JP2017195283A - 固体二次電池 - Google Patents

固体二次電池 Download PDF

Info

Publication number
JP2017195283A
JP2017195283A JP2016084703A JP2016084703A JP2017195283A JP 2017195283 A JP2017195283 A JP 2017195283A JP 2016084703 A JP2016084703 A JP 2016084703A JP 2016084703 A JP2016084703 A JP 2016084703A JP 2017195283 A JP2017195283 A JP 2017195283A
Authority
JP
Japan
Prior art keywords
layer
secondary battery
electrode
charge
solid secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016084703A
Other languages
English (en)
Inventor
中澤 明
Akira Nakazawa
明 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guala Technology Co Ltd
Original Assignee
Guala Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guala Technology Co Ltd filed Critical Guala Technology Co Ltd
Priority to JP2016084703A priority Critical patent/JP2017195283A/ja
Publication of JP2017195283A publication Critical patent/JP2017195283A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】本発明は、固体二次電池において、電荷リークを減少させることにより、さらなる容量の増加を実現する固体二次電池を提供する。
【解決手段】本発明は、基板2と、第1電極3と、絶縁物質で覆われたn型金属酸化物半導体粒子のバンドギャップ中に電子不在のエネルギー準位を形成して電子を捕獲する充電層4と、p型半導体層5と、第2電極6と、を順次積層して固体二次電池1を構成する。充電層4を2層以上で構成し、絶縁物質とn型金属酸化物半導体の質量比を変えることによって、電荷リークを防止し、充分な充電容量を確保すると共に、充電層4とp型半導体層の間の接合を強固なものとする。
【選択図】図1

