WO2020116174A1 - 光学積層体および偏光板 - Google Patents

光学積層体および偏光板 Download PDF

Info

Publication number
WO2020116174A1
WO2020116174A1 PCT/JP2019/045540 JP2019045540W WO2020116174A1 WO 2020116174 A1 WO2020116174 A1 WO 2020116174A1 JP 2019045540 W JP2019045540 W JP 2019045540W WO 2020116174 A1 WO2020116174 A1 WO 2020116174A1
Authority
WO
WIPO (PCT)
Prior art keywords
photo
group
alignment film
mixed layer
layer
Prior art date
Application number
PCT/JP2019/045540
Other languages
English (en)
French (fr)
Inventor
美帆 朝日
一茂 中川
匡広 渥美
西川 秀幸
寛 野副
考浩 加藤
隆史 飯泉
邦浩 加瀬澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020116174A1 publication Critical patent/WO2020116174A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an optical laminate and a polarizing plate.
  • Optical films such as an optical compensation sheet and a retardation film are used in various image display devices from the viewpoints of eliminating image coloring and enlarging a viewing angle.
  • a stretched birefringent film has been used as the optical film, but in recent years, it has been proposed to use an optically anisotropic layer using a liquid crystalline compound instead of the stretched birefringent film.
  • optically anisotropic layer is provided with an alignment film on a support for forming the optically anisotropic layer in order to align the liquid crystal compound, and as the alignment film, rubbing is performed.
  • a photo-alignment film that has been subjected to a photo-alignment treatment instead of the treatment.
  • Patent Document 1 discloses a composition for a photo-alignment film containing a polymer A having a constitutional unit a1 containing a cinnamate group and a low molecular weight compound B having a cinnamate group and having a smaller molecular weight than the polymer A.
  • the object is described ([Claim 1]) and has a support, a photo-alignment film prepared by using the composition for photo-alignment film, and an optically anisotropic layer containing a liquid crystalline compound in this order.
  • An optical laminate is described ([Claim 9]), and an embodiment in which the polymer A has a structural unit a2 containing a crosslinkable group such as an epoxy group and an oxetanyl group is described ([0024]. ]-[0028]).
  • the inventors of the present invention have studied the optical laminated body described in Patent Document 1, and found that the optical alignment film is formed when peeled at the interface between the support and the optical alignment film from the viewpoints of thinning and transfer. It was clarified that peeling may be difficult depending on the type of the crosslinkable group of the polymer used.
  • the present invention has a support, a photo-alignment film, and an optically anisotropic layer in this order, and an optical layered body that facilitates peeling at the interface between the support and the photo-alignment film, and the use thereof.
  • An object is to provide a polarizing plate manufactured by the above method.
  • the present inventors provided a mixed layer of both the support and the photo-alignment film, and mixed the both between the photo-alignment film and the optically anisotropic layer. It was found that peeling at the interface between the support and the photo-alignment film can be facilitated by providing layers and adjusting the thickness of these mixed layers to a predetermined relationship, and completed the present invention. That is, the present inventors have found that the above-mentioned problems can be achieved by the following configurations.
  • An optical laminate having a support, a photo-alignment film and an optically anisotropic layer in this order, Between the support and the photo-alignment film, a first mixed layer in which the constituent material of the support and the constituent material of the photo-alignment film are mixed, Between the photo-alignment film and the optically anisotropic layer, a second mixed layer in which the constituent material of the photo-alignment film and the constituent material of the optically anisotropic layer are mixed is provided, An optical laminate in which the film thickness X1 of the first mixed layer and the film thickness X2 of the second mixed layer satisfy the following formula (I).
  • the photo-alignment film is a film formed using the photo-alignment film composition containing a photo-alignment copolymer, Copolymer having a photoalignable copolymer having a repeating unit A containing a photoalignable group represented by the following formula (A) and a repeating unit B containing a crosslinkable group represented by the following formula (B)
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent.
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 represents a hydrogen atom, a methyl group or an ethyl group.
  • L 1 in formula (A) and L 2 in formula (B) each independently represent a divalent linking group.
  • the peel strength A between the optically anisotropic layer and the second mixed layer and the peel strength B between the second mixed layer and the photo-alignment film are both peeling between the photo-alignment film and the first mixed layer.
  • the present invention has an optical laminate having a support, a photo-alignment film and an optically anisotropic layer in this order, which facilitates peeling at the interface between the support and the photo-alignment film, and A polarizing plate manufactured using this can be provided.
  • FIG. 1 is a schematic sectional view showing an example of the optical layered body of the present invention.
  • FIG. 2 is a schematic sectional view showing an example of the polarizing plate of the present invention.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • a substance corresponding to each component may be used alone or in combination of two or more.
  • the content of the component refers to the total content of the substances used in combination, unless otherwise specified.
  • the optical layered body of the present invention is an optical layered body having a support, a photo-alignment film and an optically anisotropic layer in this order. Further, the optical layered body of the present invention has a first mixed layer in which the constituent material of the support and the constituent material of the photo-alignment film are mixed between the support and the photo-alignment film, and the optical alignment film and the optical alignment film are provided. A second mixed layer in which the constituent material of the photo-alignment film and the constituent material of the optically anisotropic layer are mixed is provided between the anisotropic layer, and the film thickness X1 of the first mixed layer and the second mixed layer. And the film thickness X2 thereof satisfy the following formula (I). X1 ⁇ X2 (I)
  • the first mixed layer is a region in which the components of the non-crosslinkable support and the components of the crosslinkable photo-alignment film are mixed
  • the second mixed layer is an optical region that is crosslinkable. Since this is a region where the components of the anisotropic layer and the photo-alignment film are mixed, the cross-linking density in the mixed layer is higher in the second mixed layer, and when the mixed layer has the same thickness, the anchoring effect is obtained. Is higher in the second mixed layer.
  • FIG. 1 is a schematic sectional view showing an example of the optical layered body of the present invention.
  • FIG. 1 is a schematic diagram, and the relationship of the thickness of each layer other than the first mixed layer and the second mixed layer does not necessarily match the actual one.
  • the optical layered body 10 shown in FIG. 1 has a support 11, a first mixed layer 12 having a film thickness X1, a photo-alignment film 13, a second mixed layer 14 having a film thickness X2, and an optically anisotropic layer 15 in this order. ..
  • the support, the first mixed layer, the photo-alignment film, the second mixed layer and the optically anisotropic layer that the optical layered body of the present invention has will be described in detail below.
  • the support included in the optical layered body of the present invention is not particularly limited, and for example, a polymer film or the like is suitable.
  • the polymer constituting the polymer film include a cellulose-based polymer; an acrylic-based polymer having an acrylic ester polymer such as polymethyl methacrylate and a lactone ring-containing polymer; a thermoplastic norbornene-based polymer; a polycarbonate-based polymer.
  • Polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate; Styrene-based polymers such as polystyrene and acrylonitrile-styrene copolymer (AS resin); Polyolefin-based polymers such as polyethylene, polypropylene and ethylene-propylene copolymers; Vinyl chloride -Based polymers; amide-based polymers such as nylon and aromatic polyamide; imide-based polymers; sulfone-based polymers; polyether sulfone-based polymers; polyether ether ketone-based polymers; polyphenylene sulfide-based polymers; vinylidene chloride-based polymers; vinyl alcohol-based polymers; Examples thereof include vinyl butyral-based polymers; arylate-based polymers; polyoxymethylene-based polymers; epoxy-based polymers; and polymers obtained by mixing these polymers.
  • AS resin acrylonitrile-styrene copolymer
  • a cellulose-based polymer typified by triacetyl cellulose (hereinafter, also referred to as “cellulose acylate”) can be preferably used. It is also preferable to use an acrylic polymer from the viewpoint of processability and optical performance. Examples of the acrylic polymer include polymethyl methacrylate and the lactone ring-containing polymers described in paragraphs [0017] to [0107] of JP 2009-98605 A.
  • the thickness of the support is not particularly limited, but is preferably 5 to 100 ⁇ m, and more preferably 20 to 90 ⁇ m from the viewpoint of handling when manufacturing the polarizing plate of the present invention described later. Is more preferable.
  • the first mixed layer of the laminate of the present invention has a first mixed layer in which the constituent material of the support and the constituent material of the photo-alignment film are mixed between the support described above and the photo-alignment film described later. ..
  • an optical layered body after forming a photo-alignment film and an optically anisotropic layer, which will be described later, on the above-mentioned support is etched by an Ar-GCIB (gas cluster ion beam) gun while the time-of-flight secondary ion mass Analyze the distribution in the film thickness direction of the fragment ions derived from the components of the optically anisotropic layer, the fragment ions derived from the components of the photo-alignment film, and the fragment ions derived from the components of the support with an analyzer (TOF-SIMS) To do.
  • Ar-GCIB gas cluster ion beam
  • the first mixed layer is a portion where both the fragment ions derived from the component of the support and the fragment ion derived from the component of the alignment film are detected
  • the second mixed layer is the fragment ion derived from the component of the alignment film and the optical component. It can be measured as the amount of both the fragment ions derived from the components of the anisotropic layer detected.
  • TEM transmission electron microscope
  • the film thickness (X1) of the first mixed layer is the peel strength A between the optically anisotropic layer and the second mixed layer and the peel strength B between the second mixed layer and the photo-alignment film. It is preferably 100 nm or less for the reason that the peeling strength C between the photo-alignment film and the first mixed layer is made small, and as a result, peeling at the interface between the support and the photo-alignment film becomes easy, It is more preferably 5 to 50 nm.
  • the ratio of the constituent material of the support described above in the first mixed layer to the constituent material of the photo-alignment film described later is preferably 1/99 to 99/1, and is preferably 10/90. More preferably, it is from 90/10.
  • the method for forming the first mixed layer is not particularly limited, but at the time of forming the photo-alignment film described below, the composition for forming the photo-alignment film described below is applied to the support described above to simultaneously form the photo-alignment film.
  • the method of forming is preferred.
  • the thickness of the first mixed layer can be adjusted by, for example, selecting the type of organic solvent used in the composition for forming a photo-alignment film described below for the support.
  • the photo-alignment film included in the optical layered body of the present invention is not particularly limited, and polymer materials such as polyamide compounds and polyimide compounds described in paragraphs [0024] to [0043] of WO 2005/096041; JP 2012 A liquid crystal alignment film formed of a liquid crystal alignment agent having a photoalignable group described in Japanese Patent Publication No. 155308; a product name LPP-JP265CP manufactured by Rolic Technologies, Inc. can be used.
  • the above-mentioned photo-alignment film is excellent in the alignment property of the liquid crystal compound (hereinafter also abbreviated as “liquid crystal alignment property”), and the film thickness X1 of the first mixed layer and the film thickness of the second mixed layer.
  • X2 easily satisfies the above formula (I) and can be stably peeled at the interface between the support and the photo-alignment film. Therefore, the composition for photo-alignment film containing the photo-alignment copolymer (hereinafter, Formally referred to as "composition for photo-alignment film of the present invention”), wherein the photo-alignable copolymer has a photo-alignable group represented by the following formula (A).
  • the film is preferably a copolymer having a repeating unit A containing and a repeating unit B containing a crosslinkable group represented by the following formula (B).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent.
  • R 2 , R 3 , R 4 , R 5 and R 6 two adjacent groups may be bonded to each other to form a ring.
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 represents a hydrogen atom, a methyl group or an ethyl group.
  • L 1 in the above formula (A) and L 2 in the above formula (B) each independently represent a divalent linking group.
  • R 2 , R 3 , R 4 , R 5 and R 6 in the above formula (A) will be described.
  • R 2 , R 3 , R 4 , R 5 and R 6 in the above formula (A) may be hydrogen atoms instead of substituents.
  • the substituent represented by R 2 , R 3 , R 4 , R 5 and R 6 in the formula (A) is an oxetanyl group or an oxetanyl group from the viewpoint of distinguishing it from the repeating unit B represented by the formula (B).
  • Substituents other than the substituents contained therein are preferable, and since the photo-alignment group easily interacts with the liquid crystal compound and the liquid crystal alignment is improved, a halogen atom and a carbon number of 1 to 20 are independently provided.
  • a linear, branched or cyclic alkyl group, a linear halogenated alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and 6 to 20 is preferably an aryloxy group, a cyano group, an amino group, or a group represented by the following formula (1).
  • * represents a bonding position to the benzene ring in the above formula (A)
  • R 9 represents a monovalent organic group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and among them, a fluorine atom and a chlorine atom are preferable.
  • the linear alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, specifically, for example, methyl group, ethyl group. Group, n-propyl group and the like.
  • the branched alkyl group is preferably an alkyl group having 3 to 6 carbon atoms, and specific examples thereof include an isopropyl group and a tert-butyl group.
  • the cyclic alkyl group is preferably an alkyl group having 3 to 6 carbon atoms, and specific examples thereof include a cyclopropyl group, a cyclopentyl group and a cyclohexyl group.
  • the linear halogenated alkyl group having 1 to 20 carbon atoms is preferably a fluoroalkyl group having 1 to 4 carbon atoms, and specific examples thereof include a trifluoromethyl group, a perfluoroethyl group and a perfluoropropyl group. , A perfluorobutyl group, and the like, among which a trifluoromethyl group is preferable.
  • an alkoxy group having 1 to 20 carbon atoms an alkoxy group having 1 to 18 carbon atoms is preferable, an alkoxy group having 6 to 18 carbon atoms is more preferable, and an alkoxy group having 6 to 14 carbon atoms is further preferable.
  • Preferred examples thereof include groups, and among them, an n-hexyloxy group, an n-octyloxy group, an n-decyloxy group, an n-dodecyloxy group and an n-tetradecyloxy group are more preferred.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, an ⁇ -methylphenyl group and a naphthyl group. Among them, a phenyl group is preferable. preferable.
  • the aryloxy group having 6 to 20 carbon atoms is preferably an aryloxy group having 6 to 12 carbon atoms, and specific examples thereof include a phenyloxy group and a 2-naphthyloxy group. Is preferred.
