WO2018173302A1 - 制御装置、および、ステアリング装置 - Google Patents

制御装置、および、ステアリング装置 Download PDF

Info

Publication number
WO2018173302A1
WO2018173302A1 PCT/JP2017/017246 JP2017017246W WO2018173302A1 WO 2018173302 A1 WO2018173302 A1 WO 2018173302A1 JP 2017017246 W JP2017017246 W JP 2017017246W WO 2018173302 A1 WO2018173302 A1 WO 2018173302A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
unit
control amount
control
torque
Prior art date
Application number
PCT/JP2017/017246
Other languages
English (en)
French (fr)
Inventor
研 一色
詠之 石丸
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Priority to DE112017007308.1T priority Critical patent/DE112017007308T5/de
Priority to CN201780086414.2A priority patent/CN110312655B/zh
Publication of WO2018173302A1 publication Critical patent/WO2018173302A1/ja
Priority to US16/538,360 priority patent/US11254353B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque

Definitions

  • the present invention relates to a control device that applies assist torque or reaction torque to a steering member, and a steering device.
  • a control device that applies an assist torque or a reaction torque to the steering member, it is preferable to apply an assist torque or a reaction torque that is less uncomfortable for the driver of the vehicle to the steering member.
  • An object of the present invention is to apply an assist torque or a reaction torque which is less uncomfortable for a driver in a control device which applies an assist torque or a reaction torque to a steering member.
  • the present invention is a control device for applying assist torque or reaction torque to a steering member operated by a driver, and refers to the steering torque applied to the steering member.
  • a control amount calculation unit that calculates a control amount for controlling the magnitude of the assist torque or the reaction torque, a control amount calculated by the control amount calculation unit, a roll rate of the vehicle body, and a steering angle of the steering member
  • the control amount correction unit corrects with reference to the steering angle speed of the steering member.
  • the present invention is a steering apparatus including a steering member that a driver performs steering operation, and a steering control unit that applies an assist torque or a reaction torque to the steering member,
  • the steering control unit refers to a steering torque applied to the steering member and calculates a control amount for controlling the magnitude of the assist torque or the reaction torque, and a control amount calculating unit.
  • the control amount correction unit corrects the control amount calculated by referring to the roll rate of the vehicle body, the steering angle of the steering member, and the steering angle speed of the steering member.
  • FIG. 2 is a block diagram showing a schematic configuration of an ECU according to Embodiment 1 of the present invention. It is a block diagram showing an example of composition of a steering control part concerning Embodiment 1 of the present invention. It is a block diagram showing an example of composition of a suspension control part concerning Embodiment 1 of the present invention. It is a block diagram showing an example of composition of a pitch and roll rate calculation part at the time of acceleration / deceleration and turning concerning Embodiment 1 of the present invention.
  • Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail.
  • FIG. 1 is a view showing a schematic configuration of a vehicle 900 according to the present embodiment.
  • a vehicle 900 includes a suspension system (suspension) 100, a vehicle body 200, wheels 300, tires 310, a steering member 410, a steering shaft 420, a torque sensor 430, a steering angle sensor 440, a torque applying unit 460, and a rack.
  • a pinion mechanism 470, a rack shaft 480, an engine 500, an electronic control unit (ECU) (control device) 600, a power generation device 700, and a battery 800 are provided.
  • ECU electronice control unit
  • the wheel 300 on which the tire 310 is mounted is suspended on the vehicle body 200 by a suspension system 100. Since the vehicle 900 is a four-wheeled vehicle, four suspension devices 100, four wheels 300 and four tires 310 are provided.
  • the tires and wheels of the left front wheel, the right front wheel, the left rear wheel and the right rear wheel are respectively the tire 310A and the wheel 300A, the tire 310B and the wheel 300B, the tire 310C and the wheel 300C, the tire 310D and the wheel It is also called 300D.
  • the configurations attached to the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel will be represented by reference symbols “A”, “B”, “C” and “D”. There is.
  • the suspension system 100 includes a hydraulic shock absorber, an upper arm and a lower arm.
  • the hydraulic shock absorber also includes a solenoid valve that is a solenoid valve that adjusts the damping force generated by the hydraulic shock absorber.
  • the hydraulic shock absorber may use a solenoid valve other than the solenoid valve as the solenoid valve for adjusting the damping force.
  • a solenoid valve using an electromagnetic fluid may be provided as the solenoid valve.
  • a power generation device 700 is attached to the engine 500, and the power generated by the power generation device 700 is accumulated in the battery 800.
  • a steering member 410 operated by the driver is connected to one end of a steering shaft 420 so as to transmit torque, and the other end of the steering shaft 420 is connected to a rack and pinion mechanism 470.
  • the rack and pinion mechanism 470 is a mechanism for converting the rotation around the axis of the steering shaft 420 into displacement along the axial direction of the rack axis 480.
  • the wheels 300A and 300B are steered via the tie rods and knuckle arms.
  • the torque sensor 430 detects the steering torque applied to the steering shaft 420, in other words, the steering torque applied to the steering member 410, and provides the ECU 600 with a torque sensor signal indicating the detection result. More specifically, torque sensor 430 detects the torsion of a torsion bar provided in steering shaft 420, and outputs the detection result as a torque sensor signal.
  • a known sensor such as a Hall IC, an MR element, or a magnetostrictive torque sensor may be used.
  • the steering angle sensor 440 detects the steering angle of the steering member 410, and provides the detection result to the ECU 600.
  • the torque application unit 460 applies an assist torque or a reaction torque according to the steering control amount supplied from the ECU 600 to the steering shaft 420.
  • the torque application unit 460 includes a motor that generates an assist torque or a reaction torque according to a steering control amount, and a torque transmission mechanism that transmits the torque generated by the motor to the steering shaft 420.
  • control amount a current value, a duty ratio, an attenuation factor, an attenuation ratio etc. are mentioned as a specific example of the "control amount" in this specification.
  • the steering member 410, the steering shaft 420, the torque sensor 430, the steering angle sensor 440, the torque applying unit 460, the rack and pinion mechanism 470, the rack shaft 480, and the ECU 600 constitute a steering device according to the present embodiment.
  • to connect in a torque transmittable manner refers to being connected so that the rotation of one member causes the rotation of the other member, and, for example, one member and the other member Is integrally formed, the other member is fixed directly or indirectly to one member, and one member and the other member are interlocked via a joint member or the like At least including the case where it is connected.
  • the steering device in which the steering member 410 to the rack shaft 480 are always mechanically connected has been described as an example, but this does not limit the present embodiment, and the steering according to the present embodiment
  • the device may be, for example, a steer-by-wire steering device.
  • the matters described below in the present specification can also be applied to a steer-by-wire steering apparatus.
  • the ECU 600 centrally controls various electronic devices provided in the vehicle 900. More specifically, the ECU 600 controls the magnitude of the assist torque or the reaction torque to be applied to the steering shaft 420 by adjusting the steering control amount supplied to the torque application unit 460.
  • the ECU 600 controls the opening and closing of the solenoid valve by supplying a suspension control amount to the solenoid valve included in the hydraulic shock absorber included in the suspension device 100.
  • a power line for supplying drive power from the ECU 600 to the solenoid valve is provided.
  • the vehicle 900 is provided with a wheel speed sensor 320 provided for each wheel 300 to detect the wheel speed of each wheel 300, a lateral G sensor 330 for detecting a lateral acceleration of the vehicle 900, and a longitudinal acceleration of the vehicle 900 Front-rear G sensor 340, a yaw rate sensor 350 for detecting the yaw rate of the vehicle 900, an engine torque sensor 510 for detecting the torque generated by the engine 500, an engine speed sensor 520 for detecting the number of rotations of the engine 500, and a brake device A brake pressure sensor 530 is provided to detect the pressure applied to the brake fluid. The detection results of these various sensors are supplied to the ECU 600.
  • the vehicle 900 is an ABS (Antilock Brake System) that is a system for preventing wheel lock at the time of braking, TCS (Traction Control System) that suppresses idling of the wheel at the time of acceleration, etc.
  • the vehicle includes a brake apparatus capable of controlling VSA (Vehicle Stability Assist), which is a vehicle behavior stabilization control system having an automatic brake function for yaw moment control at the time of turning and a brake assist function.
  • VSA Vehicle Stability Assist
  • ABS, TCS, and VSA compare the wheel speed determined according to the estimated vehicle speed with the wheel speed detected by the wheel speed sensor 320, and the values of these two wheel speeds are predetermined values. If there is a difference, it is determined that the vehicle is in the slip state.
  • the ABS, TCS, and VSA stabilize the behavior of the vehicle 900 by performing optimal brake control and traction control according to the traveling state of the vehicle 900 through such processing.
  • the supply of the detection results by the various sensors described above to the ECU 600 and the transmission of the control signal from the ECU 600 to each unit are performed via a CAN (Controller Area Network) 370.
  • CAN Controller Area Network
  • FIG. 2 is a diagram showing a schematic configuration of the ECU 600. As shown in FIG.
  • the ECU 600 includes a steering control unit 610 and a suspension control unit 650.
  • the steering control unit 610 refers to various sensor detection results included in the CAN 370 to determine the magnitude of the steering control amount supplied to the torque applying unit 460.
  • the suspension control unit 650 refers to various sensor detection results included in the CAN 370, and determines the magnitude of the suspension control amount supplied to the solenoid valve included in the hydraulic shock absorber included in the suspension apparatus 100.
  • the roll rate value calculated by the suspension control unit 650 is supplied to the steering control unit 610, and is referenced to determine the magnitude of the steering control amount.