Description

本発明は、紫外線照射により金属酸化物に光励起構造変化を生じさせて二次電池とした固体二次電池に関する。
本願出願人は、基板と、第1電極と、絶縁性物質で覆われたn型金属酸化物半導体に光励起構造変化を生じさせることによりバンドギャップ中にエネルギー準位を形成して電子を捕獲する充電層と、p型半導体層と、第2電極とを積層して構成された固体二次電池を提供している(特許文献1参照)。
特許文献1に記載された実施形態の固体二次電池は、基板としてガラス板を用いており、第1電極としてITOを用いている。また、n型金属酸化物半導体として、酸化スズ、二酸化チタン又は酸化亜鉛のいずれか1つ、又は、これらを組み合わせた複合物を用いている。また、p型半導体として、酸化ニッケル又は銅アルミ酸化物を用いており、第2電極としてITOを用いている。
さらに、特許文献1には、充電層の製造工程として、n型金属酸化物半導体の元素に有機物を結合した有機金属塩と絶縁物を有機溶媒に溶解し、基板に設けられた第1電極に塗布する工程と、塗布後に乾燥し焼成する工程と、焼成後に絶縁性物質で覆われたn型金属酸化物半導体の層に対して紫外線を照射し光励起構造変化を生じさせる工程が開示されている。また、特許文献1には明記されていないが、光励起構造変化が生じた状態の充電層の表面に、p型半導体層及び第2電極が積層される。
特許5508542号公報
特許文献1に係る二次電池は、液体電解質が必要ない固体二次電池であるため、従来の二次電池に比べて小型・軽量にすることができ、且つ、安全性も高いことから様々な用途への利用が期待されている。
一方で、二次電池に対しては常に容量の増加が求められており、特許文献1に記載の固体二次電池についても、さらなる容量の増加が期待されている。また、特許文献1に記載の固体二次電池は、所定の条件下でp型半導体層と充電層の間で電荷リークが発生することがあり、電荷リークが発生すると充電効率の低下につながる。このため、従来より、電荷リークを防止して充電効率を向上させる対策が望まれていた。
本発明は、上記課題に鑑みて、固体二次電池において、電荷リークを減少させて、さらなる容量の増加を実現することができる固体二次電池を提供することを目的とする。
本発明の固体二次電池は、第1電極と、絶縁物質として酸化シリコン(SiO)で覆われたn型金属酸化物半導体粒子のバンドギャップ中に電子不在のエネルギー準位が形成された充電層と、p型半導体層と、第2電極とが順次積層されてなる固体二次電池であって、前記充電層が2層以上で構成されており、前記充電層において、前記n型金属酸化物半導体粒子の材料としては、酸化チタン(TiO)、酸化スズ(SnO)または酸化亜鉛(ZnO)のいずれかを組み合わせた材料であり、前記絶縁物質の前記n型金属酸化物半導体粒子に対する質量比が、前記第1電極側に位置する層よりも前記第2電極側に位置する層の方が大きくなっていることを特徴とする。
本願出願人が実験を重ねた結果、充電層中の絶縁物質の割合を多くすることで充電層とp型半導体層との間の接合強度が高くなり、それによって自己放電を抑え、充電効率を高められることが知見された。この知見に基づく本発明の固体二次電池によれば、充電層中の絶縁物質の割合を多くすることで、充電層とp型半導体層とを強固に接合し、充電効率の高い二次電池を提供することができる。
また、本願出願人による確認の結果、上記構成とすることで、充電層とp型半導体層との間の剥離を防止し、歩留まりのよい固体二次電池を提供することができる。
本発明の固体二次電池では、充電層が2層以上で構成されているが、p型半導体層と強固な接合を果たす役割を担う絶縁物質のn型金属酸化物半導体粒子に対する質量比が大きい層と、充電容量の向上を果たす役割を担う絶縁物質のn型金属酸化物半導体粒子に対する質量比が小さい層とが存在する。本発明では、自己放電の抑制、充電効率の向上、電荷保持量の増大、及び充電容量の向上を、異なる層で役割を分担して果たすため、各々の効果を独立して追求出来るので格段な効果が期待できる。
また、本発明の固体二次電池において、前記充電層が前記第1電極側に位置する第1充電層と前記第2電極の側に位置する第2充電層との2層で構成されており、前記第2充電層の前記絶縁物質の前記n型金属酸化物半導体粒子に対する質量比が前記第1充電層の前記質量比に対し、5〜200倍の範囲とすることが好ましい。当該構成によれば、自己放電を抑制し、充電容量の向上を図ることができる。
