WO2018173582A1 - 運転支援装置 - Google Patents

運転支援装置 Download PDF

Info

Publication number
WO2018173582A1
WO2018173582A1 PCT/JP2018/005628 JP2018005628W WO2018173582A1 WO 2018173582 A1 WO2018173582 A1 WO 2018173582A1 JP 2018005628 W JP2018005628 W JP 2018005628W WO 2018173582 A1 WO2018173582 A1 WO 2018173582A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
host vehicle
vehicle
intersection
stop
Prior art date
Application number
PCT/JP2018/005628
Other languages
English (en)
French (fr)
Inventor
深谷 直樹
広人 上坂
利平 勝
真治 河村
良樹 大澤
章仁 棚橋
望実 川▲瀬▼
和香 仙石
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017252525A external-priority patent/JP2018158711A/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018173582A1 publication Critical patent/WO2018173582A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/029Steering assistants using warnings or proposing actions to the driver without influencing the steering system

Definitions

  • the present disclosure relates to a driving support device.
  • Patent Document 1 a driving support device that supports driving of an occupant in a host vehicle has been mounted on some vehicles.
  • the host vehicle In a straight-ahead scene at an intersection, the host vehicle enters the intersection when the other vehicle is congested in front of the intersection and there is not enough time for the stop to stop. It becomes.
  • the vehicle In a straight-ahead scene at a level crossing, the vehicle enters the level crossing when there is not enough space between the circuit breaker and the other vehicle in front of which the traffic jam is stopped. The host vehicle will stop inside.
  • the present disclosure has been made in view of the problems described above, and one of its purposes is to provide a driving support device that ensures the safety and security of passengers at intersections. Moreover, one of the objects of the present disclosure is to provide a driving support device that ensures the safety and security of passengers at a level crossing.
  • a first aspect of the present disclosure is a driving support device that supports driving of an occupant in a host vehicle, and acquires a surrounding space map that defines an object state in a surrounding space of the host vehicle and defines a positional relationship between objects.
  • the progress determination unit that determines whether or not the host vehicle can proceed at the intersection based on the surrounding space map acquired by the map acquisition unit, and the host vehicle based on the surrounding space map acquired by the map acquisition unit.
  • the region in which the vehicle can travel is recognized with high accuracy. obtain. Therefore, the propriety of the own vehicle at the intersection can be accurately determined based on the surrounding space map.
  • steering of the host vehicle by the occupant can be accurately supported by following a guide generated based on the surrounding space map as a guide for guiding the host vehicle at the intersection. According to these, it becomes possible to ensure the safety and security of the passengers at the intersection.
  • a second aspect of the present disclosure is a driving support device that supports driving of an occupant in a host vehicle, and acquires a surrounding space map that defines an object state in a surrounding space of the host vehicle and defines a positional relationship between objects.
  • the progress determination unit that determines whether or not the host vehicle can proceed at the level crossing based on the surrounding space map acquired by the map acquisition unit, and the host vehicle based on the surrounding space map acquired by the map acquisition unit.
  • the region in which the vehicle can travel is recognized with high accuracy. obtain. Therefore, the propriety of the own vehicle at a railroad crossing can be accurately determined based on the surrounding space map.
  • the steering of the host vehicle by the occupant can be accurately supported by following a guide generated based on the surrounding space map as a guide for guiding the host vehicle at the level crossing. According to these, it becomes possible to ensure the safety and security of the passengers at the crossing.
  • FIG. 1 is a block diagram illustrating a driving assistance device according to a first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram for explaining the surrounding environment recognition sensor of the driving support device according to the first embodiment.
  • FIG. 3 is a schematic diagram for explaining the surrounding space and the surrounding space map according to the first embodiment.
  • FIG. 4 is a schematic diagram for explaining the surrounding space and the surrounding space map according to the first embodiment.
  • FIG. 5 is a schematic diagram for explaining a concern to be solved by the first embodiment.
  • FIG. 6 is a flowchart showing a driving support flow of the driving support device according to the first embodiment.
  • FIG. 7 is a schematic diagram for explaining the operation of the driving support apparatus according to the first embodiment.
  • FIG. 8 is a schematic diagram for explaining the operation of the driving support apparatus according to the first embodiment.
  • FIG. 9 is a schematic diagram for explaining the operation of the driving support apparatus according to the first embodiment.
  • FIG. 10 is a schematic diagram for explaining the operation of the driving support apparatus according to the first embodiment.
  • FIG. 11 is a schematic diagram for explaining the operation of the driving support device according to the first embodiment.
  • FIG. 12 is a schematic diagram for explaining the operation of the driving support device according to the second embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram for explaining the operation of the driving support apparatus according to the second embodiment.
  • FIG. 14 is a flowchart showing a driving support flow of the driving support device according to the second embodiment.
  • FIG. 15 is a schematic diagram for explaining the operation of the driving assistance device according to the third embodiment of the present disclosure.
  • FIG. 16 is a flowchart showing a driving support flow of the driving support device according to the third embodiment.
  • FIG. 17 is a schematic diagram for describing a surrounding environment recognition sensor according to a modified example of the present disclosure.
  • FIG. 18 is a schematic diagram for explaining a surrounding environment recognition sensor of a modified example.
  • FIG. 19 is a schematic diagram for explaining a surrounding environment recognition sensor of a modified example.
  • the driving support device 1 illustrated in FIG. 1 is applied to the vehicle 2 to support driving of the occupant.
  • the vehicle 2 to which the driving support device 1 is applied is referred to as the host vehicle 2.
  • the host vehicle 2 is equipped with a surrounding environment recognition sensor 3 so that the surrounding environment can be recognized.
  • the surrounding environment recognition sensor 3 detects the state of an object existing in the surrounding space 4 of the host vehicle 2 as shown in FIGS. 2, 3, and 4 within a detection range determined by the viewing angle ⁇ .
  • the object state detected by the surrounding environment recognition sensor 3 is, for example, at least one of the distance, direction, position including the distance and direction, and size of the object in the surrounding space 4. Therefore, as the surrounding environment recognition sensor 3, at least one of LIDAR (also referred to as a laser radar), a camera (for example, a stereo camera), a radio wave radar (for example, a millimeter wave radar) is mounted on the host vehicle 2. Good.
  • LIDAR also referred to as a laser radar
  • a camera for example, a stereo camera
  • a radio wave radar for example, a millimeter wave radar
  • the driving support device 1 mounted on the host vehicle 2 is composed of at least one ECU mainly including a microcomputer.
  • the driving support device 1 combines the detection information of the surrounding environment recognition sensor 3 described above with vehicle related information such as a vehicle speed and a steering angle processed on the in-vehicle network 5 such as CAN (registered trademark), for example.
  • vehicle related information such as a vehicle speed and a steering angle processed on the in-vehicle network 5 such as CAN (registered trademark), for example.
  • the surrounding space map 6 defines the positional relationship between various objects centered on the own vehicle 2 (that is, the origin of 0 m and 0 ° in the surrounding space maps of FIGS. 3 and 4).
  • the installation position of the surrounding environment recognition sensor 3 in the host vehicle 2 is known in advance, the planned trajectory of the outermost edge of the host vehicle 2 accompanying the movement in the surrounding space map 6 can be calculated predictively. Therefore, the relative positional relationship with the object around the host vehicle 2 can be accurately defined. Therefore, based on the surrounding space map 6, the driving support device 1 accurately determines a region in the surrounding space 4 in which the host vehicle 2 can travel and a region in the space 4 in which the host vehicle 2 cannot travel. It becomes possible to identify.
  • the region where the vehicle 2 can travel due to the low existence probability of the object that is an obstacle is illustrated in white, whereas the probability is high.
  • a region where the host vehicle 2 cannot travel is illustrated in gray to black.
  • the illustration of the non-travelable region is omitted with respect to the travelable region illustrated in the same manner as the peripheral space map of FIG.
  • a left turn scene at the intersection 8 in the left-hand traffic environment or a right turn scene at the intersection 8 in the right-hand traffic environment is defined as a traffic-side turn scene.
  • the driving support device 1 can correctly determine whether or not it is safe to proceed and determine the route, and stop the passage-side turn with respect to the host vehicle 2 by the driving support flow using the surrounding space map 6. It becomes possible.
  • the driving support apparatus 1 shown in FIG. 1 functionally realizes the driving support flow shown in FIG. 6 by executing a computer program stored in the memory 1a by the processor 1b.
  • the driving support flow is started in response to an ON operation of a power switch provided in the host vehicle 2, and is ended in response to an OFF operation of the switch. “S” in the driving support flow means each step.
  • the driving scene of the host vehicle 2 is a support target scene that requires driving support.
  • the support target scene of the first embodiment is preset as the traffic-side turn scene at the intersection 8 described above. In S101, therefore, the host vehicle 2 is in a planned turn on the traffic side near the intersection 8 under the condition that the vehicle speed of the host vehicle 2 is low (for example, 10 km / h or less), and there is an obstacle on the traffic side of the host vehicle 2
  • the driving scene in which the structure 4a or the moving body is recognized by detection or the like is determined as the support target scene.
  • the planned situation of the turn on the traffic side is, for example, the operation on the turn side of the occupant on the turn indicator (also called turn signal), the operation on the turn side of the occupant on the steering handle, and the traffic from the map information providing device such as the navigation device. It is possible to recognize from at least one type of input of side turn schedule information. While a negative determination is made in S101, S101 is repeatedly executed. When an affirmative determination is made in S101, the process proceeds to S102.
  • the surrounding space map 6 is acquired based on the detection information of the surrounding environment recognition sensor 3 and the vehicle related information on the in-vehicle network 5, and stored in the memory 1a.
  • the surrounding space map 6 may be acquired based on instantaneous information independent for each processing timing, but it is more preferable that the peripheral space map 6 is acquired based on time-series data obtained by accumulating the instantaneous information in time series.
  • the surrounding space 4 since the surrounding space 4 includes not only a stationary object but also a moving object, the recognition accuracy such as the detection accuracy for such a moving object is higher in the case of time-series data than in the case of instantaneous information.
  • the detection information of the surrounding environment recognition sensor 3 is corrected by the vehicle-related information at each processing timing and then accumulated, so that the same object can be identified whether it is a stationary object or a moving object. Become. Therefore, the surrounding space map 6 can ensure time continuity or space continuity by sequentially updating to reflect the identification result of the same object when time series data is used.
  • S103 it is determined whether or not the host vehicle 2 can proceed in the turn-side turn scene at the intersection 8. At this time, if neither the contact with the structure 4a nor the entrainment of the moving body is predicted in the turn-side turn scene at the intersection 8, it is determined that the host vehicle 2 can proceed. On the other hand, if it is predicted that at least one of contact with the structure 4a and entrainment of the moving body will occur in the traffic-side turn scene at the intersection 8, it is determined that the host vehicle 2 cannot travel. .
  • the determination as to whether or not to proceed is determined by at least one of the surrounding space map 6 acquired in S102 and stored in the memory 1a, detection information by the surrounding environment recognition sensor 3, and vehicle-related information on the in-vehicle network 5. It is executed based on one.
  • a surrounding environment recognition sensor 3 for recognizing a rear environment in the surrounding space 4 is preferably mounted on the host vehicle 2.
  • S104 and S105 are sequentially executed.
  • a guide 7 for guiding the host vehicle 2 in a traffic turn scene at the intersection 8 is generated based on the peripheral space map 6 of FIG.
  • the guide 7 is generated so as to represent a planned track on which the host vehicle 2 can travel in the necessary range of the steering assistance in the peripheral space map 6 acquired in S102 and stored in the memory 1a.
  • steering of the host vehicle 2 by the occupant is supported in the traffic-side turn scene at the intersection 8 according to the guide 7 generated in S104.