  • amino group examples include a primary amino group (—NH 2 ); a secondary amino group such as a methylamino group; a dimethylamino group, a diethylamino group, a dibenzylamino group, a nitrogen-containing heterocyclic compound (eg, pyrrolidine , Piperidine, piperazine, etc.) and a tertiary amino group such as a group having a nitrogen atom as a bond.
  • a primary amino group —NH 2
  • secondary amino group such as a methylamino group
  • a dimethylamino group a diethylamino group
  • a dibenzylamino group examples include a nitrogen-containing heterocyclic compound (eg, pyrrolidine , Piperidine, piperazine, etc.) and a tertiary amino group such as a group having a nitrogen atom as a bond.
  • a nitrogen-containing heterocyclic compound eg, pyrrolidine , Piperidine
  • examples of the monovalent organic group represented by R 9 in the above formula (1) include a linear or cyclic alkyl group having 1 to 20 carbon atoms. ..
  • the linear alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, and an n-propyl group. Among them, a methyl group or an ethyl group is preferable. preferable.
  • the cyclic alkyl group is preferably an alkyl group having a carbon number of 3 to 6, and specific examples thereof include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and among them, a cyclohexyl group is preferable.
  • the monovalent organic group represented by R 9 in the above formula (1) may be a combination of a plurality of the above linear alkyl groups and cyclic alkyl groups directly or through a single bond. Good.
  • R 2 , R 3 , R 4 , R 5 and R in the above formula (A) are preferred because the photo-alignment group easily interacts with the liquid crystal compound and the liquid crystal alignment is improved. It is preferable that at least R 4 of the above 6 represents the above-mentioned substituent, and further, the linearity of the obtained photo-alignable copolymer is improved, the photo-alignable copolymer easily interacts with the liquid crystalline compound, and the liquid crystal aligning property is improved. It is more preferable that all of R 2 , R 3 , R 5 and R 6 represent a hydrogen atom for the reason that
  • R 4 in the above formula (A) is preferably an electron-donating substituent because the reaction efficiency is improved when the resulting photo-alignment film is irradiated with light.
  • the electron-donating substituent refers to a substituent having a Hammett value (Hammett substituent constant ⁇ p) of 0 or less.
  • an alkyl group examples thereof include halogenated alkyl groups and alkoxy groups.
  • an alkoxy group is preferable, an alkoxy group having 4 to 18 carbon atoms is more preferable, and an alkoxy group having 6 to 14 carbon atoms is preferable because the orientation of the photo-alignment film is good. Is more preferable.
  • a photo-alignment group is likely to interact with a liquid crystal compound, and a liquid crystal compound has good orientation, and therefore, a linear chain having 1 to 10 carbon atoms which may have a substituent is preferable.
  • -, branched- or cyclic alkylene groups, optionally substituted arylene groups having 6 to 12 carbon atoms, ether groups (-O-), carbonyl groups (-C( O)-), and It is preferably a divalent linking group obtained by combining at least two groups selected from the group consisting of an imino group (—NH—) which may have a substituent.
  • the substituent which the alkylene group, the arylene group and the imino group may have, for example, a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a cyano group, a carboxy group, an alkoxycarbonyl group. And hydroxyl groups.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and among them, a fluorine atom and a chlorine atom are preferable.
  • alkyl group for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (eg, methyl group, ethyl group, propyl group, isopropyl group , N-butyl group, isobutyl group, sec-butyl group, t-butyl group, cyclohexyl group, etc.), more preferably an alkyl group having 1 to 4 carbon atoms, and a methyl group or an ethyl group. Is particularly preferable.
  • an alkyl group having 1 to 8 carbon atoms eg, methyl group, ethyl group, propyl group, isopropyl group , N-butyl group, isobutyl group, sec-butyl group, t-butyl group, cyclohexyl group, etc.
  • an alkyl group having 1 to 4 carbon atoms
  • an alkoxy group having 1 to 18 carbon atoms is preferable, and an alkoxy group having 1 to 8 carbon atoms (eg, methoxy group, ethoxy group, n-butoxy group, methoxyethoxy group, etc.) is more preferable, and carbon group It is more preferably an alkoxy group of the formula 1 to 4, and particularly preferably a methoxy group or an ethoxy group.
  • the aryl group include an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, an ⁇ -methylphenyl group and a naphthyl group, and among them, a phenyl group is preferable.
  • Examples of the aryloxy group include phenoxy, naphthoxy, imidazoyloxy, benzimidazoyloxy, pyridin-4-yloxy, pyrimidinyloxy, quinazolinyloxy, purinyloxy, thiophen-3-yloxy and the like.
  • Examples of the alkoxycarbonyl group include methoxycarbonyl and ethoxycarbonyl.
  • linear alkylene group having 1 to 10 carbon atoms specific examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, Examples thereof include a hexylene group and a decylene group.
  • branched alkylene group include a dimethylmethylene group, a methylethylene group, a 2,2-dimethylpropylene group, a 2-ethyl-2-methylpropylene group and the like.
  • cyclic alkylene group examples include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclooctylene group, a cyclodecylene group, an adamantane-diyl group and a norbornane-diyl group.
  • arylene group having 6 to 12 carbon atoms include a phenylene group, a xylylene group, a biphenylene group, a naphthylene group and a 2,2′-methylenebisphenyl group.
  • the phenylene group is preferable. ..
  • repeating unit A containing a photoalignable group represented by the above formula (A) include repeating units A-1 to A-116 shown below.
  • Me represents a methyl group.
  • the “1,4-cyclohexyl group” contained in the divalent linking group may be either a cis form or a trans form, but is preferably a trans form.
  • repeating unit B containing a photoalignable group represented by the above formula (B) include repeating units B-1 to B-14 shown below.
  • the content a of the repeating unit A described above and the content b of the repeating unit B described above satisfy the following formula (2) in a mass ratio. It is more preferable to satisfy the formula (3), and it is further preferable to satisfy the following formula (4). 0.2 ⁇ a/(a+b) ⁇ 0.8 (2) 0.2 ⁇ a/(a+b) ⁇ 0.6 (3) 0.3 ⁇ a/(a+b) ⁇ 0.5 (4)
  • the above-mentioned photo-alignment copolymer is a cross-link between the liquid crystal compound or the like contained in the optically-anisotropic layer and the photo-alignment copolymer of the photo-alignment film when forming the optically anisotropic layer.
  • the support is peeled off at the interface between the photo-alignment film and the support and transferred to another substrate.
  • the repeating unit (C) further contains a group having an ethylenically unsaturated double bond.
  • Examples of the monomer (radical-polymerizable monomer) forming the repeating unit (C) include acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylamide compounds, acrylonitrile, maleic anhydride, styrene compounds. , Vinyl compounds and the like.
  • the method for synthesizing the above-mentioned photo-alignable copolymer is not particularly limited, and examples thereof include a monomer forming the repeating unit A described above, a monomer forming the repeating unit B described above, and a monomer forming an arbitrary repeating unit C. Can be mixed and polymerized by using a radical polymerization initiator in an organic solvent.
  • the weight average molecular weight (Mw) of the above-mentioned photo-alignable copolymer is preferably 10,000 to 500,000, and more preferably 30,000 to 200,000 for the reason that the alignment property of the photo-alignment film is improved.
  • the weight average molecular weight and the number average molecular weight in the present invention are values measured by a gel permeation chromatography (GPC) method under the following conditions.
  • the content of the above-mentioned photo-alignable copolymer in the composition for a photo-alignment film of the present invention is not particularly limited, but when it contains an organic solvent described later, it is 0.1 to 50 parts by mass with respect to 100 parts by mass of the organic solvent.
  • the amount is preferably 0.5 part by weight, more preferably 0.5 to 10 parts by weight.
  • the composition for a photo-alignment film of the present invention preferably contains an organic solvent from the viewpoint of workability for producing the photo-alignment film.
  • organic solvent include ketones (eg, acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, etc.), ethers (eg, dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons.
  • hexane alicyclic hydrocarbons (eg, cyclohexane), aromatic hydrocarbons (eg, toluene, xylene, trimethylbenzene etc.), halogenated carbons (eg, dichloromethane, dichloroethane, diene) Chlorobenzene, chlorotoluene etc.), esters (eg methyl acetate, ethyl acetate, butyl acetate etc.), water, alcohols (eg ethanol, isopropanol, butanol, cyclohexanol etc.), cellosolves (eg methyl cellosolve, ethyl).
  • alicyclic hydrocarbons eg, cyclohexane
  • aromatic hydrocarbons eg, toluene, xylene, trimethylbenzene etc.
  • halogenated carbons eg, dichloromethane, dichloroethane, diene
  • Cellosolve, etc. may be used alone or in combination of two or more. You may use together.
  • sulfoxides eg, dimethylsulfoxide, etc.
  • amides eg, dimethylformamide, dimethylacetamide, etc.
  • composition for a photo-alignment film of the present invention contains an acid, or an acid generator that generates an acid by the action of heat or light, because it is easier to peel at the interface between the support and the photo-alignment film. It is preferably contained.
  • the acid include p-toluenesulfonic acid, 10-camphorsulfonic acid, and perfluorobutanesulfonic acid.
  • thermo acid generator examples include isopropyl-p-toluenesulfonate, cyclohexyl-p-toluenesulfonate, and Sanshin, which is an aromatic sulfonium salt compound. Examples include the San-Aid SI series manufactured by Kagaku Kogyo.
  • photoacid generator specifically, for example, a sulfonium salt compound, an iodonium salt compound, an oxime sulfonate compound and the like are preferable, and PI2074 manufactured by Rhodea, IRGACURE250 manufactured by BASF. , IRSFACURE PAG103, 108, 121, 203 manufactured by BASF.
  • the acid or the acid generator may be used alone or in combination of two or more.
  • the structure of the thermal acid generator is not particularly limited as long as it is a compound that decomposes by heat to generate an acid, but it is usually composed of an anion obtained by removing hydrogen ion from an acid, and a cation.
  • Specific examples of the anion include the following.
  • the cation a known cation which is substantially decomposed by heat can be used.
  • the cation preferably has a skeleton in which thermal decomposition starts at 30 to 200° C., and more preferably has a skeleton in which thermal decomposition starts at 40 to 150° C.
  • a sulfonium cation represented by the following formula (F) or an iodonium cation represented by the following formula (G) is preferable from the viewpoint of handleability.
  • R 20 to R 24 each independently represent a hydrocarbon group which may have a substituent.
  • the hydrocarbon group an alkyl group (eg, methyl group, ethyl group) or an aryl group (eg, phenyl group) is preferable.
  • the kind of the substituent is not particularly limited, and examples thereof include an alkyl group, an aryl group, a hydroxy group, an amino group, a carboxy group, a sulfonamide group, an N-sulfonylamide group, an acyl group, an acyloxy group, an alkoxy group, an alkyl group and a halogen. Examples thereof include an atom, an alkoxycarbonyl group, an alkoxycarbonyloxy group, a carbonic acid ester group, and a cyano group. Specific examples of such cations include the following.
  • thermal acid generator examples include the following.
  • composition for photo-alignment film contains a photo-acid generator that generates a specific acid
  • a light irradiation treatment is performed to generate a specific acid
  • An alignment layer containing a specific acid can be formed.
  • the composition for a photo-alignment film contains an acid generator such as the thermal acid generator and the photo-acid generator described above, the composition for a photo-alignment film further contains a cationic polymerization inhibitor and/or a radical polymerization inhibitor. You may stay.
  • the acid generator may be cleaved to generate a specific acid.
  • the polymer for the photo-alignment film contained in the composition for the photo-alignment film has a cationically polymerizable group, due to the specific acid generated during the storage of the composition for the photo-alignment film, the reaction proceeds, The storage stability of the composition for photo-alignment film may deteriorate.
  • the progress of the above reaction can be suppressed.
  • radicals may be generated when the acid generator is cleaved.
  • the reaction proceeds due to the radicals generated during the storage of the composition for the photo-alignment film as described above, and The storage stability of the composition for an alignment film may deteriorate. Therefore, by adding a radical polymerization inhibitor to the composition for a photo-alignment film, the progress of the above-mentioned reaction can be suppressed.
  • the content of the acid or the acid generator is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the photo-alignable copolymer described above. It is more preferably 1 to 10 parts by mass.
  • the composition for a photo-alignment film of the present invention may contain components other than those described above, and examples thereof include a crosslinking catalyst, an adhesion improver, a leveling agent, a surfactant and a plasticizer.
  • a crosslinking agent having a heat-crosslinkable group that causes a curing reaction by the action of heat, for the reason that the second mixed layer described below is easily formed.
  • Examples of such a cross-linking agent include compounds having two or more epoxy groups or oxetanyl groups in the molecule, blocked isocyanate compounds (compounds having a protected isocyanato group), and alkoxymethyl group-containing compounds.
  • the photo-alignment film can be produced by a conventionally known production method except that the above-described photo-alignment film composition of the present invention is used.
  • the above-mentioned photo-alignment film composition of the present invention can be formed on a support surface. It can be produced by a manufacturing method including a coating step of coating and a light irradiation step of irradiating the coating film of the composition for a photo-alignment film with polarized light or non-polarized light from an oblique direction with respect to the coating film surface.
  • the coating method in the coating step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include spin coating, die coating, gravure coating, flexographic printing and inkjet printing.
  • the polarized light with which the coating film of the composition for a photo-alignment film is irradiated is not particularly limited, and examples thereof include linearly polarized light, circularly polarized light, and elliptically polarized light. Of these, linearly polarized light is preferable.
  • the “diagonal direction” of irradiating non-polarized light is not particularly limited as long as it is a direction inclined at a polar angle ⁇ (0 ⁇ 90°) with respect to the normal line direction of the coating film surface, and may be according to the purpose. However, ⁇ is preferably 20 to 80°.
  • the wavelength of polarized light or non-polarized light is not particularly limited as long as it can impart the alignment control ability to the liquid crystalline molecules to the coating film of the composition for photo-alignment film, and examples thereof include ultraviolet rays, near ultraviolet rays, and visible rays. And so on. Of these, near-ultraviolet rays of 250 nm to 450 nm are particularly preferable.