本発明の本実施形態の固体二次電池の断面を示す説明図。
次に、図1を参照して、本発明の実施形態である固体二次電池について説明する。
図1は本発明の本実施形態の固体二次電池1の断面を示す説明図である。図1に示すように、第1の実施形態の固体二次電池1は、基板2と、第1電極3と、充電層4と、p型半導体層5と、第2電極6とが順次積層されて形成されている。また、充電層4は、第1電極3側に位置する第1充電層41と第2電極6側に位置する第2充電層42の2層で構成されている。
基板2は、本実施形態ではガラス基板を用いた。基板2の材質については、絶縁性の物質でも導電性の物質でもよく、例えば、ガラス基板の他に、高分子フィルムの樹脂シート、あるいは金属箔シートが使用可能である。導電性の物質を用いた場合は、第1電極3との兼用も可能である。
第1電極3は、ITO(スズドープ酸化インジウム)を用いており、スパッタリング法により厚さを0.2μmに形成した。本実施形態では、第2電極6も同様にITOを用いた。
第1電極3及び第2電極6は、導電膜が形成されればよく、本実施形態で用いた導電性酸化物膜のほか、例えば金属膜を用いてもよい。金属電極として、アルミニウム(Al)を含む銀(Ag)合金膜等が挙げられる。
その形成方法としては、スパッタリング、イオンプレーティング、電子ビーム蒸着、真空蒸着、化学蒸着等の気相成膜法を挙げることができる。また、金属電極は電解メッキ法、無電解メッキ法等により形成することができる。メッキに使用される金属としては、一般に銅、銅合金、ニッケル、アルミ、銀、金、亜鉛又はスズ等を使用することが可能である。いずれの電極も厚みは0.1〜0.5μm程度に形成し、用途等に応じて適宜設定する。
充電層4はn型金属酸化物半導体粒子に酸化チタンと酸化スズ微粒子を、絶縁物質に酸化ケイ素(SiO)を用い、酸化チタンと酸化スズ微粒子が酸化ケイ素によって覆われるように構成されている。
本実施形態において、充電層4は、第1充電層41と第2充電層42の2層構造となるように構成した。第2充電層42は、第1充電層41と比較して絶縁物質のn型金属酸化物半導体粒子に対する質量比が大きくなっている。
本実施形態では、第1充電層41と第2充電層42の前記質量比が、充電層4の最終的な絶縁物質である酸化ケイ素と、酸化チタンと酸化スズ合計の質量比で5倍から200倍の間になるようにしている。具体的には、以下の製造工程において、絶縁物質の原料となるシリコーンオイルとカプロン酸チタンとの質量比を調整することにより行っている。
第1充電層41を形成するために、カプロン酸チタン、カプロン酸スズとシリコーンオイルを有機溶媒であるキシレンに混合して攪拌し、塗布液Aを作製した。スピンコーターにより第1電極を形成したガラス基板2を回転させながら、塗布液Aを第1電極上に塗布し、これを50℃の雰囲気に10分間放置して乾燥させ、350℃で40分焼成した。
これら塗布・乾燥・焼成の工程より脂肪酸塩であるカプロン酸塩が分解され、シリコーンに覆われた酸化チタンと酸化スズの微粒子層が形成出来る。この時の酸化チタンと酸化スズ微粒子はXRD分析で非常にブロードなピークしか観察されない程度に非晶質に近い状態となっている。この方法は塗布熱分解法といわれ、工程が簡素で各工程を独立して制御し易く、酸化物膜を安価に成膜できる方法である。
次に塗布液Aと比較してシリコーンオイルが質量比で100倍になるように塗布液Bを調製した。この塗布液Bを第1充電層41上に同様の方法で塗布し、再度50℃の雰囲気に10分間放置して乾燥し、350℃で40分焼成して第2充電層42を形成した。
充電層4を形成した後に、波長が254nmの紫外線を強度20mW/cmで、40分間照射した。この紫外線照射により、酸化チタンおよび酸化スズの原子間距離を変化させて光励起構造変化現象を生起させる。この結果、酸化チタンおよび酸化スズのバンドギャップ内に新たなエネルギー準位が形成される。また、紫外線と紫外線照射時に発生するオゾンにより、酸化チタンと酸化スズを覆うシリコーンは酸化ケイ素となる。
紫外線照射には低圧水銀ランプを用いているが、これは工業的に安価に紫外線照射工程を実施できるためである。低圧水銀ランプを用いているために、照射される紫外線の波長が254nmであるが、n型金属酸化物半導体材料のバンドギャップに相当する波長以下の波長の紫外線が照射できればよいので、これに限定されるものではない。n型金属酸化物半導体の吸収端波長以下の波長に該当するUV−B領域やUV−C領域の紫外線照射を行えばよい。
