WO2018168493A1 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
WO2018168493A1
WO2018168493A1 PCT/JP2018/007770 JP2018007770W WO2018168493A1 WO 2018168493 A1 WO2018168493 A1 WO 2018168493A1 JP 2018007770 W JP2018007770 W JP 2018007770W WO 2018168493 A1 WO2018168493 A1 WO 2018168493A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
storage device
semiconductor layer
layer
hydrogen
Prior art date
Application number
PCT/JP2018/007770
Other languages
English (en)
French (fr)
Inventor
孝司 殿川
和之 津國
拓夫 工藤
Original Assignee
株式会社日本マイクロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本マイクロニクス filed Critical 株式会社日本マイクロニクス
Priority to CA3056194A priority Critical patent/CA3056194C/en
Priority to EP18768050.9A priority patent/EP3598563B1/en
Priority to KR1020197027262A priority patent/KR102280735B1/ko
Priority to CN201880017572.7A priority patent/CN110392955B/zh
Publication of WO2018168493A1 publication Critical patent/WO2018168493A1/ja
Priority to US16/569,322 priority patent/US20200006763A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This embodiment relates to a power storage device.
  • the first electrode / insulator / n-type oxide semiconductor layer / p-type oxide semiconductor layer / second electrode are laminated because no electrolyte solution / rare element is used and the thickness can be reduced. Secondary batteries have been proposed.
  • a positive electrode including a positive electrode active material film containing nickel oxide or the like as a positive electrode active material, a solid electrolyte having a water-containing porous structure, and a negative electrode including titanium oxide or the like as a negative electrode active material A secondary battery including a negative electrode including an active material film has been proposed.
  • An electric storage device having a structure in which an n-type semiconductor layer, a charging layer, an insulating layer, and a p-type semiconductor layer are stacked and electrodes are formed on the upper and lower sides has been proposed.
  • Japanese Patent No. 5508542 Japanese Patent No. 5297809 JP 2015-82445 A JP 2016-82125 A
  • This embodiment provides an electricity storage device capable of increasing the electricity storage capacity per unit volume (weight).
  • the first oxide semiconductor layer having the first oxide semiconductor of the first conductivity type, the first oxide semiconductor layer disposed on the first oxide semiconductor layer, and the first oxide A first charge layer made of a conductive second oxide semiconductor; and a third oxide semiconductor layer disposed on the first charge layer, wherein the third oxide semiconductor layer includes hydrogen,
  • an electricity storage device that includes a second-conductivity-type third oxide semiconductor, and the ratio of the hydrogen to the metal constituting the third oxide semiconductor is 40% or more.
  • the typical cross-section figure of the electrical storage device which concerns on embodiment.
  • (b) another schematic configuration diagram of a third oxide semiconductor layer containing hydrogen Relationship in the energy storage device according to the embodiment, the discharge charge quantity Q D and p-type hydrogen content C H in the oxide semiconductor layer.
  • the relationship between the discharge charge amount Q D and the thickness t p of the p-type oxide semiconductor layer In the electricity storage device according to the embodiment, the X-ray scattering (XRD) measurement result of the p-type oxide semiconductor layer.
  • XRD X-ray scattering
  • schematic diagram illustrating the relationship between the hydrogen content C H and the pressure ⁇ P of the p-type oxide semiconductor layer in a sputter deposition In the electric storage device according to the embodiment, schematic diagram illustrating the relationship between the thickness t p of the discharge time T D and the p-type oxide semiconductor layer. In the electric storage device according to the embodiment, schematic views illustrating discharge time T D and the relationship between the thickness t ch of the first charging layer. In the electrical storage device which concerns on embodiment, the schematic block diagram of a sputter deposition apparatus.
  • the first conductivity type indicates, for example, n-type
  • the second conductivity type indicates p-type opposite to the first conductivity type.
  • the first conductivity type first oxide semiconductor layer 14 represents an oxide semiconductor layer having a first conductivity type first oxide semiconductor layer.
  • the second conductivity type third oxide semiconductor layer 24 represents an oxide semiconductor layer having a second conductivity type third oxide semiconductor layer. The same applies hereinafter.
  • the electricity storage device 30 is disposed on the first oxide semiconductor layer 14 having the first conductivity type first oxide semiconductor, the first oxide semiconductor layer, A first charging layer 16 made of one insulator and a first conductivity type second oxide semiconductor, and a third oxide semiconductor layer 24 disposed on the first charging layer 16 are provided.
  • the third oxide semiconductor layer 24 includes hydrogen and a third oxide semiconductor of the second conductivity type, and even if the ratio of hydrogen to the metal included in the third oxide semiconductor is 40% or more. good.
  • the third oxide semiconductor layer 24 includes nickel oxide (NiO y H x ) containing hydrogen, the value of the hydrogen composition ratio x is 0.35 or more, and the oxygen composition
  • NiO y H x nickel oxide
  • the value of the hydrogen composition ratio x is 0.35 or more
  • the oxygen composition The value of the ratio y may be arbitrary.
  • the second charging layer 18 disposed between the first charging layer 16 and the third oxide semiconductor layer 24 may be provided.
  • the second charging layer 18 may include a second insulator.
  • the third oxide semiconductor may include NiO.
  • the second charge layer 18 may include a second insulator and a conductivity adjusting material.
  • the second oxide semiconductor may include at least one oxide selected from the group consisting of oxides of Ti, Sn, Zn, or Mg.
  • the conductivity adjusting material may include a first conductivity type semiconductor or a metal oxide.
  • the conductivity adjusting material may include at least one oxide selected from the group consisting of Sn, Zn, Ti, or Nb oxides.
  • the second insulator may include SiO x
  • the conductivity adjusting material may include SnO x .
  • the second insulator may include SiO x formed from silicone oil.
  • the first insulator may include SiO x
  • the second oxide semiconductor may include TiO x .
  • the third oxide semiconductor layer may include a metal different from that of the third oxide semiconductor.
  • the metal may include lithium or cobalt.
  • the thickness of the third oxide semiconductor layer 24 may be increased.
  • the hydrogen accumulation amount of the third oxide semiconductor layer 24 can be increased, and the hydrogen accumulation amount in the first charge layer 16 can be increased.