  • a method of presenting the guide 7 to the occupant in other words, an output method
  • one of the following three modes is employed.
  • the electronic ridge 70 functioning like a rut when running on a snowy road directly controls the occupant in the host vehicle 2. Be supported.
  • the electronic rod 70 is set along the guide 7 that is the path that the vehicle 2 should take from now, so that a reaction force F as shown in FIG. 8 is applied to the steering handle.
  • the reaction force F of the first embodiment is given so as to increase as it approaches the structure 4a of concern for contact or the moving object of concern of involvement at the intersection 8 in the peripheral space 4. For this reason, the occupant receives the reaction force F through the steering handle when performing steering such that the guide 7 is disengaged. Therefore, the occupant can be supported not to fall into a dangerous situation.
  • the guide 7 and the position of the host vehicle 2 are displayed on a display device 71 such as a meter so that the host vehicle 2 follows the guide 7.
  • the steering of the passenger is indirectly supported.
  • the image 7a simulating the guide 7 that is the route that the vehicle 2 should take from now is displayed, whereas the relative position of the image 2a simulating the vehicle 2 is also displayed. Therefore, the occupant can assist the vehicle 7 so as not to fall into a dangerous situation by steering the host vehicle 2 so as to follow the guide 7.
  • the presentation method is a lamp 73 arranged on the meter 72 as shown in FIG. 10 and displayed as a real image, or a lamp displayed as a virtual image in the display area 74 of the head-up display (HUD) as shown in FIG. 73 is caused to function as the guide 7.
  • the steering direction of the steering wheel to be operated is instructed by the lighting or blinking pattern of the lamp 73, so that the occupant's steering is indirectly supported so that the own vehicle 2 follows the pattern.
  • the occupant steers the steering wheel in accordance with a pattern in which the lamp 73 is lit or blinks, thereby causing the host vehicle 2 to travel along the guide 7 that is a route that the host vehicle 2 should take from now. Therefore, it can be supported not to fall into a dangerous situation.
  • S105 is continuously executed until the steering support is completed in a part or all of the generation range of the guide 7 (that is, the necessary range of the steering support), and after that, the process returns to S101. .
  • the functional part of the driving support apparatus 1 that executes S102 corresponds to a “map acquisition unit”, and the functional part of the driving support apparatus 1 that executes S103 corresponds to a “progression determination unit”.
  • the functional part of the driving support apparatus 1 that executes S104 corresponds to a “guide generation unit”
  • the functional part of the driving support apparatus 1 that executes S105 corresponds to a “steering support unit”
  • S106 The functional part of the driving support device 1 that executes the operation corresponds to a “stop unit”.
  • the first embodiment described so far it is possible to assist the occupant in the progress and steering of the vehicle 2 in the traffic-side turn scene at the intersection 8.
  • the area in which the host vehicle 2 can travel is included in the space 4. It can be recognized with high accuracy. Therefore, whether or not the host vehicle 2 can travel in the turn-side turn scene at the intersection 8 can be accurately determined based on the surrounding space map 6.
  • the steering of the host vehicle 2 by the occupant follows the guide 7 generated based on the surrounding space map 6 as the guide 7 for guiding the host vehicle 2 in the turn-side turn scene at the intersection 8. Thus, it can be accurately supported.
  • the second embodiment is a modification of the first embodiment.
  • a support target scene is preset for the straight-ahead scenes at each of the intersection 8 and the crossing 9 described above. Has been. Therefore, in S2101, the host vehicle 2 is moving near the intersection 8 or the railroad crossing 9 under the condition that the host vehicle 2 is at a low speed (for example, 10 km / h or less), and as an obstacle in front of the host vehicle 2
  • the driving scene in which the preceding other vehicle is recognized by detection or the like is determined as the support target scene.
  • the movement status of the host vehicle 2 can be recognized from, for example, input of movement schedule information from a map information providing device such as a navigation device.
  • S2104 and S2105 are sequentially executed.
  • the guide 7 is generated so as to guide the host vehicle 2 in a straight ahead scene at the intersection 8 or the crossing 9.
  • S2105 in accordance with the guide 7 generated in S2104, the steering of the host vehicle 2 by the occupant is supported in a straight-ahead scene at the intersection 8 or the crossing 9.
  • the driving support flow according to the second embodiment is substantially the same as the driving support flow according to the first embodiment except for the points described above.
  • the functional part of the driving support device 1 that executes S102 corresponds to the “map acquisition unit”, but the “progress determination unit” includes the driving that executes S2103.
  • the functional part of the support apparatus 1 corresponds.
  • the functional part of the driving support apparatus 1 that executes S2104 corresponds to a “guide generation unit”
  • the functional part of the driving support apparatus 1 that executes S2105 corresponds to a “steering support unit”
  • S2106 The functional part of the driving support device 1 that executes the operation corresponds to a “stop unit”.
  • the second embodiment described so far it is possible to assist the occupant with the progress and steering of the host vehicle 2 in a straight ahead scene at each of the intersection 8 and the crossing 9.
  • the area in which the host vehicle 2 can travel is included in the space 4. It can be recognized with high accuracy. Therefore, whether or not the host vehicle 2 can travel in a straight ahead scene at each of the intersection 8 and the crossing 9 can be accurately determined based on the surrounding space map 6.
  • the steering of the host vehicle 2 by the occupant is generated based on the surrounding space map 6 as a guide 7 for guiding the host vehicle 2 in a straight traveling scene at each of the intersection 8 and the crossing 9.
  • the guide 7 it can be supported accurately.
  • the third embodiment is a modification of the first embodiment.
  • the vehicle 2 in the right turn scene that is going to turn right at the intersection 8 in the left-hand traffic environment, the vehicle 2 can enter because the preceding other vehicle is congested on the road at the right turn destination. There is a concern that the passenger may be at a loss as to whether or not there is an interval D. This concern also occurs in the vehicle 2 in a left turn scene that is about to turn left at the intersection 8 in the right-hand traffic environment.
  • the right turn at the intersection 8 in the left-hand traffic environment and the left turn at the intersection 8 in the right-hand traffic environment can be referred to as reverse turns with respect to the traffic-side turn described in the first embodiment, as such a concern. Therefore, in the host vehicle 2 according to the third embodiment, the right turn scene at the intersection 8 in the left-hand traffic environment or the left turn scene at the intersection 8 in the right-hand traffic environment is defined as the reverse turn scene.
  • a support target scene is preset for the reverse turn scene at the intersection 8 described above. . Therefore, in S3101, the host vehicle 2 is in a reverse turn schedule near the intersection 8 under the condition that the vehicle speed of the host vehicle 2 is low (for example, 10 km / h or less), and the host vehicle 2 is in a reverse turn ahead.
  • a driving scene in which a preceding other vehicle as an obstacle is recognized by detection or the like is determined to be a support target scene.
  • the planned situation of the reverse side turn is, for example, the reverse operation from the map information providing device such as the occupant's reverse turn operation to the direction indicator (also referred to as the turn signal), the occupant's reverse turn operation to the steering handle, and the navigation device. It is possible to recognize from at least one type of input of side turn schedule information.
  • S3104 and S3105 are sequentially executed.
  • the guide 7 is generated so as to guide the host vehicle 2 in the reverse turn scene at the intersection 8.
  • S3105 in accordance with the guide 7 generated in S3104, steering of the host vehicle 2 by the occupant is supported in the reverse turn scene at the intersection 8.
  • the driving support flow according to the third embodiment is substantially the same as the driving support flow according to the first embodiment except for the points described above.
  • the functional part of the driving support device 1 that executes S102 corresponds to the “map acquisition unit”, but the “progress determination unit” includes the driving that executes S3103.
  • the functional part of the support apparatus 1 corresponds.
  • the functional part of the driving support apparatus 1 that executes S3104 corresponds to a “guide generation unit”
  • the functional part of the driving support apparatus 1 that executes S3105 corresponds to a “steering support unit”
  • S3106 The functional part of the driving support device 1 that executes the operation corresponds to a “stop unit”.
  • the third embodiment described so far it is possible to assist the occupant in the progress and steering of the host vehicle 2 in the reverse turn scene at the intersection 8.
  • the area in which the host vehicle 2 can travel is included in the space 4. It can be recognized with high accuracy. Therefore, whether or not the host vehicle 2 can travel in the reverse turn scene at the intersection 8 can be accurately determined based on the surrounding space map 6.
  • the steering of the host vehicle 2 by the occupant follows the guide 7 generated based on the surrounding space map 6 as the guide 7 for guiding the host vehicle 2 in the reverse turn scene at the intersection 8. Thus, it can be accurately supported. From these things, according to the third embodiment, it is possible to ensure the safety and security of the occupant in the reverse turn scene at the intersection 8.
  • the support target scene in S2101 may be added to the support target scene determined in S101.
  • the corresponding S2103, S2104, S2105, and S2106 are executed as necessary.
  • the support target scenes of S2101 and S3101 may be added to the support target scene determined by S101.
  • the corresponding S2103, S2104, S2105, and S2106, and the corresponding S3103, S3104, S3105, and S3106 are executed as necessary.
  • the support target scene according to S3101 may be added to the support target scene determined according to S2101.
  • S2103, S2104, S2105, and S2106 the corresponding S3103, S3104, S3105, and S3106 are executed as necessary.
  • one of the contact with the structure 4a and the entrainment of the moving body may be removed from the support target scene determined in S101.
  • one of the straight-ahead scene at the intersection 8 and the straight-ahead scene at the crossing 9 may be removed from the support target scene determined in S2101.
  • the traffic turn destination at the intersection 8 of the traffic side turn scene (that is, the left turn in the left driving environment and the right turn in the right driving environment). It may be determined that there is no stopping space in (destination) and that it is impossible to proceed.
  • at least one of the own vehicle stop instruction and the guide generation stop is provided as the non-advanced state presentation executed by S106 because there is no stop space with a sufficient distance D at the traffic turn ahead of the intersection 8. Will be executed, so that the passenger can be supported so as not to fall into a dangerous situation.
  • S103, S2103, S3103 and S104, S2104, S3104 may be switched.
  • S105, S2105, and S3105 are executed by determining whether or not progress is possible in S103, S2103, and S3103.
  • LIDAR As the surrounding environment recognition sensor 3, LIDAR, a camera, and a radar are exemplified in the first embodiment.
  • a sonar may be added to the surrounding environment recognition sensor 3 of the modified example 8. This is because, when the own vehicle 2 is close to the detection target, depending on the surrounding environment recognition sensor 3 exemplified above, the proximity end of the detection target vehicle 2 is out of the detection range. This is because it is effective to warn the occupant so that the own vehicle 2 does not contact or collide with the detection target by using the additional sonar together.
  • the viewing angle ⁇ that defines the detection range of the surrounding environment recognition sensor 3 has a limit (in the figure, 0 ° ⁇ ⁇ 180 °). Therefore, when the own vehicle 2 approaches the obstacles A and B to be detected within the distance L in the surrounding space 4, there is a concern that it is impossible to detect the entire obstacles A and B.
  • Modification 9 instead of Modification 8, by arranging a plurality of surrounding environment recognition sensors 3 in parallel in the adjacent state shown in FIG. 18 and setting the total viewing angle ⁇ to be 180 °, The entire obstacles A and B can be detected even within a distance L from the host vehicle 2.
  • Modification 10 instead of Modification 8, by arranging a plurality of surrounding environment recognition sensors 3 in parallel in the separated state shown in FIG. 19 and setting the total viewing angle ⁇ to exceed 180 °, The entire obstacles A and B can be detected even within a distance L from the host vehicle 2.
  • each unit is expressed as S101, for example. Further, each unit can be divided into a plurality of subunits, while a plurality of units can be combined into one unit. Furthermore, each unit configured in this way can be referred to as a circuit, device, module, means.
  • each of the plurality of units described above or a combination thereof is not only a software unit combined with (i) a hardware unit (for example, a computer), but also (ii) hardware (for example, an integrated circuit, As a unit of the wiring logic circuit), it can be realized with or without including the functions of related devices.
  • the hardware unit may be configured inside the microcomputer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