  • the light source for irradiating polarized light or non-polarized light include a xenon lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp and the like.
  • the wavelength range to be irradiated can be limited.
  • linearly polarized light can be obtained by using a polarizing filter or a polarizing prism for the light from these light sources.
  • the integrated light amount of polarized light or non-polarized light is not particularly limited as long as it can give the coating film of the composition for a photo-alignment film the ability to control the alignment of liquid crystal molecules, and is not particularly limited, but 1 to 300 mJ /Cm 2 is preferable and 5 to 100 mJ/cm 2 is more preferable.
  • the polarized or non-polarized illuminance is not particularly limited as long as it can give the coating film of the composition for a photo-alignment film the ability to control the alignment of liquid crystal molecules, but it is 0.1 to 300 mW/cm 2. It is preferably 1 to 100 mW/cm 2 .
  • the film thickness of the photo-alignment film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 to 1000 nm, more preferably 10 to 700 nm.
  • the constituent material of the photo-alignment film and the constituent material of the optically-anisotropic layer are mixed between the above-mentioned photo-alignment film and the later-described optically anisotropic layer. It has a second mixed layer.
  • the film thickness (X2) of the second mixed layer is 100 nm or less because it is possible to suppress deterioration of the liquid crystal alignment property of the optically anisotropic layer due to a decrease in the alignment control force of the photo-alignment film surface.
  • the peel strength A between the optically anisotropic layer and the second mixed layer, the peel strength B between the second mixed layer and the photo-alignment film, and the peel strength C between the photo-alignment film and the first mixed layer are both. From the reason that it can be increased, it is more preferably 10 to 60 nm.
  • the film thickness X2 of the second mixed layer with respect to the film thickness X1 of the above-mentioned first mixed layer is preferably 1.0 to 5.0 and 1.0 It is more preferably from 2.0 to 2.0.
  • the ratio of the constituent material of the above-mentioned photo-alignment film in the second mixed layer to the constituent material of the later-described optically anisotropic layer is preferably 1/99 to 99/1, It is more preferably 10/90 to 90/10.
  • the method for forming the second mixed layer is not particularly limited, but when the optically anisotropic layer described below is formed, by applying the composition for forming an optically anisotropic layer described below on the above-mentioned photo-alignment film, A method in which it is formed simultaneously with the optically anisotropic layer is preferable.
  • the thickness of the second mixed layer is adjusted by, for example, selecting the type of organic solvent used in the composition for forming an optically anisotropic layer described later, with respect to the material of the photo-alignment film and the crosslinking density. can do.
  • optical anisotropic layer The optical anisotropic layer of the optical layered body of the present invention is not particularly limited, and a conventionally known optical anisotropic layer can be appropriately adopted and used.
  • Such an optically anisotropic layer is a layer obtained by curing a composition containing a liquid crystalline compound having a polymerizable group (hereinafter, also abbreviated as “optical anisotropic layer forming composition”). It is preferable that it has a single layer structure or a structure (laminated body) in which a plurality of layers are laminated.
  • the liquid crystal compound and optional additives contained in the composition for forming an optically anisotropic layer will be described below.
  • the liquid crystal compound contained in the composition for forming an optically anisotropic layer is a liquid crystal compound having a polymerizable group.
  • liquid crystal compounds can be classified into a rod type and a disc type depending on their shapes. Furthermore, there are low molecular weight and high molecular weight types respectively.
  • a polymer generally refers to a polymer having a degree of polymerization of 100 or more (polymer physics/phase transition dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but it is preferable to use a rod-shaped liquid crystal compound or a discotic liquid crystal compound, and it is more preferable to use a rod-shaped liquid crystal compound.
  • a liquid crystalline compound having a polymerizable group is used for immobilizing the above-mentioned liquid crystalline compound, but it is more preferable that the liquid crystalline compound has two or more polymerizable groups in one molecule.
  • the liquid crystalline compound has two or more polymerizable groups in one molecule.
  • after the liquid crystal compound is fixed by polymerization it is no longer necessary to exhibit liquid crystallinity.
  • the type of the polymerizable group is not particularly limited, a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, a (meth)acryloyl group, a vinyl group, a styryl group, an allyl group and the like are preferably mentioned, and a (meth)acryloyl group is more preferable.
  • the (meth)acryloyl group is a notation that means a methacryloyl group or an acryloyl group.
  • rod-like liquid crystalline compound for example, those described in claim 1 of JP-A-11-513019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used.
  • tick liquid crystalline compound for example, those described in paragraphs [0020] to [0067] of JP2007-108732A and paragraphs [0013] to [0108] of JP2010-244038A are preferably used.
  • the present invention is not limited to these.
  • a reverse wavelength dispersive liquid crystal compound can be used as the liquid crystal compound.
  • a liquid crystal compound having “reverse wavelength dispersion” means an in-plane retardation (Re) value at a specific wavelength (visible light range) of a retardation film produced using the same. In this case, the Re value becomes equal or higher as the measurement wavelength increases.
  • the liquid crystal compound having a reverse wavelength dispersive property is not particularly limited as long as it can form a film having a reverse wavelength dispersive property as described above.
  • the compound represented by the general formula (I) described in JP-A 2008-297210 can be used.
  • the composition for forming the optically anisotropic layer may contain components other than the above-mentioned liquid crystalline compound.
  • the composition for forming an optically anisotropic layer may contain a polymerization initiator.
  • the polymerization initiator used is selected according to the type of polymerization reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
  • examples of the photopolymerization initiator include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, combinations of triarylimidazole dimers and p-aminophenyl ketones, and the like. Be done.
  • the amount of the polymerization initiator used is preferably 0.01 to 20% by mass, and more preferably 0.5 to 5% by mass, based on the total solid content of the composition.
  • the composition for forming an optically anisotropic layer may contain a polymerizable monomer from the viewpoint of uniformity of the coating film and strength of the film.
  • the polymerizable monomer include radically polymerizable or cationically polymerizable compounds.
  • a polyfunctional radically polymerizable monomer is preferable, and one that is copolymerizable with the above-mentioned polymerizable group-containing liquid crystalline compound is preferable.
  • the content of the polymerizable monomer is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the liquid crystal compound.
  • composition for forming an optically anisotropic layer may contain a surfactant from the viewpoint of the uniformity of the coating film and the strength of the film.
  • the surfactant include conventionally known compounds, and fluorine compounds are particularly preferable. Specific examples include the compounds described in paragraphs [0028] to [0056] of JP 2001-330725 A, and the compounds described in paragraphs [0069] to [0126] of JP 2005062673 A. Be done.
  • composition for forming an optically anisotropic layer may contain an organic solvent.
  • organic solvent the same ones as described in the above-mentioned composition for photo-alignment film of the present invention can be mentioned.
  • the composition for forming an optically anisotropic layer includes a polarizer interface-side vertical aligning agent, and a vertical alignment promoter such as an air interface-side vertical aligning agent, and a polarizer interface-side horizontal aligning agent, and an air.
  • Various alignment agents such as a horizontal alignment accelerator such as an interface side horizontal alignment agent may be contained.
  • the composition for forming an optically anisotropic layer may contain an adhesion improver, a plasticizer, a polymer and the like in addition to the above components.
  • the method for forming an optically anisotropic layer using the composition for forming an optically anisotropic layer having such a component is not particularly limited, and for example, the optically anisotropic layer may be formed on the above-described photo-alignment film of the present invention. It can be formed by applying the forming composition to form a coating film, and subjecting the obtained coating film to a curing treatment (ultraviolet irradiation (light irradiation treatment) or heat treatment).
  • the composition for forming the optically anisotropic layer can be applied by a known method (for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method).
  • the thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • peeling strength A between the optically anisotropic layer and the second mixed layer and the second mixed layer are included because peeling at the interface between the support and the photo-alignment film becomes easier.
  • the peel strength B between the layer and the photo-alignment film is preferably larger than the peel strength C between the photo-alignment film and the first mixed layer.
  • the peel strength is measured in accordance with JIS Z0237 “Adhesive tape/adhesive sheet test method”.
  • the polarizing plate of the present invention is a polarizing plate having a polarizer and a laminate, wherein the laminate is obtained by peeling the support and the first mixed layer from the optical laminate of the present invention described above.
  • the polarizing plate of the present invention can be used as a circularly polarizing plate when the above-mentioned laminate (particularly the optically anisotropic layer) is a ⁇ /4 plate.
  • the “ ⁇ /4 plate” is a plate having a ⁇ /4 function, and specifically, a function of converting linearly polarized light of a certain specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). It is a plate having.
  • FIG. 2 is a schematic sectional view showing an example of the polarizing plate of the present invention. Note that FIG. 2 is a schematic diagram, and the relationship of the thickness of each layer does not always match the actual one.
  • the polarizing plate 20 shown in FIG. 2 is obtained by peeling the support 11 and the first mixed layer 12 from the optical laminate 10 shown in FIG. 1, and is obtained by the photo-alignment film 13, the second mixed layer 14, and the optically anisotropic layer. It has the laminated body which has 15 in this order, and the polarizer 21, and the polarizer 21 is provided on the optical alignment film 13 side via the adhesive layer or the adhesive layer 22.
  • the polarizer of the polarizing plate of the present invention is not particularly limited as long as it is a member having a function of converting light into specific linearly polarized light, and conventionally known absorption type polarizers and reflection type polarizers can be used. ..
  • absorption-type polarizer an iodine-based polarizer, a dye-based polarizer using a dichroic dye, a polyene-based polarizer, or the like is used.
  • Iodine-based polarizers and dye-based polarizers include coating-type polarizers and stretch-type polarizers, both of which can be applied.
  • Patent No. 5048120, Patent No. 5143918, Patent No. 5048120, and Patent Japanese Patent No. 4691205, Japanese Patent No. 4751481 and Japanese Patent No. 4751486 can be cited, and known techniques relating to these polarizers can also be preferably used.
  • the reflection-type polarizer As the reflection-type polarizer, a polarizer in which thin films having different birefringence are laminated, a wire grid-type polarizer, a polarizer in which a cholesteric liquid crystal having a selective reflection region and a 1 ⁇ 4 wavelength plate are combined, and the like are used.
  • a polyvinyl alcohol-based resin a polymer containing —CH 2 —CHOH— as a repeating unit is intended.
  • the thickness of the polarizer is not particularly limited, but is preferably 1 to 60 ⁇ m, more preferably 1 to 30 ⁇ m, and further preferably 2 to 20 ⁇ m.
  • the polarizing plate of the present invention is a laminate having a photo-alignment film, a second mixed layer and an optically anisotropic layer in this order, which is obtained by peeling the support and the first mixed layer from the above-mentioned optical laminated body of the present invention.
  • the above-mentioned polarizer can be laminated via an adhesive or an adhesive.
  • the pressure-sensitive adhesive or the adhesive is not particularly limited, but a curable adhesive of an epoxy compound containing no aromatic ring in the molecule as disclosed in JP-A-2004-245925, and JP-A-2008-174667.
  • Active energy ray-curable adhesives containing a photopolymerization initiator having a molar extinction coefficient of 400 or more at a wavelength of 360 to 450 nm of 400 or more and an ultraviolet curable compound as described in JP-A 2008-174667.
  • a (meth)acrylic compound having (a) two or more (meth)acryloyl groups in the molecule and (b) having a hydroxyl group in the molecule in 100 parts by mass of the total amount of the acrylic compound, and having a polymerizable double bond.
  • Examples thereof include an active energy ray-curable adhesive containing a (meth)acrylic compound having only one bond and (c) a phenol ethylene oxide modified acrylate or a nonylphenol ethylene oxide modified acrylate.
  • the display element used in the image display device is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, and a plasma display panel.
  • EL organic electroluminescence
  • a liquid crystal cell and an organic EL display panel are preferable, and a liquid crystal cell is more preferable.
  • the image display device is preferably a liquid crystal display device using a liquid crystal cell as a display element, an organic EL display device using an organic EL display panel as a display element, and more preferably a liquid crystal display device.
  • a liquid crystal display device which is an example of an image display device, is a liquid crystal display device including the above-described optical laminate or polarizing plate of the present invention and a liquid crystal cell.
  • the optical laminate or polarizing plate of the present invention it is preferable to use the optical laminate or polarizing plate of the present invention as the front polarizing plate.
  • the liquid crystal cell that constitutes the liquid crystal display device will be described in detail below.
  • the liquid crystal cell used in the liquid crystal display device is preferably a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, or a TN (Twisted Nematic). It is not limited to.
  • a TN mode liquid crystal cell rod-shaped liquid crystal molecules (rod-shaped liquid crystal compounds) are substantially horizontally aligned when no voltage is applied, and are further twisted and aligned at 60 to 120°.
  • the TN mode liquid crystal cell is most often used as a color TFT liquid crystal display device, and is described in many documents.
  • VA mode liquid crystal cell rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied.
  • the VA mode liquid crystal cell includes (1) a VA mode liquid crystal cell in a narrow sense in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied and are aligned substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. HEI 2-200,600).
  • the VA mode is multi-domain (for MVA (Multi-domain Vertical Alignment) mode) liquid crystal cell (SID97, Digest of tech.
  • n-ASM mode (Axially symmetric aligned microcell)
  • a liquid crystal cell (described in Proceedings 58-59 (1998) of the Japan Liquid Crystal Conference) and (4) SURVIVAL (Super Range Viewing by Vertical Alignment) mode liquid crystal cell (announced at LCD (liquid crystal display) International 98) are included. .. Further, any of a PVA (Patterned Vertical Alignment) type, a photo-alignment type (Optical Alignment), and a PSA (Polymer-Sustained Alignment) may be used.
