール14.0g、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩24.7g、トリエチルアミン5.4g、N,N-ジメチル-4-アミノピリジン6.57g、および、塩化メチレン140mLを添加し、室温(23℃)で撹拌した。
 次いで、室温下で、メタクリル酸11.1gを滴下ロートを用いて30分かけて滴下し、滴下終了後、50℃で5時間撹拌した。
 反応液を室温まで冷却した後、水で分液洗浄し、得られた有機層を無水硫酸マグネシウムで乾燥し、濃縮することにより淡黄色液体を得た。
 得られた淡黄色液体をシリカゲルカラム(展開溶媒ヘキサン/酢酸エチル=2/1)で精製することで、目的のmA-107中間体である4-メタクリルオキシメチルシクロヘキサノールをアモルファス固体として15.3g得た(収率71%)。
 <モノマーmA-107の合成>
 モノマーmA-1の合成において、2-ヒドロキシエチルメタクリレート(HEMA)を、mA-107中間体(4-メタクリルオキシメチルシクロヘキサノール)に変更し、桂皮酸クロリドを対応する桂皮酸クロリド誘導体に変えた以外は、モノマーmA-1と同様の方法で、以下に示すモノマーmA-107を合成した。なお、以下のモノマーmA-107は、上述した繰り返し単位A-107を形成するモノマーに該当するものである。
Figure JPOXMLDOC01-appb-C000040
〔モノマーmA-49の合成〕
 <mA-49中間体の合成>
 モノマーmA-107の合成において、4-ヒドロキシメチルシクロヘキサノールを1,4-シクロヘキサンジオールに変えた以外は、mA-107中間体と同様の方法でmA-49中間体を合成した。
 <モノマーmA-49の合成>
 モノマーmA-1の合成において、2-ヒドロキシエチルメタクリレート(HEMA)をmA-49中間体に変更し、桂皮酸クロリドを対応する桂皮酸クロリド誘導体に変えた以外は、モノマーmA-107と同様の方法で合成し、シリカゲルカラム(展開溶媒ヘキサン/酢酸エチル=4/1)で精製することで、連結部位(1,4-シクロヘキシル基)がトランス体100%となる、以下に示すモノマーmA-49を合成した。なお、以下のモノマーmA-49は、上述した繰り返し単位A-49のトランス体を形成するモノマーに該当するものである。
Figure JPOXMLDOC01-appb-C000041
〔モノマーmA-116の合成〕
 <mA-116中間体の合成>
 原料の4-ヒドロキシメチルシクロヘキサノールを1,4-シクロヘキサンジオールに変えた以外は、mA-107中間体と同様の方法でmA-116中間体を合成した。
 <モノマーmA-116の合成>
 原料の2-ヒドロキシエチルメタクリレート(HEMA)をmA-116中間体に変更し、桂皮酸クロリドを対応する桂皮酸クロリド誘導体に変えた以外は、モノマーmA-107と同様の方法で合成し、シリカゲルカラム(展開溶媒ヘキサン/酢酸エチル=4/1)で精製することで、連結部位(1,4-シクロヘキシル基)がトランス体100%となる以下に示すモノマーmA-116を合成した。なお、以下のモノマーmA-116は、上述した繰り返し単位A-116のトランス体を形成するモノマーに該当するものである。
Figure JPOXMLDOC01-appb-C000042
〔モノマーmB-1の合成〕
 繰り返し単位B-1を形成する下記モノマーmB-1は、3,4-エポキシシクロヘキシルメタノールと2-メタクリロイルオキシエチルイソシアネート〔カレンズMOI(登録商標)、昭和電工社製〕から、公知のアルコールとイソシアネートを用いたウレタン化反応により合成した。
Figure JPOXMLDOC01-appb-C000043
〔モノマーmB-3〕
 上述した繰り返し単位B-3を形成する下記モノマーmB-3として、サイクロマーM100(ダイセル社製)を用いた。
Figure JPOXMLDOC01-appb-C000044
〔モノマーmB-4の合成〕
 繰り返し単位B-4を形成する下記モノマーmB-4は、Tetrahedron Letters,43,1001-1003(2002年)に記載された方法で合成した3,4-エポキシシクロヘキシルメタノールと、アクリル酸クロリド(東京化成試薬)とから、公知のアルコールと酸クロリドを用いたエステル化反応により合成した。
Figure JPOXMLDOC01-appb-C000045
〔モノマーmC-1など〕
 下記モノマーmC-1は市販のメタクリル酸(和光純薬)を用い、下記モノマーmC-3は市販の2-ヒドロキシエチルメタクリレート(東京化成試薬)を用い、下記モノマーmC-4は市販の2-メタクリロイルオキシエチルサクシネート(新中村化学工業)を用い、下記モノマーmC-5は市販の-ブチルメタクリレート(和光純薬)を用い、下記モノマーmC-7は市販の2-メタクリロイロキシエチルフタル酸(新中村化学工業)を用い、下記モノマーmC-12は市販の2-ヒドロキシエチルメタクリルアミド(東京化成)を用いた。
 なお、以下のモノマーmC-1などは、それぞれ、上述した繰り返し単位C-1などを形成するモノマーに該当するものである。
Figure JPOXMLDOC01-appb-C000046
〔他のモノマー〕
 下記モノマーmD-2は市販の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(東京化成試薬)を用い、下記モノマーmD-4は市販のエチレングリコールモノアセトアセテートモノメタクリレート(東京化成試薬)を用い、下記モノマーmD-5は市販のグリシジルメタクリレート(東京化成試薬)を用いた。
 また、下記モノマーmD-1は、特開2014-12823号公報に記載された合成例3に従って合成したものを用いた。
Figure JPOXMLDOC01-appb-C000047