  • the roll rate value is configured to take “0” as a reference value when the inclination of the vehicle 900 does not change for a predetermined minute time, and represents the roll rate as a deviation from the reference value. It may be
  • the process of “determining the magnitude of the control amount” also includes the case where the magnitude of the control amount is set to zero, that is, the control amount is not supplied.
  • the steering control unit 610 and the suspension control unit 650 may be realized as separate ECUs. In such a configuration, the control described in the present specification is realized by the steering control unit 610 and the suspension control unit 650 communicating with each other using communication means.
  • FIG. 3 is a block diagram showing a configuration example of the steering control unit 610. As shown in FIG.
  • the steering control unit 610 includes a control amount calculation unit 611, a control amount correction unit 612, a ⁇ feedback unit 620, a gain calculation unit 630, and a multiplication unit 640.
  • the control amount calculation unit 611 refers to the steering torque supplied from the torque sensor 430, and calculates a control amount for controlling the magnitude of the assist torque or the reaction torque.
  • the control amount calculated by the control amount calculation unit 611 is corrected by the control amount correction unit 612 and then supplied to the torque application unit 460 as a steering control amount.
  • the ⁇ feedback unit 620 refers to the steering angle supplied from the steering angle sensor 440, the vehicle speed determined according to the wheel speed detected by the wheel speed sensor 320, and the steering torque supplied from the torque sensor 430, and performs correction control. Determine the value of the quantity.
  • the ⁇ feedback unit 620 includes, as one example, a target steering angle speed calculation unit 621, an actual steering angle speed calculation unit 622, a subtraction unit 623, and a correction control amount determination unit 624, as shown in FIG.
  • the target steering angle speed calculation unit 621 refers to the steering angle supplied from the steering angle sensor 440, the vehicle speed determined according to the wheel speed detected by the wheel speed sensor 320, and the steering torque supplied from the torque sensor 430. , Calculate the target steering angle speed.
  • the target steering angle speed calculation unit 621 is a target steering angle speed map, And the torque ratio map may be referred to.
  • the actual steering angle speed calculation unit 622 specifies the actual steering angle speed by calculating the time change of the steering angle supplied from the steering angle sensor 440.
  • the subtraction unit 623 subtracts the actual steering angle speed calculated by the actual steering angle speed calculation unit 622 from the target steering angle speed calculated by the target steering angle speed calculation unit 621, and the steering angle side deviation that is the result of subtraction. Are supplied to the correction control amount determination unit 624.
  • the correction control amount determination unit 624 determines the value of the correction control amount according to the steering angle side deviation. Although a specific determination method of the value of the correction control amount does not limit the present embodiment, in determining the value of the correction control amount, the correction control amount determination unit 624 sets the steering angle speed deviation correction control amount map. It can be a configuration to be referred to.
  • the gain calculation unit 630 refers to the steering angle supplied from the steering angle sensor 440 and the roll rate value supplied from the suspension control unit 650 by referring to the gain coefficient to be multiplied by the correction control amount calculated by the ⁇ feedback unit 620. ,calculate.
  • the gain calculation unit 630 is a cutback determination unit 631, a turning speed determination unit 632, a roll rate determination unit 633, a logical product calculation unit 634, a moving average unit 635, and a gain determination unit. It has 636.
  • the switchback determination unit 631 refers to the steering angle supplied from the steering angle sensor 440 and the steering angle speed calculated with reference to the steering angle to determine whether the steering member 410 is in the switchback state. Make a decision on When the steering member 410 is in the switchback state, the switchback determination unit 631 outputs “1” as the determination result, and otherwise outputs “0” as the determination result.
  • the vehicle 900 is provided with a steering angle speed sensor, and the turning back determination unit 631 refers to the steering angle supplied from the steering angle sensor 440 and the steering angle speed supplied from the steering angle speed sensor, and the steering member It may be configured to determine whether 410 is in the switchback state.
  • the determination processing of the switchback state by the switchback judging unit 631 is not limited to the above example.
  • the cutback determination unit 631 determines whether or not to be in the cutback state by referring to the torque sensor signal indicating the detection result of the torque sensor 430 and the rotation direction of the motor included in the torque application unit 460. Good. In this configuration, for example, when the sign of the torque sensor signal is different from the sign of the rotation direction of the motor, it may be determined that the switchback state is established.
  • the sign of the torque sensor signal for example, the sign of the torque sensor signal in the state where the torsion bar is twisted in the right rotation direction is plus, and the torque in the state where the torsion bar is twisted in the left rotation direction
  • the sign of the sensor signal may be negative.
  • the sign of the rotation direction of the motor is that when the torsion bar is twisted in the right rotation direction, the direction in which the torsion bar is untwisted is positive and the torsion bar is twisted in the left rotation direction.
  • the direction to eliminate the twist of the may be negative.
  • the steering speed determination unit 632 determines whether the steering angle speed or the absolute value thereof calculated with reference to the steering angle supplied from the steering angle sensor 440 is equal to or higher than a predetermined value.
  • the steering speed determination unit 632 outputs “1” as a determination result when the steering angle speed or the absolute value thereof is equal to or more than a predetermined value, and otherwise outputs “0” as a determination result.
  • the roll rate determination unit 633 determines whether the roll rate value supplied from the suspension control unit 650 or the absolute value thereof is less than a predetermined value.
  • the roll rate determination unit 633 outputs “1” as the determination result if the roll rate value or the absolute value thereof is less than a predetermined value, and outputs “0” as the determination result otherwise.
  • the logical product calculation unit 634 takes a logical product of the determination results from the return control unit 631, the steering speed determination unit 632, and the roll rate determination unit 633, and outputs the result. In other words, the logical product calculating unit 634 outputs “1” when all the determination results output by the switchback determination unit 631, the steering speed determination unit 632, and the roll rate determination unit 633 are “1”. Output, otherwise "0" is output.
  • the moving average unit 635 calculates a moving average of the output of the logical product calculating unit 634, and outputs the result. Note that a low pass filter may be used as the moving average unit 635.
  • the gain determination unit 636 determines a gain coefficient according to the output result of the moving average unit 635, and supplies the determined gain coefficient to the multiplication unit 640. More specifically, when the value after moving average by the moving average unit 635 is larger than 0, a gain coefficient larger than 1 is determined. Furthermore, the gain determination unit 636 sets the gain coefficient larger as the value after moving average by the moving average unit 635 is larger. In other words, the gain determination unit sets the gain coefficient such that the reaction force applied to the steering member 410 increases as the moving average unit 635 increases the value after moving average.
  • the multiplication unit 640 supplies the correction control amount after the gain to the control amount correction unit 612 by multiplying the correction control amount determined by the correction control amount determination unit 624 by the gain coefficient determined by the gain determination unit 636.
  • the control amount correction unit 612 generates a steering control amount by adding the post-gain correction control amount supplied from the multiplication unit 640 to the control amount calculated by the control amount calculation unit 611.
  • the control amount correction unit 612 refers to the control amount calculated by the control amount calculation unit 611 as the roll rate of the vehicle body 200, the steering angle of the steering member 410, and the steering angle speed of the steering member 410. to correct.
  • control amount correction unit 612 refers to the control rate calculated by the control amount calculation unit 611 as the roll rate of the vehicle body 200, the steering angle of the steering member 410, and the steering angle speed of the steering member 410. By performing the correction, it is possible to apply an assist torque or a reaction torque that is less uncomfortable for the driver to the steering member 410.
  • the steering member 410 in the control amount correction unit 612, the steering member 410 is in the turning back state, the steering angle speed of the steering member 410 or the absolute value thereof is equal to or more than a predetermined value.
  • the control amount is corrected when the supplied roll rate value or the absolute value thereof is less than a predetermined value.
  • the steering angle speed of the steering member or its absolute value is equal to or more than a predetermined value, and the roll rate value or its absolute value is less than a predetermined value, It has been recognized by the inventor that the phenomenon "is likely to occur.”
  • the phenomenon of “torque loss” can be suitably suppressed, so that the assist torque or the reaction torque can be applied with less discomfort for the driver.
  • the steering member 410 in the control amount correction unit 612, the steering member 410 is in the turning back state, the steering angle speed of the steering member 410 or the absolute value thereof is equal to or more than a predetermined value.
  • the control amount is corrected so that the reaction force applied to the steering member 410 is larger than in the case where it is not so.
  • FIG. 4 is a block diagram showing a configuration example of the suspension control unit 650. As shown in FIG.
  • the suspension control unit 650 includes a CAN input unit 660, a vehicle state estimation unit 670, a steering stability and riding comfort control unit 680, and a control amount selection unit 690.
  • the CAN input unit 660 acquires various signals via the CAN 370. As shown in FIG. 3, the CAN input unit 660 acquires the following signals (brackets indicate acquisition sources).