  • the thickness of the first charging layer 16 may be increased. By increasing the thickness of the first charge layer 16, the amount of hydrogen stored in the first charge layer 16 can be increased.
  • the hydrogen concentration of the third oxide semiconductor layer 24 may be increased and the first charging layer 16 may be formed thicker in order to obtain a sufficient electricity storage capacity.
  • the first charge layer 16 may have a composition different from each other and have at least a two-layer structure.
  • the first charge layer 16 may be formed of, for example, silicon oxide (SiO x ) / titanium oxide (TiO x ). Specifically, it may be formed by a layer structure of SiO x / TiO x, or may be formed by particles bonded structure coated with SiO x around the TiO x particle shape.
  • TiO x may have a structure in which mixed or TiO x and SiO x is wrapped in silicon oxide.
  • the composition of titanium oxide and silicon oxide is not limited to TiO x and SiO x, may include a structure in which the composition ratio x of such TiO x or SiO x is changed.
  • the n-type oxide semiconductor may be an oxide of titanium (Ti), tin (Sn), zinc (Zn), or magnesium (Mg), SiO x and Ti, Sn, Zn, Mg It may be an oxide layer structure, or may be formed by a particle bonding structure in which the periphery of a particle-shaped oxide of Ti, Sn, Zn, and Mg is covered with SiO x . Further, a structure in which SiO x and molecules or molecular groups of Ti, Sn, Zn, and Mg oxides are surrounded by SiO x (amorphous) may be provided.
  • the first charging layer 16 may have a porous structure.
  • the first charging layer 16 is a layer that accumulates hydrogen generated during charging.
  • a reaction of M + H 2 O + e ⁇ ⁇ MH + OH ⁇ proceeds during charging, and a reaction of MH + OH ⁇ ⁇ M + H 2 O + e ⁇ proceeds during discharging.
  • the efficiency of hydrogen accumulation can be increased.
  • hydrogen accumulation and conductivity can be optimized by using a plurality of layers.
  • the second oxide semiconductor can be optimized by using an oxide of Ti, Sn, Zn, or Mg.
  • the second charge layer 18 is a buffer layer for adjusting the movement of H + and electrons (e ⁇ ).
  • the oxide semiconductor layer 24 forms a pn junction with the n-type semiconductor (second oxide semiconductor) of the first charging layer 16 and can suppress charge leakage during charging.
  • the p-type oxide semiconductor layer 24 is made of nickel oxide (NiO y H x ) containing hydrogen, the amount of hydrogen supplied to the first charge layer 16 can be increased.
  • the electricity storage device 30 includes a first electrode 12 and a second electrode 26, the first oxide semiconductor layer 14 includes an n-type oxide semiconductor layer, and a first electrode
  • the second oxide semiconductor includes an n-type second oxide semiconductor
  • the third oxide semiconductor layer 24 includes a p-type third oxide semiconductor layer, and is connected to the second electrode 26. May be.
  • the method of manufacturing the electricity storage device 30 includes the step of forming the first conductivity type first oxide semiconductor layer 14 and the first insulator and the first conductivity type on the first oxide semiconductor layer 14.
  • the step of forming the third oxide semiconductor layer 24 may use metallic nickel Ni as a target material at the time of sputtering, supply water vapor or water into the chamber, and increase the sputtering flow rate.
  • Ni atoms are excited from the target by ion bombardment with argon ions Ar + , and the excited Ni atoms react with hydrogen and oxygen in the chamber.
  • the third oxide semiconductor layer 24 containing hydrogen may be deposited by a sputtering deposition reaction.
  • -N-type oxide semiconductor layer 14- A TiO x film is formed on the first electrode 12 constituting the lower electrode by, for example, forming a film by a sputtering deposition method.
  • Ti or TiO x can be used as a target.
  • the film thickness of the n-type oxide semiconductor layer 14 is, for example, about 50 nm to 200 nm.
  • a tungsten (W) electrode can be used as the first electrode 12.
  • the chemical solution is formed by stirring fatty acid titanium and silicone oil together with a solvent. This chemical solution is applied onto the n-type oxide semiconductor layer 14 using a spin coater. The rotational speed is, for example, about 500 to 3000 rpm. After application, it is dried on a hot plate. The drying temperature on the hot plate is, for example, about 30 ° C.-200 ° C., and the drying time is, for example, about 5-30 minutes. Baking after drying. For the post-drying firing, firing is performed in the air using a firing furnace. The firing temperature is, for example, about 300 ° C. to 600 ° C., and the firing time is, for example, about 10 minutes to 60 minutes.
  • the aliphatic acid salt is decomposed to form a fine particle layer of titanium dioxide covered with a silicone insulating film.
  • the above manufacturing (manufacturing) method in which titanium dioxide covered with a silicone insulating film is formed is a coating pyrolysis method. Specifically, this layer has a structure in which a metal layer of titanium dioxide coated with silicone is embedded in the silicone layer.
  • UV irradiation with a low-pressure mercury lamp is performed.
  • the UV irradiation time is, for example, about 10 to 100 minutes.
  • the film thickness of the first charging layer 16 is, for example, about 200 nm to 2000 nm.
  • -Second charge layer (buffer layer) 18- The chemical solution is formed by stirring silicone oil with a solvent. This chemical solution is applied onto the first charging layer 16 using a spin coating device. The rotational speed is, for example, about 500 to 3000 rpm. After application, it is dried on a hot plate. The drying temperature on the hot plate is, for example, about 50 ° C.-200 ° C., and the drying time is, for example, about 5-30 minutes. Furthermore, it is fired after drying. For the post-drying firing, firing is performed in the air using a firing furnace. The firing temperature is, for example, about 300 ° C. to 600 ° C., and the firing time is, for example, about 10 minutes to 60 minutes.
  • UV irradiation with a low-pressure mercury lamp is performed.
  • the UV irradiation time is, for example, about 10-60 minutes.
  • the film thickness of the second charging layer (buffer layer) 18 after UV irradiation is, for example, about 10 nm-100 nm.
  • NiO y H x nickel oxide (NiO y H x ) film containing hydrogen is formed on the second charge layer 18 by, for example, sputtering deposition.
  • Ni or NiO can be used as a target.
  • Water is taken in from water vapor or moisture in the chamber of the sputtering deposition apparatus.
  • the film thickness of the p-type oxide semiconductor layer (nickel oxide containing hydrogen (NiO y H x )) 24 is, for example, about 200 nm to 1000 nm.
  • the second electrode 26 as the upper electrode is formed, for example, by depositing Al by sputtering deposition or vacuum deposition.
  • a film can be formed on the p-type oxide semiconductor layer (nickel oxide containing hydrogen (NiO y H x )) 24 using an Al target.
  • a stainless mask may be used, and only the designated region may be formed.