自車両(2)において乗員の運転を支援する運転支援装置(1)は、自車両の周辺空間(4)における物体状態を表して物体同士の位置関係を定義する周辺空間マップ(6)を、取得するマップ取得ユニット(S102)と、周辺空間マップに基づいて、交差点(8)における自車両の進行可否を判定する進行判定ユニット(S103,S2103,S3103)と、周辺空間マップに基づいて、自車両を交差点において案内するガイド(7)を、生成するガイド生成ユニット(S104,S2104,S3104)と、自車両が進行可と判定された場合に、生成されたガイドに従って、乗員による自車両の操舵を支援する操舵支援ユニット(S105,S2105,S3105)とを、備える。

Description

運転支援装置 関連出願の相互参照
 本出願は、2017年3月21日に出願された日本特許出願番号2017-054771号、2017年12月27日に出願された日本特許出願番号2017-252525号、2017年12月27日に出願された日本特許出願番号2017-252523号、2017年12月27日に出願された日本特許出願番号2017-252524号、及び2017年12月27日に出願された日本特許出願番号2017-252526号に基づくもので、ここにその記載内容を援用する。
 本開示は、運転支援装置に関する。
 特許文献1に開示されるように、自車両において乗員の運転を支援する運転支援装置は、一部の車両に搭載されるようになってきている。
特開2010-250542号公報
 さて近年、運転支援装置をうまく機能させるための制約条件は比較的多くなっていることから、その機能を乗員は上手に活用し切れていない。また例えば、日常運転をする乗員の中には以下のシーンにて、自車両の運転に対する苦手意識や、恐怖の体験又は経験を持つ乗員が存在している。
  左側通行環境の交差点における左折シーンでは、自転車若しくは歩行者等の巻き込みを回避する際や、内輪差による壁等への接触を回避する際に、乗員は十分に注意できない、又は自車両における車幅の把握を苦手に感じることとなる。これは、右側通行環境の交差点における右折シーンでも、同様である。
  交差点における直進シーンでは、交差点前方にて他車両が渋滞して停止に十分な間隔がないのに自車両が交差点へと進入することで、他車両の通行を妨げる位置に自車両が停止することとなる。あるいは踏切における直進シーンでは、遮断機とその前方に渋滞停止中の他車両との間に、停止に十分な間隔がないのに自車両が踏切へと進入することで、遮断機の下りた踏切内に自車両が停止することとなる。
  左側通行環境の交差点における右折シーンでは、右折先の道路にて他車両が渋滞しているために、停止に十分な間隔がないのに自車両が右折先の道路へと進入することで、他車両の通行を妨げる位置に自車両が停止することとなる。これは、右側通行環境の交差点における左折シーンでも、左折先の道路への進入に関して同様となる。
 これら各シーンのうち、交差点での右左折シーン及び直進シーンに関して特許文献1の開示技術では、自車両の進路における交通状況に基づき、当該進路への進入に関する運転支援の可否が判定されている。しかし、判定の基準となる交通状況は、車車間通信により受信される他車両情報又は移動体の検出結果に留まるため、移動体だけでなく静止物を含めた物体の状態までは、判定に反映され難い。その結果、物体同士の位置関係によっては判定の精度が悪化するため、乗員の安心及び安全を確保する上での改善が必要であった。
 本開示は、以上説明した問題に鑑みてなされたものであって、その目的の一つは、交差点において乗員の安心及び安全を確保する運転支援装置を、提供することにある。また、本開示の目的の一つは、踏切において乗員の安心及び安全を確保する運転支援装置を、提供することにある。
 本開示の第一態様は、自車両において乗員の運転を支援する運転支援装置であって、自車両の周辺空間における物体状態を表して物体同士の位置関係を定義する周辺空間マップを、取得するマップ取得ユニットと、マップ取得ユニットにより取得された周辺空間マップに基づいて、交差点における自車両の進行可否を判定する進行判定ユニットと、マップ取得ユニットにより取得された周辺空間マップに基づいて、自車両を交差点において案内するガイドを、生成するガイド生成ユニットと、進行判定ユニットにより自車両は進行可と判定された場合に、ガイド生成ユニットにより生成されたガイドに従って、乗員による自車両の操舵を支援する操舵支援ユニットとを、備える。
 このような第一態様によると、交差点における自車両の進行及び操舵を、乗員に対して支援することができる。具体的には、自車両の周辺空間における物体状態を表して物体同士の位置関係を定義する周辺空間マップの取得によれば、同空間のうち自車両の走行可能な領域が高精度に認識され得る。故に、交差点における自車両の進行可否は、周辺空間マップに基づくことで、精確に判定され得る。しかも、進行可と判定された場合に乗員による自車両の操舵は、交差点において自車両を案内するガイドとして、周辺空間マップに基づき生成されるガイドに従うことで、精確に支援され得る。これらによれば、交差点において乗員の安心及び安全を確保することが可能となる。
 本開示の第二態様は、自車両において乗員の運転を支援する運転支援装置であって、自車両の周辺空間における物体状態を表して物体同士の位置関係を定義する周辺空間マップを、取得するマップ取得ユニットと、マップ取得ユニットにより取得された周辺空間マップに基づいて、踏切における自車両の進行可否を判定する進行判定ユニットと、マップ取得ユニットにより取得された周辺空間マップに基づいて、自車両を踏切において案内するガイドを、生成するガイド生成ユニットと、進行判定ユニットにより自車両は進行可と判定された場合に、ガイド生成ユニットにより生成されたガイドに従って、乗員による自車両の操舵を支援する操舵支援ユニットとを、備える。
 このような第二態様によると、踏切における自車両の進行及び操舵を、乗員に対して支援することができる。具体的には、自車両の周辺空間における物体状態を表して物体同士の位置関係を定義する周辺空間マップの取得によれば、同空間のうち自車両の走行可能な領域が高精度に認識され得る。故に、踏切における自車両の進行可否は、周辺空間マップに基づくことで、精確に判定され得る。しかも、進行可と判定された場合に乗員による自車両の操舵は、踏切において自車両を案内するガイドとして、周辺空間マップに基づき生成されるガイドに従うことで、精確に支援され得る。これらによれば、踏切において乗員の安心及び安全を確保することが可能となる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第一実施形態による運転支援装置を示すブロック図である。 図2は、第一実施形態による運転支援装置の周辺環境認識センサについて説明するための模式図であり、 図3は、第一実施形態による周辺空間及び周辺空間マップについて説明するための模式図であり、 図4は、第一実施形態による周辺空間及び周辺空間マップについて説明するための模式図であり、 図5は、第一実施形態により解決される懸念課題を説明するための模式図であり、 図6は、第一実施形態による運転支援装置の運転支援フローを示すフローチャートであり、 図7は、第一実施形態による運転支援装置の作動を説明するための模式図であり、 図8は、第一実施形態による運転支援装置の作動を説明するための模式図であり、 図9は、第一実施形態による運転支援装置の作動を説明するための模式図であり、 図10は、第一実施形態による運転支援装置の作動を説明するための模式図であり、 図11は、第一実施形態による運転支援装置の作動を説明するための模式図であり、 図12は、本開示の第二実施形態による運転支援装置の作動を説明するための模式図であり、 図13は、第二実施形態による運転支援装置の作動を説明するための模式図であり、 図14は、第二実施形態による運転支援装置の運転支援フローを示すフローチャートであり、 図15は、本開示の第三実施形態による運転支援装置の作動を説明するための模式図であり、 図16は、第三実施形態による運転支援装置の運転支援フローを示すフローチャートであり、 図17は、本開示の変形例の周辺環境認識センサについて説明するための模式図であり、 図18は、変形例の周辺環境認識センサについて説明するための模式図であり、 図19は、変形例の周辺環境認識センサについて説明するための模式図である。
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素について、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
 (第一実施形態)
 本開示の第一実施形態において図1に示す運転支援装置1は、車両2に適用されることで、乗員の運転を支援する。尚、以下では、運転支援装置1の適用される車両2を、自車両2という。