  • the vehicle state estimation unit 670 estimates the state of the vehicle 900 with reference to various signals acquired by the CAN input unit 660.
  • the vehicle state estimation unit 670 outputs sprung speeds of four wheels, stroke speeds of four wheels, pitch rate, roll rate, roll rate at turning, and pitch rate at acceleration / deceleration as estimation results.
  • the vehicle state estimation unit 670 is an acceleration / deceleration / turning correction amount calculation unit 671, an acceleration / deceleration / turning pitch / roll rate calculation unit 673, and a one-wheel model application unit for state estimation 674. Is equipped.
  • the acceleration / deceleration / turning correction amount calculation unit 671 refers to the yaw rate, front / rear G, wheel speeds of four wheels, brake pressure, engine torque, and engine speed, and adjusts the vehicle longitudinal speed, inner / outer ring differential ratio, and adjustment.
  • the gain is calculated, and the calculation result is supplied to the state estimation single wheel model application unit 674.
  • the acceleration / deceleration / turning pitch / roll rate calculator 673 calculates the turning roll rate and the acceleration / deceleration pitch rate with reference to the front and rear G and the lateral G. The calculation result is supplied to the state estimation single wheel model application unit 674.
  • the acceleration / deceleration / turning pitch / roll rate calculation unit 673 supplies the calculated turning time roll rate to the steering control unit 610 as a roll rate value.
  • the acceleration / deceleration / turning pitch / roll rate calculating unit 673 may be configured to further refer to the suspension control amount output from the control amount selecting unit 690. The details of the acceleration / deceleration / turning pitch / roll rate calculation unit 673 will be described later, with reference to the drawings referred to.
  • the acceleration / deceleration / turning pitch / roll rate calculation unit 673 supplies the steering time roll rate calculated with reference to the front and rear G and the lateral G to the steering control unit 610 as a roll rate value, and performs steering
  • the control unit 610 corrects the control amount for controlling the magnitude of the assist torque or the reaction torque with reference to the roll rate value, so that the steering control unit 610 can more preferably use the assist torque or the reaction torque.
  • the size can be corrected.
  • the steering control unit 610 is more preferably The magnitude of the assist torque or the reaction torque can be corrected.
  • the single-wheel model application unit for state estimation 674 applies the single-wheel model for state estimation to each wheel with reference to the calculation result by the acceleration / deceleration / turning correction amount calculation unit 671, and the sprung speed of four wheels, Calculate the stroke speed, pitch rate and roll rate of 4 wheels.
  • the calculation result is supplied to the steering stability / ride control unit 680.
  • the steering stability / ride control unit 680 includes a skyhook control unit 681, a roll attitude control unit 682, a pitch attitude control unit 683, and an unsprung control unit 684.
  • the skyhook control unit 681 suppresses the fluctuation of the vehicle when it gets over the unevenness of the road surface, and performs ride comfort control (vibration control) that enhances the ride comfort.
  • the skyhook control unit 681 determines the skyhook target control amount with reference to the sprung speed of four wheels, the stroke speed of four wheels, the pitch rate, and the roll rate as an example, and the result is used as a control amount selector Supply to 690.
  • the skyhook control unit 681 sets the damping force base value by referring to the sprung-damping force map based on the sprung velocity. Further, the skyhook control unit 681 calculates a skyhook target damping force by multiplying the set damping force base value by the skyhook gain. Then, the skyhook target control amount is determined based on the skyhook target damping force and the stroke speed.
  • the roll attitude control unit 682 performs roll attitude control with reference to the steering roll rate and the steering angle, and target control according to the steering angle proportional target control amount, which is the target control amount according to the steering angle, and the steering angular velocity.
  • a steering rate proportional target control amount which is an amount and a roll rate proportional target control amount which is a target control amount according to the roll rate are determined, and the result is supplied to a control amount selecting unit 690.
  • the roll attitude control unit 682 may be configured to calculate the various target control amounts with reference to a steering torque signal indicating a steering torque.
  • the steering control unit 610 may supply a steering torque signal to the suspension control unit 650, and the steering control unit 610 may refer to the steering torque signal.
  • the steering torque signal may be phase compensated. This can be expected to realize a more comfortable ride.
  • the roll attitude control unit 682 performs roll attitude control with reference to the turning roll rate calculated by the acceleration / deceleration / turning pitch / roll rate calculating unit 673, it is preferable to perform suitable attitude control.
  • the steering roll rate calculated by the acceleration / deceleration / turning pitch / roll rate calculation unit 673 is not only the roll attitude control by the roll attitude control unit 682 but also the assist torque by the steering control unit 610 as described above.
  • it is also used to correct the magnitude of the reaction torque it is possible to provide suitable posture control and a feeling of steering without a sense of incongruity while suppressing an increase in components.
  • the pitch attitude control unit 683 performs pitch control with reference to the pitch rate during acceleration / deceleration, determines a pitch target control amount, and supplies the result to the control amount selection unit 690.
  • the unsprung control unit 684 performs damping control of the unsprung of the vehicle 900 with reference to the wheel speeds of the four wheels, and determines the unsprung damping control target control amount. The determination result is supplied to the control amount selection unit 690.
  • the control amount selection unit 690 includes a skyhook target control amount, a steering angle proportional target control amount, a steering angle proportional target control amount, a roll rate proportional target control amount, a pitch target control amount, and an unsprung mass damping control target control amount. Among them, the target control amount having the largest value is output as a suspension control amount.
  • FIG. 5 is a block diagram showing a configuration example of the acceleration / deceleration / turning pitch / roll rate calculation unit 673.
  • the acceleration / deceleration / turning pitch / roll rate calculation unit 673 includes subtraction units 731, 732, a damping force calculation unit 733, a model application unit 740, and amplification units 751 to 754.
  • the model application unit 740 further includes amplification units 741, 744, and 745, an addition unit 742, and a delay unit 743.
  • the subtraction unit 731 subtracts the output signal of the amplification unit 753 from the signal indicating the front and rear G, and outputs the result of the subtraction to the amplification unit 741.
  • the subtracting unit 732 subtracts the output signal of the amplification unit 754 from the signal indicating horizontal G, and outputs the result of the subtraction to the amplification unit 741.
  • the damping force calculation unit 733 calculates the damping force of each wheel with reference to the suspension control amount and the output of the amplification unit 751.
  • the output of the amplification unit 751 corresponds to an estimated value for the stroke speed (damper speed) of the hydraulic shock absorber provided in the suspension apparatus 100. Further, the calculation of the damping force of each wheel by the damping force calculating unit 733 is performed with reference to the damping force map.
  • the model application unit 740 applies the pitch behavior model to the back and forth G after subtraction output by the subtraction unit 731 and the damping force of each wheel output by the damping force calculation unit 733 so that the pitch rate at acceleration and deceleration is obtained.
  • the model application unit 740 applies the roll behavior model to the lateral G after subtraction output by the subtraction unit 732 and the damping force of each wheel output by the damping force calculation unit 733, thereby achieving a steering roll rate.
  • the calculation of the pitch rate during acceleration / deceleration and the roll rate during steering by the model application unit 740 is performed by adjusting the amplification factors of the amplification units 741, 744, and 745 and the delay amount by the delay unit 743.
  • the amplification unit 741 amplifies the outputs of the subtraction unit 731, the subtraction unit 732, and the damping force calculation unit 733, and supplies the amplified output to the addition unit 742.
  • the addition unit 742 adds the output of the delay unit 743 amplified by the amplification unit 745 to the output of the amplification unit 741, and supplies the result to the delay unit 743.
  • the amplification unit 744 outputs the output of the delay unit 743 as a pitch rate at acceleration or a roll rate at steering.
  • the amplification unit 751 amplifies the output of the delay unit 743 and supplies the amplified output to the damping force calculation unit 733.
  • the amplification unit 752 amplifies the output of the delay unit 743.
  • the output of the amplification unit 751 is amplified by the amplification unit 753 or the amplification unit 754 and then input to the subtraction unit 731 or the subtraction unit 732 respectively.
  • the acceleration / deceleration / turning pitch / roll rate calculating unit 673 may output “0” as a reference value of the turning roll rate when the inclination of the vehicle 900 does not change for a predetermined minute time. .
  • the acceleration / deceleration / turning pitch / roll rate calculating unit 673 may provide a dead zone of about ⁇ 0.5 in the turning roll rate.
  • the left side of the vehicle 900 is “+” and the right side is “ ⁇ ”.
  • the control block (steering control unit 610, suspension control unit 650) of the ECU 600 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or using a CPU (central processing unit) May be realized by software.
  • the ECU 600 is a CPU that executes instructions of a program that is software that realizes each function, a ROM (Read Only Memory) or a storage device in which the program and various data are readably recorded by a computer (or CPU). (These are referred to as “recording media”), a RAM (Random Access Memory) for developing the above-mentioned program, and the like.
  • the object of the present invention is achieved by the computer (or CPU) reading the program from the recording medium and executing the program.
  • the recording medium a “non-transitory tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used.
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