  • the p-type oxide semiconductor layer 24 is expressed as a mixed layer of nickel oxide NiO and nickel hydroxide Ni (OH) 2 , for example, as shown in FIG. .
  • the p-type oxide semiconductor layer 24 is expressed as nickel oxide (NiO y H x ) containing hydrogen.
  • the p-type oxide semiconductor layer 24 includes, for example, nickel oxide NiO, nickel hydroxide Ni (OH) 2, and nickel oxyhydroxide as illustrated in FIG. It is expressed as a mixed layer of NiOOH. As a result, the p-type oxide semiconductor layer 24 is expressed as nickel oxide (NiO y H x ) containing hydrogen.
  • a predetermined time by applying a charging voltage, then between the first electrode E1 ⁇ second electrode E2 open, to measure the discharge time T D.
  • the discharge time T D of the electric storage device 30 is changed. Sputtering flow conditions, by changing the film thickness, the discharge time T D is found to be possible increased.
  • discharge time T D can be increased.
  • the flow rate of Ar / O 2 in the chamber in the sputtering by increasing respectively, discharge time T D is also found to be possible increased.
  • the discharge time T D is also found to be possible increased.
  • the relationship between discharge charge quantity Q D and p-type oxide hydrogen content C H of the semiconductor layer 24 is expressed as shown in FIG.
  • the relationship between the discharge charge amount Q D and the hydrogen amount C H in the nickel oxide (NiO y H x ) 24 containing hydrogen is proportional, and increases the hydrogen amount C H.
  • the discharge charge amount Q D is increased and the power storage performance is improved.
  • the relationship between the discharge charge amount Q D and the thickness t p of the p-type oxide semiconductor layer 24 is expressed as shown in FIG.
  • metallic nickel Ni As the target material at the time of sputtering, metallic nickel Ni was used.
  • NiO refers to the case where nickel oxide is used as a target material during sputtering (reference example).
  • the relationship between the discharge charge amount Q D and the thickness t p of the p-type oxide semiconductor layer 24 is a proportional relationship. As the thickness t p is increased, the discharge charge amount Q D is The power storage performance is improved.
  • the relationship between the thickness t p of the discharge time T D and the p-type oxide semiconductor layer 24 is schematically expressed as shown in FIG.
  • the thickness t p of the p-type oxide semiconductor layer 24 is proportional to the hydrogen addition amount from the SIMS analysis result, the hydrogen addition amount in the p-type oxide semiconductor layer 24 is increased by increasing the thickness t p. Can be increased.
  • the relationship between the thickness t p of the discharge time T D and the p-type oxide semiconductor layer 24, as shown in FIG. 7, is proportional to the thickness t p by, it is possible to increase the hydrogen content C H, as a result the discharge time T D can be increased.
  • the relationship between the thickness t ch discharge time T D and the first charging layer 16 is schematically expressed as shown in FIG.
  • the relationship between the thickness t ch discharge time T D and the first charging layer 16, as shown in FIG. 8, is proportional to, increasing the thickness t ch in, it is possible to increase the hydrogen storage amount of the first charging layer 16, resulting in the discharge time T D can be increased.
  • FIG. 600 A schematic configuration of a sputtering deposition apparatus 600 applied in the method for manufacturing the electricity storage device 30 according to the embodiment is expressed as shown in FIG. Note that a batch type apparatus capable of processing a plurality of sheets may be used by expanding the apparatus configuration of FIG.
  • the sputtering deposition apparatus 600 applied in the method for manufacturing the electricity storage device 30 according to the embodiment includes a gas inlet 100, a gas outlet 200, a cylinder-shaped upper electrode 80, a target And a chamber 500 including 400.
  • a heater 60 and a sample substrate 50 that can be heated by the heater 60 are disposed on the upper electrode 80.
  • a magnet 90 is connected to the target 400, and a magnetic force line 70 can be generated on the target 400 as shown in FIG.
  • Argon (Ar) gas and oxygen (O 2 ) gas can be supplied from the gas inlet 100 into the chamber 500 at a predetermined flow rate.
  • the exhaust gas after the sputtering deposition reaction is discharged from the gas discharge port 200.
  • the gas discharge port 200 is connected to, for example, a cryopump or a turbo molecular pump disposed outside the chamber 500.
  • metal Ni or NiO can be applied as the target 400.
  • a substrate sample having a layer structure including the first electrode (E1) and having the first charging layer 16 as an exposed surface is applicable.
  • a high-frequency power source 300 that can be excited at a predetermined frequency is connected between the upper electrode 80 electrically connected to the chamber 500 and the target 400 electrically insulated from the chamber 500.
  • a predetermined amount of plasma composed of argon ions Ar + and electrons e ⁇ is generated between the upper electrode 80 and the target 400 in the chamber 500, and Ni atoms are excited from the target 400 by ion bombardment with the argon ions Ar +. Is done.
  • the excited Ni atoms deposit the p-type oxide semiconductor layer 24 containing hydrogen on the surface of the sample substrate 50 by a sputtering deposition reaction while reacting with hydrogen and oxygen in the chamber.
  • the p-type oxide semiconductor layer 24 is expressed as nickel oxide (NiO y H x ) containing hydrogen.
  • the discharge time can be increased by increasing the hydrogen (H) concentration. For this reason, for example, water vapor or H 2 O may be supplied into the chamber during sputtering.
  • RBS Rutherford Backscattering Spectroscopy
  • nickel oxide (NiO y H x ) containing hydrogen (H) of 15% or more in atomic weight ratio is necessary for discharging.
  • a power storage device capable of increasing a power storage capacity per unit volume (weight) and a manufacturing method thereof.
  • the structure of the electricity storage device 30 according to the embodiment is produced in a sheet shape using a stainless steel foil as a substrate. Then, this sheet
  • the second electrode (upper electrode) of two sheets are opposed to each other, an electrode (thin metal foil) is inserted between them, and the two sheets are stacked in multiple layers to produce an electricity storage device having a necessary capacity. May be. Thereafter, it may be sealed with a laminate or the like.
  • the present embodiment includes various embodiments that are not described here.
  • the power storage device of this embodiment can be used for various consumer devices and industrial devices, and is intended for system applications that can transmit various sensor information with low power consumption, such as power storage devices for communication terminals and wireless sensor networks. It can be applied to a wide range of application fields such as power storage devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