 自車両2には、周辺環境を認識可能とするために、周辺環境認識センサ3が搭載されている。周辺環境認識センサ3は、図2及び図3,4に示す如き自車両2の周辺空間4にて存在する物体の状態を、視野角θで決まる検知範囲内にて検知する。ここで、周辺環境認識センサ3により検知される物体状態とは、例えば周辺空間4における物体の距離、方位、それら距離及び方位を含む位置、並びにサイズのうち、少なくとも一種類である。そこで周辺環境認識センサ3としては、LIDAR(レーザレーダともいう)、カメラ(例えばステレオカメラ)、及び電波レーダ(例えばミリ波レーダ)等のうち、少なくとも一種類が自車両2に搭載されているとよい。
 図1に示すように自車両2に搭載される運転支援装置1は、マイクロコンピュータを主体としたECUの少なくとも一つから、構成されている。運転支援装置1は、上述した周辺環境認識センサ3の検知情報と、例えばCAN(登録商標)等の車内ネットワーク5上にて処理される車速及び操舵角等といった車両関連情報とを組み合わせることで、周辺空間4における物体状態を図3,4に示す如く表した周辺空間マップ6を、取得する。即ち周辺空間マップ6は、周辺空間4に存在する物体の距離、方位、それら距離及び方位を含む位置、並びにサイズのうち、少なくとも一種類を表す二次元又は三次元のマッピングデータとして取得される。これにより周辺空間マップ6は、自車両2を中心(即ち、図3,4の周辺空間マップにおける0m且つ0°の原点)とした種々の物体同士の位置関係を、定義したものとなる。ここで特に、自車両2における周辺環境認識センサ3の設置位置が予め把握されていれば、周辺空間マップ6内での移動に伴う自車両2の最外縁の予定軌道は予測的に算出可能となるので、自車両2を中心とした物体との相対位置関係は精確に定義され得る。故に、周辺空間マップ6に基づくことで運転支援装置1は、周辺空間4のうち自車両2が走行可能な領域と、同空間4のうち自車両2が走行不可の領域とを、高精度に識別することが可能となる。
 尚、図3の周辺空間マップでは、障害物となる物体の存在確率が低いことで自車両2の走行が可能となる領域は白色にて図示されているのに対し、同確率が高いことで自車両2の走行が不可となる領域は灰色から黒色にて図示されている。但し、図4の周辺空間マップでは、図3の周辺空間マップと同様に図示されている走行可能領域に対して、走行不可領域の図示が障害物の存在箇所を除いて省略されている。
 図5に示すように、左側通行環境の交差点8にて左折しようとする左折シーンの自車両2では、同車両2の内輪差に起因して、周辺空間4のうち左側に存在する例えば壁等の構造物4aと接触する事態が、懸念される。また図示はしないが、左側通行環境の交差点8にて左折しようとする左折シーンの自車両2では、後方から同車両2の左側に近づいてきた例えば自転車又は歩行者等の移動体を巻き込む事態が、懸念される。さらにこれらの懸念は、右側通行環境の交差点8にて右折しようとする右折シーンの自車両2でも、右側の構造物4a又は右側の移動体に対して、同様に生じる。ここで、左側通行環境の交差点8における左折と右側通行環境の交差点8における右折とは、そうした懸念のあるターンとして、通行側ターンと称され得る。そこで、第一実施形態による自車両2においては、左側通行環境の交差点8における左折シーン又は右側通行環境の交差点8における右折シーンが、通行側ターンシーンとして定義される。
 上述した懸念に対して運転支援装置1は、周辺空間マップ6を活用した運転支援フローにより、安全な進行可否及び経路の判断、並びに自車両2に対する通行側ターンの停止判断を正しく行うことが、可能となる。具体的に図1に示す運転支援装置1は、メモリ1aに記憶のコンピュータプログラムをプロセッサ1bにより実行することで、図6に示す運転支援フローを機能的に実現する。尚、運転支援フローは、自車両2に設けられたパワースイッチのオン操作に応じて開始され、同スイッチのオフ操作に応じて終了する。また、運転支援フロー中の「S」とは、各ステップを意味する。
 S101では、自車両2の運転シーンが運転支援を必要とする支援対象シーンであるか否かを、判定する。第一実施形態の支援対象シーンは、上述した交差点8での通行側ターンシーンに予設定されている。そこでS101では、自車両2の車速が低速(例えば10km/h以下)の状況下、自車両2が交差点8付近での通行側ターンの予定状況にあり、且つ自車両2の通行側に障害物としての構造物4a又は移動体が検知等によって認識される運転シーンを、支援対象シーンであると判定する。このとき通行側ターンの予定状況は、例えば方向指示器(ウインカーともいう)に対する乗員の通行側ターン時操作、ステアリングハンドルに対する乗員の通行側ターン時操作、及びナビゲーション装置といった地図情報提供装置からの通行側ターン予定情報の入力等のうち、少なくとも一種類から認識可能である。こうしたS101にて否定判定が下される間は、S101が繰り返し実行される一方、S101にて肯定判定が下されると、S102へ移行する。
 S102では、周辺環境認識センサ3の検知情報と車内ネットワーク5上の車両関連情報とに基づき周辺空間マップ6を取得して、メモリ1aに記憶する。このとき周辺空間マップ6は、処理タイミング毎に独立した瞬時情報に基づき取得されてもよいが、当該瞬時情報が時系列的に蓄積されてなる時系列データに基づき取得されるとさらによい。ここで、周辺空間4には静止物に限らず移動体も含まれることとなるので、そうした移動体に対する検知確度等の認識確度は瞬時情報の場合よりも時系列データの場合に高くなる。また時系列データの場合には、処理タイミング毎に周辺環境認識センサ3の検知情報が車両関連情報により補正されてから蓄積されていくことで、静止物でも移動体でも同一物体の同定が可能となる。故に周辺空間マップ6は、時系列データを用いた場合には同一物体の同定結果を反映するように逐次更新されることで、時間連続性又は空間連続性を担保し得るのである。
 こうしたS102に続くS103では、交差点8での通行側ターンシーンにおける自車両2の進行可否を、判定する。このとき、交差点8での通行側ターンシーンにおいて構造物4aへの接触と移動体の巻き込みとがいずれも予測されない場合には、自車両2は進行可との判定が下される。一方、交差点8での通行側ターンシーンにおいて構造物4aへの接触と移動体の巻き込みとのうち少なくとも一方が生じると予測される場合には、自車両2は進行不可との判定が下される。これらのことから進行可否の判定は、S102により取得されてメモリ1aに記憶の周辺空間マップ6と、周辺環境認識センサ3による検知情報と、車内ネットワーク5上の車両関連情報とのうち、少なくとも一つに基づき実行される。ここで特に、後方から近づいてくる移動体の検知には、周辺空間4のうち後方環境を認識する周辺環境認識センサ3が自車両2に搭載されているとよい。
 S103にて進行可との判定が下された場合には、S104,S105を順次実行する。まずS104では、交差点8での通行側ターンシーンにおいて自車両2を案内するガイド7を、図4の周辺空間マップ6に基づき生成する。このときガイド7は、S102により取得されてメモリ1aに記憶の周辺空間マップ6のうち操舵支援の必要範囲において、自車両2が走行可能な予定軌道を表すように、生成される。また続くS105では、S104にて生成されたガイド7に従って、乗員による自車両2の操舵を交差点8での通行側ターンシーンにおいて支援する。このとき乗員へのガイド7の提示方法(換言すれば出力方法)としては、次の三つの態様のうちいずれかが採用される。
 ガイド7の一態様による提示方法では、図7,8に示すように、あたかも雪道を走るときの轍(わだち)の如く機能する電子轍70により、自車両2における乗員の操舵が直接的に支援される。この提示方法では、自車両2の今から通るべき経路となるガイド7に沿って電子轍70が設定されることで、ステアリングハンドルには図8の如き反力Fが与えられる。ここで特に第一実施形態の反力Fは、周辺空間4のうち交差点8にて接触懸念の構造物4a又は巻き込み懸念の移動体へと近づくほど増大するように、与えられる。こうしたことから乗員は、ガイド7を外れるような操舵を行うと、ステアリングハンドルを通じて反力Fを受けることになるので、危険な状況には陥らないように支援され得る。
 別態様による提示方法では、図9に示すように、ガイド7と自車両2の位置とが例えばメータ等の表示装置71に画像表示されることで、当該ガイド7に自車両2がならうように乗員の操舵が間接的に支援される。この提示方法では、自車両2の今から通るべき経路となるガイド7を模した画像7aが表示されるのに対して、自車両2を模した画像2aの相対位置も表示されることになるので、乗員はガイド7上をなぞるように自車両2を操舵することで、危険な状況には陥らないように支援され得る。