 ここで、上述したモノマーmD-1などは、それぞれ、以下に示す繰り返し単位D-1などを形成するモノマーに該当するものである。なお、以下に示す繰り返し単位D-3は、上述したモノマーmD-2を用いて、特許第5790156号の<0248>および<0258>段落に記載された方法に従い、ポリオルガノシロキサンを合成した後、4-メトキシ桂皮酸との反応により合成した繰り返し単位である。
Figure JPOXMLDOC01-appb-C000048
[実施例1]
 冷却管、温度計、および撹拌機を備えたフラスコに、溶媒として2-ブタノン5質量部を仕込み、フラスコ内に窒素を5mL/min流しながら、水浴加熱により還流させた。ここに、モノマーmA-5を3質量部、モノマーmB-1を7質量部、重合開始剤として2,2’-アゾビス(イソブチロニトリル)を1質量部と、溶媒として2-ブタノン5質量部を混合した溶液を、3時間かけて滴下し、さらに3時間還流状態を維持したまま撹拌した。反応終了後、室温まで放冷し、2-ブタノン30質量部を加えて希釈することで約20質量%の重合体溶液を得た。得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、回収した沈殿物をろ別し、大量のメタノールで洗浄した後、50℃において12時間送風乾燥することにより、光配向性基を有する重合体P-1を得た。
[実施例2~31および比較例1~5]
 下記表1に示す繰り返し単位を形成するモノマーとして、合成した各モノマーを用い、下記表1に示す重量平均分子量となるように重合開始剤の添加量を変更し、下記表1に示す繰り返し単位の含有量となるようにモノマーの配合量を変更した以外は、実施例1で合成した重合体P-1と同様の方法で、重合体を合成した。
 合成した各重合体について、上述した方法で重量平均分子量を測定した。結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000049
〔光配向膜用組成物の調製〕
 テトラヒドロフラン100質量部に対して、実施例3で合成した重合体P-3を1質量部と、下記構造式で表される熱酸発生剤を0.05質量部添加し、光配向膜用組成物を調製した。
 同様の方法で、実施例5、7、9、10、18~21および25~31ならびに比較例1~5で合成した各重合体についても、テトラヒドロフラン100質量部に対して1質量部添加した光配向膜用組成物を調製した。
Figure JPOXMLDOC01-appb-C000050
〔光学積層体の作製〕
 以下の手順で、実施例3、5、7、9、10、18~21および25~31ならびに比較例1~5の光学積層体を作製した。
 セルロースアシレートフィルムとして、特開2014-164169号公報の比較例1と同じものを用いた。
 このフィルムの片側の面に、先に調製した各光配向膜用組成物をバーコーターで塗布した。塗布後、80℃のホットプレート上で5分間乾燥して溶剤を除去し、厚さ0.2μmの光異性化組成物層を形成した。得られた光異性化組成物層を偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、光配向膜を形成した。
 次いで、光配向膜上に、ネマチック液晶性化合物(ZLI-4792、メルク社製)をバーコーターで塗布し、組成物層を形成した。形成した組成物層をホットプレート上でいったん90℃まで加熱した後、60℃に冷却させて配向を安定化させた。
 その後、60℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(500mJ/cm、超高圧水銀ランプ使用)によって配向を固定化し、厚さ2.0μmの光学異方性層を形成し、光学積層体を作製した。
[実施例32]
 実施例18の光学積層体の作製において、光配向膜上に塗布したネマチック液晶性化合物に代えて、以下に示す光学異方性層用塗布液(液晶101)を用いた以外は、実施例18と同様の方法により、実施例32の光学積層体を作製した。
─────────────────────────────────
光学異方性層用塗布液(液晶101)
─────────────────────────────────
・下記液晶性化合物L-1             80.00質量部
・下記液晶性化合物L-2             20.00質量部
・重合開始剤(IRGACURE 184、BASF社製)
                          3.00質量部
・重合開始剤(IRGACURE OXE-01、BASF社製)
                          3.00質量部
・レベリング剤(下記化合物G-1)         0.20質量部
・メチルエチルケトン               424.8質量部
―――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000051
[実施例33]
 実施例18の光学積層体の作製において、光配向膜上に塗布したネマチック液晶性化合物に代えて、以下に示す光学異方性層用塗布液(液晶102)を用いた以外は、実施例18と同様の方法により、実施例33の光学積層体を作製した。
―――――――――――――――――――――――――――――――――
光学異方性層用塗布液(液晶102)
―――――――――――――――――――――――――――――――――
・下記液晶性化合物L-3             42.00質量部
・下記液晶性化合物L-4             42.00質量部
・下記重合性化合物A-1             16.00質量部
・下記重合開始剤S-1(オキシム型)        0.50質量部
・レベリング剤(上記化合物G-1)         0.20質量部
・ハイソルブMTEM(東邦化学工業社製)      2.00質量部
・NKエステルA-200(新中村化学工業社製)   1.00質量部
・メチルエチルケトン               424.8質量部
―――――――――――――――――――――――――――――――――