蓄電デバイス(30)は、第1導電型の第1酸化物半導体を有する第1酸化物半導体層(14)と、第1酸化物半導体層(14)上に配置され、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層(16)と、第1充電層(16)上に配置された第3酸化物半導体層(24)とを備える。第3酸化物半導体層(24)は、水素、及び第2導電型の第3酸化物半導体を有し、第3酸化物半導体を構成する金属に対する水素の割合が40%以上である。単位体積(重さ)当たりの蓄電容量を増大可能な蓄電デバイスを提供する。

Description

蓄電デバイス
 本実施の形態は、蓄電デバイスに関する。
 従来の蓄電デバイスとして、電解液・希少元素を用いないこと、及び薄膜化可能であるため、第1電極/絶縁物・n型酸化物半導体層/p型酸化物半導体層/第2電極が積層された二次電池が提案されている。
 また、この二次電池に類似した構造として、酸化ニッケルなどを正極活物質として含む正極活物質膜を備える正極と、含水多孔質構造を有する固体電解質と、酸化チタンなどを負極活物質として含む負極活物質膜を備える負極とを備える二次電池が提案されている。
 また、n型半導体層、充電層、絶縁層、p型半導体層を積層し、上下に電極を形成した構造の蓄電デバイスも提案されている。
特許第5508542号公報 特許第5297809号公報 特開2015-82445号公報 特開2016-82125号公報
 本実施の形態は、単位体積(重さ)当たりの蓄電容量を増大可能な蓄電デバイスを提供する。
 本実施の形態の一態様によれば、第1導電型の第1酸化物半導体を有する第1酸化物半導体層と、前記第1酸化物半導体層上に配置され、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層と、前記第1充電層上に配置された第3酸化物半導体層とを備え、前記第3酸化物半導体層は、水素、及び第2導電型の第3酸化物半導体を有し、前記第3酸化物半導体を構成する金属に対する前記水素の割合が40%以上である蓄電デバイスが提供される。
 本実施の形態によれば、単位体積(重さ)当たりの蓄電容量を増大可能な蓄電デバイスを提供することができる。
実施の形態に係る蓄電デバイスの模式的断面構造図。 実施の形態に係る蓄電デバイスにおいて、(a)水素を含有する第3酸化物半導体層の模式的構成図、(b)水素を含有する第3酸化物半導体層の別の模式的構成図。 実施の形態に係る蓄電デバイスにおいて、放電電荷量QDとp型酸化物半導体層中の水素量CHとの関係。 実施の形態に係る蓄電デバイスにおいて、放電電荷量QDとp型酸化物半導体層の厚さtpとの関係。 実施の形態に係る蓄電デバイスにおいて、p型酸化物半導体層のX線散乱(XRD:X-ray diffraction)測定結果。 実施の形態に係る蓄電デバイスにおいて、スパッタデポジションにおけるp型酸化物半導体層の水素量CHと圧力ΔPとの関係を説明する模式図。 実施の形態に係る蓄電デバイスにおいて、放電時間TDとp型酸化物半導体層の厚さtpとの関係を説明する模式図。 実施の形態に係る蓄電デバイスにおいて、放電時間TDと第1充電層の厚さtchとの関係を説明する模式図。 実施の形態に係る蓄電デバイスにおいて、スパッタデポジション装置の模式的構成図。
 次に、図面を参照して、本実施の形態について説明する。以下に説明する図面の記載において、同一または類似の部分には同一または類似の符号を付している。ただし、図面は模式的なものであり、各構成部品の厚みと平面寸法との関係などは現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 また、以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、各構成部品の材質、形状、構造、配置などを特定するものではない。この実施の形態は、特許請求の範囲において、種々の変更を加えることができる。
 以下の実施の形態の説明において、第1導電型とは、例えば、n型、第2導電型とは、第1導電型と反対導電型のp型であることを示す。また、第1導電型の第1酸化物半導体層14とは、第1導電型の第1酸化物半導体を有する酸化物半導体層であることを表す。第2導電型の第3酸化物半導体層24とは、第2導電型の第3酸化物半導体を有する酸化物半導体層であることを表す。以下同様である。
 [実施の形態]
 実施の形態に係る蓄電デバイス30は、図1に示すように、第1導電型の第1酸化物半導体を有する第1酸化物半導体層14と、第1酸化物半導体層上に配置され、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層16と、第1充電層16上に配置された第3酸化物半導体層24とを備える。ここで、第3酸化物半導体層24は、水素、及び第2導電型の第3酸化物半導体を有し、第3酸化物半導体を構成する金属に対する水素の割合が40%以上であっても良い。
 また、実施の形態に係る蓄電デバイス30において、第3酸化物半導体層24は、水素を含有する酸化ニッケル(NiOyx)を備え、水素組成比xの値は0.35以上、酸素組成比yの値は任意であっても良い。
 また、第1充電層16と第3酸化物半導体層24との間に配置された第2充電層18を備えていても良い。
 また、第2充電層18は、第2絶縁物を備えていても良い。
 また、第3酸化物半導体は、NiOを備えていても良い。
 また、第2充電層18は、第2絶縁物と、導電率調整材とを備えていても良い。
 また、第2酸化物半導体は、Ti、Sn、Zn、若しくはMgの酸化物からなる群から選択された少なくとも1つの酸化物を備えていても良い。
 また、導電率調整材は、第1導電型の半導体、若しくは金属の酸化物を備えていても良い。
 また、導電率調整材は、Sn、Zn、Ti、若しくはNbの酸化物からなる群から選択された少なくとも1つの酸化物を備えていても良い。
 また、第2絶縁物は、SiOxを備え、導電率調整材は、SnOxを備えていても良い。
 また、第2絶縁物は、シリコーンオイルから成膜したSiOxを備えていても良い。
 また、第1絶縁物はSiOxを備え、第2酸化物半導体はTiOxを備えていても良い。
 更に、第3酸化物半導体層は、第3酸化物半導体とは異なる金属を備えていても良い。ここで、この金属は、リチウム、又はコバルトを備えていても良い。
 また、実施の形態に係る蓄電デバイス30においては、第3酸化物半導体層24の厚さを増大させても良い。第3酸化物半導体層24の厚さを増大させることによって、第3酸化物半導体層24の水素蓄積量を増加させ、第1充電層16への水素蓄積量を増大することができる。
 また、実施の形態に係る蓄電デバイス30においては、第1充電層16の厚さを増大させても良い。第1充電層16の厚さを増大させることによって、第1充電層16への水素蓄積量を増大することができる。
 また、実施の形態に係る蓄電デバイス30においては、十分な蓄電容量を得るために、第3酸化物半導体層24の水素濃度を増加させ、更に第1充電層16を厚く形成しても良い。
 また、第1充電層16は、組成が互いに相違し、少なくとも2層構造を備えていても良い。第1充電層16は、例えば、酸化シリコン(SiOx)/酸化チタン(TiOx)によって形成されていても良い。具体的には、SiOx/TiOxの層構造によって形成されていても良く、あるいは、粒子形状のTiOxの周囲をSiOxによって被覆した粒子接合構造によって形成されていても良い。また、第1充電層16は、TiOxがSiOxと混在あるいはTiOxが酸化シリコンに包まれる構造を備えていても良い。また、上記において、酸化チタン及び酸化シリコンの組成は、TiOx及びSiOxに限定されるものではなく、TiOxあるいはSiOxなどの組成比xが変化した構成を備えていても良い。
 また、n型の酸化物半導体が、チタン(Ti)、錫(Sn)、亜鉛(Zn)、マグネシウム(Mg)の酸化物であっても良いため、SiOxとTi、Sn、Zn、Mgの酸化物の層構造であっても良く、あるいは、粒子形状のTi、Sn、Zn、Mgの酸化物の周囲をSiOxによって被覆した粒子接合構造によって形成されていても良い。また、SiOxとTi、Sn、Zn、Mgの酸化物の分子あるいは分子群がSiOx(非晶質)に囲まれた構成を備えていても良い。
 また、第1充電層16は、多孔質構造を備えていても良い。
 (第1充電層)
 第1充電層16は、充電時に発生した水素を蓄積する層である。第1充電層16は、充電時は、M+H2O+e-→MH+OH-の反応が進行し、放電時は、MH+OH-→M+H2O+e-の反応が進行する。多孔質化することで、水素蓄積の効率を増大可能である。また、複数層とすることで、水素蓄積と導電性を最適化できる。第2酸化物半導体を、Ti、Sn、Zn若しくはMgの酸化物とすることで、最適化可能である。