 さらに別態様による提示方法は、図10に示すようにメータ72に配置されて実像表示されるランプ73、又は図11に示すようにヘッドアップディスプレイ(HUD)の表示領域74に虚像表示されるランプ73を、ガイド7として機能させる。具体的には、ランプ73の点灯又は点滅するパターンにより、操作すべきステアリングハンドルの操舵方向が指示されることで、当該パターンに自車両2がならうように乗員の操舵が間接的に支援される。この提示方法では、乗員はランプ73の点灯又は点滅するパターンに合わせてステアリングハンドルを操舵することで、自車両2の今から通るべき経路となるガイド7に沿って自車両2を進行させることになるので、危険な状況には陥らないように支援され得る。
 尚、S105によりガイド7に従って乗員の操舵を支援する提示方法としては、上述した三つ態様に限られるものではなく、それら態様のうち少なくとも二つずつを組み合わせることの他、例えば音声出力等によって、実現されてもよい。またS105は、ガイド7の生成範囲(即ち、操舵支援の必要範囲)のうち一部又は全域にて操舵支援が完了するまで、継続して実行されることで、当該実行後にはS101へと戻る。
 以上、S103にて進行可との判定が下された場合に当該進行可の状況を乗員に提示するS104,S105について、説明した。これに対して以下では図6に示すように、S103にて進行不可との判定が下された場合に実行されるS106について、説明する。
 S106では、自車両2の停止を指示する自車両停止指示と、ガイド7の生成を停止するガイド生成停止とのうち、少なくとも一方を実行することで、これ以上は自車両2が進行しないように、進行不可の状況を乗員へと提示する。これによっても乗員は、危険な状況には陥らないように支援され得る。尚、このS106の実行後には、S101へ戻る。
 このように第一実施形態では、S102を実行する運転支援装置1の機能部分が「マップ取得ユニット」に相当し、S103を実行する運転支援装置1の機能部分が「進行判定ユニット」に相当する。また第一実施形態では、S104を実行する運転支援装置1の機能部分が「ガイド生成ユニット」に相当し、S105を実行する運転支援装置1の機能部分が「操舵支援ユニット」に相当し、S106を実行する運転支援装置1の機能部分が「停止ユニット」に相当する。
 ここまで説明した第一実施形態によると、交差点8での通行側ターンシーンにおける自車両2の進行及び操舵を、乗員に対して支援することができる。具体的には、自車両2の周辺空間4における物体状態を表して物体同士の位置関係を定義する周辺空間マップ6の取得によれば、同空間4のうち自車両2の走行可能な領域が高精度に認識され得る。故に、交差点8での通行側ターンシーンにおける自車両2の進行可否は、周辺空間マップ6に基づくことで、精確に判定され得る。しかも、進行可と判定された場合に乗員による自車両2の操舵は、交差点8での通行側ターンシーンにおいて自車両2を案内するガイド7として、周辺空間マップ6に基づき生成されるガイド7に従うことで、精確に支援され得る。
 このとき特に、運転に対する苦手意識や、恐怖の体験又は経験を持つ乗員に対しては、自車両2がこれから通る経路のガイド7を提示することで、乗員の判断及び操作を支援し得る。故に、苦手意識を解消して事故を未然に防止したり、恐怖の体験又は経験に対して安心感を与えることができる。以上のことから第一実施形態によれば、交差点8での通行側ターンシーンにおいて乗員の安心及び安全を確保することが可能となる。
 (第二実施形態)
 第二実施形態は、第一実施形態の変形例である。
 図12に示すように、交差点8を直進しようとする直進シーンの自車両2では、交差点8の前方にて先行他車両が渋滞していることで、同車両2の進入可能な間隔Dがあるか否か、乗員には判断に迷う事態が懸念される。また図13に示すように、踏切9を直進しようとする直進シーンの自車両2では、踏切9の前方にて他車両が渋滞していることで、同車両2の進入可能な間隔Dがあるか否か、乗員には判断に迷う事態が懸念される。
 このような懸念に対して図14に示すように、第二実施形態による運転支援フローのS101に代わるS2101では、上述した交差点8及び踏切9の各々での直進シーンに、支援対象シーンが予設定されている。そこでS2101では、自車両2の車速が低速(例えば10km/h以下)の状況下、自車両2が交差点8付近又は踏切9付近での移動状況にあり、且つ自車両2の前方に障害物としての先行他車両が検知等によって認識される運転シーンを、支援対象シーンであると判定する。このとき自車両2の移動状況は、例えばナビゲーション装置といった地図情報提供装置からの移動予定情報の入力等から、認識可能である。
 こうしたS2101の実行後において運転支援フローのS103に代わるS2103では、周辺空間マップ6にて先行他車両の位置と、交差点8の通過側端の位置又は踏切9の通過側遮断機の位置とから、それら位置同士の図12,13に示す如き間隔(即ち、直線距離)Dを算出する。これによりS2103では、算出した間隔Dに基づき、自車両2が停止可能な停車スペースの有無を判断することで、交差点8又は踏切9での直進シーンにおける進行可否を判定する。
 直進シーンにおいて交差点8又は踏切9の前方に十分な間隔Dを空ける停車スペースが存在することで、S2103にて進行可との判定が下された場合には、運転支援フローのS104,S105に代わるS2104,S2105を順次実行する。まずS2104では、交差点8又は踏切9での直進シーンにおいて自車両2を案内するように、ガイド7を生成する。また続くS2105では、S2104にて生成されたガイド7に従って、乗員による自車両2の操舵を交差点8又は踏切9での直進シーンにおいて支援する。
 一方、直進シーンにおいて交差点8又は踏切9の前方には十分な間隔Dを空ける停車スペースが存在しないことで、S2103では進行不可との判定が下されると、運転支援フローのS106に代わるS2106では、進行不可の状況提示が実行される。その結果、自車両停止指示とガイド生成停止とのうち少なくとも一方が実行されることになるので、乗員が危険な状況には陥らないように支援され得る。尚、以上説明した以外の点で第二実施形態による運転支援フローは、第一実施形態による運転支援フローと実質同一である。
 このように第二実施形態では、第一実施形態と同様にS102を実行する運転支援装置1の機能部分が「マップ取得ユニット」に相当するが、「進行判定ユニット」にはS2103を実行する運転支援装置1の機能部分が相当する。また第二実施形態では、S2104を実行する運転支援装置1の機能部分が「ガイド生成ユニット」に相当し、S2105を実行する運転支援装置1の機能部分が「操舵支援ユニット」に相当し、S2106を実行する運転支援装置1の機能部分が「停止ユニット」に相当する。
 ここまで説明した第二実施形態によると、交差点8及び踏切9の各々での直進シーンにおける自車両2の進行及び操舵を、乗員に対して支援することができる。具体的には、自車両2の周辺空間4における物体状態を表して物体同士の位置関係を定義する周辺空間マップ6の取得によれば、同空間4のうち自車両2の走行可能な領域が高精度に認識され得る。故に、交差点8及び踏切9の各々での直進シーンにおける自車両2の進行可否は、周辺空間マップ6に基づくことで、精確に判定され得る。しかも、進行可と判定された場合に乗員による自車両2の操舵は、交差点8及び踏切9の各々での直進シーンにおいて自車両2を案内するガイド7として、周辺空間マップ6に基づき生成されるガイド7に従うことで、精確に支援され得る。これらのことから第二実施形態によれば、交差点8及び踏切9の各々での直進シーンにおいて乗員の安心及び安全を確保することが可能となる。
 (第三実施形態)
 第三実施形態は、第一実施形態の変形例である。
 図15に示すように、左側通行環境の交差点8を右折しようとする右折シーンの自車両2では、右折先の道路にて先行他車両が渋滞していることで、同車両2の進入可能な間隔Dがあるか否か、乗員には判断に迷う事態が懸念される。またこの懸念は、右側通行環境の交差点8にて左折しようとする左折シーンの自車両2でも、同様に生じる。ここで、左側通行環境の交差点8における右折と右側通行環境の交差点8における左折とは、そうした懸念のあるターンとして、第一実施形態で説明した通行側ターンに対する逆側ターンと称され得る。そこで、第三実施形態による自車両2においては、左側通行環境の交差点8における右折シーン又は右側通行環境の交差点8における左折シーンが、逆側ターンシーンとして定義される。
