WO2024103493A1 - 一种锂离子电池及其具有多功能保护层的正极极片 - Google Patents

一种锂离子电池及其具有多功能保护层的正极极片 Download PDF

Info

Publication number
WO2024103493A1
WO2024103493A1 PCT/CN2022/141775 CN2022141775W WO2024103493A1 WO 2024103493 A1 WO2024103493 A1 WO 2024103493A1 CN 2022141775 W CN2022141775 W CN 2022141775W WO 2024103493 A1 WO2024103493 A1 WO 2024103493A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
layer
transport layer
electrode sheet
Prior art date
Application number
PCT/CN2022/141775
Other languages
English (en)
French (fr)
Inventor
沈璐
谢罗源
王惟臻
李哲峰
安麟簇辛
Original Assignee
深圳市原速光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市原速光电科技有限公司 filed Critical 深圳市原速光电科技有限公司
Publication of WO2024103493A1 publication Critical patent/WO2024103493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of batteries, and in particular relates to a lithium-ion battery and a positive electrode sheet with a multifunctional protective layer.
  • lithium-ion batteries have been widely used in 3C products due to their excellent performance.
  • ternary positive electrodes are the most promising positive electrode materials in lithium-ion batteries, especially high-nickel ternary materials represented by NCM811, which are expected to further improve the energy density of batteries.
  • NCM-based high-nickel materials face some urgent problems to be solved. For example, first, with the increase of Ni 2+ content, the Li + /Ni 2+ mixing leads to a decrease in specific capacity, and the low-valent Ni ions diffuse into the lithium layer, affecting the diffusion of Li + , and causing voltage instability of the material, resulting in rapid voltage drop; second, with the increase of Ni content in the ternary material, the thermal stability of the material decreases, leading to safety problems; third, excessive delithiation causes the layered structure of the material to transform into a spinel structure, and at the same time, the high-valent active metal ions on the surface are prone to side reactions with the electrolyte, causing increased polarization and capacity attenuation; fourth, too much alkaline Ni elements on the surface of the material easily absorb water and CO 2 in the air, and easily react with the lithium on the surface to form LiOH and Li 2 CO 3 , thereby further increasing the pH value of the material, seriously affecting the electrochemical properties of the NCM-
  • the surface coating technology aims to improve the performance of the surface of the positive electrode material particles, thereby preventing or inhibiting the side reactions between the positive electrode and the electrolyte, while improving the stability of the particle structure, thereby improving the overall performance of the battery.
  • Coating technology includes three methods: dry coating, wet coating, and gas phase coating. Among them, the dry coating technology is obtained by simply mechanically ball milling the positive electrode particles with the coating material (or precursor) and then sintering them.
  • the dry technology is simple and easy to operate, high-energy ball milling can easily destroy the integrity of the secondary particles of the material to varying degrees.
  • nano-scale modified material particles are prone to agglomeration on the surface of the positive electrode material particles, resulting in uneven coating.
  • the thickness of the coating layer is as high as 100nm.
  • the wet technology aims to improve the problem of uneven coating layer, usually including sol-gel method, hydrothermal method and coprecipitation method.
  • the water washing process used to remove residual lithium compounds on the surface not only increases production time and cost, but also makes the high-nickel material more susceptible to reaction with H 2 O and CO 2 when stored in air. Therefore, the water washing process impairs the thermal stability and electrochemical performance of the material.
  • the present invention aims to provide a lithium ion battery and a positive electrode plate with a multifunctional protective layer, which constructs a multifunctional nano-scale artificial CEI film layer on the surface of the positive electrode plate, a layer in direct contact with the positive electrode active material is a transport layer (ion transport layer or electron transport layer), and the outer layer is an anti-corrosion layer, thereby solving the problem of uneven coating layer, and reducing the traditional coating thickness from 100nm to about 20nm; and can improve the ionic and electronic conductivity of the surface of the positive electrode material, help construct a 3D conductive network connecting the active material of the electrode plate, the conductive agent, and the current collector; in addition, it can also effectively inhibit the side reaction of the electrode plate and the electrolyte, while preventing the dissolution of cations, and maintaining the structural stability of the positive electrode material.
  • a transport layer ion transport layer or electron transport layer
  • the outer layer is an anti-corrosion layer
  • the purpose of the present invention is to provide a lithium ion battery and a positive electrode plate with a multifunctional protective layer in view of the deficiencies of the prior art.
  • a multifunctional nano-scale artificial CEI film layer is constructed on the surface of the positive electrode plate.
  • the layer in direct contact with the positive electrode active material is a transport layer (ion transport layer or electron transport layer), and the outer layer is an anti-corrosion layer, thereby solving the problem of uneven coating layers and reducing the traditional coating thickness from 100nm to about 20nm; and improving the ionic and electronic conductivity of the surface of the positive electrode material, helping to construct a 3D conductive network connecting the active material of the electrode plate, the conductive agent, and the current collector; in addition, it can also effectively inhibit the side reaction of the electrode plate with the electrolyte, while preventing the dissolution of cations and maintaining the structural stability of the positive electrode material.
  • the present invention adopts the following technical solution:
  • a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery comprises a positive electrode current collector, and a positive electrode active material layer, a transmission layer and an anti-corrosion layer which are sequentially arranged on the surface of the positive electrode current collector from the inside to the outside.
  • the transport layer is an ion transport layer and/or an electron transport layer, that is, the transport layer can be a separate ion transport layer, a separate electron transport layer, or an ion transport layer plus an electron transport layer.
  • the arrangement order is positive electrode active material layer, ion transport layer, electron transport layer and anti-corrosion layer, or positive electrode active material layer, electron transport layer, ion transport layer and anti-corrosion layer.
  • the ion transport layer is a lithium ion conductor and/or an oxide having lithium ion transport capability after being embedded with lithium or alloyed with lithium.
  • the lithium ion conductor is at least one of a garnet-type lithium ion conductor and a lithium-containing oxide.
  • the chemical formula of the garnet-type lithium ion conductor is Li x A 3 B 2 O 12 , wherein A is at least one of Y, Pr, Nd, and La, and B is at least one of Te, Nb, Ta, Sb, Zr, Sn, and Hf; 1 ⁇ x ⁇ 7.
  • the general formula of the lithium-containing oxide is Li a D b O c , D is at least one of Ti, Si, Al, Zr, Mn, Ta, Ce, C, B, 1 ⁇ a ⁇ 5, 1 ⁇ b ⁇ 5, 1 ⁇ c ⁇ 12.
  • Li 7 La 3 Zr 2 O 12 Li 7 La 3 Hf 2 O 12 ,Li 5 La 3 Ta 2 O 12 ,Li 5 La 3 Nb 2 O 12 ,Li 5 La 3 Sb 2 O 12 ,Li 6 MgLa 2 Ta 2 O 12 , Li 6 CaLa 2 Ta 2 O 12 ,Li 6 BaLa 2 Ta 2 O 12 ,Li 6 BaLa 2 Nb 2 O 12 , Li 7 La 3 Sn 2 O 12 , Li 7 La 3 Zr 2 O 12 ,Li 7 La 3 Hf 2 O 12 ,Li 7 La 3 Sb 2 O 12 , at least one of LiAlO 2 , LiZrO, LiCeO 2 , LiMnO 2 , LiBO 2 , LiTaO 3 , Li 2 TiO 3 , Li 2 SiO 3 , Li 2 ZrO 3 , Li 2 CO 3 , Li 4 Ti 5 O 12 , and Li 5 AlO 4 .
  • the chemical formula of the oxide having lithium ion transmission ability after lithium embedding or lithium alloying is MO x , wherein M is at least one of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, La, Ce, Hf, Ta, W, Mg, In, Sn, Ti and Si, and 1 ⁇ x ⁇ 5.
  • the electron transport layer is at least one of ZnO, TiO2 , ITO, TiN , SiN, GaN, HfN, Mn5N2 , W2N3 , In2O3 , SnO2 , ZrN and Al - doped ZnO.
  • the anti-corrosion layer is at least one of Ta2O5 , ZrO2 , HfO2 , Al2O3 and fluoride AFx , wherein A is one of Li, Al, Sc, Zr , La, Sm, Ce and Bi, and 1 ⁇ x ⁇ 4.
  • the thickness of the ion transport layer is 0.1-20nm; the thickness of the electron transport layer is 0.1-10nm; the thickness of the anti-corrosion layer is 0.1-20nm.
  • the positive electrode active material in the positive electrode active material layer is at least one of a ternary material of lithium nickel cobalt manganese oxide, lithium iron phosphate, an ultra-high nickel positive electrode material, a quaternary positive electrode material and a lithium-rich manganese-based positive electrode material.
  • the ion transport layer, the electron transport layer and the anti-corrosion layer are deposited by atomic deposition, chemical vapor deposition or physical vapor deposition.
  • Another object of the present invention is to provide a lithium-ion battery, comprising a positive electrode sheet, a negative electrode sheet, an electrolyte and a separator, characterized in that the positive electrode sheet is the positive electrode sheet described in the present invention.
  • the present invention has at least the following advantages by providing a transmission layer and an anti-corrosion layer on the surface of the active material layer:
  • the thickness of the coating layer is greatly reduced from 100nm to about 20nm, and the thickness is controllable, which can also solve the problem of uneven coating layer.
  • the present invention uses atomic layer deposition technology to construct a multifunctional nano-scale artificial CEI film layer (including an ion transport layer and/or an electron transport layer, and an anti-corrosion layer) on the surface of the positive electrode plate, it has electronic and/or ionic conductivity, thereby improving the ionic and/or electronic conductivity of the surface of the positive electrode material, facilitating the transmission of lithium ions and electrons on the surface of the plate, and facilitating the construction of a 3D conductive network connecting the active material of the plate, the conductive agent and the current collector;
  • the anti-corrosion layer can further weaken the erosion of the electrolyte on the active substances.
  • the atomic deposition method is divided into two types, and one method includes the following steps:
  • the first step is to place the positive electrode active material layer on the positive electrode current collector to obtain a pole piece
  • the electrode obtained in the first step is placed in an atomic layer deposition chamber, and a metal organic compound precursor is introduced, and the precursor is chemically adsorbed on the surface of the positive electrode active material;
  • the third step is to introduce an oxygen-containing reactant into the atomic layer deposition chamber to allow the oxygen-containing reactant to react with the adsorbed precursor;
  • Step 4 repeat the second and third steps, cyclic deposition, to form a CEI protective layer
  • the oxygen-containing reactant is H 2 O, O 3 or oxygen plasma.
  • Another atomic deposition method includes the following steps:
  • the first step is to place the positive electrode active material layer on the positive electrode current collector to obtain a pole piece
  • the second step is to place the electrode obtained in the first step in a space-type atomic layer deposition system, and after evacuation, introduce the isolation gas, precursor, and oxygen-containing reactant into the space-type atomic layer deposition system in sequence or simultaneously;
  • the third step is to start the moving mechanism to move the electrode through the deposition area of the system at least once, thus forming a CEI protective layer;
  • the oxygen-containing reactant is H 2 O, O 3 or oxygen plasma
  • the isolation gas is an inactive gas, such as nitrogen and argon.
  • the introduction speed of the isolation gas is 0.1-500 SLM, the moving speed of the moving mechanism is 0.01-300 m/min, and the precursor is a metal organic compound and a silicon-containing organic compound.
  • the temperature of the above ALD method and ALD method is 25-200°C.
  • the physical vapor deposition method includes the following steps:
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a physical vapor deposition system and vacuumed;
  • the second step is to turn on the heating or DC/RF power supply to deposit the target material on the surface of the pole piece by evaporation or magnetron sputtering;
  • the film is deposited to a certain thickness and the deposition is completed.
  • the temperature of the PVD method is room temperature.
  • the chemical vapor deposition method includes the following steps:
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a chemical vapor deposition system, heated and evacuated;
  • the second step is to introduce the precursor gas into the chemical vapor deposition system to cause a chemical reaction and deposit a thin film on the surface of the electrode;
  • the film is deposited to a certain thickness and the deposition is completed.
  • Another object of the present invention is to provide a lithium-ion battery, comprising a positive electrode sheet, a negative electrode sheet, an electrolyte and a separator, wherein the positive electrode sheet is the positive electrode sheet described in the present invention.
  • the temperature of the CVD method is 25-200°C.
  • the battery of the present invention can be applied to the 3C field, the energy storage field and the power battery field.
  • FIG1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic diagram of a second structure of the present invention.
  • FIG3 is a schematic diagram of a third structure of the present invention.
  • Figure 4 is a schematic diagram of the fourth structure of the present invention.
  • Example 5 is a graph showing the rate performance of half-cells matching lithium with the original NCM811 sample (Comparative Example 1) and the positive electrodes of NCM811 with ZrO 2 /HfO 2 (Example 28), MnO/HfN/LaF 3 (Example 12, but the process is replaced by ALD), and GaN/AlF 3 (Example 6) deposited on the surface.
  • Example 6 is a graph of the cycling performance at 45° C. of a half-cell of NCM811 original sample (Comparative Example 1) and a positive electrode and lithium matching half-cell deposited with Li 7 La 3 Zr 2 O 12 +ZrF 4 (Example 17, but the process is replaced by ALD), MgO/GaN/CeF 4 (Example 8, but the process is replaced by ALD), and HfN/LaF 3 (Example 18, but the process is replaced by ALD) on the surface of NCM811.
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3, an electron transport layer 4 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, the positive electrode active material is a nickel cobalt lithium manganese oxide ternary material NCM811, and the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by atomic deposition.
  • the positive electrode active material is a nickel cobalt lithium manganese oxide ternary material NCM811
  • the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by atomic deposition.
  • the ion transport layer is magnesium oxide; the electron transport layer is ZnO, and the anti-corrosion layer is zirconium oxide.
  • the thickness of the ion transport layer 3 is 10 nm; the thickness of the electron transport layer 4 is 5 nm; and the thickness of the anti-corrosion layer 5 is 15 nm.
  • the first step is to place a positive electrode active material layer containing a nickel-cobalt-lithium manganese oxide ternary material on a positive electrode current collector to obtain a pole piece;
  • the electrode obtained in the first step is placed in an atomic layer deposition chamber, and bis(ethylcyclopentadienyl)magnesium is introduced to chemically adsorb it on the surface of the positive electrode active material;
  • the third step is to introduce H 2 O into the atomic layer deposition chamber to allow the H 2 O to react with the adsorbed bis(ethylcyclopentadienyl)magnesium;
  • the second and third steps are repeated for cyclic deposition to form a CEI protective layer 3, the specific component of which is magnesium oxide.
  • the above method is also used to deposit ZnO and zirconium oxide (precursors and reactants need to be adjusted and modified accordingly).
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3, an electron transport layer 4 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, which is a ternary material of nickel cobalt lithium manganese oxide.
  • the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by atomic deposition method.
  • the ion transport layer 3 is ZnO; the electron transport layer is ITO; and the anti-corrosion layer is Al 2 O 3 .
  • the thickness of the ion transport layer 3 is 7 nm; the thickness of the electron transport layer 4 is 4 nm; and the thickness of the anti-corrosion layer 5 is 10 nm.
  • the first step is to place a positive electrode active material layer containing a nickel-cobalt-lithium manganese oxide ternary material on a positive electrode current collector to obtain a pole piece;
  • the electrode obtained in the first step is placed in an atomic layer deposition chamber, and diethyl zinc is introduced to chemically adsorb it on the surface of the positive electrode active material;
  • the third step is to introduce ozone into the atomic layer deposition chamber to react with diethyl zinc;
  • the second and third steps are repeated for cyclic deposition to form a CEI protective layer 3, the specific component of which is zinc oxide.
  • the above method is also used to deposit ITO and Al 2 O 3 (the precursor needs to be adjusted and modified accordingly).
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3, an electron transport layer 4 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, which is a ternary material of nickel cobalt lithium manganese oxide.
  • the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by atomic deposition method.
  • the ion transport layer 3 is a cerium oxide layer; the electron transport layer is TiO 2 , and the anti-corrosion layer is HfO 2 .
  • the thickness of the ion transport layer 3 is 10 nm; the thickness of the electron transport layer 4 is 5 nm; and the thickness of the anti-corrosion layer 5 is 15 nm.
  • the first step is to place a positive electrode active material layer containing a nickel-cobalt-lithium manganese oxide ternary material on a positive electrode current collector to obtain a pole piece;
  • the electrode obtained in the first step is placed in an atomic layer deposition chamber, and a tri(isopropylcyclopentadienyl)cerium precursor is introduced to chemically adsorb the precursor on the surface of the positive electrode active material;
  • the third step is to introduce O2 plasma into the atomic layer deposition chamber to react with the adsorbed precursor
  • the second and third steps are repeated for cyclic deposition to form a CEI protective layer 3, the specific component of which is cerium oxide.
  • the above method is also used to deposit TiO 2 and HfO 2 (the precursors need to be adjusted and modified accordingly).
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3, an electron transport layer 4 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, the positive electrode active material is lithium iron phosphate, and the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by atomic deposition method.
  • the ion transport layer 3 is made of zirconium oxide; the electron transport layer is made of TiN, and the anti-corrosion layer is made of AlF 3 .
  • the thickness of the ion transport layer 3 is 13 nm; the thickness of the electron transport layer 4 is 2 nm; and the thickness of the anti-corrosion layer 5 is 8 nm.
  • the first step is to place the positive electrode active material layer on the positive electrode current collector to obtain a pole piece
  • the second step is to place the electrode obtained in the first step in a space-type atomic layer deposition system, and after evacuation, introduce isolation gases, nitrogen, tetrakis(ethylmethylamino)zirconium, and H 2 O into the space-type atomic layer deposition system in sequence or simultaneously;
  • the third step is to start the moving mechanism to move the electrode through the deposition area of the system at least once, so as to form the CEI protective layer 3; the introduction speed of the isolation gas is 250 SLM, and the moving speed of the moving mechanism is 100 m/min.
  • the above method is also used to deposit TiN and AlF 3 (precursors and reactants need to be adjusted and modified accordingly).
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, which is an ultra-high nickel positive electrode material (ultra-high nickel is a material with a nickel content greater than 80%).
  • a positive electrode active material which is an ultra-high nickel positive electrode material (ultra-high nickel is a material with a nickel content greater than 80%).
  • the ion transport layer 3 and the anti-corrosion layer 5 are both formed by atomic deposition.
  • the ion transport layer 3 is Li 5 La 3 Ta 2 O 12 ; and the anti-corrosion layer is LiF.
  • the thickness of the ion transport layer 3 is 3 nm; the thickness of the anti-corrosion layer 5 is 7 nm.
  • the first step is to place the positive electrode active material layer on the positive electrode current collector to obtain a pole piece
  • the second step is to place the electrode obtained in the first step in a space-type atomic layer deposition system, and after evacuation, introduce isolation gases such as nitrogen, lithium tert-butoxide, tri(isopropylcyclopentadienyl)lanthanum, tantalum ethoxide, and ozone into the space-type atomic layer deposition system in sequence or simultaneously;
  • isolation gases such as nitrogen, lithium tert-butoxide, tri(isopropylcyclopentadienyl)lanthanum, tantalum ethoxide, and ozone into the space-type atomic layer deposition system in sequence or simultaneously;
  • the third step is to start the moving mechanism to move the electrode through the deposition area of the system at least once, so as to form the CEI protective layer 3; the introduction speed of the isolation gas is 100 SLM, and the moving speed of the moving mechanism is 200 m/min.
  • the above method is also used to deposit SiN and LiF (precursors and reactants need to be adjusted and modified accordingly).
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an electron transport layer 4 and an anti-corrosion layer 5 arranged on the surface of the positive electrode current collector 1 from the inside to the outside in sequence.
  • the active material layer at least includes a positive electrode active material, the positive electrode active material is a nickel-cobalt-lithium manganese oxide ternary material NCM811, and the electron transport layer 4 and the anti-corrosion layer 5 are both formed by an atomic deposition method.
  • the electron transport layer is GaN, and the anti-corrosion layer is AlF 3 .
  • the thickness of the electron transport layer 4 is 4 nm; the thickness of the anti-corrosion layer 5 is 6 nm.
  • Example 1 As shown in FIG. 4 , the difference from Example 1 is that the positions of the ion transport layer 3 and the electron transport layer 4 are interchanged, and the rest is the same as Example 1 and will not be described again.
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3, an electron transport layer 4 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, the positive electrode active material is a nickel cobalt lithium manganese oxide ternary material NCM811, and the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by physical vapor deposition.
  • the positive electrode active material is a nickel cobalt lithium manganese oxide ternary material NCM811
  • the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by physical vapor deposition.
  • the ion transport layer 3 is magnesium oxide; the electron transport layer is GaN; and the anti-corrosion layer is CeF 4 .
  • the thickness of the ion transport layer 3 is 1 nm; the thickness of the electron transport layer 4 is 1 nm; and the thickness of the anti-corrosion layer 5 is 5 nm.
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a physical vapor deposition system and vacuumed;
  • the second step is to turn on the heating RF power supply and deposit the target MgO material on the surface of the pole piece by evaporation or magnetron sputtering;
  • the film is deposited to a certain thickness and the deposition is completed.
  • the above method is also used to deposit GaN and CeF 4 (precursors and reactants need to be adjusted and modified accordingly).
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an electron transport layer 4 and an anti-corrosion layer 5 arranged on the surface of the positive electrode current collector 1 from the inside to the outside in sequence.
  • the active material layer at least includes a positive electrode active material, which is a lithium-rich manganese-based positive electrode material.
  • the electron transport layer 4 and the anti-corrosion layer 5 are both formed by physical vapor deposition.
  • the electron transport layer is ZrN, and the anti-corrosion layer is CeF 4 .
  • the thickness of the electron transport layer 4 is 4 nm; the thickness of the anti-corrosion layer 5 is 18 nm.
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a physical vapor deposition system and vacuumed;
  • the heating or DC/RF power supply is turned on to deposit the target zirconium nitride (material is deposited on the surface of the pole piece) by evaporation or magnetron sputtering;
  • the film is deposited to a certain thickness and the deposition is completed.
  • CeF4 was deposited in the same manner as above.
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, which is a ternary material of nickel-cobalt-lithium manganese oxide.
  • the ion transport layer 3 and the anti-corrosion layer 5 are both formed by physical vapor deposition.
  • the ion transport layer 3 is iron oxide; the anti-corrosion layer is LaF 3 .
  • the preparation method thereof is as follows:
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a physical vapor deposition system and vacuumed;
  • the heating or DC/RF power supply is turned on to oxidize the target material to iron (the material is deposited on the surface of the pole piece) by evaporation or magnetron sputtering;
  • the film is deposited to a certain thickness and the deposition is completed.
  • Example 8 As shown in FIG. 4 , the difference from Example 8 is that the positions of the ion transport layer 3 and the electron transport layer 4 are interchanged, and the rest is the same as Example 8 and will not be described again.
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3, an electron transport layer 4 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, the positive electrode active material is a nickel cobalt lithium manganese oxide ternary material NCM811, and the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by chemical vapor deposition.
  • the positive electrode active material is a nickel cobalt lithium manganese oxide ternary material NCM811
  • the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by chemical vapor deposition.
  • the ion transport layer 3 is manganese oxide; the electron transport layer is Mn 5 N 2 , and the anti-corrosion layer is LaF 3 .
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a chemical vapor deposition system, heated and evacuated;
  • the precursor gases bis(ethylcyclopentadienyl)manganese and ozone are introduced into the chemical vapor deposition system to cause a chemical reaction and deposit a thin film on the surface of the electrode;
  • the film is deposited to a certain thickness and the deposition is completed.
  • the above method is also used to deposit HfN and LaF 3 (the precursors and reactants need to be adjusted and modified accordingly).
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3, an electron transport layer 4 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, which is a ternary material of nickel cobalt lithium manganese oxide.
  • the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by chemical vapor deposition.
  • the ion transport layer 3 is Li 2 SiO 3 ; the electron transport layer is HfN; and the anti-corrosion layer is AlF 3 .
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a chemical vapor deposition system, heated and evacuated;
  • the film is deposited to a certain thickness and the deposition is completed.
  • the above method is also used to deposit HfN and AlF 3 (the reactants need to be adjusted accordingly).
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3, an electron transport layer 4 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, which is a lithium-rich manganese-based positive electrode material.
  • the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by chemical vapor deposition.
  • the ion transport layer 3 is a Li 7 La 3 Zr 2 O 12 layer; the electron transport layer is ZnO, and the anti-corrosion layer is AlF 3 .
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a chemical vapor deposition system, heated and evacuated;
  • the film is deposited to a certain thickness and the deposition is completed;
  • the above method is also used to deposit ZnO and AlF 3 (the reactants need to be adjusted accordingly).
  • Example 12 The difference from Example 12 is that the positions of the ion transport layer 3 and the electron transport layer 4 are interchanged, and the rest is the same as Example 12 and will not be repeated here.
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3, an electron transport layer 4 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, which is a lithium-rich manganese-based positive electrode material.
  • the ion transport layer 3, the electron transport layer 4 and the anti-corrosion layer 5 are all formed by chemical vapor deposition.
  • the ion transport layer 3 is a silicon oxide layer; the electron transport layer is ITO, and the anti-corrosion layer is AlF 3 .
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a chemical vapor deposition system, heated and evacuated;
  • silicon tetrachloride and ozone are introduced into the chemical vapor deposition system to cause a chemical reaction and deposit a thin film on the surface of the electrode;
  • the film is deposited to a certain thickness and the deposition is completed.
  • ITO and AlF 3 were prepared in the same way (the reactants needed to be adjusted accordingly).
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, the positive electrode active material is a nickel-cobalt-lithium manganese oxide ternary material NCM811, and both the ion transport layer 3 and the anti-corrosion layer 5 are formed by chemical vapor deposition.
  • the positive electrode active material is a nickel-cobalt-lithium manganese oxide ternary material NCM811, and both the ion transport layer 3 and the anti-corrosion layer 5 are formed by chemical vapor deposition.
  • the ion transport layer 3 is a Li 7 La 3 Zr 2 O 12 layer; and the anti-corrosion layer is ZrF 4 .
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a chemical vapor deposition system, heated and evacuated;
  • the film is deposited to a certain thickness and the deposition is completed;
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an electron transport layer 4 and an anti-corrosion layer 5 arranged on the surface of the positive electrode current collector 1 from the inside to the outside in sequence.
  • the active material layer at least includes a positive electrode active material, the positive electrode active material is a nickel-cobalt-lithium manganese oxide ternary material NCM811, and the electron transport layer 4 and the anti-corrosion layer 5 are both formed by chemical vapor deposition.
  • the positive electrode active material is a nickel-cobalt-lithium manganese oxide ternary material NCM811, and the electron transport layer 4 and the anti-corrosion layer 5 are both formed by chemical vapor deposition.
  • the ion transport layer 3 is made of HfN, the electron transport layer is made of LaF 3 .
  • the positive electrode active material layer is disposed on the positive electrode current collector to obtain a pole piece, and the pole piece is placed in a chemical vapor deposition system, heated and evacuated;
  • tetrakis(dimethylamino)hafnium and ammonia are introduced into the chemical vapor deposition system through N2 carrier gas to produce a chemical reaction and deposit a thin film on the surface of the electrode;
  • the film is deposited to a certain thickness and the deposition is completed;
  • Example 1 The difference from Example 1 is that the ion transport layer is a mixture layer of MgO and Li 7 La 3 Zr 2 O 12 , and the rest is the same as Example 1 and will not be described again.
  • Example 1 The difference from Example 1 is that the electron transport layer is a mixture layer of ZnO and TiO2 . The rest is the same as Example 1 and will not be repeated here.
  • Example 1 The difference from Example 1 is that the anti-corrosion layer is a mixture layer of ZrO 2 and Al 2 O 3. The rest is the same as Example 1 and will not be described again.
  • the thickness of the ion transport layer 3 is 5 nm; the thickness of the electron transport layer 4 is 5 nm; and the thickness of the anti-corrosion layer 5 is 15 nm.
  • the thickness of the ion transport layer 3 is 15 nm; the thickness of the electron transport layer 4 is 5 nm; and the thickness of the anti-corrosion layer 5 is 15 nm.
  • the thickness of the ion transport layer 3 is 10 nm; the thickness of the electron transport layer 4 is 2 nm; and the thickness of the anti-corrosion layer 5 is 15 nm.
  • the thickness of the ion transport layer 3 is 10 nm; the thickness of the electron transport layer 4 is 8 nm; and the thickness of the anti-corrosion layer 5 is 15 nm.
  • the thickness of the ion transport layer 3 is 10 nm; the thickness of the electron transport layer 4 is 5 nm; and the thickness of the anti-corrosion layer 5 is 5 nm.
  • the thickness of the ion transport layer 3 is 10 nm; the thickness of the electron transport layer 4 is 5 nm; and the thickness of the anti-corrosion layer 5 is 10 nm.
  • this embodiment provides a positive electrode sheet with a multifunctional protective layer for a lithium-ion battery, including a positive electrode current collector 1, and a positive electrode active material layer 2, an ion transport layer 3 and an anti-corrosion layer 5 arranged in sequence from the inside to the outside on the surface of the positive electrode current collector 1.
  • the active material layer at least includes a positive electrode active material, the positive electrode active material is a nickel-cobalt-lithium manganese oxide ternary material NCM811, and both the ion transport layer 3 and the anti-corrosion layer 5 are formed by an atomic deposition method.
  • the positive electrode active material is a nickel-cobalt-lithium manganese oxide ternary material NCM811, and both the ion transport layer 3 and the anti-corrosion layer 5 are formed by an atomic deposition method.
  • the ion transport layer 3 is ZrO 2 ; the anti-corrosion layer is HfO 2 .
  • the thickness of the ion transport layer 3 is 4 nm; the thickness of the anti-corrosion layer 5 is 4 nm.
  • This comparative example provides a positive electrode plate for a lithium-ion battery, comprising a positive electrode current collector and a positive electrode active material layer, wherein the positive electrode active material layer comprises at least an active material, and the active material is a nickel-cobalt-lithium manganese oxide ternary material NCM811.
  • This comparative example provides a lithium-ion battery positive electrode plate, including a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer at least includes an active material, the active material is a nickel cobalt lithium manganese oxide ternary material and a magnesium oxide layer coated on the surface of the nickel cobalt lithium manganese oxide ternary material by ball milling.
  • This comparative example provides a lithium-ion battery positive electrode plate, including a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer at least includes an active material, the active material is a nickel cobalt lithium manganese oxide ternary material and a magnesium oxide layer coated on the surface of the nickel cobalt lithium manganese oxide ternary material by a sol-gel method.
  • This comparative example provides a lithium-ion battery positive electrode plate, including a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer at least includes an active material, the active material is a nickel cobalt lithium manganese oxide ternary material and a magnesium oxide layer coated on the surface of the nickel cobalt lithium manganese oxide ternary material by a hydrothermal method.
  • This comparative example provides a lithium-ion battery positive electrode plate, including a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer at least includes an active material, the active material is a nickel cobalt lithium manganese oxide ternary material and a magnesium oxide layer coated on the surface of the nickel cobalt lithium manganese oxide ternary material by a coprecipitation method.
  • the positive electrode sheets of Examples 1 to 21 and the positive electrode sheets of Comparative Examples 1-5 were respectively assembled with negative electrode sheets, separators and electrolytes into lithium-ion batteries numbered S1-S18 and D1-D5, respectively.
  • the discharge capacity and cycle life thereof were tested, and the obtained table is shown in Table 1:
  • the optimal thickness of the anti-corrosion layer is 15nm.
  • Figure 5 is a rate performance diagram of a half-cell matched with a positive electrode and lithium, the original NCM811 sample (Comparative Example 1) and the NCM811 surface deposited with ZrO 2 /HfO 2 (Example 28), MnO/HfN/LaF 3 (structure, material composition, etc. are the same as Example 12, but the process is replaced by ALD), and GaN/AlF 3 (Example 6).
  • Figure 6 shows the cycle performance of the NCM811 original sample (Comparative Example 1) and the NCM811 surface deposited with Li 7 La 3 Zr 2 O 12 + ZrF 4 (Example 17, but the process is replaced by ALD), MgO/GaN/CeF 4 (the structure, material composition, etc. are the same as Example 8, but the process is replaced by ALD), HfN/LaF 3 (the structure, material composition, etc. are the same as Example 18, but the process is replaced by ALD) and the positive electrode and lithium matching half-cell at 45°C. It can be seen from Figure 6 that depositing ion-conducting, electron-conducting and anti-corrosion layers on the positive electrode surface can significantly improve the cycle stability of the battery.
  • the discharge capacity of the original sample is 32% of the initial capacity, while the capacity retention rate of the battery with the positive electrode surface coated with ion-conducting, electron-conducting and anti-corrosion layers is 80%, which shows that the cycle stability of the battery has been significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于电池技术领域,具体涉及一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体,以及在所述正极集流体的表面从内至外依次设置的正极活性物质层、传输层和防腐蚀层。相对于现有技术,本发明采用沉积技术在正极极片表面构建一层纳米级的人工CEI膜层,从而可以解决包覆层不均匀的问题,同时将传统的包覆厚度从100nm降到10nm左右;并可以提高正极材料表面的离子和电子电导性能,帮助构建连通极片活性物质、导电剂、集流体的3D导电网络;此外,还可以有效得抑制极片与电解液的副反应,同时阻止阳离子的溶解,保持正极材料的结构稳定。防腐蚀层能进一步削弱电解液对活性物质的侵蚀。 2