 (第2充電層)
 第2充電層18は、H+及び電子(e-)の移動を調整するためのバッファ層である。
 (p型酸化物半導体層)
 酸化物半導体層24は、第1充電層16のn型半導体(第2酸化物半導体)に対してpn接合を構成し、充電時の電荷リークを抑制可能である。p型酸化物半導体層24は、水素を含有する酸化ニッケル(NiOyx)とすることで、第1充電層16への水素供給量を増大可能になる。
 (n型酸化物半導体層)
 実施の形態に係る蓄電デバイス30は、図1に示すように、第1電極12と、第2電極26とを備え、第1酸化物半導体層14はn型酸化物半導体層を備え、かつ第1電極12に接続され、第2酸化物半導体はn型第2酸化物半導体を備え、第3酸化物半導体層24はp型第3酸化物半導体層を備え、かつ第2電極26に接続されていても良い。
 (製造方法)
 実施の形態に係る蓄電デバイス30の製造方法は、第1導電型の第1酸化物半導体層14を形成する工程と、第1酸化物半導体層14上に、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層16を形成する工程と、第1充電層16上に第2充電層18を形成する工程と、第2充電層18上にスパッタデポジション法により第3酸化物半導体層24を形成する工程とを有する。
 ここで、第3酸化物半導体層24を形成する工程は、スパッタリング時のターゲット材料として、金属ニッケルNiを使用し、水蒸気や水をチャンバー内に供給し、かつスパッタ流量を増加しても良い。
 また、第3酸化物半導体層24を形成する工程は、アルゴンイオンAr+によるイオン衝撃によって、ターゲットからNi原子が励起されると共に、励起されたNi原子は、チャンバー内の水素、酸素と反応しつつスパッタデポジション反応により、水素を含有する第3酸化物半導体層24を堆積しても良い。
 ―n型酸化物半導体層14―
 下部電極を構成する第1電極12上にTiOx膜を例えば、スパッタデポジション法で成膜することによって形成する。ここで、TiまたはTiOxをターゲットとして使用可能である。n型酸化物半導体層14の膜厚は、例えば、約50nm-200nm程度である。なお、第1電極12は、例えば、タングステン(W)電極などを適用可能である。
 ―第1充電層16―
 薬液は脂肪酸チタンとシリコーンオイルを溶媒と共に攪拌して形成する。この薬液を、スピン塗布装置を用いて、n型酸化物半導体層14上に塗布する。回転数は例えば、約500-3000rpmである。塗布後、ホットプレート上で乾燥させる。ホットプレート上の乾燥温度は、例えば、約30℃-200℃程度、乾燥時間は、例えば約5分-30分程度である。乾燥後焼成する。乾燥後焼成には、焼成炉を用い、大気中で焼成する。焼成温度は例えば、約300℃-600℃程度、焼成時間は例えば、約10分-60分程度である。
 これにより、脂肪族酸塩が分解してシリコーンの絶縁膜に覆われた二酸化チタンの微粒子層が形成される。シリコーンの絶縁膜で覆われた二酸化チタンを層形成した上記製造(作製)方法は、塗布熱分解法である。この層は、具体的にはシリコーンが被膜された二酸化チタンの金属塩がシリコーン層中に埋められている構造である。焼成後、低圧水銀ランプによるUV照射を実施する。UV照射時間は、例えば、約10分-100分程度である。第1充電層16の膜厚は、例えば、約200nm-2000nm程度である。
 ―第2充電層(バッファ層)18―
 薬液はシリコーンオイルを溶媒と共に攪拌して形成する。この薬液を、スピン塗布装置を用いて、第1充電層16上に塗布する。回転数は例えば、約500-3000rpmである。塗布後、ホットプレート上で乾燥させる。ホットプレート上の乾燥温度は例えば、約50℃-200℃程度、乾燥時間は例えば、約5分-30分程度である。さらに、乾燥後焼成する。乾燥後焼成には、焼成炉を用い、大気中で焼成する。焼成温度は例えば、約300℃-600℃程度、焼成時間は例えば、約10分-60分程度である。焼成後、低圧水銀ランプによるUV照射を実施する。UV照射時間は例えば、約10分-60分程度である。UV照射後の第2充電層(バッファ層)18の膜厚は、例えば、約10nm-100nm程度である。
 ―p型第3酸化物半導体層24―
 第2充電層18上に水素を含有する酸化ニッケル(NiOyx)膜を例えば、スパッタデポジション法で成膜することによって形成する。ここで、NiまたはNiOをターゲットとして使用可能である。また、水は、スパッタデポジション装置のチャンバー内の水蒸気若しくは水分から取り込まれる。p型酸化物半導体層(水素を含有する酸化ニッケル(NiOyx))24の膜厚は、例えば、約200nm-1000nm程度である。
 ―第2電極26―
 上部電極としての第2電極26は、例えばAlをスパッタデポジション法若しくは真空蒸着法で成膜することによって形成する。p型酸化物半導体層(水素を含有する酸化ニッケル(NiOyx))24上にAlターゲットを使用して成膜可能である。第2電極26は、例えば、ステンレスマスクを用い、指定領域のみ成膜しても良い。
 (水素を含有するp型酸化物半導体層の構成)
 実施の形態に係る蓄電デバイス30において、p型酸化物半導体層24の模式的構成例は、図2(a)に示すように表される。また、p型酸化物半導体層24の別の模式的構成例は、図2(b)に示すように表される。
 実施の形態に係る蓄電デバイス30において、p型酸化物半導体層24は、例えば、図2(a)に示すように、酸化ニッケルNiOと水酸化ニッケルNi(OH)2の混在層として表される。結果として、p型酸化物半導体層24は、水素を含有する酸化ニッケル(NiOyx)として表される。
 或いは、実施の形態に係る蓄電デバイス30において、p型酸化物半導体層24は、例えば、図2(b)に示すように、酸化ニッケルNiOと水酸化ニッケルNi(OH)2とオキシ水酸化ニッケルNiOOHの混在層として表される。結果として、p型酸化物半導体層24は、水素を含有する酸化ニッケル(NiOyx)として表される。
 (放電電荷量QDと水素量CHとの関係)
 二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)の分析結果より、p型酸化物半導体層24中の総水素量CHと蓄電デバイス30の放電時間TDに比例する放電電荷量QDの関係を測定した。
 実施の形態に係る蓄電デバイス30に対して、所定の時間だけ充電電圧を印加し、その後、第1電極E1・第2電極E2間を開放状態にして、放電時間TDを測定した。
 p型酸化物半導体層24の成膜条件(膜厚を含む)を変えることで、蓄電デバイス30の放電時間TDが変化する。スパッタ流量条件、膜厚を変えることで、放電時間TDが増加可能であることが判明した。
 p型酸化物半導体層24の膜厚を増加することで、蓄電デバイス30の放電時間TDを増加可能である。
 スパッタ流量(圧力)を増加することで、放電時間TDが増加可能である。例えば、具体的には、スパッタリングにおけるチャンバー内のAr/O2の流量をそれぞれ増加することで、放電時間TDが増加可能であることも判明した。
 実施の形態に係る蓄電デバイス30において、第1充電層16の膜厚tchを増加することで、放電時間TDが増加可能であることも判明した。
 実施の形態に係る蓄電デバイスにおいて、放電電荷量QDとp型酸化物半導体層24中の水素量CHとの関係は、図3に示すように表される。放電電荷量QDと水素を含有する酸化ニッケル(NiOyx)24中の水素量CHとの関係は、図3に示すように、比例関係にあり、水素量CHを増加すると共に、放電電荷量QDが増大し、蓄電性能が向上している。
 (放電電荷量QDとp型酸化物半導体層の厚さtpとの関係)
 SIMSの分析結果より、p型酸化物半導体層(水素を含有する酸化ニッケル(NiOyx))24中の水素Hの添加量は膜深さ方向にほぼ一定であった。このため、p型酸化物半導体層24の厚さtpに比例して、p型酸化物半導体層24中の総水素量は、増加している。そこで、同成膜条件でp型酸化物半導体層24の厚さtpを変更したときの、膜厚と放電時間との関係を測定し、放電電荷量QDとp型酸化物半導体層24の厚さtpとの関係を求めた。
 すなわち、実施の形態に係る蓄電デバイスにおいて、放電電荷量QDとp型酸化物半導体層24の厚さtpとの関係は、図4に示すように表される。スパッタリング時のターゲット材料としては、金属ニッケルNiを使用した。尚、図4において、NiOとあるのは、スパッタリング時のターゲット材料として酸化ニッケルを使用した場合(参照例)である。