紫外線は太陽光にも含まれるが、太陽光のように多くの波長の光を含む光ではUV−B以下の波長の光は地表にほとんど到達せず、強度も弱い。光励起構造変化は可逆変化で、より長い波長の光や赤外線などによる熱によって、より安定な元の形に戻ろうとする力が働くため、変化する力と戻ろうとする力が均衡を保ち光励起構造変化は進まない。
これに対して、積極的な紫外線照射では高エネルギーの短波長の光を強い強度で照射するため、光励起構造変化をもたらし、原子間距離の変化が固定すると紫外線照射後も変化は元に戻ることなく、新たに形成されたバンドギャップ中のエネルギー準位は維持される。本実施形態の二次電池1が形成されてから太陽光を照射した場合、光励起構造変化は進まない。
紫外線照射後の第1充電層41の厚みは0.2μm、第2充電層42の厚みは0.1μmであった。また、第2充電層における酸化ケイ素の酸化チタンと酸化スズの微粒子合計に対する質量比は、第1充電層における酸化ケイ素の酸化チタンと酸化スズの微粒子合計に対する質量比の100倍であった。
充電層4に用いるn型金属酸化物半導体材料としては、酸化チタン(TiO)、酸化スズ(SnO)または酸化亜鉛(ZnO)が好適であり、酸化チタンと酸化スズと酸化亜鉛のうちいずれか2つを組み合わせた材料、あるいは3つを組み合わせた材料が好ましい。
絶縁物質の材料としてはシリコーンが好適に用いられるが、無機絶縁物として鉱油、酸化マグネシウム(MgO)、酸化ケイ素(SiO)、アルミナ(Al)等でもよく、絶縁性樹脂としてポリエチレン、ポリプロピレン、ポリスチレン、ポリブタジエン、ポリ塩化ビニル、ポリメチルメタクリレート、ポリアミド、ポリカーボネート、ポリイミド、酢酸セルロースなどの熱可塑性樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、アルキド樹脂、エポキシ樹脂、ポリウレタンなどの熱硬化性樹脂でもよい。絶縁物質としては、材料がそのまま絶縁物質として機能しても良いし、製造工程中に酸化などによって別な物質、例えば本実施形態のようにシリコーンが酸化ケイ素(SiO)となっても良い。
塗布熱分解法に用いる脂肪酸としてはカプロン酸の他に、飽和脂肪族モノカルボン酸であるギ酸、酢酸、プロピオン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ステアリン酸等が挙げられる。不飽和脂肪族モノカルボン酸では、アクリル酸、ブテン酸、クロトン酸、イソクロトン酸、リノレン酸、オレイン酸等の高度不飽和モノカルボン酸が使用可能である。
充電層4は0.1〜1μm程度の厚みに形成される。充電層4は2層以上で構成されており、各層の厚みについては要求される充電容量や接合強度によって適宜設定すればよいが、2層で構成する場合は、第1の充電層と前記第2の充電層との厚みの比は2:1から50:1の範囲であるのが好ましい。この範囲であると、充分な充電容量を得ながら強固な接合が期待できる。
紫外線を照射し、光励起構造変化を施した充電層4の上に、p型半導体層5として酸化ニッケルをスパッタ法により0.1μmの厚さに成膜した。p型半導体層5は第2電極6への電子の移動を防止するために設けられていて、その厚みは0.1〜0.2μmである。p型半導体層5はp型金属酸化物半導体が好ましい。具体的な材料としては、酸化ニッケル(NiO)、銅アルミ酸化物(CuAlO)等が使用可能である。このp型半導体層5は、充電層4および第2電極6と強固に接合出来ればよく、形成方法は特に問わない。
p型半導体層5を形成した後、第2電極6としてITOをスパッタ法により0.2μmの厚さに成膜した。
ここで、本実施形態の固体二次電池1と、従来の固体二次電池との比較を行うと次の通りとなる。比較例として、前記塗布液Aを用い、充電層4を1層で構成し、他の条件を本実施形態と同様に製造したものを用意した。比較例と本実施形態の固体二次電池1における電池容量を比較すると、本実施形態による固体二次電池1の方が20%ほど改善が見られた。また、比較例では1%程度見られた自己放電が本実施形態では皆無であり、自己放電率の低減も達成することができ、固体二次電池1における充電効率の向上を図ることができる。