Description

一种锂离子电池及其具有多功能保护层的正极极片 技术领域
本发明属于电池技术领域,具体涉及一种锂离子电池及其具有多功能保护层的正极极片。
背景技术
在二次可充放电电池中,锂离子电池凭借其优异的性能已经被广泛应用于3C产品领域。然而,为了满足电动汽车对于动力电池350Wh/kg的能量密度需求,进一步改善正负极及电解液的性能迫在眉睫。其中,三元正极是锂离子电池中最有潜力的一种正极材料,特别是以NCM811为代表的高镍三元有望进一步提升电池的能量密度。
然而,以NCM为基础的高镍材料面临着一些亟待解决的问题,例如,第一,随着Ni 2+含量升高,Li +/Ni 2+混排导致比容量降低,低价的Ni离子扩散到锂层影响Li +的扩散,同时引起材料的电压不稳定,导致快速的压降;第二,三元材料中随着Ni含量的升高,材料的热稳定性下降导致安全问题;第三,过度的脱锂导致材料的层状结构向尖晶石结构转变,同时表面高价态的活性金属离子容易与电解液发生副反应,引起极化的增加和容量的衰减;第四,材料表面过多的碱性Ni元素,在空气中容易吸收水跟CO 2,易与表面的锂反应形成LiOH与Li 2CO 3,从而进一步提高了材料的pH值,严重影响NCM为基的三元材料的电化学性能。
近年来,为了改善高镍三元材料的电化学性能,人们从块体或者表面元素掺杂、表面包覆、新型电解液开发、新型材料结构的设计等方面进行了广泛的研究。其中,表面包覆技术旨在改善正极材料颗粒表面的性能,从而阻止或者 抑制正极与电解液之间的副反应,同时改善颗粒结构稳定性,从而改善电池的综合性能。包覆技术包含干法包覆、湿法包覆和气相包覆三种方法。其中,干法包覆技术通过将正极颗粒与包覆材料(或者前驱体)简单的机械球磨,然后进行烧结得到。虽然干法技术简单易操作,但是高能球磨在不同程度上容易破坏材料二次颗粒的完整性。同时纳米级别的修饰材料颗粒容易在正极材料颗粒表面造成团聚,导致包覆不均匀。通常为了达到更好的包覆效果,包覆层的厚度高达100nm。湿法技术旨在改善包覆层不均匀的问题,通常包含溶胶凝胶法、水热法和共沉淀法。其中为了去除表面的残锂化合物而采取的水洗过程不仅增加了生产的时间和成本,同时也使得高镍材料在空气中存储时更容易与H 2O和CO 2反应。因此,水洗过程损害了材料的热稳定性和电化学性能。
有鉴于此,本发明旨在提供一种锂离子电池及其具有多功能保护层的正极极片,其通过在正极极片表面构建一层多功能纳米级的人工CEI膜层,与正极活性物质直接接触的一层为传输层(离子传输层或电子传输层),外层是防腐蚀层,从而可以解决包覆层不均匀的问题,同时将传统的包覆厚度从100nm降到20nm左右;并可以提高正极材料表面的离子和电子电导性能,帮助构建连通极片活性物质、导电剂、集流体的3D导电网络;此外,还可以有效得抑制极片与电解液的副反应,同时阻止阳离子的溶解,保持正极材料的结构稳定。
发明内容
本发明的目的在于:针对现有技术的不足,而提供一种锂离子电池及其具有多功能保护层的正极极片,其通过在正极极片表面构建一层多功能纳米级的人工CEI膜层,与正极活性物质直接接触的一层为传输层(离子传输层或电子传输层),外层是防腐蚀层,从而可以解决包覆层不均匀的问题,同时将传统的包覆厚度从100nm降到20nm左右;并可以提高正极材料表面的离子和电子电导性能,帮助构建连通极片活性物质、导电剂、集流体的3D导电网络;此外,还可以有效得抑制极片与电解液的副反应,同时阻止阳离子的溶解,保持正极 材料的结构稳定。
为了达到上述目的,本发明采用如下技术方案:
一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体,以及在所述正极集流体的表面从内至外依次设置的正极活性物质层、传输层和防腐蚀层。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述传输层为离子传输层和/或电子传输层,即传输层可以是单独的离子传输层,也可以是单独的电子传输层,还可以是离子传输层加电子传输层,当既有离子传输层又有电子传输层时,设置顺序为正极活性物质层、离子传输层、电子传输层和防腐蚀层,或者为正极活性物质层、电子传输层、离子传输层和防腐蚀层。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述离子传输层为锂离子导体和/或嵌入锂或锂合金化之后具有锂离子传输能力的氧化物。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述的锂离子导体为石榴石型锂离子导体和含锂氧化物中的至少一种。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述的石榴石型锂离子导体的化学通式为Li xA 3B 2O 12其中,A为Y、Pr、Nd、La的至少一种,其中B为Te、Nb、Ta、Sb、Zr、Sn、Hf中的至少一种;1≤x≤7。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述的含锂氧化物的通式为Li aD bO c,D为Ti、Si、Al、Zr、Mn、Ta、Ce、C、B,中的至少一种,1≤a≤5,1≤b≤5,1≤c≤12。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述锂离子导体具体为Li 3Y 3Te 2O 12,Li 3Pr 3Te 2O 12,Li 3Nd 3Te 2O 12,Li 5La 3Ta 2O 12,Li 5La 3Nb 2O 12,Li 5La 3Sb 2O 12,Li 5Nd 3Sb 2O 12,Li 6MgLa 2Ta 2O 12,Li 6CaLa 2Ta 2O 12,Li 6BaLa 2Ta 2O 12,Li 6BaLa 2Nb 2O 12,Li 7La 3Sn 2O 12,Li 7La 3Zr 2O 12,Li 7La 3Hf 2O 12,LiTiO 2, LiAlO 2,LiZrO,LiCeO 2,LiMnO 2,LiBO 2,LiTaO 3,Li 2TiO 3,Li 2SiO 3,Li 2ZrO 3,Li 2CO 3,Li 4Ti 5O 12,Li 5AlO 4中的至少一种。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述的嵌入锂或锂合金化之后具有锂离子传输能力的氧化物的化学通式为MO x,其中M为V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、La、Ce、Hf、Ta、W、Mg、In、Sn、Ti和Si中的至少一种,1≤x≤5。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述的电子传输层为ZnO、TiO 2、ITO、TiN、SiN、GaN、HfN、Mn 5N 2、W 2N 3、In 2O 3、SnO 2、ZrN和Al掺杂ZnO中的至少一种。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述防腐蚀层为Ta 2O 5、ZrO 2、HfO 2、Al 2O 3和氟化物AF x中的至少一种,其中,A为Li、Al、Sc、Zr、La、Sm、Ce和Bi中的一种,1≤x≤4。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述离子传输层的厚度为0.1-20nm;所述电子传输层的厚度为0.1-10nm;所述防腐蚀层的厚度为0.1-20nm。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,所述正极活性物质层中的正极活性物质为镍钴锰酸锂三元材料、磷酸铁锂、超高镍正极材料、四元正极材料和富锂锰基正极材料中的至少一种。
作为本发明锂离子电池的具有多功能保护层的正极极片的一种改进,:所述离子传输层、所述电子传输层和所述防腐蚀层为采用原子沉积法、化学气相沉积法或物理气相沉积法沉积而成。
本发明的另一个目的在于提供一种锂离子电池,包括正极极片、负极及片、电解液和隔膜,其特征在于:所述正极极片为本发明所述的正极极片。
相对于现有技术,本发明通过在活性物质层表面设置传输层和防腐层,至少具有如下优点:
第一,大大减少了包覆层的厚度,从100nm降到20nm左右,而且厚度可控,同时能够解决包覆层不均匀的问题;
第二,由于本发明采用原子层沉积技术在正极极片表面构建一层多功能纳米级的人工CEI膜层(包括离子传输层和/或电子传输层,以及防腐蚀层),使其具有电子和/或离子导电性能,从而可以提高正极材料表面的离子和/或电子电导性能,有助于锂离子及电子在极片表面的传输,有助于构建连通极片活性物质、导电剂和集流体的3D导电网络;
第三,保护正极材料,有效地抑制了活性物质与电解液的副反应,同时阻止阳离子的溶解,维持正极材料的结构稳定,提升了电池的比容量,延长了电池的循环寿命。
第四,防腐蚀层能进一步削弱电解液对活性物质的侵蚀。
下面以沉积离子传输层为例,具体解释各种方法所包括的步骤:
其中,原子沉积法分为两种,一种方法包括以下步骤:
第一步,将正极活性物质层设置于正极集流体上,得到极片;
第二步,将第一步得到的极片置于原子层沉积腔体中,通入金属有机化合物前驱体,前驱体化学吸附于正极活性物质表层;
第三步,向原子层沉积腔体内通入含氧反应物,使所述含氧反应物与吸附的前驱体反应;
第四步,重复第二步和第三步,循环沉积,形成CEI保护层;
所述含氧反应物为H 2O、O 3或者氧气等离子体。
另一种原子沉积法包括以下步骤:
第一步,将正极活性物质层设置于正极集流体上,得到极片;
第二步,将第一步得到的极片置于空间型原子层沉积系统内,抽真空后,将隔离气体、前驱体、含氧反应物,依次或同时通入空间型原子层沉积系统中;
第三步,启动移动机构,使极片运动经过系统的沉积区域至少一次,即形 成CEI保护层;
所述含氧反应物为H 2O、O 3或者氧气等离子体;
隔离气体为非活性气体,如氮气、氩气。隔离气体的通入速度为0.1-500SLM,移动机构的移动速度为0.01~300m/min,所述前驱体为金属有机化合物及含硅有机物。