運転者に対して違和感の少ないアシストトルク又は反力トルクを印加する。ECU(600)は、操舵部材(410)に対して印加される操舵トルクを参照し、アシストトルク又は反力トルクの大きさを制御するための制御量を算出する制御量算出部(611)と、制御量算出部が算出した制御量を、車体のロールレートと、操舵部材の舵角と、操舵部材の舵角速とを参照して補正する制御量補正部(612)を備えている。

Description

制御装置、および、ステアリング装置
 本発明は、操舵部材に対してアシストトルク又は反力トルクを印加する制御装置、および、ステアリング装置に関する。
 操舵部材に対してアシストトルク又は反力トルクを印加するステアリング装置が知られている。また、ステアリング装置において、目標操舵速度と実操舵速度との差に基づいてアシスト目標電流を補正する技術(特許文献1)、及び、操舵トルクの方向とアシストモータの回転方向とに基づいてステアリングホイールの操舵状況を判定する技術(特許文献2)等が知られている。
日本国公開特許公報「特開2006-123827号公報(2006年5月18日公開)」 日本国公開特許公報「特開2013-212715号公報(2013年10月17日公開)」
 操舵部材に対してアシストトルク又は反力トルクを印加する制御装置では、車両の運転者にとって違和感の少ないアシストトルク又は反力トルクを操舵部材に印加することが好ましい。
 本発明は、操舵部材に対してアシストトルク又は反力トルクを印加する制御装置において、運転者にとって違和感の少ないアシストトルク又は反力トルクを印加することを目的とする。
 かかる目的のもと、本発明は、運転者が操舵操作する操舵部材に対してアシストトルク又は反力トルクを印加する制御装置であって、前記操舵部材に対して印加される操舵トルクを参照し、アシストトルク又は反力トルクの大きさを制御するための制御量を算出する制御量算出部と、制御量算出部が算出した制御量を、車体のロールレートと、前記操舵部材の舵角と、前記操舵部材の舵角速とを参照して補正する制御量補正部を備えている。
 また、かかる目的のもと、本発明は、運転者が操舵操作する操舵部材と、前記操舵部材に対してアシストトルク又は反力トルクを印加するステアリング制御部とを備えたステアリング装置であって、前記ステアリング制御部は、前記操舵部材に対して印加される操舵トルクを参照し、アシストトルク又は反力トルクの大きさを制御するための制御量を算出する制御量算出部と、制御量算出部が算出した制御量を、車体のロールレートと、前記操舵部材の舵角と、前記操舵部材の舵角速とを参照して補正する制御量補正部を備えている。
 本発明によれば、運転者にとって違和感の少ないアシストトルク又は反力トルクを印加することができる。
本発明の実施形態1に係る車両の概略構成を示す図である。 本発明の実施形態1に係るECUの概略構成を示すブロック図である。 本発明の実施形態1に係るステアリング制御部の構成例を示すブロック図である。 本発明の実施形態1に係るサスペンション制御部の構成例を示すブロック図である。 本発明の実施形態1に係る加減速・転舵時ピッチ・ロールレート算出部の構成例を示すブロック図である
 〔実施形態1〕
 以下、本発明の実施形態1について、詳細に説明する。
 (車両900の構成)
 図1は、本実施形態に係る車両900の概略構成を示す図である。図1に示すように、車両900は、懸架装置(サスペンション)100、車体200、車輪300、タイヤ310、操舵部材410、ステアリングシャフト420、トルクセンサ430、舵角センサ440、トルク印加部460、ラックピニオン機構470、ラック軸480、エンジン500、ECU(Electronic Control Unit)(制御装置)600、発電装置700およびバッテリ800を備えている。
 タイヤ310が装着された車輪300は、懸架装置100によって車体200に懸架されている。車両900は、四輪車であるため、懸架装置100、車輪300およびタイヤ310については、それぞれ4つ設けられている。
 なお、左側の前輪、右側の前輪、左側の後輪および右側の後輪のタイヤ及び車輪をそれぞれ、タイヤ310A及び車輪300A、タイヤ310B及び車輪300B、タイヤ310C及び車輪300C、並びに、タイヤ310D及び車輪300Dとも称する。以下、同様に、左側の前輪、右側の前輪、左側の後輪および右側の後輪にそれぞれ付随した構成を、符号「A」「B」「C」及び「D」を付して表現することがある。
 懸架装置100は、油圧緩衝装置、アッパーアーム及びロアーアームを備えている。また、油圧緩衝装置は、当該油圧緩衝装置が発生させる減衰力を調整する電磁弁であるソレノイドバルブを備えている。ただし、これは本実施形態を限定するものではなく、油圧緩衝装置は、減衰力を調整する電磁弁として、ソレノイドバルブ以外の電磁弁を用いてもよい。例えば、上記電磁弁として、電磁流体(磁性流体)を利用した電磁弁を備える構成としてもよい。
 エンジン500には、発電装置700が付設されており、発電装置700によって生成された電力がバッテリ800に蓄積される。
 運転者の操作する操舵部材410は、ステアリングシャフト420の一端に対してトルク伝達可能に接続されており、ステアリングシャフト420の他端は、ラックピニオン機構470に接続されている。
 ラックピニオン機構470は、ステアリングシャフト420の軸周りの回転を、ラック軸480の軸方向に沿った変位に変換するための機構である。ラック軸480が軸方向に変位すると、タイロッド及びナックルアームを介して車輪300A及び車輪300Bが転舵される。
 トルクセンサ430は、ステアリングシャフト420に印加される操舵トルク、換言すれば、操舵部材410に印加される操舵トルクを検出し、検出結果を示すトルクセンサ信号をECU600に提供する。より具体的には、トルクセンサ430は、ステアリングシャフト420に内設されたトーションバーの捩れを検出し、検出結果をトルクセンサ信号として出力する。なお、トルクセンサ430として、ホールIC,MR素子、磁歪式トルクセンサなどの周知のセンサを用いてもよい。
 舵角センサ440は、操舵部材410の舵角を検出し、検出結果をECU600に提供する。
 トルク印加部460は、ECU600から供給されるステアリング制御量に応じたアシストトルク又は反力トルクを、ステアリングシャフト420に印加する。トルク印加部460は、ステアリング制御量に応じたアシストトルク又は反力トルクを発生させるモータと、当該モータが発生させたトルクをステアリングシャフト420に伝達するトルク伝達機構とを備えている。
 なお、本明細書における「制御量」の具体例として、電流値、デューティー比、減衰率、減衰比等が挙げられる。
 操舵部材410、ステアリングシャフト420、トルクセンサ430、舵角センサ440、トルク印加部460、ラックピニオン機構470、ラック軸480、及びECU600は、本実施形態に係るステアリング装置を構成する。
 なお、上述の説明において「トルク伝達可能に接続」とは、一方の部材の回転に伴い他方の部材の回転が生じるように接続されていることを指し、例えば、一方の部材と他方の部材とが一体的に成形されている場合、一方の部材に対して他方の部材が直接的又は間接的に固定されている場合、及び、一方の部材と他方の部材とが継手部材等を介して連動するよう接続されている場合を少なくとも含む。
 また、上記の例では、操舵部材410からラック軸480までが常時機械的に接続されたステアリング装置を例に挙げたが、これは本実施形態を限定するものではなく、本実施形態に係るステアリング装置は、例えばステア・バイ・ワイヤ方式のステアリング装置であってもよい。ステア・バイ・ワイヤ方式のステアリング装置に対しても本明細書において以下に説明する事項を適用することができる。
 ECU600は、車両900が備える各種の電子機器を統括制御する。より具体的には、ECU600は、トルク印加部460に供給するステアリング制御量を調整することにより、ステアリングシャフト420に印加するアシストトルク又は反力トルクの大きさを制御する。
 また、ECU600は、懸架装置100に含まれる油圧緩衝装置が備えるソレノイドバルブに対して、サスペンション制御量を供給することによって当該ソレノイドバルブの開閉を制御する。この制御を可能とするために、ECU600からソレノイドバルブへ駆動電力を供給する電力線が配されている。
 また、車両900は、車輪300毎に設けられ各車輪300の車輪速を検出する車輪速センサ320、車両900の横方向の加速度を検出する横Gセンサ330、車両900の前後方向の加速度を検出する前後Gセンサ340、車両900のヨーレートを検出するヨーレートセンサ350、エンジン500が発生させるトルクを検出するエンジントルクセンサ510、エンジン500の回転数を検出するエンジン回転数センサ520、及びブレーキ装置が有するブレーキ液に印加される圧力を検出するブレーキ圧センサ530を備えている。これらの各種センサによる検出結果は、ECU600に供給される。
 なお、図示は省略するが、車両900は、ブレーキ時の車輪ロックを防ぐためのシステムであるABS(Antilock Brake System)、加速時等における車輪の空転を抑制するTCS(Traction Control System)、及び、旋回時のヨーモーメント制御やブレーキアシスト機能等のための自動ブレーキ機能を備えた車両挙動安定化制御システムであるVSA(Vehicle Stability Assist)制御可能なブレーキ装置を備えている。
 ここで、ABS、TCS、及びVSAは、推定した車体速に応じて定まる車輪速と、車輪速センサ320によって検出された車輪速とを比較し、これら2つの車輪速の値が、所定の値以上相違している場合にスリップ状態であると判定する。ABS、TCS、及びVSAは、このような処理を通じて、車両900の走行状態に応じて最適なブレーキ制御やトラクション制御を行うことにより、車両900の挙動の安定化を図るものである。
 また、上述した各種のセンサによる検出結果のECU600への供給、及び、ECU600から各部への制御信号の伝達は、CAN(Controller Area Network)370を介して行われる。
 (ECU600)
 以下では、参照する図面を替えて、ECU600について具体的に説明する。図2は、ECU600の概略構成を示す図である。