また、比較例の固体二次電池では、電極剥離が発生するものが散見されたが、剥離の状態を確認すると、充電層とp型半導体層との接合面が剥がれていることが判明した。本実施形態の固体二次電池1では、このような電極剥離が生じていない。このように、本実施形態の固体二次電池1は、充電層4の第2充電層42とp型半導体層5との接合が強固になり、電極剥離も防止できることが知見された。
ここで、本発明の固体二次電池の動作原理等について簡単に説明する。第1電極3と、絶縁物質で覆われたn型金属酸化物半導体粒子で構成した充電層4と、p型半導体層5と、第2電極6を積層した構造である本発明の固体二次電池は、光励起構造変化により電子不在のエネルギー準位が形成されることで機能する。
n型金属酸化物半導体粒子のフェルミ準位は伝導帯と価電子帯の中間に存在し、導電物質である第1電極3のフェルミ準位は伝導帯にある。充電層4にn型金属酸化物半導体のバンドギャップに相当する波長以下の紫外線が照射されると、n型金属酸化物半導体の価電子帯の電子は伝導体に励起される。n型金属酸化物半導体は絶縁物質で覆われており、絶縁物質が電極との間の障壁となる。紫外線照射によってn型金属酸化物半導体の価電子帯の電子が伝導帯に励起されると、n型金属酸化物半導体と絶縁物質の界面付近では伝導帯の傾斜とトンネル効果により、励起された電子がある確率で絶縁物質を通り抜けて第1電極の伝導帯に収容される。
一方、価電子帯には電子の抜けた正孔が溜まっている。充電層4においては、紫外線励起と、電子の抜けた正孔と電子との再結合の間に時間差が発生し、この時間差があることにより原子の再配列が行われる。このため、価電子帯に残留している正孔がバンドギャップ中に移動し、新たなエネルギー準位を形成すると共に原子間距離が変化する。このことは、第1電極3と充電層4の界面にのみバンドギャップ中の電子密度の増加が観測されており、内殻電子のケミカルシフトも観測されていることから明らかとなった。
紫外線照射中は、充電層4内で上述した現象が繰り返し起こり、バンドギャップ内に多数のエネルギー準位が形成される。しかも、これらエネルギー準位に捕らえられるべき電子は紫外線により励起されて第1電極3に移動しているため電子不在となる。この様にして、充電層4におけるバンドギャップ内の電子不在のエネルギー準位は、紫外線照射を終えた後も残存する。
充電層4に積層されたp型半導体層5は第2電極6側の障壁として機能する。第1電極3と第2電極6の間に電源を接続してバイアス電界を印加すると、第1電極3の電子が絶縁物質による障壁を通過(トンネリング)してバンドギャップ内に電子不在のエネルギー準位をもつn型金属酸化物半導体に移動する。
移動した電子は、p型半導体層5により第2電極への更なる移動がブロックされるから、n型金属酸化物半導体の電子不在のエネルギー準位に捕獲されることになり、エネルギーが蓄えられる。即ち、この状態が充電状態であり、充電層に電子が充満した状態となる。この状態は、バイアス電界の印加をやめても維持されるから、電解質を持たずに固体二次電池としての機能を有することになる。
第1電極3と第2電極6の間に負荷を接続すると、捕獲されていた電子は伝導帯の自由電子となり第1電極3に移動し、負荷に流れる。この現象がエネルギーの出力状態、即ち放電状態である。そして、最終的にはエネルギーが全て使用され、バンドギャップ内のエネルギー準位に電子がない状態になる。
本発明の実施形態では充電層が2層の場合について示したが、2層以上、例えば3層で構成してもよい。また、絶縁物質に覆われたn型金属酸化物半導体粒子の形成方法も塗布熱分解法以外の方法でももちろんよい。更に、前述の材料や厚さは用途や要求特性、製造条件などに合わせて適宜変更すればよい。酸化チタン(TiO)、酸化スズ(SnO)、酸化亜鉛(ZnO)の組み合わせやその比率は各層で異なっていても良く、要求条件に応じて設定する。
以上、本発明の固体二次電池について説明したが、本発明はその目的と利点を損なうことのない程度の変形を含み、更に、上記の実施形態、実施例に限定されるものではない。例えば、充電層4の下地層として、第1電極3の上にn型金属酸化物半導体層を更に形成してもよい。n型金属酸化物半導体層は例えば酸化チタンをスパッタ等の気相成膜法などにより0.1μm程度形成することで第1電極3と充電層4の接合強度を格段に向上することが出来る。
1…固体二次電池
2…基板
3…第1電極
4…充電層
5…p型半導体層
6…第2電極
41…第1充電層
42…第2充電層