 なお、下記液晶性化合物L-3およびL-4のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、下記液晶性化合物L-3およびL-4は、メチル基の位置が異なる位置異性体の混合物を表す。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-I000053
〔液晶配向性〕
 作製した光学積層体について、偏光顕微鏡を用いて消光位から2度ずらした状態で観察した。その結果、以下の基準で評価した。結果を下記表2に示す。
 AAAA:液晶ダイレクタが均一に整って配向し、面状および表示性能が極めて優れる
 AAA:液晶ダイレクタが均一に整って配向し、面状および表示性能がより優れる
 AA:液晶ダイレクタが均一に整って配向し、表示性能が優れる
 A:液晶ダイレクタの乱れがなく、面状が安定している
 B:液晶ダイレクタの乱れがごくわずかであり、面状が安定している
 C:液晶ダイレクタの乱れが部分的であり、面状が安定している
 D:液晶ダイレクタが大幅に乱れて面状が安定せず、表示性能が非常に劣る
 なお、本明細書において、安定した面状とは、クロスニコル配置した2枚の偏光板の間に光学積層体を設置して観察した際にムラや配向不良等の欠陥がない状態を意図する。
 また、本明細書において、液晶ダイレクタとは液晶性分子の長軸が配向している方向(配向主軸)のベクトルを意図する。
〔耐熱性〕
 作製した光配向膜について、ネマチック液晶性化合物または光学異方性用塗布液を塗布する前に、40℃60%相対湿度にて1.5時間経時した後、上述した光学積層体と同様の方法で光学積層体を作製し、上述した液晶配向性の観察を行い、以下の基準で評価した。結果を下記表2に示す。
 A:液晶ダイレクタの乱れがなく、面状が安定している
 B:液晶ダイレクタの乱れがごくわずかであり、面状が安定している
 C:液晶ダイレクタの乱れが部分的であり、面状が劣る
 D:液晶ダイレクタが大幅に乱れて面状が安定せず、表示性能が非常に劣る
Figure JPOXMLDOC01-appb-T000054
 表2に示す結果から、架橋性基を含む繰り返し単位を有していないポリマーを用いた光配向膜は、配向性および耐熱性がいずれも劣ることが分かった(比較例1)。
 また、上記式(1)に該当しない光配向性基を含む繰り返し単位と、上記式(2)で該当しない架橋性基を含む繰り返し単位とを有する共重合体を用いた光配向膜は、配向性および耐熱性がいずれも劣ることが分かった(比較例2)。
 また、光配向性基および架橋性基を有していても主鎖骨格がシロキサン骨格の共重合体を用いた光配向膜は、耐熱性が極めて劣ることが分かった(比較例3)。
 また、上記式(1)で表される光配向性基を含む繰り返し単位Aと、上記式(2)で該当しない架橋性基を含む繰り返し単位とを有する共重合体を用いた光配向膜は、耐熱性が劣ることが分かった(比較例4および5)。
 一方、上記式(1)で表される光配向性基を含む繰り返し単位Aと、上記式(2)で表される架橋性基を含む繰り返し単位Bとを有する共重合体を用いた光配向膜は、いずれも配向性および耐熱性が良好となることが分かった(実施例3、5、7、9、10、18~21および25~33)。
[実施例34]
 下記表3に示す繰り返し単位を形成するモノマーとして、合成した各モノマーを用い、下記表3に示す繰り返し単位の含有量となるようにモノマーの配合量を変更した以外は、実施例1で合成した重合体P-1と同様の方法で、重合体P-32を合成した。なお、合成した重合体P-32の重量平均分子量は36000であった。
[実施例35~39]
 下記表3に示す繰り返し単位を形成するモノマーとして、合成した各モノマーを用い、下記表3に示す繰り返し単位の含有量となるようにモノマーの配合量を変更した以外は、実施例34で合成した重合体P-32と同様の方法で、重合体P-33~重合体P-37を合成した。
〔光学積層体の作製〕
 以下の手順で、実施例33~39および実施例7の光学積層体を作製した。
 セルロースアシレートフィルムとして、特開2014-164169号公報の比較例1と同じものを用いた。
 このフィルムの片側の面に、先に調製した各光配向膜用組成物をバーコーターで塗布した。塗布後、80℃のホットプレート上で5分間乾燥して溶剤を除去し、厚さ0.2μmの光異性化組成物層を形成した。得られた光異性化組成物層を偏光紫外線照射(5mJ/cm、超高圧水銀ランプ使用)することで、光配向膜を形成した。
 次いで、光配向膜上に、ネマチック液晶性化合物(ZLI-4792、メルク社製)をバーコーターで塗布し、組成物層を形成した。形成した組成物層をホットプレート上でいったん90℃まで加熱した後、60℃に冷却させて配向を安定化させた。
 その後、60℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(500mJ/cm、超高圧水銀ランプ使用)によって配向を固定化し、厚さ2.0μmの光学異方性層を形成し、光学積層体を作製した。
 作製した光学積層体について、偏光顕微鏡を用いて消光位から2度ずらした状態で観察した。その結果、以下の基準で評価した。結果を下記表3に示す。
 AAA:液晶ダイレクタが均一に整って配向し、面状および表示性能が極めて優れる
 AA:液晶ダイレクタが均一に整って配向し、表示性能が優れる
 A:液晶ダイレクタの乱れがなく、面状が安定している
 B:液晶ダイレクタの乱れがごくわずかであり、面状が安定している
 C:液晶ダイレクタの乱れが部分的であり、面状が安定している
 D:液晶ダイレクタが大幅に乱れて面状が安定せず、表示性能が非常に劣る
Figure JPOXMLDOC01-appb-T000055
 表3に示す通り、実施例34~39と実施例7との対比結果から、上記式(6)で表される繰り返し単位Cを有する共重合体を用いた光配向膜は、偏光紫外線の照射量を減らした場合であっても、液晶配向性が良好となることが分かった。