 図2に示すように、ECU600は、ステアリング制御部610とサスペンション制御部650とを備えている。
 ステアリング制御部610は、CAN370に含まれる各種のセンサ検出結果を参照し、トルク印加部460に供給するステアリング制御量の大きさを決定する。
 なお、本明細書において「~を参照して」との表現には、「~を用いて」「~を考慮して」「~に依存して」などの意味が含まれ得る。
 サスペンション制御部650は、CAN370に含まれる各種のセンサ検出結果を参照し、懸架装置100に含まれる油圧緩衝装置が備えるソレノイドバルブに対して供給するサスペンション制御量の大きさを決定する。
 また、図2に示すように、ECU600では、サスペンション制御部650によって算出されたロールレート値が、ステアリング制御部610に供給され、ステアリング制御量の大きさを決定するために参照される。
 なお、後述するように、ロールレート値は、車両900の傾きが所定の微小時間変化しなかった場合の基準値として「0」をとる構成とし、当該基準値からのずれとしてロールレートを表すものであってもよい。
 また、「制御量の大きさを決定する」との処理には、制御量の大きさをゼロに設定する、すなわち、制御量を供給しない場合も含まれる。
 また、ステアリング制御部610とサスペンション制御部650とが別々のECUとして実現される構成であってもよい。このような構成の場合、ステアリング制御部610とサスペンション制御部650とが通信手段を用いて相互に通信を行うことにより、本明細書に記載の制御が実現される。
 (ステアリング制御部)
 続いて、図3を参照して、ステアリング制御部610についてより具体的に説明する。図3は、ステアリング制御部610の構成例を示すブロック図である。
 図3に示すように、ステアリング制御部610は、制御量算出部611、制御量補正部612、ωフィードバック部620、ゲイン算出部630、及び乗算部640を備えている。
 制御量算出部611は、トルクセンサ430から供給される操舵トルクを参照し、アシストトルク又は反力トルクの大きさを制御するための制御量を算出する。制御量算出部611によって算出された制御量は、制御量補正部612によって補正されたうえで、ステアリング制御量としてトルク印加部460に供給される。
 (ωフィードバック部)
 ωフィードバック部620は、舵角センサ440から供給される舵角、車輪速センサ320によって検出された車輪速に応じて定まる車速、及び、トルクセンサ430から供給される操舵トルクを参照し、補正制御量の値を決定する。
 ωフィードバック部620は、一例として、図3に示すように、目標舵角速算出部621、実舵角速算出部622、減算部623、及び、補正制御量決定部624を備えている。
 目標舵角速算出部621は、舵角センサ440から供給される舵角、車輪速センサ320によって検出された車輪速に応じて定まる車速、及び、トルクセンサ430から供給される操舵トルクを参照し、目標舵角速を算出する。ここで、目標舵角速の具体的な算出方法は、本実施形態を限定するものではないが、目標舵角速を算出するにおいて、目標舵角速算出部621は、目標舵角速マップ、及びトルクレイシオマップを参照する構成とすることができる。
 実舵角速算出部622は、舵角センサ440から供給される舵角の時間変化を算出することによって、実舵角速を特定する。
 減算部623は、目標舵角速算出部621によって算出された目標舵角速から、実舵角速算出部622によって算出された実舵角速を減算し、減算した結果である舵角側偏差を、補正制御量決定部624に供給する。
 補正制御量決定部624は、舵角側偏差に応じて、補正制御量の値を決定する。補正制御量の値の具体的な決定方法は本実施形態を限定するものではないが、補正制御量の値を決定するにおいて、補正制御量決定部624は、舵角速偏差補正制御量マップを参照する構成とすることができる。
 (ゲイン算出部)
 ゲイン算出部630は、ωフィードバック部620が算出した補正制御量に乗じるゲイン係数を、舵角センサ440から供給される舵角、及び、サスペンション制御部650から供給されるロールレート値を参照して、算出する。
 ゲイン算出部630は、一例として、図3に示すように、切り戻し判定部631、転舵速判定部632、ロールレート判定部633、論理積算出部634、移動平均部635、及びゲイン決定部636を備えている。
 切り戻し判定部631は、舵角センサ440から供給される舵角と、当該舵角を参照して算出される舵角速とを参照して、操舵部材410が切り戻し状態にあるのか否かの判定を行う。操舵部材410が切り戻し状態にある場合、切り戻し判定部631は、判定結果として「1」を出力し、そうでない場合、判定結果として「0」を出力する。なお、車両900が舵角速センサを備え、切り戻し判定部631が、舵角センサ440から供給される舵角と、舵角速センサから供給される舵角速とを参照して、操舵部材410が切り戻し状態にあるのか否かの判定を行う構成としてもよい。
 なお、切り戻し判定部631による切り戻し状態の判定処理は上記の例に限定されるものではない。切り戻し判定部631は、トルクセンサ430による検出結果を示すトルクセンサ信号と、トルク印加部460が備えるモータの回転方向とを参照して、切り戻し状態であるか否かを判定する構成としてもよい。この構成の場合、例えば、トルクセンサ信号の符号とモータの回転方向の符号とが異なる場合に、切り戻し状態にあると判定する構成とすればよい。
 ここで、トルクセンサ信号の符号は、例えば、トーションバーが右回転方向に捩れている状態の場合のトルクセンサ信号の符号をプラスとし、トーションバーが左回転方向に捩れている状態の場合のトルクセンサ信号の符号をマイナスとすればよい。また、モータの回転方向の符号は、トーションバーが右回転方向に捩れている状態において、トーションバーの捩れを解消させる方向をプラスとし、トーションバーが左回転方向に捩れている状態において、トーションバーの捩れを解消させる方向をマイナスとすればよい。
 転舵速判定部632は、舵角センサ440から供給される舵角を参照して算出される舵角速又はその絶対値が、所定の値以上であるのか否かを判定する。転舵速判定部632は、舵角速又はその絶対値が所定の値以上である場合に、判定結果として「1」を出力し、そうでない場合に、判定結果として「0」を出力する。
 ロールレート判定部633は、サスペンション制御部650から供給されるロールレート値又はその絶対値が、所定の値未満であるのか否かを判定する。ロールレート判定部633は、ロールレート値又はその絶対値が、所定の値未満である場合に、判定結果として「1」を出力し、そうでない場合に、判定結果として「0」を出力する。
 論理積算出部634は、切り戻し判定部631、転舵速判定部632、及び、ロールレート判定部633からの判定結果の論理積をとり、その結果を出力する。換言すれば、論理積算出部634は、切り戻し判定部631、転舵速判定部632、及び、ロールレート判定部633が出力する判定結果がすべて「1」である場合に、「1」を出力し、それ以外の場合に「0」を出力する。
 移動平均部635は、論理積算出部634の出力の移動平均を算出し、その結果を出力する。なお、移動平均部635として、ローパスフィルタを用いてもよい。
 ゲイン決定部636は、移動平均部635の出力結果に応じて、ゲイン係数を決定し、決定したゲイン係数を乗算部640に供給する。より具体的には、移動平均部635による移動平均後の値が0より大きい場合、1よりも大きいゲイン係数を決定する。更に言えば、ゲイン決定部636は、移動平均部635による移動平均後の値が大きければ大きいほど、ゲイン係数を大きく設定する。換言すれば、ゲイン決定部は、移動平均部635による移動平均後の値が大きければ大きいほど、操舵部材410に印加される反力が大きくなるように、ゲイン係数を設定する。
 乗算部640は、補正制御量決定部624が決定した補正制御量に、ゲイン決定部636が決定したゲイン係数を乗算することによってゲイン後の補正制御量を制御量補正部612に供給する。
 制御量補正部612は、制御量算出部611が算出した制御量に対して、乗算部640から供給されるゲイン後の補正制御量を加えることによって、ステアリング制御量を生成する。換言すれば、制御量補正部612は、制御量算出部611が算出した制御量を、車体200のロールレートと、操舵部材410の舵角と、操舵部材410の舵角速とを参照して補正する。
 このように、制御量補正部612が、制御量算出部611が算出した制御量を、車体200のロールレートと、操舵部材410の舵角と、操舵部材410の舵角速とを参照して補正することにより、運転者にとって違和感の少ないアシストトルク又は反力トルクを操舵部材410に印加することができる。
 また、上記の構成では、制御量補正部612は、操舵部材410が切り戻し状態にあり、操舵部材410の舵角速又はその絶対値が所定の値以上であり、かつ、サスペンション制御部650から供給されるロールレート値又はその絶対値が所定の値未満である場合に制御量を補正する。
 操舵部材が切り戻し状態にあり、操舵部材の舵角速又はその絶対値が所定の値以上であり、かつ、ロールレート値又はその絶対値が所定の値未満である場合に、所謂「トルク抜け」という現象が生じやすいことが発明者によって認識されている。
 ここで、「トルク抜け」が発生する具体的なプロセスを説明すれば以下の通りである。まず、運転者が転舵を行うと、車両900にロールが発生する。ロールが発生すると懸架装置100の備える油圧緩衝装置が収縮する。すると、タイロッドとロアーアームとの位置関係が変化し、その結果としてトー角が変化する。これにより、ラック軸480が、収縮した油圧緩衝装置側に引っ張られる。ゲイン算出部630を有しない構成において、この状態で運転者が操舵部材410の切り戻しを行うと、運転者が想定していたよりも小さい反力トルクしか発生せず、「トルク抜け」の現象が生じ得る。
 ゲイン算出部630を有する上記の構成によれば、「トルク抜け」の現象を好適に抑制することができるので、運転者にとってより違和感の少ないアシストトルク又は反力トルクを印加することができる。
 また、上記の構成では、制御量補正部612は、操舵部材410が切り戻し状態にあり、操舵部材410の舵角速又はその絶対値が所定の値以上であり、かつ、サスペンション制御部650から供給されるロールレート値又はその絶対値が所定の値未満である場合に、そうでない場合に比べて、操舵部材410に印加される反力が大きくなるように制御量を補正する。