 このような懸念に対して図16に示すように、第三実施形態による運転支援フローのS101に代わるS3101では、上述した交差点8での逆側ターンシーンに、支援対象シーンが予設定されている。そこでS3101では、自車両2の車速が低速(例えば10km/h以下)の状況下、自車両2が交差点8付近での逆側ターンの予定状況にあり、且つ自車両2の逆側ターン先に障害物としての先行他車両が検知等によって認識される運転シーンを、支援対象シーンであると判定する。このとき逆側ターンの予定状況は、例えば方向指示器(ウインカーともいう)に対する乗員の逆側ターン時操作、ステアリングハンドルに対する乗員の逆側ターン時操作、及びナビゲーション装置といった地図情報提供装置からの逆側ターン予定情報の入力等のうち、少なくとも一種類から認識可能である。
 こうしたS3101の実行後において運転支援フローのS103に代わるS3103では、周辺空間マップ6にて先行他車両の位置と、交差点8における逆側ターン先の端の位置とから、それら位置同士の図15に示す如き間隔(即ち、直線距離)Dを算出する。これによりS3103では、算出した間隔Dに基づき、自車両が停止可能な停車スペースの有無を判断することで、交差点8での逆側ターンシーンにおける進行可否を判定する。
 逆側ターンシーンにおいて交差点8のターン先に十分な間隔Dを空ける停車スペースが存在することで、S3103にて進行可との判定が下された場合には、運転支援フローのS104,S105に代わるS3104,S3105を順次実行する。まずS3104では、交差点8での逆側ターンシーンにおいて自車両2を案内するように、ガイド7を生成する。また続くS3105では、S3104にて生成されたガイド7に従って、乗員による自車両2の操舵を交差点8での逆側ターンシーンにおいて支援する。
 一方、逆側ターンシーンにおいて交差点8のターン先には十分な間隔Dを空ける停車スペースが存在しないことで、S3103では進行不可との判定が下されると、運転支援フローのS106に代わるS3106では、進行不可の状況提示が実行される。その結果、自車両停止指示とガイド生成停止とのうち少なくとも一方が実行されることになるので、乗員が危険な状況には陥らないように支援され得る。尚、以上説明した以外の点で第三実施形態による運転支援フローは、第一実施形態による運転支援フローと実質同一である。
 このように第三実施形態では、第一実施形態と同様にS102を実行する運転支援装置1の機能部分が「マップ取得ユニット」に相当するが、「進行判定ユニット」にはS3103を実行する運転支援装置1の機能部分が相当する。また第三実施形態では、S3104を実行する運転支援装置1の機能部分が「ガイド生成ユニット」に相当し、S3105を実行する運転支援装置1の機能部分が「操舵支援ユニット」に相当し、S3106を実行する運転支援装置1の機能部分が「停止ユニット」に相当する。
 ここまで説明した第三実施形態によると、交差点8での逆側ターンシーンにおける自車両2の進行及び操舵を、乗員に対して支援することができる。具体的には、自車両2の周辺空間4における物体状態を表して物体同士の位置関係を定義する周辺空間マップ6の取得によれば、同空間4のうち自車両2の走行可能な領域が高精度に認識され得る。故に、交差点8での逆側ターンシーンにおける自車両2の進行可否は、周辺空間マップ6に基づくことで、精確に判定され得る。しかも、進行可と判定された場合に乗員による自車両2の操舵は、交差点8での逆側ターンシーンにおいて自車両2を案内するガイド7として、周辺空間マップ6に基づき生成されるガイド7に従うことで、精確に支援され得る。これらのことから第三実施形態によれば、交差点8での逆側ターンシーンにおいて乗員の安心及び安全を確保することが可能となる。
 (他の実施形態)
 以上、複数の実施形態について説明したが、本開示はそれらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
 変形例1による運転支援フローでは、S101により判定される支援対象シーンに、S2101による支援対象シーンが追加されていてもよい。この場合にS103,S104,S105,S106では、それぞれ対応するS2103,S2104,S2105,S2106が、必要に応じて実行される。
 変形例2による運転支援フローでは、S101により判定される支援対象シーンに、S2101,S3101の各々による支援対象シーンが追加されていてもよい。この場合にS103,S104,S105,S106では、それぞれ対応するS2103,S2104,S2105,S2106と、それぞれ対応するS3103,S3104,S3105,S3106とが、必要に応じて実行される。
 変形例3による運転支援フローでは、S2101により判定される支援対象シーンに、S3101による支援対象シーンが追加されていてもよい。この場合にS2103,S2104,S2105,S2106では、それぞれ対応するS3103,S3104,S3105,S3106が、必要に応じて実行される。
 変形例4による運転支援フローでは、S101により判定される支援対象シーンから、構造物4aへの接触と移動体の巻き込みとのうち一方が、外されていてもよい。変形例5による運転支援フローでは、S2101により判定される支援対象シーンから、交差点8での直進シーンと踏切9での直進シーンとのうち一方が、外されていてもよい。
 変形例6による運転支援フローのS103では、S3103での逆側ターンシーンに準じて、通行側ターンシーンの交差点8での通行側ターン先(即ち左側走行環境では左折先、また右側走行環境では右折先)に停車スペースがないことで、進行不可の判定が下されてもよい。この場合、交差点8の通行側ターン先には十分な間隔Dを空ける停車スペースが存在しないことでS106により実行される進行不可の状況提示として、自車両停止指示とガイド生成停止とのうち少なくとも一方が実行されることになるので、危険な状況には陥らないように乗員が支援され得る。
 変形例7による運転支援フローでは、S103,S2103,S3103とS104,S2104,S3104との順番が入れ替えられてもよい。この場合、S103,S2103,S3103にて進行可の判定が下されることで、S105,S2105,S3105が実行される。
 周辺環境認識センサ3としては、LIDAR、カメラ及びレーダが先の第一実施形態において例示されているが、変形例8の周辺環境認識センサ3には、例えばソナー等が追加されていてもよい。これは、自車両2が検知対象に近接した状況下、先に例示された周辺環境認識センサ3の単独によっては当該検知対象の自車両2に対する近接側端部が検知範囲外となった場合に、追加のソナー等を併用することで、自車両2を検知対象と接触又は衝突させないように乗員へと警告することが有効となるからである。
 具体的には、図17に示すように周辺環境認識センサ3の検知範囲を規定する視野角θには、限界(同図は0°<θ<180°の場合)がある。そのため、周辺空間4において自車両2が検知対象の障害物A,Bに距離L以内まで近接した場合、当該障害物A,Bの全体まで検知することが不能となる懸念がある。ここで距離Lは、自車両2の車幅W及びその余裕幅Δと、周辺環境認識センサ3の視野角θとを用いた計算式 L=[(W+Δ)/2]/[tan(θ/2)] にて表される。故に、計算式から予め想定可能な距離L以内まで自車両2が障害物A,Bに近接した場合には、変形例8によりソナー等で補うことが有効となるのである。
 また変形例8に代わる変形例9では、複数の周辺環境認識センサ3を図18に示す隣接状態に並列配置して、それぞれの視野角θの合計が180°となるように設定することで、自車両2から距離L以内でも障害物A,Bの全体を検知することが可能となる。あるいは変形例8に代わる変形例10では、複数の周辺環境認識センサ3を図19に示す離間状態に並列配置して、それぞれの視野角θの合計が180°を超えるように設定することで、自車両2から距離L以内でも障害物A,Bの全体を検知することが可能となる。
 本開示に記載されるフローチャート、あるいは、フローチャートの処理は、複数のユニット(あるいはステップと言及される)から構成され、各ユニットは、たとえば、S101と表現される。さらに、各ユニットは、複数のサブユニットに分割されることができる、一方、複数のユニットが合わさって一つのユニットにすることも可能である。さらに、このように構成される各ユニットは、サーキット、デバイス、モジュール、ミーンズとして言及されることができる。 
 また、上記の複数のユニットの各々あるいは組合わさったものは、(i) ハードウエアユニット(例えば、コンピュータ)と組み合わさったソフトウエアのユニットのみならず、(ii) ハードウエア(例えば、集積回路、配線論理回路)のユニットとして、関連する装置の機能を含みあるいは含まずに実現できる。さらに、ハードウエアのユニットは、マイクロコンピュータの内部に構成されることもできる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。