Claims (14)

  1.  下記式(1)で表される光配向性基を含む繰り返し単位Aと、下記式(2)で表される架橋性基を含む繰り返し単位Bとを有する、光配向性共重合体。
    Figure JPOXMLDOC01-appb-C000001

     前記式(1)中、Rは、水素原子またはメチル基を表し、R、R、R、RおよびRは、それぞれ独立に、水素原子または置換基を表す。R、R、R、RおよびRのうち、隣接する2つの基が結合して環を形成していてもよい。
     前記式(2)中、Rは、水素原子またはメチル基を表す。
     前記式(1)のLおよび前記式(2)中のLは、それぞれ独立に、置換基Aを有していてもよい炭素数1~10の、直鎖状、分岐状または環状のアルキレン基、置換基Bを有していてもよい炭素数6~12のアリーレン基、エーテル基、カルボニル基、および、置換基Cを有していてもよいイミノ基からなる群から選択される少なくとも2以上の基を組み合わせた2価の連結基を表す。
     ただし、前記置換基Aは、ハロゲン原子、アルキル基およびアルコキシ基からなる群から選択される少なくとも1種の置換基であり、前記置換基Bは、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、シアノ基、カルボニル基およびアルコキシカルボニル基からなる群から選択される少なくとも1種の置換基であり、前記置換基Cは、アルキル基およびアリール基からなる群から選択される少なくとも1種の置換基である。
  2.  前記式(1)のLが、置換基Aを有していてもよい炭素数1~10の直鎖状のアルキレン基、置換基Aを有していてもよい炭素数3~10の環状のアルキレン基、および、置換基Bを有していてもよい炭素数6~12のアリーレン基のいずれかを含む、2価の連結基である、請求項1に記載の光配向性共重合体。
  3.  前記式(1)のLが、置換基Aを有していてもよい炭素数1~10の直鎖状のアルキレン基、または、置換基Aを有していてもよい炭素数3~10の環状のアルキレン基を含む、2価の連結基である、請求項2に記載の光配向性共重合体。
  4.  前記式(1)のR、R、R、RおよびRのうち、少なくともRが置換基を表す、請求項1~3のいずれか1項に記載の光配向性共重合体。
  5.  前記式(1)のR、R、RおよびRがいずれも水素原子を表す、請求項4に記載の光配向性共重合体。
  6.  前記式(1)のRが、電子供与性の置換基である、請求項1~5のいずれか1項に記載の光配向性共重合体。
  7.  前記式(1)のR、R、R、RおよびRが表す置換基が、それぞれ独立に、ハロゲン原子、炭素数1~20の、直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、シアノ基、アミノ基、または、下記式(3)で表される基である、請求項1~6のいずれか1項に記載の光配向性共重合体。
    Figure JPOXMLDOC01-appb-C000002