 したがって、上記の構成によれば、「トルク抜け」の現象をより好適に抑制することができるので、運転者にとって更に違和感の少ないアシストトルク又は反力トルクを印加することができる。
 (サスペンション制御部)
 続いて、図4を参照してサスペンション制御部について説明する。図4はサスペンション制御部650の構成例を示すブロック図である。
 サスペンション制御部650は、図3に示すように、CAN入力部660、車両状態推定部670、操縦安定性・乗心地制御部680、及び制御量セレクト部690を備えている。
 CAN入力部660は、CAN370を介して各種の信号を取得する。図3に示すように、CAN入力部660は、以下の信号を取得する(括弧書きは取得元を示す)。
 ・4輪の車輪速(車輪速センサ320A~D)
 ・ヨーレート(ヨーレートセンサ350)
 ・前後G(前後Gセンサ340)
 ・横G(横Gセンサ330)
 ・ブレーキ圧(ブレーキ圧センサ530)
 ・エンジントルク(エンジントルクセンサ510)
 ・エンジン回転数(エンジン回転数センサ520)
 ・舵角(舵角センサ440)
 車両状態推定部670は、CAN入力部660が取得した各種の信号を参照して車両900の状態を推定する。車両状態推定部670は、推定結果として、4輪のバネ上速度、4輪のストローク速度、ピッチレート、ロールレート、転舵時ロールレート、及び、加減速時ピッチレートを出力する。
 車両状態推定部670は、図4に示すように、加減速・転舵時補正量算出部671、加減速・転舵時ピッチ・ロールレート算出部673、及び、状態推定用一輪モデル適用部674を備えている。
 加減速・転舵時補正量算出部671は、ヨーレート、前後G、4輪の車輪速、ブレーキ圧、エンジントルク、及びエンジン回転数を参照して、車体前後速度、内外輪差比、及び調整ゲインの算出を行い、算出結果を状態推定用一輪モデル適用部674に供給する。
 加減速・転舵時ピッチ・ロールレート算出部673は、前後G、及び横Gを参照して、転舵時ロールレート、及び加減速時ピッチレートを算出する。算出結果は、状態推定用一輪モデル適用部674に供給される。
 また、加減速・転舵時ピッチ・ロールレート算出部673は、算出した転舵時ロールレートを、ロールレート値として、ステアリング制御部610に供給する。加減速・転舵時ピッチ・ロールレート算出部673は、制御量セレクト部690の出力するサスペンション制御量を更に参照する構成としてもよい。加減速・転舵時ピッチ・ロールレート算出部673の詳細については参照する図面を替えて後述する。
 このように、加減速・転舵時ピッチ・ロールレート算出部673は、前後G、及び横Gを参照して算出した転舵時ロールレートをロールレート値としてステアリング制御部610に供給し、ステアリング制御部610は、当該ロールレート値を参照して、アシストトルク又は反力トルクの大きさを制御するための制御量を補正するので、ステアリング制御部610はより好適にアシストトルク又は反力トルクの大きさを補正することができる。
 また、上述のように、加減速・転舵時ピッチ・ロールレート算出部673が、制御量セレクト部690の出力するサスペンション制御量を更に参照する構成とすれば、ステアリング制御部610は更に好適にアシストトルク又は反力トルクの大きさを補正することができる。
 状態推定用一輪モデル適用部674は、加減速・転舵時補正量算出部671による算出結果を参照して、各輪に対して状態推定用一輪モデルを適用し、4輪のバネ上速度、4輪のストローク速度、ピッチレート、及びロールレートを算出する。算出結果は、操縦安定性・乗心地制御部680に供給される。
 操縦安定性・乗心地制御部680は、スカイフック制御部681、ロール姿勢制御部682、ピッチ姿勢制御部683、及び、バネ下制御部684を備えている。
 スカイフック制御部681は、路面の凹凸を乗り越える際の車両の動揺を抑制し、乗り心地を高める乗り心地制御(制振制御)を行う。スカイフック制御部681は、一例として、4輪のバネ上速度、4輪のストローク速度、ピッチレート、及びロールレートを参照して、スカイフック目標制御量を決定し、その結果を制御量セレクト部690に供給する。
 より具体的な例として、スカイフック制御部681は、バネ上速度に基づいてバネ上-減衰力マップを参照することにより減衰力ベース値を設定する。また、スカイフック制御部681は、設定した減衰力ベース値に対してスカイフックゲインを乗じることによりスカイフック目標減衰力を算出する。そして、スカイフック目標減衰力とストローク速度とに基づいてスカイフック目標制御量を決定する。
 ロール姿勢制御部682は、転舵時ロールレート、及び舵角を参照してロール姿勢制御を行い、舵角に応じた目標制御量である舵角比例目標制御量、舵角速度に応じた目標制御量である舵角速度比例目標制御量、及び、ロールレートに応じた目標制御量であるロールレート比例目標制御量を決定し、その結果を制御量セレクト部690に供給する。
 また、ロール姿勢制御部682は、操舵トルクを示す操舵トルク信号を参照して上記各種の目標制御量を算出する構成としてもよい。ここで、ステアリング制御部610が操舵トルク信号をサスペンション制御部650に供給し、当該操舵トルク信号をステアリング制御部610が参照する構成としてもよい。なお、操舵トルク信号は、位相補償されたものを用いる構成としてもよい。これにより、更に快適な乗り心地を実現することが期待できる。
 このように、ロール姿勢制御部682は、加減速・転舵時ピッチ・ロールレート算出部673が算出した転舵時ロールレートを参照してロール姿勢制御を行うので、好適な姿勢制御を行うことができる。また、加減速・転舵時ピッチ・ロールレート算出部673が算出した転舵時ロールレートは、ロール姿勢制御部682によるロール姿勢制御のみならず、上述のように、ステアリング制御部610によるアシストトルク又は反力トルクの大きさの補正にも用いられるので、構成要素の増加を抑制しつつ、好適な姿勢制御と違和感のない操舵感を提供することができる。
 ピッチ姿勢制御部683は、加減速時ピッチレートを参照してピッチ制御を行い、ピッチ目標制御量を決定し、その結果を制御量セレクト部690に供給する。
 バネ下制御部684は、4輪の車輪速を参照して、車両900のバネ下の制振制御を行い、バネ下制振制御目標制御量を決定する。決定結果は、制御量セレクト部690に供給される。
 制御量セレクト部690は、スカイフック目標制御量、舵角比例目標制御量、舵角速度比例目標制御量、ロールレート比例目標制御量、ピッチ目標制御量、及び、バネ下制振制御目標制御量のうち、最も大きい値を有する目標制御量を、サスペンション制御量として出力する。
 (加減速・転舵時ピッチ・ロールレート算出部)
 続いて、参照する図面を替えて、加減速・転舵時ピッチ・ロールレート算出部673についてより具体的に説明する。
 図5は、加減速・転舵時ピッチ・ロールレート算出部673の構成例を示すブロック図である。加減速・転舵時ピッチ・ロールレート算出部673は、図5に示すように、減算部731、732、減衰力算出部733、モデル適用部740、増幅部751~754を備えている。
 またモデル適用部740は、増幅部741、744、745、加算部742、及び遅延部743を備えている。
 減算部731は、前後Gを示す信号から増幅部753の出力信号を減算し、減算した結果を増幅部741に出力する。
 減算部732は、横Gを示す信号から増幅部754の出力信号を減算し、減算した結果を増幅部741に出力する。
 減衰力算出部733は、サスペンション制御量、及び、増幅部751の出力を参照し、各輪の減衰力を算出する。ここで、増幅部751の出力は、懸架装置100の備える油圧緩衝装置のストローク速度(ダンパ速度)に対する推定値に対応している。また、減衰力算出部733による各輪の減衰力の算出は減衰力マップを参照して行われる。
 モデル適用部740は、減算部731が出力する減算後の前後G、及び減衰力算出部733が出力する各輪の減衰力に対して、ピッチ挙動モデルを適用することによって、加減速時ピッチレートを算出する。
 モデル適用部740は、減算部732が出力する減算後の横G、及び減衰力算出部733が出力する各輪の減衰力に対して、ロール挙動モデルを適用することによって、転舵時ロールレートを算出する。
 モデル適用部740による加減速時ピッチレート及び転舵時ロールレートの算出は、増幅部741、744、745における増幅率、及び、遅延部743による遅延量を調整することによって行われる。
 増幅部741は、減算部731、減算部732、及び減衰力算出部733の出力を増幅し、加算部742に供給する。加算部742は、増幅部741の出力に、遅延部743の出力を増幅部745によって増幅したものを加算し、遅延部743に供給する。増幅部744は、遅延部743の出力を、加速時ピッチレート、又は、転舵時ロールレートとして出力する。
 増幅部751は、遅延部743の出力を増幅し、減衰力算出部733に供給する。増幅部752は、遅延部743の出力を増幅する。増幅部751の出力は、増幅部753又は増幅部754によって増幅されたうえで、それぞれ、減算部731又は減算部732に入力される。
 なお、加減速・転舵時ピッチ・ロールレート算出部673は、車両900の傾きが所定の微小時間変化しなかった場合の転舵時ロールレートの基準値として「0」を出力してもよい。また、加減速・転舵時ピッチ・ロールレート算出部673は、転舵時ロールレートに±0.5程度の不感帯を設けてもよい。ここで、符号は、例えば、車両900の左側を「+」、右側を「-」とする。
 〔ソフトウェアによる実現例〕
 ECU600の制御ブロック(ステアリング制御部610、サスペンション制御部650)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、ECU600は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
200 車体
600 ECU(制御装置)
610 ステアリング制御部
611 制御量算出部
612 制御量補正部
620 ωフィードバック部
630 ゲイン算出部
650 サスペンション制御部
673 ロールレート算出部
900 車両