  • PVA Powerned Vertical Alignment
  • Optical Alignment Optical Alignment
  • PSA Polymer-Sustained Alignment
  • Organic EL display device As an organic EL display device which is an example of an image display device, for example, a mode in which a polarizing plate of the present invention in which a polarizer is arranged on the viewing side and an organic EL display panel are provided in this order from the viewing side is preferable. Can be mentioned. Further, the organic EL display panel is a display panel configured by using an organic EL element in which an organic light emitting layer (organic electroluminescence layer) is sandwiched between electrodes (between a cathode and an anode). The configuration of the organic EL display panel is not particularly limited, and a known configuration is adopted.
  • mC-1 85 g of mC-1 was obtained as a pale yellow liquid (yield 88%).
  • the following monomer mC-1 corresponds to a monomer that forms a precursor of the repeating unit C-1 below (that is, a unit before being converted into an acryloyl group by deprotection).
  • a copolymer P-1 represented by the following formula was obtained.
  • a/b/c which represents the copolymerization ratio (mass ratio) of the copolymer P-1 calculated by 1 H-NMR (Nuclear Magnetic Resonance), is 0.6/0.3/ It was 0.1 and the weight average molecular weight was 30,000.
  • a copolymer P-2 represented by the following formula was obtained.
  • a/b showing the copolymerization ratio (mass ratio) of the copolymer P-2 calculated by 1 H-NMR is 0.6/0.4, and the weight average molecular weight is 30,000. Met.
  • a copolymer P-3 represented by the following formula was obtained.
  • a/b/c showing the copolymerization ratio (mass ratio) of the copolymer P-3 calculated by 1 H-NMR is 0.4/0.5/0.1.
  • the weight average molecular weight was 30,000.
  • a copolymer P-4 represented by the following formula was obtained.
  • a/b/c showing the copolymerization ratio (mass ratio) of the copolymer P-4 calculated by 1 H-NMR is 0.6/0.3/0.1.
  • the weight average molecular weight was 30,000.
  • the following coating liquid for optical anisotropic layer (liquid crystal 101) was applied on the photo-alignment film by a bar coater to form a composition layer.
  • the composition layer formed was once heated to 90° C. on a hot plate and then cooled to 60° C. to stabilize the orientation. After that, the temperature was kept at 60° C., and the orientation was fixed by ultraviolet irradiation (500 mJ/cm 2 , using an ultrahigh pressure mercury lamp) in a nitrogen atmosphere (oxygen concentration 100 ppm) to form an optically anisotropic layer having a thickness of 2.0 ⁇ m.
  • An optical laminate was prepared.
  • Liquid crystalline compound L-1 80.00 parts by mass Liquid crystalline compound L-2 20.00 parts by mass Polymerization initiator (IRGACURE 184, manufactured by BASF) 3.00 parts by mass Polymerization initiator (IRGACURE OX-01, manufactured by BASF) 3.00 parts by mass Leveling agent (compound G-1 below) 0.20 parts by mass Methyl ethyl ketone 424.8 parts by mass ⁇ ⁇
  • the section of the same sample of the same sample is prepared, the film thickness of the photo-alignment film and the first mixed layer is measured with a transmission electron microscope (TEM), and the film thickness of each fragment ion of TOF-SIMS is used as a reference. It was calculated from the directional distribution.
  • TEM transmission electron microscope
  • 0.1 N/25 mm or less The peel strength is very small, and uniform and easy peeling occurs.
  • 0.5 N/25 mm or less Peel strength is small and peels uniformly. Greater than 0.5 N/25 mm: The peel strength is high, which may cause breakage, which is a problem.
  • the peeling surface on the support side where the peeling property was evaluated was analyzed by a Fourier transform infrared spectroscopic device Nicolet 6700 (manufactured by Thermo Fisher Scientific Co., Ltd.) to confirm whether or not the photo-alignment film component was detected.
  • a section of the same sample was further prepared, and the presence or absence of the first mixed layer was confirmed by a transmission electron microscope (TEM).
  • the components of the photo-alignment film are detected by infrared spectroscopy, and the first mixed layer is confirmed by TEM:
  • the peeling surface is the interface between the first mixed layer and the photo-alignment film.
  • the photo-alignment film component is not detected by infrared spectroscopy:
  • the peeling surface is the interface between the optically anisotropic layer and the photo-alignment film.
  • Adhesive 1 was prepared with reference to the description in JP-A-2017-134414 and Example 1.
  • Retardation change rate of 5% or less: Excellent at a level where almost no color change can be recognized when mounted as a ⁇ /4 plate in an organic EL display device.
  • Retardation change rate is larger than 5%: When mounted on an organic EL display device as a ⁇ /4 plate, a change in tint is recognized, which is not preferable.
  • Example 1 was superior to that of Comparative Example 1.
  • the sample after the test was immersed in liquid nitrogen to freeze the adhesive, and then the two sandwiched glasses were peeled off.
  • the sample was returned to room temperature and etched from both sides of the peeled surface with an Ar-GCIB gun (15 kV, 2.5 nA, 500 ⁇ 500 ⁇ m) using Ulvac-PHI TRIFT V Nano TOF (primary ion_Bi3++, accelerating voltage 30 kV).
  • a fragment ion derived from a liquid crystal compound as a component of the optically anisotropic layer a fragment ion derived from a copolymer as a component of the photo-alignment film, a fragment ion derived from triacetyl cellulose as a component of the support, and a polarizer.
  • the intensity of iodine-derived fragment ions in the photo-alignment film of Example 1 was higher than the intensity of iodine-derived fragment ions in the polarizer. I found out.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

本発明は、支持体、光配向膜および光学異方性層をこの順に有し、支持体と光配向膜との界面で剥離することが容易となる光学積層体、ならびに、これを用いて作製した偏光板を提供することを課題とする。本発明の光学積層体は、支持体、光配向膜および光学異方性層をこの順に有する光学積層体であって、支持体と光配向膜との間に、支持体の構成材料と光配向膜の構成材料とが混在した第1混合層を有し、光配向膜と光学異方性層との間に、光配向膜の構成材料と光学異方性層の構成材料とが混在した第2混合層を有し、第1混合層の膜厚X1と、第2混合層の膜厚X2とが、下記式(I)を満たす、光学積層体である。 X1≦X2 ・・・(I)

Description

光学積層体および偏光板
 本発明は、光学積層体および偏光板に関する。
 光学補償シートおよび位相差フィルムなどの光学フィルムは、画像着色解消および視野角拡大などの観点から、様々な画像表示装置で用いられている。
 光学フィルムとしては延伸複屈折フィルムが使用されていたが、近年、延伸複屈折フィルムに代えて、液晶性化合物を用いた光学異方性層を使用することが提案されている。
 このような光学異方性層は、液晶性化合物を配向させるために、光学異方性層を形成する支持体上に配向膜を設けることが知られており、また、この配向膜として、ラビング処理に代えて光配向処理を施した光配向膜が知られている。
 例えば、特許文献1には、シンナメート基を含む構成単位a1を有する重合体Aと、シンナメート基を有し、重合体Aよりも分子量が小さい低分子化合物Bと、を含有する光配向膜用組成物が記載されており([請求項1])、支持体と、光配向膜用組成物を用いて作製した光配向膜と、液晶性化合物を含有する光学異方性層とをこの順に有する光学積層体が記載されており([請求項9])、重合体Aが、エポキシ基、オキセタニル基などの架橋性基を含む構成単位a2を有している態様が記載されている([0024]~[0028])。
国際公開第2017/069252号
 本発明者らは、特許文献1に記載された光学積層体について検討したところ、薄型化や転写などの観点から支持体と光配向膜との界面で剥離しようとすると、光配向膜の形成に用いる重合体の架橋性基の種類によっては、剥離することが困難となる場合があることを明らかとした。
 そこで、本発明は、支持体、光配向膜および光学異方性層をこの順に有し、支持体と光配向膜との界面で剥離することが容易となる光学積層体、ならびに、これを用いて作製した偏光板を提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、支持体と光配向膜との間に両者の混合層を設け、光配向膜と光学異方性層との間に両者の混合層を設け、これらの混合層の厚みを所定の関係に調整することにより、支持体と光配向膜との界面で剥離することが容易となることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題を達成することができることを見出した。
 [1] 支持体、光配向膜および光学異方性層をこの順に有する光学積層体であって、
 支持体と光配向膜との間に、支持体の構成材料と光配向膜の構成材料とが混在した第1混合層を有し、
 光配向膜と光学異方性層との間に、光配向膜の構成材料と光学異方性層の構成材料とが混在した第2混合層を有し、
 第1混合層の膜厚X1と、第2混合層の膜厚X2とが、下記式(I)を満たす、光学積層体。
 X1≦X2 ・・・(I)
 [2] 第1混合層の膜厚が、100nm以下である、[1]に記載の光学積層体。
 [3] 第2混合層の膜厚が、100nm以下である、[1]または[2]に記載の光学積層体。
 [4] 光配向膜が、光配向性共重合体を含有する光配向膜用組成物を用いて形成した膜であり、
 光配向性共重合体が、下記式(A)で表される光配向性基を含む繰り返し単位Aと、下記式(B)で表される架橋性基を含む繰り返し単位Bとを有する共重合体である、[1]~[3]のいずれかに記載の光学積層体。
Figure JPOXMLDOC01-appb-C000002
 式(A)中、Rは、水素原子またはメチル基を表し、R、R、R、RおよびRは、それぞれ独立に、水素原子または置換基を表す。R、R、R、RおよびRのうち、隣接する2つの基が結合して環を形成していてもよい。
 式(B)中、Rは、水素原子またはメチル基を表し、Rは、水素原子、メチル基またはエチル基を表す。