     前記式(3)中、*は、前記式(1)中のベンゼン環との結合位置を表し、Rは、1価の有機基を表す。
  8.  前記繰り返し単位Aの含有量Xと、前記繰り返し単位Bの含有量Yとが、下記式(4)を満たす、請求項1~7のいずれか1項に記載の光配向性共重合体。
     0.2 ≦ X/(X+Y) ≦ 0.8 ・・・(4)
  9.  前記繰り返し単位Aの含有量Xと、前記繰り返し単位Bの含有量Yとが、下記式(5)を満たす、請求項8に記載の光配向性共重合体。
     0.2 ≦ X/(X+Y) ≦ 0.6 ・・・(5)
  10.  重量平均分子量が10000~500000である、請求項1~9のいずれか1項に記載の光配向性共重合体。
  11.  重量平均分子量が30000~200000である、請求項10に記載の光配向性共重合体。
  12.  更に、下記式(6)で表される繰り返し単位Cを有する、請求項1~10のいずれか1項に記載の光配向性共重合体。
    Figure JPOXMLDOC01-appb-C000003

     前記式(6)中、Rは、水素原子またはメチル基を表す。
     前記式(6)中、Lは、前記置換基Aを有していてもよい炭素数1~10の、直鎖状、分岐状もしくは環状のアルキレン基、前記置換基Bを有していてもよい炭素数6~12のアリーレン基、エーテル基、カルボニル基、および、前記置換基Cを有していてもよいイミノ基からなる群から選択される1または2以上の基を組み合わせた2価の連結基を表す。
     前記式(6)中、Qは、-OH、-COOH、および、-COOtBuのいずれかの基を表す。
  13.  請求項1~12のいずれか1項に記載の光配向性共重合体を含有する光配向膜用組成物を用いて形成した、光配向膜。
  14.  請求項13に記載の光配向膜と、液晶性化合物を含有する液晶組成物を用いて形成される光学異方性層とを有する、光学積層体。
PCT/JP2018/008439 2017-03-24 2018-03-06 光配向性共重合体、光配向膜および光学積層体 WO2018173727A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019507508A JPWO2018173727A1 (ja) 2017-03-24 2018-03-06 光配向性共重合体、光配向膜および光学積層体
US16/558,841 US20200004087A1 (en) 2017-03-24 2019-09-03 Photo-alignment copolymer, photo-alignment film, and optical laminate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-059490 2017-03-24
JP2017059490 2017-03-24
JP2017-200346 2017-10-16
JP2017200346 2017-10-16
JP2018-034730 2018-02-28
JP2018034730 2018-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/558,841 Continuation US20200004087A1 (en) 2017-03-24 2019-09-03 Photo-alignment copolymer, photo-alignment film, and optical laminate