 放電電荷量QDとp型酸化物半導体層24の厚さtpとの関係は、図4に示すように、比例関係にあり、厚さtpを増加すると共に、放電電荷量QDが増大し、蓄電性能が向上している。
 (X線散乱測定結果)
 実施の形態に係る蓄電デバイスにおいて、p型酸化物半導体層24のX線散乱(XRD:X-ray diffraction)測定結果は、図5に示すように表される。XRDの測定結果、2θ=37度および43度の結果より、NiOの(111)面37度と、(200)面43度が観測されている。
 (水素量CHと圧力ΔPとの関係)
 実施の形態に係る蓄電デバイス30において、スパッタデポジションにおけるp型酸化物半導体層24中の水素量CHと圧力ΔPとの関係は、図6に示すように模式的に表される。ここで、圧力ΔP=P1、P2、P3はリニアに増大しており、それぞれに対応する水素量CH=CP1、CP2、CP3もリニアに増大している。圧力ΔPは、スパッタリングにおけるチャンバー内のAr/O2の流量をそれぞれ増加することで、変更可能である。
 p型酸化物半導体層24中の水素量CHと圧力ΔPとの関係は、図6に示すように、比例関係にあり、圧力ΔPを増加することで、水素量CHを増加することができ、結果として放電時間TDが増加可能である。
 (放電時間TDとp型酸化物半導体層の厚さtpとの関係)
 実施の形態に係る蓄電デバイス30において、放電時間TDとp型酸化物半導体層24の厚さtpとの関係は、図7に示すように模式的に表される。ここで、厚さtp=tp1、tp2、tp3はリニアに増大しており、それぞれに対応する放電時間TD=TP1、TP2、TP3もリニアに増大している。p型酸化物半導体層24の厚さtpは、SIMSの分析結果より、水素添加量に比例するため、厚さtpを増大することで、p型酸化物半導体層24中の水素添加量を増大可能である。
 実施の形態に係る蓄電デバイス30において、放電時間TDとp型酸化物半導体層24の厚さtpとの関係は、図7に示すように、比例関係にあり、厚さtpを増加することで、水素量CHを増加することができ、結果として放電時間TDが増加可能である。
 (放電時間TDと第1充電層の厚さtchとの関係)
 実施の形態に係る蓄電デバイス30において、放電時間TDと第1充電層16の厚さtchとの関係は、図8に示すように模式的に表される。ここで、第1充電層16の厚さtch=tch1、tch2、tch3は増大しており、それぞれに対応する放電時間TD=Tc1、Tc2、Tc3も増大している。
 実施の形態に係る蓄電デバイス30において、放電時間TDと第1充電層16の厚さtchとの関係は、図8に示すように、比例関係にあり、厚さtchを増加することで、第1充電層16への水素蓄積量を増大することができ、結果として放電時間TDが増加可能である。
 (スパッタデポジション装置)
 実施の形態に係る蓄電デバイス30の製造方法において適用されるスパッタデポジション装置600の模式的構成は、図9に示すように表される。尚、図9の装置構成を拡張した複数枚処理可能なバッチ式装置を用いても良い。
 実施の形態に係る蓄電デバイス30の製造方法において適用されるスパッタデポジション装置600は、図9に示すように、ガス導入口100と、ガス排出口200と、シリンダ形状の上部電極80と、ターゲット400とを備えるチャンバー500を備える。
 上部電極80上にはヒータ60およびこのヒータ60で加熱可能なサンプル基板50が配置されている。
 また、ターゲット400には磁石90が接続されており、図9に示すように、ターゲット400上には、磁力線70が発生可能である。
 ガス導入口100からは、アルゴン(Ar)ガスおよび酸素(O2)ガスが所定の流量でチャンバー500内に供給可能である。
 ガス排出口200からは、スパッタデポジション反応後の排気ガスが排出される。ガス排出口200は、チャンバー500の外部に配置された例えば、クライオポンプ、又はターボ分子ポンプに接続されている。
 ターゲット400としては、金属Ni、若しくはNiOなどを適用可能である。
 また、サンプル基板50としては、実施の形態に係る蓄電デバイス30における第1充電層16/第1酸化物半導体層14からなる層構造、若しくは第1充電層16/第1酸化物半導体層14/第1電極(E1)からなる層構造であって、第1充電層16を露出表面とする基板サンプルが適用可能である。
 チャンバー500に対して電気的に接続された上部電極80と、チャンバー500に対して電気的に絶縁されたターゲット400間には所定の周波数で励振可能な高周波電源300が接続されている。その結果、チャンバー500内の上部電極80とターゲット400間にはアルゴンイオンAr+と電子e-からなる所定量のプラズマが発生し、アルゴンイオンAr+によるイオン衝撃によって、ターゲット400からNi原子が励起される。この励起されたNi原子は、チャンバー内の水素、酸素と反応しつつサンプル基板50表面上において、スパッタデポジション反応により、水素を含有するp型酸化物半導体層24を堆積する。結果として、p型酸化物半導体層24は、水素を含有する酸化ニッケル(NiOyx)として表される。
 p型酸化物半導体層24の単位膜厚(体積)当たりで変換しても、水素(H)濃度を高くすることで、放電時間が増加可能である。このため、例えば、スパッタリング時、水蒸気やH2Oをチャンバー内に供給しても良い。
 (RBS)
 SIMSでは、相互比較はできるが、絶対量が測定できないため、ラザフォード後方散乱分光法(RBS:Rutherford Backscattering Spectroscopy)での定量化も実施した。RBSにおいては、試料に高速イオン(He+、H+等)を照射すると、入射イオンのうち一部は試料中の原子核により弾性(ラザフォード)散乱を受ける。散乱イオンのエネルギーは、対象原子の質量及び位置(深さ)により異なる。この散乱イオンのエネルギーと収量から、深さ方向の試料の元素組成を得ることができる。この結果、一例として、Ni含有量35.20%、O含有量35.60%、H含有量29.00%の結果が得られ、原子量比で約30%の水素(H)が含まれていることが判明した。
 実施の形態に係る蓄電デバイス30においては、原子量比で15%以上の水素(H)を含む酸化ニッケル(NiOyx)が放電するためには必要と推測される。または、化学式で、水素(H)を含む酸化ニッケル(NiOyx)の水素量について、y=任意、x=0.35以上であることが望ましい。
 酸化ニッケル(NiO)に純粋にHが含まれている場合は、NiOHx x=0.35程度で良い。しかしながら、酸化ニッケル(NiO)にNiOOHやNi(OH)2が含まれている場合も有り得るため、水素を含む酸化ニッケル(NiOyx)では、y=任意、x=0.35以上であることが望ましい。
 XRDでは、NiOしか検出されないが、RBSの測定で酸素がNiに対して1を超えるケースが確認されており、水素の量をNiをベースにして定義して、水素の量が充放電に寄与しているためである。RBS測定の結果、例えば、あるサンプルでは、NiOyx:y=1、x=0.8が得られ、別のサンプルでは、NiOyx:y=1.5、x=0.4が得られている。
 実施の形態によれば、単位体積(重さ)当たりの蓄電容量を増大可能な蓄電デバイスおよびその製造方法を提供することができる。
 [その他の実施の形態]
 上記のように、実施の形態について記載したが、開示の一部をなす論述及び図面は例示的なものであり、限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 例えば、ステンレス箔を基板として、実施の形態に係る蓄電デバイス30の構造をシート状に作製する。その後、このシートを積層し、必要な容量の蓄電デバイス30を作製しても良い。
 例えば、2枚のシートの第2電極(上部電極)を対向し、間に電極(薄い金属箔)を挿入し、2枚のシートを多層に重ねることで、必要な容量の蓄電デバイスを作製しても良い。後はラミネートなどで封止しても良い。
 このように、本実施の形態は、ここでは記載していない様々な実施の形態などを含む。
 本実施の形態の蓄電デバイスは、様々な民生用機器、産業機器に利用することができ、通信端末、無線センサネットワーク向けの蓄電デバイスなど、各種センサ情報を低消費電力伝送可能なシステム応用向けの蓄電デバイスなど、幅広い応用分野に適用可能である。
12…第1電極(E1)
14…第1酸化物半導体層
16…第1充電層
18…第2充電層
24…第3酸化物半導体層
26…第2電極(E2)
30…蓄電デバイス
50…サンプル基板
60…ヒータ
70…磁力線
80…上部電極
90…磁石
100…ガス導入口
200…ガス排出口
300…高周波電源
400…ターゲット
500…チャンバー
600…スパッタデポジション装置