 式(A)のLおよび式(B)中のLは、それぞれ独立に、2価の連結基を表す。
 [5] 光配向性共重合体が、更に、エチレン性不飽和二重結合を有する基を含む繰り返し単位(C)を有する、[4]に記載の光学積層体。
 [6] 光配向膜用組成物が、酸、または、熱もしくは光の作用により酸を発生する酸発生剤を含有する、[4]または[5]に記載の光学積層体。
 [7] 光学異方性層が、重合性基を有する液晶性化合物を含有する組成物を硬化させて得られた層である、[1]~[6]のいずれかに記載の光学積層体。
 [8] 光学異方性層と第2混合層との剥離強度A、および、第2混合層と光配向膜との剥離強度Bが、いずれも、光配向膜と第1混合層との剥離強度Cよりも大きい、[1]~[7]のいずれかに記載の光学積層体。
 [9] 支持体が、トリアセチルセルロースを含有する、[1]~[8]のいずれかに記載の光学積層体。
 [10] 偏光子および積層体を有する偏光板であって、
 積層体が、[1]~[9]のいずれかに記載の光学積層体から支持体および第1混合層を剥離して得られる、光配向膜、第2混合層および光学異方性層をこの順に有する積層体であり、
 偏光子が、積層体の光配向膜側に設けられている、偏光板。
 本発明によれば、本発明は、支持体、光配向膜および光学異方性層をこの順に有し、支持体と光配向膜との界面で剥離することが容易となる光学積層体、ならびに、これを用いて作製した偏光板を提供することができる。
図1は、本発明の光学積層体の一例を示す模式的な断面図である。 図2は、本発明の偏光板の一例を示す模式的な断面図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
[光学積層体]
 本発明の光学積層体は、支持体、光配向膜および光学異方性層をこの順に有する光学積層体である。
 また、本発明の光学積層体は、支持体と光配向膜との間に、支持体の構成材料と光配向膜の構成材料とが混在した第1混合層を有し、光配向膜と光学異方性層との間に、光配向膜の構成材料と光学異方性層の構成材料とが混在した第2混合層を有し、第1混合層の膜厚X1と、第2混合層の膜厚X2とが、下記式(I)を満たしている。
 X1≦X2 ・・・(I)
 本発明においては、上述した通り、第1混合層の膜厚X1と第2混合層の膜厚X2とが、上記式(I)を満たすことにより、支持体と光配向膜との界面で剥離することが容易となる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 混合層は、互いに接する2層の成分が混在した領域であるため、混合層の膜厚が厚いほどにアンカリング効果が強まり、2層がより強固に密着するものと考えられる。
 そのため、X1<X2となる場合には、支持体と光配向膜との界面よりも、光配向膜と光学異方性層との界面の方がより強固に密着するために、支持体と光配向膜との界面で剥離が起こりやすくなると考えられる。
 また、第1混合層は、非架橋性である支持体の成分と架橋性の光配向膜の成分とが混在した領域であるのに対し、第2混合層は、いずれも架橋性である光学異方性層と光配向膜の成分が混在した領域であるため、混合層内の架橋密度は、第2混合層の方が高く、混合層の厚みが同じである場合には、アンカリング効果は、第2混合層の方が高くなる。
 そのため、X1=X2の場合にも、光配向膜と光学異方性層との界面の方がより強固に密着するために、支持体と光配向膜との界面で剥離が起こりやすくなると考えられる。
 図1は、本発明の光学積層体の一例を示す模式的な断面図である。
 なお、図1は、模式図であり、第1混合層および第2混合層以外の各層の厚みの関係などは必ずしも実際のものとは一致しない。
 図1に示す光学積層体10は、支持体11、膜厚X1の第1混合層12、光配向膜13、膜厚X2の第2混合層14および光学異方性層15をこの順で有する。
 以下に、本発明の光学積層体が有する支持体、第1混合層、光配向膜、第2混合層および光学異方性層については詳述する。
 〔支持体〕
 本発明の光学積層体が有する支持体は特に限定されず、例えば、ポリマーフィルム等が好適に挙げられる。
 ポリマーフィルムを構成するポリマーとしては、具体的には、例えば、セルロース系ポリマー;ポリメチルメタクリレート、ラクトン環含有重合体等のアクリル酸エステル重合体を有するアクリル系ポリマー;熱可塑性ノルボルネン系ポリマー;ポリカーボネート系ポリマー;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー;ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン系ポリマー;塩化ビニル系ポリマー;ナイロン、芳香族ポリアミド等のアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;またはこれらのポリマーを混合したポリマーが挙げられる。
 これらのうち、トリアセチルセルロースに代表される、セルロース系ポリマー(以下、「セルロースアシレート」ともいう。)を好ましく用いることができる。
 また、加工性および光学性能の観点から、アクリル系ポリマーを用いるのも好ましい。
 アクリル系ポリマーとしては、ポリメチルメタクリレートや、特開2009-98605号公報の段落[0017]~[0107]に記載されるラクトン環含有重合体等が挙げられる。
 本発明においては、上記支持体の厚みについては特に限定されないが、後述する本発明の偏光板を製造する際のハンドリング等の観点から、5~100μmであることが好ましく、20~90μmであることがより好ましい。
 〔第1混合層〕
 本発明の積層体が有する第1混合層は、上述した支持体と後述する光配向膜との間に、支持体の構成材料と光配向膜の構成材料とが混在した第1混合層を有する。
 ここで、第1混合層の存在および膜厚X1、ならびに、後述する第2混合層の存在および膜厚X2は、以下の手順で確認することができる。
 まず、上述した支持体に後述する光配向膜および光学異方性層を形成した後の光学積層体を、Ar-GCIB(ガスクラスターイオンビーム)銃でエッチングしながら、飛行時間型二次イオン質量分析装置(TOF-SIMS)で光学異方性層の成分由来のフラグメントイオン、光配向膜の成分由来のフラグメントイオン、および、支持体の成分由来のフラグメントイオンを、それぞれの膜厚方向分布を分析する。
 そして、第1混合層に関しては、支持体の成分由来のフラグメントイオンと配向膜の成分由来のフラグメントイオンが両方検出される部分、第2混合層に関しては、配向膜の成分由来のフラグメントイオンと光学異方性層の成分由来のフラグメントイオン両方検出される分として測定することができる。
 また、膜厚は、光学積層体の切片を作製し、透過電子顕微鏡(TEM)で光配向膜と第1混合層をあわせた膜厚を測長し、それを基準としてTOF-SIMSの各フラグメントイオンの膜厚方向分布から算出する。
 本発明においては、上記第1混合層の膜厚(X1)は、光学異方性層と第2混合層との剥離強度A、および、第2混合層と光配向膜との剥離強度Bを大きくし、光配向膜と第1混合層との剥離強度Cを小さくし、その結果、支持体と光配向膜との界面での剥離が容易となる理由から、100nm以下であることが好ましく、5~50nmであることがより好ましい。
 また、本発明においては、第1混合層における上述した支持体の構成材料と、後述する光配向膜の構成材料との比率は、1/99~99/1であるのが好ましく、10/90~90/10であるのがより好ましい。
 <第1混合層の形成方法>
 第1混合層の形成方法は特に限定されないが、後述する光配向膜を形成する際に、上述した支持体上に後述する光配向膜形成用組成物を塗布することにより、光配向膜と同時に形成する方法が好ましい。
 また、第1混合層の厚みの調整は、例えば、上述した支持体に対する、後述する光配向膜形成用組成物に用いる有機溶媒の種類を選択することにより、調整することができる。
 〔光配向膜〕
 本発明の光学積層体が有する光配向膜は特に限定されず、国際公開第2005/096041号の段落[0024]~[0043]に記載されたポリアミド化合物やポリイミド化合物などのポリマー材料;特開2012-155308号公報に記載された光配向性基を有する液晶配向剤により形成される液晶配向膜;Rolic Technologies社製の商品名LPP-JP265CPなどを用いることができる。
 本発明においては、上記光配向膜は、液晶性化合物の配向性(以下、「液晶配向性」とも略す。)に優れ、かつ、第1混合層の膜厚X1と第2混合層の膜厚X2とが、上記式(I)を満たしやすくなり、安定して支持体と光配向膜との界面で剥離できる理由から、光配向性共重合体を含有する光配向膜用組成物(以下、形式的に「本発明の光配向膜用組成物」ともいう。)を用いて形成した膜であって、光配向性共重合体が、下記式(A)で表される光配向性基を含む繰り返し単位Aと、下記式(B)で表される架橋性基を含む繰り返し単位Bとを有する共重合体である膜であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記式(A)中、Rは、水素原子またはメチル基を表し、R、R、R、RおよびRは、それぞれ独立に、水素原子または置換基を表す。R、R、R、RおよびRのうち、隣接する2つの基が結合して環を形成していてもよい。
 上記式(B)中、Rは、水素原子またはメチル基を表し、Rは、水素原子、メチル基またはエチル基を表す。
 上記式(A)のLおよび上記式(B)中のLは、それぞれ独立に、2価の連結基を表す。
 次に、上記式(A)中のR、R、R、RおよびRが表す置換基について説明する。なお、上記式(A)中のR、R、R、RおよびRが置換基ではなく水素原子であってもよいことは上述した通りである。
 上記式(A)のR、R、R、RおよびRが表す置換基は、上記式(B)で表される繰り返し単位Bと区別する観点から、オキセタニル基またはオキセタニル基を含む置換基以外の置換基であることが好ましく、光配向性基が液晶性化合物と相互作用しやすくなり、液晶配向性が良好となる理由から、それぞれ独立に、ハロゲン原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、シアノ基、アミノ基、または、下記式(1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 ここで、上記式(1)中、*は、上記式(A)中のベンゼン環との結合位置を表し、Rは、1価の有機基を表す。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基について、直鎖状のアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、例えば、メチル基、エチル基、n-プロピル基などが挙げられる。
 分岐状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、イソプロピル基、tert-ブチル基などが挙げられる。
 環状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 炭素数1~20の直鎖状のハロゲン化アルキル基としては、炭素数1~4のフルオロアルキル基が好ましく、具体的には、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基などが挙げられ、中でも、トリフルオロメチル基が好ましい。
 炭素数1~20のアルコキシ基としては、炭素数1~18のアルコキシ基が好ましく、炭素数6~18のアルコキシ基がより好ましく、炭素数6~14のアルコキシ基が更に好ましい。具体的には、例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基、n-ヘキシルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基などが好適に挙げられ、中でも、n-ヘキシルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基がより好ましい。
 炭素数6~20のアリール基としては、炭素数6~12のアリール基が好ましく、具体的には、例えば、フェニル基、α-メチルフェニル基、ナフチル基などが挙げられ、中でも、フェニル基が好ましい。
 炭素数6~20のアリールオキシ基としては、炭素数6~12のアリールオキシ基が好ましく、具体的には、例えば、フェニルオキシ基、2-ナフチルオキシ基などが挙げられ、中でも、フェニルオキシ基が好ましい。
 アミノ基としては、例えば、第1級アミノ基(-NH);メチルアミノ基などの第2級アミノ基;ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、含窒素複素環化合物(例えば、ピロリジン、ピペリジン、ピペラジンなど)の窒素原子を結合手とした基などの第3級アミノ基;が挙げられる。
 上記式(1)で表される基について、上記式(1)中のRが表す1価の有機基としては、例えば、炭素数1~20の直鎖状または環状のアルキル基が挙げられる。
 直鎖状のアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、例えば、メチル基、エチル基、n-プロピル基などが挙げられ、中でも、メチル基またはエチル基が好ましい。
 環状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられ、中でも、シクロヘキシル基が好ましい。
 なお、上記式(1)中のRが表す1価の有機基としては、上述した直鎖状のアルキル基および環状のアルキル基を直接または単結合を介して複数組み合わせたものであってもよい。
 本発明においては、光配向性基が液晶性化合物と相互作用しやすくなり、液晶配向性が良好となる理由から、上記式(A)中のR、R、R、RおよびRのうち、少なくともRが上述した置換基を表していることが好ましく、更に、得られる光配向性共重合体の直線性が向上し、液晶性化合物と相互作用しやすくなり、液晶配向性が良好となる理由から、R、R、RおよびRがいずれも水素原子を表すことがより好ましい。
 本発明においては、得られる光配向膜に光照射した際に反応効率が向上する理由から、上記式(A)のRが電子供与性の置換基であることが好ましい。
 ここで、電子供与性の置換基(電子供与性基)とは、ハメット値(Hammett置換基定数σp)が0以下の置換基のことをいい、例えば、上述した置換基のうち、アルキル基、ハロゲン化アルキル基、アルコキシ基などが挙げられる。
 これらのうち、光配向膜の配向性が良好となる理由から、アルコキシ基であることが好ましく、炭素数が4~18のアルコキシ基であることがより好ましく、炭素数が6~14のアルコキシ基であることが更に好ましい。
 次に、上記式(A)のLおよび上記式(B)中のLが表す2価の連結基について説明する。
 2価の連結基としては、光配向性基が液晶性化合物と相互作用しやすくなり、液晶配向性が良好となる理由から、置換基を有していてもよい炭素数1~10の直鎖状、分岐状または環状のアルキレン基、置換基を有していてもよい炭素数6~12のアリーレン基、エーテル基(-O-)、カルボニル基(-C(=O)-)、および、置換基を有していてもよいイミノ基(-NH-)からなる群から選択される少なくとも2以上の基を組み合わせた2価の連結基であることが好ましい。
 ここで、アルキレン基、アリーレン基およびイミノ基が有していてもよい置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、シアノ基、カルボキシ基、アルコキシカルボニル基および水酸基などが挙げられる。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 アルキル基としては、例えば、炭素数1~18の直鎖状、分岐鎖状または環状のアルキル基が好ましく、炭素数1~8のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロヘキシル基等)がより好ましく、炭素数1~4のアルキル基であることが更に好ましく、メチル基またはエチル基であるのが特に好ましい。
 アルコキシ基としては、例えば、炭素数1~18のアルコキシ基が好ましく、炭素数1~8のアルコキシ基(例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基等)がより好ましく、炭素数1~4のアルコキシ基であることが更に好ましく、メトキシ基またはエトキシ基であるのが特に好ましい。
 アリール基としては、例えば、炭素数6~12のアリール基が挙げられ、具体的には、例えば、フェニル基、α-メチルフェニル基、ナフチル基などが挙げられ、中でも、フェニル基が好ましい。
 アリールオキシ基としては、例えば、フェノキシ、ナフトキシ、イミダゾイルオキシ、ベンゾイミダゾイルオキシ、ピリジン-4-イルオキシ、ピリミジニルオキシ、キナゾリニルオキシ、プリニルオキシ、チオフェン-3-イルオキシなどが挙げられる。
 アルコキシカルボニル基としては、例えば、メトキシカルボニル、エトキシカルボニルなどが挙げられる。
 炭素数1~10の直鎖状、分岐状または環状のアルキレン基について、直鎖状のアルキレン基としては、具体的には、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、デシレン基などが挙げられる。
 また、分岐状のアルキレン基としては、具体的には、例えば、ジメチルメチレン基、メチルエチレン基、2,2-ジメチルプロピレン基、2-エチル-2-メチルプロピレン基などが挙げられる。
 また、環状のアルキレン基としては、具体的には、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロデシレン基、アダマンタン-ジイル基、ノルボルナン-ジイル基、exo-テトラヒドロジシクロペンタジエン-ジイル基などが挙げられ、中でも、シクロヘキシレン基が好ましい。