Publications (1)

Publication Number Publication Date
WO2018173727A1 true WO2018173727A1 (ja) 2018-09-27

Family

ID=63584298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008439 WO2018173727A1 (ja) 2017-03-24 2018-03-06 光配向性共重合体、光配向膜および光学積層体

Country Status (3)

Country Link
US (1) US20200004087A1 (ja)
JP (1) JPWO2018173727A1 (ja)
WO (1) WO2018173727A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220970A1 (ja) * 2018-05-18 2019-11-21 富士フイルム株式会社 光配向性共重合体、光配向膜および光学積層体
WO2020110818A1 (ja) * 2018-11-28 2020-06-04 富士フイルム株式会社 光配向性共重合体、バインダー組成物、バインダー層、光学積層体および画像表示装置
WO2020138259A1 (ja) * 2018-12-27 2020-07-02 日産化学株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び新規モノマー
WO2020175620A1 (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 光配向膜用組成物、光配向膜、積層体
JPWO2020179864A1 (ja) * 2019-03-07 2020-09-10
WO2020179873A1 (ja) * 2019-03-07 2020-09-10 富士フイルム株式会社 共重合体、光配向膜用組成物、光配向膜、光学異方性素子および偏光素子
WO2020241642A1 (ja) * 2019-05-27 2020-12-03 日産化学株式会社 硬化膜形成組成物、配向材および位相差材
JP2021031614A (ja) * 2019-08-27 2021-03-01 富士フイルム株式会社 光配向性重合体の製造方法
JPWO2021060338A1 (ja) * 2019-09-26 2021-04-01
WO2021166619A1 (ja) * 2020-02-20 2021-08-26 富士フイルム株式会社 光学積層体、偏光板および画像表示装置
US11487152B2 (en) 2018-12-13 2022-11-01 Fujifilm Corporation Laminate and image display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299647B2 (ja) * 2020-02-07 2023-06-28 国立研究開発法人物質・材料研究機構 高分子化合物、高分子化合物の製造方法、接着剤組成物、硬化物、接着剤組成物の製造方法および接着力の調整方法
CN115073396A (zh) * 2022-06-29 2022-09-20 江苏泰特尔新材料科技股份有限公司 一种脂环族环氧树脂的合成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025202A (ja) * 2005-07-15 2007-02-01 Fujifilm Holdings Corp 光学位相差素子、その製造方法、並びにその光学位相差素子を用いたセキュリティ製品、真贋判定方法、セキュリティ製品の製造方法
JP2008050440A (ja) * 2006-08-23 2008-03-06 Fujifilm Corp 重合性モノマー、高分子化合物、光学異方性フィルム、光学補償シート、偏光板および液晶表示装置、および光学補償シートの製造方法
JP2008083394A (ja) * 2006-09-27 2008-04-10 Fujifilm Corp 光学異方性フィルム、およびその製造方法
JP2014012823A (ja) * 2012-06-06 2014-01-23 Jnc Corp 光配向性基を有する高分子組成物、該高分子組成物から作製される液晶配向膜及び該液晶配向膜から作製される位相差板を備えた光デバイス
JP2015031823A (ja) * 2013-08-02 2015-02-16 大阪有機化学工業株式会社 光配向膜用組成物および新規重合体
WO2015129889A1 (ja) * 2014-02-28 2015-09-03 日産化学工業株式会社 位相差材形成用樹脂組成物、配向材および位相差材
JP5994564B2 (ja) * 2012-10-22 2016-09-21 Jnc株式会社 光配向性を有する熱硬化性組成物
JP2016193869A (ja) * 2015-04-01 2016-11-17 Dic株式会社 重合性化合物及び光学異方体
JP2017102258A (ja) * 2015-12-01 2017-06-08 富士フイルム株式会社 液晶表示装置および液晶表示装置の製造方法
JP2017151296A (ja) * 2016-02-25 2017-08-31 富士フイルム株式会社 液晶表示パネルの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6725883B2 (ja) * 2015-03-11 2020-07-22 日産化学株式会社 硬化膜形成組成物、配向材および位相差材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025202A (ja) * 2005-07-15 2007-02-01 Fujifilm Holdings Corp 光学位相差素子、その製造方法、並びにその光学位相差素子を用いたセキュリティ製品、真贋判定方法、セキュリティ製品の製造方法
JP2008050440A (ja) * 2006-08-23 2008-03-06 Fujifilm Corp 重合性モノマー、高分子化合物、光学異方性フィルム、光学補償シート、偏光板および液晶表示装置、および光学補償シートの製造方法
JP2008083394A (ja) * 2006-09-27 2008-04-10 Fujifilm Corp 光学異方性フィルム、およびその製造方法
JP2014012823A (ja) * 2012-06-06 2014-01-23 Jnc Corp 光配向性基を有する高分子組成物、該高分子組成物から作製される液晶配向膜及び該液晶配向膜から作製される位相差板を備えた光デバイス