以上ALD法和ALD法的温度为25-200℃。
物理气相沉积法包括以下步骤:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于物理气相沉积系统内,抽真空;
第二步,开启加热或者直流/射频电源,通过蒸镀或者磁控溅射,将靶材材料沉积于极片表面;
第三步,薄膜沉积至一定厚度,沉积结束。
PVD法的温度为常温。
化学气相沉积法包括以下步骤:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于化学气相沉积系统内,加热并抽真空;
第二步,将前驱体气体通入化学气相沉积系统内,发生化学反应,沉积薄膜于极片表面;
第三步,薄膜沉积至一定厚度,沉积结束。
本发明的另一个目的在于提供一种锂离子电池,包括正极极片、负极及片、电解液和隔膜,所述正极极片为本发明所述的正极极片。
CVD法的温度为25-200℃。
本发明的电池可以应用于3C领域、储能领域和动力电池领域。
附图说明
图1为本发明的一种结构示意图。
图2为本发明的第二种结构示意图。
图3为本发明的第三种结构示意图。
图4为本发明的第四种结构示意图.
图5为NCM811原始样(对比例1)与NCM811表面沉积有ZrO 2/HfO 2(实施例28),MnO/HfN/LaF 3(实施例12,但工艺用ALD代替),GaN/AlF 3(实施例6)的正极与锂匹配的半电池的倍率性能图。
图6为NCM811原始样(对比例1)与NCM811表面沉积有Li 7La 3Zr 2O 12+ZrF 4(实施例17,但工艺用ALD代替),MgO/GaN/CeF 4(实施例8,但工艺用ALD代替),HfN/LaF 3(实施例18,但工艺用ALD代替)的正极与锂匹配的半电池在45℃的循环性能图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施方式的限制。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。
实施例1
如图1所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料NCM811,离子传输层3、电子传输层4和防腐蚀层5均为采用原子沉积 法而形成。
其中,离子传输层为氧化镁;电子传输层为ZnO,防腐蚀层为氧化锆。
其中,离子传输层3的厚度为10nm;电子传输层4的厚度为5nm;防腐蚀层5的厚度为15nm。
其制备方法为:
第一步,将包含镍钴锰酸锂三元材料的正极活性物质层设置于正极集流体上,得到极片;
第二步,将第一步得到的极片置于原子层沉积腔体中,通入双(乙基环戊二烯基)镁,使其化学吸附于正极活性物质表层;
第三步,向原子层沉积腔体内通入H 2O,使所述H 2O与吸附的双(乙基环戊二烯基)镁反应;
第四步,重复第二步和第三步,循环沉积,形成CEI保护层3,其具体组分为氧化镁。
同样采用上述方法沉积ZnO和氧化锆(前驱体和反应物需要做相应的调整和修改)。
实施例2
如图1所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料,离子传输层3、电子传输层4和防腐蚀层5均为采用原子沉积法而形成。
其中,离子传输层3为ZnO;电子传输层为ITO,防腐蚀层为Al 2O 3
其中,离子传输层3的厚度为7nm;电子传输层4的厚度为4nm;防腐蚀层5的厚度为10nm。
其制备方法为:
第一步,将包含镍钴锰酸锂三元材料的正极活性物质层设置于正极集流体上,得到极片;
第二步,将第一步得到的极片置于原子层沉积腔体中,通入二乙基锌,使其化学吸附于正极活性物质表面;
第三步,向原子层沉积腔体内通入臭氧,使所述臭氧与二乙基锌反应;
第四步,重复第二步和第三步,循环沉积,形成CEI保护层3,其具体组分为氧化锌。
同样采用上述方法沉积ITO和Al 2O 3(前驱体需要做相应的调整和修改)。
实施例3
如图1所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料,离子传输层3、电子传输层4和防腐蚀层5均为采用原子沉积法而形成。
其中,离子传输层3为氧化铈层;电子传输层为TiO 2,防腐蚀层为HfO 2
其中,离子传输层3的厚度为10nm;电子传输层4的厚度为5nm;防腐蚀层5的厚度为15nm。
其制备方法为:
第一步,将包含镍钴锰酸锂三元材料的正极活性物质层设置于正极集流体上,得到极片;
第二步,将第一步得到的极片置于原子层沉积腔体中,通入三(异丙基环戊二烯基)铈前驱体,使其化学吸附于正极活性物质表层;
第三步,向原子层沉积腔体内通入O 2等离子体,使所述与吸附的前驱体反应;
第四步,重复第二步和第三步,循环沉积,形成CEI保护层3,其具体组分 为氧化铈。
同样采用上述方法沉积TiO 2和HfO 2(前驱体需要做相应的调整和修改)。
实施例4
如图1所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为磷酸铁锂,离子传输层3、电子传输层4和防腐蚀层5均为采用原子沉积法而形成。
其中,离子传输层3为氧化锆;电子传输层为TiN,防腐蚀层为AlF 3
其中,离子传输层3的厚度为13nm;电子传输层4的厚度为2nm;防腐蚀层5的厚度为8nm。
其制备方法为:
第一步,将正极活性物质层设置于正极集流体上,得到极片;
第二步,将第一步得到的极片置于空间型原子层沉积系统内,抽真空后,将隔离气体氮气、四(乙基甲氨基)锆、H 2O,依次或同时通入空间型原子层沉积系统中;
第三步,启动移动机构,使极片运动经过系统的沉积区域至少一次,即形成CEI保护层3;隔离气体的通入速度为250SLM,移动机构的移动速度为100m/min。
同样采用上述方法沉积TiN和AlF 3(前驱体和反应物需要做相应的调整和修改)。
实施例5
如图2所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为超高镍正极材料(镍含量大于80%为超高镍),离子传输层3和防腐蚀层5均为采用原子沉积法而形成。
其中,离子传输层3为Li 5La 3Ta 2O 12;防腐蚀层为LiF。
其中,离子传输层3的厚度为3nm;防腐蚀层5的厚度为7nm。
其制备方法为:
第一步,将正极活性物质层设置于正极集流体上,得到极片;
第二步,将第一步得到的极片置于空间型原子层沉积系统内,抽真空后,将隔离气体氮气,叔丁醇锂,三(异丙基环戊二烯基)镧,乙醇钽,臭氧,依次或同时通入空间型原子层沉积系统中;
第三步,启动移动机构,使极片运动经过系统的沉积区域至少一次,即形成CEI保护层3;隔离气体的通入速度为100SLM,移动机构的移动速度为200m/min。
同样采用上述方法沉积SiN和LiF(前驱体和反应物需要做相应的调整和修改)。
实施例6
如图3所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料NCM811,电子传输层4和防腐蚀层5均为采用原子沉积法而形成。
其中,电子传输层为GaN,防腐蚀层为AlF 3
其中,电子传输层4的厚度4nm;防腐蚀层5的厚度为6nm。
实施例7
如图4所示,与实施例1不同的是,离子传输层3和电子传输层4的位置 互换,其余同实施例1,这里不再赘述。
实施例8
如图1所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料NCM811,离子传输层3、电子传输层4和防腐蚀层5均为采用物理气相沉积法而形成。
其中,离子传输层3为氧化镁;电子传输层为GaN,防腐蚀层为CeF 4
其中,离子传输层3的厚度为1nm;电子传输层4的厚度为1nm;防腐蚀层5的厚度为5nm。
其制备方法为:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于物理气相沉积系统内,抽真空;
第二步,开启加热射频电源,通过蒸镀或者磁控溅射,将靶材MgO材料沉积于极片表面;
第三步,薄膜沉积至一定厚度,沉积结束。
同样采用上述方法沉积GaN和CeF 4(前驱体和反应物需要做相应的调整和修改)。
实施例9
如图3所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为富锂锰基正极材料,电子传输层4和防腐蚀层5均为采用物理气相沉积法而形成。
其中,电子传输层为ZrN,防腐蚀层为CeF 4
其中,电子传输层4的厚度为4nm;防腐蚀层5的厚度为18nm。
其制备方法为:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于物理气相沉积系统内,抽真空;
第二步,开启加热或者直流/射频电源,通过蒸镀或者磁控溅射,将靶材氮化锆(材料沉积于极片表面);
第三步,薄膜沉积至一定厚度,沉积结束。
同样采用上述方法沉积CeF4。
实施例10
如图2所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料,离子传输层3和防腐蚀层5均为采用物理气相沉积法而形成。
其中,离子传输层3为氧化铁;防腐蚀层为LaF 3
其制备方法为:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于物理气相沉积系统内,抽真空;
第二步,开启加热或者直流/射频电源,通过蒸镀或者磁控溅射,将靶材氧化铁(材料沉积于极片表面);
第三步,薄膜沉积至一定厚度,沉积结束。
同样采用上述方法沉积LaF 3
实施例11
如图4所示,与实施例8不同的是,离子传输层3和电子传输层4的位置 互换,其余同实施例8,这里不再赘述。
实施例12
如图1所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料NCM811,离子传输层3、电子传输层4和防腐蚀层5均为采用化学气相沉积法而形成。
其中,离子传输层3为氧化锰;电子传输层为Mn 5N 2,防腐蚀层为LaF 3
其制备方法为:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于化学气相沉积系统内,加热并抽真空;