 炭素数6~12のアリーレン基としては、具体的には、例えば、フェニレン基、キシリレン基、ビフェニレン基、ナフチレン基、2,2’-メチレンビスフェニル基などが挙げられ、中でも、フェニレン基が好ましい。
 上記式(A)表される光配向性基を含む繰り返し単位Aとしては、具体的には、例えば、以下に示す繰り返し単位A-1~A-116が挙げられる。なお、下記式中、Meはメチル基を表す。また、下記式中、2価の連結基に含まれる「1,4-シクロヘキシル基」は、シス体およびトランス体のいずれであってもよいが、トランス体であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
 一方、上記式(B)表される光配向性基を含む繰り返し単位Bとしては、具体的には、例えば、以下に示す繰り返し単位B-1~B-14が挙げられる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
 上述した光配向性共重合体は、上述した繰り返し単位Aの含有量aと、上述した繰り返し単位Bの含有量bとが、質量比で下記式(2)を満たしていることが好ましく、下記式(3)を満たしていることがより好ましく、下記式(4)を満たしていることが更に好ましい。
 0.2 ≦ a/(a+b) ≦ 0.8 ・・・(2)
 0.2 ≦ a/(a+b) ≦ 0.6 ・・・(3)
 0.3 ≦ a/(a+b) < 0.5 ・・・(4)
 また、上述した光配向性共重合体は、光学異方性層の形成時に、光学異方性層に含まれる液晶性化合物等と光配向膜の光配向性共重合体との間での架橋を可能とし、光学積層体の光学異方性層と光配向膜との間の密着性を高めることにより、光配向膜と支持体との界面で支持体を剥離して他の基材に転写する際の剥離性が良好となる理由から、更に、エチレン性不飽和二重結合を有する基を含む繰り返し単位(C)を有していることが好ましい。
 このような繰り返し単位(C)を形成するモノマー(ラジカル重合性単量体)としては、例えば、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリルアミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。
 上述した光配向性共重合体の合成法は特に限定されず、例えば、上述した繰り返し単位Aを形成するモノマー、上述した繰り返し単位Bを形成するモノマー、および、任意の繰り返し単位Cを形成するモノマーを混合し、有機溶剤中で、ラジカル重合開始剤を用いて重合することにより合成することができる。
 上述した光配向性共重合体の重量平均分子量(Mw)は、10000~500000が好ましく、光配向膜の配向性が向上する理由から、30000~200000がより好ましい。
 ここで、本発明における重量平均分子量および数平均分子量は、以下に示す条件でゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):THF(テトラヒドロフラン)
 ・装置名:TOSOH HLC-8320GPC
 ・カラム:TOSOH TSKgel Super HZM-H(4.6mm×15cm)を3本接続して使用
 ・カラム温度:40℃
 ・試料濃度:0.1質量%
 ・流速:1.0ml/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
 本発明の光配向膜用組成物における上述した光配向性共重合体の含有量は特に限定されないが、後述する有機溶媒を含有する場合、有機溶媒100質量部に対して0.1~50質量部であるのが好ましく、0.5~10質量部であるのがより好ましい。
 <有機溶媒>
 本発明の光配向膜用組成物は、光配向膜を作製する作業性等の観点から、有機溶媒を含有するのが好ましい。
 有機溶媒としては、具体的には、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、トルエン、キシレン、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン、ジクロロベンゼン、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチルなど)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミドなど)等が挙げられ、これらを1種単独で用いてもよく、2種類以上を併用してもよい。
 <酸/酸発生剤>
 本発明の光配向膜用組成物は、支持体と光配向膜との界面で剥離することがより容易となる理由から、酸、または、熱もしくは光の作用により酸を発生する酸発生剤を含有するのが好ましい。
 酸としては、具体的には、例えば、p-トルエンスルホン酸、10-カンファースルホン酸、パーフルオロブタンスルホン酸などが挙げられる。
 熱の作用により酸を発生する酸発生剤(熱酸発生剤)としては、具体的には、例えば、イソプロピル-p-トルエンスルホネート、シクロヘキシル-p-トルエンスルホネート、芳香族スルホニウム塩化合物である三新化学工業製サンエイドSIシリーズなどが挙げられる。
 光の作用により酸を発生する酸発生剤(光酸発生剤)としては、具体的には、例えば、スルホニウム塩化合物、ヨードニウム塩化合物、オキシムスルホネート化合物などが好ましく、ローデア製 PI2074、BASF社製IRGACURE250、BASF社製IRGACURE  PAG103、108、121、203などが挙げられる。
 酸、または、酸発生剤は、1種単独でまたは2種以上を併用することができる。
 熱酸発生剤としては、熱により分解して酸を発生する化合物であれば特にその構造は制限されないが、通常、酸より水素イオンを取り除いてなるアニオンと、カチオンとから構成される。
 アニオンの具体例としては、以下が例示される。
Figure JPOXMLDOC01-appb-C000031
 カチオンとしては、実質的に熱で分解する公知のカチオンを使用できる。カチオンは、30~200℃で熱分解が開始する骨格を有することが好ましく、40~150℃で熱分解が開始する骨格を有することがより好ましい。
 なかでも、取り扱い性の点から、下記式(F)で表されるスルホニウムカチオン、または、下記式(G)で表されるヨードニウムカチオンが好ましい。
Figure JPOXMLDOC01-appb-C000032
 上記式(F)および(G)中、R20~R24は、それぞれ独立に、置換基を有していてもよい炭化水素基を表す。
 炭化水素基としては、アルキル基(例えば、メチル基、エチル基)、または、アリール基(例えば、フェニル基)が好ましい。
 置換基の種類は特に制限されず、例えば、アルキル基、アリール基、ヒドロキシ基、アミノ基、カルボキシ基、スルホンアミド基、N-スルホニルアミド基、アシル基、アシルオキシ基、アルコキシ基、アルキル基、ハロゲン原子、アルコキシカルボニル基、アルコキシカルボニルオキシ基、炭酸エステル基、および、シアノ基などが挙げられる。
 このようなカチオンの具体例としては、例えば、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 熱酸発生剤の具体例としては、例えば、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 また、光配向膜用組成物中に特定酸を発生する光酸発生剤が含まれる場合、配向層を形成する際のいずれかの段階で、光照射処理を施して、特定酸を発生させ、特定酸を含む配向層を形成することができる。
 光配向膜用組成物が上述した熱酸発生剤および光酸発生剤などの酸発生剤を含む場合、光配向膜用組成物は、さらにカチオン重合抑制剤および/またはラジカル重合抑制剤を含んでいてもよい。
 ここで、光配向膜用組成物を長期間にわたって保管する際には、酸発生剤が開裂して、特定酸が発生する場合がある。光配向膜用組成物に含まれる光配向膜用のポリマーがカチオン重合性基を有する場合、上記のように光配向膜用組成物の保管時に発生した特定酸によって、反応が進行してしまい、光配向膜用組成物の保存安定性が劣化する場合がある。そこで、光配向膜用組成物にカチオン重合抑制剤を加えることにより、上記のような反応の進行を抑制することができる。
 また、酸発生剤が開裂する場合、ラジカルが発生する場合もある。光配向膜用組成物に含まれる光配向膜用のポリマーがラジカル重合性基を有する場合、上記のように光配向膜用組成物の保管時に発生したラジカルによって、反応が進行してしまい、光配向膜用組成物の保存安定性が劣化する場合がある。そこで、光配向膜用組成物にラジカル重合抑制剤を加えることにより、上記のような反応の進行を抑制することができる。
 本発明の光配向膜用組成物において、酸、または、酸発生剤の含有量は、上述した光配向性共重合体100質量部に対して、0.5~20質量部であることが好ましく、1~10質量部であることがより好ましい。
 本発明の光配向膜用組成物は、上記以外の他の成分を含有してもよく、例えば、架橋触媒、密着改良剤、レベリング剤、界面活性剤、可塑剤などが挙げられる。
 なお、本発明の光配向膜用組成物は、後述する第2混合層が形成されやすくなる理由から、熱の作用により硬化反応を起こす熱架橋性基を有する架橋剤を有していないことが好ましい。このような架橋剤としては、例えば、分子内に2個以上のエポキシ基またはオキセタニル基を有する化合物、ブロックイソシアネート化合物(保護されたイソシアナト基を有する化合物)、アルコキシメチル基含有化合物等が挙げられる。
 <光配向膜の製造方法>
 光配向膜は、上述した本発明の光配向膜用組成物を用いる以外は従来公知の製造方法により製造することができ、例えば、上述した本発明の光配向膜用組成物を支持体表面に塗布する塗布工程と、光配向膜用組成物の塗膜に対し、偏光または塗膜表面に対して斜め方向から非偏光を照射する光照射工程とを有する製造方法により作製することができる。
 (塗布工程)
 塗布工程における塗布方法は特に限定されず、目的に応じて適宜選択することができ、例えば、スピンコーティング、ダイコーティング、グラビアコーティング、フレキソ印刷、インクジェット印刷などが挙げられる。
 (光照射工程)
 光照射工程において、光配向膜用組成物の塗膜に対して照射する偏光は特に制限はなく、例えば、直線偏光、円偏光、楕円偏光などが挙げられ、中でも、直線偏光が好ましい。
 また、非偏光を照射する「斜め方向」とは、塗膜表面の法線方向に対して極角θ(0<θ<90°)傾けた方向である限り、特に制限はなく、目的に応じて適宜選択することができるが、θが20~80°であることが好ましい。
 偏光または非偏光における波長としては、光配向膜用組成物の塗膜に、液晶性分子に対する配向制御能を付与することができる限り、特に制限はないが、例えば、紫外線、近紫外線、可視光線などが挙げられる。中でも、250nm~450nmの近紫外線が特に好ましい。
 また、偏光または非偏光を照射するための光源としては、例えば、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプなどが挙げられる。このような光源から得た紫外線や可視光線に対して、干渉フィルタや色フィルタなどを用いることで、照射する波長範囲を制限することができる。また、これらの光源からの光に対して、偏光フィルタや偏光プリズムを用いることで、直線偏光を得ることができる。
 偏光または非偏光の積算光量としては、光配向膜用組成物の塗膜に、液晶性分子に対する配向制御能を付与することができる限り、特に制限はなく、特に制限はないが、1~300mJ/cmが好ましく、5~100mJ/cmがより好ましい。
 偏光または非偏光の照度としては、光配向膜用組成物の塗膜に、液晶性分子に対する配向制御能を付与することができる限り、特に制限はないが、0.1~300mW/cmが好ましく、1~100mW/cmがより好ましい。
 光配向膜の膜厚としては、特に制限はなく、目的に応じて適宜選択することができるが、10~1000nmが好ましく、10~700nmがより好ましい。
 〔第2混合層〕
 本発明の積層体が有する第2混合層は、上述した光配向膜と後述する光学異方性層との間に、光配向膜の構成材料と光学異方性層の構成材料とが混在した第2混合層を有する。
 本発明においては、上記第2混合層の膜厚(X2)は、光配向膜表面の配向規制力低下による光学異方性層の液晶配向性悪化を抑制できる理由から、100nm以下であることが好ましく、光学異方性層と第2混合層との剥離強度A、第2混合層と光配向膜との剥離強度B、および、光配向膜と第1混合層との剥離強度Cをいずれも大きくできる理由から、10~60nmであることがより好ましい。
 また、本発明においては、上述した第1混合層の膜厚X1に対する第2混合層の膜厚X2、すなわち、X2/X1は、1.0~5.0であることが好ましく、1.0~2.0であることがより好ましい。
 更に、本発明においては、第2混合層における上述した光配向膜の構成材料と、後述する光学異方性層の構成材料との比率は、1/99~99/1であるのが好ましく、10/90~90/10であるのがより好ましい。
 <第2混合層の形成方法>
 第2混合層の形成方法は特に限定されないが、後述する光学異方性層を形成する際に、上述した光配向膜上に後述する光学異方性層形成用組成物を塗布することにより、光学異方性層と同時に形成する方法が好ましい。
 また、第2混合層の厚みの調整は、例えば、上述した光配向膜の素材や架橋密度に対する、後述する光学異方性層形成用組成物に用いる有機溶媒の種類を選択することにより、調整することができる。
 〔光学異方性層〕
 本発明の光学積層体が有する光学異方性層は特に限定されず、従来公知の光学異方性層を適宜採用して用いることができる。
 このような光学異方性層は、重合性基を有する液晶性化合物を含有する組成物(以下、「光学異方性層形成用組成物」とも略す。)を硬化させて得られた層であるのが好ましく、単層構造であってもよく、複数層を積層した構造(積層体)であってもよい。
 以下に、光学異方性層形成用組成物が含有している液晶性化合物および任意の添加剤について説明する。
 <液晶性化合物>
 光学異方性層形成用組成物が含有する液晶性化合物は、重合性基を有する液晶性化合物である。
 一般的に、液晶性化合物はその形状から、棒状タイプと円盤状タイプに分類できる。更にそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。
 本発明においては、いずれの液晶性化合物を用いることもできるが、棒状液晶性化合物またはディスコティック液晶性化合物を用いるのが好ましく、棒状液晶性化合物を用いるのがより好ましい。
 本発明においては、上述の液晶性化合物の固定化のために、重合性基を有する液晶性化合物を用いるが、液晶性化合物が1分子中に重合性基を2以上有することが更に好ましい。なお、液晶性化合物が2種類以上の混合物の場合には、少なくとも1種類の液晶性化合物が1分子中に2以上の重合性基を有していることが好ましい。なお、液晶性化合物が重合によって固定された後においては、もはや液晶性を示す必要はない。
 また、重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。なお、(メタ)アクリロイル基とは、メタアクリロイル基またはアクリロイル基を意味する表記である。
 棒状液晶性化合物としては、例えば、特表平11-513019号公報の請求項1や特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく用いることができ、ディスコティック液晶性化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]や特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましく用いることができるが、これらに限定されない。
 また、本発明においては、上記液晶性化合物として、逆波長分散性の液晶性化合物を用いることができる。
 ここで、本明細書において「逆波長分散性」の液晶性化合物とは、これを用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレターデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
 また、逆波長分散性の液晶性化合物は、上記のように逆波長分散性のフィルムを形成できるものであれば特に限定されず、例えば、特開2008-297210号公報に記載の一般式(I)で表される化合物(特に、段落番号[0034]~[0039]に記載の化合物)、特開2010-084032号公報に記載の一般式(1)で表される化合物(特に、段落番号[0067]~[0073]に記載の化合物)、特開2016-053709号公報に記載の一般式(II)で表される化合物(特に、段落番号[0036]~[0043]に記載の化合物)、および、特開2016-081035公報に記載の一般式(1)で表される化合物(特に、段落番号[0043]~[0055]に記載の化合物)等を用いることができる。
 <添加剤>
 光学異方性層形成用組成物には、上述した液晶性化合物以外の成分が含まれていてもよい。
 例えば、光学異方性層形成用組成物には、重合開始剤が含まれていてもよい。使用される重合開始剤は、重合反応の形式に応じて選択され、例えば、熱重合開始剤、光重合開始剤が挙げられる。例えば、光重合開始剤の例には、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせなどが挙げられる。
 重合開始剤の使用量は、組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.5~5質量%であることがより好ましい。
 また、光学異方性層形成用組成物には、塗膜の均一性、膜の強度の点から、重合性モノマーが含まれていてもよい。
 重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶性化合物と共重合性のものが好ましい。例えば、特開2002-296423号公報中の段落[0018]~[0020]に記載のものが挙げられる。