JP5994564B2 (ja) * 2012-10-22 2016-09-21 Jnc株式会社 光配向性を有する熱硬化性組成物
JP2015031823A (ja) * 2013-08-02 2015-02-16 大阪有機化学工業株式会社 光配向膜用組成物および新規重合体
WO2015129889A1 (ja) * 2014-02-28 2015-09-03 日産化学工業株式会社 位相差材形成用樹脂組成物、配向材および位相差材
JP2016193869A (ja) * 2015-04-01 2016-11-17 Dic株式会社 重合性化合物及び光学異方体
JP2017102258A (ja) * 2015-12-01 2017-06-08 富士フイルム株式会社 液晶表示装置および液晶表示装置の製造方法
JP2017151296A (ja) * 2016-02-25 2017-08-31 富士フイルム株式会社 液晶表示パネルの製造方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220970A1 (ja) * 2018-05-18 2019-11-21 富士フイルム株式会社 光配向性共重合体、光配向膜および光学積層体
JP7189232B2 (ja) 2018-11-28 2022-12-13 富士フイルム株式会社 光配向性共重合体、バインダー組成物、バインダー層、光学積層体および画像表示装置
WO2020110818A1 (ja) * 2018-11-28 2020-06-04 富士フイルム株式会社 光配向性共重合体、バインダー組成物、バインダー層、光学積層体および画像表示装置
JPWO2020110818A1 (ja) * 2018-11-28 2021-10-14 富士フイルム株式会社 光配向性共重合体、バインダー組成物、バインダー層、光学積層体および画像表示装置
KR20210082501A (ko) 2018-11-28 2021-07-05 후지필름 가부시키가이샤 광배향성 공중합체, 바인더 조성물, 바인더층, 광학 적층체 및 화상 표시 장치
US11692050B2 (en) 2018-11-28 2023-07-04 Fujifilm Corporation Photo-alignment copolymer, binder composition, binder layer, optical laminate, and image display device
KR102505149B1 (ko) 2018-11-28 2023-02-28 후지필름 가부시키가이샤 광배향성 공중합체, 바인더 조성물, 바인더층, 광학 적층체 및 화상 표시 장치
US11487152B2 (en) 2018-12-13 2022-11-01 Fujifilm Corporation Laminate and image display device
WO2020138259A1 (ja) * 2018-12-27 2020-07-02 日産化学株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び新規モノマー
CN113316742A (zh) * 2018-12-27 2021-08-27 日产化学株式会社 液晶取向剂、液晶取向膜、液晶表示元件和新型单体
KR102525275B1 (ko) 2019-02-28 2023-04-25 후지필름 가부시키가이샤 광배향막용 조성물, 광배향막, 적층체
JP7212136B2 (ja) 2019-02-28 2023-01-24 富士フイルム株式会社 光配向膜用組成物、光配向膜、積層体
JPWO2020175620A1 (ja) * 2019-02-28 2020-09-03
WO2020175620A1 (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 光配向膜用組成物、光配向膜、積層体
KR20210114476A (ko) * 2019-02-28 2021-09-23 후지필름 가부시키가이샤 광배향막용 조성물, 광배향막, 적층체
WO2020179873A1 (ja) * 2019-03-07 2020-09-10 富士フイルム株式会社 共重合体、光配向膜用組成物、光配向膜、光学異方性素子および偏光素子
JP7181376B2 (ja) 2019-03-07 2022-11-30 富士フイルム株式会社 共重合体、光配向膜用組成物、光配向膜、光学異方性素子および偏光素子
JP7317939B2 (ja) 2019-03-07 2023-07-31 富士フイルム株式会社 偏光素子および画像表示装置
CN113544554A (zh) * 2019-03-07 2021-10-22 富士胶片株式会社 偏振元件及图像显示装置
JPWO2020179873A1 (ja) * 2019-03-07 2021-12-02 富士フイルム株式会社 共重合体、光配向膜用組成物、光配向膜、光学異方性素子および偏光素子
JPWO2020179864A1 (ja) * 2019-03-07 2020-09-10
WO2020179864A1 (ja) * 2019-03-07 2020-09-10 富士フイルム株式会社 偏光素子および画像表示装置
WO2020241642A1 (ja) * 2019-05-27 2020-12-03 日産化学株式会社 硬化膜形成組成物、配向材および位相差材
JP2021031614A (ja) * 2019-08-27 2021-03-01 富士フイルム株式会社 光配向性重合体の製造方法
JP7148466B2 (ja) 2019-08-27 2022-10-05 富士フイルム株式会社 光配向性重合体の製造方法
JPWO2021060338A1 (ja) * 2019-09-26 2021-04-01
WO2021060338A1 (ja) * 2019-09-26 2021-04-01 富士フイルム株式会社 光配向性重合体、光配向膜および光学積層体
JP7295259B2 (ja) 2019-09-26 2023-06-20 富士フイルム株式会社 光配向性重合体、光配向膜および光学積層体
JPWO2021166619A1 (ja) * 2020-02-20 2021-08-26
WO2021166619A1 (ja) * 2020-02-20 2021-08-26 富士フイルム株式会社 光学積層体、偏光板および画像表示装置
JP7385729B2 (ja) 2020-02-20 2023-11-22 富士フイルム株式会社 光学積層体、偏光板および画像表示装置