Claims (9)

  1.  運転者が操舵操作する操舵部材に対してアシストトルク又は反力トルクを印加する制御装置であって、
     前記操舵部材に対して印加される操舵トルクを参照し、アシストトルク又は反力トルクの大きさを制御するための制御量を算出する制御量算出部と、
     制御量算出部が算出した制御量を、車体のロールレートと、前記操舵部材の舵角と、前記操舵部材の舵角速とを参照して補正する制御量補正部を備えている
    ことを特徴とする制御装置。
  2.  前記制御量補正部は、
     前記操舵部材が切り戻し状態にあり、前記操舵部材の舵角速又はその絶対値が所定の値以上であり、かつ、前記ロールレート又はその絶対値が所定の値未満である場合に、前記制御量算出部が算出した制御量を補正する請求項1に記載の制御装置。
  3.  前記制御量補正部は、
     前記操舵部材が切り戻し状態にあり、前記操舵部材の舵角速又はその絶対値が所定の値以上であり、かつ、前記ロールレート又はその絶対値が所定の値未満である場合に、前記制御量算出部が算出した制御量を、前記操舵部材に印加される反力が大きくなるように補正する請求項2に記載の制御装置。
  4.  車体に関する前後方向の加速度、及び横方向の加速度を少なくとも参照して前記ロールレートを算出するロールレート算出部を更に備えている請求項1から3の何れか1項に記載の制御装置。
  5.  前記ロールレート算出部は、サスペンションの減衰力を制御するサスペンション制御量を更に参照して、前記ロールレートを算出する請求項4に記載のステアリング制御装置。
  6.  前記ロールレート算出部が算出したロールレートを参照したロール姿勢制御を行うことにより、サスペンション制御のための目標制御量を決定するロール姿勢制御部をさらに備えている請求項4又は5に記載の制御装置。
  7.  運転者が操舵操作する操舵部材と、前記操舵部材に対してアシストトルク又は反力トルクを印加するステアリング制御部とを備えたステアリング装置であって、
     前記ステアリング制御部は、
      前記操舵部材に対して印加される操舵トルクを参照し、アシストトルク又は反力トルクの大きさを制御するための制御量を算出する制御量算出部と、
      制御量算出部が算出した制御量を、車体のロールレートと、前記操舵部材の舵角と、前記操舵部材の舵角速とを参照して補正する制御量補正部を備えている
    ことを特徴とするステアリング装置。
  8.  前記車体のロールレートは、サスペンションの減衰力を制御するサスペンション制御部によるサスペンション制御量の算出において参照されるロールレートである請求項7に記載のステアリング装置。
  9.  前記ステアリング制御部は、前記操舵部材に対して印加される操舵トルクを表すトルク信号を前記サスペンション制御部に供給する請求項8に記載のステアリング装置。
PCT/JP2017/017246 2017-03-24 2017-05-02 制御装置、および、ステアリング装置 WO2018173302A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017007308.1T DE112017007308T5 (de) 2017-03-24 2017-05-02 Steuervorrichtung und Lenkvorrichtung
CN201780086414.2A CN110312655B (zh) 2017-03-24 2017-05-02 控制装置及操纵装置
US16/538,360 US11254353B2 (en) 2017-03-24 2019-08-12 Control device and steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059880A JP6279121B1 (ja) 2017-03-24 2017-03-24 制御装置、および、ステアリング装置
JP2017-059880 2017-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/538,360 Continuation US11254353B2 (en) 2017-03-24 2019-08-12 Control device and steering device

Publications (1)

Publication Number Publication Date
WO2018173302A1 true WO2018173302A1 (ja) 2018-09-27

Family

ID=61195664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017246 WO2018173302A1 (ja) 2017-03-24 2017-05-02 制御装置、および、ステアリング装置

Country Status (5)