Claims (17)

  1.  自車両(2)において乗員の運転を支援する運転支援装置(1)であって、
     前記自車両の周辺空間(4)における物体状態を表して物体同士の位置関係を定義する周辺空間マップ(6)を、取得するマップ取得ユニット(S102)と、
     前記マップ取得ユニットにより取得された前記周辺空間マップに基づいて、交差点(8)における前記自車両の進行可否を判定する進行判定ユニット(S103,S2103,S3103)と、
     前記マップ取得ユニットにより取得された前記周辺空間マップに基づいて、前記自車両を前記交差点において案内するガイド(7)を、生成するガイド生成ユニット(S104,S2104,S3104)と、
     前記進行判定ユニットにより前記自車両は進行可と判定された場合に、前記ガイド生成ユニットにより生成された前記ガイドに従って、前記乗員による前記自車両の操舵を支援する操舵支援ユニット(S105,S2105,S3105)とを、備える運転支援装置。
  2.  左側通行環境の前記交差点での左折シーン又は右側通行環境の前記交差点での右折シーンを、通行側ターンシーンとして定義すると、
     前記進行判定ユニット(S103)は、前記交差点での前記通行側ターンシーンにおける前記自車両の進行可否を判定し、
     前記ガイド生成ユニット(S104)は、前記自車両を前記交差点での前記通行側ターンシーンにおいて案内する前記ガイドを、生成する請求項1に記載の運転支援装置。
  3.  前記交差点での前記通行側ターンシーンにおいて前記自車両の構造物(4a)への接触が予測されないことにより、前記進行判定ユニットが進行可の判定を下した場合には、前記ガイド生成ユニットが前記ガイドを生成する請求項2に記載の運転支援装置。
  4.  前記交差点での前記通行側ターンシーンにおいて前記接触が予測されることにより、前記進行判定ユニットが進行不可の判定を下した場合には、前記自車両の停止を指示する自車両停止指示と、前記ガイドの生成を停止するガイド生成停止とのうち、少なくとも一方を実行する停止ユニット(S106)を、さらに備える請求項3に記載の運転支援装置。
  5.  前記交差点での前記通行側ターンシーンにおいて前記自車両による移動体の巻き込みが予測されないことにより、前記進行判定ユニットが進行可の判定を下した場合には、前記ガイド生成ユニットが前記ガイドを生成する請求項2又は3に記載の運転支援装置。
  6.  前記交差点での前記通行側ターンシーンにおいて前記巻き込みが予測されることにより、前記進行判定ユニットが進行不可の判定を下した場合には、前記自車両の停止を指示する自車両停止指示と、前記ガイドの生成を停止するガイド生成停止とのうち、少なくとも一方を実行する停止ユニット(S106)を、さらに備える請求項5に記載の運転支援装置。
  7.  前記進行判定ユニット(S2103)は、前記交差点での直進シーンにおける前記自車両の進行可否を判定し、
     前記ガイド生成ユニット(S2104)は、前記自車両を前記交差点での前記直進シーンにおいて案内する前記ガイドを、生成する請求項1~3,5のいずれか一項に記載の運転支援装置。
  8.  前記交差点での前記直進シーンにおいて前記自車両の停止可能なスペースが存在することにより、前記進行判定ユニットが進行可の判定を下した場合には、前記ガイド生成ユニットが前記ガイドを生成する請求項7に記載の運転支援装置。
  9.  前記交差点での前記直進シーンにおいて前記スペースが存在しないことにより、前記進行判定ユニットが進行不可の判定を下した場合には、前記自車両の停止を指示する自車両停止指示と、前記ガイドの生成を停止するガイド生成停止とのうち、少なくとも一方を実行する停止ユニット(S2106)を、さらに備える請求項8に記載の運転支援装置。
  10.  左側通行環境の前記交差点での右折シーン又は右側通行環境の前記交差点での左折シーンを、逆側ターンシーンとして定義すると、
     前記進行判定ユニット(S3103)は、前記交差点での前記逆側ターンシーンにおける前記自車両の進行可否を判定し、
     前記ガイド生成ユニット(S3104)は、前記自車両を前記交差点での前記逆側ターンシーンにおいて案内する前記ガイドを、生成する請求項1~3,5,7,8のいずれか一項に記載の運転支援装置。
  11.  前記交差点での前記逆側ターンシーンにおいて前記自車両の停止可能なスペースが存在することにより、前記進行判定ユニットが進行可の判定を下した場合には、前記ガイド生成ユニットが前記ガイドを生成する請求項10に記載の運転支援装置。
  12.  前記交差点での前記逆側ターンシーンにおいて前記スペースが存在しないことにより、前記進行判定ユニットが進行不可の判定を下した場合には、前記自車両の停止を指示する自車両停止指示と、前記ガイドの生成を停止するガイド生成停止とのうち、少なくとも一方を実行する停止ユニット(S3106)を、さらに備える請求項11に記載の運転支援装置。
  13.  前記進行判定ユニット(S2103)は、前記交差点及び踏切(9)の各々における前記自車両の進行可否を判定し、
     前記ガイド生成ユニット(S2104)は、前記自車両を前記交差点及び前記踏切の各々において案内する前記ガイドを、生成する請求項1~3,5,7,8,10,11のいずれか一項に記載の運転支援装置。
  14.  自車両(2)において乗員の運転を支援する運転支援装置(1)であって、
     前記自車両の周辺空間(4)における物体状態を表して物体同士の位置関係を定義する周辺空間マップ(6)を、取得するマップ取得ユニット(S102)と、
     前記マップ取得ユニットにより取得された前記周辺空間マップに基づいて、踏切(9)における前記自車両の進行可否を判定する進行判定ユニット(S2103)と、
     前記マップ取得ユニットにより取得された前記周辺空間マップに基づいて、前記自車両を前記踏切において案内するガイド(7)を、生成するガイド生成ユニット(S2104)と、
     前記進行判定ユニットにより前記自車両は進行可と判定された場合に、前記ガイド生成ユニットにより生成された前記ガイドに従って、前記乗員による前記自車両の操舵を支援する操舵支援ユニット(S2105)とを、備える運転支援装置。
  15.  前記進行判定ユニット(S2103)は、前記踏切での直進シーンにおける前記自車両の進行可否を判定し、
     前記ガイド生成ユニット(S2104)は、前記自車両を前記踏切での前記直進シーンにおいて案内する前記ガイドを、生成する請求項13又は14に記載の運転支援装置。
  16.  前記踏切での前記直進シーンにおいて前記自車両の停止可能なスペースが存在することにより、前記進行判定ユニットが進行可の判定を下した場合には、前記ガイド生成ユニットが前記ガイドを生成する請求項15に記載の運転支援装置。
  17.  前記踏切での前記直進シーンにおいて前記スペースが存在しないことにより、前記進行判定ユニットが進行不可の判定を下した場合には、前記自車両の停止を指示する自車両停止指示と、前記ガイドの生成を停止するガイド生成停止とのうち、少なくとも一方を実行する停止ユニット(S2106)を、さらに備える請求項16に記載の運転支援装置。
PCT/JP2018/005628 2017-03-21 2018-02-19 運転支援装置 WO2018173582A1 (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2017-054771 2017-03-21
JP2017054771 2017-03-21
JP2017-252524 2017-12-27
JP2017-252526 2017-12-27
JP2017252525A JP2018158711A (ja) 2017-03-21 2017-12-27 運転支援装置
JP2017-252523 2017-12-27
JP2017252526A JP6760255B2 (ja) 2017-03-21 2017-12-27 運転支援装置
JP2017-252525 2017-12-27
JP2017252524A JP6699648B2 (ja) 2017-03-21 2017-12-27 運転支援装置
JP2017252523A JP6699647B2 (ja) 2017-03-21 2017-12-27 運転支援装置