Also Published As

Publication number Publication date
JPWO2018173727A1 (ja) 2019-11-07
US20200004087A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2018173727A1 (ja) 光配向性共重合体、光配向膜および光学積層体
JP6987883B2 (ja) 光配向性共重合体、光配向膜および光学積層体
JP7033198B2 (ja) 光配向性共重合体、光配向膜および光学積層体
CN110891945B (zh) 聚合性液晶化合物、聚合性液晶组合物、光学各向异性膜、光学膜、偏振片及图像显示装置
JP6837550B2 (ja) 光配向性共重合体、光配向膜、光学積層体および画像表示装置
CN110891946B (zh) 聚合性液晶化合物、聚合性液晶组合物、光学各向异性膜、光学膜、偏振片及图像显示装置
CN110235034B (zh) 液晶组合物、光学各向异性层、光学层叠体及图像显示装置
JP7086210B2 (ja) 積層体および画像表示装置
JPWO2017057545A1 (ja) 光学フィルム、偏光板および画像表示装置
JP7228049B2 (ja) 光配向性ポリマー、バインダー組成物、バインダー層、光学積層体、光学積層体の製造方法、画像表示装置
JP6976336B2 (ja) 液晶組成物、光吸収異方性膜、積層体および画像表示装置
WO2019220970A1 (ja) 光配向性共重合体、光配向膜および光学積層体
WO2019082960A1 (ja) 高分子化合物、液晶組成物、位相差層、光学フィルム、偏光板および画像表示装置
WO2020175620A1 (ja) 光配向膜用組成物、光配向膜、積層体
WO2020116174A1 (ja) 光学積層体および偏光板
JP2013033128A (ja) 光学フィルム
JP7128899B2 (ja) 高分子化合物、液晶組成物、位相差層、光学フィルム、偏光板、および、画像表示装置
JP7295259B2 (ja) 光配向性重合体、光配向膜および光学積層体
WO2021166619A1 (ja) 光学積層体、偏光板および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770839

Country of ref document: EP

Kind code of ref document: A1