Country Link
US (1) US11254353B2 (ja)
JP (1) JP6279121B1 (ja)
CN (1) CN110312655B (ja)
DE (1) DE112017007308T5 (ja)
WO (1) WO2018173302A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6919349B2 (ja) * 2017-06-09 2021-08-18 株式会社アイシン 走行支援システム
JP6328841B1 (ja) * 2017-12-25 2018-05-23 株式会社ショーワ 制御装置、および、ステアリング装置
JP6553256B1 (ja) * 2018-06-29 2019-07-31 株式会社ショーワ ステアリング制御装置及びステアリング装置
JP6543393B1 (ja) * 2018-06-29 2019-07-10 株式会社ショーワ ステアリング制御装置及びステアリング装置
WO2020157683A1 (en) * 2019-01-29 2020-08-06 Aptiv Technologies Limited Electric power steering torque compensation
JP6775069B2 (ja) * 2019-07-03 2020-10-28 株式会社ショーワ ラック軸力推定装置
DE112020005295T5 (de) 2020-01-21 2022-10-27 Hitachi Astemo, Ltd. Lenksteuervorrichtung und lenkvorrichtung
DE102021202482B4 (de) * 2021-03-15 2023-06-29 Continental Automotive Technologies GmbH Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs
DE102021129355B4 (de) * 2021-11-11 2023-05-25 Audi Aktiengesellschaft Verfahren zum Betreiben eines Fahrwerks eines Kraftfahrzeugs sowie Kraftfahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291815A (ja) * 2003-03-27 2004-10-21 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2006123827A (ja) * 2004-10-29 2006-05-18 Showa Corp 電動パワーステアリング装置
JP2007038766A (ja) * 2005-08-02 2007-02-15 Nissan Motor Co Ltd 車両用操舵装置
JP2008179300A (ja) * 2007-01-25 2008-08-07 Fuji Heavy Ind Ltd 車両のロールオーバ抑制制御装置
JP2016022830A (ja) * 2014-07-22 2016-02-08 本田技研工業株式会社 減衰力可変ダンパの制御装置
JP2016104632A (ja) * 2016-03-09 2016-06-09 Ntn株式会社 ステアバイワイヤの操舵反力制御装置
JP2016210352A (ja) * 2015-05-12 2016-12-15 日本精工株式会社 サスペンションコントローラ、サスペンション装置、及び車両

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102154A (en) * 1980-01-21 1981-08-15 Nippon Telegr & Teleph Corp <Ntt> Circuit current supplying circuit
JPH01141113A (ja) 1987-11-28 1989-06-02 Hitachi Ltd シヨツクアブソーバ制御装置
JP2890704B2 (ja) 1990-06-26 1999-05-17 日産自動車株式会社 能動型サスペンション
JP2917652B2 (ja) 1991-06-10 1999-07-12 株式会社デンソー サスペンション制御装置
JPH0648139A (ja) 1992-07-24 1994-02-22 Toyota Motor Corp サスペンション挙動検出装置およびサスペンション制御装置
JPH06219307A (ja) 1993-01-25 1994-08-09 Omron Corp 電動式パワーステアリング装置
JPH07156628A (ja) 1993-12-06 1995-06-20 Toyota Motor Corp サスペンション制御装置
JPH07277167A (ja) 1994-04-12 1995-10-24 Sumitomo Electric Ind Ltd アンチロック用液圧回路の制御方法
JPH08108723A (ja) 1994-10-07 1996-04-30 Toyota Motor Corp サスペンション制御装置
JP3473674B2 (ja) 1997-11-05 2003-12-08 トヨタ自動車株式会社 車両用減衰力制御装置
JP3575314B2 (ja) 1999-02-16 2004-10-13 トヨタ自動車株式会社 自動走行車両
JP2003137121A (ja) 2001-11-05 2003-05-14 Hitachi Unisia Automotive Ltd 電動パワーステアリング装置
US6851679B2 (en) * 2002-05-01 2005-02-08 Meritor Light Vehicle Technology, Llc Simplifed adaptive suspension
JP2004142550A (ja) 2002-10-23 2004-05-20 Honda Motor Co Ltd 車体速測定装置
JP2006008055A (ja) 2004-06-29 2006-01-12 Favess Co Ltd 電動パワーステアリング装置
JP2006273185A (ja) 2005-03-30 2006-10-12 Honda Motor Co Ltd 車両用操舵装置
JP5026036B2 (ja) * 2006-09-21 2012-09-12 富士重工業株式会社 車両のロールオーバ制御装置
JP2008149887A (ja) * 2006-12-18 2008-07-03 Nsk Ltd 電動パワーステアリング装置
JP4835480B2 (ja) 2007-03-19 2011-12-14 トヨタ自動車株式会社 車両の制振制御装置
JP2009101809A (ja) 2007-10-23 2009-05-14 Mazda Motor Corp 車両用運転支援装置
DE102008053002A1 (de) 2008-03-25 2009-10-01 Volkswagen Ag Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
JP2010116073A (ja) 2008-11-13 2010-05-27 Mitsubishi Motors Corp 車両用サスペンション装置
JP5298822B2 (ja) * 2008-12-12 2013-09-25 日本精工株式会社 電動パワーステアリング装置
WO2010092687A1 (ja) 2009-02-16 2010-08-19 トヨタ自動車株式会社 車両のスタビライザ制御装置
JP5671306B2 (ja) 2010-11-10 2015-02-18 カヤバ工業株式会社 サスペンション装置
JP6070044B2 (ja) 2011-10-26 2017-02-01 日産自動車株式会社 サスペンション制御装置
CN103171614B (zh) * 2011-12-23 2015-10-28 联创汽车电子有限公司 用于电动助力转向系统的力矩控制装置
JP2013212715A (ja) 2012-03-30 2013-10-17 Showa Corp 電動パワーステアリング装置
JP5925640B2 (ja) * 2012-08-31 2016-05-25 Ntn株式会社 ステアバイワイヤの操舵反力制御装置
JP5799928B2 (ja) 2012-09-28 2015-10-28 カシオ計算機株式会社 閾値設定装置、被写体検出装置、閾値設定方法及びプログラム
JP5856109B2 (ja) * 2013-07-16 2016-02-09 本田技研工業株式会社 車両用操舵装置
JP6378887B2 (ja) * 2014-02-04 2018-08-22 Kyb株式会社 電動パワーステアリング装置
DE102015112360B4 (de) 2014-07-30 2020-07-09 Steering Solutions IP Holding Corp. Modul zur radunwuchtabweisung
WO2016027663A1 (ja) * 2014-08-22 2016-02-25 日本精工株式会社 電動パワーステアリング装置
JP6482288B2 (ja) 2015-01-19 2019-03-13 千住スプリンクラー株式会社 消火設備用バルブ
EP3257727A4 (en) * 2015-06-11 2018-11-21 NSK Ltd. Electric power steering device
US10065674B2 (en) * 2015-11-27 2018-09-04 Jtekt Corporation Steering control device
CN105667574B (zh) * 2015-12-15 2018-04-20 耐世特汽车系统(苏州)有限公司 基于驾驶风格的自适应转向控制系统及其控制方法
JP6663333B2 (ja) * 2016-09-23 2020-03-11 株式会社Subaru 車両の制御装置及び車両の制御方法
JP6543393B1 (ja) * 2018-06-29 2019-07-10 株式会社ショーワ ステアリング制御装置及びステアリング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291815A (ja) * 2003-03-27 2004-10-21 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2006123827A (ja) * 2004-10-29 2006-05-18 Showa Corp 電動パワーステアリング装置
JP2007038766A (ja) * 2005-08-02 2007-02-15 Nissan Motor Co Ltd 車両用操舵装置
JP2008179300A (ja) * 2007-01-25 2008-08-07 Fuji Heavy Ind Ltd 車両のロールオーバ抑制制御装置
JP2016022830A (ja) * 2014-07-22 2016-02-08 本田技研工業株式会社 減衰力可変ダンパの制御装置
JP2016210352A (ja) * 2015-05-12 2016-12-15 日本精工株式会社 サスペンションコントローラ、サスペンション装置、及び車両
JP2016104632A (ja) * 2016-03-09 2016-06-09 Ntn株式会社 ステアバイワイヤの操舵反力制御装置

Also Published As

Publication number Publication date
DE112017007308T5 (de) 2019-12-12
JP2018161951A (ja) 2018-10-18
JP6279121B1 (ja) 2018-02-14
US11254353B2 (en) 2022-02-22
US20190359250A1 (en) 2019-11-28
CN110312655B (zh) 2022-01-18
CN110312655A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2018173302A1 (ja) 制御装置、および、ステアリング装置
JP6273059B1 (ja) 車両制御装置、および、車両
JP6543393B1 (ja) ステアリング制御装置及びステアリング装置
JP6285592B1 (ja) 路面判定装置、サスペンション制御装置、および、サスペンション装置
JP6328841B1 (ja) 制御装置、および、ステアリング装置
JP6359163B1 (ja) サスペンション制御装置、および、サスペンション装置
WO2019130600A1 (ja) 車両制御装置、および、車両
JP6285591B1 (ja) サスペンション制御装置、および、サスペンション装置
WO2019097732A1 (ja) 車両状態推定装置、制御装置、サスペンション制御装置、サスペンション装置、ステアリング制御装置、及びステアリング装置
WO2018173303A1 (ja) 制御装置、および、サスペンション装置
US20220314729A1 (en) Suspension control device and suspension device
WO2022113426A1 (ja) サスペンション制御装置、車両およびサスペンション制御方法
JP6553256B1 (ja) ステアリング制御装置及びステアリング装置
JP6775069B2 (ja) ラック軸力推定装置
JP7186072B2 (ja) 保舵判定装置、ステアリング制御装置、及びステアリング装置
WO2019150587A1 (ja) ステアリング制御装置、及びステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902218

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17902218

Country of ref document: EP

Kind code of ref document: A1