Publications (1)

Publication Number Publication Date
WO2018173582A1 true WO2018173582A1 (ja) 2018-09-27

Family

ID=63584352

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2018/005626 WO2018173580A1 (ja) 2017-03-21 2018-02-19 運転支援装置
PCT/JP2018/005625 WO2018173579A1 (ja) 2017-03-21 2018-02-19 運転支援装置
PCT/JP2018/005628 WO2018173582A1 (ja) 2017-03-21 2018-02-19 運転支援装置
PCT/JP2018/005627 WO2018173581A1 (ja) 2017-03-21 2018-02-19 運転支援装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/005626 WO2018173580A1 (ja) 2017-03-21 2018-02-19 運転支援装置
PCT/JP2018/005625 WO2018173579A1 (ja) 2017-03-21 2018-02-19 運転支援装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005627 WO2018173581A1 (ja) 2017-03-21 2018-02-19 運転支援装置

Country Status (2)

Country Link
US (1) US11230320B2 (ja)
WO (4) WO2018173580A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11520340B2 (en) * 2017-08-10 2022-12-06 Nissan Motor Co., Ltd. Traffic lane information management method, running control method, and traffic lane information management device
JP7110635B2 (ja) * 2018-03-19 2022-08-02 株式会社デンソー 制御装置
EP3950453B1 (en) 2019-03-27 2024-01-24 NISSAN MOTOR Co., Ltd. Driving assistance method and driving assistance device
CN114730526A (zh) 2019-11-28 2022-07-08 三菱电机株式会社 物体识别装置、物体识别方法及物体识别程序
CN111137280B (zh) * 2020-03-06 2021-05-04 北京百度网讯科技有限公司 自主泊车的控制方法、装置、设备及存储介质
CN113808409B (zh) * 2020-06-17 2023-02-10 华为技术有限公司 一种道路安全监控的方法、系统和计算机设备
US20220315047A1 (en) * 2021-03-30 2022-10-06 Honda Research Institute Europe Gmbh Method, system and vehicle with an uncertainty-based lane positioning control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352397A (ja) * 2001-05-29 2002-12-06 Fuji Heavy Ind Ltd 車両用運転支援装置
JP2005035498A (ja) * 2003-07-18 2005-02-10 Toyota Motor Corp 車両用走行支援装置
JP2006268414A (ja) * 2005-03-24 2006-10-05 Fujitsu Ten Ltd 運転支援装置
JP2009031968A (ja) * 2007-07-26 2009-02-12 Denso Corp 交差点安全運転支援装置
JP2012226618A (ja) * 2011-04-20 2012-11-15 Mitsubishi Motors Corp 運転支援装置
JP2013241088A (ja) * 2012-05-21 2013-12-05 Toyota Motor Corp 駐車支援装置
JP2015197800A (ja) * 2014-04-01 2015-11-09 日野自動車株式会社 運転支援装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803021B2 (ja) * 2000-10-02 2006-08-02 松下電器産業株式会社 運転支援装置
JP4089674B2 (ja) * 2004-09-29 2008-05-28 株式会社デンソー 接触脱輪回避ナビゲーションシステム
JP5012570B2 (ja) * 2008-02-29 2012-08-29 トヨタ自動車株式会社 車線維持支援装置、車線維持支援方法
JP5027756B2 (ja) * 2008-08-06 2012-09-19 本田技研工業株式会社 運転支援装置
JP2010250542A (ja) 2009-04-15 2010-11-04 Toyota Motor Corp 運転支援装置
JP5556077B2 (ja) * 2009-07-28 2014-07-23 日産自動車株式会社 走行支援装置
MX336660B (es) * 2010-06-11 2016-01-27 Nissan Motor Aparato y metodo de asistencia de aparcamiento.
JP5699670B2 (ja) * 2011-02-18 2015-04-15 日産自動車株式会社 走行経路生成装置、及び走行経路生成方法
JP2014069721A (ja) * 2012-09-28 2014-04-21 Aisin Seiki Co Ltd 周辺監視装置、制御方法、及びプログラム
JP5938334B2 (ja) * 2012-11-12 2016-06-22 株式会社日本自動車部品総合研究所 駐車支援装置
JP6167846B2 (ja) 2013-10-25 2017-07-26 トヨタ自動車株式会社 駐車支援装置
TW201524813A (zh) * 2013-12-27 2015-07-01 Hon Hai Prec Ind Co Ltd 車輛輔助系統及車輛輔助方法
JP6512004B2 (ja) 2015-07-13 2019-05-15 日産自動車株式会社 駐車支援装置及び駐車支援方法
JP6573795B2 (ja) * 2015-07-31 2019-09-11 アイシン精機株式会社 駐車支援装置、方法及びプログラム
JP2017052486A (ja) * 2015-09-11 2017-03-16 株式会社ジェイテクト ステアリング装置
JP6573526B2 (ja) 2015-10-21 2019-09-11 株式会社Subaru 車両の運転支援制御装置
JP2017097695A (ja) 2015-11-26 2017-06-01 三菱電機株式会社 車両停車誘導システムおよび車両停車誘導方法
US10528826B2 (en) * 2016-05-06 2020-01-07 GM Global Technology Operations LLC Vehicle guidance system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352397A (ja) * 2001-05-29 2002-12-06 Fuji Heavy Ind Ltd 車両用運転支援装置
JP2005035498A (ja) * 2003-07-18 2005-02-10 Toyota Motor Corp 車両用走行支援装置
JP2006268414A (ja) * 2005-03-24 2006-10-05 Fujitsu Ten Ltd 運転支援装置
JP2009031968A (ja) * 2007-07-26 2009-02-12 Denso Corp 交差点安全運転支援装置
JP2012226618A (ja) * 2011-04-20 2012-11-15 Mitsubishi Motors Corp 運転支援装置
JP2013241088A (ja) * 2012-05-21 2013-12-05 Toyota Motor Corp 駐車支援装置
JP2015197800A (ja) * 2014-04-01 2015-11-09 日野自動車株式会社 運転支援装置

Also Published As

Publication number Publication date
WO2018173579A1 (ja) 2018-09-27
WO2018173581A1 (ja) 2018-09-27
WO2018173580A1 (ja) 2018-09-27
US11230320B2 (en) 2022-01-25
US20200010118A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP2018158711A (ja) 運転支援装置
WO2018173582A1 (ja) 運転支援装置
US11163310B2 (en) Vehicle control device
KR102254750B1 (ko) 회전들을 위한 자율 차량들의 준비
JP6365390B2 (ja) 車線変更支援装置
JP6729220B2 (ja) 車両用運転支援装置
US9649936B2 (en) In-vehicle device, control method of in-vehicle device, and computer-readable storage medium
JP7210357B2 (ja) 車両制御装置、車両制御方法、及びプログラム
WO2017060978A1 (ja) 自動運転制御装置および自動運転制御方法
WO2018216333A1 (ja) 電子制御装置、車両制御方法、及び車両制御用プログラム
JPWO2018105058A1 (ja) 車両制御装置
WO2017159092A1 (ja) 車載装置
JP6985176B2 (ja) 車両制御装置
JP2019106050A (ja) 運転支援装置
JP2020113128A (ja) 走行制御装置、走行制御方法およびプログラム
KR102611337B1 (ko) 차량의 ar 디스플레이 장치 및 그것의 동작방법
CN112874513A (zh) 驾驶支援装置
CN109969191B (zh) 驾驶辅助系统和方法
WO2020012212A1 (ja) 走行支援方法及び走行支援装置
CN111469845B (zh) 车辆的控制系统、车辆的控制方法以及介质
CN111316339A (zh) 车辆控制装置
AU2019348095A1 (en) Prompting method and system for vehicle, and vehicle
US10957197B2 (en) Vehicle driving assistance system
JP2021149319A (ja) 表示制御装置、表示制御方法およびプログラム
JP2020111090A (ja) 車両の制御システム、車両の制御方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771274

Country of ref document: EP

Kind code of ref document: A1