第二步,将前驱体气体双(乙基环戊二烯基)锰和臭氧通入化学气相沉积系统内,发生化学反应,沉积薄膜于极片表面;
第三步,薄膜沉积至一定厚度,沉积结束。
同样采用上述方法沉积HfN和LaF 3(前驱体和反应物需要做相应的调整和修改)。
实施例13
如图1所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料,离子传输层3、电子传输层4和防腐蚀层5均为采用化学气相沉积法而形成。
其中,离子传输层3为Li 2SiO 3;电子传输层为HfN,防腐蚀层为AlF 3
其制备方法为:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于化学气相沉积系统内,加热并抽真空;
第二步,将2,2,6,6-四甲基-3,5-庚烷二氧基锂,正硅酸四乙酯和氧气通入化学气相沉积系统内,发生化学反应,沉积薄膜于极片表面;
第三步,薄膜沉积至一定厚度,沉积结束。
同样采用上述方法沉积HfN和AlF 3(反应物需要进行相应的调整)。
实施例14
如图1所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为富锂锰基正极材料,离子传输层3、电子传输层4和防腐蚀层5均为采用化学气相沉积法而形成。
其中,离子传输层3为Li 7La 3Zr 2O 12层;电子传输层为ZnO,防腐蚀层为AlF 3
其制备方法为:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于化学气相沉积系统内,加热并抽真空;
第二步,将2,2,6,6-四甲基-3,5-庚烷二氧基锂,乙酰丙酮化镧,乙酰丙酮化锆混合物和氧气通过N2载气通入化学气相沉积系统内,发生化学反应,沉积薄膜于极片表面;
第三步,薄膜沉积至一定厚度,沉积结束;
同样采用上述方法沉积ZnO和AlF 3(反应物需要进行相应的调整)。
实施例15
与实施例12不同的是,离子传输层3和电子传输层4的位置互换,其余同实施例12,这里不再赘述。
实施例16
如图1所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为富锂锰基正极材料,离子传输层3、电子传输层4和防腐蚀层5均为采用化学气相沉积法而形成。
其中,离子传输层3为氧化硅层;电子传输层为ITO,防腐蚀层为AlF 3
其制备方法为:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于化学气相沉积系统内,加热并抽真空;
第二步,将四氯化硅和臭氧通入化学气相沉积系统内,发生化学反应,沉积薄膜于极片表面;
第三步,薄膜沉积至一定厚度,沉积结束。
用同样的方法制备ITO和AlF 3(反应物需要进行相应的调整)。
实施例17
如图2所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料NCM811,离子传输层3和防腐蚀层5均为采用化学气相沉积法而形成。
其中,离子传输层3为Li 7La 3Zr 2O 12层;防腐蚀层为ZrF 4
其制备方法为:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于化学气相沉积系统内,加热并抽真空;
第二步,将2,2,6,6-四甲基-3,5-庚烷二氧基锂,乙酰丙酮化镧,乙酰丙酮化锆混合物和氧气通过N 2载气通入化学气相沉积系统内,发生化学反应,沉积薄膜于极片表面;
第三步,薄膜沉积至一定厚度,沉积结束;
同样的方法制备ZrF 4。(反应物需要做相应的调整)
实施例18
如图3所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、电子传输层4和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料NCM811,电子传输层4和防腐蚀层5均为采用化学气相沉积法而形成。
其中,离子传输层3为电子传输层为HfN,防腐蚀层为LaF 3
其制备方法为:
第一步,正极活性物质层设置于正极集流体上,得到极片,将该极片置于化学气相沉积系统内,加热并抽真空;
第二步,将四(二甲基氨基)铪和氨气通过N 2载气通入化学气相沉积系统内,发生化学反应,沉积薄膜于极片表面;
第三步,薄膜沉积至一定厚度,沉积结束;
同样的方法制备LaF 3。(反应物需要做相应的调整)
实施例19
与实施例1不同的是,离子传输层为MgO和Li 7La 3Zr 2O 12的混合物层,其余同实施例1,这里不再赘述。
实施例20
与实施例1不同的是,电子传输层为ZnO和TiO 2的混合物层,其余同实施例1,这里不再赘述。
实施例21
与实施例1不同的是,防腐蚀层为ZrO 2和Al 2O 3的混合物层,其余同实施例1,这里不再赘述。
实施例22
与实施例1不同的是:
离子传输层3的厚度为5nm;电子传输层4的厚度为5nm;防腐蚀层5的厚度为15nm。
其余同实施例1,这里不再赘述。
实施例23
与实施例1不同的是:
离子传输层3的厚度为15nm;电子传输层4的厚度为5nm;防腐蚀层5的厚度为15nm。
其余同实施例1,这里不再赘述。
实施例24
与实施例1不同的是:
离子传输层3的厚度为10nm;电子传输层4的厚度为2nm;防腐蚀层5的厚度为15nm。
其余同实施例1,这里不再赘述。
实施例25
与实施例1不同的是:
离子传输层3的厚度为10nm;电子传输层4的厚度为8nm;防腐蚀层5的厚度为15nm。
其余同实施例1,这里不再赘述。
实施例26
与实施例1不同的是:
离子传输层3的厚度为10nm;电子传输层4的厚度为5nm;防腐蚀层5的厚度为5nm。
其余同实施例1,这里不再赘述。
实施例27
与实施例1不同的是:
离子传输层3的厚度为10nm;电子传输层4的厚度为5nm;防腐蚀层5的厚度为10nm。
其余同实施例1,这里不再赘述。
实施例28
如图2所示,本实施例提供了一种锂离子电池的具有多功能保护层的正极极片,包括正极集流体1,以及在正极集流体1的表面从内至外依次设置的正极活性物质层2、离子传输层3和防腐蚀层5。
其中,活性物质层至少包括正极活性物质,正极活性物质为镍钴锰酸锂三元材料NCM811,离子传输层3和防腐蚀层5均为采用原子沉积法而形成。
其中,离子传输层3为ZrO 2;防腐蚀层为HfO 2
其中,离子传输层3的厚度为4nm;防腐蚀层5的厚度为4nm。
对比例1
本对比例提供了一种锂离子电池正极极片,包括正极集流体、正极活性物质层,正极活性物质层至少包括活性物质,活性物质为镍钴锰酸锂三元材料NCM811。
对比例2
本对比例提供了一种锂离子电池正极极片,包括正极集流体、正极活性物 质层,正极活性物质层至少包括活性物质,活性物质为镍钴锰酸锂三元材料和通过球磨法包覆于镍钴锰酸锂三元材料表面的氧化镁层。
对比例3
本对比例提供了一种锂离子电池正极极片,包括正极集流体、正极活性物质层,正极活性物质层至少包括活性物质,活性物质为镍钴锰酸锂三元材料和通过溶胶凝胶法包覆于镍钴锰酸锂三元材料表面的氧化镁层。
对比例4
本对比例提供了一种锂离子电池正极极片,包括正极集流体、正极活性物质层,正极活性物质层至少包括活性物质,活性物质为镍钴锰酸锂三元材料和通过水热法包覆于镍钴锰酸锂三元材料表面的氧化镁层。
对比例5
本对比例提供了一种锂离子电池正极极片,包括正极集流体、正极活性物质层,正极活性物质层至少包括活性物质,活性物质为镍钴锰酸锂三元材料和通过共沉淀法包覆于镍钴锰酸锂三元材料表面的氧化镁层。
将实施例1至21的正极极片、对比例1-5的正极极片分别与负极极片、隔膜和电解液组装成锂离子电池,编号分别为S1-S18和D1-D5,测试其放电容量和循环寿命,所得表格如表1所示:
表1:编号分别为S1-S21和D1-D5的性能测试表
Figure PCTCN2022141775-appb-000001
Figure PCTCN2022141775-appb-000002
由上表可以看出:采用ALD,CVD以及溅射沉积等方面在正极极片表面构建离子跟电子以及防腐层,可以有效地提升电池的循环稳定性,同时采用ALD包覆的极片的循环稳定性比CVD和溅射的方法提升的更为明显。
将实施例1、22-27的正极极片分别与负极极片、隔膜和电解液组装成锂离子电池,编号分别为S1,S22-S27,测试其放电容量和循环寿命,所得表格如表2所示:
表2:编号分别为S1,S22-S27的性能测试表
Figure PCTCN2022141775-appb-000003
由表2可以看出:离子跟电子传输层不能太薄也不能太厚,最佳厚度分别在10nm跟5nm,同时防腐层的厚度最佳在15nm。
其中,图5为NCM811原始样(对比例1)与NCM811表面沉积有ZrO 2/HfO 2(实施例28),MnO/HfN/LaF 3(结构、物质组成等均同实施例12,只是工艺用ALD代替),GaN/AlF 3(实施例6)的正极与锂匹配的半电池的倍率性能图。由图5可以看出:在正极表面沉积导离子,导电子和防腐蚀层可以明显地改善电池的倍率性能,尤其在大倍率5C的电流密度下,对照样的容量已降为0mAh/g,而正极表面沉积有兼具导离子,导电子和防腐蚀层的电池,放电容量可以保持在62mAh/g。
图6为NCM811原始样(对比例1)与NCM811表面沉积有Li 7La 3Zr 2O 12+ZrF 4(实施例17,但工艺用ALD代替),MgO/GaN/CeF 4(结构、物质组成等均同实施例8,只是工艺用ALD代替),HfN/LaF 3(结构、物质组成等均同实施例18,只是工艺用ALD代替)的正极与锂匹配的半电池在45℃的循环性能图。由图6可以看出:在正极表面沉积导离子,导电子和防腐蚀层可以明显地改善电池的循环稳定性。在1C的电流密度下,循环了300圈之后,原始样的放电容量为初始容量的32%,而正极表面包覆了导离子,导电子跟防腐层电池的容量保持率 为80%,从而说明电池的循环稳定了得到了显著地提升。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (14)