Claims (14)

  1.  第1導電型の第1酸化物半導体を有する第1酸化物半導体層と、
     前記第1酸化物半導体層上に配置され、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層と、
     前記第1充電層上に配置された第3酸化物半導体層と
     を備え、
     前記第3酸化物半導体層は、水素、及び第2導電型の第3酸化物半導体を有し、前記第3酸化物半導体を構成する金属に対する前記水素の割合が40%以上であることを特徴とする蓄電デバイス。
  2.  前記第1充電層と前記第3酸化物半導体層との間に配置された第2充電層を備えることを特徴とする請求項1に記載の蓄電デバイス。
  3.  前記第2充電層は、第2絶縁物を備えることを特徴とする請求項2に記載の蓄電デバイス。
  4.  前記第3酸化物半導体は、NiOを備えることを特徴とする請求項1~3のいずれか1項に記載の蓄電デバイス。
  5.  前記第2充電層は、第2絶縁物と、導電率調整材とを備えることを特徴とする請求項2に記載の蓄電デバイス。
  6.  前記第2酸化物半導体は、Ti、Sn、Zn、若しくはMgの酸化物からなる群から選択された少なくとも1つの酸化物を備えることを特徴とする請求項1~5のいずれか1項に記載の蓄電デバイス。
  7.  前記導電率調整材は、第1導電型の半導体、若しくは金属の酸化物を備えることを特徴とする請求項5に記載の蓄電デバイス。
  8.  前記導電率調整材は、Sn、Zn、Ti、若しくはNbの酸化物からなる群から選択された少なくとも1つの酸化物を備えることを特徴とする請求項5または7に記載の蓄電デバイス。
  9.  前記第2絶縁物は、SiOxを備え、前記導電率調整材は、SnOxを備えることを特徴とする請求項5に記載の蓄電デバイス。
  10.  前記第2絶縁物は、シリコーンオイルから成膜したSiOxを備えることを特徴とする請求項5に記載の蓄電デバイス。
  11.  前記第1絶縁物はSiOxを備え、前記第2酸化物半導体はTiOxを備えることを特徴とする請求項1~10のいずれか1項に記載の蓄電デバイス。
  12.  前記第3酸化物半導体層は、前記第3酸化物半導体とは異なる金属を備えることを特徴とする請求項1に記載の蓄電デバイス。
  13.  前記金属は、リチウム、又はコバルトを備えることを特徴とする請求項12に記載の蓄電デバイス。
  14.  第1導電型の第1酸化物半導体層と、
     前記第1酸化物半導体層上に配置され、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層と、
     前記第1充電層上に配置された第2導電型の第3酸化物半導体層と
     を備え、
     前記第3酸化物半導体層は、水素を含有する酸化ニッケル(NiOyx)を備え、水素組成比xの値は0.35以上、酸素組成比yの値は任意であることを特徴とする蓄電デバイス。
PCT/JP2018/007770 2017-03-15 2018-03-01 蓄電デバイス WO2018168493A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3056194A CA3056194C (en) 2017-03-15 2018-03-01 Oxide semiconductor secondary battery
EP18768050.9A EP3598563B1 (en) 2017-03-15 2018-03-01 Electricity storage device
KR1020197027262A KR102280735B1 (ko) 2017-03-15 2018-03-01 축전 디바이스
CN201880017572.7A CN110392955B (zh) 2017-03-15 2018-03-01 蓄电设备
US16/569,322 US20200006763A1 (en) 2017-03-15 2019-09-12 Electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049544A JP7075717B2 (ja) 2017-03-15 2017-03-15 蓄電デバイス
JP2017-049544 2017-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/569,322 Continuation US20200006763A1 (en) 2017-03-15 2019-09-12 Electricity storage device