 重合性モノマーの含有量は、液晶性化合物の全質量に対して、1~50質量%であることが好ましく、2~30質量%であることがより好ましい。
 また、光学異方性層形成用組成物には、塗膜の均一性、膜の強度の点から、界面活性剤が含まれていてもよい。
 界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001-330725号公報中の段落[0028]~[0056]に記載の化合物、特開2005-062673号公報の段落[0069]~[0126]に記載の化合物が挙げられる。
 また、光学異方性層形成用組成物には有機溶媒が含まれていてもよい。有機溶媒としては、上述した本発明の光配向膜用組成物において説明したものと同様のものを挙げることができる。
 また、光学異方性層形成用組成物には、偏光子界面側垂直配向剤、および、空気界面側垂直配向剤などの垂直配向促進剤、ならびに、偏光子界面側水平配向剤、および、空気界面側水平配向剤などの水平配向促進剤などの各種配向剤が含まれていてもよい。
 更に、光学異方性層形成用組成物には、上記成分以外に、密着改良剤、可塑剤、ポリマーなどが含まれていてもよい。
 このような成分を有する光学異方性層形成用組成物を用いた光学異方性層の形成方法は特に限定されず、例えば、上述した本発明の光配向膜上に、光学異方性層形成用組成物を塗布して塗膜を形成し、得られた塗膜に対して硬化処理(紫外線の照射(光照射処理)または加熱処理)を施すことにより形成することができる。
 光学異方性層形成用組成物の塗布は、公知の方法(例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
 本発明においては、上記光学異方性層の厚みについては特に限定されないが、0.1~10μmであるのが好ましく、0.5~5μmであるのがより好ましい。
 本発明の光学積層体は、支持体と光配向膜との界面で剥離することがより容易となる理由から、光学異方性層と第2混合層との剥離強度A、および、第2混合層と光配向膜との剥離強度Bが、いずれも、光配向膜と第1混合層との剥離強度Cよりも大きいことが好ましい。
 ここで、剥離強度はJIS  Z0237「粘着テープ・粘着シート試験方法」に準拠して、測定したものとする。
[偏光板]
 本発明の偏光板は、偏光子および積層体を有する偏光板であって、積層体が、上述した本発明の光学積層体から支持体および第1混合層を剥離して得られる、光配向膜、第2混合層および光学異方性層をこの順に有する積層体であり、偏光子が、積層体の光配向膜側に設けられている、偏光板である。
 このような構成を有する本発明の偏光板は、偏光子と光学異方性層との間に、光配向膜が存在するため、偏光子から拡散し得るヨウ素などの影響を抑制することができるため、耐熱性、耐湿性および耐湿熱性が良好となる。
 また、本発明の偏光板は、上述した積層体(特に光学異方性層)がλ/4板である場合、円偏光板として用いることができる。
 ここで、「λ/4板」とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板である。
 図2は、本発明の偏光板の一例を示す模式的な断面図である。
 なお、図2は、模式図であり、各層の厚みの関係などは必ずしも実際のものとは一致しない。
 図2に示す偏光板20は、図1に示す光学積層体10から支持体11および第1混合層12を剥離して得られる、光配向膜13、第2混合層14および光学異方性層15をこの順に有する積層体と、偏光子21とを有し、偏光子21が、粘着剤層または接着剤層22を介して、光配向膜13側に設けられている。
 〔偏光子〕
 本発明の偏光板が有する偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に限定されず、従来公知の吸収型偏光子および反射型偏光子を利用することができる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子などが用いられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できるが、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第5048120号公報、特許第4691205号公報、特許第4751481号公報、特許第4751486号公報を挙げることができ、これらの偏光子に関する公知の技術も好ましく利用することができる。
 反射型偏光子としては、複屈折の異なる薄膜を積層した偏光子、ワイヤーグリッド型偏光子、選択反射域を有するコレステリック液晶と1/4波長板とを組み合わせた偏光子などが用いられる。
 なかでも、取り扱い性の点から、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマーを意図する。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つが好ましい)を含む偏光子であることが好ましい。
 偏光子の厚みは特に限定されないが、1~60μmであるのが好ましく、1~30μmであるのがより好ましく、2~20μmであるのが更に好ましい。
 〔粘着剤層または接着剤層〕
 本発明の偏光板は、上述した本発明の光学積層体から支持体および第1混合層を剥離して得られる、光配向膜、第2混合層および光学異方性層をこの順に有する積層体と、上述した偏光子とを、粘着剤または接着剤を介して積層することができる。
 粘着剤または接着剤としては特に限定はないが、特開2004-245925号公報に示されるような、分子内に芳香環を含まないエポキシ化合物の硬化性接着剤、特開2008-174667号公報に記載の360~450nmの波長におけるモル吸光係数が400以上である光重合開始剤と紫外線硬化性化合物とを必須成分とする活性エネルギー線硬化型接着剤、特開2008-174667号公報記載の(メタ)アクリル系化合物の合計量100質量部中に(a)分子中に(メタ)アクリロイル基を2以上有する(メタ)アクリル系化合物と、(b)分子中に水酸基を有し、重合性二重結合をただ1個有する(メタ)アクリル系化合物と、(c)フェノールエチレンオキサイド変性アクリレートまたはノニルフェノールエチレンオキサイド変性アクリレートとを含有する活性エネルギー線硬化型接着剤などが挙げられる。
[画像表示装置]
 本発明の光学積層体は、支持体を剥離して薄型化できるため、画像表示装置を作製する際に好適に使用できる。
 画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、プラズマディスプレイパネル等が挙げられる。
 これらのうち、液晶セル、有機EL表示パネルであるのが好ましく、液晶セルであるのがより好ましい。すなわち、画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましく、液晶表示装置であるのがより好ましい。
 〔液晶表示装置〕
 画像表示装置の一例である液晶表示装置は、上述した本発明の光学積層体または偏光板と、液晶セルとを有する液晶表示装置である。
 なお、本発明においては、液晶セルの両側に設けられる偏光板のうち、フロント側の偏光板として本発明の光学積層体または偏光板を用いるのが好ましい。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
 <液晶セル>
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、またはTN(Twisted Nematic)であることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子(棒状液晶性化合物)が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVA(Multi-domain Vertical Alignment)モードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード(Axially symmetric aligned microcell))の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)および(4)SURVIVAL(Super Ranged Viewing by Vertical Alignment)モードの液晶セル(LCD(liquid crystal display)インターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶性分子が平面的に応答する。IPSモードは電界無印加時で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
 〔有機EL表示装置〕
 画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、視認側に偏光子を配位した本発明の偏光板と、有機EL表示パネルとをこの順で有する態様が好適に挙げられる。
 また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 〔モノマーmA-98の合成〕
 下記繰り返し単位A-98を形成するモノマーとして、Langmuir,32(36),9245-9253,(2016年)に記載された方法に従い、2-ヒドロキシエチルメタクリレート(HEMA)(東京化成試薬)とp-オクタノキシ桂皮酸クロリド(東京化成試薬)を用いて、以下に示すモノマーmA-98を合成した。
Figure JPOXMLDOC01-appb-C000036
 〔モノマーmB-2〕
 下記繰り返し単位B-2を形成する下記モノマーmB-2として、OXE-30(大阪有機化学社製)を用いた。
Figure JPOXMLDOC01-appb-C000037
 〔モノマーmC-1〕
 撹拌羽、温度計、滴下ロートを備えた2000mL三口フラスコに、2-ヒドロキシエチルメタクリレート100g、DMAc240mLを添加し、氷浴で冷却した。次いで、3-クロロプロピオニルクロリド126.8gを滴下し、氷冷下3時間撹拌した。
 反応液を室温まで冷却した後、酢酸エチル1000mLを一規定塩酸、飽和炭酸水素ナトリウム水溶液、水で分液洗浄し、得られた有機層を無水硫酸マグネシウムで乾燥し、濃縮することにより、下記モノマーmC-1を淡黄色液体として85g得た(収率88%)。
 なお、下記モノマーmC-1は、下記繰り返し単位C-1の前駆体(すなわち、脱保護によってアクリロイル基に変更する前の単位)を形成するモノマーに該当するものである。
Figure JPOXMLDOC01-appb-C000038
 〔モノマーmD-1〕
 下記繰り返し単位D-1を形成する下記モノマーmD-1として、サイクロマーM100(ダイセル社製)を用いた。
Figure JPOXMLDOC01-appb-C000039
[共重合体P-1の合成]
 冷却管、温度計、および撹拌機を備えたフラスコに、溶媒として2-ブタノン5質量部を仕込み、フラスコ内に窒素を5mL/min流しながら、水浴加熱により還流させた。ここに、モノマーmA-98を6質量部、モノマーmB-2を3質量部、モノマーmC-1を1質量部、重合開始剤として2,2’-アゾビス(イソブチロニトリル)を1質量部と、溶媒として2-ブタノン5質量部を混合した溶液を、3時間かけて滴下し、さらに3時間還流状態を維持したまま撹拌した。重合反応終了後、反応液にジブチルヒドロキシトルエン(BHT)10mgを加えて温度を60℃にした後、トリエチルアミン0.49gを添加して60℃で5時間撹拌した。脱塩酸反応終了後、室温まで放冷し、2-ブタノン30質量部を加えて希釈することで約20質量%の重合体溶液を得た。
 得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、回収した沈殿物をろ別し、大量のメタノールで洗浄した後、50℃において12時間送風乾燥することにより、下記式で表される共重合体P-1を得た。
 なお、下記式中、H-NMR(Nuclear Magnetic Resonance)で算出した共重合体P-1の共重合率比(質量比)を示すa/b/cは、0.6/0.3/0.1であり、重量平均分子量は30000であった。
Figure JPOXMLDOC01-appb-C000040
[共重合体P-2の合成]
 冷却管、温度計、および撹拌機を備えたフラスコに、溶媒として2-ブタノン5質量部を仕込み、フラスコ内に窒素を5mL/min流しながら、水浴加熱により還流させた。ここに、モノマーmA-98を6質量部、モノマーmB-2を4質量部、重合開始剤として2,2’-アゾビス(イソブチロニトリル)を1質量部と、溶媒として2-ブタノン5質量部を混合した溶液を、3時間かけて滴下し、さらに3時間還流状態を維持したまま撹拌した。反応終了後、室温まで放冷し、2-ブタノン30質量部を加えて希釈することで約20質量%の重合体溶液を得た。得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、回収した沈殿物をろ別し、大量のメタノールで洗浄した後、50℃において12時間送風乾燥することにより、下記式で表される共重合体P-2を得た。
 なお、下記式中、H-NMRで算出した共重合体P-2の共重合率比(質量比)を示すa/bは、0.6/0.4であり、重量平均分子量は30000であった。
Figure JPOXMLDOC01-appb-C000041
[共重合体P-3の合成]
 冷却管、温度計、および撹拌機を備えたフラスコに、溶媒として2-ブタノン5質量部を仕込み、フラスコ内に窒素を5mL/min流しながら、水浴加熱により還流させた。ここに、モノマーmA-98を4質量部、モノマーmB-2を5質量部、モノマーmC-1を1質量部、重合開始剤として2,2’-アゾビス(イソブチロニトリル)を1質量部と、溶媒として2-ブタノン5質量部を混合した溶液を、3時間かけて滴下し、さらに3時間還流状態を維持したまま撹拌した。重合反応終了後、反応液にジブチルヒドロキシトルエン(BHT)10mgを加えて温度を60℃にした後、トリエチルアミン0.49gを添加して60℃で5時間撹拌した。脱塩酸反応終了後、室温まで放冷し、2-ブタノン30質量部を加えて希釈することで約20質量%の重合体溶液を得た。
 得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、回収した沈殿物をろ別し、大量のメタノールで洗浄した後、50℃において12時間送風乾燥することにより、下記式で表される共重合体P-3を得た。
 なお、下記式中、H-NMRで算出した共重合体P-3の共重合率比(質量比)を示すa/b/cは、0.4/0.5/0.1であり、重量平均分子量は30000であった。
Figure JPOXMLDOC01-appb-C000042
[共重合体P-4の合成]
 冷却管、温度計、および撹拌機を備えたフラスコに、溶媒として2-ブタノン5質量部を仕込み、フラスコ内に窒素を5mL/min流しながら、水浴加熱により還流させた。ここに、モノマーmA-98を3質量部、モノマーmD-1を6質量部、モノマーmC-1を1質量部、重合開始剤として2,2’-アゾビス(イソブチロニトリル)を1質量部と、溶媒として2-ブタノン5質量部を混合した溶液を、3時間かけて滴下し、さらに3時間還流状態を維持したまま撹拌した。重合反応終了後、反応液にジブチルヒドロキシトルエン(BHT)10mgを加えて温度を60℃にした後、トリエチルアミン0.49gを添加して60℃で5時間撹拌した。脱塩酸反応終了後、室温まで放冷し、2-ブタノン30質量部を加えて希釈することで約20質量%の重合体溶液を得た。
 得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、回収した沈殿物をろ別し、大量のメタノールで洗浄した後、50℃において12時間送風乾燥することにより、下記式で表される共重合体P-4を得た。
 なお、下記式中、H-NMRで算出した共重合体P-4の共重合率比(質量比)を示すa/b/cは、0.6/0.3/0.1であり、重量平均分子量は30000であった。
Figure JPOXMLDOC01-appb-C000043
[実施例1~4および比較例1~2]
 〔光配向膜用組成物の調製〕
 下記表1に示す溶媒に対して、下記表1に示す成分を下記表1に示す配合比率で添加し、光配向膜用組成物を調製した。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-I000046
 〔光学積層体の作製〕
 セルロースアシレートフィルム(支持体)として、特開2014-164169号公報の比較例1と同じものを用いた。
 このフィルムの片側の面に、先に調製した各光配向膜用組成物をバーコーターで塗布した。塗布後、140℃のホットプレート上で5分間乾燥して溶剤を除去し、厚さ0.3μmの光異性化組成物層を形成した。なお、実施例3のみ、厚さ5μmになるように塗布し、乾燥を行った。
 次いで、得られた光異性化組成物層を偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、光配向膜を形成した。
 次いで、光配向膜上に、以下に示す光学異方性層用塗布液(液晶101)をバーコーターで塗布し、組成物層を形成した。形成した組成物層をホットプレート上でいったん90℃まで加熱した後、60℃に冷却させて配向を安定化させた。
 その後、60℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(500mJ/cm、超高圧水銀ランプ使用)によって配向を固定化し、厚さ2.0μmの光学異方性層を形成し、光学積層体を作製した。
─────────────────────────────────