  1. 一种锂离子电池的具有多功能保护层的正极极片,其特征在于,包括正极集流体,以及在所述正极集流体的表面从内至外依次设置的正极活性物质层、传输层和防腐蚀层。
  2. 根据权利要求1所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述传输层为离子传输层和/或电子传输层。
  3. 根据权利要求2所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述离子传输层为锂离子导体和/或嵌入锂或锂合金化之后具有锂离子传输能力的氧化物。
  4. 根据权利要求3所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述的锂离子导体为石榴石型锂离子导体和含锂氧化物中的至少一种。
  5. 根据权利要求4所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述的石榴石型锂离子导体的化学通式为Li xA 3B 2O 12其中,A为Y、Pr、Nd、La的至少一种,其中B为Te、Nb、Ta、Sb、Zr、Sn、Hf中的至少一种;1≤x≤7。
  6. 根据权利要求4所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述的含锂氧化物的通式为Li aD bO c,D为Ti、Si、Al、Zr、Mn、Ta、Ce、C、B,中的至少一种,1≤a≤5,1≤b≤5,1≤c≤12。
  7. 根据权利要求3所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述锂离子导体具体为Li 3Y 3Te 2O 12,Li 3Pr 3Te 2O 12,Li 3Nd 3Te 2O 12,Li 5La 3Ta 2O 12,Li 5La 3Nb 2O 12,Li 5La 3Sb 2O 12,Li 5Nd 3Sb 2O 12,Li 6MgLa 2Ta 2O 12,Li 6CaLa 2Ta 2O 12,Li 6BaLa 2Ta 2O 12,Li 6BaLa 2Nb 2O 12,Li 7La 3Sn 2O 12,Li 7La 3Zr 2O 12,Li 7La 3Hf 2O 12,LiTiO 2,LiAlO 2,LiZrO,LiCeO 2,LiMnO 2,LiBO 2,LiTaO 3,Li 2TiO 3, Li 2SiO 3,Li 2ZrO 3,Li 2CO 3,Li 4Ti 5O 12,Li 5AlO 4中的至少一种。
  8. 根据权利要求3所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述的嵌入锂或锂合金化之后具有锂离子传输能力的氧化物的化学通式为MO x,其中M为V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、La、Ce、Hf、Ta、W、Mg、In、Sn、Ti和Si中的至少一种,1≤x≤5。
  9. 根据权利要求2所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述的电子传输层为ZnO、TiO 2、ITO、TiN、SiN、GaN、HfN、Mn 5N 2、W 2N 3、In 2O 3、SnO 2、ZrN和Al掺杂ZnO中的至少一种。
  10. 根据权利要求1所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述防腐蚀层为Ta 2O 5、ZrO 2、HfO 2、Al 2O 3和氟化物AF x中的至少一种,其中,A为Li、Al、Sc、Zr、La、Sm、Ce和Bi中的一种,1≤x≤4。
  11. 根据权利要求2所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述离子传输层的厚度为0.1-20nm;所述电子传输层的厚度为0.1-10nm;所述防腐蚀层的厚度为0.1-20nm。
  12. 根据权利要求1所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述正极活性物质层中的正极活性物质为镍钴锰酸锂三元材料、磷酸铁锂、超高镍正极材料、四元正极材料和富锂锰基正极材料中的至少一种。
  13. 根据权利要求1所述的锂离子电池的具有多功能保护层的正极极片,其特征在于:所述离子传输层、所述电子传输层和所述防腐蚀层为采用原子沉积法、化学气相沉积法或物理气相沉积法沉积而成。
  14. 一种锂离子电池,包括正极极片、负极及片、电解液和隔膜,其特征在于:所述正极极片为权利要求1-13任一项所述的正极极片。
PCT/CN2022/141775 2022-11-14 2022-12-26 一种锂离子电池及其具有多功能保护层的正极极片 WO2024103493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211417488.9 2022-11-14
CN202211417488.9A CN115692601B (zh) 2022-11-14 2022-11-14 一种锂离子电池及其具有多功能保护层的正极极片