Publications (1)

Publication Number Publication Date
WO2018168493A1 true WO2018168493A1 (ja) 2018-09-20

Family

ID=63522098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007770 WO2018168493A1 (ja) 2017-03-15 2018-03-01 蓄電デバイス

Country Status (8)

Country Link
US (1) US20200006763A1 (ja)
EP (1) EP3598563B1 (ja)
JP (1) JP7075717B2 (ja)
KR (1) KR102280735B1 (ja)
CN (1) CN110392955B (ja)
CA (1) CA3056194C (ja)
TW (1) TWI650893B (ja)
WO (1) WO2018168493A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122981B2 (ja) 2019-01-31 2022-08-22 株式会社日本マイクロニクス 二次電池
US11865522B2 (en) 2019-09-27 2024-01-09 Lg Chem, Ltd. Method for preparing zinc ferrite-based catalyst and zinc ferrite-based catalyst prepared thereby

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558542B2 (ja) 1975-07-17 1980-03-04
JP5297809B2 (ja) 2006-11-02 2013-09-25 グエラテクノロジー株式会社 電界感応素子およびそれを用いた表示デバイス
JP2015082445A (ja) 2013-10-23 2015-04-27 旭化成株式会社 二次電池
JP2016082125A (ja) 2014-10-20 2016-05-16 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016127166A (ja) * 2015-01-05 2016-07-11 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法
WO2016208116A1 (ja) * 2015-06-25 2016-12-29 株式会社日本マイクロニクス 二次電池の製造方法
JP2017059524A (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法
JP2017182969A (ja) * 2016-03-29 2017-10-05 イムラ・ジャパン株式会社 二次電池及びその製造方法
JP2017195283A (ja) * 2016-04-20 2017-10-26 グエラテクノロジー株式会社 固体二次電池
WO2017199618A1 (ja) * 2016-05-19 2017-11-23 株式会社日本マイクロニクス 二次電池の製造方法
JP2018022719A (ja) * 2016-08-01 2018-02-08 株式会社日本マイクロニクス 二次電池
JP2018037261A (ja) * 2016-08-31 2018-03-08 株式会社日本マイクロニクス 二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009116378A1 (ja) * 2008-02-29 2011-07-21 国立大学法人 東京大学 固体遷移金属水酸化物膜、固体遷移金属水酸化物製造方法、及び固体遷移金属水酸化物製造装置、
WO2009120382A1 (en) * 2008-03-27 2009-10-01 Zpower, Inc. Electrode separator
EP2626909B1 (en) * 2010-10-07 2016-09-14 Guala Technology Co., Ltd. Secondary cell
KR101654114B1 (ko) * 2011-10-30 2016-09-05 가부시키가이샤 니혼 마이크로닉스 반복 충방전 가능한 양자 전지
JP2016028408A (ja) * 2014-03-24 2016-02-25 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP6443798B2 (ja) * 2014-03-24 2018-12-26 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558542B2 (ja) 1975-07-17 1980-03-04
JP5297809B2 (ja) 2006-11-02 2013-09-25 グエラテクノロジー株式会社 電界感応素子およびそれを用いた表示デバイス
JP2015082445A (ja) 2013-10-23 2015-04-27 旭化成株式会社 二次電池
JP2016082125A (ja) 2014-10-20 2016-05-16 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016127166A (ja) * 2015-01-05 2016-07-11 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法
WO2016208116A1 (ja) * 2015-06-25 2016-12-29 株式会社日本マイクロニクス 二次電池の製造方法
JP2017059524A (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法
JP2017182969A (ja) * 2016-03-29 2017-10-05 イムラ・ジャパン株式会社 二次電池及びその製造方法
JP2017195283A (ja) * 2016-04-20 2017-10-26 グエラテクノロジー株式会社 固体二次電池
WO2017199618A1 (ja) * 2016-05-19 2017-11-23 株式会社日本マイクロニクス 二次電池の製造方法
JP2018022719A (ja) * 2016-08-01 2018-02-08 株式会社日本マイクロニクス 二次電池
JP2018037261A (ja) * 2016-08-31 2018-03-08 株式会社日本マイクロニクス 二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598563A4

Also Published As

Publication number Publication date
TWI650893B (zh) 2019-02-11
CN110392955B (zh) 2022-03-08
KR102280735B1 (ko) 2021-07-23
KR20190119627A (ko) 2019-10-22
JP2018152311A (ja) 2018-09-27
EP3598563A1 (en) 2020-01-22
EP3598563B1 (en) 2022-06-01
CN110392955A (zh) 2019-10-29
EP3598563A4 (en) 2020-12-16
TW201841415A (zh) 2018-11-16
US20200006763A1 (en) 2020-01-02
CA3056194C (en) 2023-04-11
CA3056194A1 (en) 2018-09-20
JP7075717B2 (ja) 2022-05-26

Similar Documents

Publication Publication Date Title
JP2022544754A (ja) バッテリーアノードとして使用するためのケイ素組成物材料
CA3034996C (en) Secondary battery
JP2011097031A (ja) 電気化学キャパシタ
JP5595349B2 (ja) リチウムイオン二次電池用正極集電体、リチウムイオン二次電池用正極およびリチウムイオン二次電池用正極集電体の製造方法
JP2012109052A (ja) 電極用薄膜、全固体リチウム電池、および電極用薄膜の製造方法
WO2018168493A1 (ja) 蓄電デバイス
Kim et al. Interface control for high-performance all-solid-state Li thin-film batteries
CN113764646B (zh) 一种高能量密度快充石墨复合材料及其制备方法
US11005091B2 (en) Composite electrode material and method for manufacturing the same
CN113151790B (zh) 离子/电子共导体薄膜及其制备方法、固态电池及电动车
US20200006764A1 (en) Secondary battery
JP7100170B2 (ja) 二次電池
WO2024103493A1 (zh) 一种锂离子电池及其具有多功能保护层的正极极片
KR100550208B1 (ko) 고체전해질과 전극물질을 일체화시킨 박막전지용나노복합전극의 제조방법
WO2019181314A1 (ja) 二次電池、及びその製造方法
CN113410445A (zh) 一种用于二次电池的硅碳复合物负极材料及其制备方法
CN113540397A (zh) 钛酸锂电池极片及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3056194

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027262

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018768050

Country of ref document: EP

Effective date: 20191015