Claims (2)

  1. 第1電極と、絶縁物質として酸化シリコン(SiO)で覆われたn型金属酸化物半導体粒子のバンドギャップ中に電子不在のエネルギー準位が形成された充電層と、p型半導体層と、第2電極とが順次積層されてなる固体二次電池であって、
    前記充電層が2層以上で構成されており、
    前記充電層において、前記n型金属酸化物半導体粒子の材料としては、酸化チタン(TiO)、酸化スズ(SnO)または酸化亜鉛(ZnO)のいずれかを組み合わせた材料であり、前記絶縁物質の前記n型金属酸化物半導体粒子に対する質量比が、前記第1電極側に位置する層よりも前記第2電極側に位置する層の方が大きくなっていることを特徴とする固体二次電池。
  2. 請求項1に記載の固体二次電池であって、
    前記充電層が前記第1電極側に位置する第1充電層と前記第2電極の側に位置する第2充電層の2層で構成されており、
    前記第2充電層の前記質量比が前記第1充電層の前記質量比に対し、5〜200倍の範囲であることを特徴とする固体二次電池。

JP2016084703A 2016-04-20 2016-04-20 固体二次電池 Pending JP2017195283A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084703A JP2017195283A (ja) 2016-04-20 2016-04-20 固体二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084703A JP2017195283A (ja) 2016-04-20 2016-04-20 固体二次電池

Publications (1)

Publication Number Publication Date
JP2017195283A true JP2017195283A (ja) 2017-10-26

Family

ID=60155628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084703A Pending JP2017195283A (ja) 2016-04-20 2016-04-20 固体二次電池

Country Status (1)

Country Link
JP (1) JP2017195283A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168495A1 (ja) * 2017-03-16 2018-09-20 株式会社日本マイクロニクス 二次電池
WO2018168493A1 (ja) * 2017-03-15 2018-09-20 株式会社日本マイクロニクス 蓄電デバイス
WO2019082421A1 (ja) * 2017-10-27 2019-05-02 株式会社日本マイクロニクス 蓄電デバイス
CN111540802A (zh) * 2020-05-19 2020-08-14 西南石油大学 一种新型太阳能发电储能双功能集成器件结构及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168493A1 (ja) * 2017-03-15 2018-09-20 株式会社日本マイクロニクス 蓄電デバイス
JP2018152311A (ja) * 2017-03-15 2018-09-27 株式会社日本マイクロニクス 蓄電デバイス
JP7075717B2 (ja) 2017-03-15 2022-05-26 株式会社日本マイクロニクス 蓄電デバイス
WO2018168495A1 (ja) * 2017-03-16 2018-09-20 株式会社日本マイクロニクス 二次電池
JP2018156778A (ja) * 2017-03-16 2018-10-04 株式会社日本マイクロニクス 二次電池
JP7023049B2 (ja) 2017-03-16 2022-02-21 株式会社日本マイクロニクス 二次電池
WO2019082421A1 (ja) * 2017-10-27 2019-05-02 株式会社日本マイクロニクス 蓄電デバイス
JP2019080010A (ja) * 2017-10-27 2019-05-23 株式会社日本マイクロニクス 蓄電デバイス
JP7015673B2 (ja) 2017-10-27 2022-02-03 株式会社日本マイクロニクス 蓄電デバイス
CN111540802A (zh) * 2020-05-19 2020-08-14 西南石油大学 一种新型太阳能发电储能双功能集成器件结构及其制备方法

Similar Documents

Publication Publication Date Title
AU2022201316B2 (en) Device architecture
JP5508542B2 (ja) 二次電池
US7968792B2 (en) Quantum dot sensitized wide bandgap semiconductor photovoltaic devices & methods of fabricating same
US9711668B2 (en) Photovoltaic cell
JP2017195283A (ja) 固体二次電池
JP2016529737A (ja) 光起電力デバイス
TWI603491B (zh) 二次電池的製造方法
KR20050058441A (ko) 색소증감형 광전변환장치 및 그 제조방법
JP2016082125A (ja) 蓄電素子及び蓄電素子の製造方法
JP2010225478A (ja) 光電変換素子及びその製造方法
KR101628952B1 (ko) 탠덤 태양전지 및 그 제조방법
JP5508966B2 (ja) 光電変換素子
CN110892496B (zh) 具有包括掺杂半导体材料的多个晶粒的光吸收层的光伏器件
JP2013197514A (ja) 太陽電池
KR20210026476A (ko) 양자점 태양전지 및 그 제조방법
JP2013201187A (ja) 太陽電池及びその製造方法
US20210225597A1 (en) Novel electronic device and method for producing layers of the same
KR20110036220A (ko) 태양전지 및 이의 제조방법
JP2009295448A (ja) 光電変換素子、光電変換素子の製造方法および電子機器
TWI453926B (zh) 太陽能電池及其電極層結構
JP2006302805A (ja) 色素増感型太陽電池用電極およびその製造方法
JP2013201186A (ja) 太陽電池
JP2013206901A (ja) 太陽電池