Publications (1)

Publication Number Publication Date
WO2024103493A1 true WO2024103493A1 (zh) 2024-05-23

Family

ID=85052835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141775 WO2024103493A1 (zh) 2022-11-14 2022-12-26 一种锂离子电池及其具有多功能保护层的正极极片

Country Status (2)

Country Link
CN (1) CN115692601B (zh)
WO (1) WO2024103493A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244231A (zh) * 2010-05-14 2011-11-16 中国科学院物理研究所 对正极活性材料和/或正极进行表面包覆的方法以及正极和电池的制备方法
CN202159735U (zh) * 2011-07-06 2012-03-07 东莞新能源科技有限公司 一种锂离子二次电池及其正极极片
KR20200010995A (ko) * 2018-07-23 2020-01-31 주식회사 엘지화학 표면 코팅층을 갖는 양극의 제조방법, 이로부터 제조된 양극 및 이를 포함하는 리튬 이차전지
CN111162279A (zh) * 2019-12-25 2020-05-15 复阳固态储能科技(溧阳)有限公司 一种多元导体层包覆的高镍三元正极及锂离子电池
CN114284470A (zh) * 2021-11-29 2022-04-05 蜂巢能源科技有限公司 正极材料、其制备方法、包括其的正极和锂离子电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072071B (zh) * 2020-09-04 2022-06-14 珠海冠宇电池股份有限公司 一种正极极片及包括该正极极片的锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244231A (zh) * 2010-05-14 2011-11-16 中国科学院物理研究所 对正极活性材料和/或正极进行表面包覆的方法以及正极和电池的制备方法
CN202159735U (zh) * 2011-07-06 2012-03-07 东莞新能源科技有限公司 一种锂离子二次电池及其正极极片
KR20200010995A (ko) * 2018-07-23 2020-01-31 주식회사 엘지화학 표면 코팅층을 갖는 양극의 제조방법, 이로부터 제조된 양극 및 이를 포함하는 리튬 이차전지
CN111162279A (zh) * 2019-12-25 2020-05-15 复阳固态储能科技(溧阳)有限公司 一种多元导体层包覆的高镍三元正极及锂离子电池
CN114284470A (zh) * 2021-11-29 2022-04-05 蜂巢能源科技有限公司 正极材料、其制备方法、包括其的正极和锂离子电池

Also Published As

Publication number Publication date
CN115692601B (zh) 2023-11-07
CN115692601A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2017025007A1 (zh) 锂离子二次电池的正极活性材料及其制备方法和应用
Karimzadeh et al. Emerging atomic layer deposition for the development of high-performance lithium-ion batteries
WO2012164760A1 (ja) 電極活物質の製造方法及び電極活物質
CN110265709A (zh) 表面包覆改性的锂镧锆氧基固体电解质材料及其制备方法和应用
CN115602786B (zh) 一种锂离子电池及其正极极片
Ma et al. A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode–electrolyte interfaces
WO2007004590A1 (ja) 全固体リチウム電池
WO2018094819A1 (zh) 一种锂离子电池
TW201414066A (zh) 鋰離子電池正極複合材料
JP2003068281A (ja) 金属酸化物電極及びその製造方法、並びにそれを用いたリチウム二次電池
CN116154093A (zh) 一种负极极片,其制备方法及电化学装置
CN112151798A (zh) 一种氟化物/氧化物共包覆正极材料及其制备方法
KR101274829B1 (ko) 수명 특성이 개선된 이차 전지
CN114122377A (zh) 一种具有嵌入式包覆层的高镍正极材料及其制备方法
CN110660960B (zh) 一种电池及其制备方法
WO2024164930A1 (zh) 电池
WO2023025066A1 (zh) 一种钝化层及其制备方法和应用
WO2024103493A1 (zh) 一种锂离子电池及其具有多功能保护层的正极极片
US20200006763A1 (en) Electricity storage device
US20210351412A1 (en) Secondary battery
CN115000502A (zh) 一种具有核壳结构的固态电解质复合材料及其制备方法和应用
CN115552662A (zh) 电池及其制造方法
CN110661033B (zh) 离子交换材料及其制备方法、电解质薄膜、二次电池
US20200006764A1 (en) Secondary battery
WO2024217295A1 (zh) 一种钠离子电池正极材料及钠离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965669

Country of ref document: EP

Kind code of ref document: A1