光学異方性層用塗布液(液晶101)
─────────────────────────────────
・下記液晶性化合物L-1             80.00質量部
・下記液晶性化合物L-2             20.00質量部
・重合開始剤(IRGACURE 184、BASF社製)
                          3.00質量部
・重合開始剤(IRGACURE OXE-01、BASF社製)
                          3.00質量部
・レベリング剤(下記化合物G-1)         0.20質量部
・メチルエチルケトン               424.8質量部
―――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000049
 〔第1混合層および第2混合層の膜厚〕
 Ulvac-PHI社 TRIFT V Nano TOF(一次イオン_Bi3++,加速電圧30kV)を用いて、試料表面からAr-GCIB銃(15kV,2.5nA,500×500μm)でエッチングしながら、光学異方性層の成分として、液晶化合物由来のフラグメントイオンと、光配向膜の成分として、共重合体由来のフラグメントイオンと、支持体の成分として、トリアセチルセルロース由来のフラグメントイオンの膜厚方向分布を分析した。同じ試料の同じ試料の切片を作製し、透過電子顕微鏡(TEM)で光配向膜と第1混合層をあわせた膜厚を測長し、それを基準としてTOF-SIMSの各フラグメントイオンの膜厚方向分布から算出した。
 〔配向性〕
 作製した光学積層体について、偏光顕微鏡を用いて消光位から2度ずらした状態で観察した。その結果、以下の基準で評価した。結果を下記表1に示す。
 AAA:液晶ダイレクタがキメ細かく整って配向し、表示性能が非常に優れる。
 AA:液晶ダイレクタが均一に整って配向し、表示性能が優れる。
 A:液晶ダイレクタの乱れがなく、面状が安定している。
 B:液晶ダイレクタの乱れがごくわずかであり、面状が安定している。
 C:液晶ダイレクタの乱れが部分的であり、面状が安定している。
 D:液晶ダイレクタが大幅に乱れて面状が安定せず、表示性能が非常に劣る。
 〔剥離性(剥離強度を測定)〕
 <測定試料の作製>
 作製した光学積層体を25mm幅×15cmサイズに切り出し、光学異方性層側を、片側の端の位置をガラス端に合わせて、5cm×8cmに切り出した粘着剤(綜研化学製、SKダイン2057)で同じサイズのガラス板に貼合した。25℃60%の環境下で、テンシロン万能材料試験機(オリエンテック社製)に、剥離角度180°になるように試料のガラスからはみ出ている部分を折り返してセットし、剥離速度1000/分で剥離し、ロードセルで剥離強度を測定した。
 0.1N/25mm以下:剥離強度が非常に小さく、均一に容易に剥がれる。
 0.5N/25mm以下:剥離強度が小さく、均一に剥がれる。
 0.5N/25mmより大きい:剥離強度が大きく、破断する場合があり問題である。
 〔剥離面〕
 剥離性を評価した支持体側の剥離面を、フーリエ変換赤外分光装置Nicolet 6700(サーモフィッシャーサイエンティフィック株式会社製)で分析し、光配向膜成分が検出されるかどうかを確認した。光配向膜成分が確認された場合は、さらに、同じ試料の切片を作製し、透過電子顕微鏡(TEM)で第1混合層の有無を確認した。
 赤外分光で光配向膜成分を検出し、TEMで第1混合層が確認される:剥離面を、第1混合層と光配向膜との界面とする。
 赤外分光で光配向膜成分を検出しない:剥離面を、光学異方性層と光配向膜との界面とする。
 〔耐熱性〕
 <偏光板の作製>
 (粘着剤1の調製)
 特開2017-134414号公報、実施例1の記載を参考に、粘着剤1を調製した。
 (偏光板の作製)
 14cm×7cmのサイズのガラスに、同じサイズに切り出した比較例1の光学積層体の光学異方性層側を上記粘着剤1を用いて貼合し、光学異方性層と光配向膜の界面で剥離して、光配向膜付きセルロースアシレートフィルムを取り除いた。
 さらに、ガラスとは反対の面に、直線偏光板を上記粘着剤1を用いて貼合し、ガラス付き比較偏光板1とした。さらに、適当に調湿条件を調整することにより偏光板含水量を、3.2g/mとした。
 実施例1の光学積層体を用い、第1混合層とセルロースアシレートフィルムの界面で剥離した以外は、ガラス付き比較偏光板1と同様にして、ガラス付き実施偏光板1を作成した。
 (熱耐久性の評価)
 ガラス付き比較偏光板1およびガラス付き実施偏光板1の偏光板含水量保ったまま、ガラスとは反対の面に、さらにそれぞれ粘着剤1を用いて同じサイズのガラス板を貼合し、2枚のガラスで挟み込んだ形態としたのち、Axo Scan(0PMF-1、Axometrics社製)を用いて試料の中央部の波長550nmにおけるレタデーション(Re)を測定し、初期値とした。その後、85℃ドライ条件下で、500時間で熱耐久試験を行った。
 再び試料の中央部の波長550nmにおけるレタデーション(Re)を測定し、初期値から変化率を指標として評価した。
 レタデーション変化率が5%以下:有機EL表示装置にλ/4板として実装した場合にほとんど色味変化が認識できないレベルで優れている。
 レタデーション変化率が5%より大きい:有機EL表示装置にλ/4板として実装した場合に色味変化が認識され好ましくない。
Figure JPOXMLDOC01-appb-T000050
 表2に示す結果から、第2混合層を有していない場合、または、第1混合層の膜厚X1と、第2混合層の膜厚X2とが式(I)を満たさない場合は、支持体と光配向膜との界面で剥離することが困難となることが分かった(比較例1および2)。また、比較例1の結果から、耐熱性も劣ることが分かった。
 これに対し、第1混合層および第2混合層を有し、これらの膜厚が式(I)を満たす場合には、支持体と光配向膜との界面で剥離することが容易となり、剥離性および転写後の密着性も良好となることが分かった(実施例1~4)。
 また、耐熱性は、比較例1に対し、実施例1が優れていた。試験後の試料を液体窒素に浸漬して粘着剤を凍結させた後、挟み込んだ2枚のガラスを剥がした。試料を室温に戻し、Ulvac-PHI社 TRIFT V Nano TOF(一次イオン_Bi3++,加速電圧30kV)を用いて、剥がした両面の面からAr-GCIB銃(15kV,2.5nA,500×500μm)でエッチングしながら、光学異方性層の成分として液晶化合物由来のフラグメントイオンと、光配向膜の成分として共重合体由来のフラグメントイオンと、支持体の成分としてトリアセチルセルロース由来のフラグメントイオンと、偏光子の成分としてヨウ素由来のフラグメントイオンの膜厚方向分布を解析したところ、実施例1の光配向膜中のヨウ素由来のフラグメントイオンの強度が、偏光子中のヨウ素由来のフラグメントイオンの強度より高くなっていることが分かった。耐熱試験中に偏光子から拡散したヨウ素が光配向膜にトラップされたことで加熱試験時に光学異方性層がダメージを受けにくくなったものと推定した。比較例1では、ヨウ素由来のフラグメントイオン強度が偏光子中より高くなっている部分はなかった。
 10 光学積層体
 11 支持体
 12 第1混合層
 13 光配向膜
 14 第2混合層
 20 偏光板
 21 偏光子
 22 粘着剤層または接着剤層

Claims (10)

  1.  支持体、光配向膜および光学異方性層をこの順に有する光学積層体であって、
     前記支持体と前記光配向膜との間に、前記支持体の構成材料と前記光配向膜の構成材料とが混在した第1混合層を有し、
     前記光配向膜と前記光学異方性層との間に、前記光配向膜の構成材料と前記光学異方性層の構成材料とが混在した第2混合層を有し、
     前記第1混合層の膜厚X1と、前記第2混合層の膜厚X2とが、下記式(I)を満たす、光学積層体。
     X1≦X2 ・・・(I)
  2.  前記第1混合層の膜厚が、100nm以下である、請求項1に記載の光学積層体。
  3.  前記第2混合層の膜厚が、100nm以下である、請求項1または2に記載の光学積層体。
  4.  前記光配向膜が、光配向性共重合体を含有する光配向膜用組成物を用いて形成した膜であり、
     前記光配向性共重合体が、下記式(A)で表される光配向性基を含む繰り返し単位Aと、下記式(B)で表される架橋性基を含む繰り返し単位Bとを有する共重合体である、請求項1~3のいずれか1項に記載の光学積層体。
    Figure JPOXMLDOC01-appb-C000001
     前記式(A)中、Rは、水素原子またはメチル基を表し、R、R、R、RおよびRは、それぞれ独立に、水素原子または置換基を表す。R、R、R、RおよびRのうち、隣接する2つの基が結合して環を形成していてもよい。
     前記式(B)中、Rは、水素原子またはメチル基を表し、Rは、水素原子、メチル基またはエチル基を表す。
     前記式(A)のLおよび前記式(B)中のLは、それぞれ独立に、2価の連結基を表す。
  5.  前記光配向性共重合体が、更に、エチレン性不飽和二重結合を有する基を含む繰り返し単位(C)を有する、請求項4に記載の光学積層体。
  6.  前記光配向膜用組成物が、酸、または、熱もしくは光の作用により酸を発生する酸発生剤を含有する、請求項4または5に記載の光学積層体。
  7.  前記光学異方性層が、重合性基を有する液晶性化合物を含有する組成物を硬化させて得られた層である、請求項1~6のいずれか1項に記載の光学積層体。
  8.  前記光学異方性層と前記第2混合層との剥離強度A、および、前記第2混合層と前記光配向膜との剥離強度Bが、いずれも、前記光配向膜と前記第1混合層との剥離強度Cよりも大きい、請求項1~7のいずれか1項に記載の光学積層体。
  9.  前記支持体が、トリアセチルセルロースを含有する、請求項1~8のいずれか1項に記載の光学積層体。
  10.  偏光子および積層体を有する偏光板であって、
     前記積層体が、請求項1~9のいずれか1項に記載の光学積層体から支持体および第1混合層を剥離して得られる、光配向膜、第2混合層および光学異方性層をこの順に有する積層体であり、
     前記偏光子が、前記積層体の前記光配向膜側に設けられている、偏光板。
PCT/JP2019/045540 2018-12-04 2019-11-21 光学積層体および偏光板 WO2020116174A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-227358 2018-12-04
JP2018227358 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020116174A1 true WO2020116174A1 (ja) 2020-06-11

Family

ID=70973635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045540 WO2020116174A1 (ja) 2018-12-04 2019-11-21 光学積層体および偏光板

Country Status (1)

Country Link
WO (1) WO2020116174A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214502A1 (ja) * 2022-05-02 2023-11-09 富士フイルム株式会社 光学フィルム、偏光板および画像表示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895106A (en) * 1997-06-13 1999-04-20 Ois Optical Imaging Systems, Inc. NW twisted nematic LCD with negative tilted retarders on one side of liquid crystal cell
JP2006078617A (ja) * 2004-09-08 2006-03-23 Nitto Denko Corp 光学フィルムの製造方法、光学フィルム、偏光板、液晶パネル及び液晶表示装置
WO2014178395A1 (ja) * 2013-05-02 2014-11-06 富士フイルム株式会社 転写フィルムおよび光学フィルム
WO2015005122A1 (ja) * 2013-07-08 2015-01-15 富士フイルム株式会社 光学フィルム、偏光板、画像表示装置および光学フィルムの製造方法
JP2015163957A (ja) * 2014-01-31 2015-09-10 住友化学株式会社 光学異方性シート
JP2015197501A (ja) * 2014-03-31 2015-11-09 大日本印刷株式会社 位相差フィルム、偏光板一体型位相差フィルム及び偏光板一体型位相差フィルムの製造方法
WO2017069252A1 (ja) * 2015-10-23 2017-04-27 富士フイルム株式会社 光配向膜用組成物、光配向膜、光学積層体および画像表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895106A (en) * 1997-06-13 1999-04-20 Ois Optical Imaging Systems, Inc. NW twisted nematic LCD with negative tilted retarders on one side of liquid crystal cell
JP2006078617A (ja) * 2004-09-08 2006-03-23 Nitto Denko Corp 光学フィルムの製造方法、光学フィルム、偏光板、液晶パネル及び液晶表示装置
WO2014178395A1 (ja) * 2013-05-02 2014-11-06 富士フイルム株式会社 転写フィルムおよび光学フィルム
WO2015005122A1 (ja) * 2013-07-08 2015-01-15 富士フイルム株式会社 光学フィルム、偏光板、画像表示装置および光学フィルムの製造方法
JP2015163957A (ja) * 2014-01-31 2015-09-10 住友化学株式会社 光学異方性シート
JP2015197501A (ja) * 2014-03-31 2015-11-09 大日本印刷株式会社 位相差フィルム、偏光板一体型位相差フィルム及び偏光板一体型位相差フィルムの製造方法
WO2017069252A1 (ja) * 2015-10-23 2017-04-27 富士フイルム株式会社 光配向膜用組成物、光配向膜、光学積層体および画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214502A1 (ja) * 2022-05-02 2023-11-09 富士フイルム株式会社 光学フィルム、偏光板および画像表示装置

Similar Documents

Publication Publication Date Title
US11319393B2 (en) Photo-alignable polymer, binder composition, binder layer, optical laminate, method for producing optical laminate, and image display device
JP7109476B2 (ja) 光学積層体の製造方法、光学積層体および画像表示装置
JP6987883B2 (ja) 光配向性共重合体、光配向膜および光学積層体
KR102467728B1 (ko) 광배향성 공중합체, 광배향막 및 광학 적층체
WO2018173727A1 (ja) 光配向性共重合体、光配向膜および光学積層体
JP6837550B2 (ja) 光配向性共重合体、光配向膜、光学積層体および画像表示装置
WO2019017444A1 (ja) 重合性液晶化合物、重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
WO2016043219A1 (ja) 光学フィルム、照明装置および画像表示装置
WO2019131976A1 (ja) 光吸収異方性膜、光学積層体および画像表示装置
JP7086210B2 (ja) 積層体および画像表示装置
JP7228049B2 (ja) 光配向性ポリマー、バインダー組成物、バインダー層、光学積層体、光学積層体の製造方法、画像表示装置
US11203655B2 (en) Polymer compound, liquid crystal composition, phase difference layer, optical film, polarizing plate, and image display device
JP4918759B2 (ja) 光学フィルム
WO2020116174A1 (ja) 光学積層体および偏光板
WO2019220970A1 (ja) 光配向性共重合体、光配向膜および光学積層体
WO2020179873A1 (ja) 共重合体、光配向膜用組成物、光配向膜、光学異方性素子および偏光素子
US11180661B2 (en) Binder composition, binder layer, optical laminate, and image display device
JP2022078095A (ja) 偏光素子、円偏光板および画像表示装置
JP7189232B2 (ja) 光配向性共重合体、バインダー組成物、バインダー層、光学積層体および画像表示装置
JP7295259B2 (ja) 光配向性重合体、光配向膜および光学積層体
JP7385729B2 (ja) 光学積層体、偏光板および画像表示装置
JP5170275B2 (ja) 光学フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP